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Studies of the Diffusion with the Increasing
Quantity of the Substance; Its Application
to a Biological Problem*

{In collaboration with A.N. Kolmogorov and N.8. Piskunov)

Introduction

Qur starting point is the diffusion equation

@—k &% v
3t ="\ 5 T )

For the sake of simplicity, we limit ourselves to the case of two spatial
dimensions. Here # and y are the coordinates of the generic point on the
plane, t is the time variable, and v is the mass density at the point (z, ¥) at
the moment ¢, Assume that, in addition to diffusion, there is also a growth
of the quantity of the substance, and at each point and each moment this

growth is occurring at a rate depending on the density then observed. Thus,
we come to the equation

k>0, (1)
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It is quite natural that we are interested only in the values of Flv) for

v 2 0. Assume that F(v} is 2 contizuous function of v, F{v) is sufficiently
smooth and satisfies the following conditions:

"Originally published in Bull Univ. Moscor 1:6 {1937} 1-26. See Appendix for a
commentary by AL Volpert,
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F0)=F(1)=0; @)

Flu)>0, 0<v<l; (4)
Fi)=a>0, Fl<a, 0<v<l. (5)

Thus, it is assumed that for small v the growth rate F'(v} of the density v
is proportional to v (with ratio @); and as v becomes close to 1, the state
of “saturation” occurs and the growth of v ceases. Accordmg.ly, we limit
ourselves to solutions of equation (2) which satisfy the inequality

0<v<l. (8)

Any given initial values of v at ¢t = 0, which satisfy (6), determine
one and only one solutien! of equation (2) for 2 > D subject to the same
condition (8). :

Fig. 1

It is assumed, in what follows, that the density v does not depend on
the coordinate y. In this case, the basic equation (2) becomes
v v .
i k P + Flv). (7)
Suppose now that at the initial moment { = 0 we have v= 0forz < a,
and for z > b > @ the density v attains its largest possible value v = 1.
Naturally, with the increase of ¢, the reglon of densities that are close to 1
will travel from the right to the left, driving the region of sma.}l densmfes
to the left. In the special case a = b, the behavior of v looks like tha.t' in
Fig. 1. That part of the density curve (the density is regarded as z'mfunctl_on
of ) on which the essential density drop from 1 to 0 happens is moving
from the right to the left with the increase of ¢. As t — o0, the shape c?f
the density curve tends to assume some lmit configuration. Th.e Problem‘ 15
to determine this limit shape of the density curve and find the limit velocity

LThis fact is proved in §3.
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of its movement from the right to the left. This limit velocity turns out to
be equal to
)\Q = 2 \' ]CC! y (8)

and the limit shape of the density curve is given by the solution v of the
equation

dv dy
Rahi el
Ao dz 3= Flo}, {9)
supplemented by the conditions: v = 0for z = —co, and v = 1 for z = +oo.

Such a solution always exists and is unique to within the transformation
z' =z + ¢, which leaves intact the shape of the curve.

Note that equation {9} can be obtajned in the following way. Let us
seek a solution of equation (7) such that with the increase of ¢ the curve,
which represents the dependence of v on z, moves from the right to the left
with velocity A, whereas the shape of the curve does not change with the
variation of t. This solution has the form

v(z,1) = v{z + Af) . (10)

Now, if we regard v as a function of single variable z = z -+ )¢, we obtain
the equation

dv d¥
A E =k Md‘.j + F{’U) .

For any A > Ao, this equation admits a solution satisfying the conditions
specified above for equation {9). But it is only for & = X that we get the
required limit shape of the curve under the said initial conditions. In order
to have a better understanding of a seemingly strange phenomenon thas
equation (7) has solutions of type (10) for A > Ao, i.e., solutions for which
the expansion of the high density region (densities close to 1) proceeds with
a velocity larger than Ay, let us consider the limit case % = 0. In this case
there is no diffusion, and equation (7) can be integrated quite easily. Under
the above initial conditions, at the points z < a where the initial density
is equal to zero, it remains equal to zero for any t > 0. However, simple
calculations show that for any A > 0 there exist solutions of equation (7}
having the form (10) and satisfying all the conditions specified above. The
apparent drift of the substance from the right to the left is caused, in this
case, by the increase of its density at each peint, independently of what
happens at all other points.

In §1, the results described in this Introduction are applied to the study
of some biclogical problems; a proof of these results is given in §2 and §3.
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§1

Consider an area inhabited by some species. Assume, first, that a domma.x_xt
gene A ls distributed with constant concentration p (0 < p S'l) over thfs
area. Assume, further, that the members of the species possessing t?le tra.l_t
A (i.e., belonging to the genotypes AA or Ad) ha.v_e an a.dva.n.tag.e in their
efforts to survive over the members lacking that trait (i.e., b:elongmg to_ t‘he
genotype aa); namely, it is assumed that the ra.tiol ?f the survival prob:?.bﬂ:ty
for 2 member with trait A to the survival probability for a member without
that trait is equal to
l4+a,

where & is a small positive number. Then, for the increment of concentration
p in one generation we obtain the following value (see 1)

Ap = ap(l = p)° {11)

to within the terms of the order o. . '

Now, let us assume that the concentration p varies over the erea in-
habited by the species, i.e., p depends on t?!}e coordinates of a point on
the (z,y)-plane. If the members of the species were ﬁrml}( fixed tc_> their
respective places on the territory, the relation (11) Wc?uld still be \.'.a.hd.‘We
assume, however, that each member, during the period be‘twee_n its bu‘t?:;.
and its reproduction, travels some distance in a random flfrect1on (a}l di-
rections are equiprobable). Let f{r)dr denote the probability of moving a
distance between r and r + dr, and let

o [Trrr)er

be the mean square displacement. Then, instead of (11), we obtain the
following formmula: :

o o0 s
Aplz,y) = f fp(E,n}%dﬁdn“p(m,y)+orp{z,y){l-“p(w,y)} ;
T (12)

where r = +/(z — £) + {y — 7)}*.

Now we make the following assumptions: p{z.¥) is differentia.ble_ with
respect to z, ¥, and also ¢ (the latter accounts for the change of generations};
o and p are very small; the third moment

&= [Ty er

is smail as compared to p?. Then, taking the Taylor expansion in £ — =z and
71—y for p(€,7) In (12), and limiting ourselves to the terms of the second
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order (the first order terms vanish), we obtain?® the following approximate
equation for p:

op _p (& & 2

In order to study this equation, we can use the approach applicable to
the general equation (2).

Let us once again clarify our assumptions: The concentration p is vary-
ing smoothly with respect to the position in space and time (differentiability
in z, 3, t); this variation is caused by the selection with ratio {1+a) : 1 to the
advantage of the dominant characteristic 4, and also by random motion of
individual members with mean square displacement p of one member dur-
ing the time from its birth to its reproduction. Finally, o and p are small;
in particular, p is small with respect to the distances over which there are
substantial changes of concentration p. In this case, taking one generation
as a unit of time, we obtain equation (13).

Now, consider the case of 2 large area already occupied by the gene A
with concentration p close to 1. Along the border of this area it is natural to
expect a transition zone of intermediate concentrations. Beyond that zone,
we assume p to be close to 0. Owing to the positive selection, the region
occupied by A will expand; in other werds, the border of that region will
move in the direction of the territories still clear of the gene A; along the
border, there will always be a strip of intermediate concentrations. Qur first
problem is to determine the propagation speed of the gene A, Le., the speed
with which the border of the domain occupied by A moves in the direction
of the normal to that border. Formula (8} gives a ready answer to this
question: since in our case k = p?/4, the propagation speed is given by

A=pva. (14)

Naturally, cur next problem is te find the width of the transition zone.
Because of (9), in the direction of the normal to the border the concentration
p satisfies the equation
d%p

=& i,

dp
3 ==
dn?

dn
which, being divided by «, with A replaced by its value {14}, becomes

e dp 17 dp
Vedn 4o dn? +r(t=p)

2 &s regards the transition from (12) to (13), <f., for instance, a similar approach taken
by A.Ys. Khinchin in [2].
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Intreducing 2 new varizble v by

=L 15)
Y- (
we obtain the following equation
dp 1 d% .
L =1 1-p)", (18)
 ~aas TP

which contains neither o nor p. The boundary conditions for this equation
are the same as for (9):

plmo0) =0,  p(+ec)=1.

From (13) we conclude that the width of the transition zone is propor-

tional to L _\_/P__ | -
o

For instance, let p = 1, & = 0.0001; then A = 0.01, L = 100.

§2

r this section we consider the equation

A d_'u =k dz,t:

dx dz?

where A and k are assumed positive, and F(v) satisiles the conditions spec-
ified in the Introduction. ,

Our immediate aim is to find the relations between X, k, and « = F (03,

which ensure the existence of a solution for (18) satisfying the conditions:

+ Fv), (18)

0<u(z)<1, ZEIva(r)::l, lim =0.

T—r—00

Set dv/dz =p. Then

42 T dv dz W’
Substituting this into (18), we get

o _Jp=Fla) w0
dv ~ kp

The object of our interest ate the integral curves of the above equa-
tion which pass, on the (p,v)-plane, between the straight lines v = 0 and
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v = 1. In general, among these integral curves the following types can be
distinguished:

L. Integral curves separated by a distance larger than ¢ > 0 from one of
the straight linesv =0 or w=1.

2. Integral curves that go to infinity, away from the v axis, while asymp-
totically approaching one of the straight lines v = 0 or v = 1,

3. Integral curves crossing one of these straight lines at a finite point
outside the v axis.

4, Integral curves that do not belong to any of the above types and
approach the points v =0, p=0and v=1,p =0.

It is easy to see that no integral curve of type 1 may correspond to a
solution of equation (18) with the above conditions, since v cannot come
infinitely close to both 0 and 1 for such curves.

Integral curves of type 2 do not exist, since such curves must Lave points
at which [ dp/ dv| is very large for very lazge Ip|. But the ratio (Ap—F(u})/kp
is close to A/k for large [p], since F{v) is bounded on the interval {0,1).

Integral curves of type 3 correspond to solutions of (18) whose values
do not always remain within the limits 0 and 1. Indeed, suppose that there
is a curve of this type which approaches the pointv =1, p =p; # 0. In the
vicinity of the straight line v = 1, we have

dp 22y

dv " k7
and therefore, p car be regarded here as a function of v. Let 7 = @(v). Since
(1) = p1 #1, it follows that on a small interval (1 —e, 14+¢) the function
lo{v)] remains larger than a positive constant C. Denote by 2o the value of
« at whick v = | — ¢, Then, integrating the equation dv/dz = o(v), we

find that .
T v v

Hence, we can see that while v varies from 1 —¢ to 1 + &, the variation of
does not exceed 2¢/C in absolute value, Therefore, while & varies from Zq
to zo + 2¢/C, the function v must somewhere exceed 1.

It remains to consider the curves of type 4. Both {(v,p) = (0,0} and
(v,p) = (1,0) are singular points for equation {19). The integral curve of
type £ must approach each of those points without crossing the straight
lines v = 0 and v == 1, and therefore, no winding may occur, Thus, for the
existence of such curves it is necessary that the characteristic equation for
each of these points has real roots. Let us write F{v) in the form

F(U) =av+ 1,91(1?) .

iffasi 13
6. Studies of the Diffusion ... 1

Then we obviously have ¢1(v) = o(v). Therefore, the characteristic equation
for the point v = 0, p = 0 has the form

A—p —a|_
‘ BT
* pP=dk+ak=0. (20}

This equation has real roots i
2> dak .
11 order to obtain the characteristic equation for the point v =1,p =0,
let us change the variables, setting v = 1 —u. We get

dp _—Ap+t Plu)

du kp !

here Blu)= F(l—u).

Clearly, £7(1) < 0 and ¢(0) = —F'(1) = A = 0. It follows that
Blu) = Au+ ofu},
and the characteristic equation for the point v = 1, p = 0 has the form

—~A—p A

=0}
k -

" P Ao Ak=0. 21

This equation has real roots if
3> 4 Ak .

Since o > 0, equation {20) has real roots of the same sign. C.onse—
gquently, (0,0) is a nodal point. All integral curves entermg‘a sufﬁaen‘tly
sall n;ighborhood of that point must pass through that peint. Equation
{21) has roots of different signs if A > 0. Therefore, if A > 0, there are only

two integral curves passing through the point (1,0), and their &irfections are
uniquely determined. Let these directions be given by the equations

miu+rnp=0, Mau +nop=0. (22)

The coefficients my, 7y, 7z, Tz ate known?® to be defined by the equations

35ee, for instance, [3].
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kmy—piny =0, kmy = pinz =0, {23)

;\;I:izeai ac.::fld pa axe thg roots of the f:hara.cteristic equation (21). Since these
root : o.ppos;te signs, the straight lines {22) will also have their slope
strm};ic;sii Eesszins. 1The:i:efore,mehthin each angle formed by the crossing of
: =1 and p = 0 there is only one integral curve of equat;
Ellli) passing Fhrough t-he p_oint v =1, p = 0. An approximate pos(i;t?jltlmo{;
ese .chrves is show'n in Fig. 2. The curve II crosses the p-axis below th
Entgm, mdeed_, equation (18) shows that dp/dv > 0 in that pazt of the stri ;
etween the lines v = 0 and v = 1 which lies beneath the v-axis. Thereforlz

the curve IT should be i i i
tbe samve excluded from consideration. It remains to examine’

p]

v=]

Fig. 2

» Oul;1 .::n,im ts to prove that every curve of type I crosses the p-axis at the
t}r;gm.. '1rst of a.H., we show that this curve cannot cross the p-axis below
: e origin. For this purpose, consider the isoclines for equation (19). The
amily of these curves is given by the equation -

Ap— P(v)
prane C. {24)
Here C is the value of dp/dv at the point (v, p). Hence
N
d—Ck’ (24

) 0Ecp.za.tion. {24) d_eﬁnes-a. family of curves passing through the points
(O,‘ )a.nd (1,0). This family is outlined in Fig. 3. The respective value of
is indicated next to each curve. The curve corresponding to £ = 0 is

4 y .
.
Tn exa_c[‘.l the same manner, the mhegral curves fer equation (19) can be shown to

For A = it can on Yy i i eas z e o

= be claimed that there is at 1 ne inte M
5 0, it d.t 1 t o fegral curv f ¢, pe I
a.pproa.chmg the point (1, D) In a certain direction of negﬂtive Siope {SE& 4 )

6. Studies of the Diffusion ... 115

drawn in bold line. As the apex of a curve goes up, the respective value
of O increases and tends to A/k, which corresponds to the straight lines
» = 0 and v = 1. In the region enclosed between the curve C == 0 and the
v-axis (shaded area in Fig. 3), we have C < 0, and at the points close to the
y-axis the parameter C has very large absclute values. Beneath the v-axis,
we have O > 0, and as the apex of the curve goes down from the level of
the v-axis to —oo, the values of C decrease from +oo to Ak

Fig. 3

Now it becomes clear that the integral curve I (see Fig. 2) cannot cross
the axis Op below the origin. Indeed, assume the contrary. Then the curve
must cross the v-axis. Since dp/dv = —oo on the upper side of this axis,
and dp/dv = +oo on its lower side, the convexity of the integral curve I,
at its point of intersection with the v-axis, is directed towards the straight
line v = 1. Therefore, in order that this curve could pass through the
point (1,0), it is necessary that dp/de turn into oo above the v-axis, which
is impossible. Similar arguments chow that the curve I cannot cross the
straight line v = 1 above the v-axis.

Let us show that the integral curve I cannot cross the p-axis above the
origin. To this end it suffices to establish the existence of a half-line passing
through the origin in the first coordinate quarter and having no common
points with any of the integral curves crossing the p-axis in its positive half.
1t follows from equation (24') that

[»7

[
_/\-—Ck’

dv

v=0
where dp/ dv denotes the derivative of the function p = p{v) defined by
equation (24'). Let us define C such that




Articles on Partial Differential Equations

For this purpose we can use the equation

. s=er - O
or kC? — CX + o = 0; hence
C= )\i\/;\;c—tlcxk. (25)

By assumption, we have A? > 4cek; therefore, both values of € given by
(25) are real and positive. Denote one of these values by Cly and consider
the straight line

P= CQU . (26)

It is easy to see that for all those points of the strip between the lines v =10
and v = I whose position is above the line (26), or even on that line (except
at the origin), we have .

dU > CD ’

where p is the function of v given by equation (18).

Therefore, no integral curve passing through a point on the p-axis abave
the origin can ever cross thai part of the straighs line (26) which is above
the v-axis. Thereby, we have proved that every integral cuzrve of type I (see
Fig. 2) passes through the origin.

Let us show that there exists only one curve of type I. (Of course, this
proof is necessary only in the case A = 0.) Indeed, all integral curves of type
I pass through the origin, as shown above. On the other hand, it follows
from (19) that for p > 0 and v fixed the derivative dp/dv increases together
with p. Consequently, there cannet be two integral curves issuing from the
origin and passing through the point (1,0).

Next we show that the curve [ corresponds to the solution of equation
(18) with the conditions stated at the beginning. First of all, note that
any straight line perpendicular to the v-axis crosses the integral curve I for
equation {19) at a single peint; otherwise, above the v-axis, dp/dv would
turn to oo. Therefore, along this curve, p is a function of vi p = w(v). Recall
also that the curve [ crosses the v-axis at the point (1,0), the tangent of
the angle between the curve and the v-axis being negative; it also crosses
the same axis at the origin, this time the tangent being positive. Therefore,
for small valnes of v we have

p=kv+o(v); (27)
and for small values of 1 — v we have
p=rka(l—v)+oll ~v),
where k& > 0 and &, > 0.
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Recall now that p = dv/dz. Therefore, dv/dzs = w{v), or equivalently,
dz = dv/e(v). Integrating the last relation, we get

v d
a:-émg=]—t)—~, O<op<l.
s 9(v)

By virtue of (27) and (28), is follows that z — —oc as v — 0, and
r — +ooaswv— 1, ged

§3
In this section, instead of equation (7) mentioned in the Introduction, we
consider the following equation

du v 5
e = = 29
ot 8z* Fl2) (29)

with F(v) having the following properties:

F)=F(1)=0; (30)
Floy>0 for 0<v<l; (31}
F{o)y=1; (32)
Flo)<l for 0<v<l; (33)

F'(v) is continuous and bounded on  (0,1).

Moreover, F(v) is assumed sufficiently smooth. Equation (7} of general type
can always be reduced to the form (29) by changing the variables

Q|
Q| e

= Iz, t=

Our primary aim in this section is the proof of the following facts: the
fragment of the density curve v{z,t) {regarded as a function of z) bearing
the major part of the density drop from 1 to 0 is moving to the left as t
grows to oc; the speed of this motion tends to 2 (from below), whereas the
dexsity curve itself tends to assume the shape of the graph of the function
u[z) which is a solution of the equation

_dE

=+ F)=0, (34)

d2
&Y
dz?

and satisfles the conditions: v — 0 as ¢ — —00, & — 1 as ¢ — +00 (the
existence of such a solution has been established in §2).
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: h\ Before we turn to the proof of the main results of this section, consider
the equation

\\|
i gv 8w
} “a’;““c-)m_g“"F(thsv)? (35)

of which (29) is a special case. For this equation, we prove the existence
of a solution taking given initial velues at t = 0, and study some of its
properties.

Theorem 1. Assume thet the function F(z,,v) in (35) is bounded, con-
tinuous, and satisfies the Lipschitz condition with respect to v and z, ie.,

| |F(z2,t,03) = Flze,t,01)] < Elog = vi] + klza — 2, (36)

where k is a constent independent of z,t,v. Let f(z) be a bounded funciion
defined for all z. Assume, for simplicity, that f can have only a finite num-~
ber of discontinuities. Then there exists one and only one Function v(z,t)
which is bounded for bounded valuves of t, satisfies equation (35) fort >0,
and turns into f fort = 0 at every point of continuily of f.

For the sake of brevity, when saying thas »(z,t) turns inte f(z) 2t £ =0,
we always imply the points of continuity of f (z).

Proof. Let vy(x,t) be a bounded function satisfying the equation
b )
8 Ozt
for t > 0 and turning into f(z) at ¢ = 0. Substituting this function for v in
i the right-hand side of equation {35) and using the formula

=0 (37)

o 22 (-5%=5)

. - v
Sie,t) = 5= den_m = F(&n,w(En)de,  (39)

we find the solution of this equation vanishing on the z-axis (see [5]). The
function

v (z,1) = vz, ) + F1(z, 1)

turns into f(x) at ¢ = 0 and satisfies the equation
ab‘l 82U1

ot dz2

' In general, the formula

= Flz,t,v{z,t)) for t1>0.

t +ca (=82
'U“.;.]_(E,i) = Uﬂ(x'p t) + '_"/ d’? f MF(fa T,',’U,‘) dE 3 (39)
[\] oc

. ViE—1)
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vields the function v (x, %) satisfying the equation

g _ 62U£+1
ot dz?

for ¢ > 0 and turning into f(z) at t = 0.
Let us show that the functions vi(z,t) form a uniformly convergent
sequence. Indeed, taking into account (36), we find from (39) that

= F(ﬂ:,t, Ui) | (40)

Mia(t) = 5‘-;13 1”i+1(3:77) - U:‘(&’?N <
ng

P =)
<5om Df dn_i —==" P&, mvi6sm)) — FLEm i (€, m)) 6 S

35

< ] EMi{n)dn | (41)

since

e exp (-7255)
EPT g = 07
_i, yit—m i

But, denoting by M, the upper bound for |£(2)] and |F(z,%,0)], we get
EUU(IatM < Mo,

and by (33)
t
M; < j(k 1) Modt = (k + 1) Mot = Mt .
0

Hence, using the inequality (41), we easily find that
ME-

M; < o
3.

3

which makes the uniform convergence of v; quite clear.
Set
v(z,t) = im vz, t).
s =]

The function v(z, ?) turns into f(z) at t = 0. Moreover, it cbviously satisfles
the equation

t +oo o _ ::"_tE!2
o(zst) = vo(z,t) + 5oz [ 0 =2 855 e ot e (42
o

P V (t - TI)
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Hence we easily see that v(z,t) is a continuous function of z and ¢ for t > 0.
in Gevrey's mernoir [3] (pp. 343-344), referred to above, it has been shown
that for any bounded F' the second term in the righi-hand side of (42}
has a bounded derivative in z. Because of (36), it follows that the function
F(z,t,v(z,1)), t > 0, has bounded derivative numbers with respect to =z,
and therefore, equation {35) holds for u(z, t) (see [3], p. 351).

The uniqueness of a bounded solution <an be established as follows.
Assume thai there are two bounded functions vi(z,t} and v:(z,1) taking
equal values at £ = 0. Then

t

{z—§ 2

v;(x,t)—vﬂa:,t):—z\l/—q_r oj an_j exp__._( ““n )’“ (F(€,m,v2)~F(&,m, v)] &€ -

(43)
Set :
M(i) = sup [oe{z, 7} = walez,m)| -

Then, using (36), we find from (43) that
¢
M) Sk [ Min)dr,
8

which is impessible.

Remark. Asshown in (5], for a domain bounded on its sides by two curves
of the form @ = 11}, = = (1), and by the straight linest = &, i =4, > 4
from above and from below, there exists a unique bounded function satis-
fying equation (35) inside the domain and taking given continuous and
bounded data on the lines z = 1(t}, ¢ = wa(t), and ¢ = 0. Likewise, it is
possible fo show that for a domain & bounded in the horizontal direction,
on one side only, by the curve = = (t), and in the vertical direction by the
straight lines t = £, and £ = 1 > &g, there exists a unique bounded function
satisfying equation (35) inside G and taking given continuous and bounded
data on the curve z = (t) and the hine ¢ = #,.

Theorem 2. If F{z,t,v) be replaced by encther function Fy(z,t,v) such
that at every point we have

Fl(xat1v) = F(.’E,t,’-')) :

then the corresponding v(z,t) does not become smaller, provided that the
initial data are left intact.

Remark. For (35) interpreted as the heat equation, the function F{z,t,v)
characterizes the power of the heat source, and from the physical standpoint
Theorem 2 becomes evident.
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Proof. Let v(z, t) be the solution of (35), and let vy (z,1) be the solution of

at Szt

Subtracting one equation from another, we find that

= Fi(z,t,v1) .

wiz, 1} = n{z,1) — vz, 1)

satisfies the equation

%% - %.;w"’- = Az, t0) — Flz,t,0) .

Set
w(z,t) = 3(z, t)e ¥,

where k is the same as in (36). Then

%%— - %;:—1; = ko + ekt[f&(m,t,vl) — F(z,t,v)].
Hence
Bz, t) =

(s + e, 7 0) — F(E 7, 00) +

F{&n,wm) = F(§m,v)]}dE 2

1 Fee () .
Zz__wofd”_i——\/(j“:—*n—)”{kwﬂ E(E, ) — F(é,7,0)]}dé 2
1 e (CEE)
Zﬁufd”_afoﬂ(kw klol) d¢ (44)

The last expression in patentheses vanishes if @ > 0 and is equal to 2k® if
o < 0. Set
—re(t) = i {26, 7m) ~ 19L& W} -

Clearly, in order to prove our theorer, it suffices to show that mit) = 0. To
this end we note that it follows from (44) that
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B(z,1) 2 ~k [miz)dn,

and therefore,
t
mit) <k [ m(n)dn,
°
which is possible only if m(¢) =0, g.e.d.

Theorem 3. The function v{z,t) does not become smaller if f(x) is re-
placed with a larger funciien.

Physically, the statement of this theorem is as clear as that of the previ-
ous one, provided that (35) is regarded as the heat conduction equation for
a rod. The function f(z) specifies the initial temperature of the rod. With
the increase of the initial temperature, subsequent temperature becomes
higher.

Proof of Theorem 3. Assume that vi{z,t} and vy{z, 1} satisfy equation
(35) and, at ¢ = 9, turn into fi(z) and fo(z), respectively, where fo{z) 2
Fi(z). Let us show that va = v1.

The function w = vy — v; satisfies the equation

b
at 9z

By virtue of (36) we have

= Flz,t,v) — Flz,t,0) -

Fla,tywm) — Flz,t,vn) = —kjw|.

Thus, according to Theorem 2, the function w(z,t) is not less than v*(z,%),

where v™(z, t) is equal to fz(z) — fi(¢) > 0 for ¢t = 0 and, for £ > 0, satisfies
the equation

v~ B

Bt 9

The sclution of this equation which is bounded for bounded ¢ and takes

the initial values f — f, at ¢ = 0 (by Theorem 1 this solution is unique)

has the form e ~%v*, where v**(z, ) satisfies (37} and the initial condition

v**{z,0) = fao(z) — A(z) (obviously this functior is non-negative). Conse-

quently,

= kv

w=v2—‘v1 >0, qed.
Theorem 4. Assume that f{z) = 0 and F(x,2,0) =0 for all z,t. Then

vz, 2) 2 0.
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Proof. According to Theorem 3, with the decrease of f(z) the function
u(z,t) does not become larger. For f(z) = 0, we have v(z, t} = 0. Therefore,
viz, )2 0if f{z) 20, qed

Theorem 5. Assume that besides the conditions of Theorem 4 we also have
flz) > 0 on some interval of positive length. Then

vz, t) >0 for t>0C.

The proof of this theorem is obtained from that of Theorem 3 if we set
vy = v, ¥; = 0 and take into account that the function v**{z,1) represented
by Poisson’s integral is positive for ¢ > 0.

Theorem 6. If F(z,t,1) =0 and f(z) <1, then v(z, 1) £ 1.

Proof. By Theorem 3, the function v(z, t} does not become smaller with the
increase of f(z). For f(z} = 1, we have v(z,t) = 1. Hence we obtain the
needed result.

Theorem 7. Assume that fort = 0 the funcfion v(z,t) turns into ¢ mono-
tonically increasing differentiable function f(z) and for t > 0 satisfies the
equation

Jv v
-5’;—5;:1?@,1))- (45}

Then v(z,t} is @ non-decreasing function of z for anyt > 0.

Proof. By Theorem 1, we have

b (_lentP
v(w,f)xvo(w,tHg_}/??f.dn f wl’(mv(é,n))dﬂ (46)

—ca 1 (t ‘—T,’)

where vy(z, ) satisfles the equation

o
gt Ozt

for t > 0 and turns into f{x) at ¢ = 0. If f(z) is differentiable, we have
vl e, t) — F{z) as (z,t) — (x,0) (see [3], pp. 330-331). On the other
hand, the partial derivative in z of the second term in the right-hand side
of (46) has its absolute value bounded by (4/+/7)Mt'/%, if |[F| < M (see
18], p. 344), Therefore, v,(z,t) — F(z) as t — 0. If we assume, in addition,
that v{z, ) has the derivatives §°vj0tdz and &v/6z° (which is the case if
F(t,v) is three times differentiable in v), then the function w(z, t) = v (z,t)
satisfies the equation

=0 (47)
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oo w0,
8t Azt v

Now, applying Theorem 4, we find that wiz,t) 20, ged.

(48)

Theorem 8. Assume that

f9z) = FOa) as e~ 0,

aend also e
f |59 — 7] dz — 0.
Then -

v (z, 1) = v (z,8) a5 €0,

for every t >0, where v\9(z,1) and v®(z, t) are solutions of equetion (35)
fort > 0, with the initial values FO(z) end fO(z) at t =0, respectively.

Proof. In order to find the functions vz, t) and v!9(z,1), we use the
method of successive apProximations, just as in the proof of Theorem 1.
The functions Ué‘) and vun) are respectively given by

(=)

4t

+es
Wty = g | 1O

Oy
Wt = 5= [ 10 el = Lac.

Hence, we imrnediately see that
uf (3, 1) o z,t) as e—0

for ¢ > 0. The difference 3\ (z,t) — 5%(z,t) (the notation is the same as
in the proof of Theorem 1) is given by the formula

“‘l—f dn TMIF@ muf?) = P& m, 0]
AN

It follows that

§9(z,1) — 80z, )| £

. t 2 oo (— z-£)°
< k fdnf P( 4(:«1))
[ o0

2Ey o Jit-m)

iz, 8) =

§9(6,7) o8 m)| a6
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il WP

e exp | —
vyt = o= | |1900) - 7G| —
7 d 7

Set

We obviously have

vz t) 2

o (z,8) - o (=,1)]

and therefore,

+oo (z—£)
P (_ =

)
d B W TR P . T
nf e (md¢

k t
vi(z,t) < ﬁaf

t
== kfv&(z,t) dn = ktvg(z,t) .
0
The penultimate equality follows from the fact that vy(z,t) satisfies equa-
tion (47). Thus,
vi{z, t) < ktog(z,1) .
In exactly the same manner, we find that

()’

v (z,8) — vz, 8)] < e t)

vl (z,1) =

il

1t follows that, choosing ¢ suitably small, we can make the sum
v, vi(x,t), and therefore, 0@ (z, 1) — vz, )| arbitrarily small, ¢.e.d.

Theorem 9. Let v(z,t) be o funciion that satisfies equation (45) fort > 0,
together with the initial conditions: v =0 fort=0andz <0, andv=1
fort=0 and ¢ > 0. Then v(,t) is o non-decreasing function of z for eny
t > 0; moreover, vi(z,t) > 0 fort > 0.

Proof. According to the preceding theorem, v(z,t) can be regarded as a limit
{for & — 0) of functions v{?)(z, ¢} which coincide with v(z,¢) on the T-axis
for |z| > ¢, are monotone and continuous, together with their derivative in
2, on the entire z-axis. But, as we have just shown in Theorem 7, w19z, 1)
is a menotonically increasing function of z for t > 0; therefore, the same is
true for v(z, ).

Let us show that v.{z,¢) > 0 for ¢ > 0. To this end, it suffices to
show that for £ > 0 we cannot have v/(z,t) = 0. This fact can be es-
tablished by the following arguments. For ¢ > 0, the function vi{z,t) sat-
isfies equation (48). Therefore, the function @(z,t) = eMty! (2,1}, where
M = sup |6F/8v], satisfies the equation
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2

——Lﬂz{%+M]w.

Q>
=
Q0

S
5

72 Ay

We also have aF
— 4+ M>0;
v
therefore, according to Theorem 2, @w(x,t) = w(xz, ) for t > ¢y > 0, where

@, t) coincides with w(z, ) for £ = ¢; and satisfies the equation

&y

91 Ozt

for t > 0. The function ¥ is positive for all ¢ > ty, since W(z,?) does not
vanish identically for ¢ = #;, provided that ¢ is sufficiently small.

Iz what follows, we always denote by »{z,t) the function that satisfies

equation (29) for ¢t > 0, together with the conditions: v = 0 for ¢ = { and
z<0,v=1fort=0and z>0.

=0

Theorem 10. For any fized x < 0, we have

vz —20,1) =0 as t— +eo.

Proof. The function @(z,?) = v(z — 2t,1) satisfies the equation

95 G 95
A A 5
gt 8x2? ‘T (),
whereas v*(z,t) = v(z — 2t,£) e ™" satisfies the equation®
v A%t o em
il [F{7) ~5]e™™.

According to conditions (32) and (33) on F(v), we have F(v) -~ v < 0.
Therefore, v*(z,1} is smaller than the function satisfying equation (37) for
t >0 and, for t =0, equal to 1 on the hall-line z < 0, and equal to e~% if
z > 0. The latter function tends to 0 upiformly in z as t — +oa.

Theorem 11. Fort fized, let us consider vi{z,t) as a function of v. This
is possible on account of Theorem 9. Let

vz, 1) = P(v,1). (49)
Then, for v fized, the function ¢ does not increase with the growth of t.

Proof. Consider the functions v(x,t) and v(z -+ ¢, ¢ + to) = vy, [z, t), where
¢ is a constant and 5 > C. Set

61t is easy to see that v"(z,t) remains bounded for bounded ¢ > 0.

-1
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w(z, ) = vz, 1) — vy, (z,t) .
Denote by M the set formed by the points (z,t) on the plane such that
w(z, ) > 0. First of al_i, let us show that this set is bounded only on its left-
hand side so that its boundary curve issues from the origin and, moreover,
the coordinate t never decreases as we move along the curve. To this end,
we note that w(z,t) satisfies the equation

dw  FPuw

where k(z,1) is a bounded function, namely,
k(z,t) = F'(a(z,1));

a{z,t) is a certain number between v(z,t) and vy, (z,t}. Therefore, the set
M cannot contain isclated pieces” disjoint from the z-axis. Therefore, M
consists of a single piece joining, of course, the right half of the z-axis. In
order to prove that from its left-hand side the set M is bounded by a curve
along which the variable ¢ never decreases, assume the contrary, namely,
that this curve has a piece of the form indicated in Fig. 4. For definiteness,
let us assume that, as it issues from the point A, the curve goes down. Then
w(z,t) must take negative values to the right of the line OA, whereas on
O A proper w(z,t) == 0, and on the z-axis for z > 0 it takes positive values.
But this is impossible, which can be shown by exactly the same methods
as those used in the proof of Theorem 4.

Fig. 4

Similar arguments show that the set A is unbounded ou its right-hand
side.

After these remarks, our theorem can be proved quite easily. Indeed,
since the constant ¢ can be chosen arbitrary, we can fix it in such a way
that for any given t the values v(zq, ) and v;, (%0, t} coincide for some & = .
Then, on the basis of the above arguments, we conclude that

TSes [5] for the proof of a similar statement in the case of finite pieces, The same
result can also be cbtained for infinite pieces. Cf. Remark to Theorem 1.
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v(z, 1) > w,(z,t) for >z,

and therefore,
vg(zo,t) 2 vy, (70, ), qed.

Theorem 12. For anyt, we have
vz, 1) 2 u'(z)

if v(z,t) = u(z). Here u(z) is the solution of equation (34) discussed in the
beginning of this section.

Proof. This theorem is proved in exactly the same way as Theorem 1L
However, in this case we should take u(z + ¢) instead of »,,(z,t}, and to
consider the difference v(z,1) — u(z + c) instead of w(z,t}. .

Theorem 13. Let
vi{x,t) = vz + @(t), 1),

where the function @t} is chosen such that
v*{0,t) = ¢ = const .

Then
vz, t) = v (z) e t— o0,

and the convergence is uniform with respect to .

Proof. From (49) we find that

vt dy
z =L ek (51)

According to Theorem 11, the integrand is a monotonically increasing func-
tion of ¢ — oc. Moreover, by Theorem 12, the integral 2" (zb(v,2)) * dv
cannot increase to infinity. Therefore, we can pass to the limit under the
sign of the integral. Let

B, t) = h{v} as t~+ 4oo.
Then, passing to the limit in (51), we get
v du
2= ToR
By Theorem 12, we have ¥(v) > 0; therefore, the above relation defines a

function of z, say, v*(z). It remains to show uniform convergence of v*{x,t)
to v*(x). To this end, observe that (51} implies uniform convergence of
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z(v*, 1) to z(v") on any interval of the form ¢ < v* < 1 —&. Now, if we take
into account that ¥¥(v*,t) remains bounded on any such interval (owing to
Theorem 11), it follows that v*(z, t) uniformly converges to v™(z) for z such
that v(z) has its values between ¢ and 1 — ¢ (¢ is arbitrarily small). For =
outside that interval, we have uniform convergence v*{z,t) — v*{z), since
for sufficiently large ¢ the function v*(z, 1) has its values close to 0 and 1.

Theorem 14. Astg — +0o, the sequence of functions
vio(2,8) = vz + o{to), £ + o)

converges to a solution #{z,1) of equation (29}, uniformly in the domain
t < T = const. The function @(ty) is defined in such a way that

v, (0,0) = c=const, forall .

Proof. The function w(z,t) = vy, (z,t) — vser(z, ) satisfies the equation

ou _

5~ 3 = FEw, (52)

where 7(z, t) is between v, (7, £} and vy 47 (2, ). According to Theorem 13,
|w(z,0)] <& for sufficiently large %o,

where ¢ is arbitrarily small. By Theorems 2 and 3, we have

w(z,t) < oz, t) =ce®,

where k is the upper bound for the values of | F'(u)}, since @%(z,t} = w(z,0)
for t = 0, and for t > 0, @ satisfies the equation
do o
ot oz

whose right-hand side, for w = w, is not smaller than the right-hand side
of equation (52). In exactly the same way we can prove the inequality

= ki),

w(z,t) > —ge* .

Thereby we have shown that the sequence v, {2, 1}, g — 400, uniformly
converges, in scme domain t < T, to a function, which we denote by o(x, ).
Let us show that equation (29} holds for 4(z, t).
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For this purpose, we can use (42) and write
+oa r-—EF)

l exp ( P\
d v{&,m))dl . (53
Jn£ Ty Tl 69

Here we can pass to the limit, after substituting # for v,,. The function
satisfying equation {53) is also a solution of equation (29), as shown in the
proof of Theorem 1.

v (2, 1) = vy oz, 8)

alw

Theorem 15. The first order partial derivatives of v (z,t) tn = and t
converge o the respective derivetives of T(xz,t) as to — +oo; the convergence
is uniform in any region € < t < T, where ¢ and T' are arbitrary positive
constants.

Proof. Uniform convergence of dvy/0z is established on the basis of (53).
Indeed, for t > &, uniform convergence of the derivative in z of the first
term in the right-hand side follows from the representation of that term by
the Poisson integral. In order to prove this result for the second term with
t < T, consider the difference of its values for #p =t} and &, = t§:

t +co (==

szl o [ = “W%ﬂ%%mea. (54)

e t - 1)
According to Theorem 14,
F(vta (£,t) — F(Ut'u'(gwt))

becomes arbitrarily small for large £, and ¢5. In this situation, applying the
above mentioned resuit of {5], we find that for sufficiently large ¢} and if
the z-derivative of (54) becomes arbitrarily small (uniformly in z) ¢ < T.
The function wy,(z,t) = dvy,(z,t)/0z satisfes the equation
2
8;!?0 _ %‘ - F"(Uto)wtu .

For ¢ < t < T, we have already established uniform convergence of the
right-hand side of this equation as ¢y — co. Therefore, arguments similar to
those used for the proof of uniform convergence of dvy,/dz, can be applied
to prove uniform convergence of fuw, /82 = 8w, /8z". Since vy, satisfies
(28}, it follows that dv,, /0t is uniformly convergent.

Theorem 16. Assume that the function vy (z,t) {resp,. #(z,t)] remains
equal to o constant ¢ along the curve T = ¢y (L) (resp., = (L)}, Then

Gt =Pt as - oo,

uniformly int fore <t < T.
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Proof. We have

’ a el a 1] .
Pult) = =72 [ 52 atthepoint (py(t).0);
/ av [ 0% i
@t} = - 3_: /a—z at the point (w(£),2).

By Theorems 12 and 14, for sufficiently large to, we have

22 (1) =~ 2(t)] < &

everywhere in the domain G (¢ < t < T, where g, is arbitrarily small.
According to Theorem 15, the respective numerators and denominators of

the fractions 2 5 . 5
ey to ] ] .
m/& @da/a - B9

are arbitrarily close to one another in G for the same values of their argu-
ments. Moreover, in the strip

go(t)~£g<$<lp(t)+52,

the function 8%/0z is larger than a positive constant. Therefore, the frac-
tions (53), for the same values of their arguments and sufficiently large ¢,
differ less than by ¢3 on the strip

e<t<T, wt) —ex <z <@t)+e.

If we also take into account that 8%/8t (83/0z )" is unifermly continuous
on that strip, and therefore, its values at the points of the strip with the
same ¢ are arbitrarily close to one another for small enough €3, we get the
statement of our theorem,

Theorem 17. For any t, we have
dip
Hz,t)=ulz+2t), and = — -2 as t—o0.
(The notation here is that of Theorem 14.)
Procf. Consider the function

v™(z,t) = 8z + aft),t),

where ¢;{t) is chosen such that

v™(0,t) = ¢ = const.
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Then 5 . 3
i “y® "
= L () e 9.
ar = e Taligy HFU
On the other hand, for any z, v*{z,t) does not depend on % (this follows

from the definition of %(z,t}). Therefore,

du”

ot .

According to §2, this constant cannct be larger than —2; and if cannot

be smaller than —2, by Theorem 10. Therefore, it is equal to —2, and by
Theorem 16 we have

dy

dt

=0 and ¢&(t) = const.

— -2 as t—oo, g.e.d.

Remark. Assume that the initial values of v(z,t} are other than those
considered so far; namely, let

Iy v{z,0) =1 for x = c1;
2} v(z,0)=0forz € en < &3
N0<v(z,0)<lforcz<z <.

Then it is easy to show that the segment of the curve bearing the major
part of the drop from 1 to 0 travels with a speed which, nevertheless, tends
to 2 as t — oo, since n this case we have

vz ~a,t) < 9(z,1) < vz - c2.t) 5

here #{z,1} is the solution of (29) with the new initial conditions.

References -

(1] Fisher, R.A. The General Theory of Natural Selection. Oxford Univ.
Press, 1930.

(2] Khinchin, A.Ya. Asymptotic Laws in the Theory of Probability. Moscow,
Leningrad, ONTI, 1936.

[3] Bendixon, I. Sur les courbes définies par les équations différentielles. Acta
Math. 24 (1901) 1-88.

{4] Petrowsky, [.G. Uber das Verhalten der Integralkurven eines Systems
gewdhnlichen Differentialgleichungen in der Nihe eines singuldren Punk-
tes. Mat. Shornik 41:1 (1934) 104-156.

(5] Gevrey, M. Sur les équations zux dérivées particlles du type parabelique.
J. Math. Pures et Appl. 9:4 (1913) 305-471. .

(6] Petrowsky, I.G. Zur ersten Randwertaufgabe der Warmeleitungsgleich-
ung. Compos. Math. 1:3 {1835) 383-419.

7

On the Speed of Propagation of
Discontinuities of Displacement Derivatives
on the Surface of a Non-Homogeneous
Elastic Body of Arbitrary Shape*

1. Let us regard the time variable ¢ as a spatial cocrdinate and assume that

" the displacements u, v, w, usually considered in the theory of elasticity, are

defined inside and on the boundary of a cylinder C with its generatrix going
along the t-axis and its base coinciding with the elastic body in question.
To simplify the notation, set ¥ = uy, v = up, w = uz. We also assume that
in the vicinity of a point M(z% y° 2%} the body is bounded by a surface of
the form z = f(z,y), where f has continuous derivatives up to the order
n -+ 2, or briefly, f has smoothness n 4 2. First we consider the case n > 3.

In general, we examine a non-homogeneous anisotropic elastic body free
of externally applied forces, under the assumption that the coefficients of
the elasticity system and those of the boundary conditions do not depend
on t and have smoothness = and n + 1, respectively. _

Assume that the functions u;, in a neighborkood of the point M? with
coordinates (19, 2%,¢°, %), have smoothness n, whereas on the surface of ¢
near this peint, u; have continuous derivatives up to the order n + 1 every-
where, except at the points of a two-dimensional surface S; containing M°
and having smoothness n 4 2; at the points of S; the displacements u; have
singularities of the type specified below. Qur problem consists in finding
the slope of 3, at the point MY,

2. In a neighborhood of M°, let us consider a transformation of the variables
i,z,¥,z with smoothness n -+ 2 and the following properties:

“Originally published in Doki. Aked. Neuk SSSR 47:4 {1945) 258~261. See Appendix
for a commentary by A.F. Filippov.
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