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Studies of the Diffusion with the Increasing 
Quantity of the Substance; Its Application 

to a Biological Problem* 

(In collaboration with A.N. Kolmogorov and N.S. Piskunov) 

Introduction 

Our starting point is the diffusion equation 

&v = k ( &
2
v &

2
v) 

&t &x2 + &y2 ' 
k > 0. (1) 

For the sake of simplicity, we limit ourselves to the case of two spatial 
dimensions. Here x and y are the coordinates of the generic point on the 
plane, tis the time variable, and vis the mass density at the point (x, y) at 
the moment t. Assume that, in addition to diffusion, there is also a growth 
of the quantity of the substance, and at each point and each moment this 
growth is occurring at a rate depending on the density then observed. Thus, 
we come to the equation 

&v ( &'v &'v) 
&t=k &x'+&y 2 +F(v). (2) 

It is quite natural that we are interested only in the values of F(v) for 
v ~ 0. Assume that F(v) is a continuous function of v, F(v) is sufficiently 
smooth and satisfies the following conditions: 

"Originally published in Bull. Univ. 1Yfoscou 1:6 (1937) 1-26. See Appendix for a 
commentary by A.I. Volpert. 
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F(O) = F(l) = 0; 

F(v) > 0, 0 < v < 1; 

F'(O) = <> > 0, F'(v) < <>, 0 < v < 1. 

lOi 

(3) 

(4) 

(5) 

Thus, it is assumed that for small v the growth ra.te F( v) of the density v 
is proportional to v (with ratio a); and as v becomes close _to 1, the s~a\e 
of "saturation" occurs and the growth of v ceases. Accordmgly, we hnnt 
ourselves to solutions of equation (2) which satisfy the inequality 

(6) 

Any given initial values of v at t :::: 0, which satisfy (6), determine 
one and only one solution 1 of equation (2) for t > 0 subject to the same 
condition (6). 

V 

X 

Fig. 1 

It is assumed, in what follows, that the density v does not depend on 
the coordinate y. In this ca.se, the basic equation (2) becomes 

av 82v 
-=k-+F(v). 
&t &x' 

(7) 

Suppose now that at the initial moment t = 0 we have v = 0 for x < a, 
and for x > b ~ a the density v attains its largest possible- value v = 1. 
Naturally, with the increase oft, the region of densities that are close~~ 1 
will travel from the right to the left, driving the region of small densities 
to the left. In the special case a = b, the behavior of v looks like that_ in 
Fig. 1. That part of the density curve (the density is regarded as~ funct~on 
of x) on which the essential density drop from 1 to O happens is movmg 
from the right to the left with the increase of t. As t --+ oo, the shape ~f 
the density curve tends to assume some limit configuration. Th: ~roble~ 1s 
to determine this limit shape of the density curve and find the lirrut velocity 

1This fa.ct is proved in §3. 
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of its movement from the right to the left. This limit velocity turns out to 
be equal to 

Ao= 2...;r;, (8) 

and the limit shape of the density curve is given by the solution v of the 
equation 

dv d2v 
Ao-cl =k-cl.+F(v), 

X x• (9) 

supplemented by the conditions: v = 0 for x = -oo, and v = 1 for x = +co. 
Such a solution always exists and is unique to within the transformation 
x' = x + c, which leaves intact the shape of the curve. 

Note that equation (9) can be obtained in the following way. Let us 
seek a solution of equation (7) such that with the increase of t the curve, 
which represents the dependence of v on x, moves from the right to -the left 
with velocity A, whereas the shape of the curve does not change with the 
variation oft. This solution has the form 

v(x, t) = v(x + At) . (10) 

Now, if we regard v as a function of single variable:: = x + At, we obtain 
the equation 

For any A ~ Ao, this equation admits a solution satisfying the conditions 
specified above for equation (9). But it is only for A = A0 that we get the 
required limit shape of the curve under the said initial conditions. In order 
to have a better understanding of a seemingly strange phenomenon that 
equation (i) has solutions of type (10) for A > A0 , i.e., solutions for which 
the expansion of the high density region (densities close to 1) proceeds with 
a velocity larger than Ao, let us consider the limit case k = 0. In this case 
there is no diffusion, and equation (7) can be integrated quite easily. Under 
the above initial conditions, at the points x < a where the initial density 
is equal to zero, it remains equal to zero for any t > 0. However, simple 
calculations show that for any A > 0 there exist solutions of equation (i) 
having the form (10) and satisfying all the conditions specified above. The 
apparent drift of the substance from the right to the left is caused, in this 
case, by the increase of its density at each point, independently of what 
happens at all other points. 

In §1, the results described in this Introduction are applied to the study 
of some biological problems; a proof of these results is given in §2 and §3. 

':cw :'.F' 
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§1 

Consider an area inhabited by some species. Assume, first, that a domin~t 
ne A is distributed with constant concentration p (0 :S: p :S: 1) over this 

ge · · th t ·t a.rea. Assume, further, that the members of the species possess mg . e ra~ 
A (i.e., belonging to the genotypes AA_or Aa) hav: a~ advantag.e m their 
efforts to survive over the members lackmg that trait (i.e., b:longmg to_ t.he 
genotype aa ); namely, it is assumed t~at the ratio_ ~f the survival prob~b1hty 
for a member with trait A to the survival probability for a member without 
that trait is equal to 

1 +a, 
where O is a small positive number. Then, for the increment of concentration 
pin one generation we obtain the following value (see [1]): 

Clp = ap(l -c p)' (11) 

to within the terms of the order o:2 • • 

Now let us assume that the concentration p varies over the area m­
habited by the species, i.e., p depends on the coordinates of a point o? 
the (x,y)-plane. If the members of the species were firml~ fixed t~ their 
respective places on the territory, the relation (11) would still be v:lid. _We 
assume however that each member, during the period between its birth 
and its' reproduc;ion, travels some distance in a random direction ( all di­
rections are equiprobable). Let f(r) dr denote the probability of moving a 
distance between r and r + dr, and let 

p = J,00 

r' f(r) clr 

be the mean square displacement. Then, instead of (11), we obtain the 
following formula: 

oo +oo f( ) , 
Clp(x,y)= j j p(e,ry)2:rcleclry-p(x,y)+ap(x,y){l-p(x,y)) 

-- (1~ 

where r = J(x -ff+ (y - ry)'. . . . . 
Now we make the following assumptions: p(x,y) 1s differentiable with 

respect to x, y, and also t (the latter accounts for the change of generations); 
a and p are very small; the third moment 

cl3 = J,00 

lr'lf(r) clr 

is small as compared to p2. Then, taking the Taylor expansion in ~ - x and 
'Tl -y for p(~,ry) in (12), and limiting ourselves to the terms of the second 
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order (the first order terms vanish), we obtain 2 the following approximate 
equation for p: 

op p' ( o'p a'p) o at = 4 8x 2 + oy' + c,p(l - p)· · (13) 

In order to study this equation) we can use the approach applicable to 
the general equation (2). 

Let us once again clarify our assumptions: The concentra.tion p is vary­
ing smoothly with respect to the position in space and time ( differentiability 
in x, y, t); this variation is ca.used by the selection with ratio (l+a:) : 1 to the 
advantage of the dominant characteristic A, and also by random motion of 
individual members with mean square displacement p of one member dur­
ing the time from its birth to its reproduction. Finally, a: and p are small; 
in particular, p is small with respect to the distances over which there are 
substantial changes of concentration p. In this ca.se, taking one generation 
as a unit of time, we obtain equation (13). 

Now, consider the case of a large area already occupied by the gene A 
with concentration p close to 1. Along the border of this area it is natural to 
expect a transition zone of intermediate concentrations. Beyond that zone, 
we assume p to be close to 0. Owing to the positive selection, the region 
occupied by A will expand; in other words, the border of that region will 
move in the direction of the territories still clear of the gene A; along the 
border, there will always be a strip of intermediate concentrations. Our first 
problem is to determine the propagation speed of the gene A, i.e., the speed 
with which the border of the domain occupied by A moves in the direction 
of the normal to that border. Formula (S) gives a ready answer to this 
question: since in our case k = p2 /4, the propagation speed is given by 

!.=p,/c,. (14) 

Naturally, our next problem is to find the width of the transition zone. 
Because of (9), in the direction of the normal to the border the concentration 
p satisfies the equation 

dp p' d'p 2 
!,- =-- +<>p(l-p) ' 

dn 4 dn2 

which, being divided by ex, with,\ replaced by its value (14), becomes 

p dp l p' d'p 2 
-- =---0 +p(l-p) • 
./adn 4a: dw 

2 kl regards the transition from (12) to (13), cf., for instance, a similar approach taken 
by A.Ya. Khinchin in [2]. 
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Introducing a. new varia.ble II by 

p 
n= fo.v' 

we obtain the following equation 

dp 1 d2p 2 

dv = 4 dv 2 + p(l - p) ' 

111 

(15) 

(16) 

which contains neither a: nor p. The boundary conditions for this equation 

are the same as for ( 9): 

p(-oo)=O, p(+oo)=l. 

From (15) we conclude that the width of the transition zone is propor­

tional to 
(17) 

For instance, let p = l, a:= 0.0001; then ,\ = 0.01, L = 100. 

§2 

In this section we consider the equation 

dv d2v 
>,-d =k-d, +F(u), 

X x• 
(18) 

where ,\ and k are assumed positive) and F( v) satisfies the conditions spec­

ified in the Introduction. 
Our immediate aim is to find the relations between.\, k, and a:= F'(O), 

which ensure the existence of a solution for (18) satisfying the conditions: 

0$u(x)$1, 

Set du/dx = p. Then 

lim u(x)=l, 
x-+oo 

dp du 
dv dx 

Substituting this into (18), we get 

dp 
du 

!.p-F(u) 
kp 

lim = 0. 
,:-,.-oo 

(19) 

The object of our interest are the integral curves_ of t~e above equa~ 
tion which pass, on the (p, v )-plane, between the straight hnes v = 0 and 
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v = 1. In general, among these integral curves the following types can be 
distinguished: · 

1. Integral curves separated by a distance larger than e > 0 from one of 
the straight lines v = 0 or v = l. 

2. Integral curves that go to infinity, away from the v axis, while asymp­
totically approaching one of the straight lines v = 0 or v ::; 1. 

3. Integral curves crossing one of these straight lines at a finite point 
outside the v axis. 

4. Integral curves that do not belong to any of the above types and 
approach the points v = 0, p = 0 and v = l, p = 0. 

It is easy to see that no integral curve of type 1 may correspond to a 
solution of equation (18) with the above conditions, since v cannot come 
infin~tely close to both O and 1 for such curves. 

Integral curves of type 2 do not exist, since such curves must have points 
at which f dp/ dvf is very large for very large [pf. But the ratio (,\p-F( v ))/ kp 
is close to >../k for large IPI, since F(v) is bounded on the interval (0, 1). 

Integral curves of type 3 correspond to solutions of (18) whose values 
do not always remain within the limits O and 1. Indeed, suppose that there 
is a curve of this type which approaches the point v = 1, p = p1 # 0. In the 
vicinity of the straight line v = 1, we have 

dp ,\ - ~-iO 
dv k 

and therefore, p can be regarded here as a function of v. Let p = rp( v ). Since 
rp ( 1) = Pi # 0, it follows that on a small interval ( 1 - e, 1 + e) the function 
jrp(v)I remains larger than a positive constant C. Denote by x0 the value of 
x at _which v = 1 - e. Then, integrating the equation dv/dx = rp(v), we 
find that 

I"' dx = X - Xo = rv ~ . 
lro 11-e rp(v) 

Hence, we can see that while v varies from 1- £ to 1 + e, the variation of x 
does not exceed 2e/C in absolute value. Therefore, while x varies from x

0 
to x 0 + 2e/C, the function v must somewhere exceed 1. 

It remains to consider the curves of type 4. Both (v,p) = (0,0) and 
(v,p) = (1,0) are singular points for equation (19). The integral curve of 
type 4 must approach each of those points without crossing the straight 
lines v = 0 and v = 1, and therefore, no winding may occur. Thus, for the 
existence of such curves it is necessary that the characteristic equation for 
each of these points has real roots. Let us write F( v) in the form 

F(v) =av+ 1"1(v). 
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Then we obviously have /.Pl ( v) = o( v ). Therefore, the characteristic equation 

for the point v = 0, p = 0 has the form 

I ' ~ p =; I = 0 , 

p' - ,\k + ak = 0 . (20) 

This equation has real roots if 

>.2 ~ 4o:k . 

In order to obtain the characteristic equation for the point v = 1, P = 0, 
let us change the variables, setting v = 1 - u. We get 

where 

dp 
du 

-,\p + <l>(u) 

kp 

<l>(u)=F(l-u). 

Clearly, F'(l)::, O and <l>'(O) = -F'(l) =A<'. 0. It f~llows that 

<l>(u) =Av+ o(u), 

and the characteristic equation for the point v = 1, p = 0 has the form 

1
-,\ - p A I = 0 , 

k -p 

or 
p' + ,\p - Ak = O • 

This equation has real roots if 

,12 <'. -4Ak . 

(21) 

Since a > o, equation (20) has real roots of the s~e sign. ~onse­
t! (0 OJ is a nodal point. All integral curves entenng a suffic1e~tly 

quen Y, , h h th t · t E ation small neighborhood of that point must pass t roug_ a pcm · qu 
(21) has roots of different signs if A > O. Therefore 1 1f A > ~' t~ere ~re only 
two integral curves passing through the point (:, 0), and their d1r:ctions are 
uniquely determined. Let these directions be given by the equations 

mzu+nzp=O. (22) 

The coefficients m 1 , ni, m 2 , n2 are known 3 to be defined by the equations 

3 See, for instance, [3]. 
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km1 - P1n1 = D , km, - p,n, = o, (23) 

where P1 and Pz are the roots of the characteristic equation(?!) s· th 
rofots are of opposite signs, the straight lines (22) will also hav~ thm:e Iese 
o oppos·te · 4 Th 1: • • e1r s ope 

1 signs. ereiore, w1thm each angle formed by the c · 
straight 1 · rossmg of 
(lg) :nes v = l and P = 0 there is only one integral curve of equation 

passing through the point v = l, p = 0. An approximate 05 · · 

th:s.e c~rves is shown in Fig. 2. The curve II crosses the p-axis\e;::~ of 
~ngm; mdeed_1 equation (19) shows that dp/dv > O in that part of the str~e 

etween the Imes v = 0 and v = 1 which lies beneath the v~axis Therefo ip 

t
thhe curve II should be excluded from consideration. It remains 'to examinre; 

e curve I. · e 

p 
II 

I 
v=l 

Fig. 2 

. ?ur ~m is to prove that every curve of type I crosses the p-a..'<is at th 
0~1gm .. ~ust of a~, we show that this curve cannot cross the p-axis belo; 
; e .ongm. For this purpose, consider the isoclines for equation (19) Th 
annly of these curves is given by the equation · e 

>.p-F(v) 
kp =C. 

Here C is the value of dp/dv at the point (v,p). Hence 

_ F(v) 
P- >.-Ck. 

(24) 

(24') 

( 
Equation (24) ~efines. a family of curves passing through the points 

J,.O) .an~ (1, 0). This family is outlined in Fig. 3. The respective value of 
is md1cated next to each curve. The curve corresponding to C = o is 

h 
~In ~a_ctly 

1
the same manner, the integral curves for equation (19) can be shown to 

ave pos1t1ve s ope. 

a. 
5
r:~~1 = 0, it c~ only b~ claimed_ tha~ th~re is at Je3.9t one integral curve of type I 

PP ng the pomt (1, 0) m a. certam direction of neg:itive slope (see [4]). 
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drawn in bold line. As the apex of a curve goes up, the respective value 
of C increases and tends to A/k, which corresponds to the straight lines 
v = O and v = 1. In the region enclosed between the curve C = 0 and ~he 
v-a..xis (shaded area in Fig. 3), we have C < 0, and at the points close to the 
v-axis the parameter C has very large absolute values. Beneath the v-axis, 
we have C > 0, and as the apex of the curve goes down from the level of 
the v-a..'<is to -oo, the values of C decrease from +oo to A/k. 

C>O v=l 

Fig. 3 

Now it becomes clear that the integral curve I (see Fig. 2) cannot cross 
the a.xis Op below the origin. Indeed, assume the contrary. Then the curve I 
must cross the v-a.xis. Since dp/dv = -oo on the upper side of this axis, 
and dp/dv = +oo on its lower side, the convexity of the integral curve I, 
at its point of intersection with the v-axis, is directed towards the straight 
line v = 1. Therefore, in order that this curve could pass through the 
point (1,0), it is necessary that dp/dv turn into oo above the v-a.xis, which 
is impossible. Similar arguments show that the curve I cannot cross the 

straight line v = 1 above the v-axis. 
Let us show that the integral curve I cannot cross the p-a.xis above the 

origin. To this end it suffices to establish the existence of a half-line passing 
through the origin in the first coordinate quarter and having no common 
points with any of the integral curves crossing the p-axis in its positive half. 

It follows from equation (24') that 

" dpl 
dv "=0 = A - Ck ' 

where dp/ dv denotes the derivative of the function p = p(v) defined by 

equation (24'). Let us define C such that 

dp I = C. 
dv ,.,=o 
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For this purpose we can use the equation 

or kC 2 
- CA+ a= O; hence 

C 

a 
,-Ck=C, 

). ± v',' -4ak 
2k 

(25) 

By assumption, we have A2 ~ 4o:k; therefore, both values of C given by 
(25) are real and positive. Denote one of these values by Co and consider 
the straight line 

p =Gov. (26) 

It is easy to see that for all those points of the strip between the lines v = O 
and v = 1 whose position is above the line (26), or even on that line (except 
at the origin), we have 

dp . 
dv >Co, 

where pis the function of v given by equation (18). 
Therefore, no integral curve passing through a point on the p-a.xis above 

the origin can ever cross that part of the straight line (26) which is above 
the v-aA'is. Thereby, we have proved that every integral curve of type I (see 
Fig, 2) passes through the origin. 

Let us show that there exists only one curve of type I. (Of course, this 
proof is necessary only in the case A = 0.) Indeed, all integral curves of type 
I pass through the origin, as shown above. On the other hand, it follows 
from (19) that for p > 0 and v fixed the derivative dp/dv increases together 
with p. Consequently, there cannot be two integral curves issuing from the 
origin and passing through the point (1, 0). 

Next we show that the curve I corresponds to the solution of equation 
(18) with the conditions stated at the beginning. First of all, note that 
any straight line perpendicular to the v-axis crosses the integral curve I for 
equation (19) at a single point; otherwise, above the v-axis, dp/dv would 
turn to oo. Therefore, along this curve, pis a function of v: p = ip( v ). Recall 
also that the curve I crosses the v-axis at the point (1, 0), the tangent of 
the angle between the curve and the v-axis being negative; it also crosses 
the same axis at the origin, this time the tangent being positive. Therefore, 
for small values of v we have 

p=k 1v+o(v); 

and for small values of 1 - v we have 

p = k,(1- v) + o(l - v), 

where k1 > 0 and k2 > 0. 

(27) 

(28) 
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Recall now that p = dv/dx. Therefore, dv/dx = 1.p(v)1 or equivalently, 
dx = dvj,.p(v). Integrating the last relation, we get 

1" dv 
x-x, = -(), 

o 'f' V 
O<vo<l. 

By virtue of (27) and (28), it follows that x --+ -oo as v --t 0, and 

x--+ +oo as v - 1, q.e.d. 

§3 

In this section, instead of equation (7) mentioned in the Introduction, we 
consider the following equation 

av 
at D'~ = F(v) 

Dx· 

with F( v) having the following properties: 

(29) 

F(O) = F(l) = 0; (30) 

F(v)>O for O<v<l; (31) 

F'(O) = 1 ; (32) 

F'(v)<l for O<v'."'.l; (33) 

F'(v) is continuous and bounded on (0, 1). 

Moreover, F( v) is assumed sufficiently smooth. Equation (7) of general type 
can always be reduced to the form (29) by changing the variables 

t 
t= - . 

"' 
Our primary aim in this section is the proof of the following facts: the 

fragment of the density curve v(x, t) (regarded as a function of x) bearing 
the major part of the density drop from 1 to O is moving to the left as t 
grows to oo; the speed of this motion tends to 2 (from below), whereas the 
density curve itself tends to assume the shape of the graph of the function 
u(x) which is a solution of the equation 

(34) 

and satisfies the conditions: u -+ 0 as x -+ -oo, u -+ 1 as x -+ +oo (the 
existence of such a solution has been established in §2). 
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Before we turn to the proof of the main results of this section, consider 

the equation 
av a'v 
8t - ax2::;;;:. F(x,t,v), (35) 

of which (29) is a special case. For this equation, we prove the existence 
of a solution taking given initial values at t = 0, and study some of its 
properties. 

Theorem 1. Assume that the fe.nction F(x, t, v) in (35) is bounded, con­
tinuous, and satisfies the Lipschitz condition with respect to v and x, i.e., 

IF(x,, t, v,) - F(x,, t, v,)I < kiv, - v,I + klx, - x,I , (36) 

where k is a constant independent of x, t, v. Let f(x) be a bounded function 
defined for all x. Assume, for simplicity 1 that f can have only a finite num~ 
ber of discontinuities. Then there exists one and only one function v(x, t) 
which is bounded for bounded values oft, satisfies equation (35) fort> 01 

and turns into f fort = 0 at every point of continuity off. 
For the sake of brevity, when saying that v(x, t) turns into f(x) at t = 0, 

we always imply the points of continuity of f(x). 

Proof. Let v0(x, t) be a bounded function satisfying the equation 

8v_8
2
v=0 

at ax' 
(37) 

fort> 0 and turning into f(x) at t = 0. Substituting this function for v in 
the right-hand side of equation (35) and using the formula 

_ 1 1' +Joo exp(-**) v,(x,t) ~ 
2 

r,;; dry ~ F(e,ry,vo(e,ry))d(, (38) 
v~

0 
_ 00 y(t-ry) 

we find the solution of this equation vanishing on the x-axis (see [5]). The 
function 

v,(x, t) = v0 (x, t) + ii,(x, t) 

turns into f( x) at t = 0 and satisfies the equation 

8v1 82
v1 ) &t - ax' = F(x, t, v0(x, t) for t > 0 . 

In general, the formula 

1 1' +Joo exp(-**) 
Vi+,(x, t) = vo(x, t) + 

2 
r,;; dry ~ F(e, ry, v,) d,, (39) 

v~ o -oo y(t-ry) 
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yields the function Vt+1(x, t) satisfying the equation 

8v;+1 _ 8
2

v;+1 _ F( ·) 
a a ,, - x,t,v, 

t x· 
(40) 

fort> 0 and turning into f(x) at t = 0. 
Let us show that the functions v;(x,t) form a uniformly convergent 

sequence. Indeed, taking into account (36), we find from (39) that 

M,+,(t) ~ sup lv,+,(x,ry)-v,(x,ry)I S 
,« 

' +oo ( (x-el2) 
1 j j exp -:n,=;;r ( ))I s? r,;; dry ~ IF(e,ry,vM,ry)) -F(e,ry,v,_, e,ry des 

-v~
0 

_ 00 y(t-ry) 

' 
S j kMi(ry) dry, (41) 

0 

since 
+oo ( l•-(1') 

J exp - 4(t-'1)) d€ = 2../ir . 
-oo J(t - ry) 

But, denoting by Mo the upper bound for lf(x)I and IF(x, t, D)I, we get 

lvo(x, t)I S Mo, 

and by (38) 

' 
M, S j(k + l)M 0 dt = (k + l)M 0t =Mt. 

0 

Hence, using the inequality (41), we easily :find that 

which makes the uniform convergence of v; quite clear. 

Set 
v(x, t) = lim v,(x, t) . 

,-oo 

The function v(x, t) turns into f(x) at t = 0. Moreover, it obviously satisfies 

the equation 

l t +oo exp (- (x-e)2) 
v(x,t) ~ v0 (x,t) + 

9 
r.:] dry j . p' F(e,ry,v(e,ry))de. (42) 

-v~ o -oo (t-ry) 
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Hence we easily see that v(x, t) is a continuous function of x and t fort> 0. 
In Gevrey's memoir [5] (pp. 343-344), referred to above, it has been shown 
that for any bounded F the second term in the right-hand side of (42) 
has a bounded derivative in x. Because of (36), it follows that the function 
F(x, t, v(x, t))i t > 0, has bounded derivative numbers with respect to x, 
and therefore, equation (35) holds for v(x, t) (see [5]. p. 351). 

The uniqueness of a bounded solution can be established as follows. 
Assume that there are two bounded functions v1 (x, t) and vz(x, t) taking 
equal values at t = 0. Then 

1 t +oo exp (-rx-02) 
v,(x,t)-v,(x,t) = r=] dry j p"' [F(c,ry,v,)-F(,,ry,v,)]dc. 

2v" o -oo (t -ry) 

Set 
M(t) = sup ]v,(x, ry) - v,(x, ry)] . 

t2:;11 

Then, using (36), we find from (43) that 

' 
M(t) S: k j lvl(ry) dry,. 

0 

which is impossible. 

(43) 

Remark. As shown in (5], for a domain bounded on its sides by two curves 
of the form x = <p1 ( t), x = ip2(t), and by the straight lines t = t0 , t = t 1 > t 0 

from above and from below, there exists a unique bounded function satis­
fying equation (35) inside the domain and taking given continuous and 
bounded data on the lines x = ip 1(t), x = i,o2(t), and t = 0. Likew,ise, it is 
possible to show that for a domain G bounded in the horizontal direction, 
on one side only, by the curve x = ip(t), and in the vertical direction by the 
straight lines t = t 0 and t = t 1 > t0 , there exists a unique bounded function 
satisfying equation (35) inside G and taking given continuous and bounded 
data on the curve x = i,o(t) and the line t = t 0 • 

Theorem 2. If F(x,t,v) be replaced by another Junction F1(x,t,v) such 
that at every point we have 

F1(x,t,v) ~ F(x,t,v), 

then the. corresponding v(x, t) does not become. smaller, provided that the 
initial data are left intact. 

Remark. For (35) interpreted as the heat equation, the function F(x, t, v) 
characterizes the power of the heat source, and from the physical standpoint 
Theorem 2 becomes evident. 

6. Studies of the Diffusion ... 121 

Proof. Let v(x, t) be the solution of (35), and let v1(x, t) be the solution of 

Ov1 82v1 
-
8 

- -
8

• = F,(x,t,v,). 
t x· 

Subtracting one equation from another, we find that 

w(x, t) = v,(x, t) - v(x, t) 

satisfies the equation 

Ow 82w 
Dt - &x' = F,(x, t, v,) - F(x, t, v) . 

Set 
w(x,t) = W(x,t)e-k.t, 

where k is the same as in (36). Then 

&w &'w - "[F ( l F( ll -
8 

- -
8 

., =kw+ e 1 X, t, V1 - X, t, V • 
t x· 

Hence 

w(x, t) = 
' +oo ex ( (rel') 

= \, jdry j RI {kw +e"'[F,((,ry,v 1)-F(c,ry,v)J}d, = 
2v" 

0 
_

00 
(t-ry) 

t +ooex (-(x-£12) 
= 1

r.:c]dry j 'p' {kw+e"'[F,(,,ry,v,)-F((,ry,v,)+ 
2v" 

0 
_

00 
(t-ry) 

+ F(s, ry, v,) - F(c, ry, v)]}ds 2'. 

2'. 1r;;j' dry Tex~) {kw +e'"[F((,ry,v,)-F(c,ry,v)]}dc 2'. 
2v" 

0 
_

00 
(t-ry) 

> _l_j\ry +jooexp(-~) (kw-k]wl)d,. 
- 2ft O -oo ,/(t -ry) 

(44) 

The la.st expression in parentheses vanishes if W ~ 0 and is equal to 2kW if 
w So. Set 

-m(t) = inf {w(e, ry) - lw(c, ry)]) 
719 

Clearly, in order to prove our theorem, it suffices to show that m(t) = O. To 
this end we note that it follows from (44) that 



' 

" 
I 
i 

!. 
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' 
w(x,t) 2 -k j m(ry) dry, 

0 

and therefo~e, 
' 

m(t) :S k j m(ry) dry, 
0 

which is possible only if m(t) = 0, q.e.d. 

Theorem 3. The function v(x,t) does not become smaller if f(x) is re­
placed with a larger function. 

Physically, the statement of this theorem is as clear as that of the previ­
ous one, provided that (35) is regarded as the heat conduction equation for 
a rod. The function f(x) specifies the initial temperature ?f the rod. With 
the increase of the initial temperature, subsequent temperature becomes 
higher. 

Proof of Theorem 3. Assume that v1(x, t) and vz(x, t) satisfy equation 
(35) and, at t = 0, turn into f1 (x) and /z(x), respectively, where fz(x) ?: 
f 1 (x). Let us show that v2 2 v1 . 

The function w = v2 - v1 satisfies the equation 

aw 82w - ~ F(x,t,v,)-F(x,t,v,). 8t - ax' 

By virtue of (36) we have 

F(x, t, v,) - F(x, t, v,) 2 -kiwi . 

Thus, according to Theorem 2, the function w(x, t) is not less than v*(x, t), 
where v"'(x, t) is equal to f 2(x)- f 1(x) 2 0 fort= 0 and, fort> 0, satisfies 
the equation 

av· - a'v· = -klv"I. 
at ax' 

The solution of this equation which is bounded for bounded t and takes 
the initial values fz - J1 at t = 0 (by Theorem 1 this solution is unique) 
has the form e-/.:tv**, where v*'"(x, t) satisfies (37) and the initial condition 
v**(x,O) = fz(x)- f 1 (x) (obviously this function is non-negative). Conse­
quently, 

w = v2 - v1 2 0 , q.e.d. 

Theorem 4. Assume that f(x) 2 0 and F(x,t,0) = 0 for all x,t. Then 

v(x,t) 2 0. 
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Proof. According to Theorem 3, with the decrease of f(x) the function 
v(x, t) does not become larger. For f(x) = 0, we have v(x, t) = 0. Therefore, 
v(x, t) 2 0 if f(x) 2 0, q.e.d. 

Theorem 5. Assume that besides the conditions of Theorem 4 we also have 
f(x) > 0 on some interval of positive length. Then 

v(x, t) > 0 for t > 0. 

The proof of this theorem is obtained from that of Theorem 3 if we set 
v 2 = v, v1 = 0 and take into account that the function v'"*(x, t) represented 
by Poisson,s integral is positive fort> 0. 

Theorem 6. If F(x, t, 1) = 0 and J(x) :S 1, then v(x, t) :S l. 

Proof. By Theorem 3, the func_tion v(x, t) does not become smaller with the 
increase of f(x). For f(x) = 1, we have v(x,t) = 1. Hence we obtain the 
needed result. 

Theorem 7. Assume that fort= 0 the function v(x, t) turns into a mono­
tonically increasing differentiable function f(x) and fort> 0 satisfies the 
equation 

av 82v 
at - ax' = F(t,v). (45) 

Then v(x, t) is a non-decreasing function of x for any t > 0. 

Proof. By Theorem 1, we have 

1 1' +j00

exP(-~) )) v(x,t)~v 0(x,t)+? r= dry ~ F(ry,v(e,ry de, (46) 
.y~ 0 -oo y(t - ry) 

where v0 (x, t) satisfies the equation 

av_a'v=O 
at 8x' 

(47) 

fort > 0 and turns into f(x) at t = 0. If f(x) is differentiable, we have 
vb,(x, t) - f'(x) as (x, t) - (x, 0) (see [5], pp. 330-331). On the other 
hand, the partial derivative in x of the second term in the right-hand side 
of (46) ha.s its absolute value bounded by (4/.,/'i)Mt'i', if IFI $ M (see 
[5], p. 344). Therefore, v:(x,t)-,. f'(x) as t --t O. Ifwe assume, in addition, 
that v(x,t) has the derivatives 82v/8t8x and 83v/8x 3 (which is the case if 
F(t, v) is three times differentiable in v ), then the function w(x, t) = v~( x, t) 
satisfies the equation 
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ow 8'w 8F 
at - 8x 2 = av w . 

(48) 

Now, applying Theorem 4, we find that w(x,t) ~ 0, q.e.d. 

Theorem 8. Assume that 

and also += J IJi'l _ Ji'll dx - o. 
-= 

Then 
v(•:l(x,t)--. v(0)(x,t) as £--. O, 

for every t >-0, where v(c)(x,t) and vl0l(x,t) are solutions of equation {3,5) 
fort> 0

1 
with the initial values j(cl(x) and j( 0l(x) at t = 01 respectively. 

Proof. In order to find the functions v(c)(x,t) and vl0l(x,t), we use the 
method of successive approximations, just as in the proof of Theorem 1. 
The functions vtc) and vt0l a.re respectively given by 

+= ex (-1•-il') 
v)0l(x,t) = \, j J(o)(O . P ~" de. 

2y7r t -= . 

Hence, we immediately see that 

v6c)(x, t) --. vt0)(x, t) as €-+ 0 

fort> 0. The difference vic\x,t) -vi01(x,t) (the notation is the same as 
in the proof of Theorem 1) is given by the formula 

l t +oo exp (- rx-e)2) 
? r;;; j dry j . j{t~l/ [F(,, ry, v)'l) - F(c, ry, v)

0
l)J ds . 

-v~ 0 -= (t-ry) 

It follows that 

v;(x, t) = lv\'l(x, t) - ii[0l(x, t)I S 

:,; __!:_J' dry +J=exP(-~l H'\,,ryJ-va'i(,,ryJI d, 
2ft O -= J(t-ry) 
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Set += ( (x-'2') 
v"(x t) = - 1

- j IJl'l(,) - Ji 0V.)I exp - " ds 
o' 2ft ~ . 

. -= 

We obviously have 

v;(x, t) 2: H'\x, t) - va'\x, tJI , 

and therefore, 

' = k j v;(x, t) dry= ktv;(x, t) . 
0 

The penultimate equality follows from the fact that v;(x, t) satisfies equa· 

tion (47). Thus, 
v;(x,t):, ktv;(x,t). 

In exactly the same manner, we find that 

It follows that, choosing £ suitably small, we can make the sum 
I:~o v;(x, t), and therefore, lv(cl(x, t) - v(0l(x, t)I arbitrarily small, q.e.d. 

Theorem 9. Let v(x,t) be a function that satisfies equation (45) fort> 0, 
together with the initial conditions: v = 0 for t = 0 and x < 0, and v = 1 
fort= 0 and x > 0. Then v(x, t) is a non.decreasing function of x for any 

t > Oj moreover1 v~(x, t) > 0 fort> 0. 

Proof. According to the preceding theorem, v(x, t) can be regarded as a limit 
(for £ - 0) of functions v(cl(x, t) which coincide with v(x, t) on the X·a..xis 
for !xi ~ £, are monotone and continuous, together with their derivative in 
x, on the entire x·axis. But, as we have just shown in Theorem 7, v(cl(x, t) 
is a monotonically increasing function of x for t > O; therefore, the same is 

true for v(x, t). 
Let us show that v:(x, t) > 0 for t > O. To this end, it suffices to 

show that for t > 0 we cannot have v~(x, t) :::;:: 0. This fact can be es­
tablished by the following arguments. For t > 0, the function v~(x, t) sat­
isfies equation ( 48). Therefore, the function W( x, t) = eM

1
v~(x, t), where 

M = sup \8F/8vl, satisfies the equation 
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VVe also have 

aw 
at 
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BF 
av +M20; 

therefore, according to Theorem 2, W(x, t) ~ W(x, t) fort> to> O, where 
W(x, t) coincides with W(x, t) fort= to and satisfies the equation 

aw 02w 
&t Bx' = o 

for t > 0. The function W is positive for all t > t0 , since W(x, t) does not 
vanish identically fort= t0 , provided that t0 is sufficiently small. 

In what follows, we always denote by v(x, t) the function that satisfies 
equation (29) for t > 0, together with the conditions: v = O for t = O and 
x < 0, v = 1 for t = 0 and x > 0. 

Theorem 10. For any fixed x < 0, we have 

v(x-2t,t)-o a.s t-+oo. 

Proof. The function V(x, t) = v(x - 2t, t) satisfies the equation 

av a2v av 
at - ax' = -Z ax + F(v) ' 

whereas v•(x, t) = v(x - 2t, t) e-:r satisfies the equation 6 

av· a2v· :r 

81 - Bx' =[F(v)-v]e-. 

According to conditions (32) and (33) on F(v), we have F(v) - v :$; O. 
Therefore, v·(xJ) is smaller than the function satisfying equation (37) for 
t > 0 and, for t = 0, equal to 1 on the half-line x < 0, and equal to e-x if 
x > 0. The latter function tends to O uniformly in x a.s t-, +oo. 

Theorem 11. Fort fixed} let us consider v~(x, t) as a function of v. This 
is possible on account of Theorem 9. Let 

v:(x, t) = ,p(v, t) . ( 49) 

Then, for v fixed, the function 1P does not increase with the growth oft. 

Proof. Consider the functions v(x, t) and v(x + c, t + t0 ) = Vt 0 (x,t), where 
c is a constant and t0 > 0. Set 

6It is easy to see that v·(x, t) remains bounded for bounded t > 0. 
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w(x, t) = v(x, t) -v,,(x, t). 

Denote by M the set formed by the points (x, t) on the plane such that 
w(x, t) > O. First of al_l, let us show that this set is bounded only on its left­
hand side so that its boundary curve issues from the origin and, moreover, 
the coordinate t never decreases as we move along the curve. To this end, 
we note that w(x, t) satisfies the equation 

aw 32w &t - Bx' = k(x, t)w, (50) 

where k(x, t) is a bounded function, namely, 

k(x, t) = F'(u(x, t)); 

u(x, t) is a certain number between v(x, t) and Vt 0 (x, t). Therefore, the set 
M cannot contain isolated pieces 7 disjoint from the x-a..xis. Therefore, M 
consists of a single piece joining, of course, the right half of the x-axis. In 
order to prove that from its left-hand side the set M is bounded by a curve 
along which the variable t never decreases, assume the contrary, namely, 
that this curve has a piece of the form indicated in Fig. 4. For definiteness, 
let us assume that

1 
as it issues from the point A, the curve goes down. Then 

w(x, t) must take negative values to the right of the line OA, whereas on 
QA proper w(x,t) = 0, and on the x-axis for x > 0 it takes positive values. 
But this is impossible 1 which can be shown by exactly the same methods 
as those used in the proof of Theorem 4. 

0 
x> 

Fig. 4 

Similar arguments show that the set M is unbounded on its right-hand 
side. 

After these remarks, our theorem can be proved quite easily. Indeed, 
since the constant c can be chosen arbitrary, we can fix it in such a way 
that for any given t the values v(x 0 , t) and Vt 0 ( xo, t) coincide for some x = xo. 
Then, on the basis of the above arguments, we conclude that 

7 See [6] for the proof of a. similar statement in the case of finite pieces. The so.me 
result ca.n also be obtained for infinite pieces. Cf. Remark to Theorem 1. 
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v(x,t)~vt 0 (x,t) for x>xo, 

and therefore, 

Theorem 12. For any t, we have 

v:(x,t) 2: u'(x) 

if v(x, t) = u(x). Here u(x) is the solution of equation (34) discussed in the 
beginning of this section. 

Proof. This theorem is proved in exactly the same way as Theorem 11. 
However, in this case we should take u(x + c) instead of Vt0 (x,t), and to 
consider the difference v(x, t) - u(x + c) instead of w(x, t)._ 

Theorem 13. Let 
v"(x, t) = v(x + ,p(t), t) , 

where the function cp(t) is chosen such that 

v·(o, t) = c = const . 

Then 
v·(x,t)-+ v·(.x) as t-+ co, 

and the convergence is uniform with respect to x. 

Proof. From (49) we find that 

1°" dv 
x=, ,f,(v,t)· (51) 

According to Theorem 11, the integrand is a monotonically increasing func­
tion oft-+ oo. Moreover, by Theorem 12, the integral fc''.(;,L,(v,t)t 1 dv 
cannot increase to infinity. Therefore, we can pass to the limit under the 
sign of the integral. Let 

Then, passing to the limit in (51), we get 

J
o· dv 

X : o ,p(v) . 

By Theorem 12, we have ;,L,(v) > O; therefore, the above relation defines a 
function of x, say, v'"( x ). It remains to show uniform convergence of v*( x, t) 
to v'"(x). To this end, observe that (,51) implies uniform convergence of 
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x( v*, t) to x( v*) on any interval of the form£ < v* < 1 - c. Now, if we take 
into account that 1/J(v\ t) remains bounded on any such interval (owing to 
Theorem 11), it follows that v .. (x, t) uniformly converges to v*(x) for x such 
that v(x) has its values between c and 1- £(sis arbitrarily small). For x 
outside that interval, we have uniform convergence v*(x,t)--+ v*(x), since 
for sufficiently large t the function v*(x,t) has its values close to O and l. 

Theorem 14. As to-+ +co, the sequence of functions 

v,0 (x,t) = v(x + <p(to), t + to) 

converges to a solution ii(x, t) of equation (29)i uniformly in the domain 
t $ T = const. The Junction cp(to) is defined in such a way that 

Vt 0 (0,0)=c=const, forall t0 • 

Proof. The function w(x, t) = Vt0 (x, t) -Vto+T(x, t) satisfies the equation 

aw 82w 1--a - -
8

• =F(v)w, 
t x· 

(52) 

where ii(x, t) is between Vt0 (x, t) and Vto+T(x, t). According to Theorem 13, 

lw(x, O)I < t: for sufficiently large t0 , 

where e is arbitrarily small. By Theorems 2 and 3, we have 

w(x, t) < W(x, t) = eekt, 

where k is the upper bound for the values of IF'(u)I, since W(x, t) 2::: w(x,O) 
for t = 0, and for t > 0, W satisfies the equation 

aw a'w 
Ft - 8x' = kiwi , 

whose right-hand side, for w = W, is not smaller than the right-hand side 
of equation (52). In exactly the same way we can prove the inequality 

w(x,t) > -eekt. 

Thereby we have shown that the sequence Vt 0(x, t), to -+ +co, uniformly 
converges, in some domain t < T, to a function, which we denote by ii(x, t). 
Let us show that equation (29) holds for ii{x, t). 
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For this purpose, we can use ( 42) and write 

1 1' +Joo exp(-*"*) 
v,,(x,t) = v,,,,(x,t) + c dry r;;-::::, F(v,,(,,ry))ds. (53) 

2v~ 0 -= v(t-ry) 

Here we can pass to the limit, after substituting V for Vto· The function 
satisfying equation (53) is also a solution of equation (29), as shown in the 
proof of Theorem 1. 

Theorem 15. The first order partial derivatives of Vt 0 (x, t) in x and t 
converge to the respective derivatives ofiJ(x, t) as to --l- +oo; th_e convergence 
is uniform in any region t: < t < T, where t: and T are a;;~itrary positive 
constants. 

Proof. Uniform convergence of 8vt0 /8x is established on the basis of (53). 
Indeed, for t > £, uniform convergence of the derivative in x_ of the first 
term in the right-hand side follows from the representation of that term by 
the Poisson integral. In order to prove this result for the second term with 
t < T, consider the difference of its values for t0 = tQ and t0 = ti: 

' += ( (x-()') 1 / d / exp - ,,,-,, [F( ) F( )] d' 
? C 'ff ~ Vt' - Vt" '> • 
~y71" 0 -oo y(t-ry) 0 0 

(54) 

According to Theorem 14, 

F(v,;(s, t)) - F(v,;(,,t)) 

becomes arbitrarily small for large tQ and t~. In this situation, applying the 
above mentioned result of [5], we find that for sufficiently large tQ and ti 
the x-derivative of (54) becomes arbitrarily small (uniformly in x) if t < T. 

The function Wt 0 (x, t) = 8vt0 (x, t)/Bx satisfies the equation 

awto 8
2
wto F'( ) Tt - Jx'2 = Vt 0 Wt 0 • 

For £ < t < T, we have already established uniform convergence of the 
right-hand side of this equation as t0 - oo. Therefore, arguments similar to 
those used for the proof of uniform convergence of 8vt 0 /Bx, can be applied 
to prove uniform convergence of 8wt0/ 8x = fYvi0 / Bx2

• Since Vt 0 satisfies 
(29), it follows that 8vt 0 /Bt is uniformly convergent. 

Theorem 16. Assume that the function Vt 0 (x, t) (resp1• V(x, t)) remains 
equal to a constant c along the curve x = rp10(t) (resp., x = c.p(t) ). Then 

rp~
0
(t) ---1- rp1(t) as t0 - oo, 

uniformly in t for£ < t < T. 
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Proof. VVe have 

_ avto I avto at ox at the point (1',,(t), t); 

l''(t) = - !~ / !! at the point (l'(t),t). 

By Theorems 12 and 14, for sufficiently large t0 , we have 

11',,(tJ-l'(tJI <,, 
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everywhere in the domain G (c < t < T), where c1 is arbitrarily small. 
According to Theorem 15, the respective numerators and denominators of 
the fractions 

avto I avto 
at ax 

and av / av 
at ax 

(55) 

are arbitrarily close to one another in G for the same values of their argu­
ments. Moreover, in the strip 

\'(t)-£, < X < \"(t) +£2, 

the function 8V/8x is larger than a positive constant. Therefore, the frac­
tions (55), for the same values of their arguments and sufficiently large t0 , 

differ less than by c3 on the strip 

e<t<T, l'(t)-£, < X < l'(t) +e,. 

If we also take into account that av;at ( av;ax )-1 is uniformly continuous 
on that strip, and therefore, its values at the points of the strip with the 
same t are arbitrarily close to one another for small enough e3, we get the 
statement of our theorem. 

Theorem 17. For any t, we have 

v(x, t) = u(x + 2t) , and 
di' 
di - -2 

(The notation here is that of Theorem 14.) 

Proof. Consider the function 

v·(x, t) = v(x + c1(t), t) , 

where c1 (t) is chosen such that 

v'"(O, t) = c = const . 

as 
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Then 
av· a'v" , ( ) av· F( ") -a =-a,+c,t-a + V. t . z~ X 

On the other hand, for any x, v'"(x, t) does not depend on t (this follows 
from the definition of ii(x, t)). Therefore, 

av· = 0 and c;(t) = const. 
at 

According to §2, this constant cannot be larger than -2; and it cannot 
be smaller than -2, by Theorem 10. Therefore, it is equal to -2, and by 
Theorem 16 we have 

dv, 
- --, -2 as t---+ oo dt , q.e.d. 

Remark. Assume that the initial values of v(x, t) are other than those 
considered so far; namely, let 

!) v(x,O) = l for x 2 c,; 

2) v(x,O) = 0 for x :5 c:;i < Cti 

3) 0 :5 v(x,O) :5 1 for c2 < x < Ci. 

Then it is easy to show that the segment of the curve bearing the· major 
part of the drop from 1 to O travels with a speed which, nevertheless, tends 
to 2 as t--+ oo, since in this case we have 

v(x - c,, t) c, v(x, t) "v(x - c2, t) ; 

here V(x, t) is the solution of (29) with the new initial conditions. 

References 

[l] Fisher, R.A. The General Theory of Natural Selection. Oxford Univ. 
Press, 1930. 

[2] Khinchin, A.Ya. Asymptotic Laws in the TheonJ of Probability. Moscow, 
Leningrad, ONTI, 1936. 

[3] Bendixon, I. Surles courbes di§finies par les equations differentielles. Acta 
Math. 24 ( 1901) 1-88. 

[4] Petrowsky, LG. Uber das Verhalten der Integralkurven eines Systems 
gew6hnlichen Di:fferentialgleichungen in der Nii.he eines singulfuen Punk­
tes. Mat. Sbornik 41:1 (1934) 104-156. 

[5] Gevrey, M. Surles equations aux derivees partielles du type para.bolique. 
J. Math. Pures et Appl. 9:4 (1913) 305-4il. 

[6] Petrowsky, LG. Zur ersten Randwertaufgabe der Warmeleitungsgleich­
ung. Compos. lvfath. 1:3 (1935) 383-419. 

7 

On the Speed of Propagation of 
Discontinuities of Displacement Derivatives 

on the Surface of a Non-Homogeneous 
Elastic Body of Arbitrary Shape* 

1. Let us regard the time variable t as a spatial coordinate and assume that 
the displacements u, v, w, usually considered in the theory of elasticity, are 
defined inside and on the boundary of a cylinder C with its generatrix going 
along the t-axis and its base coinciding with the elastic body in question. 
To simplify the notation, set u = u1 , v = u2 , w = u3 • VVe also assume that 
in the vicinity of a point 1'\1( x 0, y0, .:0

) the body is bounded by a surface of 
the form z = f(x,y), where f has continuous derivatives up to the order 
n + 2, or briefly, f has smoothness n + 2. First we consider the case n ~ 3. 

In general, we examine a non-homogeneous anisotropic elastic body free 
of externally applied forces, under the assumption that the coefficients of 
the elasticity system and those of the boundary conditions do not depend 
on t and have smoothness n and n + 1, respectively. 

Assume that the functions u;, in a neighborhood of the point M0 with 
coordinates (t 0 , x0 , y 0 , z0), have smoothness n, whereas on the surface of C 
near this point, u; have continuous derivatives up to the order n + l every­
where, except at the points of a two-dimensional surface S2 containing l'r1° 
and having smoothness n + 2i at the points of S2 the displacements u; have 
singularities of the type specified below. Our problem consists in finding 
the slope of S2 at the point ivJ0

• 

2. In a neighborhood of JV.[0 , let us consider a transformation of the variables 
t, x, y, z with smoothness n + 2 and the following properties: 

~Originally published in Dok/. Akad. Nauk SSSR 47:4 (1945) 258-261 See Appendix 
for a commentary by A.F. Filippov. 
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