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We consider a mathematical model of the form

(CS) ẋ = f(x, u)

where x ∈ R
n is the state variable and u ∈ Rm is an external

input, that we interpret as the control variable. We assume

that f(x, u) : Rn ×Rm → Rn is of class C1. Traditionally, we

adopt the notation ẋ = dx
dt
.

Let U ⊂ Rm be given (U 6= ∅). A control u = u(t) is admissible

if it is defined, piecewise continuous (right continuous), and

such that u(t) ∈ U for t ∈ [0,+∞). The set of admissible

controls is denoted by U .

The pair ((CS),U) will be referred to as a control system.



For each u(·) ∈ U and each x̄ ∈ Rn, there exists a unique (local)

solution of (CS), denoted x(t; x̄, u(·)) = x(t) such that

x(0) = x̄. We implicitly assume appropriate conditions

guaranteeing that the solutions of (CS) are actually defined on

the whole interval [0,+∞).

A solution x(t) of (CS) represents the time evolution of the

state variable under the action of the control u(t). The image

on Rn of a solution is called a (controlled) trajectory.



A control problem consists in studying existence and

characterizations of admissible controls which enable the

system to accomplish a prescribed goal.

The controllability problem. Given an “initial” state x̄ and a

“final” state x find u(·) ∈ U in such a way that the

corresponding solution x(t) satisfies

(1) x(0) = x̄ , x(T) = x

for some T > 0.

Definition. Given x̄ ∈ Rn and T > 0, the set of points x ∈ Rn

for which there exists u(·) ∈ U such that (1) hold is denoted by

R(x̄, T) and it is called the reachable set from x̄ at time T .



The optimal control problem. Assume that the following

data are given.

(i) A control system ((CS),U)

(ii) a pair of points x̄, x ∈ Rn

(iii) a function f0(x, u) : Rn ×Rm → R of class C1.

and let

J(T, u(·)) =

∫ T

0
f0(x(t), u(t)) dt

where x(t) = x(t; x̄, u(·)).



Find u∗(·) ∈ U and T ∗ > 0 such that the controllability

conditions (1) are met and, moreover

J(T ∗, u∗(·)) =
∫ T ∗

0
f0(x

∗(t), u∗(t)) dt = minJ(T, u(·))

where the minimum is taken over all T > 0 and all the

admissible controls u(·) ∈ U such that the corresponding

solution of (CS) meets the controllability conditions (1).

The triplet (T ∗, u∗(·), x∗(·)) (where x∗(t) = x(t, x̄, u∗(·))) is

called an optimal triplet

T ∗, u∗(·), x∗(·) are called, respectively, the optimal time, the

optimal control and the optimal trajectory.



Remarks

♦ The optimal control problem is a generalization of the

calculus of variation problem. Indeed, when n = m and

f(x, u) = u, the dynamics equation (CS) reduces to

ẋ = u

so that the functional to be minimized can be rewritten as

J(T, x(·)) =

∫ T

0
f0(x(t), ẋ(t)) dt

♦ The minimum time problem is a particular case of the

optimal control problem. Indeed, taking f0(x, u) = 1 we get

J(T, u(·)) = T .



♦ Particular instances of the optimal control problem arise

when the final time T is preassigned.

We will consider also problems where T = +∞. In these cases,

the second endpoint condition is replaced by

lim
t→+∞

x(t) = x

If T = +∞, the convergence of the integral which defines J

should be added to the requirements.



Optimal control and Calculus of variation. An approach to

the optimal control problem based on the methods of the

Calculus of Variation is possible, but it requires severe

restrictions.

(R1) Assume U = Rm (no constraints on the values of the

control functions)

(R2) Assume that only control functions u(·) ∈ C1 are

admissible



Let us treat u as an independent variable and the dynamic

equation (CS) as a nonholonomic constraint. Let us introduce

the Lagrange multiplier λ = (λ1, . . . , λn) and the function

L(x, p, u, λ) = f0(x, u) + λ · [p− f(x, u)]

WARNING: It is convenient, for notational consistency in later

use, to treat λ as a row-vector. Recall that also the gradient of

a function is considered a row-vector.



The system of Euler equations consists of three blocks of

equations


















































Lx(x, u, λ, ẋ)−
d

dt
Lẋ(x, u, λ, ẋ) = 0 (n eq.s)

Lu(x, u, λ, ẋ)−
d

dt
Lu̇(x, u, λ, ẋ) = 0 (m eq.s)

Lλ(x, u, λ, ẋ) = 0 (n eq.s)

that is



(E)



















































∂f0

∂x
(x, u)− λ

∂f

∂x
(x, u)− λ̇ = 0

∂f0

∂u
(x, u)− λ

∂f

∂u
(x, u) = 0

ẋ− f(x, u) = 0

Note that the second block does not contain differential

equations (since u̇ does not appear explicitly in L) and that the

third block reduce to (CS).

The system above can be written in Hamiltonian form. To

chose the appropriate Hamiltonian function, we argue by

analogy.



In the classical calculus of variation, for the problem of

minimizing

J(g(·)) =

∫ t1

t0
F(g(t), g′(t)) dt

the Hamiltonian function was defined as

(H1) H(x, q) = q ·Ψ(x, q)− F(x,Ψ(x, q))

(q ∈ Rn) where p = Ψ(x, q) is the inverse of the map

(1) p 7→ q = Fp(x, p)



Unfortunately, in our case the map p 7→ Lp(x, p, u, λ) is constant

with respect to p, and hence not invertible: indeed

(2) Lp(x, p, u, λ) = λ

However, “forcing” the notation, we can rewrite (H1) as

(H2) H(x, q) = q · ẋ− F(x, ẋ)

Moreover, taking into account (1), (2), it is natural to identify

q = λ.

Finally, recalling the constraint equation and the additional

variable u, we are led to define the Hamiltonian function for

the problem at hand as

(H3) H(x, u, λ) = λ · ẋ− f0(x, u)− λ · [ẋ− f(x, u)] =

= λ · f(x, u)− f0(x, u)



The third and first block of equations in (E) can be now

rewritten as


























ẋ =
∂H

∂λ
(x, u, λ)

λ̇ = −
∂H

∂x
(x, u, λ)

while the second one becomes

∂H

∂u
(x, u, λ) = 0

This last equation can be clearly interpreted as a stationarity

condition for the map u 7→ H(x, u, λ) for fixed (x, λ)



Under the restriction (R1), (R2), the problem has been

therefore reduced to a finite dimensional problem,

parameterized by (x, λ).

The following procedure for solving our problem can be

devised.

Step 1. Solve the Hamiltonian system with the controllability

conditions, taking for the moment u as a parameter in order to

find (x(t, u), λ(t, u))

Step 2. Find u(t) solving the equation

∂H

∂u
(x(t, u), u, λ(t, u)) = 0



Minimum time. As far as the Minimum Time problem is

concerned, a different approach can be proposed. This too,

requires some restrictions.

The Dynamic Programming method (R. Bellman, 1950) rests

on a very general principle: it basically states that “segments”

of optimal trajectories still are optimal trajectories.

Let the system (CS) be given under the usual assumptions.

Set (w.l.g.)

x = 0

Assume further that each initial state x̄ ∈ Rn can be steered to

the origin by an admissible control. Define

T(x̄) = inf{t : ∃u(·) : x(t; x̄, u(·)) = 0}

T(x) is called the value function. If U is compact and x̄ 6= 0,

we have T(x̄) > 0.



The required restrictions are:

(R3) the minimum time problem has a solution ∀x̄ ∈ Rn

(R4) T(·) ∈ C1(Rn \ {0})

Lemma. Let x∗(t) : [0, T(x̄)] → Rn be an optimal trajectory,

steering in minimum time the initial state x̄ 6= 0 to the origin.

Let moreover 0 < τ < T(x̄) and y = x∗(τ). Then, the restriction

of x∗(t) on the interval [τ, T(x̄)]) (suitably translated) is

optimal for the problem of steering the point y to the origin in

minimum time.

Existence of optimal solutions is guaranteed, for instance, if the system is

linear i.e., f(x, u) = Ax+Bu, and U is compact, convex, and 0 ∈ IntU .



Using the Lemma, and computing the directional derivative of

T(·) along an optimal trajectory issued from an arbitrary initial

state x, we get the so-called Bellman equation

−∇T(x)f(x, u∗) = max
u∈U

[

−∇T(x)f(x, u)
]

= 1

where u∗ denotes the value taken at the initial time by the

corresponding optimal control.

Note that the Bellman equation represents a necessary

condition for optimality.

There is a version of the Dynamic programming method for discrete time

systems: in this case, the restrictions about the differentiability of the value

function is not necessary.


