Lesson III

PONTRJAGIN MAXIMUM PRINCIPLE

A. Bacciotti, Politecnico di Torino

MASTER UNITO, 2020-21
Mathematical and physical methods for space sciences

The Pontrjagin Maximum Principle (PMP, in short), elaborated during the 50's, represents a general approach to the optimal control problem, without need of restrictive assumptions such as (R1) (R2) (R3) (R4).....

We start by recalling the data

Control system: (CS) $\quad \dot{x}=f(x, u)$

Admissible controls: piecewise continuous functions $u(t):[0,+\infty) \rightarrow U$, where $U \subset \mathbf{R}^{m}$

Endpoints conditions: $x(0)=\bar{x}, x(T)=\underline{x}$
Functional to be minimized: $J(T, u(\cdot))=\int_{0}^{T} f_{0}(x(t), u(t)) d t$

Let us introduce an auxiliary (scalar) variable

$$
z(t)=\int_{0}^{t} f_{0}(x(s), u(s)) d s
$$

$z(t)$ is continuous everywhere and of class C^{1} except possibly at the control jumps. Moreover,

$$
\dot{z}(t)=f_{0}(x(t), u(t))
$$

and $z(0)=0$. The new variable will be formally incorporated into the state vector, which becomes $(z, x)=\left(z, x_{1}, \ldots, x_{n}\right)$

The statement of the PMP exploits the Hamiltonian formalism and hence, the introduction of adjoint variables. Let us denote by $\psi \in \mathbf{R}^{n}$ the adjoint variable of the (original) state variable x, and by $\omega \in \mathbf{R}$ the adjoint variable of the new auxiliary variable z. Let

$$
H(x, u, \psi, \omega)=\omega f_{0}(x, u)+\psi \cdot f(x, u)
$$

Comparing with the approach discussed in Lesson II, we see that the adjoint variable ψ plays the same role as the Lagrange multiplier, and it is therefore thought of as a row-vector. This is especially convenient for a correct use of the Hamiltonian formalism.

It is straightforward to check that

$$
\begin{aligned}
& \frac{\partial H}{\partial \psi}=f(x, u) \\
& \frac{\partial H}{\partial \omega}=f_{0}(x, u)
\end{aligned}
$$

Moreover, from

$$
-\frac{\partial H}{\partial z}=0(=\dot{\omega})
$$

we realize that ω is constant. Finally,

$$
\begin{equation*}
-\frac{\partial H}{\partial x}=-\psi \frac{\partial}{\partial x} f(x, u)-\omega \frac{\partial}{\partial x} f_{0}(x, u) \tag{1}
\end{equation*}
$$

We are now ready to state the PMP.

Theorem. (Necessary condition for optimality).
Assume that U is compact. If $\left(T^{*}, u^{*}(\cdot), x^{*}(\cdot)\right)$ is an optimal triplet for the given problem, then there exist a real constant $\omega^{*} \leq 0$ and a (non vanishing) solution $\psi^{*}(t)$ of the "adjoint" equation

$$
\begin{equation*}
\dot{\psi}=-\frac{\partial H}{\partial x}\left(x^{*}(\cdot), u^{*}(\cdot), \psi, \omega^{*}\right) \tag{2}
\end{equation*}
$$

such that

$$
\begin{equation*}
H\left(x^{*}(t), u^{*}(t), \psi^{*}(t), \omega^{*}\right)=\max _{u \in U} H\left(x^{*}(t), u, \psi^{*}(t), \omega^{*}\right)=0 \tag{3}
\end{equation*}
$$

at each instant $t \in\left[0, T^{*}\right]$ where the optimal control $u^{*}(\cdot)$ is continuous.

Remarks

\diamond By (1) and (2), the adjoint equation takes the form

$$
\begin{equation*}
\dot{\psi}=-\psi \frac{\partial}{\partial x} f(x, u)-\omega \frac{\partial}{\partial x} f_{0}(x, u) \tag{4}
\end{equation*}
$$

If $x(t)$ and $u(t)$ are known, then (4) becomes an affine system of (time-varying) differential equations, for which a formula for the general integral is available (depending on a vector of constants $k \in \mathbf{R}^{n}$).
\diamond Since we are assuming that U is compact, the maximum of the function

$$
\begin{equation*}
u \mapsto H(x, u, \psi, \omega) \tag{5}
\end{equation*}
$$

exists for each x, ψ, ω.
\diamond If the maximum in (5) is attained at an interior point of U, then (3) implies the stationarity condition

$$
\frac{\partial H}{\partial u}\left(x^{*}(t), u^{*}(t), \psi^{*}(t), \omega^{*}\right)=0
$$

for each $t \in\left[0, T^{*}\right]$.

However, it is worthwhile to notice that in many practical applications, $u^{*}(t) \in \partial U$.
\diamond Formula (3) provides three types of information:
(I1) the function H takes the maximum when it is evaluated along the optimal values of the variables;
(12) H is constant when it is evaluated along the optimal values of the variables; in this sense, it plays the same role as a transversality condition in CV
(I3) the value of H, when it is evaluated along the optimal values of the variables, is zero.
\diamond The function H is homogeneous with respect to the vector of the adjoint variables (ψ, ω). If $\omega \neq 0$, it can be normalized in such a way that $\omega=-1$. This choice is usually convenient for computations but, sometimes, it can be better to normalize one of the components of ψ.

Terminology: sometimes, when $\omega \neq 0$ the problem is said to be "normal", in the opposite case it is said to be "abnormal"
\diamond The PMP reduces an infinite dimension optimization problem to find the maximum of a function with a finite number of variables, parameterized by t and with the possible exception of a finite number of points.
\diamond In general, the PMP is only a necessary condition for optimality. However, it can be used to select "candidate" optimal controls.

A possible procedure is:

- solve the (cascade) system of ODE formed by (CS) and (4); we expect that the general integral depends on a vector of constants $(c, k) \in \mathbf{R}^{2 n}$, as well as on the parameters ω and u
- Apply the controllability conditions, in order to eliminate c and k
- Apply (3) in the sense of (I1) to determine for each t the value to be assigned to $u^{*}(t)$ (except for a finite number of points)
- Use again (3) in the sense of (I2)(I3) to determine T^{*}.
\diamond In general it may be very hard to follow the aforementioned procedure. However, there are fortunate exceptions: for instance, when the control system is linear

$$
\dot{x}=A x+B u
$$

and the integrand of the cost functional does not depend on x, that is $f_{0}(x, u)=f_{0}(u)$. Under these hypothesis, the system $(C S)+(4)$ is linear.
\diamond For the minimum time problem, the Hamiltonian function becomes

$$
H(x, u, \psi, \omega)=\omega+\psi \cdot f(x, u)
$$

and the PMP states that

$$
H\left(x^{*}(t), u^{*}(t), \psi^{*}(t), \omega^{*}\right)=\omega^{*}+\psi^{*}(t) \cdot f\left(x^{*}(t), u^{*}(t)\right)=0
$$

Moreover, for the time optimal problem we always have $\omega^{*} \neq 0$, otherwise, $\psi^{*}(t)=0$ which is not allowed for the PMP.
\diamond The PMP remains a valid necessary condition for problems with a fixed final time T, in the sense of (I1) and (I2) . However, in this case it is not possible to predict the value of the constant $H\left(x^{*}(t), u^{*}(t), \psi^{*}(t), \omega^{*}\right)$. On the other hand, we have one less unknown to determine.
\diamond Sometimes, the PMP can be used as a sufficient condition as well, when combined with other facts: for instance when existence and uniqueness of solutions has been independently proved.

