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The Pontrjagin Maximum Principle (PMP, in short),

elaborated during the 50’s, represents a general approach to

the optimal control problem, without need of restrictive

assumptions such as (R1) (R2) (R3) (R4).....

We start by recalling the data

Control system: (CS) ẋ = f(x, u)

Admissible controls: piecewise continuous functions

u(t) : [0,+∞) → U , where U ⊂ R
m

Endpoints conditions: x(0) = x̄ , x(T) = x

Functional to be minimized: J(T, u(·)) =
∫ T
0 f0(x(t), u(t)) dt



Let us introduce an auxiliary (scalar) variable

z(t) =

∫ t

0
f0(x(s), u(s)) ds

z(t) is continuous everywhere and of class C1 except possibly

at the control jumps. Moreover,

ż(t) = f0(x(t), u(t))

and z(0) = 0. The new variable will be formally incorporated

into the state vector, which becomes (z, x) = (z, x1, . . . , xn)



The statement of the PMP exploits the Hamiltonian formalism

and hence, the introduction of adjoint variables. Let us denote

by ψ ∈ Rn the adjoint variable of the (original) state variable x,

and by ω ∈ R the adjoint variable of the new auxiliary variable

z. Let

H(x, u, ψ, ω) = ωf0(x, u) + ψ · f(x, u)

Comparing with the approach discussed in Lesson II, we see

that the adjoint variable ψ plays the same role as the Lagrange

multiplier, and it is therefore thought of as a row-vector. This

is especially convenient for a correct use of the Hamiltonian

formalism.



It is straightforward to check that

∂H

∂ψ
= f(x, u)

∂H

∂ω
= f0(x, u)

Moreover, from

−
∂H

∂z
= 0 (= ω̇)

we realize that ω is constant. Finally,

−
∂H

∂x
= −ψ

∂

∂x
f(x, u)− ω

∂

∂x
f0(x, u) (1)

We are now ready to state the PMP.



Theorem. (Necessary condition for optimality).

Assume that U is compact. If (T ∗, u∗(·), x∗(·)) is an optimal

triplet for the given problem, then there exist a real constant

ω∗ ≤ 0 and a (non vanishing) solution ψ∗(t) of the “adjoint”

equation

ψ̇ = −
∂H

∂x
(x∗(·), u∗(·), ψ, ω∗) (2)

such that

H(x∗(t), u∗(t), ψ∗(t), ω∗) = max
u∈U

H(x∗(t), u, ψ∗(t), ω∗) = 0 (3)

at each instant t ∈ [0, T ∗] where the optimal control u∗(·) is

continuous.



Remarks

♦ By (1) and (2), the adjoint equation takes the form

ψ̇ = −ψ
∂

∂x
f(x, u)− ω

∂

∂x
f0(x, u) (4)

If x(t) and u(t) are known, then (4) becomes an affine system

of (time-varying) differential equations, for which a formula for

the general integral is available (depending on a vector of

constants k ∈ Rn).



♦ Since we are assuming that U is compact, the maximum of

the function

u 7→ H(x, u, ψ, ω) (5)

exists for each x, ψ, ω.

♦ If the maximum in (5) is attained at an interior point of U ,

then (3) implies the stationarity condition

∂H

∂u
(x∗(t), u∗(t), ψ∗(t), ω∗) = 0

for each t ∈ [0, T ∗].

However, it is worthwhile to notice that in many practical

applications, u∗(t) ∈ ∂U .



♦ Formula (3) provides three types of information:

(I1) the function H takes the maximum when it is evaluated

along the optimal values of the variables;

(I2) H is constant when it is evaluated along the optimal

values of the variables; in this sense, it plays the same role as a

transversality condition in CV

(I3) the value of H, when it is evaluated along the optimal

values of the variables, is zero.



♦ The function H is homogeneous with respect to the vector

of the adjoint variables (ψ, ω). If ω 6= 0, it can be normalized in

such a way that ω = −1. This choice is usually convenient for

computations but, sometimes, it can be better to normalize

one of the components of ψ.

Terminology: sometimes, when ω 6= 0 the problem is said to be

“normal”, in the opposite case it is said to be “abnormal”



♦ The PMP reduces an infinite dimension optimization

problem to find the maximum of a function with a finite

number of variables, parameterized by t and with the possible

exception of a finite number of points.

♦ In general, the PMP is only a necessary condition for

optimality. However, it can be used to select “candidate”

optimal controls.



A possible procedure is:

◦ solve the (cascade) system of ODE formed by (CS) and (4);

we expect that the general integral depends on a vector of

constants (c, k) ∈ R2n, as well as on the parameters ω and u

◦ Apply the controllability conditions, in order to eliminate c

and k

◦ Apply (3) in the sense of (I1) to determine for each t the

value to be assigned to u∗(t) (except for a finite number of

points)

◦ Use again (3) in the sense of (I2)(I3) to determine T ∗.



♦ In general it may be very hard to follow the aforementioned

procedure. However, there are fortunate exceptions: for

instance, when the control system is linear

ẋ = Ax+Bu

and the integrand of the cost functional does not depend on x,

that is f0(x, u) = f0(u). Under these hypothesis, the system

(CS) + (4) is linear.

♦ For the minimum time problem, the Hamiltonian function

becomes

H(x, u, ψ, ω) = ω+ ψ · f(x, u)

and the PMP states that

H(x∗(t), u∗(t), ψ∗(t), ω∗) = ω∗ + ψ∗(t) · f(x∗(t), u∗(t)) = 0

Moreover, for the time optimal problem we always have ω∗ 6= 0,

otherwise, ψ∗(t) = 0 which is not allowed for the PMP.



♦ The PMP remains a valid necessary condition for problems

with a fixed final time T , in the sense of (I1) and (I2) .

However, in this case it is not possible to predict the value of

the constant H(x∗(t), u∗(t), ψ∗(t), ω∗). On the other hand, we

have one less unknown to determine.

♦ Sometimes, the PMP can be used as a sufficient condition

as well, when combined with other facts: for instance when

existence and uniqueness of solutions has been independently

proved.


