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Zermelo navigation problem.

Chose coordinates in the plane in such a way that the cost

coincides with the x axis and the sea with the half-plane y > 0.

Assume that the current is parallel to the cost (in the positive

direction) and its intensity proportional to the distance from

the cost, say cy (c > 0). Set the modulus of the velocity of the

ship v = 1.

Assume that the ship departs from the origin, and the arrival

harbor is in (a,0), with a > 0. Find the optimal time trajectory

(f0 = 1).

Mathematical model :







ẋ= cy+ cosu

ẏ = sinu
(1)

where u ∈ [0,2π] denotes the angle formed by the velocity

vector and the x axis.



The Hamiltonian function is

H(x, y, u, ψ1, ψ2, ω) = ω+ ψ1(cy+ cosu) + ψ2 sinu

Of course, computing the partial derivatives of H w.r.t. ψ1 and

ψ2 we recover the dynamics equations. Moreover,



























∂H

∂x
= 0(= ψ̇1)

∂H

∂y
= cψ1(= −ψ̇2)

(adjoint equations)



and finally

∂H

∂u
= −ψ1 sinu+ ψ2 cosu = 0 (stationarity condition).

The general integral of the adjoint system is






ψ1(t) = k1
ψ2(t) = k2 − ck1t

(2)

where k1, k2 are arbitrary constants.



The stationarity condition becomes

−k1 sinu+ (k2 − ck1t) cosu = 0 (3)

We can see that k1 6= 0, otherwise u = π/2 and it would

impossible to met the controllability condition.

Assuming no constraints on the orientation of the rudder, we

can solve (3) w.r.t. u in order to find candidate optimal

controls. We have

u = arctg

(

k2
k1

− ct

)



Replacing in (1), we obtain a linear system with a time-varying

forcing term



















ẋ = cy+ cos
[

arctg
(

k2
k1

− ct
)]

ẏ = sin
[

arctg
(

k2
k1

− ct
)]



The general integral of this system depends on four constants

(k1, k2 plus two integration constants). In addition, we still

have the unknowns ω and T ∗. Because of the homogeneity of

H, one constant can be fixed: in this problem, the more

convenient choice is perhaps k1 = 1. The remaining constants

can be determined by the aid of the endpoints conditions

x(0) = y(0) = 0 , x(T ∗) = a , y(T ∗) = 0

and recalling that H = 0 when computed along an optimal

solution.

In spite of the complicate form of the forcing term, the general

integral can be explicitly obtained by appropriate tricks

(re-parametrization etc.).
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The shape of the optimal trajectory (see the Figure) has been

obtained by MATLAB simulation, with c = 2, a = 10. The

approximate value of T ∗ is 4.167.

The simulation also shows that ω∗ remains (reasonably)

constant along the trajectory.



Vertical landing. Consider a body (of mass = 1) in a vertical

gravitational field with constant g (0 < g < 1). Let us denote

by x the hight of the body at a generic instant and let 0 be the

ground level. Let finally x(0) = s > 0 and ẋ(0) = v < 0 be the
initial values of the height and speed (resp.). If the fall is free,

according to the Newton gravitation law, the dynamic equation

is

ẍ= −g

which leads to

ẋ(t) = −gt+ v , x(t) = −
gt2

2
+ vt+ s

We see that the body will “land” at time

T =
v+

√

v2 +2gs

g

At the impact instant, the modulus of the velocity will be

strictly positive.



Assume now that we can slow down the fall by the action of a

rocket. The equation should be modified accordingly

ẍ = −g+ u (4)

where u represents the thrust and it is interpreted as a control.

It is natural to assume that u is constrained, say 0 ≤ u ≤ 1.

We want to find u in order to achieve safe landing, that is

x(T) = ẋ(T) = 0

(controllability conditions) in minimum time.

System (4) is a very approximative model. For instance, in the case of

Moon landing, the fuel consumption implies a reduction of the mass which

cannot be neglected. A most realistic model requires a third equation,

which describes the mass change.



We test two different strategies.

Strategy 1. u= constant. To met the controllability

conditions we must have

u = g+
v2

2s
and T1 = −

2s

v

Note that safe landing is possible only if s ≥ v2

2(1−g)
(reachable

set).



Strategy 2. Bang-Bang control (with only one switch). Let

u(t) =







0 0 ≤ t ≤ τ

1 τ ≤ t ≤ T2
(5)

where τ > 0 has to be determined. The integration of the

system (4) must be now performed in two steps, updating the

“initial” conditions at the second step. Imposing the

controllability conditions, we find

τ =
v+

√

(1− g)(v2 +2gs)

g
and

T2 =
1

g






v+

√

(1− g)(v2 +2gs)

1− g









A direct comparison shows that T2 < T1

We now check that the second strategy mets the PMP.

Rewritten as a first order system, the dynamics equations are






ẋ1 = x2
ẋ2 = −g+ u

(6)

(x = x1) that is f(x1, x2, u) =

(

x2
u− g

)

Since this is a minimum time problem, f0 = 1. Hence, the

Hamiltonian function is

H(x1, x2, u, ψ1, ψ2, ω) = ω+ ψ1x2 + ψ2(u− g)



The system of the adjoint equations is






ψ̇1 = 0

ψ̇2 = −ψ1
(7)

whose general integral is






ψ1(t) = k1
ψ2(t) = k2 − k1t

(8)

Chose for k∗1, k
∗
2, ω

∗ negative values in such a way that

k∗1v − k∗2g = −ω∗ and
k∗2
k∗1

= τ (9)

and let ψ∗
1(t) = k∗1, ψ

∗
2(t) = k∗2 − k∗1t. We have

H(x1, x2, u, ψ
∗
1(t), ψ

∗
2(t), ω

∗) = ω∗+k∗1x2−(k∗2−k
∗
1t)g+(k∗2−k

∗
1t)u



Now it is clear that the maximum of H is attained when

u =







0 if k∗2 − k∗1t < 0

1 if k∗2 − k∗1t > 0
(10)

By virtue of (9), we can finally check that H = 0


