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Consider a linear time-invariant system

ẋ = Ax+Bu (1)

with x ∈ R
n and u ∈ Rm.

Admissible controls will be now all the piecewise continuous

functions u(t) : [0,+∞) → Rm (no constraints on the values of

u(t)).

As usual, we denote x(t) = x(t; x̄, u(·)) the solution of (1)

corresponding to the initial state x̄ and an admissible control

u(t).



Let us associate to (1) the cost functional

J(x̄, u(·)) =
1

2

∫ +∞

0
(||x(t)||2 + ||u(t)||2) dt (2)

Note that the integrand of the cost functional is convex, and

J(x̄, u(·)) ≥ 0 for each x̄ and u(·)



The linear-quadratic optimal regulator problem on the infinite

horizon (in short, LQR problem) can be formulated in the

following way.

For any initial state x̄ find (if any) an admissible control u(t) in

such a way that the cost functional J(x̄, u(·)) takes the

minimum possible value.

It is possible to state a similar problem on the finite horizon, taking the

integral on an interval [0, T ] for a fixed T > 0. In this case, a final endpoint

condition x(T) = x should be assigned. It is also possible to consider more

general forms of the functional.



The stabilization problem.

Definition. We say that system (1) is asymptotically

controllable if for each x̄ ∈ Rn there exists a control ux̄(t) such

that for the corresponding solution x(t) of the problem






ẋ = Ax+Bux̄(t)

x(0) = x̄
(3)

we have limt→+∞ x(t) = 0.

Definition. We say that (1) is stabilizable if there exists a

matrix F with m rows and n columns such that for each x̄ ∈ Rn

the corresponding solution x(t) of the problem






ẋ = (A+BF)x

x(0) = x̄
(4)

satisfies limt→+∞ x(t) = 0.



(4) results from (1) by the substitution u = Fx.

The function u = Fx is called a (static state) stabilizing

feedback.

Theorem. The following conditions are equivalent.

(i) System (1) is asymptotically controllable.

(ii) System (1) is stabilizable.

(iii) There exists a symmetric, positive definite matrix P such

that

AtP + PA− PBBtP = −I . (5)

In this case, a stabilizing feedback is obtained setting u = Fx

with F = −αBtP and α ≥ 1
2.

(5) is called the Algebraic Matrix Riccati Equation, in the

matrix unknown P . Note that such equation is nonlinear.

In the set of symmetric, positive definite matrices, (5) admits

at most one solution.



Convergence of the cost functional.

Since the cost functional is expressed by means of an improper

integral, the problem is nontrivial only if

(C) ∀x̄ ∈ R
n ∃ux̄(t) : J(x̄, ux̄(·)) < +∞

Indeed, if (C) holds then the minimum of the cost functional

(if it exists) is finite.

Proposition 1. Assume that condition (C) holds. Then, for

the solution x(t) = x(t; x̄, ux̄(·)) of (1) we have

lim
t→+∞

x(t) = 0

i.e., system (1) is asymptotically controllable.

The converse of the previous proposition is true, as well.



Proposition 2. Assume that system (1) is asymptotically

controllable. Then, for each initial state x̄ there exists a

control ux̄(t) : [0,+∞) → Rm such that the integral in (2)

converges i.e., (C) holds.

With respect to the LQR problem, the asymptotic

controllability property can be reviewed as a generalized final

endpoint condition.

Proposition 2 states that, under the asymptotic controllability

hypothesis, the LQR problem is nontrivial, but not yet that a

solution exists.



Necessary condition for optimality.

The Hamiltonian function, for our problem is

H(x, u, ψ, ω) =
ω

2
(||x(t)||2 + ||u(t)||2) + ψ · (Ax+Bu)

which yields


























ẋ =
∂H

∂ψ
= Ax+Bu

ψ̇ = −
∂H

∂x
= −ωxt − ψA (adjoint equation)

(6)

(recall that ψ is a row-vector).



Now, assume that for a given initial state x̄ an optimal control

u∗(t) is known, and let x∗(t) be the corresponding optimal

trajectory.

Since there is no constraints, we must have

∂H

∂u
= ω∗u∗(t)t + ψ∗(t)B = 0 (7)

for each t > 0, some ω∗ ≤ 0 and some nontrivial solution ψ∗(t)

of the adjoint equation where ω and x are replaced by ω∗ and

x∗(t) (this is guaranteed by the PMP).

(7) shows that ω∗ 6= 0: otherwise, also ψ∗(t) = 0. Thus, from

now on we can take ω∗ = −1. (7) also implies

u∗(t)t = ψ∗(t)B (8)



The information provided by the PMP can be summarized in

the following necessary condition for optimality.

Proposition 3. Let u∗(t) be an optimal control for the initial

state x̄ and let x∗(t) be the corresponding optimal trajectory.

Let ψ∗(t) be the solution of the adjoint equation (with ω = −1

and x= x∗(t)), provided by the PMP. Then, the pair

(x∗(t), ψ∗(t)) is a solution of the system






ẋ= Ax+BBtψt

ψ̇ = xt − ψA
(9)



Existence and construction of the solution.

On the base of Propositions 1 and 2, we can limit the

discussion to systems which satisfy the asymptotic

controllability condition (or one of its equivalent forms exposed

above).

Proposition 4. Assume that (1) is asymptotically controllable,

and let P be the symmetric and positive definite solution of the

matrix equation (5). Let x(t) be the solution of the system

ẋ= Ax−BBtPx (10)

such that x(0) = x̄, and let ψ(t) = −x(t)tP .

Then, the pair (x(t), ψ(t)) is a solution of (9), and

limt→∞(x(t), ψ(t)) = (0,0).

(the proof exploits (5)).

Note that in (10) the variable ψ does not appear anymore.



Proposition 4 states that solving (10) with the initial condition

x̄ and setting ψ(t) = −x(t)tP , we are able to construct,

according to (8), a control law which satisfies the necessary

condition (9). We therefore obtain a candidate for optimality.

It is possible to prove by direct arguments that such a control

is really an optimal control for the LQR problem at the given

initial state.



Theorem. Assume that (1) is asymptotically controllable, and

let P be the symmetric and positive definite solution of the

matrix equation (5). Let x(t) be the solution of equation (10)

corresponding to the initial state x̄. Then, the LQR problem

associated to (1) has a unique solutions, given by

u∗(t) = −BtPx(t)

This Theorem shows in particular that:

• the solution of the LQR problem can be realized in feedback

form u = −BtPx

• the asymptotic controllability assumption is also sufficient for

the existence of a (unique and finite) solution



Existence + finiteness ⇒ (C) ⇔ AC

⇓

Existence + finiteness ⇐ (C) + existence


