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(1) for any u < 0 (2.12) has no periodic trajectories but the trivial one
z=0,y=0,
(2) forany y > 0(2.12) has a unique periodic solution, which is asymp-
totically stable. See Figures 7.2 and 7.3.
Note also that the trivial solution z = 0,y = 0 is stable for all g4 < 0
and unstable for 4 > 0.

Figure 7.3 The closed orbit of (2.12)

3 The Lyapunov Centre Theorem

Consider the first-order system

du

i ACO (S)
where f € C*(R",R"). A singular point of (S) is a p € R™ such that
f(p) = 0. In this section we will be concerned with the existence of small
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oscillations of (S} near an equilibrium p, namely periodic solutions of (S)
with orbits confined near p. Let us suppose that p = 0 is a singular point
of (S) and let A = f’(0). If no point of the spectrum of A belongs to the
imaginary axis, then the behaviour of the solutions of (S) near p =0 is
completely understood. It is possible to show (see, for example [P]} that
there are two invariant manifolds M and N, with dim(M)+dim(N)=n
and M N N = {0} such that for all ¢ € M (resp. N) the solution of the

Cauchy problem
du
5=, }

u(0) = g,
tends to 0 as ¢ — 400 (as ¢ — —o0, respectively). The behaviour of the
solutions near p = 0 is represented in Figure 7.4.

e

Figure 7.4

As a consequence, a necessary condition for (S) to have closed orbits near
a singular point, say p = 0, is that A have a pair of purely imaginary
eigenvalues +iwg. However this condition is not sufficient, in general,
For example, consider the two-dimensional system

il iapi 3:2 + 2 ,
= ( 2 yz) } (3.1)
¥y = z—yz"+y)
The eigenvalues of A are +i; on the other hand, if {z(2), y(?)) is a solution
of (3.1}, one has

d

1 ! }
i [E(m””?)l =2z’ +yy’ = ~ (" +y")’.
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Figure 7.5

It follows that
1

2t +c¢
and hence (3.1) has no periodic solutions (see Figure 7.5),

Lyapunov has shown in a celebrated theorem [Ly] that (S) does pos-
scss periodic solutions near 0 provided it has a “non-singular® first in-
tegral b, Recall that a first integral of (S) is a non-constant real-valued
function & € C1(R", R} such that b(u(t)) = constant for any solution
u(t) of (S). We point out that, in view of the uniqueness of the solutions
of the Cauchy problem

S = Jw), w0 =p,
b is a first mtegral of (S) if and only if
f(p)-Vbp) =0, for all p € R". (3.2)

Examples of such systemns are the second-order conservative (or gra-,
dient) systems, namely systems like

2?2 4o =

d2u

Tl o VU('U) =0, (3'3)
or the Hamiltonian systems

;1:r = —~H,(z,y), (HS)

y = H.(z,y),

where (z,y) € R x R™. In fact, the Hamiltonian itself H = H(z,y) is
a first integral of (HS). Note that (3.3} is a particular case of (HS): it
suffices to take H(z,y) = 4ly[* + U(z).

The following lemma shows the role played by the first integral.
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Lemma 3.1 Suppose b is a first integral of (S) and consider the mod-
ified system
du

5 = f() +uVb(u), p €R, ((S),.)

If u = u(t) 1is a T-periodic solution of (S} then u is in fact a T-periodic
solution of (S).

Proof. Let u(t) be any solution of (S,) for some u # 0. Setting 3(t) =
b(u(t)) one has

B (1) = S3(u(t)) = Vau(t) - (t) = Uh(u(t) - f(u(t) + HIVE(u(t))P
Using (3.2) we get that
B'(t) = p|Vb(u(t)*.

If, for example, 4 > 0, then 3(t) is non-decreasing. In the other hand,
since = is T-periodic, we deduce B{0) = b{w(0)) = duw(T)) = T).
Hence

B(2) = ulVb(u()” =0
and u sotves (S).

Lemma 3.1 suggests we scek small oscillations of a system with a first
integral as periodic solutions of (5, ) above, bifurcating from ug == (0, 0).
The following theorem gives conditions under which such a bifurcation
occurs.

Theorem 3.2 (Lyapunov Centre Theorem) Suppose that f €
C*(R™,R") is such that f(0) = 0. Letting A = f’(0), we suppose that

(A-1) A is nonsingular and has a pair of simple eigenvalues +iwy;
(A-2) forallk € Z, k # %1, ikwy is not an eigenvalue of A.

Moreover, let us assume that (S) has a first integral b € C2(R* R)
such that b”(0) is non-sinqular.

Then (S) possesses small oscillations near p = Q.

More precisely, there exist a neighbourhood J of 5 = 0, e function
w(s) € CY(J), and a family v, of non-constant, periodic solutions of (S)
such that
(i} w(s)—> wo, ass—0;

(i} u, has period T, == 27 fw(s);
(iii) the amplitude of the orbit u, tends to 0 as s — 0.

Proof. According to Lemma 3.1, we can replace (S} with (S,) which
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can be studied by means of Theorem 2.6, with f(u, u) = f(u)+ uVbd(u).
First of all we note that froin (3.2), and recalling that & is C* here, it
follows that

F(€y-VbE) + f(€)-Vb'(€)y =0, forali&,ye R". (3.4)
Putting & = 0, one has

Ay - Vb(0) + f(0)- 5’ (0)y =0, for all y € R".
Since f(0) = 0 and A is non-singular, it follows that Vb{0) == 0. As
a consequence, we infer that f(u,0) = f(0) + uVd(0) = 0. Moreover,
setting B = b”(0), one has
Ay = f2(1,0) = A + uB.

We shall apply Theorein 2.6 with uo = 0. Since Ag = A, = A, (Ap—1-2)
follow from (A-1-2). It remains to verify that (A,-3) holds.

First, let us consider (3.4). Since f is continuously differentiable,
f(0) = 0 and ¥” is continuous, then it is easy to verify that the map
& — f(&) - "(&)y is differentiable at £ = 0 with derivative f'(0)[.] -
¥'(0)y = A[.] - By. Hence we can diflerentiate (3.4) at £ = 0, yielding

0y, 2] - Vb(0) + Ay- Bz + Az- By=10 for alt y,z € R,
Since Vb5(0) = 0 it follows that,
Ay-Bz+4+ Az-By=0 forally,z e R",
that is (note that B is symmetric),
ATB + BA=0. (3.5)

Then, up to a change of coordinates, the matrix A has the form
S5 0
=[5 &

, |0 —uwp
S“[wo 0]

with

and R does not contain +iwg in its spectrum, because +iwy are simple
cigenvalues of A. Let us write

o= i o
where U (resp. C) is a symmetric 2 x 2 (resp. (n—2) x (n — 2)) matrix.
From (3.5} it follows readily that
SU=US (3.6)
and
SM= MRB. (3.6")
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Recalling that wp # 0, from (3.6’) one deduces with elementary calcula-
tions that there is § € R such that
5 0
o-[5 3]
From (3.6”) and using the fact that wp # 0 and +iwg are not eigenvalues
of R, one infers that the 2 x (n — 2) matrix M is the 0 matrix. f
To sce this, let X, Y € R® 2 denote the two rows of M.

X
=]
Then from (3.6”) it follows X, Y satisfy the system:
XR4+uwY =0
YR - on = ()

One finds X = wj 'Y R and hence Y(R? +w2I) = 0. Since iwg are not
eigenvaiues of R, then one infers that Y = X = 0.

From the preceding argmnents we deduce that B has, with respect to
the same basis used for (3.5), the form

§ 0
B=[o ’ 9}
0 C

wherc é # 0, because B is non-singular.
Consequently there resuits
“6 = 0
A+ uB= | —wg pb
0 R+ uC
and hence the branch of cigenvalues A(u) such that A(0) = iwp is given
by

H

Alje) = pb +iwp.
This proves that (Ap—3) holds true. An application of Theorem 2.6,
jointly with Lermuna 3.1, yiclds the existence of a C' function w(s) —
wg and of family w, of non-constant solutions of (S) with period T, =
27 fw(s), such that the amplitude of u, tends to 0 as s — 0.

Remarks 3.3

(i) The above result being local in nature, it would be sufficient to
consider in Theorem 3.2 a vector ficld f and a first integral b defined in
a neighbourhood of 0 in R™.

(ii} If A has several purely imaginary eigenvalues tiwg,wi > 0, k =

t More generally, it is possible to show that if R and S are square matrices having
disjoint spectru and if M is a matriz such that SM = MR, then M = 0.
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1,...,m, the non-resonance condition (A2} is always satisfied at +iw*,
where w* = max{w, 1 £ k € n}.

(iii) Tt has been proved by J. Moser [Mo] that non-resonance condi-
tions (A1-2) can be eliminated at the expense of the existence of a first
integral b € C?(R",R) such that b”(0}is positive-definite. The follow-
ing example (see [Mo]; see also [MW]) shows that, in this more general
form, if ¥”(0) is merely nondegenerate, (S) may have no periodic solu-
tions at all. Let x,y € R?, 2 = (21,22), ¥ = (y1,%2) and consider the
Hamiltonian system (HS) with Hamiltonian

H(z,y) = %(m'f =23+ —y2) + (" + 1) B(z, ),
where

B(z,y) = (hy2 — 1122).
Here the matrix A has the form

0 0 -1 0
0 0 0 1
A 1 0 0 O
0 -1 0 0

and has double eigenvalues +i. If z = z(t) and y = y(¢) is a solution of
(HS), there resuits

%(mlyz +piz2) = —4[B(z, 9)12 - (!miz + 1912)2s

and therefore (HS) has the trivial solution z = 0, y = 0 only.

(iv) Since " is non-singular, the arguments of Lemma 3.1 show that
here the auxiliary parameter u = 0.

(v) According to Remark 1.3, the family of periodic solutions u, has
the property that

U i =
=8 s ‘Selwt +£¢e fwt as s — 0
8

where £ is such that Af = iwgf. .-

The Lyapunov Centre Theorem applies both to second-order gradi-
ent systems like (3.3) and to Hamiltonlan Systems (HS). Let us state
explicitly this kind of result.

We consider (HS) with H ¢ C}R" x R",R). Set 2 = (z,¥) €
R, H(z) = H(z,y) and VH(z) = (Hy(z), Hy(z)). If J denotcs the
symplectic matrix (i.e. J: (z,y) — (—y,z)), then (HS) can be written
in the more compact form

dz
%= JVH(z).

Since in (HS) the Hamiltonian H is a constant of the motion, namely
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H(z(t)) =const. for all solutions of (HS), it makes sense to look for
periodic solutions of (HS) on the Hamiltonian surface H(z) = h.
We suppose that
(HO) H(0) = 0, VH(0) = 0 and H”(0) > 0 (that is H”(0) is positive-
definite},
(H1) JH"(0) has n pairs of purely imaginary simple eigenvalues
diwg, k=1,2,...,n,

such that w; /w; is not an integer for all ¢ # j.

Theorem 3.4 Suppose that H € C:(R" x R™ R) satisfies (H0-1).
Then for all ¢ > 0 small enough (HS) has n (geometrically) distinct
periodic orbits on the surface H(z) = €. More precisely, the surface
H(z) = € carries n distinct periodic orbits z; whose periods tend to
27r/wk, k= 1,2, A

Proof For all £k = 1,2,...,n, we can apply Theorem 3.2 with f =
JVH,A=JH"(0) and b = H. Indeed, (HO) implies, in particular, that
b"(0) = H"(0) is non-singuiar; and (H1) implies that (Ai-ii) hold true
forallk=1,2,...,n.

Then tliere exist n branches zx 5, k£ = 1,2,...,n. of periodic solutions
of (HS) with period T s converging to 27 /wy as s — 0; moreover,

"zk,s”L‘” —0 ass— 0. (37)
In addition, 2; , depends in a C' fashion on s and (sec Remark 3.3(v))
ii;n,_\.gf—gi =g = et +Ele VW k=1,2,...,n (3.8)

where Ay = lwiéy.
Siuce H is a first integral of (HS), then H(z ,(t)) is independent of
t. We set
hy (s} = H(zk,(0)).
From (3.7} one immediately deduces that hi(s) — H(0) = 0.
Moreover, since zx , is C! with respect to s and H’'(0) = 0, it follows

readily that Ay is twice differentiable at 3 = 0 and, using also (3.8), one
finds

%(0) = H" (0)wy, - wy

where wy = & +£F.
Since H”(0) > 0, it follows that for all ¢ > 0 small enough and any
k=1,2,...,n, the equation ht(s) = ¢ has a solution s = s(k,€) and

s(k,e) > 0ase -0 k=12,...,n
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Correspondingly we find n solutions zxe = 2k sir,e) (K= 1,2,...,n) of
(HS) such that H(z; ;) = ¢. Finally, from (3.8) we also deduce that, for
¢ small, the orbit of z; . is close to that of s@, that is to that of svy,
up to higher-order terms; then the zx . (k = 1,2,...,n) correspond to
geometrically distinct orbits. This completes the proof of the theorem.

Remarks 3.5

(i) Asin Remark 3.3 (i}, H could be defined in a neighbourhood of 0
in R",

(i1} Theorem 3.4 has been extended by Weinstein [W] (sce also [Mo])
who proved the following resuit. Suppose H satisfies (H0). Then for all
£ > 0 small enough (HS) hes n distinct periodic orbits on the surface
H{z) = €. In comparison with the result of Moser recalled in Remark
3.3 (iii), one has to point out that in the case of a gcneral conservative
systeru one can exibit examples wihere (S) has only one solution on each
sirface b= ¢.

4 The restricted three-body probiem

One of the most clagsical application of the Lyapunov Centre Thcorcm
is to the existenee of small oscillations near the equilibrium points of the
planar restricted three-body problem. This problem deals with threc-
bodies Py, P> (called primaries) and Q, with masses M), My and Mj,
respectively, under the action of the Newton Gravitational Law. To
make the problem more feasible, one considers tie restricted problem,
which is coucerned with the case wheu the mass of one particle is negli-
giblic with respect to the others. If, say, M3 = 0 then P, and P, are not
influenced by  and they move according to the solutions of a two-body
probicm. Qur aim is to study the motion of @ under the attraction of
the two primaries.

Actually, we shall make some further simplifications. First of all, we
suppose that the primaries move on circles, rather than more general
cliiptical orbits, with constant angular velocity v. Moreover we will
assume that the motion of (2 occurs on the same plane as that of P, P;.
This problem is usually called the restricted planar three-body problem.
Even with these stimplifications, it is still quite interesting, because many
problems arising in celestial mechanics fit in this frame.

Let us introduce a rotating coordinate system zQOy (Fig. 7.6}, such
that (i} the origin O coincides with the barcentre of Py and P and (ii)
P, and P are at rest on the z-axis. With a suitable choice of the units,
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AY Q=($,y)

Figure 7.6

we can take M:; + My =1,y =1 and g (the gravity constant) = 1. We
also set M3 = m in such a way that Py = (—m,0) and P, = (1 — m,0)
and let (z,y) denote the coordinates of Q) and
p =Vl +m) +y7,
pz = Il(z+m—1) +y7|
the distances from ) to P, and B, respectively.
The third body @ is subjected to combined action of the centrifu-
gal and Coriolis forces and to those due to the Newtonian attraction,

corresponding to the potential
I—m m

Uz,y) =

P1 P2
In conclusion, we find tbe systemn

2" = 2y — z = Uz(z,9),
v y"+23;'._..y; Uy(m,y),
where, here and hereafter, primes / denote d/dt.

(4.1)

Equilibrium points

The possible equilibria of (4.1) can be found by solving the system

e Ua:(ma y)s }
~y = Uy(z,y),
namely the pair of equations
1 —- -1
MM mEem-1
p:li P2

; (4.2)
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Figure 7.7

“y(l —-m) my
n Py

The lattor is satisfied for y = 0. Snbstituting y = 0 into (4.2) we find

_{z+m)(1—m) *m(:r +m — 1)

- [z + mi3 lz4+m -1 "

Equation (4.4) has three solutions, corresponding to the so called Fuler

points Ly, Lo, L3. (Figure 7.7).

It is also eonvenicnt to introduce the potcential

| .
®(z,y) = 5(2° + %) + U(#,9). (4.5)

Equations (4.2} and (4.3) are nothing but &, = 0 and &, = 0, respec-
tively. Hence the Euler points arc the solntions of &.(z,0) = ). One
checks immediately that &,.(L;} > 0, i = 1,2,3. As for &, one finds

—y= (43)

T

(4.4)

m 1—m
lz—m+ 1B jz—mp
Since in Ly both {z—m/| and {x—~m41{ are < 1 we infer that &, (L2) < 0.
In Ly and Ly onc finds, with clementary caleniations, that zd,,(x,0) is
< 0in Lz and >0 in L;. In both cases it follows that ®,, < 0. In other
words, letting for 1 < 5 <3

aj = ®uz(Lj), bj = Pay(Ly;), ¢ = Pyy (L)

Gy (2,0)=1—

we get

bj=0, a_,->0811dc_,-<0. (46)
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Let us come back to (4.2)—(4.3)} and look for solutions with y # 0. Setting
h=1/p} and k = 1/p3 we find

z=h(zx +m}(l - m)+km(z+m - 1), (4.7)

1 = h.(]_ - m) + km. (4.7')

Muitiplying (4.7) by = and subtracting from (4.7) one has readily b =
k = 1. Thus there are two more equilibria L and Ls, the Lagrangian
points, such that Py, P» and L4 (or Lg} are the vertices of an equilateral
triangle (Figure 7.8}.

Setting a = Q45 = ‘b:r::z(L-ij),b = b4.5 = @I,F(qu) and ¢ = Can =
¢,y (Las), one finds readily

a=§’b-_;:% =g.
4 4 4

The configuration consisting of the two primaries and a Lagrange point

(2m - 1),¢ (4.8)

is, for example, that of the system Sun-Jupiter-Trojans (the last are a
group of asteroids).
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Small oscillations

Let us refer to the system (4.1) whicl: will be written in the form
" - 2y = P (z,y),
¥+ 22 = &, (z,y), }

where ® is given by (4.5). In order to apply the Lyapunov Centre The-

orem. (4.1°) has to be transforined into a first-order system. If we set
p=xa" and g = 3/, (4.1') becomes

(4.1)

If=-'p 3

Y=g

p" - 2q + @ r (4.1';)
qf= _2P+‘I’ys J

which is of the form w' = f(u), where v = (z,y,p,¢) € R? and f has
compouetits

f(z,4:,0.9) = (p, 9,29 + B2, —2p + D).
In terms of the new coordinates, the cquilibria are given by
u; = (15,%;,0,0), 1 <7 <35, where (z;,¥;) = Lj.
It is immediately verifiable the system (4.17) has a first integral (the
Jacobi integral ) given by
S,y p, g) = %@2 +q°) — ®(z,9).

The Hessian J”(u,) is given by (wc keep the notation introdieed before)

. [—a; b 0 0
’ ~b;, -¢; 0 0
T =1"9" o" 1 o
Lo 0 o0t
Consequently
detg"(u] = | 37 2| ages - 8]

Taking into account (4.6) and (4.9) we find
det[J" (u,)] < 0, for 7 = 1,2,3,

2
det[J" (uy)] = TTTH(I -m) >0, for j =4,5,

and in any case J” is nonsingular at each equilibrium point.
It rernains to evaluate the matrix A; = f'(z;,y;,0,0). We obtain

0 0 1 0
0 0 0 1
4 = a;j b 0 2

b i O —2 0
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The eigenvalues A of A; satisfy the equation

X —(aj +¢; — 4 2 + D, =0, (4.9)
with
it b
D-::det( o J)_
! ~bj
On the Euler points L;, j = 1,2,3, we have b; = 0, and (4.9) becomes
A~ (a, + ¢, = 4)A? + ajc; = 0. (4.9

Since in addition ajc; < O, then (4.9') has a unique pair of purely
imaginary roots A = *iw;, j = 1,2,3, and the Lyapunov Centre Theo-
rewn appiies without auy further restriction yielding the following.

Theorem 4.1 In a neighbourhood of the Euler points Ly, j = 1,2,3,
the restricted planar three-body problem has a family of periodic solutions
whose periods tend to 2m jw;.

As for the Lagrangian point Ly (the same holds for the symmetric one
Ls) we llave (sce (4.8))

3v2

3 9
0,-—4—, b-T(2m—-—1), C-——Z.
The (4.9) becomes
,\*‘+,\2+2;m(1 - m) =0,

which possesses two pairs of imaginary roots +iw’, tiw” , with, say,
0 < o < W’ provided %m(l -m) < %, namely for all 0 < m < my
(or 1 —mp < m < 1) where mp ~ 0.0385... is the smallest roots of
27m(1 — m) = 1. Let us consider the range 0 < m < my (for example,
in the case when the primaries are Sun and Jupiter, the mass ratio is
m ~ 1/1000, a value which is widely in the range (0, mo ~ 0.0385); the
same for the Earth-Moon system where m & 1/82 = 0.012).

Taking wy = w” we can apply the Lyapunov Centre Theorem directly,
while when we consider the pulsation w/ we have to require the non-
resonance condition w” fw' € N, namely that w” # ko' for all & € IN.
This leads to exciuding the solutions of

Ww? = KW',

wrf2 + wf2 s 1,

27
w2u? =

This system has soiutions whenever m satishes
27 k?
—m(l —m) (4.10)

1 T 1+ k%)
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In conclusion, if my denotes the sequence of solutions of (4,10} such that
my — 0, we can still apply, for m # my, the Lyapunov Centre Theorem
yielding the following.

Theorem 4.2 Suppose that 0 < m < my; then in a neighbourheod
of the Lagrange points Ly s the restricted planar three-body problem has
a family of periodic solutions whose periods tend to 2w w”; if further,
m # myg, then there exists a second family of periodic solutions whose
periods tend to 2 fu/'.

Note that these periodic solutious correspond to bounded trajectories
i the inertial frame of reference. For other results on the restricted
three-body problem, see for cxample [SiM].

Remark 4.3 Tlie stability of the linearized system v’ = A,u, namely
of

" — 2y = a,z + by,
4 Jy} (4.11)

Yy + 22" = bz + ¢y,
at the equilibria L;, 7 = 1,2,3,4, 5, can be easily discussed.

At the Eplef points Ly, Ly, Ly thc matrix A; has a real positive and
a real negative eigenvalue. Thus L,(j = 1,2,3) are unstablc equilibria
for (4.11) and are said to bc linearly unstable.

Unlike tlie preceding case, the matrices Aa, A, have, for 0 < m < my,
two pairs of purely iinaginary eigenvalues. Therefore, at L4, Ly, (4.11)
has bounded orbits only and the Lagrangian points are said to be linearly
stable.

The question of the (nonlinear) stability of Ly, Ls is much more dcl-
icate, It has been shown there are three exeeptional values (i =
1,2,3),0 <« my < mq < ma < mg, such that for all m € (0,mo),m #
m; (8 = 1,2,3), the Lagraugian points are stable in the sense of Lya-
punov. For morc dctails, see [Molj.



