
Chapter 1

Preliminaries and notation

This chapter introduces the syntax and semantic of first order logic. We assume
that the reader has at least some familiarity with first order logic.

The definitions of terms and formulas we give in Section 3 and 5 are more formal
than is required in subsequent chapters. Our main objective is to convince the
reader that a rigorous definition of language and truth is possible. However, the
actual details of such a definition are not relevant for our purposes.

1 Structures

A (first order) language L (also called signature) is a triple that consists of

1. a set Lfun whose elements are called function symbols;

2. a set Lrel whose elements are called relation symbols;

3. a function that assigns to every f ∈ Lfun, respectively r ∈ Lrel, non-negative
integers n f and nr that we call arity of the function, respectively relation, sym-
bol. We say that f is an n f -ary function symbol, and similarly for r. A 0-ary
function symbol is also called a constant.

Warning: it is customary to use the symbol L to denote both the language and
the set of formulas (to be defined below) associated to it. We denote by |L| the
cardinality of Lfun ∪ Lrel ∪ ω. Note that, by definition, |L| is always infinite.

A (first order) structure M of signature L (for short L-structure) consists of

1. a set that we call the domain or support and denote by the same symbol M
used for the structure as a whole;

2. a function that assigns to every f ∈ Lfun a total map f M : Mn f → M ;

3. a function that assigns to every r ∈ Lrel a relation rM ⊆ Mnr .

We call f M, respectively rM, the interpretation of f , respectively r, in M.

Recall that, by definition, M0 = {∅}. Therefore the interpretation of a constant c is
a function that maps the unique element of M0 to an element of M. We identify cM

with cM(∅).

We may use the word model as a synonym for structure. But beware that, in some
contexts, the word is used to denote a particular kind of structure.

If M is an L-structure and A ⊆ M is any subset, we write L(A) for the language
obtained by adding to Lfun the elements of A as constants. In this context, the
elements of A are called parameters. There is a canonical expansion of M to an
L(A)-structure that is obtained by setting aM = a for every a ∈ A.

1.1 Example The language of additive groups consists of the following function sym-
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bols:

1. a constant (that is, a function symbol of arity 0) 0

2. a unary function symbol (that is, of arity 1) −
3. a binary function symbol (that is, of arity 2) + .

In the language of multiplicative groups the three symbols above are replaced by
1, −1, and · respectively. Any group is a structure in either of these two signa-
tures with the obvious interpretation. Needless to say, not all structures with these
signatures are groups.

The language of (unitary) rings contains all the function symbols above except −1.
The language of ordered rings also contains the binary relation symbol <. �

The following example is less straightforward. The reason for the choice of the
language of vector spaces will become clear in Example 1.9 below.

1.2 Example Let F be a field. The language of vector spaces over F , which we denote
by LF, extends that of additive groups by a unary function symbol k for every k ∈ F.

Recall that a vector space over F is an abelian group M together with a function
µ : F × M → M satisfying some properties (that we assume well-known, see Exam-
ple 2.4). To view a vector space over F as an LF-structure, we interpret the group
symbols in the obvious way and each k ∈ F as the function µ(k, -). �

The languages in Examples 1.1 and 1.2, with the exception of that of ordered rings,
are functional languages, that is, Lrel = ∅. In what follows, we consider two im-
portant examples of relational languages, that is, languages where Lfun = ∅.

1.3 Example The language of strict orders only contains a binary relation symbol, usu-
ally denoted By <. The language of graphs, too, only contains a binary relation
symbol (for which there is no standard notation). �

2 Tuples

A sequence is a function a : I → A whose domain is a linear order I,<I . We may
use the notation a = �ai : i ∈ I� for sequences. A tuple is a sequence whose domain
is an ordinal, say α, then we write a = �ai : i < α�. When α is finite, we may also
write a = a0, . . . , aα−1 The domain of the tuple a, the ordinal α, is denoted by |a|
and is called the length of a. If a is surjective, it is said to be an enumeration of A.

If J ⊆ I is a subset of the domain of the sequence a = �ai : i ∈ I�, we write a�J
for the restriction of a to J. When J is well ordered by <I , e.g. when a is a tuple or
when J is finite, we identify a�J with a tuple. This is the tuple �ajk : k < β� where
�jk : k < β� is the unique increasing enumeration on J.

� Sometimes (i.e. not always) we may overline tuples or sequences as mnemonic.
When a tuple c̄ is introduced, we write ci for the i-th element of c̄. and c�J for the
restriction of c̄ to J ⊆ |c̄|. Note that the bar is dropped for ease of notation.

The set of tuples of elements of length α is denoted by Aα . The set of tuples of
length < α is denoted by A<α . For instance, A<ω is the set of all finite tuples of
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elements of A. When α is finite we do not distinguish between Aα and the α-th
Cartesian power of A. In particular, we do not distinguish between A1 and A.

If a, b ∈ Aα and h is a function defined on A, we write h(a) = b for h(ai) = bi. We
often do not distinguish between the pair �a, b� and the tuple of pairs �ai, bi�. The
context will resolve the ambiguity.

Note that there is a unique tuple of length 0, the empty set ∅, which in this context
is called empty tuple. Recall that by definition A0= {∅} for every set A. Therefore,
even when A is empty, A0 contains the empty string.

We often concatenate tuples. If a and b are tuples, we write a b or, equivalently, a, b .

3 Terms

Let V be an infinite set whose elements we call variables. We use the letters x, y,
z, etc. to denote variables or tuples of variables. We rarely refer to V explicitly, and
we always assume that V is large enough for our needs.

We fix a signature L for the whole section.

1.4 Definition A term is a finite sequence of elements of Lfun ∪V that are obtained inductively
as follows:

o. every variable, intended as a tuple of length 1, is a term;

i. if f ∈ Lfun and t is a tuple obtained by concatenating n f terms, then f t is a term. We
write f t for the tuple obtained by prefixing t by f .

We say L-term when we need to specify the language L. �

Note that any constant f , intended as a tuple of length 1, is a term (by i, the term
f is obtained concatenating n f = 0 terms and prefixing by f ). Terms that do not
contain variables are called closed terms.

The intended meaning of, for instance, the term ++ x y z is (x + y) + z. The first
expression uses prefix notation; the second uses infix notation. When convenient,
we informally use infix notation and add parentheses to improve legibility and
avoid ambiguity.

The following lemma shows that prefix notation allows to write terms unambigu-
ously without using parentheses.

1.5 Lemma (unique legibility of terms) Let a be a sequence of terms. Suppose a can be ob-
tained both by concatenating the terms t1, . . . , tn and by concatenating the terms s1, . . . , sm.
Then n = m and si = ti.

Proof By induction on |a|. If |a| = 0 than n = m = 0 and there is nothing to prove.
Suppose the claim holds for tuples of length k and let a = a1, . . . , ak+1. Then a1 is
the first element of both t1 and s1. If a1 is a variable, say x, then t1 and s1 are the
term x and n = m = 1. Otherwise a1 is a function symbol, say f . Then t1 = f t̄
and s1 = f s̄, where t̄ and s̄ are obtained by concatenating the terms t�1, . . . , t�p and
s�1, . . . , s�p. Now apply the induction hypothesis to a2, . . . , ak+1 and to the terms
t�1, . . . , t�p, t2, . . . , tn and s�1, . . . , s�p, s2, . . . , sm. �
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If x = x1, . . . , xn is a tuple of distinct variables and s = s1, . . . , sn is a tuple of
terms, we write t[x/s] for the sequence obtained by replacing x by s coordinatewise.
Proving that t[x/s] is indeed a term is a tedious task that can be safely skipped.

If t is a term and x1, . . . , xn are (tuples of) variables, we write t(x1, . . . , xn) to declare
that the variables occurring in t are among those that occur in x1, . . . , xn. When a
term has been presented as t(x, y), we write t(s, y) for t[x/s].

Finally, we define the interpretation of a term in a structure M. We begin with closed
terms. These are interpreted as 0-ary functions, i.e. as elements of the structure.

1.6 Definition Let t be a closed L(M) term. The interpretation of t , denoted by tM , is defined
by induction of the syntax of t as follows.

i. if t = f t̄, where f ∈ Lfun and t̄ is a tuple obtained by concatenating the terms
t1, . . . , tn f , then tM = f M(tM

1 , . . . , tM
n f
).

Note that in i we have used Lemma 1.5 in an essential way. In fact this ensures that the
sequence t̄ uniquely determines the terms t1, . . . , tn f . �

The inductive definition above is based on the case n f = 0, that is, the case where
f a constant, or a parameter. When t = c, a constant, t̄ is the empty tuple, and so
tM = cM(∅), which we abbreviate as cM. In particular, if t = a, a parameter, then
tM = aM = a.

Now we generalize the interpretation to all (not necessarily closed) terms. If t(x) is
a term, we define tM(x) : M|x| → M to be the function that maps a to t(a)M.

4 Substructures
In the working practice, a substructure is a subset of a structure that is closed under
the interpretation of the functions in the language. But there are a few cases when
we need the following formal definition.

1.7 Definition Fix a signature L and let M and N be two L-structures. We say that M is a
substructure of N, and write M ⊆ N , if

1. the domain of M is a subset of the domain of N

2. f M = f N � Mn f for every f ∈ Lfun

3. rM = rN ∩ Mnr for every f ∈ Lrel.

Note that when f is a constant 2 becomes f M = f N , in particular the substructures
of N contains at least all the constants of N.

If a set A ⊆ N is such that

1. f N [An f ] ⊆ A for every f ∈ Lfun

then there is a unique substructure M ⊆ N with domain A, namely, the structure
with the following interpretation

2. f M = f N � An f (which is a good definition by the assumption on A);

3. rM = rN ∩ Anr .

It is usual to confuse subsets of N that satisfy 1 with the unuque substructure they
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support.

It is immediate to verify that the intersection of an arbitrary family of substruc-
tures of N is a substructure of N. Therefore, for any given A ⊆ N we may define
the substructure of N generated A as the intersection of all substructures of N that
contain A. We write �A�N . The following easy proposition gives more concrete
representation of �A�N

1.8 Lemma The following hold for every A ⊆ N

1. �A�N =
�

tN : t a closed L(A)-term
�

2. �A�N =
�

tN(a) : t(x) an L-term and a ∈ A|x|
�

3. �A�N =
�

n∈ω

An, where A0 = A

An+1 = An ∪
�

f N(a) : f ∈ Lfun, a ∈ A
n f
n

�
. �

1.9 Example Let L be the language of groups. Let N be a group, which we consider
as an L-structure in the natural way. Then the substructures of N are exactly the
subgroups of N and �A�N is the group generated by A ⊆ N. A similar claim is true
when LF is the signature of vector spaces over some fixed field F. The choice of the
language is more or less fixed if we want that the algebraic and the model theoretic
notion of substructure coincide. �

5 Formulas

Fix a language L and a set of variables V as in Section 3. A formula is a finite
sequence of symbols in Lfun ∪ Lrel ∪ V ∪ { .

=,⊥,¬,∨, ∃}. The last set contains the
logical symbols that are called respectively
.
= equality ⊥ contradiction ¬ negation

∨ disjunction ∃ existential quantifier.

Syntactically, .
= behaves like a binary relation symbol. So, for convenience set n .

= =

2. However .
= is considered as a logic symbol because its semantic is fixed (it is

always interpreted in the diagonal).

The definition below uses the prefix notation which simplifies the proof of the
unique legibility lemma. However, in practice we always we use the infix nota-
tion: t .

= s, ϕ ∨ ψ, etc.

1.10 Definition A formula is any finite sequence is obtained with the following inductive pro-
cedure

o. if r ∈ Lrel ∪ { .
=} and t is a tuple obtained concatenating nr terms then r t is a formula.

Formulas of this form are called atomic;

i. if ϕ e ψ are formulas then the following are formulas: ⊥, ¬ ϕ, ∨ ϕ ψ, and ∃x ϕ, for
any x ∈ V. �

We use L to denote both the language and the set of formulas. We write Lat for the
set of atomic formulas and Lqf for the set of quantifier-free formulas i.e. formulas
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where ∃ does not occur.

The proof of the following is similar to the analogous lemma for terms.

1.11 Lemma (unique legibility of formulas) Let a be a sequence of formulas. Suppose a can
be obtained both by the concatenation of the formulas ϕ1, . . . , ϕn or by the concatenation of
the formulas ψ1, . . . , ψm. Then n = m and ϕi = ψi. �

A formula is closed if all its variables occur under the scope of a quantifier. Closed
formulas are also called sentences. We will do without a formal definition of occurs
under the scope of a quantifier which is too lengthy. An example suffices: all occur-
rences of x are under the scope a quantifiers in the formula ∃x ϕ. These occurrences
are called bonded. The formula x .

=y ∧ ∃x ϕ has free (i.e., not bond) occurrences of
x and y.

Let x is a tuple of variables and t is a tuple of terms such that |x| = |t|. We
write ϕ[x/t] for the formula obtained substituting t for all free occurrences of x,
coordinatewise.

We write ϕ(x) to declare that the free variables in the formula ϕ are all among those
of the tuple x. In this case we write ϕ(t) for ϕ[x/t].

We will often use without explicit mention the following useful syntactic decompo-
sition of formulas with parameters.

1.12 Lemma For every formula ϕ(x) ∈ L(A) there is a formula ψ(x ; z) ∈ L and a tuple of
parameters a ∈ A|z| such that ϕ(x) = ψ(x ; a). �

Just as a term t(x) is a name for a function t(x)M : M|x| → M, a formula ϕ(x) is a
name for a subset ϕ(x)M⊆ M|x| which we call the subset of M defined by ϕ(x) . It
is also very common to write ϕ(M) for the set defined by ϕ(x). In general sets of
the form ϕ(M) for some ϕ(x) ∈ M are called definable.

1.13 Definitionof truth For every formula ϕ with variables among those of the tuple x we
define ϕ(x)M by induction as follows

o1. (
.
= t s)(x)M =

�
a ∈ M|x| : tM(a) = sM(a)

�

o2. (r t1 . . . tn)(x)M =
�

a ∈ M|x| : �tM
1 (a), . . . , tM

n (a)� ∈ rM
�

i0. ⊥(x)M = ∅

i1.
�
¬ξ

�
(x)M = M|x| � ξ(x)M

i2.
�
∨ ξ ψ

�
(x)M = ξ(x)M ∪ ψ(x)M

i3.
�
∃y ϕ

�
(x)M =

�

a∈M

�
ϕ[y/a]

�
(x)M

Condition i2 assumes that ξ and ψ are uniquely determined by ∨ ξ ψ. This is a guaranteed
by the unique legibility o formulas, Lemma 1.11. Analogously, o1 e o2 assume Lemma 1.5.
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The case when x is the empty tuple is far from trivial. Note that ϕ(∅)M is a subset
of M0 = {∅}. Then there are two possibilities either {∅} or ∅. We wil read
them as two truth values: True and False, respectively. If ϕM = {∅} we say that
ϕ is true in M , if ϕM = ∅, we say that ϕ is false M . We write M � ϕ , respectively
M � ϕ . Or we may say that M models ϕ , respectively M does not model ϕ . It is
immediate to verify at

ϕ(M) =
�

a ∈ M|x| : M � ϕ(a)
�

.

Note that usually, we say formula when, strictly speaking, we mean pair that consists
of a formula and a tuple of variables. Such pairs are interpreted in definable sets
(cfr. Definition 1.13). In fact, if the tuple of variables were not given, the arity of the
corresponding set is not determined.

In some contexts we also want to distinguish between two sorts of variables that
play different roles. Some are placeholder for parameters, some are used to define
a set. In the the first chapters this distinction is only a clue for the reader, in the last
chapters it is an essential part of the definitions.

1.14 Definition A partitioned formula (strictly speaking, we should say a 2-partitioned for-
mula) is a triple ϕ(x ; z) consisting of a formula and two tuples of variables such that the
variables occurring in ϕ are all among x, z. �

We use a semicolon to separate the two tuples of variables. Typically, z is the
placeholder for parameters and x runs over the elements of the set defined by the
formula.

6 Yet more notation

Now we abandon the prefix notation in favor of the infix notation. We also use the
following logical connectives as abbreviations

� stands for ¬⊥ tautology

ϕ ∧ ψ stands for ¬
�
¬ϕ ∨ ¬ψ

�
conjunction

ϕ → ψ stands for ¬ϕ ∨ ψ implication

ϕ ↔ ψ stands for
�
ϕ → ψ

�
∧

�
ψ → ϕ

�
bi-implication

ϕ ↔/ ψ stands for ¬
�
ϕ ↔ ψ

�
exclusive disjunction

∀x ϕ stands for ¬∃x¬ ϕ universal quantifier

We agree that → e ↔ bind less than ∧ e ∨. Unary connnectives (quantifiers and
negation) bind stronger then binarary connectives. For example

∃x ϕ ∧ ψ → ¬ξ ∨ ϑ reads as
��
∃x ϕ

�
∧ ψ

�
→

��
¬ξ

�
∨ ϑ

�

We say that ∀x ϕ(x) and ∃x ϕ(x) are the universal, respectively, existential closure
of ϕ(x). We say that ϕ(x) holds in M when its universal closure is true in M. We
say that ϕ(x) is consistent in M when its existential closure is true in M.

The semantic of conjunction and disjunction is associative. Then for any finite set
of formulas {ϕi : i ∈ I} we can write without ambiguities
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�

i∈I
ϕi

�

i∈I
ϕi

When x = x1, . . . , xn is a tuple of variables we write ∃x ϕ or ∃x1, . . . , xn ϕ for
∃x1 . . . ∃xn ϕ. With first order sentences we are able to say that ϕ(M) has at least
n elements (also, no more than, or exactly n). It is convenient to use the following
abbreviations.

∃≥nx ϕ(x) stands for ∃x1, . . . , xn

� �

1≤i≤n
ϕ(xi) ∧

�

1≤i<j≤n
xi ˙�=xj

�
.

∃≤nx ϕ(x) stands for ¬∃≥n+1x ϕ(x)

∃=nx ϕ(x) stands for ∃≥nx ϕ(x) ∧ ∃≤nx ϕ(x)

1.15 Exercise Let M be an L-structure and let ψ(x), ϕ(x, y) ∈ L. For each of the follow-
ing conditions, write a sentence true in M exactly when

a. ψ(M) ∈
�

ϕ(a, M) : a ∈ M
�

;

b.
�

ϕ(a, M) : a ∈ M
�

contains at least two sets;

c.
�

ϕ(a, M) : a ∈ M
�

contains only sets that are pairwise disjoint. �

1.16 Exercise Let M be a structure in a signature that contains a symbol r for a binary
relation. Write a sentence ϕ such that

a. M � ϕ if and only if there is an A ⊆ M such that rM ⊆ A ×¬A.

Remark: ϕ assert an asymmetric version of the property below

b. M � ψ if and only if there is an A ⊆ M such that rM ⊆ (A×¬A) ∪ (¬A× A).

Assume M is a graph, what required in b is equivalent to saying that M is a bipartite
graph, or equivalently that it has chromatic number 2 i.e., we can color the vertices
with 2 colors so that no two adjacent vertices share the same color. �
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