Chapter 2

Theories and elementarity

1 Logical consequences Questo paragrafo lo assumo noto da IdL

21

(a parte forse i tre esempi evidenziati)

A theory is a set T C L of sentences. We write M E T if M F ¢ for every ¢ € T. If
@ € L is a sentence we write T - ¢ when

MET = MFg for every M.

In words, we say that ¢ is a logical consequence of T or that ¢ follows from T. If
Sis a theory T I~ S has a similar meaning. If T - S and S - T we say that T and S
are logically equivalent. We may say that T axiomatizes S (or vice versa).

We say that a theory is consistent if it has a model. With the notation above, T is
consistent if and only if T ¥ L.

The closure of T under logical consequence is the set ccl(T) which is defined as
follows:

cl(T) = {q) € L : sentence such that T I q)}

If T is a finite set, say T = {¢1,...,¢u} we write ccl(¢y,..., ¢u) for ccl(T). If
T = ccl(T) we say that T is closed under logical consequences.
The theory of M is the set of sentences that hold in M and is denoted by Th(M).
More generally, if K is a class of structures, Th(X) is the set of sentences that hold
in every model in X. That is

Th(X) = ()] Th(M)

Mex

The class of all models of T is denoted by Mod(T). We say that X is axiomatizable if
Mod(T) = X for some theory T. If T is finite we say that X is finitely axiomatizable.
To sum up

Th(M) = {¢: MF ¢}
Th(X) = {p: MFgforal Mecx}
Mod(T) = {M : MlZT}

Example Let L be the language of multiplicative groups. Let Ty be the set contain-
ing the universal closure of following three formulas

1. (x-y)-z =x-(y-2);

2. xox 1 =x1l.x =1;
3. x-1 =1-x =ux.

Then Ty axiomatizes the theory of groups, i.e. Th(X) for X the class of all groups.
Let ¢ be the universal closure of the following formula
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2.2

2.3

Z:X =2y = x =Y.
As ¢ formalizes the cancellation property then Ty = ¢, that is, ¢ is a logical conse-
quence of Tg. Now consider the sentence i which is the universal closure of
4. x-y =y-x

So, commutative groups model 3 and non commutative groups model —. Hence
neither Tg = ¢ nor Ty = —¢. We say that Ty does not decide ¢.

Note that even when T is a very concrete set, ccl(T) may be more difficult to grasp.
In the example above T contains three sentences but ccl(Tg) is an infinite set con-
taining sentences that code theorems of group theory yet to be proved.

Remark The following properties say that ccl is a finitary closure operator.

1. T Ccc(T) (extensive)
2. oc(T) = ccl(ecl(T)) (idempotent)
3. TCS = cc(T) C ccl(S) (increasing)
4. cd(T) = U{cc(S) : S finite subset of T}. (finitary)

Properties 1-3 are easy to verify while 4 requires the compactness theorem.

In the next example we list a few algebraic theories with straightforward axiomati-
zation.

Example We write T,g for the theory of abelian groups which contains the univer-
sal closure of following

al. (x+y)+z = y+(x+2);

a2. x+(—x) = 0;

a3. x+0 = x;

ad. x+y = y+=x

The theory T of (unitary) rings extends T,g with
as. (x-y)-z =x-(y-z);

a6. 1-x = x-1 = x;

a7. (x+y)-z =x-z+y-z

a8. z-(x+y) = z-x+z-y.

The theory of commutative rings Tcg contains also com of examples 2.1. The theory
of ordered rings T, extends Ti, with

ol. x<z = x+y<z+y;

02. 0<xN0<z -5 0<x-z

The axiomatization of the theory of vector spaces)is less straightforward.

Example Fix a field F. The language Lr extends the language of additive groups
with a unary function for every element of F. The theory of vector fields over F
extends T,g with the following axioms (for all i, k,! € F)
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mi. h(x+y) = hx+hy

m2. lx = hx+kx, wherel = h+rk
m3. Ix = h(kx), where | = h-rpk
m4. Opx = 0
m5. lpx = x

The symbols Or and 1 denote the zero and the unit of F. The symbols +f and -r
denote the sum and the product in F. These are not part of Lr, they are symbols we
use in the metalanguage. O

2.5 Example Recall from Example 1.3 that we represent a graph with a symmetric
irreflexive relation. Therefore theory of graphs contains the following two axioms

1. —r(x,x);
2. r(x,y) = r(y x). d
Our last example is a trivial one.

f? Example Let L be the empty language The theory of infinite sets is axiomatized

by the sentences 3="x (x = x) for all positive integer . O
2.7 Exercise Prove that ccl(¢ V ) = ccl(¢) Nccl(y). O
2.8 Exercise Prove that TU{¢}F ¢ then T+ ¢ — ¢. 0
2.9 Exercise Prove that Th(Mod(T)) = ccl(T). O

2 Elementary equivalence Tutto
The following is a fundamental notion in model theory.

2.10 Definition We say that M and N are elementarily equivalent if
ee. NF¢o & MFEog, for every sentence ¢ € L.

In this case we write M = N. More generally, we write M =4 N and say that M and N
are elementarily equivalent over A if the following hold

a ACMNN

ee’. equivalence ee above holds for every sentence ¢ € L(A). O

The case when A is the whole domain of M is particularly important.

2.11 Definition When M =) N we write M < N and say that M is an elementary substructure
of N. O

In the definition above the use of the term substructure is appropriate by the follow-
ing lemma.
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2.14

2.15

2.16

Lemma If M and N are such that M =4 N and A is the domain of a substructure of M
then A is also the domain a substructure of N and the two substructures coincide.

Proof Let f be a function symbol and ler r be a relation symbol. It suffices to prove
that fM(a) = fN(a) for every a € A" and that M N A" =N 0 A™r.

If b € Ais such that b = fMa then M F fa = b. So, from M =, N, we obtain
N F fa = b, hence fNa = b. This proves fM(a) = fN(a).

Now let a € A" and suppose a € r™. Then M F ra and, by elementarity, N F ra,
hence a € rN. By symmetry rM 0 A" = N 1 A" follows.

It is not easy to prove that two structures are elementary equivalent. A direct
verification is unfeasible even for the most simple structures. It will take a few
chapters before we are able to discuss concrete examples.

We generalize the definition of Th(M) to include parameters
Th(M/A) = {(p : sentence in L(A) such that M F go}.
The following proposition is immediate
Proposition For every pair of structures M and N and every A C M N N the following
are equivalent
a M=, N;
b. Th(M/A) =Th(N/A);
c. MEg() & NEg@(a) forevery ¢(x) € Land everya € AR,
d o(M)NAX = ¢(N)n AP for every ¢(x) € L.

If we restate a and c of the proposition above when A = M we obtain that the
following are equivalent

a. M<XN;
d. o(M) = ¢(N)n M~ for every ¢(x) € L.
Note that ¢’ extends to all definable sets what Definition 1.7 requires for a few basic

definable sets.

Example Let G be a group which we consider as a structure in the multiplicative
language of groups. We show that if G is simple and H < G then also H is simple.
Recall that G is simple if all its normal subgroups are trivial, equivalently, if for
every a € G\ {1} the set {gag™! : ¢ € G} generates the whole group G.

Assume H is not simple. Then there are a4,b € H such that b is not the product of
elements of {hah~! : h € H}. Then for every n
HFE =3x;,...,%, (b = xjax;’-- xpax;?)

By elementarity the same hold in G. Hence G is not simple.

Exercise Let A C M N N. Prove that M =4 N if and only if M =p N for every
finite BC A. Facile ma importante

Exercise Let M < N and let ¢(x) € L(M). Prove that ¢(M) is finite if and only if
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@(N) is finite and in this case ¢(N) = @(M). O

2.17 Exercise Let M < N and let ¢(x,z) € L. Suppose there are finitely many sets of
the form ¢(a, N) for some a € NI¥I. Prove that all these sets are definable over M. [J

2.18 Exercise Consider Z" as a structure in the additive language of groups with the
natural interpretation. Prove that Z" # Z™ for every positive integers n # m. Hint:
in Z" there are at most 2" elements that are not congruent modulo 2. g

3 Embeddmgs and iSOIIlOI'phiSIIIS La definizione di omomorfismo la rimandiamo

Here we prove that isomorphic structures are elementarily equivalent and a few
related results.

2.19 Definition An embedding of M into N is an injective total map h : M — N such that
1. aeM < haeN for every r € Ly and a € M™;
2. hfM@a) = fN(ha) for every f € Ly, and a € M'/.

Note that when ¢ € Lgyy, is a constant 2 reads hc™ = cN. Therefore that M C N if and
only ifidp : M — N is an embedding.

An surjective embedding is an isomorphism or, when domain and codomain coincide, an
automorphism. 0

Condition 1 above and the assumption that / is injective can be summarized in the
following

1. MEr(a) < NEr(ha) for every r € L, U{=} and every a € M.
Note also that, by straightforward induction on syntax, from 2 we obtain

2 hitMa) = tN(ha) for every term t(x) and every a € MI*l,
Combining these two properties and a straightforward induction on the syntax give
3. ME¢(a) & NE ¢(ha) for every ¢(x) € Ly and every a € Ml

Recall that we write Ly for the set of quantifier-free formulas. It is worth noting
that when M C N and h = id); then 3 becomes

3 ME ¢(a) & NE ¢(a) for every ¢(x) € Ly and for every a € Mlxl,

In words this is summarized by saying that the truth of quantifier-free formulas is
preserved under sub- and superstructure.

Finally we prove that first order truth is preserved under isomorphism. We say that
amap h: M — N fixes A C M (pointwise) if id4 C h. An isomorphism that fixes
A is also called an A-isomorphism.

2.20 Theorem Ifh: M — N is an isomorphism then for every ¢(x) € L
# ME ¢(a) < NE @(ha) for every a € MI¥|

In particular, if h is an A-isomorphism then M =4 N.
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Proof We proceed by induction of the syntax of ¢(x). When ¢(x) is atomic # holds
by 3 above. Induction for the Boolean connectives is straightforward so we only
need to consider the existential quantifier. Assume as induction hypothesis that

ME ¢(a,b) < NE @(ha,hb) for every tuplaa € M/*l and b € M.
We prove that # holds for the formula 3y ¢(x,y).
M E Jyoeay) & MEg@(a,b) forsomebe M

< NFE ¢(ha,hb)for some b € M (by induction hypothesis)
< NE¢(ha,c) forsomece N (< by surjectivity)
< NE3yge(ha,y). O

2.21 Corollary Ifh: M — N is an isomorphism then h[¢p(M)] = ¢(N) for every ¢(x) € L. O

We can now give a few very simple examples of elementarily equivalent structures.

2.22 Example Let L be the language of strict orders. Consider intervals of R (or in Q)
as structures in the natural way. The intervals [0, 1] and [0, 2] are isomorphic, hence
[0,1] = [0,2] follows from Theorem 2.20. Clearly, [0,1] is a substructure of [0,2].
However [0,1] £ [0,2], in fact the formula Vx (x<1) holds in [0,1] but is false in
[0,2]. This shows that M C N and M = N does not imply M < M.

Now we prove that (0,1) < (0,2). By Exercise 2.15 above, it suffices to verify that
(0,1) =g (0,2) for every finite B C (0,1). This follows again by Theorem 2.20 as
(0,1) and (0,2) are B-isomorphic for every finite B C (0,1). O

For the sake of completeness we also give the definition of homomorphism.

2.23 Definition A homomorphism is a total map h : M — N such that (Z{W&

1. ac™M = haecrN  foreveryr € Ly and a € M™;
2. hfM@) = fN(ha)  forevery f € Ly, and a € M.
Note that only one implication is required in 1. 0

2.24 Exercise Prove thatif #: N — N is an automorphism and M < N then h[M]| < N. O

2.25 Exercise Let L be the empty language. Let A,D C M. Prove that the following are
equivalent

1. D is definable over A;
2. either D is finite and D C A, or =D is finite and =D C A.

Hint: as structures are plain sets, every bijection f : M — M is an automorphism. [

2.26 Exercise Prove that if ¢(x) is an existential formula and % : M < N is an embed-
ding then

ME ¢(a) = NE ¢(ha) for every a € M.

Recall that existential formulas as those of the form 3y ¢(x,y) for p(x,y) € Lgs.
Note that Theorem 10.7 proves that the property above characterizes existential
formulas. O
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2.27

2.28

Exercise Let M be the model with domain Z in the language that contains only the
symbol + which is interpreted in the usual way. Prove that there is no existential
formula ¢(x) such that ¢(M) is the set of odd integers. Hint: use Exercise 2.26.

Exercise Let N be the multiplicative group of Q. Let M be the subgroup of those
rational numbers that are of the form n/m for some odd integers m and n. Prove
that M < N. Hint: use the fundamental theorem of arithmetic and reason as in
Example 2.22.

4 Quotient structures Rimandato

2.29

2.30

The content of this section is mainly technical and only required later in the course.
Its reading may be postponed.

If E is an equivalence relation on N we write [c]g for the equivalence class of ¢ € N.
We use the same symbol for the equivalence relation on N” defined as follow: if
a=aj,...,a, and b = by,...,b, are n-tuples of elements of N then a E b means
that a; E b; holds for all i. It is easy to see that by,...,b, € [a, ..., a,] if and only if
b; € [a;]g for all i. Therefore we use the notation [a]g for both the equivalence class
of a € N" and the tuple of equivalence classes [a1]g, . .., [an]E-

Definition We say that the equivalence relation E on a structure N is a congruence if for
every f € Ly
ct. aEb = fNaE fNp;

When E is a congruence on N we write N/E for the a structure that has as domain the set
of E-equivalence classes in N and the following interpretation of f € Lgy, and v € Lyg:

c2. N Eale = [fNa]g;
c3. [ae € NE o JapnrN £ 2.

We call N/E the quotient structure.

By c1 the quotiont structure is well defined. The reader will recognize it as a familiar
notion by the following proposition (which is not required in the following and
requires the notion of homomorphism, see Definition 2.23. Recall that the kernel of
a total map h : N — M is the equivalence relation E such that

aEb & ha=hb

for every a,b € N.

Proposition Let h : N — M be a surjective homomorphism and let E be the kernel of h.
Then there is an isomorphism k that makes the following diagram commute

N "M

e
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2.31

2.32

where 7T : a — [a] is the projection map.

Quotients clutter the notation with brackets. To avoid the mess, we prefer to reason
in N and tweak the satisfaction relation. Warning: this is not standard (though it is
what we all do all the time, informally).

Recall that in model theory, equality is not treated as a all other predicates. In fact,
the interpretation of equality is fixed to always be the identity relation. In a few
contexts is convinient to allow any congruence to interprete equality. This allows to
work in N while thinking of N/E.

We define N/E F tobe N but with equality interpreted with E. The proposition
below shows that this is the same thing as the regular truth in the quotient structure,
N/EE.

Definition For ty, t closed terms of L(N) define

1* N/EEt =t & HEH

For t a tuple of closed terms of L(N) and r € Ly a relation symbol

2 N/E Ert & tNEa forsomeacrN

Finally the definition is extended to all sentences ¢ € L(N) by induction in the usual way
3* N/E Ié—@ < not N/E Iéq)

4 N/E EgAy < N/E Eg@ and N/E Eq

5 N/E E3x¢(x) & N/E E¢(a) forsomeac N.

Now, by induction on the syntax of formulas one can prove F does what required.
In particular, N/E B ¢(a) <+ ¢(b) for every a E b.

Proposition Let E be a congruence relation of N. Then the following are equivalent for
every ¢(x) € L

E3

1. N/E E o¢(a);
2 N/E = o(lale).

5 Completeness Assumo sia tutto noto da IdL

2.33

A theory T is maximally consistent if it is consistent and there is no consistent
theory S such that T C S. Equivalently, T contains every sentence ¢ consistent with
T, that is, such that TU {¢} is consistent. Clearly a maximally consistent theory is
closed under logical consequences.

A theory T is complete if cclT is maximally consistent. Concrete examples will be
given in the next chapters as it is not easy to prove that a theory is complete.
Proposition The following are equivalent

a. T is maximally consistent;

b. T = Th(M) for some structure M;

c. Tis consistent and ¢ € T or —¢ € T for every sentence ¢.
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Proof To prove a=-b, assume that T is consistent. Then there is M = T. Therefore
T C Th(M). As T is maximally consistent T = Th(M). Implication b=-c is imme-
diate. As for c=-a note that if T U {¢} is consistent then —¢ ¢ T therefore ¢ € T
follows from c. U

The proof of the proposition below is is left as an exercise for the reader.

2.34 Proposition The following are equivalent
a. T is complete;
b.  there is a unique maximally consistent theory S such that T C S;
c. T is consistent and T = Th(M) for every M E T;
d. T is consistent and T = @ o T = —¢ for every sentence ¢;
e. T is consistent and M = N for every pair of models of T. O

2.35 Exercise Prove that the following are equivalent
a. T is complete;
b. for every sentence ¢, o T - ¢ o T - —¢ but not both.
By contrast prove that the following are not equivalent
a. T is maximally consistent;
b. for every sentence ¢, 0 ¢ € T o ~¢ € T but not both.

Hint: consider the theory containing all sentences where the symbol — occurs an
even number of times. This theory is not consistent as it contains L. g

2.36 Exercise Prove that if T has exactly 2 maximally consistent extension T; and T,
then there is a sentence ¢ such that T, ¢ - Ty and T, ~¢ F T;. State and prove the
generalization to finitely many maximally consistent extensions. g

6 The Tarski-Vaught test Fatto a IdL, ma da ripassare.

There is no natural notion of smallest elementary substructure containing a set of
parameters A. The downward Loéwenheim-Skolem, which we prove in the next
section, is the best result that holds in full generality. Given an arbitrary A C N we
shall construct a model M < N containing A that is small in the sense of cardinality.
The construction selects one by one the elements of M that are required to realise
the condition M =< N. Unfortunately, Definition 2.11 supposes full knowledge of
the truth in M and it may not be applied during the construction. The following
lemma comes to our rescue with a property equivalent to M < N that only mention
the truth in N.

2.37 Lemma(Tarski-Vaught test) For every A C N the following are equivalent
1. A s the domain of a structure M < N;
2. for every formula ¢(x) € L(A), with |x| =1,
NE3dx¢e(x) = NFE () forsomeb € A.
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2.38

Proof 1=2
NE3dxg(x) = ME Jxe(x)
= MFE ¢(b) for some b € M
= NE ¢(b) for some b € M.

2=1 Firstly, note that A is the domain of a substructure of N, that is, f Ng e A for
every f € L, and every a € A"/ In fact, this follows from 2 with fa = x for ¢(x).

Write M for the substructure of N with domain A. By induction on the syntax we
prove that for every ¢(x) € L

MEE(a) & NEZ(a) for every a € M.

If #(x) is atomic the claim follows from M C N and the remarks underneath Defini-
tion 2.19. The case of Boolean connectives is straightforward, so only the existential
quantifier requires a proof. So, let {(x) be the formula 3y ¢(x,y) and assume the
induction hypothesis holds for (x,y)

ME 3Jyy(a,y) & ME (a,b) for some b € M
< NEy(a,b) for some b € M
< NE3Jyy(ay).

The second equivalence holds by induction hypothesis, in the last equivalence we
use 2 for the implication <.

Exercise Prove that, in the language of strict orders, R\ {0} < Rand R~ {0} # R.

7 Downward Lowenheim-Skolem FattoaIdL, ma da ripassare.

2.39

The main theorem of this section was proved by Léwenheim at the beginning of the
last century. Skolem gave a simpler proof immediately afterwards. At the time, the
result was perceived as paradoxical.

A few years earlier, Zermelo and Fraenkel provided a formalization of set the-
ory in a first order language. The downward Léwenheim-Skolem theorem implies
the existence of an infinite countable model M of set theory: this is the so-called
Skolem paradox. The existence of M seems paradoxical because, in particular, a
sentence that formalises the axiom of power set holds in M. Therefore M contains
an element b which, in M, is the set of subsets of the natural numbers. But the set
of elements of b is a subset of M, and therefore it is countable.

In fact, this is not a contradiction, because the expression all subsets of the natural
numbers does not have the same meaning in M as it has in the real world. The notion
of cardinality, too, acquires a different meaning. In the language of set theory, there
is a first order sentence that formalises the fact that b is uncountable: the sentence
says that there is no bijection between b and the natural numbers. Therefore the
bijection between the elements of b and the natural numbers (which exists in the
real world) does not belong to M. The notion of equinumerosity has a different
meaning in M and in the real world, but those who live in M cannot realise this.

Downward Léwenheim-Skolem Theorem Let N be an infinite structure and fix some
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set A C N. Then there is a structure M of cardinality < |L(A)| such that A C M < N.

Proof Set A = |L(A)|. Below we construct a chain (A, : i < w) of subsets of N. The
chain begins at Ag = A. Finally we set M = ;. A;. All A; will have cardinality
< Aso |[M| < A follows.

Now we construct A;;q given A;. Assume as induction hypothesis that |A;| < A.
Then |L(A;)| < A. For some fixed variable x let (¢x(x) : k < A) be an enumeration
of the formulas in L(A;) that are consistent in N. For every k pick a; € N such that
N E ¢i(ag). Define A; 1 = A;U{a : k < A}. Then |A; 1| < Ais clear.

We use the Tarski-Vaught test to prove M < N. Suppose ¢(x) € L(M) is consistent
in N. As finitely many parameters occur in formulas, ¢(x) € L(A;) for some i.
Then ¢(x) is among the formulas we enumerated at stage i and A;,; C M contains
a solution of ¢(x). O

We will need to adapt the construction above to meet more requirements on the
model M. To better control the elements that end up in M it is convenient to add
one element at the time (above we add A elements at each stage). We need to
enumerate formulas with care if we want to complete the construction by stage A.

2.40 Second proof of the downward Lowenheim-Skolem Theorem From set theory we
know that there is a bijection 7t : A2 — A such that j,k < 7(j,k) for all j,k < A.
Suppose we have defined the sets A; for every j < i and let (¢}(x) : k < A) be an
enumeration of the consistent formulas of L(A;). Let j, k < ibe such that 7t(j, k) = i.

Let b be a solution of the formula @) (x) and define A; 11 = A; U {b}.

We use Tarski-Vaught test to prove M < N. Let ¢(x) € L(M) be consistent in N.

Then ¢(x) € L(A;) for some j. Then ¢(x) = ¢ for some k. Hence a witness of ¢(x)
is enumerated in M at stage 7t(j, k) + 1. O

2.41 Exercise Assume L is countable and let M < N have arbitrary (large) cardinality.
Let A C N be countable. Prove there is a countable model K such that A C K <X N
and KN'M = N (in particular, KN M is a model). Hint: adapt the construction used
to prove the downward Loéwenheim-Skolem Theorem. g

8 Elementary chains Fatto a IdL? Comunque per il momento e rimandata.

An elementary chain is a chain (M; : i < A) of structures such that M; < M,
for every i < j < A. The union (or limit) of the chain is the structure with as
domain the set |J;-) M; and as relations and functions the union of the relations
and functions of M;. It is plain that all structures in the chain are substructures of
the limit.

2.42 Lemma Let (M; : i € A) be an elementary chain of structures. Let N be the union of the
chain. Then M; < N for every i.

Proof By induction on the syntax of ¢(x) € L we prove
M;E ¢(a) & NE ¢(a) for every i < A and every a € Mlm
As remarked in 3’ of Section 3, the claim holds for quantifier-free formulas. In-

duction for Boolean connectives is straightforward so we only need to consider the

23



existential quantifier
M;E3Jyea,y) = M;E ¢(ab)  forsomeb e M;.
= NE ¢(a,b) for some b € M; C N
where the second implication follows from the induction hypothesis. Vice versa
NE3Jye(a,y) = NE ¢(ab) for some b € N
Without loss of generality we can assume that b € M; for some j > i and obtain
= M;F ¢(a,b) for some b € M;
Now apply the induction hypothesis to ¢(x,y) and M;
= M;FJy ¢(a,y)
= M;F 3y ¢(ay)
where the last implication holds because M; < M,;. g

2.43 Exercise Let (M; :i € A) be an chain of elementary substructures of N. Let M be
the union of the chain. Prove that M < N and note that Lemma 2.42 is not required. [

2.44 Exercise Give an alternative proof of Exercise 2.41 using the downward Lowenheim-
Skolem Theorem (instead of its proof). Hint: construct two countable chains of
countable models such that ;"M C M; = Nand AUM; C K;u1 X N. The
required model is K = [J;¢,, K;. In fact it is easy to check that KN M = U, M- g
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