Chapter 2

Theories and elementarity

1 Logical consequences Questo paragrafo lo assumo noto da IdL (a parte forse i tre esempi evidenziati)

A theory is a set $T \subseteq L$ of sentences. We write $M \models T$ if $M \models \varphi$ for every $\varphi \in T$. If $\varphi \in L$ is a sentence we write $T \vdash \varphi$ when

$$M \models T \Rightarrow M \models \varphi$$
 for every M .

In words, we say that φ is a logical consequence of T or that φ follows from T. If S is a theory $T \vdash S$ has a similar meaning. If $T \vdash S$ and $S \vdash T$ we say that T and S are logically equivalent. We may say that T axiomatizes S (or vice versa).

We say that a theory is consistent if it has a model. With the notation above, *T* is consistent if and only if $T \nvDash \bot$.

The closure of *T* under logical consequence is the set ccl(T) which is defined as follows:

$$\operatorname{ccl}(T) = \left\{ \varphi \in L : \text{ sentence such that } T \vdash \varphi \right\}$$

If *T* is a finite set, say $T = \{\varphi_1, \dots, \varphi_n\}$ we write $ccl(\varphi_1, \dots, \varphi_n)$ for ccl(T). If T = ccl(T) we say that *T* is closed under logical consequences.

The theory of *M* is the set of sentences that hold in *M* and is denoted by Th(M). More generally, if \mathcal{K} is a class of structures, $Th(\mathcal{K})$ is the set of sentences that hold in every model in \mathcal{K} . That is

$$\operatorname{Th}(\mathcal{K}) = \bigcap_{M \in \mathcal{K}} \operatorname{Th}(M)$$

The class of all models of *T* is denoted by Mod(T). We say that \mathcal{K} is axiomatizable if $Mod(T) = \mathcal{K}$ for some theory *T*. If *T* is finite we say that \mathcal{K} is finitely axiomatizable. To sum up

$$Th(M) = \left\{ \varphi : M \vDash \varphi \right\}$$
$$Th(\mathcal{K}) = \left\{ \varphi : M \vDash \varphi \text{ for all } M \in \mathcal{K} \right\}$$
$$Mod(T) = \left\{ M : M \vDash T \right\}$$

2.1 Example Let *L* be the language of multiplicative groups. Let T_g be the set containing the universal closure of following three formulas

1.
$$(x \cdot y) \cdot z = x \cdot (y \cdot z);$$

2.
$$x \cdot x^{-1} = x^{-1} \cdot x = 1;$$

$$3. \quad x \cdot 1 = 1 \cdot x = x.$$

Then T_g axiomatizes the theory of groups, i.e. $Th(\mathcal{K})$ for \mathcal{K} the class of all groups. Let φ be the universal closure of the following formula $z \cdot x = z \cdot y \rightarrow x = y.$

As φ formalizes the cancellation property then $T_g \vdash \varphi$, that is, φ is a logical consequence of T_g . Now consider the sentence ψ which is the universal closure of

 $4. \quad x \cdot y = y \cdot x.$

So, commutative groups model ψ and non commutative groups model $\neg \psi$. Hence neither $T_g \vdash \psi$ nor $T_g \vdash \neg \psi$. We say that T_g does not decide ψ .

Note that even when *T* is a very concrete set, ccl(T) may be more difficult to grasp. In the example above T_g contains three sentences but $ccl(T_g)$ is an infinite set containing sentences that code theorems of group theory yet to be proved.

2.2 Remark The following properties say that ccl is a finitary closure operator.

1.	$T \subseteq \operatorname{ccl}(T)$	(extensive)
2.	$\operatorname{ccl}(T) = \operatorname{ccl}(\operatorname{ccl}(T))$	(idempotent)
3.	$T \subseteq S \Rightarrow \operatorname{ccl}(T) \subseteq \operatorname{ccl}(S)$	(increasing)
4.	$\operatorname{ccl}(T) = \bigcup \{\operatorname{ccl}(S) : S \text{ finite subset of } T\}.$	(finitary)

Properties 1-3 are easy to verify while 4 requires the compactness theorem.

In the next example we list a few algebraic theories with straightforward axiomatization.

2.3 Example We write T_{ag} for the theory of abelian groups which contains the universal closure of following

a1.
$$(x+y) + z = y + (x+z);$$

a2.
$$x + (-x) = 0;$$

a3.
$$x + 0 = x;$$

a4. x + y = y + x.

The theory T_r of (unitary) rings extends T_{ag} with

- a5. $(x \cdot y) \cdot z = x \cdot (y \cdot z);$
- a6. $1 \cdot x = x \cdot 1 = x;$
- a7. $(x+y) \cdot z = x \cdot z + y \cdot z;$
- a8. $z \cdot (x+y) = z \cdot x + z \cdot y$.

The theory of commutative rings T_{cg} contains also com of examples 2.1. The theory of ordered rings T_{or} extends T_{cr} with

o1. $x < z \rightarrow x + y < z + y;$

o2. $0 < x \land 0 < z \rightarrow 0 < x \cdot z$.

The axiomatization of the theory of vector spaces) is less straightforward.

2.4 Example Fix a field *F*. The language L_F extends the language of additive groups with a unary function for every element of *F*. The theory of vector fields over *F* extends T_{ag} with the following axioms (for all $h, k, l \in F$)

m1. h(x + y) = hx + hym2. lx = hx + kx, where l = h + Fkm3. lx = h(kx), where $l = h \cdot Fk$ m4. 0Fx = 0m5. 1Fx = x

The symbols 0_F and 1_F denote the zero and the unit of *F*. The symbols $+_F$ and \cdot_F denote the sum and the product in *F*. These are not part of L_F , they are symbols we use in the metalanguage.

2.5 Example Recall from Example 1.3 that we represent a graph with a symmetric irreflexive relation. Therefore theory of graphs contains the following two axioms

1.
$$\neg r(x, x);$$

2.
$$r(x,y) \rightarrow r(y,x)$$
.

Our last example is a trivial one.

2.6 Example Let *L* be the empty language The theory of infinite sets is axiomatized by the sentences $\exists^{\geq n} x \ (x = x)$ for all positive integer *n*.

2.7 Exercise Prove that $ccl(\phi \lor \psi) = ccl(\phi) \cap ccl(\psi)$.

2.8 Exercise Prove that $T \cup \{\varphi\} \vdash \psi$ then $T \vdash \varphi \rightarrow \psi$.

2.9 Exercise Prove that Th(Mod(T)) = ccl(T).

2 Elementary equivalence Tutto

The following is a fundamental notion in model theory.

2.10 Definition We say that M and N are elementarily equivalent if

ee. $N \vDash \varphi \iff M \vDash \varphi$, for every sentence $\varphi \in L$.

In this case we write $M \equiv N$. More generally, we write $M \equiv_A N$ and say that M and N are elementarily equivalent over A if the following hold

```
a. A \subseteq M \cap N
```

ee'. *equivalence ee above holds for every sentence* $\varphi \in L(A)$ *.*

The case when *A* is the whole domain of *M* is particularly important.

2.11 Definition When $M \equiv_M N$ we write $M \preceq N$ and say that M is an elementary substructure of N.

In the definition above the use of the term *substructure* is appropriate by the following lemma. **2.12 Lemma** If M and N are such that $M \equiv_A N$ and A is the domain of a substructure of M then A is also the domain a substructure of N and the two substructures coincide.

Proof Let *f* be a function symbol and ler *r* be a relation symbol. It suffices to prove that $f^{M}(a) = f^{N}(a)$ for every $a \in A^{n_{f}}$ and that $r^{M} \cap A^{n_{r}} = r^{N} \cap A^{n_{r}}$.

If $b \in A$ is such that $b = f^M a$ then $M \models fa = b$. So, from $M \equiv_A N$, we obtain $N \models fa = b$, hence $f^N a = b$. This proves $f^M(a) = f^N(a)$.

Now let $a \in A^{n_r}$ and suppose $a \in r^M$. Then $M \models ra$ and, by elementarity, $N \models ra$, hence $a \in r^N$. By symmetry $r^M \cap A^{n_r} = r^N \cap A^{n_r}$ follows.

It is not easy to prove that two structures are elementary equivalent. A direct verification is unfeasible even for the most simple structures. It will take a few chapters before we are able to discuss concrete examples.

We generalize the definition of Th(M) to include parameters

Th(*M*/*A*) = {
$$\varphi$$
 : sentence in *L*(*A*) such that $M \vDash \varphi$ }.

The following proposition is immediate

- **2.13 Proposition** For every pair of structures M and N and every $A \subseteq M \cap N$ the following *are equivalent*
 - a. $M \equiv_A N;$
 - b. $\operatorname{Th}(M/A) = \operatorname{Th}(N/A);$
 - c. $M \vDash \varphi(a) \Leftrightarrow N \vDash \varphi(a)$ for every $\varphi(x) \in L$ and every $a \in A^{|x|}$.
 - *d.* $\varphi(M) \cap A^{|x|} = \varphi(N) \cap A^{|x|}$ for every $\varphi(x) \in L$.

If we restate a and c of the proposition above when A = M we obtain that the following are equivalent

- a'. $M \preceq N$;
- d'. $\varphi(M) = \varphi(N) \cap M^{|x|}$ for every $\varphi(x) \in L$.

Note that c' extends to all definable sets what Definition 1.7 requires for a few basic definable sets.

2.14 Example Let *G* be a group which we consider as a structure in the multiplicative language of groups. We show that if *G* is simple and $H \leq G$ then also *H* is simple. Recall that *G* is simple if all its normal subgroups are trivial, equivalently, if for every $a \in G \setminus \{1\}$ the set $\{gag^{-1} : g \in G\}$ generates the whole group *G*.

Assume *H* is not simple. Then there are $a, b \in H$ such that *b* is not the product of elements of $\{hah^{-1} : h \in H\}$. Then for every *n*

$$H \vDash \neg \exists x_1, \ldots, x_n \ (b = x_1 a x_1^{-1} \cdots x_n a x_n^{-1})$$

By elementarity the same hold in *G*. Hence *G* is not simple.

2.15 Exercise Let $A \subseteq M \cap N$. Prove that $M \equiv_A N$ if and only if $M \equiv_B N$ for every finite $B \subseteq A$. Facile ma importante

2.16 Exercise Let $M \leq N$ and let $\varphi(x) \in L(M)$. Prove that $\varphi(M)$ is finite if and only if

 $\varphi(N)$ is finite and in this case $\varphi(N) = \varphi(M)$.

<u>۸</u>۸

- **2.17 Exercise** Let $M \leq N$ and let $\varphi(x, z) \in L$. Suppose there are finitely many sets of the form $\varphi(a, N)$ for some $a \in N^{|x|}$. Prove that all these sets are definable over M. \Box
- **2.18 Exercise** Consider \mathbb{Z}^n as a structure in the additive language of groups with the natural interpretation. Prove that $\mathbb{Z}^n \neq \mathbb{Z}^m$ for every positive integers $n \neq m$. Hint: in \mathbb{Z}^n there are at most 2^n elements that are not congruent modulo 2.

3 Embeddings and isomorphisms La definizione di omomorfismo la rimandiamo

Here we prove that isomorphic structures are elementarily equivalent and a few related results.

2.19 Definition An embedding of M into N is an injective total map $h: M \hookrightarrow N$ such that

M

1.	$a \in r^{N_1} \Leftrightarrow$	$ha \in r^N$	for every $r \in L_{rel}$ and $a \in M^{n_r}$;
2.	$h f^M(a) =$	$f^N(ha)$	for every $f \in L_{\text{fun}}$ and $a \in M^{n_f}$.

Note that when $c \in L_{\text{fun}}$ is a constant 2 reads $h c^M = c^N$. Therefore that $M \subseteq N$ if and only if $\text{id}_M : M \to N$ is an embedding.

An surjective embedding is an isomorphism or, when domain and codomain coincide, an *automorphism*.

Condition 1 above and the assumption that h is injective can be summarized in the following

1'.
$$M \vDash r(a) \Leftrightarrow N \vDash r(ha)$$
 for every $r \in L_{rel} \cup \{=\}$ and every $a \in M^{n_r}$.

Note also that, by straightforward induction on syntax, from 2 we obtain

2' $h t^{M}(a) = t^{N}(h a)$ for every term t(x) and every $a \in M^{|x|}$.

Combining these two properties and a straightforward induction on the syntax give

3. $M \vDash \varphi(a) \iff N \vDash \varphi(ha)$ for every $\varphi(x) \in L_{qf}$ and every $a \in M^{|x|}$.

Recall that we write L_{qf} for the set of quantifier-free formulas. It is worth noting that when $M \subseteq N$ and $h = id_M$ then 3 becomes

3'
$$M \vDash \varphi(a) \iff N \vDash \varphi(a)$$
 for every $\varphi(x) \in L_{af}$ and for every $a \in M^{|x|}$.

In words this is summarized by saying that the truth of quantifier-free formulas is preserved under sub- and superstructure.

Finally we prove that first order truth is preserved under isomorphism. We say that a map $h : M \to N$ fixes $A \subseteq M$ (pointwise) if $id_A \subseteq h$. An isomorphism that fixes A is also called an A-isomorphism.

2.20 Theorem If $h : M \to N$ is an isomorphism then for every $\varphi(x) \in L$

$M \vDash \varphi(a) \iff N \vDash \varphi(ha)$ for every $a \in M^{|x|}$

In particular, if h is an A-isomorphism then $M \equiv_A N$.

Proof We proceed by induction of the syntax of $\varphi(x)$. When $\varphi(x)$ is atomic # holds by 3 above. Induction for the Boolean connectives is straightforward so we only need to consider the existential quantifier. Assume as induction hypothesis that

 $M \vDash \varphi(a, b) \iff N \vDash \varphi(ha, hb)$ for every tupla $a \in M^{|x|}$ and $b \in M$.

We prove that # holds for the formula $\exists y \varphi(x, y)$.

$$M \vDash \exists y \ \varphi(a, y) \iff M \vDash \varphi(a, b) \text{ for some } b \in M$$

$$\Leftrightarrow N \vDash \varphi(ha, hb) \text{ for some } b \in M \text{ (by induction hypothesis)}$$

$$\Leftrightarrow N \vDash \varphi(ha, c) \text{ for some } c \in N \text{ (ϵb y surjectivity)$}$$

$$\Leftrightarrow N \vDash \exists y \ \varphi(ha, y). \square$$

2.21 Corollary If $h: M \to N$ is an isomorphism then $h[\varphi(M)] = \varphi(N)$ for every $\varphi(x) \in L$. \Box

We can now give a few very simple examples of elementarily equivalent structures.

2.22 Example Let L be the language of strict orders. Consider intervals of \mathbb{R} (or in \mathbb{Q}) as structures in the natural way. The intervals [0,1] and [0,2] are isomorphic, hence $[0,1] \equiv [0,2]$ follows from Theorem 2.20. Clearly, [0,1] is a substructure of [0,2]. However $[0,1] \not\leq [0,2]$, in fact the formula $\forall x \ (x \leq 1)$ holds in [0,1] but is false in [0,2]. This shows that $M \subseteq N$ and $M \equiv N$ does not imply $M \preceq M$.

Now we prove that $(0,1) \leq (0,2)$. By Exercise 2.15 above, it suffices to verify that $(0,1) \equiv_B (0,2)$ for every finite $B \subseteq (0,1)$. This follows again by Theorem 2.20 as (0, 1) and (0, 2) are *B*-isomorphic for every finite $B \subseteq (0, 1)$. \square

For the sake of completeness we also give the definition of homomorphism.

2.23 Definition A *homomorphism* is a total map $h : M \hookrightarrow N$ such that Rimondata $a \in r^M \Rightarrow ha \in r^N$ for every $r \in L_{rel}$ and $a \in M^{n_r}$; 1. $h f^{M}(a) = f^{N}(h a)$ for every $f \in L_{\text{fun}}$ and $a \in M^{n_{f}}$. 2.

Note that only one implication is required in 1.

- **2.24 Exercise** Prove that if $h : N \to N$ is an automorphism and $M \preceq N$ then $h[M] \preceq N$. \Box
- **2.25** Exercise Let *L* be the empty language. Let $A, D \subseteq M$. Prove that the following are equivalent
 - 1. *D* is definable over *A*;
 - either *D* is finite and $D \subseteq A$, or $\neg D$ is finite and $\neg D \subseteq A$. 2.

Hint: as structures are plain sets, every bijection $f: M \to M$ is an automorphism.

2.26 Exercise Prove that if $\varphi(x)$ is an existential formula and $h: M \hookrightarrow N$ is an embedding then

> for every $a \in M^{|x|}$. $M \vDash \varphi(a) \Rightarrow N \vDash \varphi(ha)$

Recall that existential formulas as those of the form $\exists y \psi(x, y)$ for $\psi(x, y) \in L_{qf}$. Note that Theorem 10.7 proves that the property above characterizes existential formulas.

- **2.27** Exercise Let *M* be the model with domain \mathbb{Z} in the language that contains only the symbol + which is interpreted in the usual way. Prove that there is no existential formula $\varphi(x)$ such that $\varphi(M)$ is the set of odd integers. Hint: use Exercise 2.26.
- **2.28** Exercise Let *N* be the multiplicative group of \mathbb{Q} . Let *M* be the subgroup of those rational numbers that are of the form n/m for some odd integers *m* and *n*. Prove that $M \leq N$. Hint: use the fundamental theorem of arithmetic and reason as in Example 2.22.

4 Quotient structures Rimandato

The content of this section is mainly technical and only required later in the course. Its reading may be postponed.

If *E* is an equivalence relation on *N* we write $[c]_E$ for the equivalence class of $c \in N$. We use the same symbol for the equivalence relation on N^n defined as follow: if $a = a_1, ..., a_n$ and $b = b_1, ..., b_n$ are *n*-tuples of elements of *N* then $a \in b$ means that $a_i \in b_i$ holds for all *i*. It is easy to see that $b_1, ..., b_n \in [a, ..., a_n]_E$ if and only if $b_i \in [a_i]_E$ for all *i*. Therefore we use the notation $[a]_E$ for both the equivalence class of $a \in N^n$ and the tuple of equivalence classes $[a_1]_E, ..., [a_n]_E$.

2.29 Definition We say that the equivalence relation E on a structure N is a congruence if for every $f \in L_{\text{fun}}$

 $a E b \Rightarrow f^N a E f^N b;$

c1.

When *E* is a congruence on *N* we write N/E for the a structure that has as domain the set of *E*-equivalence classes in *N* and the following interpretation of $f \in L_{\text{fun}}$ and $r \in L_{\text{rel}}$:

$$c2. f^{N/E}[a]_E = [f^N a]_E; c3. [a]_E \in r^{N/E} \Leftrightarrow [a]_E \cap r^N \neq \varnothing.$$

We call N/E the quotient structure.

By c1 the quotiont structure is well defined. The reader will recognize it as a familiar notion by the following proposition (which is not required in the following and requires the notion of homomorphism, see Definition 2.23. Recall that the kernel of a total map $h : N \to M$ is the equivalence relation *E* such that

$$a \ E \ b \quad \Leftrightarrow \quad ha = hb$$

for every $a, b \in N$.

2.30 Proposition Let $h : N \to M$ be a surjective homomorphism and let E be the kernel of h. Then there is an isomorphism k that makes the following diagram commute

where $\pi : a \mapsto [a]_E$ is the projection map.

Quotients clutter the notation with brackets. To avoid the mess, we prefer to reason in N and tweak the satisfaction relation. Warning: this is not standard (though it is what we all do all the time, informally).

Recall that in model theory, equality is not treated as a all other predicates. In fact, the interpretation of equality is fixed to always be the identity relation. In a few contexts is convinient to allow any congruence to interpret equality. This allows to work in N while thinking of N/E.

We define $N/E \stackrel{*}{\models}$ to be $N \models$ but with equality interpreted with *E*. The proposition below shows that this is the same thing as the regular truth in the quotient structure, $N/E \models$.

2.31 Definition For t_2 , t_2 closed terms of L(N) define

 $t^* \qquad N/E \stackrel{\texttt{l}}{\vDash} t_1 = t_2 \iff t_1^N E t_2^N$

For t a tuple of closed terms of L(N) and $r \in L_{rel}$ a relation symbol

$$2^*$$
 $N/E \stackrel{*}{\vDash} rt \Leftrightarrow t^N E a \text{ for some } a \in r^N$

Finally the definition is extended to all sentences $\varphi \in L(N)$ by induction in the usual way

Now, by induction on the syntax of formulas one can prove \models does what required. In particular, $N/E \models \varphi(a) \leftrightarrow \varphi(b)$ for every $a \in b$.

2.32 Proposition Let *E* be a congruence relation of *N*. Then the following are equivalent for every $\varphi(x) \in L$

1. $N/E \stackrel{*}{\vDash} \varphi(a);$ 2. $N/E \vDash \varphi([a]_E).$

5 Completeness Assumo sia tutto noto da IdL

A theory *T* is **maximally consistent** if it is consistent and there is no consistent theory *S* such that $T \subset S$. Equivalently, *T* contains every sentence φ consistent with *T*, that is, such that $T \cup \{\varphi\}$ is consistent. Clearly a maximally consistent theory is closed under logical consequences.

A theory T is **complete** if cclT is maximally consistent. Concrete examples will be given in the next chapters as it is not easy to prove that a theory is complete.

2.33 Proposition The following are equivalent

- a. T is maximally consistent;
- b. T = Th(M) for some structure M;
- *c. T* is consistent and $\varphi \in T$ or $\neg \varphi \in T$ for every sentence φ .

Proof To prove $a \Rightarrow b$, assume that *T* is consistent. Then there is $M \vDash T$. Therefore $T \subseteq \text{Th}(M)$. As *T* is maximally consistent T = Th(M). Implication $b \Rightarrow c$ is immediate. As for $c \Rightarrow a$ note that if $T \cup \{\varphi\}$ is consistent then $\neg \varphi \notin T$ therefore $\varphi \in T$ follows from c.

The proof of the proposition below is is left as an exercise for the reader.

- 2.34 Proposition The following are equivalent
 - a. T is complete;
 - *b. there is a unique maximally consistent theory* S *such that* $T \subseteq S$ *;*
 - *c. T* is consistent and $T \vdash \text{Th}(M)$ for every $M \models T$;
 - *d. T* is consistent and $T \vdash \varphi$ o $T \vdash \neg \varphi$ for every sentence φ ;
 - *e. T* is consistent and $M \equiv N$ for every pair of models of *T*.
- 2.35 Exercise Prove that the following are equivalent
 - a. *T* is complete;
 - b. for every sentence φ , o $T \vdash \varphi$ o $T \vdash \neg \varphi$ but not both.

By contrast prove that the following are not equivalent

- a. *T* is maximally consistent;
- b. for every sentence φ , o $\varphi \in T$ o $\neg \varphi \in T$ but not both.

Hint: consider the theory containing all sentences where the symbol \neg occurs an even number of times. This theory is not consistent as it contains \bot .

2.36 Exercise Prove that if *T* has exactly 2 maximally consistent extension T_1 and T_2 then there is a sentence φ such that $T, \varphi \vdash T_1$ and $T, \neg \varphi \vdash T_2$. State and prove the generalization to finitely many maximally consistent extensions.

6 The Tarski-Vaught test Fatto a IdL, ma da ripassare.

There is no natural notion of *smallest* elementary substructure containing a set of parameters A. The downward Löwenheim-Skolem, which we prove in the next section, is the best result that holds in full generality. Given an arbitrary $A \subseteq N$ we shall construct a model $M \preceq N$ containing A that is small in the sense of cardinality. The construction selects one by one the elements of M that are required to realise the condition $M \preceq N$. Unfortunately, Definition 2.11 supposes full knowledge of the truth in M and it may not be applied during the construction. The following lemma comes to our rescue with a property equivalent to $M \preceq N$ that only mention the truth in N.

- **2.37 Lemma(Tarski-Vaught test)** For every $A \subseteq N$ the following are equivalent
 - 1. *A* is the domain of a structure $M \leq N$;
 - 2. for every formula $\varphi(x) \in L(A)$, with |x| = 1, $N \models \exists x \, \varphi(x) \Rightarrow N \models \varphi(b)$ for some $b \in A$.

Proof 1⇒2

$$N \vDash \exists x \ \varphi(x) \implies M \vDash \exists x \ \varphi(x)$$

$$\implies M \vDash \varphi(b) \qquad \text{for some } b \in M$$

$$\implies N \vDash \varphi(b) \qquad \text{for some } b \in M.$$

2⇒1 Firstly, note that *A* is the domain of a substructure of *N*, that is, $f^N a \in A$ for every $f \in L_{\text{fun}}$ and every $a \in A^{n_f}$. In fact, this follows from 2 with fa = x for $\varphi(x)$.

Write *M* for the substructure of *N* with domain *A*. By induction on the syntax we prove that for every $\xi(x) \in L$

$$M \models \xi(a) \iff N \models \xi(a)$$
 for every $a \in M^{|x|}$.

If $\xi(x)$ is atomic the claim follows from $M \subseteq N$ and the remarks underneath Definition 2.19. The case of Boolean connectives is straightforward, so only the existential quantifier requires a proof. So, let $\xi(x)$ be the formula $\exists y \psi(x, y)$ and assume the induction hypothesis holds for $\psi(x, y)$

$$M \vDash \exists y \ \psi(a, y) \iff M \vDash \psi(a, b) \quad \text{for some } b \in M$$
$$\Leftrightarrow N \vDash \psi(a, b) \quad \text{for some } b \in M$$
$$\Leftrightarrow N \vDash \exists y \ \psi(a, y).$$

The second equivalence holds by induction hypothesis, in the last equivalence we use 2 for the implication \Leftarrow .

2.38 Exercise Prove that, in the language of strict orders, $\mathbb{R} \setminus \{0\} \leq \mathbb{R}$ and $\mathbb{R} \setminus \{0\} \not\simeq \mathbb{R}$. \Box

7 Downward Löwenheim-Skolem Fatto a IdL, ma da ripassare.

The main theorem of this section was proved by Löwenheim at the beginning of the last century. Skolem gave a simpler proof immediately afterwards. At the time, the result was perceived as paradoxical.

A few years earlier, Zermelo and Fraenkel provided a formalization of set theory in a first order language. The downward Löwenheim-Skolem theorem implies the existence of an infinite countable model M of set theory: this is the so-called Skolem paradox. The existence of M seems paradoxical because, in particular, a sentence that formalises the axiom of power set holds in M. Therefore M contains an element b which, in M, is the set of subsets of the natural numbers. But the set of elements of b is a subset of M, and therefore it is countable.

In fact, this is not a contradiction, because the expression *all subsets of the natural numbers* does not have the same meaning in M as it has in the real world. The notion of cardinality, too, acquires a different meaning. In the language of set theory, there is a first order sentence that formalises the fact that b is uncountable: the sentence says that there is no bijection between b and the natural numbers. Therefore the bijection between the elements of b and the natural numbers (which exists in the real world) does not belong to M. The notion of equinumerosity has a different meaning in M and in the real world, but those who live in M cannot realise this.

2.39 Downward Löwenheim-Skolem Theorem Let N be an infinite structure and fix some

set $A \subseteq N$. Then there is a structure M of cardinality $\leq |L(A)|$ such that $A \subseteq M \leq N$.

Proof Set $\lambda = |L(A)|$. Below we construct a chain $\langle A_i : i < \omega \rangle$ of subsets of *N*. The chain begins at $A_0 = A$. Finally we set $M = \bigcup_{i < \omega} A_i$. All A_i will have cardinality $\leq \lambda$ so $|M| \leq \lambda$ follows.

Now we construct A_{i+1} given A_i . Assume as induction hypothesis that $|A_i| \leq \lambda$. Then $|L(A_i)| \leq \lambda$. For some fixed variable x let $\langle \varphi_k(x) : k < \lambda \rangle$ be an enumeration of the formulas in $L(A_i)$ that are consistent in N. For every k pick $a_k \in N$ such that $N \models \varphi_k(a_k)$. Define $A_{i+1} = A_i \cup \{a_k : k < \lambda\}$. Then $|A_{i+1}| \leq \lambda$ is clear.

We use the Tarski-Vaught test to prove $M \leq N$. Suppose $\varphi(x) \in L(M)$ is consistent in N. As finitely many parameters occur in formulas, $\varphi(x) \in L(A_i)$ for some i. Then $\varphi(x)$ is among the formulas we enumerated at stage i and $A_{i+1} \subseteq M$ contains a solution of $\varphi(x)$.

We will need to adapt the construction above to meet more requirements on the model *M*. To better control the elements that end up in *M* it is convenient to add one element at the time (above we add λ elements at each stage). We need to enumerate formulas with care if we want to complete the construction by stage λ .

2.40 Second proof of the downward Löwenheim-Skolem Theorem From set theory we know that there is a bijection $\pi : \lambda^2 \to \lambda$ such that $j,k \leq \pi(j,k)$ for all $j,k < \lambda$. Suppose we have defined the sets A_j for every $j \leq i$ and let $\langle \varphi_k^j(x) : k < \lambda \rangle$ be an enumeration of the consistent formulas of $L(A_j)$. Let $j,k \leq i$ be such that $\pi(j,k) = i$. Let b be a solution of the formula $\varphi_k^j(x)$ and define $A_{i+1} = A_i \cup \{b\}$.

We use Tarski-Vaught test to prove $M \leq N$. Let $\varphi(x) \in L(M)$ be consistent in N. Then $\varphi(x) \in L(A_j)$ for some j. Then $\varphi(x) = \varphi_k^j$ for some k. Hence a witness of $\varphi(x)$ is enumerated in M at stage $\pi(j,k) + 1$.

2.41 Exercise Assume *L* is countable and let $M \leq N$ have arbitrary (large) cardinality. Let $A \subseteq N$ be countable. Prove there is a countable model *K* such that $A \subseteq K \leq N$ and $K \cap M \leq N$ (in particular, $K \cap M$ is a model). Hint: adapt the construction used to prove the downward Löwenheim-Skolem Theorem.

8 Elementary chains Fatto a IdL? Comunque per il momento è rimandata.

An elementary chain is a chain $\langle M_i : i < \lambda \rangle$ of structures such that $M_i \preceq M_j$ for every $i < j < \lambda$. The union (or limit) of the chain is the structure with as domain the set $\bigcup_{i < \lambda} M_i$ and as relations and functions the union of the relations and functions of M_i . It is plain that all structures in the chain are substructures of the limit.

2.42 Lemma Let $\langle M_i : i \in \lambda \rangle$ be an elementary chain of structures. Let N be the union of the chain. Then $M_i \leq N$ for every *i*.

Proof By induction on the syntax of $\varphi(x) \in L$ we prove

 $M_i \vDash \varphi(a) \iff N \vDash \varphi(a)$ for every $i < \lambda$ and every $a \in M_i^{|x|}$

As remarked in 3' of Section 3, the claim holds for quantifier-free formulas. Induction for Boolean connectives is straightforward so we only need to consider the existential quantifier

$$M_i \vDash \exists y \, \varphi(a, y) \implies M_i \vDash \varphi(a, b) \quad \text{for some } b \in M_i.$$
$$\implies N \vDash \varphi(a, b) \quad \text{for some } b \in M_i \subseteq N$$

where the second implication follows from the induction hypothesis. Vice versa

 $N \vDash \exists y \ \varphi(a, y) \Rightarrow N \vDash \varphi(a, b)$ for some $b \in N$

Without loss of generality we can assume that $b \in M_j$ for some $j \ge i$ and obtain

$$\Rightarrow M_i \vDash \varphi(a, b)$$
 for some $b \in M_i$

Now apply the induction hypothesis to $\varphi(x, y)$ and M_i

$$\Rightarrow M_j \vDash \exists y \, \varphi(a, y)$$
$$\Rightarrow M_i \vDash \exists y \, \varphi(a, y)$$

where the last implication holds because $M_i \leq M_j$.

- **2.43** Exercise Let $\langle M_i : i \in \lambda \rangle$ be an chain of elementary substructures of *N*. Let *M* be the union of the chain. Prove that $M \preceq N$ and note that Lemma 2.42 is not required. \Box
- **2.44** Exercise Give an alternative proof of Exercise 2.41 using the downward Löwenheim-Skolem Theorem (instead of its proof). Hint: construct two countable chains of countable models such that $K_i \cap M \subseteq M_i \preceq N$ and $A \cup M_i \subseteq K_{i+1} \preceq N$. The required model is $K = \bigcup_{i \in \omega} K_i$. In fact it is easy to check that $K \cap M = \bigcup_{i \in \omega} M_i$. \Box