
Chapter 2

Theories and elementarity

1 Logical consequences

A theory is a set T ⊆ L of sentences. We write M � T if M � ϕ for every ϕ ∈ T. If
ϕ ∈ L is a sentence we write T � ϕ when

M � T ⇒ M � ϕ for every M.

In words, we say that ϕ is a logical consequence of T or that ϕ follows from T. If
S is a theory T � S has a similar meaning. If T � S and S � T we say that T and S
are logically equivalent. We may say that T axiomatizes S (or vice versa).

We say that a theory is consistent if it has a model. With the notation above, T is
consistent if and only if T � ⊥ .

The closure of T under logical consequence is the set ccl(T) which is defined as
follows:

ccl(T) =
�

ϕ ∈ L : sentence such that T � ϕ
�

If T is a finite set, say T =
�

ϕ1, . . . , ϕn
�

we write ccl(ϕ1, . . . , ϕn) for ccl(T). If
T = ccl(T) we say that T is closed under logical consequences.

The theory of M is the set of sentences that hold in M and is denoted by Th(M) .
More generally, if K is a class of structures, Th(K) is the set of sentences that hold
in every model in K. That is

Th(K) =
�

M∈K
Th(M)

The class of all models of T is denoted by Mod(T) . We say that K is axiomatizable if
Mod(T) = K for some theory T. If T is finite we say that K is finitely axiomatizable.
To sum up

Th(M) =
�

ϕ : M � ϕ
�

Th(K) =
�

ϕ : M � ϕ for all M ∈ K
�

Mod(T) =
�

M : M � T
�

2.1 Example Let L be the language of multiplicative groups. Let Tg be the set contain-
ing the universal closure of following three formulas

1. (x · y) · z = x · (y · z);

2. x · x−1 = x−1 · x = 1;

3. x · 1 = 1 · x = x.

Then Tg axiomatizes the theory of groups, i.e. Th(K) for K the class of all groups.
Let ϕ be the universal closure of the following formula
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z · x = z · y → x = y.

As ϕ formalizes the cancellation property then Tg � ϕ, that is, ϕ is a logical conse-
quence of Tg. Now consider the sentence ψ which is the universal closure of

4. x · y = y · x.

So, commutative groups model ψ and non commutative groups model ¬ψ. Hence
neither Tg � ψ nor Tg � ¬ψ. We say that Tg does not decide ψ. �

Note that even when T is a very concrete set, ccl(T) may be more difficult to grasp.
In the example above Tg contains three sentences but ccl(Tg) is an infinite set con-
taining sentences that code theorems of group theory yet to be proved.

2.2 Remark The following properties say that ccl is a finitary closure operator.

1. T ⊆ ccl(T) (extensive)

2. ccl(T) = ccl
�
ccl(T)

�
(idempotent)

3. T ⊆ S ⇒ ccl(T) ⊆ ccl(S) (increasing)

4. ccl(T) =
��

ccl(S) : S finite subset of T
�

. (finitary)

Properties 1-3 are easy to verify while 4 requires the compactness theorem. �

In the next example we list a few algebraic theories with straightforward axiomati-
zation.

2.3 Example We write Tag for the theory of abelian groups which contains the univer-
sal closure of following

a1. (x + y) + z = y + (x + z);

a2. x + (−x) = 0;

a3. x + 0 = x;

a4. x + y = y + x.

The theory Tr of (unitary) rings extends Tag with

a5. (x · y) · z = x · (y · z);

a6. 1 · x = x · 1 = x;

a7. (x + y) · z = x · z + y · z;

a8. z · (x + y) = z · x + z · y.

The theory of commutative rings Tcg contains also com of examples 2.1. The theory
of ordered rings Tor extends Tcr with

o1. x < z → x + y < z + y;

o2. 0 < x ∧ 0 < z → 0 < x · z. �

The axiomatization of the theory of vector spaces is less straightforward.

2.4 Example Fix a field F. The language LF extends the language of additive groups
with a unary function for every element of F. The theory of vector fields over F
extends Tag with the following axioms (for all h, k, l ∈ F)
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m1. h (x + y) = h x + h y

m2. l x = h x + k x, where l = h +F k

m3. l x = h (k x), where l = h ·F k

m4. 0F x = 0

m5. 1F x = x

The symbols 0F and 1F denote the zero and the unit of F. The symbols +F and ·F
denote the sum and the product in F. These are not part of LF, they are symbols we
use in the metalanguage. �

2.5 Example Recall from Example 1.3 that we represent a graph with a symmetric
irreflexive relation. Therefore theory of graphs contains the following two axioms

1. ¬r(x, x);

2. r(x, y) → r(y, x). �

Our last example is a trivial one.

2.6 Example Let L be the empty language The theory of infinite sets is axiomatized
by the sentences ∃≥nx (x = x) for all positive integer n. �

2.7 Exercise Prove that ccl(ϕ ∨ ψ) = ccl(ϕ) ∩ ccl(ψ). �

2.8 Exercise Prove that T ∪ {ϕ} � ψ then T � ϕ → ψ. �

2.9 Exercise Prove that Th(Mod(T)) = ccl(T). �

2 Elementary equivalence

The following is a fundamental notion in model theory.

2.10 Definition We say that M and N are elementarily equivalent if

ee. N � ϕ ⇔ M � ϕ, for every sentence ϕ ∈ L.

In this case we write M ≡ N . More generally, we write M ≡A N and say that M and N
are elementarily equivalent over A if the following hold

a. A ⊆ M ∩ N

ee’. equivalence ee above holds for every sentence ϕ ∈ L(A). �

The case when A is the whole domain of M is particularly important.

2.11 Definition When M ≡M N we write M � N and say that M is an elementary substructure
of N. �

In the definition above the use of the term substructure is appropriate by the follow-
ing lemma.
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2.12 Lemma If M and N are such that M ≡A N and A is the domain of a substructure of M
then A is also the domain a substructure of N and the two substructures coincide.

Proof Let f be a function symbol and ler r be a relation symbol. It suffices to prove
that f M(a) = f N(a) for every a ∈ An f and that rM ∩ Anr = rN ∩ Anr .

If b ∈ A is such that b = f Ma then M � f a = b. So, from M ≡A N, we obtain
N � f a = b, hence f N a = b. This proves f M(a) = f N(a).

Now let a ∈ Anr and suppose a ∈ rM. Then M � ra and, by elementarity, N � ra,
hence a ∈ rN . By symmetry rM ∩ Anr = rN ∩ Anr follows. �

It is not easy to prove that two structures are elementary equivalent. A direct
verification is unfeasible even for the most simple structures. It will take a few
chapters before we are able to discuss concrete examples.

We generalize the definition of Th(M) to include parameters

Th(M/A) =
�

ϕ : sentence in L(A) such that M � ϕ
�

.

The following proposition is immediate

2.13 Proposition For every pair of structures M and N and every A ⊆ M ∩ N the following
are equivalent

a. M ≡A N;

b. Th(M/A) = Th(N/A);

c. M � ϕ(a) ⇔ N � ϕ(a) for every ϕ(x) ∈ L and every a ∈ A|x|.

d. ϕ(M) ∩ A|x| = ϕ(N) ∩ A|x| for every ϕ(x) ∈ L. �

If we restate a and c of the proposition above when A = M we obtain that the
following are equivalent

a’. M � N;

d’. ϕ(M) = ϕ(N) ∩ M|x| for every ϕ(x) ∈ L.

Note that c’ extends to all definable sets what Definition 1.7 requires for a few basic
definable sets.

2.14 Example Let G be a group which we consider as a structure in the multiplicative
language of groups. We show that if G is simple and H � G then also H is simple.
Recall that G is simple if all its normal subgroups are trivial, equivalently, if for
every a ∈ G � {1} the set

�
gag−1 : g ∈ G

�
generates the whole group G.

Assume H is not simple. Then there are a, b ∈ H such that b is not the product of
elements of

�
hah−1 : h ∈ H

�
. Then for every n

H � ¬∃x1, . . . , xn
�
b = x1ax−1

1 · · · xnax−1
n

�

By elementarity the same hold in G. Hence G is not simple. �

2.15 Exercise Let A ⊆ M ∩ N. Prove that M ≡A N if and only if M ≡B N for every
finite B ⊆ A. �

2.16 Exercise Let M � N and let ϕ(x) ∈ L(M). Prove that ϕ(M) is finite if and only if
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ϕ(N) is finite and in this case ϕ(N) = ϕ(M). �

2.17 Exercise Let M � N and let ϕ(x, z) ∈ L. Suppose there are finitely many sets of
the form ϕ(a, N) for some a ∈ N|x|. Prove that all these sets are definable over M. �

2.18 Exercise Consider Zn as a structure in the additive language of groups with the
natural interpretation. Prove that Zn �≡ Zm for every positive integers n �= m. Hint:
in Zn there are at most 2n elements that are not congruent modulo 2. �

3 Embeddings and isomorphisms

Here we prove that isomorphic structures are elementarily equivalent and a few
related results.

2.19 Definition An embedding of M into N is an injective total map h : M �→ N such that

1. a ∈ rM ⇔ ha ∈ rN for every r ∈ Lrel and a ∈ Mnr ;

2. h f M(a) = f N(h a) for every f ∈ Lfun and a ∈ Mn f .

Note that when c ∈ Lfun is a constant 2 reads h cM = cN. Therefore that M ⊆ N if and
only if idM : M → N is an embedding.

An surjective embedding is an isomorphism or, when domain and codomain coincide, an
automorphism. �

Condition 1 above and the assumption that h is injective can be summarized in the
following

1’. M � r(a) ⇔ N � r(ha) for every r ∈ Lrel ∪ {=} and every a ∈ Mnr .

Note also that, by straightforward induction on syntax, from 2 we obtain

2’ h tM(a) = tN(h a) for every term t(x) and every a ∈ M|x|.

Combining these two properties and a straightforward induction on the syntax give

3. M � ϕ(a) ⇔ N � ϕ(ha) for every ϕ(x) ∈ Lqf and every a ∈ M|x|.

Recall that we write Lqf for the set of quantifier-free formulas. It is worth noting
that when M ⊆ N and h = idM then 3 becomes

3’ M � ϕ(a) ⇔ N � ϕ(a) for every ϕ(x) ∈ Lqf and for every a ∈ M|x|.

In words this is summarized by saying that the truth of quantifier-free formulas is
preserved under sub- and superstructure.

Finally we prove that first order truth is preserved under isomorphism. We say that
a map h : M → N fixes A ⊆ M (pointwise) if idA ⊆ h. An isomorphism that fixes
A is also called an A-isomorphism.

2.20 Theorem If h : M → N is an isomorphism then for every ϕ(x) ∈ L

# M � ϕ(a) ⇔ N � ϕ(ha) for every a ∈ M|x|

In particular, if h is an A-isomorphism then M ≡A N.
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Proof We proceed by induction of the syntax of ϕ(x). When ϕ(x) is atomic # holds
by 3 above. Induction for the Boolean connectives is straightforward so we only
need to consider the existential quantifier. Assume as induction hypothesis that

M � ϕ(a, b) ⇔ N � ϕ(ha, hb) for every tupla a ∈ M|x| and b ∈ M.

We prove that # holds for the formula ∃y ϕ(x, y).

M � ∃y ϕ(a, y) ⇔ M � ϕ(a, b) for some b ∈ M

⇔ N � ϕ(ha, hb)for some b ∈ M (by induction hypothesis)

⇔ N � ϕ(ha, c) for some c ∈ N (⇐ by surjectivity)

⇔ N � ∃y ϕ(ha, y). �

2.21 Corollary If h : M → N is an isomorphism then h
�
ϕ(M)

�
= ϕ(N) for every ϕ(x) ∈ L. �

We can now give a few very simple examples of elementarily equivalent structures.

2.22 Example Let L be the language of strict orders. Consider intervals of R (or in Q)
as structures in the natural way. The intervals [0, 1] and [0, 2] are isomorphic, hence
[0, 1] ≡ [0, 2] follows from Theorem 2.20. Clearly, [0, 1] is a substructure of [0, 2].
However [0, 1] � [0, 2], in fact the formula ∀x (x≤1) holds in [0, 1] but is false in
[0, 2]. This shows that M ⊆ N and M ≡ N does not imply M � M.

Now we prove that (0, 1) � (0, 2). By Exercise 2.15 above, it suffices to verify that
(0, 1) ≡B (0, 2) for every finite B ⊆ (0, 1). This follows again by Theorem 2.20 as
(0, 1) and (0, 2) are B-isomorphic for every finite B ⊆ (0, 1). �

For the sake of completeness we also give the definition of homomorphism.

2.23 Definition A homomorphism is a total map h : M �→ N such that

1. a ∈ rM ⇒ ha ∈ rN for every r ∈ Lrel and a ∈ Mnr ;

2. h f M(a) = f N(h a) for every f ∈ Lfun and a ∈ Mn f .

Note that only one implication is required in 1. �

2.24 Exercise Prove that if h : N → N is an automorphism and M � N then h[M] � N. �

2.25 Exercise Let L be the empty language. Let A, D ⊆ M. Prove that the following are
equivalent

1. D is definable over A;

2. either D is finite and D ⊆ A, or ¬D is finite and ¬D ⊆ A.

Hint: as structures are plain sets, every bijection f : M → M is an automorphism. �

2.26 Exercise Prove that if ϕ(x) is an existential formula and h : M �→ N is an embed-
ding then

M � ϕ(a) ⇒ N � ϕ(ha) for every a ∈ M|x|.

Recall that existential formulas as those of the form ∃y ψ(x, y) for ψ(x, y) ∈ Lqf.
Note that Theorem 10.7 proves that the property above characterizes existential
formulas. �
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2.27 Exercise Let M be the model with domain Z in the language that contains only the
symbol + which is interpreted in the usual way. Prove that there is no existential
formula ϕ(x) such that ϕ(M) is the set of odd integers. Hint: use Exercise 2.26. �

2.28 Exercise Let N be the multiplicative group of Q. Let M be the subgroup of those
rational numbers that are of the form n/m for some odd integers m and n. Prove
that M � N. Hint: use the fundamental theorem of arithmetic and reason as in
Example 2.22. �

4 Quotient structures

The content of this section is mainly technical and only required later in the course.
Its reading may be postponed.

If E is an equivalence relation on N we write [c]E for the equivalence class of c ∈ N.
We use the same symbol for the equivalence relation on Nn defined as follow: if
a = a1, . . . , an and b = b1, . . . , bn are n-tuples of elements of N then a E b means
that ai E bi holds for all i. It is easy to see that b1, . . . , bn ∈ [a, ..., an]E if and only if
bi ∈ [ai]E for all i. Therefore we use the notation [a]E for both the equivalence class
of a ∈ Nn and the tuple of equivalence classes [a1]E, . . . , [an]E.

2.29 Definition We say that the equivalence relation E on a structure N is a congruence if for
every f ∈ Lfun

c1. a E b ⇒ f N a E f Nb;

When E is a congruence on N we write N/E for the a structure that has as domain the set
of E-equivalence classes in N and the following interpretation of f ∈ Lfun and r ∈ Lrel:

c2. f N/E[a]E =
�

f N a
�

E ;

c3. [a]E ∈ rN/E ⇔ [a]E ∩ rN �= ∅.

We call N/E the quotient structure. �

By c1 the quotiont structure is well defined. The reader will recognize it as a familiar
notion by the following proposition (which is not required in the following and
requires the notion of homomorphism, see Definition 2.23. Recall that the kernel of
a total map h : N → M is the equivalence relation E such that

a E b ⇔ ha = hb

for every a, b ∈ N.

2.30 Proposition Let h : N → M be a surjective homomorphism and let E be the kernel of h.
Then there is an isomorphism k that makes the following diagram commute

N M

N/E

h

π
k
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where π : a �→ [a]E is the projection map. �

� Quotients clutter the notation with brackets. To avoid the mess, we prefer to reason
in N and tweak the satisfaction relation. Warning: this is not standard (though it is
what we all do all the time, informally).

Recall that in model theory, equality is not treated as a all other predicates. In fact,
the interpretation of equality is fixed to always be the identity relation. In a few
contexts is convinient to allow any congruence to interprete equality. This allows to
work in N while thinking of N/E.

We define N/E �* to be N � but with equality interpreted with E. The proposition
below shows that this is the same thing as the regular truth in the quotient structure,
N/E �.

2.31 Definition For t2, t2 closed terms of L(N) define

1∗ N/E �* t1 = t2 ⇔ tN
1 E tN

2

For t a tuple of closed terms of L(N) and r ∈ Lrel a relation symbol

2∗ N/E �* r t ⇔ tN E a for some a ∈ rN

Finally the definition is extended to all sentences ϕ ∈ L(N) by induction in the usual way

3∗ N/E �* ¬ϕ ⇔ not N/E �* ϕ

4∗ N/E �* ϕ ∧ ψ ⇔ N/E �* ϕ and N/E �* ψ

5∗ N/E �* ∃x ϕ(x) ⇔ N/E �* ϕ(a) for some a ∈ N. �

Now, by induction on the syntax of formulas one can prove �* does what required.
In particular, N/E �* ϕ(a) ↔ ϕ(b) for every a E b.

2.32 Proposition Let E be a congruence relation of N. Then the following are equivalent for
every ϕ(x) ∈ L

1. N/E �* ϕ(a);

2. N/E � ϕ
�
[a]E

�
. �

5 Completeness

A theory T is maximally consistent if it is consistent and there is no consistent
theory S such that T ⊂ S. Equivalently, T contains every sentence ϕ consistent with
T, that is, such that T ∪ {ϕ} is consistent. Clearly a maximally consistent theory is
closed under logical consequences.

A theory T is complete if cclT is maximally consistent. Concrete examples will be
given in the next chapters as it is not easy to prove that a theory is complete.

2.33 Proposition The following are equivalent

a. T is maximally consistent;

b. T = Th(M) for some structure M;

c. T is consistent and ϕ ∈ T or ¬ϕ ∈ T for every sentence ϕ.
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Proof To prove a⇒b, assume that T is consistent. Then there is M � T. Therefore
T ⊆ Th(M). As T is maximally consistent T = Th(M). Implication b⇒c is imme-
diate. As for c⇒a note that if T ∪ {ϕ} is consistent then ¬ϕ �∈ T therefore ϕ ∈ T
follows from c. �

The proof of the proposition below is is left as an exercise for the reader.

2.34 Proposition The following are equivalent

a. T is complete;

b. there is a unique maximally consistent theory S such that T ⊆ S;

c. T is consistent and T � Th(M) for every M � T;

d. T is consistent and T � ϕ o T � ¬ϕ for every sentence ϕ;

e. T is consistent and M ≡ N for every pair of models of T. �

2.35 Exercise Prove that the following are equivalent

a. T is complete;

b. for every sentence ϕ, o T � ϕ o T � ¬ϕ but not both.

By contrast prove that the following are not equivalent

a. T is maximally consistent;

b. for every sentence ϕ, o ϕ ∈ T o ¬ϕ ∈ T but not both.

Hint: consider the theory containing all sentences where the symbol ¬ occurs an
even number of times. This theory is not consistent as it contains ⊥. �

2.36 Exercise Prove that if T has exactly 2 maximally consistent extension T1 and T2
then there is a sentence ϕ such that T, ϕ � T1 and T,¬ϕ � T2. State and prove the
generalization to finitely many maximally consistent extensions. �

6 The Tarski-Vaught test

There is no natural notion of smallest elementary substructure containing a set of
parameters A. The downward Löwenheim-Skolem, which we prove in the next
section, is the best result that holds in full generality. Given an arbitrary A ⊆ N we
shall construct a model M � N containing A that is small in the sense of cardinality.
The construction selects one by one the elements of M that are required to realise
the condition M � N. Unfortunately, Definition 2.11 supposes full knowledge of
the truth in M and it may not be applied during the construction. The following
lemma comes to our rescue with a property equivalent to M � N that only mention
the truth in N.

2.37 Lemma(Tarski-Vaught test) For every A ⊆ N the following are equivalent

1. A is the domain of a structure M � N;

2. for every formula ϕ(x) ∈ L(A), with |x| = 1,

N � ∃x ϕ(x) ⇒ N � ϕ(b) for some b ∈ A.
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Proof 1⇒2

N � ∃x ϕ(x) ⇒ M � ∃x ϕ(x)

⇒ M � ϕ(b) for some b ∈ M

⇒ N � ϕ(b) for some b ∈ M.

2⇒1 Firstly, note that A is the domain of a substructure of N, that is, f N a ∈ A for
every f ∈ Lfun and every a ∈ An f . In fact, this follows from 2 with f a = x for ϕ(x).

Write M for the substructure of N with domain A. By induction on the syntax we
prove that for every ξ(x) ∈ L

M � ξ(a) ⇔ N � ξ(a) for every a ∈ M|x|.

If ξ(x) is atomic the claim follows from M ⊆ N and the remarks underneath Defini-
tion 2.19. The case of Boolean connectives is straightforward, so only the existential
quantifier requires a proof. So, let ξ(x) be the formula ∃y ψ(x, y) and assume the
induction hypothesis holds for ψ(x, y)

M � ∃y ψ(a, y) ⇔ M � ψ(a, b) for some b ∈ M

⇔ N � ψ(a, b) for some b ∈ M

⇔ N � ∃y ψ(a, y).

The second equivalence holds by induction hypothesis, in the last equivalence we
use 2 for the implication ⇐. �

2.38 Exercise Prove that, in the language of strict orders, R�{0} � R andR�{0} �� R. �

7 Downward Löwenheim-Skolem

The main theorem of this section was proved by Löwenheim at the beginning of the
last century. Skolem gave a simpler proof immediately afterwards. At the time, the
result was perceived as paradoxical.

A few years earlier, Zermelo and Fraenkel provided a formalization of set the-
ory in a first order language. The downward Löwenheim-Skolem theorem implies
the existence of an infinite countable model M of set theory: this is the so-called
Skolem paradox. The existence of M seems paradoxical because, in particular, a
sentence that formalises the axiom of power set holds in M. Therefore M contains
an element b which, in M, is the set of subsets of the natural numbers. But the set
of elements of b is a subset of M, and therefore it is countable.

In fact, this is not a contradiction, because the expression all subsets of the natural
numbers does not have the same meaning in M as it has in the real world. The notion
of cardinality, too, acquires a different meaning. In the language of set theory, there
is a first order sentence that formalises the fact that b is uncountable: the sentence
says that there is no bijection between b and the natural numbers. Therefore the
bijection between the elements of b and the natural numbers (which exists in the
real world) does not belong to M. The notion of equinumerosity has a different
meaning in M and in the real world, but those who live in M cannot realise this.

2.39 Downward Löwenheim-Skolem Theorem Let N be an infinite structure and fix some
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set A ⊆ N. Then there is a structure M of cardinality ≤ |L(A)| such that A ⊆ M � N.

Proof Set λ = |L(A)|. Below we construct a chain �Ai : i < ω� of subsets of N. The
chain begins at A0 = A. Finally we set M =

�
i<ω Ai. All Ai will have cardinality

≤ λ so |M| ≤ λ follows.

Now we construct Ai+1 given Ai. Assume as induction hypothesis that |Ai| ≤ λ.
Then |L(Ai)| ≤ λ. For some fixed variable x let �ϕk(x) : k < λ� be an enumeration
of the formulas in L(Ai) that are consistent in N. For every k pick ak ∈ N such that
N � ϕk(ak). Define Ai+1 = Ai ∪ {ak : k < λ}. Then |Ai+1| ≤ λ is clear.

We use the Tarski-Vaught test to prove M � N. Suppose ϕ(x) ∈ L(M) is consistent
in N. As finitely many parameters occur in formulas, ϕ(x) ∈ L(Ai) for some i.
Then ϕ(x) is among the formulas we enumerated at stage i and Ai+1 ⊆ M contains
a solution of ϕ(x). �

We will need to adapt the construction above to meet more requirements on the
model M. To better control the elements that end up in M it is convenient to add
one element at the time (above we add λ elements at each stage). We need to
enumerate formulas with care if we want to complete the construction by stage λ.

2.40 Second proof of the downward Löwenheim-Skolem Theorem From set theory we
know that there is a bijection π : λ2 → λ such that j, k ≤ π(j, k) for all j, k < λ.
Suppose we have defined the sets Aj for every j ≤ i and let �ϕ

j
k(x) : k < λ� be an

enumeration of the consistent formulas of L(Aj). Let j, k ≤ i be such that π(j, k) = i.

Let b be a solution of the formula ϕ
j
k(x) and define Ai+1 = Ai ∪ {b}.

We use Tarski-Vaught test to prove M � N. Let ϕ(x) ∈ L(M) be consistent in N.
Then ϕ(x) ∈ L(Aj) for some j. Then ϕ(x) = ϕ

j
k for some k. Hence a witness of ϕ(x)

is enumerated in M at stage π(j, k) + 1. �

2.41 Exercise Assume L is countable and let M � N have arbitrary (large) cardinality.
Let A ⊆ N be countable. Prove there is a countable model K such that A ⊆ K � N
and K ∩ M � N (in particular, K ∩ M is a model). Hint: adapt the construction used
to prove the downward Löwenheim-Skolem Theorem. �

8 Elementary chains

An elementary chain is a chain �Mi : i < λ� of structures such that Mi � Mj
for every i < j < λ. The union (or limit) of the chain is the structure with as
domain the set

�
i<λ Mi and as relations and functions the union of the relations

and functions of Mi. It is plain that all structures in the chain are substructures of
the limit.

2.42 Lemma Let �Mi : i ∈ λ� be an elementary chain of structures. Let N be the union of the
chain. Then Mi � N for every i.

Proof By induction on the syntax of ϕ(x) ∈ L we prove

Mi � ϕ(a) ⇔ N � ϕ(a) for every i < λ and every a ∈ M|x|
i

As remarked in 3’ of Section 3, the claim holds for quantifier-free formulas. In-
duction for Boolean connectives is straightforward so we only need to consider the
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existential quantifier

Mi � ∃y ϕ(a, y) ⇒ Mi � ϕ(a, b) for some b ∈ Mi.

⇒ N � ϕ(a, b) for some b ∈ Mi ⊆ N

where the second implication follows from the induction hypothesis. Vice versa

N � ∃y ϕ(a, y) ⇒ N � ϕ(a, b) for some b ∈ N

Without loss of generality we can assume that b ∈ Mj for some j ≥ i and obtain

⇒ Mj � ϕ(a, b) for some b ∈ Mj

Now apply the induction hypothesis to ϕ(x, y) and Mj

⇒ Mj � ∃y ϕ(a, y)

⇒ Mi � ∃y ϕ(a, y)

where the last implication holds because Mi � Mj. �

2.43 Exercise Let �Mi : i ∈ λ� be an chain of elementary substructures of N. Let M be
the union of the chain. Prove that M � N and note that Lemma 2.42 is not required. �

2.44 Exercise Give an alternative proof of Exercise 2.41 using the downward Löwenheim-
Skolem Theorem (instead of its proof). Hint: construct two countable chains of
countable models such that Ki ∩ M ⊆ Mi � N and A ∪ Mi ⊆ Ki+1 � N. The
required model is K =

�
i∈ω Ki. In fact it is easy to check that K ∩ M =

�
i∈ω Mi. �
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