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Preface

This book is designed as an advanced undergraduate or a first-year graduate course
for students from various disciplines like appliedmathematics, physics, engineering.
It has evolved while teaching courses on partial differential equations (PDE) during
the last few years at the Politecnico of Milan.

The main purpose of these courses was twofold: on the one hand, to train
the students to appreciate the interplay between theory and modelling in prob-
lems arising in the applied sciences, and on the other hand to give them a solid
theoretical background for numerical methods, such as finite elements.

Accordingly, this textbook is divided into two parts.

The first one, chapters 2 to 5, has a rather elementary character with the goal
of developing and studying basic problems from the macro-areas of diffusion, prop-
agation and transport, waves and vibrations. I have tried to emphasize, whenever
possible, ideas and connections with concrete aspects, in order to provide intuition
and feeling for the subject.

For this part, a knowledge of advanced calculus and ordinary differential equa-
tions is required. Also, the repeated use of the method of separation of variables
assumes some basic results from the theory of Fourier series, which are summarized
in appendix A.

Chapter 2 starts with the heat equation and some of its variants in which
transport and reaction terms are incorporated. In addition to the classical top-
ics, I emphasized the connections with simple stochastic processes, such as ran-
dom walks and Brownian motion. This requires the knowledge of some elementary
probability. It is my belief that it is worthwhile presenting this topic as early as
possible, even at the price of giving up to a little bit of rigor in the presentation. An
application to financial mathematics shows the interaction between probabilistic
and deterministic modelling. The last two sections are devoted to two simple non
linear models from flow in porous medium and population dynamics.

Chapter 3 mainly treats the Laplace/Poisson equation. The main properties
of harmonic functions are presented once more emphasizing the probabilistic mo-
tivations. The second part of this chapter deals with representation formulas in
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terms of potentials. In particular, the basic properties of the single and double
layer potentials are presented.

Chapter 4 is devoted to first order equations and in particular to first order
scalar conservation laws. The methods of characteristics and the notion of integral
solution are developed through a simple model from traffic dynamics. In the last
part, the method of characteristics is extended to quasilinear and fully nonlinear
equations in two variables.

In chapter 5 the fundamental aspects of waves propagation are examined, lead-
ing to the classical formulas of d’Alembert, Kirchhoff and Poisson. In the final sec-
tion, the classical model for surface waves in deep water illustrates the phenomenon
of dispersion, with the help of the method of stationary phase.

The main topic of the second part, from chapter 6 to 9, is the development of
Hilbert spaces methods for the variational formulation and the analysis of linear
boundary and initial-boundary value problems. Given the abstract nature of these
chapters, I have made an effort to provide intuition and motivation about the
various concepts and results, running the risk of appearing a bit wordy sometimes.

The understanding of these topics requires some basic knowledge of Lebesgue
measure and integration, summarized in appendix B.

Chapter 6 contains the tools from functional analysis in Hilbert spaces, nec-
essary for a correct variational formulation of the most common boundary value
problems. The main theme is the solvability of abstract variational problems, lead-
ing to the Lax-Milgram theorem and Fredholm’s alternative. Emphasis is given to
the issues of compactness and weak convergence.

Chapter 7 is divided into two parts. The first one is a brief introduction to the
theory of distributions of L. Schwartz. In the second one, the most used Sobolev
spaces and their basic properties are discussed.

Chapter 8 is devoted to the variational formulation of elliptic boundary value
problems and their solvability. The development starts with one-dimensional prob-
lems, continues with Poisson’s equation and ends with general second order equa-
tions in divergence form. The last section contains an application to a simple
control problem, with both distributed observation and control.

The issue in chapter 9 is the variational formulation of evolution problems, in
particular of initial-boundary value problems for second order parabolic operators
in divergence form and for the wave equation. Also, an application to a simple
control problem with final observation and distributed control is discussed.

At the end of each chapter, a number of exercises is included. Some of them
can be solved by a routine application of the theory or of the methods developed
in the text. Other problems are intended as a completion of some arguments or
proofs in the text. Also, there are problems in which the student is required to be
more autonomous. The most demanding problems are supplied with answers or
hints.

The order of presentation of the material is clearly a consequence of my ...
prejudices. However, the exposition if flexible enough to allow substantial changes

VI
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without compromising the comprehension and to facilitate a selection of topics for
a one or two semester course.
In the first part, the chapters are in practice mutually independent, with the ex-

ception of subsections 3.3.6 and 3.3.7, which presume the knowledge of section 2.6.
In the second part, which, in principle, may be presented independently of

the first one, more attention has to be paid to the order of the arguments. In
particular, the material in chapter 6 and in sections 7.1–7.4 and 7.7–7.10 is neces-
sary for understanding chapter 8, while chapter 9 uses concepts and results from
section 7.11.
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Pagani, Kevin Payne, Alfio Quarteroni, Fausto Saleri, Carlo Sgarra, Alessandro
Veneziani, Gianmaria A. Verzini and, in particular to Cristina Cerutti, Leonede
De Michele and Peter Laurence.
Among the students who have sat throuh my course on PDE, I would like to

thank Luca Bertagna, Michele Coti-Zelati, Alessandro Conca, Alessio Fumagalli,
Loredana Gaudio, Matteo Lesinigo, Andrea Manzoni and Lorenzo Tamellini.

VII



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Well Posed Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Basic Notations and Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Smooth and Lipschitz Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Integration by Parts Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 The conduction of heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Well posed problems (n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 A solution by separation of variables . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Problems in dimension n > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Integral method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Maximum principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 The Fundamental Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Invariant transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Fundamental solution (n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 The Dirac distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Fundamental solution (n > 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Symmetric Random Walk (n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Preliminary computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.2 The limit transition probability . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 From random walk to Brownian motion . . . . . . . . . . . . . . . . . . 49

2.5 Diffusion, Drift and Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Random walk with drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V



Contents

2.5.2 Pollution in a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.3 Random walk with drift and reaction . . . . . . . . . . . . . . . . . . . . 57

2.6 Multidimensional Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.1 The symmetric case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6.2 Walks with drift and reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7 An Example of Reaction−Diffusion (n = 3) . . . . . . . . . . . . . . . . . . . . . 62
2.8 The Global Cauchy Problem (n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8.1 The homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.8.2 Existence of a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.8.3 The non homogeneous case. Duhamel’s method . . . . . . . . . . . 71
2.8.4 Maximum principles and uniqueness . . . . . . . . . . . . . . . . . . . . . 74

2.9 An Application to Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.9.1 European options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.9.2 An evolution model for the price S . . . . . . . . . . . . . . . . . . . . . . 77
2.9.3 The Black-Scholes equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.9.4 The solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.9.5 Hedging and self-financing strategy . . . . . . . . . . . . . . . . . . . . . . 88

2.10 Some Nonlinear Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.10.1 Nonlinear diffusion. The porous medium equation . . . . . . . . . 90
2.10.2 Nonlinear reaction. Fischer’s equation . . . . . . . . . . . . . . . . . . . . 93

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3 The Laplace Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2 Well Posed Problems. Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3 Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.1 Discrete harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.2 Mean value properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.3 Maximum principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.3.4 The Dirichlet problem in a circle. Poisson’s formula . . . . . . . . 113
3.3.5 Harnack’s inequality and Liouville’s theorem . . . . . . . . . . . . . . 117
3.3.6 A probabilistic solution of the Dirichlet problem . . . . . . . . . . . 118
3.3.7 Recurrence and Brownian motion . . . . . . . . . . . . . . . . . . . . . . . 122

3.4 Fundamental Solution and Newtonian Potential . . . . . . . . . . . . . . . . . 124
3.4.1 The fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.2 The Newtonian potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.4.3 A divergence-curl system.

Helmholtz decomposition formula . . . . . . . . . . . . . . . . . . . . . . . 128
3.5 The Green Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.5.1 An integral identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.5.2 The Green function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.5.3 Green’s representation formula . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5.4 The Neumann function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.6 Uniqueness in Unbounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.6.1 Exterior problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

X



Contents XI

3.7 Surface Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.7.1 The double and single layer potentials . . . . . . . . . . . . . . . . . . . 142
3.7.2 The integral equations of potential theory . . . . . . . . . . . . . . . . 146

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Scalar Conservation Laws and First Order Equations . . . . . . . . . . . 156
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.2 Linear Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.1 Pollution in a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2.2 Distributed source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2.3 Decay and localized source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2.4 Inflow and outflow characteristics. A stability estimate . . . . . 162

4.3 Traffic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3.1 A macroscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3.2 The method of characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3.3 The green light problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.4 Traffic jam ahead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Integral (or Weak) Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.4.1 The method of characteristics revisited . . . . . . . . . . . . . . . . . . . 174
4.4.2 Definition of integral solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.4.3 The Rankine-Hugoniot condition . . . . . . . . . . . . . . . . . . . . . . . . 179
4.4.4 The entropy condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.4.5 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.4.6 Vanishing viscosity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.4.7 The viscous Burger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.5 The Method of Characteristics for Quasilinear Equations . . . . . . . . . 192
4.5.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.5.2 The Cauchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.5.3 Lagrange method of first integrals . . . . . . . . . . . . . . . . . . . . . . . 202
4.5.4 Underground flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.6 General First Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.6.1 Characteristic strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.6.2 The Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5 Waves and Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.1.1 Types of waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.1.2 Group velocity and dispersion relation . . . . . . . . . . . . . . . . . . . 223

5.2 Transversal Waves in a String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.2.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.3 The One-dimensional Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.3.1 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.3.2 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



XII Contents

5.4 The d’Alembert Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.4.1 The homogeneous equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.4.2 Generalized solutions and propagation of singularities . . . . . . 240
5.4.3 The fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
5.4.4 Non homogeneous equation. Duhamel’s method . . . . . . . . . . . 246
5.4.5 Dissipation and dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

5.5 Second Order Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.5.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.5.2 Characteristics and canonical form . . . . . . . . . . . . . . . . . . . . . . 252

5.6 Hyperbolic Systems with Constant Coefficients . . . . . . . . . . . . . . . . . . 257
5.7 The Multi-dimensional Wave Equation (n > 1) . . . . . . . . . . . . . . . . . . 261

5.7.1 Special solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.7.2 Well posed problems. Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 263

5.8 Two Classical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.8.1 Small vibrations of an elastic membrane . . . . . . . . . . . . . . . . . . 266
5.8.2 Small amplitude sound waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.9 The Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
5.9.1 Fundamental solution (n = 3)

and strong Huygens’ principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
5.9.2 The Kirchhoff formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
5.9.3 Cauchy problem in dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . 279
5.9.4 Non homogeneous equation. Retarded potentials . . . . . . . . . . 281

5.10 Linear Water Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.10.1 A model for surface waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.10.2 Dimensionless formulation and linearization . . . . . . . . . . . . . . . 286
5.10.3 Deep water waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
5.10.4 Interpretation of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
5.10.5 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.10.6 The method of stationary phase . . . . . . . . . . . . . . . . . . . . . . . . . 293

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

6 Elements of Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.2 Norms and Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
6.3 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
6.4 Projections and Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

6.4.1 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6.4.2 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

6.5 Linear Operators and Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.5.1 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.5.2 Functionals and dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.5.3 The adjoint of a bounded operator . . . . . . . . . . . . . . . . . . . . . . 331

6.6 Abstract Variational Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
6.6.1 Bilinear forms and the Lax-Milgram Theorem . . . . . . . . . . . . . 334
6.6.2 Minimization of quadratic functionals . . . . . . . . . . . . . . . . . . . . 339



Contents

6.6.3 Approximation and Galerkin method . . . . . . . . . . . . . . . . . . . . 340
6.7 Compactness and Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 343

6.7.1 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
6.7.2 Weak convergence and compactness . . . . . . . . . . . . . . . . . . . . . 344
6.7.3 Compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

6.8 The Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
6.8.1 Solvability for abstract variational problems . . . . . . . . . . . . . . 350
6.8.2 Fredholm’s Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

6.9 Spectral Theory for Symmetric Bilinear Forms . . . . . . . . . . . . . . . . . . 356
6.9.1 Spectrum of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
6.9.2 Separation of variables revisited . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.9.3 Spectrum of a compact self-adjoint operator . . . . . . . . . . . . . . 358
6.9.4 Application to abstract variational problems . . . . . . . . . . . . . . 360

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

7 Distributions and Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
7.1 Distributions. Preliminary Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
7.2 Test Functions and Mollifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
7.3 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.4 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

7.4.1 The derivative in the sense of distributions . . . . . . . . . . . . . . . 377
7.4.2 Gradient, divergence, laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . 379

7.5 Multiplication, Composition, Division, Convolution . . . . . . . . . . . . . . 382
7.5.1 Multiplication. Leibniz rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.5.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
7.5.3 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
7.5.4 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

7.6 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
7.6.1 Tempered distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
7.6.2 Fourier transform in S′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
7.6.3 Fourier transform in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

7.7 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
7.7.1 An abstract construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
7.7.2 The space H1 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
7.7.3 The space H10 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
7.7.4 The dual of H10 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
7.7.5 The spaces Hm (Ω), m > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
7.7.6 Calculus rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7.7.7 Fourier Transform and Sobolev Spaces . . . . . . . . . . . . . . . . . . . 405

7.8 Approximations by Smooth Functions and Extensions . . . . . . . . . . . . 406
7.8.1 Local approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
7.8.2 Estensions and global approximations . . . . . . . . . . . . . . . . . . . . 407

7.9 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
7.9.1 Traces of functions in H1 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
7.9.2 Traces of functions in Hm (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . 414

XIII



Contents

7.9.3 Trace spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
7.10 Compactness and Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

7.10.1 Rellich’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
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1

Introduction

Mathematical Modelling – Partial Differential Equations – Well Posed Problems – Basic

Notations and Facts – Smooth and Lipschitz Domains – Integration by Parts Formulas

1.1 Mathematical Modelling

Mathematical modelling plays a big role in the description of a large part of phe-
nomena in the applied sciences and in several aspects of technical and industrial
activity.
By a “mathematical model” we mean a set of equations and/or other mathe-

matical relations capable of capturing the essential features of a complex natural
or artificial system, in order to describe, forecast and control its evolution. The
applied sciences are not confined to the classical ones; in addition to physics and
chemistry, the practice of mathematical modelling heavily affects disciplines like
finance, biology, ecology, medicine, sociology.
In the industrial activity (e.g. for aerospace or naval projects, nuclear reactors,

combustion problems, production and distribution of electricity, traffic control,
etc.) the mathematical modelling, involving first the analysis and the numerical
simulation and followed by experimental tests, has become a common procedure,
necessary for innovation, and also motivated by economic factors. It is clear that
all of this is made possible by the enormous computational power now available.
In general, the construction of a mathematical model is based on two main

ingredients: general laws and constitutive relations. In this book we shall deal with
general laws coming from continuum mechanics and appearing as conservation or
balance laws (e.g. of mass, energy, linear momentum, etc.).
The constitutive relations are of an experimental nature and strongly depend

on the features of the phenomena under examination. Examples are the Fourier
law of heat conduction, the Fick law for the diffusion of a substance or the way
the speed of a driver depends on the density of cars ahead.
The outcome of the combination of the two ingredients is usually a partial

differential equation or a system of them.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan



2 1 Introduction

1.2 Partial Differential Equations

A partial differential equation is a relation of the following type:

F (x1, ..., xn, u, ux1, ..., uxn, ux1x1 , ux1x2 ..., uxnxn , ux1x1x1 , ...) = 0 (1.1)

where the unknown u = u (x1, ...xn) is a function of n variables and uxj ,..., uxixj ,...
are its partial derivatives. The highest order of differentiation occurring in the
equation is the order of the equation.
A first important distinction is between linear and nonlinear equations.
Equation (1.1) is linear if F is linear with respect to u and all its derivatives,

otherwise it is nonlinear.
A second distinction concerns the types of nonlinearity. We distinguish:

– Semilinear equations where F is nonlinear only with respect to u but is linear
with respect to all its derivatives;

– Quasi-linear equations where F is linear with respect to the highest order
derivatives of u;

– Fully nonlinear equations where F is nonlinear with respect to the highest order
derivatives of u.

The theory of linear equations can be considered sufficiently well developed and
consolidated, at least for what concerns the most important questions. On the
contrary, the non linearities present such a rich variety of aspects and complications
that a general theory does not appear to be conceivable. The existing results and
the new investigations focus on more or less specific cases, especially interesting in
the applied sciences.
To give the reader an idea of the wide range of applications we present a

series of examples, suggesting one of the possible interpretations. Most of them are
considered at various level of deepness in this book. In the examples, x represents
a space variable (usually in dimension n = 1, 2, 3) and t is a time variable.
We start with linear equations. In particular, equations (1.2)–(1.5) are fun-

damental and their theory constitutes a starting point for many other equations.

1. Transport equation (first order):

ut + v · ∇u = 0 (1.2)

It describes for instance the transport of a solid polluting substance along a chan-
nel; here u is the concentration of the substance and v is the stream speed. We
consider the one-dimensional version of (1.2) in Section 4.2

2. Diffusion or heat equation (second order):

ut −DΔu = 0, (1.3)

where Δ = ∂x1x1 +∂x2x2 + ...+∂xnxn is the Laplace operator. It describes the con-
duction of heat through a homogeneous and isotropic medium; u is the temperature
and D encodes the thermal properties of the material. Chapter 2 is devoted to the
heat equation and its variants.
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3. Wave equation (second order):

utt − c2Δu = 0. (1.4)

It describes for instance the propagation of transversal waves of small amplitude
in a perfectly elastic chord (e.g. of a violin) if n = 1, or membrane (e.g. of a drum)
if n = 2. If n = 3 it governs the propagation of electromagnetic waves in vacuum
or of small amplitude sound waves (Section 5.8). Here u may represent the wave
amplitude and c is the propagation speed.

4. Laplace’s or potential equation (second order):

Δu = 0, (1.5)

where u = u (x). The diffusion and the wave equations model evolution phenom-
ena. The Laplace equation describes the corresponding steady state, in which the
solution does not depend on time anymore. Together with its nonhomogeneous
version

Δu = f ,

called Poisson’s equation, it plays an important role in electrostatics as well. Chap-
ter 3 is devoted to these equations.

5. Black-Scholes equation (second order):

ut +
1

2
σ2x2uxx + rxux − ru = 0.

Here u = u (x,t), x ≥ 0, t ≥ 0. Fundamental in mathematical finance, this equation
governs the evolution of the price u of a so called derivative (e.g. an European
option), based on an underlying asset (a stock, a currency, etc.) whose price is x.
We meet the Black-Scholes equation in Section 2.9.

6. Vibrating plate (fourth order):

utt −Δ2u = 0,

where x ∈R2 and

Δ2u = Δ(Δu) =
∂4u

∂x41
+ 2

∂4u

∂x21∂x
2
2

+
∂4u

∂x42

is the biharmonic operator. In the theory of linear elasticity, it models the transver-
sal waves of small amplitude of a homogeneous isotropic plate (see Section 8.7).

7. Schrödinger equation (second order):

−iut = Δu+ V (x)u

where i is the complex unit. This equation is fundamental in quantum mechanics
and governs the evolution of a particle subject to a potential V . The function |u|2
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represents a probability density. We will briefly encounter the Schrödinger equation
in Problem 6.6.

Let us list now some examples of nonlinear equations

8. Burger’s equation (quasilinear, first order):

ut + cuux = 0 (x ∈ R) .

It governs a one dimensional flux of a non viscous fluid but it is used to model
traffic dynamics as well. Its viscous variant

ut + cuux = εuxx (ε > 0)

constitutes a basic example of competition between dissipation (due to the term
εuxx) and steepening (shock formation due to the term cuux). We will discuss
these topics in Section 4.4.

9. Fisher’s equation (semilinear, second order):

ut −DΔu = ru (M − u)

It governs the evolution of a population of density u, subject to diffusion and logis-
tic growth (represented by the right hand side). We examine the one-dimensional
version of Fisher’s equation in Section 2.10.

10. Porous medium equation (quasilinear, second order):

ut = k div (u
γ∇u)

where k > 0, γ > 1 are constant. This equation appears in the description of
filtration phenomena, e.g. of the motion of water through the ground. We briefly
meet the one-dimensional version of the porous medium equation in Section 2.10.

11. Minimal surface equation (quasilinear, second order):,

div

⎛
⎝ ∇u√

1 + |∇u|2

⎞
⎠ = 0 (x ∈R2)

The graph of a solution u minimizes the area among all surfaces z = v (x1, x2)
whose boundary is a given curve. For instance, soap balls are minimal surfaces.
We will not examine this equation (see e.g. R. Mc Owen, 1996).

12. Eikonal equation (fully nonlinear, first order):

|∇u| = c (x)
It appears in geometrical optics: if u is a solution, its level surfaces u (x) = t
describe the position of a light wave front at time t. A bidimensional version is
examined in Chapter 4.
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Let us now give some examples of systems.

13. Navier’s equation of linear elasticity: (three scalar equations of second
order):

�utt = μΔu+ (μ+ λ)grad div u

where u = (u1 (x,t) , u2 (x,t) , u3 (x,t)), x ∈R3. The vector u represents the dis-
placement from equilibrium of a deformable continuum body of (constant) density
�. We will not examine this system (see e.g. R. Dautray and J. L. Lions, Vol. 1,6,
1985).

14. Maxwell’s equations in vacuum (six scalar linear equations of first order):

Et − curl B = 0, Bt + curl E = 0 (Ampère and Faraday laws)

div E =0 div B =0 (Gauss’ law)

where E is the electric field and B is the magnetic induction field. The unit mea-
sures are the ”natural” ones, i.e. the light speed is c = 1 and the magnetic perme-
ability is μ0 = 1. We will not examine this system (see e.g. R. Dautray and J. L.
Lions, Vol. 1, 1985).

15. Navier-Stokes equations (three quasilinear scalar equations of second order
and one linear equation of first order):

{
ut + (u·∇)u = −1ρ∇p+ νΔu
div u =0

where u = (u1 (x,t) , u2 (x,t) , u3 (x,t)), p = p (x,t), x ∈R3. This equation governs
the motion of a viscous, homogeneous and incompressible fluid. Here u is the fluid
speed, p its pressure, ρ its density (constant) and ν is the kinematic viscosity,
given by the ratio between the fluid viscosity and its density. The term (u·∇)u
represents the inertial acceleration due to fluid transport. We will briefly meet the
Navier-Stokes equations in Section 3.4.

1.3 Well Posed Problems

Usually, in the construction of a mathematical model, only some of the general
laws of continuum mechanics are relevant, while the others are eliminated through
the constitutive laws or suitably simplified according to the current situation. In
general, additional information is necessary to select or to predict the existence
of a unique solution. This information is commonly supplied in the form of initial
and/or boundary data, although other forms are possible. For instance, typical
boundary conditions prescribe the value of the solution or of its normal derivative,
or a combination of the two. A main goal of a theory is to establish suitable
conditions on the data in order to have a problem with the following features:
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a) there exists at least one solution;

b) there exists at most one solution;

c) the solution depends continuously on the data.

This last condition requires some explanations. Roughly speaking, property c)
states that the correspondence

data→ solution (1.6)

is continuous or, in other words, that a small error on the data entails a small
error on the solution.
This property is extremely important and may be expressed as a local sta-

bility of the solution with respect to the data. Think for instance of using
a computer to find an approximate solution: the insertion of the data and the
computation algorithms entail approximation errors of various type. A significant
sensitivity of the solution on small variations of the data would produce an unac-
ceptable result.
The notion of continuity and the error measurements, both in the data and

in the solution, are made precise by introducing a suitable notion of distance. In
dealing with a numerical or a finite dimensional set of data, an appropriate distance
may be the usual euclidean distance: if x =(x1, x2, ..., xn) ,y =(y1, y2, ..., yn) then

dist (x,y) = ‖x− y‖ =

√√√√
n∑
k=1

(xk − yk)2 .

When dealing for instance with real functions, defined on a set A, common dis-
tances are:

dist (f, g) = max
x∈A

|f (x)− g (x)|

which measures the maximum difference between f and g over A, or

dist (f, g) =

√∫

A

(f − g)2

which is the so called least square distance between f and g.
Once the notion of distance has been chosen, the continuity of the correspon-

dence (1.6) is easy to understand: if the distance of the data tends to zero then
the distance of the corresponding solutions tends to zero.
When a problem possesses the properties a), b) c) above it is said to be well

posed. When using a mathematical model, it is extremely useful, sometimes es-
sential, to deal with well posed problems: existence of the solution indicates that
the model is coherent, uniqueness and stability increase the possibility of providing
accurate numerical approximations.
As one can imagine, complex models lead to complicated problems which re-

quire rather sophisticated techniques of theoretical analysis. Often, these problems
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become well posed and efficiently treatable by numerical methods if suitably re-
formulated in the abstract framework of Functional Analysis, as we will see in
Chapter 6.
On the other hand, not only well posed problems are interesting for the ap-

plications. There are problems that are intrinsically ill posed because of the lack
of uniqueness or of stability, but still of great interest for the modern technology.
We only mention an important class of ill posed problems, given by the so called
inverse problems, closely related to control theory, of which we provide simple
examples in Sections 8.8 and 9.2.

1.4 Basic Notations and Facts

We specify some of the symbols we will constantly use throughout the book and
recall some basic notions about sets, topology and functions.

Sets and Topology.We denote by: N, Z, Q, R, C the sets of natural numbers,
integers, rational, real and complex numbers, respectively. Rn is the n−dimensional
vector space of the n−uples of real numbers. We denote by e1,..., en the unit vectors
in the canonical base in Rn. In R2 and R3 we may denote them by i, j and k.
The symbol Br (x) denotes the open ball in R

n, with radius r and center at x,
that is

Br (x) = {y ∈Rn; |x− y| < r} .
If there is no need to specify the radius, we write simply B (x). The volume of
Br (x) and the area of ∂Br (x) are given by

|Br | =
ωn

n
rn and |∂Br | = ωnrn−1

where ωn is the surface area of the unit sphere
1 ∂B1 in R

n; in particular ω2 = 2π
and ω3 = 4π.

Let A ⊆ Rn. A point x ∈A is:
• an interior point if there exists a ball Br (x) ⊂ A;
• a boundary point if any ball Br (x) contains points of A and of its complement
R
n\A. The set of boundary points of A, the boundary of A, is denoted by ∂A;

• a limit point of A if there exists a sequence {xk}k≥1 ⊂ A such that xk → x.
A is open if every point in A is an interior point; the set A = A∪∂A is the closure
of A; A is closed if A = A. A set is closed if and only if it contains all of its limit
points.
An open set A is connected if for every couple of points x,y ∈A there exists a

regular curve joining them entirely contained in A. By a domain we mean an open
connected set. Domains are usually denoted by the letter Ω.

1 In general, ωn= nπn/2/Γ
(
1
2n+ 1

)
where Γ (s) =

∫+∞
0

ts−1e−tdt is the Euler gamma

function.
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If U ⊂ A, we say that U is dense in A if U = A. This means that any point
x ∈ A is a limit point of U . For instance, Q is dense in R.
A is bounded if it is contained in some ball Br (0); it is compact if it is closed

and bounded. If A0 is compact and contained in A, we write A0 ⊂⊂ A and we say
that A0 is compactly contained in A.

Infimum and supremumof a set of real numbers.A set A ⊂ R is bounded
from below if there exists a number K such that

K ≤ x for every x∈A. (1.7)

The greatest among the numbers K with the property (1.7) is called the infimum
or the greatest lower bound of A and denoted by inf A.
More precisely, we say that λ = infA if λ ≤ x for every x ∈ A and if, for every

ε > 0, we can find x̄ ∈ A such that x̄ < λ + ε. If infA ∈ A, then infA is actually
called the minimum of A, and may be denoted by minA.
Similarly, A ⊂ R is bounded from above if there exists a number K such that

x ≤ K for every x∈A. (1.8)

The smallest among the numbers K with the property (1.8) is called the supremum
or the lowest upper bound of A and denoted by supA.
Precisely, we say that Λ = supA if Λ ≥ x for every x ∈ A and if, for every

ε > 0, we can find x̄ ∈ A such that x̄ > Λ− ε. If supA ∈ A, then supA is actually
called the maximum of A, and may be denoted by maxA.

Functions. Let A ⊆ R and u : A→ R be a real valued function defined in A.
We say that u is continuous at x ∈A if u (y)→ u (x) as y → x. If u is continuous
at any point of A we say that u is continuous in A. The set of such functions is
denoted by C (A).
The support of a continuous function is the closure of the set where it is

different from zero. A continuous function is compactly supported in A if it vanishes
outside a compact set contained in A.
We say that u is bounded from below (resp. above) in A if the image

u (A) = {y ∈ R, y = u (x) for some x ∈A}

is bounded from below (resp. above). The infimum (supremum) of u (A) is called
the infimum (supremum) of u and is denoted by

inf
x∈A
u (x) (resp. sup

x∈A
u (x)).

We will denote by χA the characteristic function of A: χA = 1 on A and
χA = 0 in R

n\A.
We use one of the symbols uxj , ∂xju,

∂u

∂xj
for the first partial derivatives of u,

and∇u or grad u for the gradient of u. Accordingly, for the higher order derivatives
we use the notations uxjxk , ∂xjxku,

∂2u

∂xj∂xk
and so on.
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We say that u is of class Ck (Ω), k ≥ 1, or that it is a Ck−function, if u has
continuous partials up to the order k (included) in the domain Ω. The class of
continuously differentiable functions of any order in Ω, is denoted by C∞ (Ω).
If u ∈ C1 (Ω) then u is differentiable in Ω and we can write, for x ∈Ω and

h ∈Rn small:
u (x + h)− u (x) = ∇u (x) · h+o (h)

where the symbol o (h), “little o of h”, denotes a quantity such that o (h)/ |h| → 0
as |h| → 0.
The symbol Ck

(
Ω
)
will denote the set of functions in Ck (Ω) whose derivatives

up to the order k included can be extended continuously up to ∂Ω.

Integrals. Up to Chapter 5 included, the integrals can be considered in the
Riemann sense (proper or improper). A brief introduction to Lebesgue measure
and integral is provided in Appendix B. Let 1 ≤ p < ∞ and q = p/(p − 1), the
conjugate exponent of p. The following Hölder’s inequality holds

∣∣∣∣
∫

Ω

uv

∣∣∣∣ ≤
(∫

Ω

|u|p
)1/p(∫

Ω

|v|q
)1/q

. (1.9)

The case p = q = 2 is known as the Schwarz inequality.

Uniform convergence. A series
∑∞

m=1 um, where um : Ω ⊆ Rn → R, is said

to be uniformly convergent in Ω, with sum u if, setting SN =
∑N

m=1 um, we have

sup
x∈Ω

|SN (x) − u (x)| → 0 as N →∞.

Weierstrass test: Let |um (x)| ≤ am, for every m ≥ 1 and x ∈ Ω. If the
numerical series

∑∞
m=1 am is convergent, then

∑∞
m=1 um converges absolutely and

uniformly in Ω.

Limit and series. Let
∑∞
m=1 um be uniformly convergent in Ω. If um is contin-

uous at x0 for every m ≥ 1, then u is continuous at x0 and

lim
x→x0

∞∑
m=1
um (x) =

∞∑
m=1
um (x0) .

Term by term integration. Let
∑∞

m=1 um be uniformly convergent in Ω. If Ω is
bounded and um is integrable in Ω for every m ≥ 1, then:∫

Ω

∞∑
m=1
um =

∞∑
m=1

∫

Ω

um.

Term by term differentiation. Let Ω be bounded and um ∈ C1
(
Ω
)
for every

m ≥ 0. If the series ∑∞m=1 um (x0) is convergent at some x0 ∈ A and the series∑∞
m=1 ∂xjum are uniformly convergent in Ω for every j = 1, ..., n, then

∑∞
m=1 um

converges uniformly in Ω, with sum in C1
(
Ω
)
and

∂xj
∞∑
m=1
um (x) =

∞∑
m=1
∂xjum (x) (j = 1, ..., n).
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1.5 Smooth and Lipschitz Domains

We will need, especially in Chapters 7, 8 and 9, to distinguish the domains Ω in
R
n according to the degree of smoothness of their boundary (Fig. 1.2).

Definition 1.1. We say that Ω is a C1−domain if for every point x ∈ ∂Ω, there
exist a system of coordinates (y1, y2, ..., yn−1, yn) ≡ (y′, yn) with origin at x, a ball
B (x) and a function ϕ defined in a neighborhood N ⊂ Rn−1 of y′ = 0′, such that

ϕ ∈ C1 (N ) , ϕ (0′) = 0

and
1. ∂Ω ∩B (x) = {(y′, yn) : yn = ϕ (y′) , y′ ∈ N} ,
2. Ω ∩B (x) = {(y′, yn) : yn > ϕ (y′) , y′ ∈ N} .

The first condition expresses the fact that ∂Ω locally coincides with the graph
of a C1−function. The second one requires that Ω be locally placed on one side of
its boundary.
The boundary of a C1−domain does not have corners or edges and for every

point p ∈ ∂Ω, a tangent straight line (n = 2) or plane (n = 3) or hyperplane
(n > 3) is well defined, together with the outward and inward normal unit vectors.
Moreover these vectors vary continuously on ∂Ω.
The couples (ϕ,N ) appearing in the above definition are called local charts. If

they are all Ck−functions, for some k ≥ 1, Ω is said to be a Ck−domain. If Ω
is a Ck−domain for every k ≥ 1, it is said to be a C∞−domain. These are the
domains we consider smooth domains.
Observe that the one-to-one transformation (diffeomorfism) z = Φ (y) given

by {
z′ = y′

zn = yn − ϕ (y′) (1.10)

maps ∂Ω ∩ B (x) into a subset of the hyperplane zn = 0, so that ∂Ω ∩ B (x)
straightens, as shown in figure 1.1.

Fig. 1.1. Straightening the boundary ∂Ω by a diffeomorphism

In a great number of applications the relevant domains are rectangles, prisms,
cones, cylinders or unions of them. Very important are polygonal domains obtained
by triangulation procedures of smooth domains, for numerical approximations.



1.6 Integration by Parts Formulas 11

Fig. 1.2. A C1 domain and a Lipschitz domain

These types of domains belong to the class of Lipschitz domains, whose boundary
is locally described by the graph of a Lipschitz function.

Definition 1.2. We say that u : Ω → R
n is Lipschitz if there exists L such that

|u (x)− u(y)| ≤ L |x − y|

for every x,y ∈ Ω. The number L is called the Lipschitz constant of u.
Roughly speaking, a function is Lipschitz in Ω if the increment quotients in

every direction are bounded. In fact, Lipschitz functions are differentiable at all
points of their domain with the exception of a negligible set of points. Precisely,
we have (see e.g. Evans and Gariepy, 1997):

Theorem 1.1. (Rademacher). Let u be a Lipschtz function in A ⊆ Rn. Then u is
differentiable at every point of A, except at a set points of Lebesgue measure zero.

Typical real Lipschitz functions in Rn are f (x) = |x| or, more generally, the
distance function from a closed set, C, defined by

f (x) = dist (x, C) = inf
y∈C

|x − y| .

We say that a domain is Lipschitz if in Definition 1.1 the functions ϕ are
Lipschitz or, equivalently, if the map (1.10) is a bi-Lipschitz transformation, that
is, both Φ and Φ−1 are Lipschitz.

1.6 Integration by Parts Formulas

Let Ω ⊂ Rn, be a C1− domain. For vector fields

F =(F1, F2, ..., Fn) : Ω → R
n
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with F ∈C1
(
Ω
)
, the Gauss divergence formula holds:

∫

Ω

divF dx =

∫

∂Ω

F · ν dσ (1.11)

where divF =
∑n

j=1 ∂xjFj, ν denotes the outward normal unit vector to ∂Ω, and
dσ is the “surface” measure on ∂Ω, locally given in terms of local charts by

dσ =
√
1 + |∇ϕ (y′)| dy′.

A number of useful identities can be derived from (1.11). Applying (1.11) to vF,
with v ∈ C1

(
Ω
)
, and recalling the identity

div(vF) = v divF+∇v · F

we obtain the following integration by parts formula:

∫

Ω

v divF dx =

∫

Ω

vF · ν dσ −
∫

Ω

∇v · F dx. (1.12)

Choosing F = ∇u, u ∈ C2 (Ω)∩C1
(
Ω
)
, since div∇u = Δu and ∇u ·ν = ∂νu, the

followingGreen’s identity follows:

∫

Ω

vΔu dx =

∫

∂Ω

v∂νu dσ −
∫

Ω

∇v · ∇u dx. (1.13)

In particular, the choice v ≡ 1 yields
∫

Ω

Δu dx =

∫

∂Ω

∂νu dσ. (1.14)

If also v ∈ C2 (Ω) ∩ C1
(
Ω
)
, interchanging the roles of u and v in (1.13) and

subtracting, we derive a second Green’s identity:

∫

Ω

(vΔu− uΔv) dx =
∫

∂Ω

(v∂νu− u∂νv) dσ. (1.15)

Remark 1.1. All the above formulas hold for Lipschitz domains as well. In fact, the
Rademacher theorem implies that at every point of the boundary of a Lipschitz
domain, with the exception of a set of points of surface measure zero, there is a
well defined tangent plane. This is enough for extending the formulas (1.12), (1.13)
and (1.15) to Lipchitz domains.



2

Diffusion
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dom Walk (n = 1) – Diffusion, Drift and Reaction – Multidimensional Random Walk –

An Example of Reaction−Diffusion (n = 3) – The Global Cauchy Problem (n = 1) –
An Application to Finance – Some Nonlinear Aspects

2.1 The Diffusion Equation

2.1.1 Introduction

The one-dimensional diffusion equation is the linear second order partial differ-
ential equation

ut −Duxx = f
where u = u (x, t) , x is a real space variable, t a time variable and D a positive
constant, called diffusion coefficient. In space dimension n > 1, that is when
x ∈ Rn, the diffusion equation reads

ut −DΔu = f (2.1)

where Δ denotes the Laplace operator:

Δ =

n∑
k=1

∂2

∂x2k
.

When f ≡ 0 the equation is said to be homogeneous and in this case the su-
perposition principle holds: if u and v are solutions of (2.1) and a, b are real (or
complex) numbers, au+ bv also is a solution of (2.1). More generally, if uk (x,t) is
a family of solutions depending on the parameter k (integer or real) and g = g (k)
is a function rapidly vanishing at infinity, then

∞∑
k=1

uk (x,t) g (k) and

∫ +∞
−∞

uk (x,t) g (k) dk

are still solutions.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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A common example of diffusion is given by heat conduction in a solid body. Con-
duction comes from molecular collision, transferring heat by kinetic energy, without
macroscopic material movement. If the medium is homogeneous and isotropic with
respect to the heat propagation, the evolution of the temperature is described by
equation (2.1); f represents the intensity of an external distributed source. For
this reason equation (2.1) is also known as the heat equation.
On the other hand equation (2.1) constitutes a much more general diffusion

model, where by diffusion we mean, for instance, the transport of a substance due
to the molecular motion of the surrounding medium. In this case, u could represent
the concentration of a polluting material or of a solute in a liquid or a gas (dye in
a liquid, smoke in the atmosphere) or even a probability density. We may say that
the diffusion equation unifies at a macroscopic scale a variety of phenomena, that
look quite different when observed at a microscopic scale.
Through equation (2.1) and some of its variants we will explore the deep con-

nection between probabilistic and deterministic models, according (roughly) to the
scheme

diffusion processes ↔ probability density↔ differential equations.
The star in this field isBrownian motion, derived from the name of the botanist

Brown, who observed in the middle of the 19th century, the apparently chaotic
behavior of certain particles on a water surface, due to the molecular motion. This
irregular motion is now modeled as a stochastic process under the terminology of
Wiener process or Brownian motion. The operator

1

2
Δ

is strictly related to Brownian motion1 and indeed it captures and synthesizes the
microscopic features of that process.
Under equilibrium conditions, that is when there is no time evolution, the

solution u depends only on the space variable and satisfies the stationary version
of the diffusion equation (letting D = 1)

−Δu = f (2.2)

(−uxx = f, in dimension n = 1). Equation (2.2) is known as the Poisson equation.
When f = 0, it is called Laplace’s equation and its solutions are so important in
so many fields that they have deserved the special name of harmonic functions.
This equation will be considered in the next chapter.

2.1.2 The conduction of heat

Heat is a form of energy which it is frequently convenient to consider as separated
from other forms. For historical reasons, calories instead of Joules are used as units
of measurement, each calorie corresponding to 4.182 Joules.

1 In the theory of stochastic processes, 1
2
Δ represents the infinitesimal generator of the

Brownian motion.



2.1 The Diffusion Equation 15

We want to derive a mathematical model for the heat conduction in a solid
body. We assume that the body is homogeneous and isotropic, with constant mass
density ρ, and that it can receive energy from an external source (for instance, from
an electrical current or a chemical reaction or from external absorption/radiation).
Denote by r the time rate per unit mass at which heat is supplied2 by the external
source.
Since heat is a form of energy, it is natural to use the law of conservation of

energy, that we can formulate in the following way:

Let V be an arbitrary control volume inside the body. The time rate of change
of thermal energy in V equals the net flux of heat through the boundary ∂V of V ,
due to the conduction, plus the time rate at which heat is supplied by the external
sources.

If we denote by e=e (x, t) the thermal energy per unit mass, the total quantity
of thermal energy inside V is given by

∫

V

eρ dx

so that its time rate of change is3

d

dt

∫

V

eρ dx =

∫

V

etρ dx.

Denote by q the heat flux vector4, which specifies the heat flow direction and the
magnitude of the rate of flow across a unit area. More precisely, if dσ is an area
element contained in ∂V with outer unit normal ν, then q · νdσ is the energy flow
rate through dσ and therefore the total inner heat flux through ∂V is given by

−
∫

∂V

q · ν dσ =
(divergence theorem)

−
∫

V

divq dx.

Finally, the contribution due to the external source is given by
∫

V

rρ dx.

Thus, conservation of energy requires:

∫

V

etρ dx = −
∫

V

divq dx+

∫

V

rρ dx. (2.3)

The arbitrariness of V allows us to convert the integral equation (2.3) into the
pointwise relation

etρ = − divq+rρ (2.4)

2 Dimensions of r: [r] = [cal]× [time]−1 × [mass]−1 .
3 Assuming that the time derivative can be carried inside the integral.
4 [q] = [cal]× [lenght]−2 × [time]−1 .
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that constitutes a basic law of heat conduction. However, e and q are unknown and
we need additional information through constitutive relations for these quantities.
We assume the following:

• Fourier law of heat conduction. Under “normal” conditions, for many solid
materials, the heat flux is a linear function of the temperature gradient, that is:

q = −κ∇u (2.5)

where u is the absolute temperature and κ > 0, the thermal conductivity5, depends
on the properties of the material. In general, κ may depend on u, x and t, but
often varies so little in cases of interest that it is reasonable to neglect its variation.
Here we consider κ constant so that

divq = −κΔu. (2.6)

The minus sign in the law (2.5) reflects the tendency of heat to flow from hotter
to cooler regions.

• The thermal energy is a linear function of the absolute temperature:

e = cvu (2.7)

where cv denotes the specific heat
6 (at constant volume) of the material. In many

cases of interest cv can be considered constant. The relation (2.7) is reasonably
true over not too wide ranges of temperature.

Using (2.6) and (2.7), equation (2.4) becomes

ut =
κ

cv�
Δu+

1

cv
r (2.8)

which is the diffusion equation with D = κ/ (cv�) and f = r/cv. As we will see,
the coefficient D, called thermal diffusivity, encodes the thermal response time of
the material.

2.1.3 Well posed problems (n = 1)

As we have mentioned at the end of chapter one, the governing equations in a
mathematical model have to be supplemented by additional information in order to
obtain a well posed problem, i.e. a problem that has exactly one solution, depending
continuously on the data.
On physical grounds, it is not difficult to outline some typical well posed prob-

lems for the heat equation. Consider the evolution of the temperature u inside
a cylindrical bar, whose lateral surface is perfectly insulated and whose length is
much larger than its cross-sectional area A. Although the bar is three dimensional,

5 [κ] = [cal]× [deg]−1 × [time]−1 × [length]−1 (deg stays for degree, Celsius or Kelvin).
6 [cv] = [cal]× [deg]−1 × [mass]−1 .
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we may assume that heat moves only down the length of the bar and that the heat
transfer intensity is uniformly distributed in each section of the bar. Thus we may
assume that e = e (x, t) , r = r (x, t), with 0 ≤ x ≤ L. Accordingly, the constitutive
relations (2.5) and (2.7) read

e (x, t) = cvu (x, t) , q = −κuxi.

By choosing V = A× [x, x+Δx] as the control volume in (2.3), the cross-sectional
area A cancels out, and we obtain

∫ x+Δx

x

cvρut dx =

∫ x+Δx

x

κuxx dx+

∫ x+Δx

x

rρ dx

that yields for u the one-dimensional heat equation

ut −Duxx = f.

We want to study the temperature evolution during an interval of time, say, from
t = 0 until t = T . It is then reasonable to prescribe its initial distribution inside
the bar: different initial configurations will correspond to different evolutions of
the temperature along the bar. Thus we need to prescribe the initial condition

u (x, 0) = g (x)

where g models the initial temperature profile.
This is not enough to determine a unique evolution; it is necessary to know

how the bar interacts with the surroundings. Indeed, starting with a given initial
temperature distribution, we can change the evolution of u by controlling the
temperature or the heat flux at the two ends of the bar7; for instance, we could keep
the temperature at a certain fixed level or let it vary in a certain way, depending
on time. This amounts to prescribing

u (0, t) = h1 (t) , u (L, t) = h2 (t) (2.9)

at any time t ∈ (0, T ]. The (2.9) are called Dirichlet boundary conditions .
We could also prescribe the heat flux at the end points. Since from Fourier law

we have
inward heat flow at x = 0 : −κux (0, t)
inward heat flow at x = L : κux (L, t)

the heat flux is assigned through the Neumann boundary conditions

−ux (0, t) = h1 (t) , ux (L, t) = h2 (t)

at any time t ∈ (0, T ].
7 Remember that the bar has perfect lateral thermal insulation.
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Another type of boundary condition is the Robin or radiation condition.
Let the surroundings be kept at temperature U and assume that the inward heat
flux from one end of the bar, say x = L, depends linearly on the difference U − u,
that is8

κux = γ(U − u) (γ > 0). (2.10)

Letting α = γ/κ > 0 e h = γU/κ, the Robin condition at x = L reads

ux + αu = h.

Clearly, it is possible to assign mixed conditions: for instance, at one end a
Dirichlet condition and at the other one a Neumann condition.

The problems associated with the above boundary conditions have a corre-
sponding nomenclature. Summarizing, we can state the most common problems
for the one dimensional heat equation as follows: given f = f (x, t) (external
source) and g = g (x) (initial or Cauchy data), determine u = u (x, t) such that:

⎧
⎪⎨
⎪⎩

ut −Duxx = f 0 < x < L, 0 < t < T

u (x, 0) = g (x) 0 ≤ x ≤ L
+ boundary conditions 0 < t ≤ T

where the boundary conditions may be:

• Dirichlet:
u (0, t) = h1 (t) , u (L, t) = h2 (t) ,

• Neumann:
−ux (0, t) = h1 (t) , ux (L, t) = h2 (t) ,

• Robin or radiation:

−ux (0, t) + αu (0, t) = h1 (t) , ux (L, t) + αu (L, t) = h2 (t) (α > 0),

ormixed conditions. Accordingly, we have the initial-Dirichlet problem, the initial-
Neumann problem and so on. When h1 = h2 = 0, we say that the boundary
conditions are homogeneous.

Remark 2.1. Observe that only a special part of the boundary of the rectangle

QT = (0, L)× (0, T ) ,

called the parabolic boundary of QT , carries the data (see Fig. 2.1). No final con-
dition (for t = T, 0 < x < L) is required.

8 Formula (2.10) is based on Newton’s law of cooling : the heat loss from the surface of
a body is a linear function of the temperature drop U −u from the surroudings to the
surface. It represents a good approximation to the radiative loss from a body when
|U − u| /u� 1.
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Fig. 2.1. The parabolic boundary of QT

In important applications, for instance in financial mathematics, x varies over
unbounded intervals, typically (0,∞) or R. In these cases one has to require that
the solution do not grow too much at infinity. We will later consider the global
Cauchy problem:

⎧
⎪⎨
⎪⎩

ut −Duxx = f x ∈ R, 0 < t < T
u (x, 0) = g (x) x ∈ R
+ conditions as x→ ±∞.

2.1.4 A solution by separation of variables

We will prove that under reasonable hypotheses the initial Dirichlet, Neumann or
Robin problems are well posed. Sometimes this can be shown using elementary
techniques like the separation of variables method that we describe below through
a simple example of heat conduction. We will come back to this method from a
more general point of view in Section 6.9.

As in the previous section, consider a bar (that we can consider one-dimensional)
of length L, initially (at time t = 0) at constant temperature u0. Thereafter, the
end point x = 0 is kept at the same temperature while the other end x = L is
kept at a constant temperature u1 > u0. We want to know how the temperature
evolves inside the bar.
Before making any computations, let us try to conjecture what could happen.

Given that u1 > u0, heat starts flowing from the hotter end, raising the temper-
ature inside the bar and causing a heat outflow into the cold boundary. On the
other hand, the interior increase of temperature causes the hot inflow to decrease
in time, while the ouflow increases. We expect that sooner or later the two fluxes
balance each other and that the temperature eventually reaches a steady state
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distribution. It would also be interesting to know how fast the steady state is
reached.

We show that this is exactly the behavior predicted by our mathematical model,
given by the heat equation

ut −Duxx = 0 t > 0, 0 < x < L

with the initial-Dirichlet conditions

u (x, 0) = g (x) 0 ≤ x ≤ L
u (0, t) = u0, u (L, t) = u1 t > 0.

Since we are interested in the long term behavior of our solution, we leave t un-
limited. Notice the jump discontinuity between the initial and the boundary data
at x = L; we will take care of this little difficulty later.

• Dimensionless variables. First of all we introduce dimensionless variables,
that is variables independent of the units of measurement. To do that we rescale
space, time and temperature with respect to quantities that are characteristic of
our problem. For the space variable we can use the length L of the bar as rescaling
factor, setting

y =
x

L

which is clearly dimensionless, being a ratio of lengths. Notice that

0 ≤ y ≤ 1.

How can we rescale time? Observe that the dimensions of the diffusion coefficient
D are

[length]2 × [time]−1.
Thus the constant τ = L2/D gives a characteristic time scale for our diffusion
problem. Therefore we introduce the dimensionless time

s =
t

τ
. (2.11)

Finally, we rescale the temperature by setting

z (y, s) =
u (Ly, τ s)− u0
u1 − u0

.

For the dimensionless temperature z we have:

z (y, 0) =
u (Ly, 0)− u0
u1 − u0

= 0, 0 ≤ y ≤ 1

z (0, s) =
u (0, τs)− u0
u1 − u0

= 0, z (1, s) =
u (L, τs) − u0
u1 − u0

= 1.
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Moreover

(u1 − u0)zs =
∂t

∂s
ut = τut =

L2

D
ut

(u1 − u0)zyy =
(
∂x

∂y

)2
uxx = L

2uxx.

Hence, since ut = Duxx,

(u1 − u0)(zs − zyy) =
L2

D
ut − L2uxx =

L2

D
Duxx − L2uxx = 0.

In conclusion, we find
zs − zyy = 0 (2.12)

with the initial condition
z (y, 0) = 0 (2.13)

and the boundary conditions

z (0, s) = 0, z (1, s) = 1. (2.14)

We see that in the dimensionless formulation the parameters L and D have disap-
peared, emphasizing the mathematical essence of the problem. On the other hand,
we will show later the relevance of the dimensionless variables in test modelling.

• The steady state solution . We start solving problem (2.12), (2.13), (2.14) by
first determining the steady state solution zSt, that satisfies the equation zyy = 0
and the boundary conditions (2.14). An elementary computation gives

zSt (y) = y.

In terms of the original variables the steady state solution is

uSt (x) = u0 + (u1 − u0)
x

L

corresponding to a uniform heat flux along the bar given by the Fourier law:

heat flux = −κux = −κ
(u1 − u0)
L

.

• The transient regime. Knowing the steady state solution, it is convenient to
introduce the function

U (y, s) = zSt (y, s) − z (y, s) = y − z (y, s) .

Since we expect our solution to eventually reach the steady state, U represents a
transient regime that should converge to zero as s→∞. Furthermore, the rate of
convergence to zero of U gives information on how fast the temperature reaches
its equilibrium distribution. U satisfies (2.12) with initial condition

U (y, 0) = y (2.15)
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and homogeneous boundary conditions

U (0, s) = 0 and U (1, s) = 0. (2.16)

• The method of separation of variables. We are now in a position to find
an explicit formula for U using the method of separation of variables. The main
idea is to exploit the linear nature of the problem constructing the solution by
superposition of simpler solutions of the form w (s) v (y) in which the variables s
and y appear in separated form.

Step 1. We look for non-trivial solutions of (2.12) of the form

U (y, s) = w (s) v (y)

with v (0) = v (1) = 0. By substitution in (2.12) we find

0 = Us − Uyy = w′ (s) v (y) − w (s) v′′ (y)

from which, separating the variables,

w′ (s)
w (s)

=
v′′ (y)
v (y)

. (2.17)

Now, the left hand side in (2.17) is a function of s only, while the right hand
side is a function of y only and the equality must hold for every s > 0 and every
y ∈ (0, L) . This is possible only when both sides are equal to a common constant
λ, say. Hence we have

v′′ (y) − λv (y) = 0 (2.18)

with
v (0) = v (1) = 0 (2.19)

and
w′ (s) − λw (s) = 0. (2.20)

Step 2. We first solve problem (2.18), (2.19). There are three different possi-
bilities for the general solution of (2.18):

a) If λ = 0,
v (y) = A+ By (A,B arbitrary constants)

and the conditions (2.19) imply A = B = 0.

b) If λ is a positive real number, say λ = μ2 > 0, then

v (y) = Ae−μy + Beμy

and again it is easy to check that the conditions (2.19) imply A = B = 0.

c) Finally, if λ = −μ2 < 0, then

v (y) = A sinμy + B cos μy.
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From (2.19) we get

v (0) = B = 0

v (1) = A sinμ +B cosμ = 0

from which

A arbitrary, B = 0, μm = mπ, m = 1, 2, ... .

Thus, only in case c) we find non-trivial solutions

vm (y) = A sinmπy. (2.21)

In this context, (2.18), (2.19) is called an eigenvalue problem; the special values
μm are the eigenvalues and the solutions vm are the corresponding eigenfunctions.
With λ = −μ2m = −m2π2, the general solution of (2.20) is

wm (s) = Ce
−m2π2s (C arbitrary constant). (2.22)

From (2.21) and (2.22) we obtain damped sinusoidal waves of the form

Um (y, s) = Ame
−m2π2s sinmπy.

Step 3. Although the solutions Um satisfy the homogeneous Dirichlet condi-
tions, they do not match, in general, the initial condition U (y, 0) = y. As we
already mentioned, we try to construct the correct solution superposing the Um
by setting

U (y, s) =

∞∑
m=1

Ame
−m2π2s sinmπy. (2.23)

Some questions arise:

Q1. The initial condition requires

U (y, 0) =

∞∑
m=1

Am sinmπy = y for 0 ≤ y ≤ 1. (2.24)

Is it possible to choose the coefficients Am in order to satisfy (2.24)? In which
sense does U attain the initial data? For instance, is it true that

U (z, s)→ y if (z, s)→ (y, 0)?

Q2. Any finite linear combination of the Um is a solution of the heat equation;
can we make sure that the same is true for U? The answer is positive if we could
differentiate term by term the infinite sum and get

(∂s − ∂2yy)U (y, s) =
∞∑
m=1

(∂s − ∂yy)Um (y, s) = 0. (2.25)
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What about the boundary conditions?

Q3. Even if we have a positive answer to questions 1 and 2, are we confident
that U is the unique solution of our problem and therefore that it describes the
correct evolution of the temperature?

Q1. Question 1 is rather general and concerns the Fourier series expansion9 of
a function, in particular of the initial data f (y) = y, in the interval (0, 1). Due
to the homogeneous Dirichlet conditions it is convenient to expand f (y) = y in a
sine Fourier series, whose coefficients are given by the formulas

Am = 2

∫ 1
0

y sinmπy dy = − 2
mπ
[y cosmπy]10 +

2

mπ

∫ 1
0

cosmπy dy =

= −2cosmπ
mπ

= (−1)m+1 2
mπ
.

The sine Fourier expansion of f (y) = y is therefore

y =

∞∑
m=1

(−1)m+1 2
mπ
sinmπy. (2.26)

Where is the expansion (2.26) valid? It cannot be true at y = 1 since sinmπ = 0
for every m and we would obtain 1 = 0. This clearly reflects the jump discontinuity
of the data at y = 1.
The theory of Fourier series implies that (2.26) is true at every point y ∈ [0, 1)

and that the series converges uniformly in every interval [0, a], a < 1. Moreover,
equality (2.26) holds in the leat square sense (or L2 (0, 1) sense), that is

∫ 1
0

[y−
N∑
m=1

(−1)m+1 2
mπ
sinmπy]2dy → 0 as N →∞.

From (2.23) and the expression of Am, we obtain the formal solution

U (y, s) =

∞∑
m=1

(−1)m+1 2
mπ
e−m

2π2s sinmπy (2.27)

that attains the initial data in the least squares sense, i.e.10.

lim
s→0+

∫ 1
0

[U (y, s) − y]2dy = 0. (2.28)

In fact, from Parseval’s equality11, we can write

∫ 1
0

[U (y, s) − y]2 dy = 4
π2

∞∑
m=1

(
e−m

2π2s − 1
)2

m2
. (2.29)

9 Appendix A.
10 It is also true that U (z, s)→ y in the pointwise sense, when y �= 1 and (z, s)→ (y, 0).
We omit the proof.

11 Appendix A.
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Since for s ≥ 0 (
e−m

2π2s − 1
)2

m2
≤ 1

m2

and the series
∑
1/m2 converges, then the series (2.29) converges uniformly by

the Weierstrass test (see Section 1.4) in [0,∞) and we can take the limit under
the sum, obtaining (2.28).

Q2. The analytical expression of U is rather reassuring: it is a superposition
of sinusoids of increasing frequency m and of strongly damped amplitude because
of the negative exponential, at least when s > 0. Indeed, for s > 0, the rapid
convergence to zero of each term and its derivatives in the series (2.27) allows us
to differentiate term by term. Precisely, we have

∂Um

∂s
= (−1)m+2 2mπe−m2π2s sinmπy, ∂

2Um

∂y2
= (−1)m+2 2e−m2π2s sinmπy

so that, if s ≥ s0 > 0,
∣∣∣∣
∂Um

∂s

∣∣∣∣ ≤ 2mπe−m
2π2s0 ,

∣∣∣∣
∂2Um

∂y2

∣∣∣∣ ≤ 2mπe−m
2π2s0 .

Since the numerical series ∞∑
m=1

me−m
2π2s0

is convergent, we conclude by the Weierstrass test that the series

∞∑
m=1

∂Um

∂s
and

∞∑
m=1

∂2Um

∂y2

converge uniformly in [0, 1] × [s0,∞) so that (2.25) is true and therefore U is a
solution of (2.12).
It remains to check the Dirichlet conditions: if s0 > 0,

U (z, s)→ 0 as (z, s)→ (0, s0) or (z, s)→ (L, s0) .

This is true because we can take the two limits under the sum, due to the uniform
convergence of the series (2.27) in any region [0, L]× (b,+∞) with b > 0. For the
same reason, U has continuous derivatives of any order, up to the lateral boundary
of the strip [0, L]× (b,+∞) .
Note, in particular, that U immediately forgets the initial discontinuity and

becomes smooth at any positive time.

Q3. To show that U is indeed the unique solution, we use the so-called energy
method, that we will develop later in greater generality. Suppose W is another
solution of problem (2.12), (2.15), (2.16). Then, by linearity,

v = U −W
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satisfies
vs − vyy = 0 (2.30)

and has zero initial-boundary data. Multiplying (2.30) by v, integrating in y over
the interval [0, 1] and keeping s > 0, fixed, we get

∫ 1
0

vvs dy −
∫ 1
0

vvyy dy = 0. (2.31)

Observe that ∫ 1
0

vvs dy =
1

2

∫ 1
0

∂s
(
v2
)
dy =

1

2

d

ds

∫ 1
0

v2dy. (2.32)

Moreover, integrating by parts we can write

∫ 1
0

vvyy dy = [v (1, s) vy (1, s)− v (0, s) vy (0, s)]−
∫ 1
0

(vy)
2
dy (2.33)

= −
∫ 1
0

(vy)
2
dy

since v (1, s) = v (0, s) = 0. From (2.31), (2.32) and (2.33) we get

1

2

d

ds

∫ 1
0

v2dy = −
∫ 1
0

(vy)
2 dy ≤ 0 (2.34)

and therefore, the nonnegative function

E (s) =

∫ 1
0

v2 (y, s) dy

is non-increasing. On the other hand, using (2.28) for v instead of U , we get

E (s)→ 0 as s→ 0
which forces E (s) = 0, for every s > 0. But v2 (y, s) is nonnegative and continuous
in [0, 1] if s > 0, so that it must be v (y, s) = 0 for every s > 0 or, equivalently,
U =W.

• Back to the original variables. In terms of the original variables, our solution
is expressed as

u (x, t) = u0 + (u1 − u0)
x

L
−

∞∑
m=1

(−1)m+1 2
mπ
e
−m2π2D

L2
t sin

mπ

L
x.

This formula confirms our initial guess about the evolution of the temperature
towards the steady state. Indeed, each term of the series converges to zero expo-
nentially as t→ +∞ and it is not difficult to show12 that

u (x, t)→ u0 + (u1 − u0)
x

L
as t→ +∞.

12 The Weierstrass test works here for t ≥ t0 > 0.
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Moreover, among the various terms of the series, the first one (m = 1) decays much
more slowly than the others and very soon it determines the main deviation of u
from the equilibrium, independently of the initial condition. This leading term is
the damped sinusoid

2

π
e
−π2D
L2

t sin
π

L
x.

In this mode there is a concentration of heat at x = L/2 where the temperature
reaches its maximum amplitude 2 exp(−π2Dt/L2)/π. At time t = L2/D the am-
plitude decays to 2 exp(−π2)/π � 3.3 × 10−5, about 0.005 per cent of its initial
value. This simple calculation shows that to reach the steady state a time of order
L2/D is required, a fundamental fact in heat diffusion.
Not surprisingly, the scaling factor in (2.11) was exactly τ = L2/D. The di-

mensionless formulation is extremely useful in experimental modelling tests. To
achieve reliable results, these models must reproduce the same characteristics at
different scales. For instance, if our bar were an experimental model of a much
bigger beam of length L0 and diffusion coefficient D0, to reproduce the same heat
diffusion effects, we must choose material (D) and length (L) for our model bar
such that

L2

D
=
L20
D0
.

Figure 2.2 shows the solution of the dimensionless problem (2.12), (2.15), (2.16)
for 0 < t ≤ 1.

Fig. 2.2. The solution to the dimensionless problem (2.12), (2.13), ( 2.14)

2.1.5 Problems in dimension n > 1

The formulation of the well posed problems in subsection 2.1.3 can be easily gen-
eralized to any spatial dimension n > 1, in particular to n = 2 or n = 3. Suppose
we want to determine the evolution of the temperature in a heat conducting body
that occupies a bounded domain13 Ω ⊂ Rn, during an interval of time [0, T ]. Un-
der the hypotheses of subsection 2.1.2, the temperature is a function u = u (x,t)

13 Recall that by domain we mean an open connected set in Rn.
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that satisfies the heat equation ut −DΔu = f , in the space-time cylinder

QT = Ω × (0, T ) .

To select a unique solution we have to prescribe first of all the initial distribution

u (x, 0) = g (x) x ∈Ω,

where Ω = Ω ∪ ∂Ω denotes the closure of Ω.
The control of the interaction of the body with the surroundings is modeled

through suitable conditions on ∂Ω. The most common ones are:

Dirichlet condition: the temperature is kept at a prescribed level on ∂Ω; this
amounts to assigning

u (σ, t) = h (σ,t) σ ∈ ∂Ω and t ∈ (0, T ].

Neumann condition: the heat flux through ∂Ω is assigned. To model this
condition, we assume that the boundary ∂Ω is a smooth curve or surface, having
a tangent line or plane at every point14 with outward unit vector ν. From Fourier
law we have

q = heat flux = −κ∇u
so that the inward heat flux is

−q · ν =κ∇u · ν =κ∂νu.

Thus the Neumann condition reads

∂νu (σ, t) = h (σ,t) σ ∈ ∂Ω and t ∈ (0, T ].

Radiation or Robin condition: the inward (say) heat flux through ∂Ω
depends linearly on the difference15 U − u:

−q · ν =γ (U − u) (γ > 0)

where U is the ambient temperature. From the Fourier law we obtain

∂νu+ αu = h on ∂Ω × (0, T ]

with α = γ/κ > 0, h = γU/κ.

Mixed conditions: the boundary of Ω is decomposed into various parts where
different boundary conditions are prescribed. For instance, a formulation of a mixed
Dirichlet-Neumann problem is obtained by writing

∂Ω = ∂DΩ ∪ ∂NΩ with ∂DΩ ∩ ∂NΩ = ∅
14 We can also allow boundaries with corner points, like squares, cones, or edges, like
cubes. It is enough that the set of points where the tangent plane does not exist has
zero surface measure (zero length in two dimensions). Lipschitz domains have this
property (see Section 1.4).

15 Linear Newton law of cooling.



2.1 The Diffusion Equation 29

where ∂DΩ and ∂NΩ “reasonable” subsets of ∂Ω. Typically ∂NΩ = ∂Ω∩A, where
A is open in Rn. In this case we say that ∂NΩ is a relatively open set in ∂Ω. Then
we assign

u = h1 on ∂DΩ × (0, T ]
∂νu = h2 on ∂NΩ × (0, T ].

Summarizing, we have the following typical problems: given f = f (x, t) and
g = g (x), determine u = u (x, t) such that:⎧⎪⎨

⎪⎩

ut −DΔu = f in QT

u (x, 0) = g (x) in Ω

+ boundary conditions on ∂Ω × (0, T ]
where the boundary conditions are:

• Dirichlet:
u = h,

• Neumann:
∂νu = h,

• radiation or Robin:
∂νu+ αu = h (α > 0) ,

• mixed:
u = h1 on ∂DΩ, ∂νu = h2 on ∂NΩ.

Fig. 2.3. The space-time cylinder QT

Also in dimension n > 1, the global Cauchy problem is important:⎧
⎪⎨
⎪⎩

ut −DΔu = f x ∈Rn, 0 < t < T
u (x, 0) = g (x) x ∈Rn
+ condition as |x| → ∞.
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Remark 2.2. We again emphasize that no final condition (for t = T,x ∈Ω) is re-
quired. The data is assigned on the parabolic boundary ∂pQT of QT , given by the
union of the bottom points Ω̄ × {t = 0} and the side points ∂Ω × (0, T ]:

∂pQT =
(
Ω̄ × {t = 0}

)
∪ (∂Ω × (0, T ]) .

2.2 Uniqueness

2.2.1 Integral method

Generalizing the energy method used in subsection 2.1.4, it is easy to show that all
the problems we have formulated in the previous section have at most one solution
under reasonable conditions on the data. Suppose u and v are solutions of one
of those problems, sharing the same boundary conditions, and let w = u− v; we
want to show that w ≡ 0. For the time being we do not worry about the precise
hypotheses on u e v; we assume they are sufficiently smooth in QT up to ∂pQT
and observe that w satisfies the homogeneous equation

wt −DΔw = 0 (2.35)

in QT = Ω × (0, T ), with initial condition

w (x,0) = 0

in Ω, and one of the following conditions on ∂Ω × (0, T ]:

w = 0 (Dirichlet) (2.36)

or
∂νw = 0 (Neumann) (2.37)

or
∂νw + αw = 0 α > 0, (Robin) (2.38)

or
w = 0 on ∂DΩ, ∂νw = 0 on ∂NΩ (mixed). (2.39)

Multiply equation (2.35) by w and integrate on Ω; we find
∫

Ω

wwt dx = D

∫

Ω

wΔw dx.

Now, ∫

Ω

wwt dx =
1

2

d

dt

∫

Ω

w2dx (2.40)

and from Green’s identity (1.13) with u = v = w,
∫

Ω

wΔw dx =

∫

∂Ω

w∂νw dσ −
∫

Ω

|∇w|2 dx. (2.41)
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Then, letting

E (t) =

∫

Ω

w2dx,

(2.40) and (2.41) give

1

2
E′ (t) = D

∫

∂Ω

w∂νw dσ −D
∫

Ω

|∇w|2 dx.

If Robin condition (2.38) holds,

∫

∂Ω

w∂νw dσ = −α
∫

Ω

w2dx ≤ 0.

If one of the (2.36), (2.37), (2.39) holds, then

∫

∂Ω

w∂νw dσ = 0.

In any case it follows that
E′ (t) ≤ 0

and therefore E is a nonincreasing function. Since

E (0) =

∫

Ω

w2 (x,0) dx =0,

we must have E (t) = 0 for every t ≥ 0 and this implies w (x,t) ≡ 0 in Ω for every
t > 0. Thus u = v.

The above calculations are completely justified if Ω is a sufficiently smooth
domain16 and, for instance, we require that u and v are continuous in QT = Ω ×
[0, T ], together with their first and second spatial derivatives and their first order
time derivatives. We denote the set of these functions by the symbol (not too
appealing...)

C2,1
(
QT
)

and synthesize everything in the following statement.

Theorem 2.1. The initial Dirichlet, Neumann, Robin and mixed problems have
at most one solution belonging to C2,1

(
QT
)
.

2.2.2 Maximum principles

The fact that heat flows from higher to lower temperature regions implies that
a solution of the homogeneous heat equation attains its maximum and minimum
values on ∂pQT . This result is known as the maximum principle. Moreover the
equation reflects the time irreversibility of the phenomena that it describes, in the

16 C1 or even Lipschitz domains, for instance (see Section 1.4).
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sense that the future cannot have an influence on the past (causality principle).
In other words, the value of a solution u at time t is independent of any change of
the data after t.
The following simple theorem translates these principles and holds for functions

in the class C2,1 (QT )∩C
(
QT
)
. These functions are continuous up to the boundary

of QT , with derivatives continuous in the interior of QT .

Theorem 2.2. Let w ∈ C2,1 (QT ) ∩ C
(
QT
)
such that

wt −DΔw = q ≤ 0 in QT . (2.42)

Then w attains its maximum on ∂pQT :

max
QT

w = max
∂pQT

w. (2.43)

In particular, if w is negative on ∂pQT , then is negative in all QT .

Proof. We split the proof into two steps.
1. Let ε > 0 such that T − ε > 0. We prove that

max
QT−ε

w ≤ max
∂pQT

w + εT. (2.44)

Let u = w − εt. Then
ut −DΔu = q − ε < 0. (2.45)

We claim that the maximum of u on QT−ε occurs on ∂pQT−ε. Suppose not. Let
(x0, t0), x0 ∈ Ω, 0 < t0 ≤ T − ε be a maximum point for u on QT−ε. From
elementary calculus, we have

Δu (x0, t0) ≤ 0

and either
ut (x0, t0) = 0 if t0 < T − ε

or
ut (x0, T − ε) ≥ 0.

In both cases
ut (x0, t0)−Δu (x0, t0) ≥ 0,

contradicting (2.45). Thus

max
QT−ε

u ≤ max
∂pQT−ε

u ≤ max
∂pQT

w (2.46)

since u ≤ w. On the other hand, w ≤ u+ εT , and therefore, from (2.46) we get

max
QT−ε

w ≤ max
QT−ε

u+ εT ≤ max
∂pQT

w + εT

which is (2.44).
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Step 2. Since w is continuous in QT , we deduce that (why?)

max
QT−ε

w→ max
QT

w as ε→ 0.

Hence, letting ε→ 0 in (2.44) we find maxQT w ≤ max∂pQT w which concludes the
proof. �
As an immediate consequence of Theorem 2.2 (see Problem 2.4) we have that

if
wt −DΔw = 0 in QT

then w attains its maximum and its minimum on ∂pQT . In particular

min
∂pQT

w ≤ w (x,t) ≤ max
∂pQT

w for every (x,t) ∈ QT .

Moreover:

Corollary 2.1. (Comparison and stability). Let v and w satisfy

vt −DΔv = f1 and wt −DΔw = f2.

Then:

a) If v ≥ w on ∂pQT and f1 ≥ f2 in QT then v ≥ w in all QT .
b) The following stability estimate holds

max
QT

|v −w| ≤ max
∂pQT

|v −w|+ T max
QT

|f1 − f2| . (2.47)

In particular the initial-Dirichlet problem has at most one solution that, moreover,
depends continuously on the data.

For the proof see Problem 2.5.

Remark 2.3. Corollary 2.1 gives uniqueness for the initial-Dirichlet problem under
much less restrictive hypotheses than Theorem 2.1: indeed it does not require the
continuity of any derivatives of the solution up to ∂pQT .
Inequality (2.47) is a uniform pointwise stability estimate, extremely useful in

several applications. In fact if v = g1, w = g2 on ∂pQT and

max
∂pQT

|g1 − g2| ≤ ε and max
QT

|f1 − f2| ≤ ε,

we deduce
max
QT

|v − w| ≤ ε (1 + T ) .

Thus, in finite time, a small uniform distance between the data implies small
uniform distance between the corresponding solutions.
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Remark 2.4. Strong maximum principle. Theorem 2.2 is a version of the so called
weak maximum principle, weak because this result says nothing about the possi-
bility that a solution achieves its maximum or minimum at an interior point as
well. Actually a more precise result is known as strong maximum principle and
states17 that if a solution of ut −DΔu = 0 achieves its maximumM (minimum)
at a point (x1, t1) with x1 ∈ V , 0 < t1 ≤ T , then u =M in V̄ × [0, t1].

Fig. 2.4. The strong maximum principle

2.3 The Fundamental Solution

There are privileged solutions of the diffusion equation that can be used to con-
struct many other solutions. In this section we are going to discover one of these
special building blocks, the most important one.

2.3.1 Invariant transformations

The homogeneous diffusion equation has simple but important properties. Let
u = u (x, t) be a solution of

ut −DΔu = 0. (2.48)

• Time reversal. The function

v(x,t) = u (x,−t) ,

obtained by the change of variable t �−→ −t, is a solution of the adjoint or
backward equation.

vt +DΔv = 0.

17 We omit the rather long proof.
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Coherently, the (2.48) is sometimes called the forward equation. The non-
invariance of (2.48) with respect to a change of sign in time is another aspect
of time irreversibility.

• Space and time translations invariance. For y,s fixed, the function

v(x,t) = u (x− y, t− s) ,

is still a solution of (2.48). Clearly, for x, t fixed the function u (x− y, t− s) is a
solution of the backward equation with respect to y and s.

• Parabolic dilations The transformation

x �−→ ax, t �−→ bt, u �−→ cu (a, b, c > 0)

represents a dilation (or contraction) of the graph of u. Let us check for which
values of a, b, c the function

u∗ (x,t) = cu (ax,bt)

is still a solution of (2.48). We have:

u∗t (x,t) −DΔu∗ (x,t) = cbut (ax,bt)− ca2DΔu (ax,bt)

and so u∗ is a solution of (2.48) if

b = a2. (2.49)

The relation (2.49) suggests the name of parabolic dilation for the transformation

x �−→ ax t �−→ a2t (a, b > 0).

Under this transformation the expressions

|x|2
Dt

or
x√
Dt

are left unchanged. Moreover, we already observed that they are dimensionless
groups. Thus it is not surprising that these combinations of the independent vari-
ables occur frequently in the study of diffusion phenomena.

• Dilations and conservation of mass (or energy). Let u = u (x, t) be a solution
of (2.48) in the half-space Rn × (0,+∞) . Then we just checked that the function

u∗ (x,t) = cu
(
ax,a2t

)
(a > 0)

is also a solution in the same set. Suppose u satisfies the condition

∫

Rn

u (x, t) dx =q for every t > 0. (2.50)
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If, for instance, u represents the concentration of a substance (density of mass),
equation (2.50) states that the total mass is q at every time t. If u is a temperature,
(2.50) says that the total internal energy is constant (= qρcv). We ask for which
a, c the solution u∗ still satisfies (2.50). We have

∫

Rn

u∗ (x, t)dx =c
∫

Rn

u
(
ax, a2t

)
dx.

Letting y =ax, so that dy =andx, we find

∫

Rn

u∗ (x, t) dx =ca−n
∫

Rn

u
(
y, a2t

)
dy =ca−n

and for (2.50) to be satisfied we must have:

c = qan.

In conclusion, if u = u (x,t) is a solution of (2.48) in the half-space Rn × (0,+∞)
satisfying (2.50), the same is true for

u∗ (x,t) = qanu
(
ax,a2t

)
. (2.51)

2.3.2 Fundamental solution (n = 1)

We are now in position to construct our special solution, starting with dimension
n = 1. To help intuition, think for instance of our solution as the concentration of
a substance of total mass q and suppose we want to keep the total mass equal to
q at any time.
We have seen that the combination of variables x/

√
Dt is not only invariant

with respect to parabolic dilations but also dimensionless. It is then natural to
check if there are solutions of (2.48) involving such dimensionless group. Since√
Dt has the dimension of a length, the quantity q/

√
Dt is a typical order of

magnitude for the concentration, so that it makes sense to look for solutions of the
form

u∗ (x,t) =
q√
Dt
U

(
x√
Dt

)
(2.52)

where U is a (dimensionless) function of a single variable.
Here is the main question: is it possible to determine U = U (ξ) such that u∗ is

a solution of (2.48)? Solutions of the form (2.52) are called similarity solutions18.

18 A solution of a particular evolution problem is a similarity or self-similar solution if its
spatial configuration (graph) remains similar to itself at all times during the evolution.
In one space dimension, self-similar solutions have the general form

u (x, t) = a (t)F (x/b (t))

where, preferably, u/a and x/b are dimensionless quantity.
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Moreover, since we are interpreting u∗ as a concentration, we require U ≥ 0
and the total mass condition yields

1 =
1√
Dt

∫

R

U

(
x√
Dt

)
dx =

ξ=x/
√
Dt

∫

R

U (ξ) dξ

so that we require that ∫

R

U (ξ) dξ = 1. (2.53)

Let us check if u∗ is a solution to (2.48). We have

u∗t =
q√
D

[
−1
2
t−

3
2U (ξ)− 1

2
√
D
xt−2U ′ (ξ)

]

= − q

2t
√
Dt
[U (ξ) + ξU ′ (ξ)]

u∗xx =
q

(Dt)3/2
U ′′ (ξ) ,

hence

u∗t −Du∗xx = −
q

t
√
Dt

{
U ′′ (ξ) +

1

2
ξU ′ (ξ) +

1

2
U (ξ)

}
.

We see that for u∗ to be a solution of (2.48), U must be a solution in R of the
ordinary differential equation

U ′′ (ξ) +
1

2
ξU ′ (ξ) +

1

2
U (ξ) = 0. (2.54)

Since U ≥ 0, (2.53) implies19:

U (−∞) = U (+∞) = 0.

On the other hand, (2.54) is invariant with respect to the change of variables

ξ �→ −ξ

and therefore we look for even solutions: U (−ξ) = U (ξ). Then we can restrict
ourselves to ξ ≥ 0, asking

U ′ (0) = 0 and U (+∞) = 0. (2.55)

19 Rigorously, the precise conditions are:

lim inf
x→±∞U (x) = 0.
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To solve (2.54) observe that it can be written in the form

d

dξ

{
U ′ (ξ) +

1

2
ξU (ξ)

}
= 0

that yields

U ′ (ξ) +
1

2
ξU (ξ) = C (C ∈ R). (2.56)

Letting ξ = 0 in (2.56) and recalling (2.55) we deduce that C = 0 and therefore

U ′ (ξ) +
1

2
ξU (ξ) = 0. (2.57)

The general integral of (2.57) is

U (ξ) = c0e
− ξ24 (c0 ∈ R).

This function is even, positive, integrable and vanishes at infinity. It only remains
to choose c0 in order to ensure (2.53). Since

20

∫

R

e−
ξ2

4 dξ =
ξ=2z

2

∫

R

e−z
2

dz = 2
√
π

the choice is c0 = (4π)
−1/2
.

Going back to the original variables, we have found the following solution of
(2.48)

u∗ (x, t) =
q√
4πDt

e−
x2

4Dt , x ∈ R, t > 0

positive, even in x, and such that

∫

R

u∗ (x, t)dx = q for every t > 0. (2.58)

The choice q = 1 gives a family of Gaussians, parametrized with time, and it is
natural to think of a normal probability density.

Definition 2.1. The function

ΓD (x, t) =
1√
4πDt

e−
x2

4Dt , x ∈ R, t > 0 (2.59)

is called the fundamental solution of equation (2.48).

20 Recall that ∫

R

e−z
2

=
√
π.
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Fig. 2.5. The fundamental solution Γ1 for −4 < x < 4, 0 < t < 1

2.3.3 The Dirac distribution

It is worthwhile to examine the behavior of the fundamental solution. For every
fixed x �= 0,

lim
t→0+

ΓD (x, t) = lim
t→0+

1√
4πDt

e−
x2

4Dt = 0 (2.60)

while

lim
t→0+

ΓD (0, t) = lim
t→0+

1√
4πDt

= +∞. (2.61)

If we interpret ΓD as a probability density, equations (2.60), (2.61) and (2.58)
imply that when t → 0+ the fundamental solution tends to concentrate mass
around the origin; eventually, the whole probability mass is concentrated at x = 0
(see Fig. 2.5).

The limiting density distribution can be mathematically modeled by the so
called Dirac distribution (or measure) at the origin, denoted by the symbol δ0 or
simply by δ. The Dirac distribution is not a function in the usual sense of Analysis;
if it were, it should have the following properties:

• δ (0) =∞, δ (x) = 0 for x �= 0
•
∫
R
δ (x)dx = 1,

clearly incompatible with any concept of classical function or integral. A rigorous
definition of the Dirac measure requires the theory of generalized functions or
distributions of L. Schwartz, that we will consider in Chapter 7. Here we restrict
ourselves to some heuristic considerations.

Let

H (x) =
{
1 if x ≥ 0
0 if x < 0,
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Fig. 2.6. Approximation of the Dirac measure

be the characteristic function of the interval [0,∞), known as the Heaviside func-
tion. Observe that

H (x+ ε) −H (x− ε)
2ε

=

{
1
2ε if − ε ≤ x < ε
0 otherwise.

(2.62)

Denote by Iε (x) the quotient (2.62); the following properties hold:

i) For every ε > 0, ∫

R

Iε (x) dx =
1

2ε
× 2ε = 1.

We can interpret Iε as a unit impulse of extent 2ε (Fig. 2.6).

ii)

lim
ε↓0
Iε (x) =

{
0 if x �= 0
∞ if x = 0.

iii) If ϕ = ϕ (x) is a smooth function, vanishing outside a bounded interval, (a
test function), we have

∫

R

Iε (x)ϕ (x) dx =
1

2ε

∫ ε

−ε
ϕ (x)dx −→

ε−→0 ϕ (0) .

Properties i) e ii) say that Iε tends to a mathematical object that has precisely the
formal features of the Dirac distribution at the origin. In particular iii) suggests
how to identify this object, that is through its action on test functions.

Definition 2.2. We call Dirac measure at the origin the generalized function,
denoted by δ, that acts on a test function ϕ as follows:

δ [ϕ] = ϕ (0) . (2.63)

Equation (2.63) is often written in the form 〈δ, ϕ〉 = ϕ (0) or even
∫
δ (x)ϕ (x) dx = ϕ (0)
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where the integral symbol is purely formal. Observe that property ii) shows that

H′ = δ

whose meaning is given in the following computations, where an integration by
parts is used and ϕ is a test function:

∫

R

ϕdH = −
∫

R

Hϕ′ = −
∫ ∞
0

ϕ′ = ϕ (0) , (2.64)

since ϕ vanishes for large21 x .
With the notion of Dirac measure at hand, we can say that ΓD satisfies the

initial conditions
ΓD (x, 0) = δ.

If the unit mass is concentrated at a point y �= 0, we denote by δy or δ (x− y) the
Dirac measure at y, defined through the formula

∫
δ (x− y)ϕ (x) dx = ϕ (y) .

Then, by translation invariance, the fundamental solution ΓD (x− y, t) is a solution
of the diffusion equation, that satisfies the initial condition

ΓD (x− y, 0) = δ (x− y) .

Indeed it is the unique solution satisfying the total mass condition (2.58) with
q = 1.
As any solution u of (2.48) has several interpretations (concentration of a sub-

stance, probability density, temperature in a bar) so the fundamental solution can
have several meanings.
We can think of it as a unit source solution: ΓD (x, t) gives the concentration

at the point x at time t, generated by the diffusion of a unit mass initially (t = 0)
concentrated at the origin. From another point of view, if we imagine a unit
mass composed of a large number N of particles, ΓD (x, t) dx gives the probability
that a single particle is placed between x and x+ dx at time t or equivalently, the
percentage of particles inside the interval (x, x+ dx) at time t.

Initially ΓD is zero outside the origin. As soon as t > 0, ΓD becomes positive
everywhere: this amounts to saying that the unit mass diffuses instantaneously all
over the x−axis and therefore with infinite speed of propagation. This could be a
problem in using (2.48) as a realistic model, although (see Fig. 2.5) for t > 0, small,
ΓD is practically zero outside an interval centered at the origin of length 4D.

21 The first integral in (2.64) is a Riemann-Stieltjes integral, that formally can be written
as ∫

ϕ (x)H′ (x) dx
and interpreted as the action of the generalized function H′ on the test function ϕ.
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2.3.4 Fundamental solution (n > 1)

In space dimension greater than 1, we can more or less repeat the same arguments.
We look for positive, radial, self-similar solutions u∗ to (2.48), with total mass equal
to q at every time, that is

∫

Rn

u∗ (x,t) dx = q for every t > 0. (2.65)

Since q/ (Dt)
n/2
is a concentration per unit volume, we set

u∗ (x, t) =
q

(Dt)
n/2
U (ξ) , ξ = |x| /

√
Dt.

We have, recalling the expression of the Laplace operator for radial functions (see
Appendix C),

u∗t = −
1

2t (Dt)
n/2
[nU (ξ) + ξU ′ (ξ)]

Δu∗ =
1

(Dt)
1+n/2

{
U ′′ (ξ) +

n− 1
ξ
U ′ (ξ)

}
.

Therefore, for u∗ to be a solution of (2.48), U must be a nonnegative solution in
(0,+∞) of the ordinary differential equation

ξU ′′ (ξ) + (n− 1)U ′ (ξ) + ξ
2

2
U ′ (ξ) +

n

2
ξU (ξ) = 0. (2.66)

Multiplying by ξn−2, we can write (2.66) in the form

(ξn−1U ′)′ +
1

2
(ξnU)′ = 0

that gives

ξn−1U ′ +
1

2
ξnU = C (C ∈ R). (2.67)

Assuming that limξ→0+ of U and U ′ are finite, letting ξ → 0+ into (2.67), we
deduce C = 0 and therefore

U ′ +
1

2
ξU = 0.

Thus we obtain the family of solutions

U (ξ) = c0e
− ξ24 .

The total mass condition requires

1 =
1

(Dt)
n/2

∫

Rn

U

( |x|√
Dt

)
dx =

c0

(Dt)n/2

∫

Rn

exp

(
− |x|

2

4Dt

)
dx
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=
y=x/

√
Dt
c0

∫

Rn

e−|y|
2

dy = c0

(∫

R

e−z
2

dz

)n
= c0 (4π)

n/2

and therefore c0 = (4π)
−n/2

. Thus, we have obtained solutions of the form

u∗ (x, t) =
q

(4πDt)
n/2
exp

(
− |x|

2

4Dt

)
, (t > 0) .

Once more, the choice q = 1 is special.

Definition 2.3. The function

ΓD (x, t) =
1

(4πDt)
n/2
exp

(
− |x|

2

4Dt

)
(t > 0)

is called the fundamental solution of the diffusion equation (2.48).

The remarks after Definition 2.2 can be easily generalized to the multidimen-
sional case. In particular, it is possible to define the n− dimensional Dirac measure
at a point y through the formula22

∫
δ (x − y)ϕ (x) dx = ϕ (y) (2.68)

that expresses the action on the test function ϕ, smooth in Rn and vanishing
outside a compact set. For fixed y, the fundamental solution ΓD (x− y,t) is the
unique solution of the global Cauchy problem

{
ut −DΔu = 0 x ∈Rn, t > 0
u (x, 0) = δ (x− y) x ∈ Rn

that satisfies (2.65) with q = 1.

2.4 Symmetric Random Walk (n = 1)

In this section we start exploring the connection between probabilistic and deter-
ministic models, in dimension n = 1. The main purpose is to construct a Brownian
motion, which is a continuous model (in both space and time), as a limit of a
simple stochastic process, called random walk, which is instead a discrete model
(in both space and time). During the realization of the limiting procedure we
shall see how the diffusion equation can be approximated by a difference equa-
tion. Moreover, this new perspective will better clarify the nature of the diffusion
coefficient.

22 As in dimension n = 1, in (2.68) the integral has a symbolic meaning only.
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2.4.1 Preliminary computations

Consider a unit mass particle23 that moves randomly along the x axis, according
to the following rules: fix

· h > 0, space step
· τ > 0, time step.

1. During an interval of time τ , the particle takes one step of h unit length,
starting from x = 0.

2. The particle moves to the left or to the right with probability p = 1
2
, indepen-

dently of the previous step (Fig. 2.7).

At time t = Nτ , after N steps, the particle will be at a point x = mh, where
N ≥ 0 and m are integers, −N ≤ m ≤ N .
Our task is: Compute the probability p (x, t) of finding the particle at x at

time t.

Fig. 2.7. Symmetric random walk

Random walks can be found in a wide variety of situations. To give an example,
think of a gambling game in which a fair coin is thrown. If heads comes out, the
particle moves to the right and the player gains 1 dollar ; if tails comes out it moves
to the left and the player loses 1 dollar : p (x, t) is the probability to gainm dollars
after N throws.

• Computation of p (x, t).
Let x = mh be the position of the particle after N steps. To reach x, the

particle takes some number of steps to the right, say k, and N − k steps to the
left. Clearly, 0 ≤ k ≤ N and

m = k − (N − k) = 2k −N (2.69)

so that N and m are both even or both odd integers and

k =
1

2
(N +m) .

Thus, p (x, t) = pk where

pk =
number of walks with k steps to the right after N steps

number of possible walks after N steps
. (2.70)

23 One can also think of a large number of particles of total mass one.
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Now, the number of possible walks with k steps to the right and N − k to the left
is given by the binomial coefficient24

CN,k =

(
N

k

)
=

N !

k! (N − k)! .

On the other hand, the number of possible walks after N steps is 2N (why?); hence,
from (2.70):

pk =
CN,k

2N
x = mh, t = Nτ, k =

1

2
(N +m) . (2.71)

• Mean displacement and standard deviation of x.
Our ultimate goal is to let h and τ go to zero in order to get a continuous

walk, which incorporates the main features of the discrete random walk. This is a
delicate point, since, if we want to obtain eventually a continuous faithful copy of
the random walk, we need to isolate some quantitative parameters able to capture
the essential features of the walk and maintain them unchanged. In our case there
are two key parameters25:

(a) the mean displacement of x after N steps = 〈x〉 = 〈m〉 h
(b) the second moment of x after N steps =

〈
x2
〉
=
〈
m2
〉
h2.

The quantity
√
〈x2〉 =

√
〈m2〉h is essentially the average distance from the origin

after N steps.

First observe that, from (2.69), we have

〈m〉 = 2 〈k〉 −N (2.72)

and 〈
m2
〉
= 4

〈
k2
〉
− 4 〈k〉N +N2. (2.73)

24 The set of walks with k steps to the right and N − k to the left is in one to one
correspondence with the set of sequences of N binary digits, containing k “1” and
N − k “0”, where 1 means right and 0 means left. There are exactly CN,k of these
sequences.

25 If a random variable x takes N possible outcomes x1,..., xN with probability p1, ..., pN ,
its moments of (integer) order q ≥ 1 are given by

E (xq) = 〈xq〉 =
N∑

j=1

xqjpj .

The first moment (q = 1) is the mean or expected value of x, while

var (x) =
〈
x2
〉− 〈x〉2

is the variance of x. The square root of the variance is called standard deviation .
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Thus, to compute 〈m〉 and
〈
m2
〉
it is enough to compute 〈k〉 and

〈
k2
〉
. We have,

by definition and from (2.71),

〈k〉 =
N∑
k=1

kpk =
1

2N

N∑
k=1

kCN,k,
〈
k2
〉
=

N∑
k=1

k2pk =
1

2N

N∑
k=1

k2CN,k. (2.74)

Although it is possible to make the calculations directly from (2.74), it is easier to
use the probability generating function, defined by

G (s) =

N∑
k=0

pks
k =

1

2N

N∑
k=0

CN,ks
k.

The function G contains in compact form all the information on the moments of k
and works for all the discrete random variables taking integer values. In particular,
we have

G′ (s) =
1

2N

N∑
k=1

kCN,ks
k−1, G′′ (s) =

1

2N

N∑
k=2

k (k − 1)CN,ksk−2. (2.75)

Letting s = 1 and using (2.74), we get

G′ (1) =
1

2N

N∑
k=1

kCN,k = 〈k〉 (2.76)

and

G′′ (1) =
1

2N

N∑
k=2

k (k − 1)CN,k = 〈k (k − 1)〉 =
〈
k2
〉
− 〈k〉 . (2.77)

On the other hand, letting a = 1 and b = s in the elementary formula

(a+ b)
N
=

N∑
k=0

CN,ka
N−kbk,

we deduce

G (s) =
1

2N
(1 + s)

N

and therefore

G′ (1) =
N

2
and G′′ (1) =

N (N − 1)
4

. (2.78)

From (2.78), (2.76) and (2.77) we easily find

〈
k2
〉
=
N

2
and

〈
k2
〉
=
N (N + 1)

4
.

Finally, since m = 2k −N , we have

〈m〉 = 2 〈k〉 −N = 2N
2
−N = 0
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and also 〈x〉 = 〈m〉 h = 0, which is not surprising, given the symmetry of the walk.
Furthermore

〈
m2
〉
= 4

〈
k2
〉
− 4N 〈k〉 +N2 = N2 +N − 2N2 +N2 = N

from which √
〈x2〉 =

√
Nh (2.79)

which is the standard deviation of x, since 〈x〉 = 0. Formula (2.79) contains a key
information: at time Nτ , the distance from the origin is of order

√
Nh, that is the

order of the time scale is the square of the space scale. In other words,
if we want to leave the standard deviation unchanged in the limit process, we
must rescale the time as the square of the space, that is we must use a space-time
parabolic dilation!
But let us proceed step by step. The next one is to deduce a difference equation

for the transition probability p = p (x, t). It is on this equation that we will carry
out the limit procedure.

2.4.2 The limit transition probability

The particle motion has no memory since each move is independent from the
previous one. If the particle location at time t + τ is x, this means that at time t
its location was at x− h or at x+ h, with equal probability. The total probability
formula then gives

p (x, t+ τ) =
1

2
p (x− h, t) + 1

2
p (x+ h, t) (2.80)

with the initial conditions

p (0, 0) = 1 and p (x, 0) = 0 if x �= 0.

Keeping fixed x and t, let us examine what happens when h → 0, τ → 0. It
is convenient to think of p as a smooth function, defined in the whole half plane
R× (0,+∞) and not only at the discrete set of points (mh,Nτ). In addition, by
passing to the limit, we will find a continuous probability distribution so that
p (x, t), being the probability to find the particle at (x, t), should be zero. If we
interpret p as a probability density, this inconvenience disappears. Using Taylor’s
formula we can write26

p (x, t+ τ ) = p (x, t) + pt (x, t) τ + o (τ ) ,

p (x± h, t) = p (x, t)± px (x, t)h+
1

2
pxx (x, t)h

2 + o
(
h2
)
.

26 The symbol o (z) , (“little o of z”) denotes a quantity of lower order with respect to z;
precisely

o (z)

z
→ 0 when z → 0.
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Substituting into (2.80), after some simplifications, we find

ptτ + o (τ ) =
1

2
pxxh

2 + o
(
h2
)
.

Dividing by τ ,

pt + o (1) =
1

2

h2

τ
pxx + o

(
h2

τ

)
. (2.81)

This is the crucial point; in the last equation we meet again the combination h2

τ !!
If we want to obtain something non trivial when h, τ → 0, we must require

that h2/τ has a finite and positive limit; the simplest choice is to keep

h2

τ
= 2D (2.82)

for some number D > 0 (the number 2 is there for aesthetic reasons only).
Passing to the limit in (2.81), we get for p the equation

pt = Dpxx (2.83)

while the initial condition becomes

lim
t→0+

p (x, t) = δ. (2.84)

We have already seen that the unique solution of (2.83), (2.84) is

p (x, t) = ΓD (x, t)

since ∫

R

p (x, t)dx = 1.

Thus, the constant D in (2.82) is precisely the diffusion coefficient. Recalling that

h2 =

〈
x2
〉
N
, τ =

t

N

we have
h2

τ
=

〈
x2
〉
t
= 2D

that means: in unit time, the particle diffuses an average distance of
√
2D. It is

worthwhile to recall that the dimensions of D are

[D] = [length]2 × [time]−1

and that the combination x2/Dt is dimensionless, not only invariant by parabolic
dilations. Also, from (2.82) we deduce

h

τ
=
2D

h
→ +∞. (2.85)

This shows that the average speed h/τ of the particle at each step becomes un-
bounded. Therefore, the fact that the particle diffuses in unit time to a finite
average distance is purely due to the rapid fluctuations of its motion.
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2.4.3 From random walk to Brownian motion

What happened in the limit to the random walk? What kind of motion did it
become? We can answer using some more tools from probability theory. Let xj =
x (jτ ) the position of our particle after j steps and let, for j ≥ 1,

hξj = xj − xj−1.

The ξj are independent, identically distributed random variables: each one takes

on value 1 or −1 with probability 1
2
. They have expectation

〈
ξj
〉
= 0 and variance〈

ξ2j
〉
= 1. The displacement of the particle after N steps is

xN = h

N∑
j=1

ξj.

If we choose

h =

√
2Dt

N
,

that is h
2

τ = 2D, and let N → ∞, the Central Limit Theorem assures that xN
converges in law27 to a random variable X = X (t), normally distributed with
mean 0 and variance 2Dt, whose density is ΓD (x, t).

The random walk has become a continuous walk; if D = 1/2, it is called (1-
dimensional) Brownian motion orWiener process, that we will characterize
later through its essential features.

Usually the symbol B = B (t) is used to indicate the random position of a
Brownian particle. The family of random variables B (t) (where t plays the role
of a parameter) is defined on a common probability space (Ω,�, P ), where Ω
is the set of elementary events, � a σ−algebra in Ω of measurable events, and
P a suitable probability measure28 in �; therefore the right notation should be
B (t, ω), with ω ∈ Ω, but the dependence on ω is usually omitted and understood
(for simplicity or laziness).

The family of random variables B (t, ω), with time t as a real parameter, is a
continuous stochastic process. Keeping ω ∈ Ω fixed, we get the real function

t �−→ B (t, ω)

whose graph describes a Brownian path (see Fig. 2.8).

27 That is, if N → +∞,

Prob {a < xN < b} →
∫ b

a

ΓD (x, t) dx.

28 See Appendix B.
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Fig. 2.8. A Brownian path

Keeping t fixed, we get the random variable

ω �−→ B (t, ω) .

Without caring too much of what really isΩ, it is important to be able to compute
the probability

P {B (t) ∈ I}
where I ⊆ R is a reasonable subset of R, (a so called Borel set29). Figure 2.8 shows
the meaning of this computation: fixing t amounts to fixing a vertical straight line,
say t = t̄. Let I be a subset of this line; in the picture I is an interval. P {B (t) ∈ I}
is the probability that the particle hits I at time t.

The main properties of Brownian motion are listed below. To be minimalistic
we could synthesize everything in the formula30

dB ∼
√
dtN (0, 1) = N (0, dt) (2.86)

where N (0, 1) is a normal random variable, with zero mean and variance equal to
one.

• Path continuity.With probability 1, the possible paths of a Brownian particle
are continuous functions

t �−→ B (t) , t ≥ 0.
Since from (2.85) the instantaneous speed of the particle is infinite, their graphs
are nowhere differentiable!

29 An interval or a set obtained by countable unions and intersections of intervals, for
instance. See Appendix B.

30 If X is a random variable, we write X ∼ N
(
μ, σ2

)
if X has normal distribution with

mean μ and variance σ2.
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• Gaussian law for increments. We can allow the particle to start from a point
x �= 0, by considering the process

Bx (t) = x+ B (t) .

With every point x is associated a probability P x, with the following properties
(if x = 0, P 0 = P ).

a) P x {Bx (0) = x} = P {B (0) = 0} = 1.
b) For every s ≥ 0, t ≥ 0, the increment

Bx (t+ s)− Bx (s) = B (t+ s) −B (s)
has normal law with zero mean and variance t, whose density is

Γ (x, t) ≡ Γ 1
2
(x, t) =

1√
2πt
e−

x2

2t .

Moreover it is independent of any event occurred at a time ≤ s. For instance, the
two events

{Bx (t2)− Bx (t1) ∈ I2} {Bx (t1)− Bx (t0) ∈ I1}
t0 < t1 < t2, are independent.

• Transition probability. For each Borel set I ⊆ R, a transition function
P (x, t, I) = P x {Bx (t) ∈ I}

is defined, assigning the probability that the particle, initially at x, belongs to I
at time t. We can write:

P (x, t, I) = P {B (t) ∈ I − x} =
∫

I−x
Γ (y, t) dy =

∫

I

Γ (y − x, t)dy.

• Invariance. The motion is invariant with respect to translations.
• Markov and strong Markov properties. Let μ be a probability measure31 on

R. If the initial position of the particle is random with a probability distribution
μ, we can consider a Brownian motion with initial distribution μ, and for it we use
the symbol Bμ. With this motion is associated a probability distribution P μ such
that, for every Borel set F ⊆ R,

P μ {Bμ (0) ∈ F } = μ (F ) .
The probability that the particle belongs to I at time t can be computed through
the formula

P μ {Bμ (t) ∈ I} =
∫

R

P x {Bx (t) ∈ I} dμ (x)

=

∫

R

P (x, t, I)dμ (x) .

31 See Appendix B for the definition of a probability measure μ and of the integral with
respect to the measure μ.
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The Markov property can be stated as follows: given any condition H, related to
the behavior of the particle before time s ≥ 0, the process Y (t) = Bx (t+ s) is a
Brownian motion with initial distribution32

μ (I) = P x {Bx (s) ∈ I |H } .

This property establishes the independence of the future process Bx (t+ s) from
the past (absence of memory) when the present Bx (s) is known and reflects the
absence of memory of the random walk.
In the strong Markov property, s is substituted by a random time τ , depending

only on the behavior of the particle in the interval [0, τ ]. In other words, to decide
whether or not the event {τ ≤ t} is true, it is enough to know the behavior of the
particle up to time t. These kinds of random times are called stopping times. An
important example is the first exit time from a domain, that we will consider in
the next chapter. Instead, the random time τ defined by

τ = inf {t : B (t) > 10 and B (t+ 1) < 10}

is not a stopping time. Indeed (measuring time in seconds), τ is “the smallest”
among the times t such that the Brownian path is above level 10 at time t, and
after one second is below 10. Clearly, to decide whether τ ≤ 3, say, it is not enough
to know the path up to time t = 3, since τ involves the behavior of the path up to
the future time t = 4.

• Expectation. Given a sufficiently smooth function g = g (y), y ∈ R, we can
define the random variable

Z (t) = (g ◦Bx) (t) = g (Bx (t)) .

Its expected value is given by the formula

Ex [Z (t)] =

∫

R

g (y)P (x, t, dy) =

∫

R

g (y)Γ (y − x, t) dy.

We will meet this formula in a completely different situation later on.

2.5 Diffusion, Drift and Reaction

2.5.1 Random walk with drift

The hypothesis of symmetry of our random walk can be removed. Suppose our unit
mass particle moves along the x axis with space step h > 0, every time interval of
duration τ > 0, according to the following rules (Fig. 2.9).

1. The particle starts from x = 0.
2. It moves to the right with probability p0 �= 1

2 and to the left with probability
q0 = 1− p0, independently of the previous step.
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Fig. 2.9. Random walk with drift

Rule 2 breaks the symmetry of the walk and models a particle tendency to
move to the right or to the left, according to the sign of p0 − q0 being positive
or negative, respectively. Again we denote by p = p (x, t) the probability that the
particle location is x =mh at time t = Nτ. From the total probability formula we
have:

p (x, t+ τ ) = p0p (x− h, t) + q0p (x+ h, t) (2.87)

with the usual initial conditions

p (0, 0) = 1 and p (x, 0) = 0 if x �= 0.

As in the symmetric case, keeping x and t fixed, we want to examine what happens
when we pass to the limit for h→ 0, τ → 0. From Taylor formula, we have

p (x, t+ τ ) = p (x, t) + pt (x, t) τ + o (τ ) ,

p (x± h, t) = p (x, t)± px (x, t)h+
1

2
pxx (x, t)h

2 + o
(
h2
)
.

Substituting into (2.87), we get

ptτ + o (τ ) =
1

2
pxxh

2 + (q0 − p0)hpx + o
(
h2
)
. (2.88)

A new term appears: (q0 − p0)hpx. Dividing by τ , we obtain

pt + o (1) =
1

2

h2

τ
pxx +

(q0 − p0)h
τ

px + o

(
h2

τ

)
. (2.89)

Again, here is the crucial point. If we let h, τ → 0, we realize that the assumption

h2

τ
= 2D (2.90)

alone is not sufficient anymore to get something non trivial from (2.89): indeed, if
we keep p0 and q0 constant, we have

(q0 − p0)h
τ

→∞
32 P (A |H ) denotes the conditional probability of A, given H .
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and from (2.89) we get a contradiction. What else we have to require? Writing

(q0 − p0)h
τ

=
(q0 − p0)
h

h2

τ

we see we must require, in addition to (2.90), that

q0 − p0
h

→ β (2.91)

with β finite. Notice that, since q0 + p0 = 1, (2.91) is equivalent to

p0 =
1

2
− β
2
h+ o (h) and q0 =

1

2
+
β

2
h+ o (h) , (2.92)

that could be interpreted as a symmetry of the motion at a microscopic scale.
With (2.91) at hand, we have

(q0 − p0)
h

h2

τ
→ 2Dβ ≡ b

and (2.89) becomes in the limit,

pt = Dpxx + bpx. (2.93)

We already know that Dpxx models a diffusion phenomenon. Let us unmask the
term bpx, by first examining the dimensions of b. Since q0 − p0 is dimensionless,
being a difference of probabilities, the dimensions of b are those of h/τ , namely of
a velocity.
Thus the coefficient b codifies the tendency of the limiting continuous motion,

to move towards a privileged direction with speed |b|: to the right if b < 0, to
the left if b > 0. In other words, there exists a current of intensity |b| driving the
particle. The random walk has become a diffusion process with drift.
The last point of view calls for an analogy with the diffusion of a substance

transported along a channel.

2.5.2 Pollution in a channel

In this section we examine a simple convection-diffusion model of a pollutant on
the surface of a narrow channel. A water stream of constant speed v transports the
pollutant along the positive direction of the x axis. We can neglect the depth of
the water (thinking to a floating pollutant) and the transverse dimension (thinking
of a very narrow channel).
Our purpose is to derive a mathematical model capable of describing the evo-

lution of the concentration33 c = c (x, t) of the pollutant. Accordingly, the integral

∫ x+Δx

x

c (y, t) dy (2.94)

33 [c] = [mass] × [length]−1.



2.5 Diffusion, Drift and Reaction 55

gives the mass inside the interval [x, x+Δx] at time t (Fig. 2.10). In the present
case there are neither sources nor sinks of pollutant, therefore to construct a model
we use the law of mass conservation: the growth rate of the mass contained in
an interval [x, x+Δx] equals the net mass flux into [x, x+Δx] through the end
points.

Fig. 2.10. Pollution in a narrow channel

From (2.94), the growth rate of the mass contained in an interval [x, x+Δx]
is given by 34

d

dt

∫ x+Δx

x

c (y, t) dy =

∫ x+Δx

x

ct (y, t) dy. (2.95)

Denote by q = q (x, t) the mass flux35 entering the interval [x, x+Δx], through
the point x at time t. The net mass flux into [x, x+Δx] through the end points is

q (x, t)− q (x+Δx, t) . (2.96)

Equating (2.95) and (2.96), the law of mass conservation reads

∫ x+Δx

x

ct (y, t) dy = q (x, t)− q (x+Δx, t) .

Dividing by Δx and letting Δx→ 0, we find the basic law

ct = −qx. (2.97)

At this point we have to decide which kind of mass flux we are dealing with. In
other words, we need a constitutive relation for q. There are several possibilities,
for instance:

34 Assuming we can take the derivative inside the integral.
35 [q] = [mass]× [time]−1
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a) Convection. The flux is determined by the water stream only. This case cor-
responds to a bulk of pollutant that is driven by the stream, without deformation
or expansion. Translating into mathematical terms we find

q (x, t) = vc (x, t)

where, we recall, v denotes the stream speed.

b) Diffusion. The pollutant expands from higher concentration regions to lower
ones. We have seen something like that in heat conduction, where, according to
the Fourier law, the heat flux is proportional and opposite to the temperature
gradient. Here we can adopt a similar law, that in this setting is known as the
Fick’s law and reads

q (x, t) = −Dcx (x, t)
where the constant D depends on the polluting and has the usual dimensions
([D] = [length]

2 × [time]−1).
In our case, convection and diffusion are both present and therefore we super-

pose the two effects, by writing

q (x, t) = vc (x, t)−Dcx (x, t) .

From (2.97) we deduce
ct = Dcxx − vcx (2.98)

which constitutes our mathematical model and turns out to be identical to (2.93).

Since D and v are constant, it is easy to determine the evolution of a mass Q
of pollutant, initially located at the origin (say). Its concentration is the solution
of (2.98) with initial condition

c (x, 0) = Qδ (x)

where δ is the Dirac measure at the origin. To find an explicit formula, we can get
rid of the drift term −vcx by setting

w (x, t) = c (x, t) ehx+kt

with h, k to be chosen suitably. We have:

wt = [ct + kc]e
hx+kt

wx = [cx + hc]e
hx+kt, wxx = [cxx + 2hcx + h

2c]ehx+kt.

Using the equation ct = Duxx − vcx, we can write

wt −Dwxx = ehx+kt[ct −Dcxx − 2Dhcx + (k −Dh2)c] =
= ehx+kt[(−v − 2Dh)cx + (k −Dh2)c].

Thus if we choose

h = − v
2D

and k =
v2

4D
,



2.5 Diffusion, Drift and Reaction 57

w is a solution of the diffusion equation wt−Dwxx = 0, with the initial condition

w (x, 0) = c (x, 0) e−
v
2D x = Qδ (x) e−

v
2D x.

In chapter 7 we show that δ (x) e−
v
2D x = δ (x), so that w (x, t) = QΓD (x, t) and

finally

c (x, t) = Qe
v
2D (x− v2 t)ΓD (x, t) . (2.99)

The concentration c is thus given by the fundamental solution ΓD, “carried” by
the travelling wave exp

{
v
2D

(
x− v

2 t
)}
, in motion to the right with speed v/2.

In realistic situations, the pollutant undergoes some sort of decay, for instance
by biological decomposition. The resulting equation for the concentration becomes

ct = Dcxx − vcx − γc

where γ is a rate of decay36. We deal with this case in the next section via a
suitable variant of our random walk.

2.5.3 Random walk with drift and reaction

We go back to our 1− dimensional random walk, assuming that the particle loses
mass at the constant rate γ > 0. This means that in an interval of time from t to
t+ τ a percentage of mass

Q (x, t) = τγp (x, t)

disappears. The difference equation (2.87) for p becomes

p (x, t+ τ ) = p0[p (x− h, t)−Q (x− h, t)] + q0[p (x+ h, t)−Q (x+ h, t)]

Since37

p0Q (x− h, t) + q0Q (x+ h, t) = Q (x, t) + (q0 − p0)hQx(x, t) + ...
= τγp (x, t) + O (τh) ,

equation (2.88) modifies into

ptτ + o (τ) =
1

2
pxxh

2 + (q0 − p0)hpx − τγp+ O (τh) + o
(
h2
)
.

Dividing by τ , letting h, τ → 0 and assuming

h2

τ
= 2D,

q0 − p0
h

→ β,

we get
pt = Dpxx + bpx − γp (b = 2Dβ). (2.100)

36 [γ] = [time]−1 .
37 The symbol ”O (k)” (”big O of k”) denotes a quantity of order k.
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The term −γp appears in (2.100) as a decaying term. On the other hand, in im-
portant situations, γ could be negative, meaning that this time we have a creation
of mass at the rate |γ|. For this reason the last term is called generically a reaction
term and (2.100) is a diffusion equation with drift and reaction.

Going back to equation (2.100), it is useful to look separately at the effect of
the three terms in its right hand side.

• pt = Dpxx models pure diffusion. The typical effects are spreading and smooth-
ing, as shown by the typical behavior of the fundamental solution ΓD.

• pt = bpx is a pure transport equation, that we will consider in detail in chapter
3. The solutions are travelling waves of the form g (x+ bt).

• pt = −γp models pure reaction. The solutions are multiples of e−γt, exponen-
tially decaying (increasing) if γ > 0 (γ < 0).

So far we have given a probabilistic interpretation for a motion in all R, where
no boundary condition is present. The problems 7 and 8 give a probabilistic in-
terpretation of the Dirichlet and Neumann condition in terms of absorbing and
reflecting boundaries, respectively.

2.6 Multidimensional Random Walk

2.6.1 The symmetric case

What we have done in dimension n = 1 can be extended without much effort to
dimension n > 1, in particular n = 2, 3. To define a symmetric random walk, we
introduce the lattice Zn given by the set of points x ∈Rn, whose coordinates are
signed integers. Given the space step h > 0, the symbol hZn denotes the lattice of
points whose coordinates are signed integers multiplied by h.
Every point x ∈hZn, has a “discrete neighborhood” of 2n points at distance h,

given by

x+hej and x−hej (j = 1, ..., n),

where e1, ..., en is the canonical basis in R
n. Our particle moves in hZn according

to the following rules (Fig. 2.11).

1. It starts from x = 0.

2. If it is located in x at time t, at time t + τ the particle location is at one of
the 2n points x± hej, with probability p = 1

2n .

3. Each step is independent of the previous one.

As in the 1−dimensional case, our task is to compute the probability p (x, t) of
finding the particle at x at time t.
Clearly the initial conditions for p are

p (0, 0) = 1 and p (x, 0) = 0 if x �= 0.
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Fig. 2.11. Bidimensional random walk

The total probability formula gives

p (x, t+ τ ) =
1

2n

n∑
j=1

{p (x+hej, t) + p (x−hej, t)} . (2.101)

Indeed, to reach the point x at time t+ τ, at time t the particle must have been
located at one of the points in the discrete neighborhood of x and moved from
there towards x with probability 1/2n. For fixed x and t, we want to examine
what happens when we let h→ 0, τ → 0. Assuming p defined and smooth in all of
R
n × (0,+∞), we use Taylor’s formula to write

p (x, t+ τ) = p (x, t) + pt (x, t) τ + o (τ )

p (x ± hej , t) = p (x, t)± pxj (x, t)h+
1

2
pxjxj (x, t)h

2 + o
(
h2
)
.

Substituting into (2.101), after some simplifications, we get

ptτ + o (τ ) =
h2

2n
Δp+ o

(
h2
)
.

Dividing by τ we obtain the equation

pt + o (1) =
1

2n

h2

τ
Δp+ o

(
h2

τ

)
. (2.102)

The situation is quite similar to the 1− dimensional case: still, to obtain eventually
something non trivial, we must require that the ratio h2/τ has a finite and positive
limit. The simplest choice is

h2

τ
= 2nD (2.103)
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with D > 0. From (2.103), we deduce that in unit time, the particle diffuses at
an average distance of

√
2nD. The physical dimensions of D have not changed.

Letting h→ 0, τ → 0 in (2.102), we find for p the diffusion equation

pt = DΔp (2.104)

with the initial condition
lim
t→0+

p (x, t) = δ. (2.105)

Since
∫
Rn
p (x,t) dx = 1 for every t, the unique solution is given by

p (x, t) = ΓD (x, t) =
1

(4πDt)
n/2
e−

|x|2
4Dt , t > 0.

The n−dimensional random walk has become a continuous walk ; when D = 1
2
, it

is called n−dimensional Brownian motion. Denote by B (t) = B (t, ω) the random
position of a Brownian particle, defined for every t > 0 on a probability space
(Ω,�, P )38.
The family of random variables B (t, ω), with time t as a real parameter, is

a vector valued continuous stochastic process. For ω ∈ Ω fixed, the vector
function

t �−→ B (t, ω)
describes an n−dimensional Brownian path, whose main features are listed below.
• Path continuity. With probability 1, the Brownian paths are continuous for

t ≥ 0.
• Gaussian law for increments. The process Bx (t) = x +B (t) defines a Brow-

nian motion with start at x. With every point x is associated a probability P x,
with the following properties (if x = 0, P 0 = P ).

a) P x {Bx (0) = x} = P {B (0) = 0} = 1.
b) For every s ≥ 0, t ≥ 0, the increment

Bx (t + s) −Bx (s) = B (t + s) −B (s) (2.106)

follows a normal law with zero mean value and covariance matrix equal to tIn,
whose density is

Γ (x, t) = Γ 1
2
(x, t) =

1

(2πt)
n/2
e−

|x|2
2t .

Moreover, (2.106) is independent of any event occurred at any time less than s.
For instance, the two events

{B (t2)−B (t1) ∈ A1} {B (t1)−B (t0) ∈ A2}

are independent if t0 < t1 < t2.

38 See Appendix B.
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• Transition function. For each Borel set A ⊆ Rn a transition function

P (x, t, A) = P x {Bx (t) ∈ A}

is defined, representing the probability that the particle, initially located at x,
belongs to A at time t. We have:

P (x, t, A) = P {B (t) ∈ A− x} =
∫

A−x
Γ (y, t) dy =

∫

A

Γ (y − x, t) dy.

• Invariance. The motion is invariantwith respect to rotations and translations.
• Markov and strong Markov properties. Let μ be a probability measure39 on

R
n. If the particle has a random initial position with probability distribution μ,
we can consider a Brownian motion with initial distribution μ, and for it we use
the symbol Bμ. To Bμ is associated a probability distribution P μ such that

P μ {Bμ (0) ∈ A} = μ (A) .

The probability that the particle belongs to A at time t can be computed through
the formula

P μ {Bμ (t) ∈ A} =
∫

Rn
P (x, t, A)μ (dx) . (2.107)

The Markov property can be stated as follows: given any condition H, related to
the behavior of the particle before time s ≥ 0, the process Y (t) = Bx (t+ s), is a
Brownian motion with initial distribution

μ (A) = P x {Bx (s) ∈ A |H } .

Again, this property establishes the independence of the future process Bx (t+ s)
from the past when the present Bx (s) is known and encodes the absence of memory
of the process. In the strong Markov property, a stopping time τ takes the place
of s.

• Expectation. Given any sufficiently smooth real function g = g (y), y ∈ Rn,
we can define the real random variable

Z (t) = (g ◦Bx) (t) = g (Bx (t)) .

Its expectation is given by the formula

E [Z (t)] =

∫

Rn

g (y)P (x, t, dy) =

∫

Rn

g (y)Γ (y − x, t) dy.

39 See Appendix B for the definition of a probability measure μ and of the integral with
respect to the measure μ .
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2.6.2 Walks with drift and reaction

As in the 1−dimensional case, we can construct several variants of the symmetric
random walk. For instance, we can allow a different behavior along each direction,
by choosing the space step hj depending on ej. As a consequence the limit process
models an anisotropic motion, codified in the matrix

D =

⎛
⎜⎜⎜⎝

D1 0 · · · 0
0 D2 0
...

. . .
...

0 0 · · · Dn

⎞
⎟⎟⎟⎠

where Dj = h
2
j/2nτ is the diffusion coefficient in the direction ej. The resulting

equation for the transition probability p (x,t) is

pt =

n∑
j=1

Djpxjxj . (2.108)

We may also break the symmetry by asking that along the direction ej the prob-
ability to go to the left (right) is qj (resp. pj). If

qj − pj
hj

→ βj and bj = 2Djβj,

the vector b =(b1, ..., bn) plays a role of a drift vector, reflecting the tendency of
motion to move asymmetrically along each coordinate axis. Adding a reaction term
of the form cp, the resulting drift-diffusion-reaction equation is

pt =

n∑
j=1

Djpxjxj +

n∑
j=1

bjuxj + cp. (2.109)

In problem 2.17 we ask the reader to fill in all the details in the argument leading
to equations (2.108) and (2.109). We will deal with general equations of these type
in Chapter 9.

2.7 An Example of Reaction−Diffusion (n = 3)
In this section we examine a model of reaction-diffusion in a fissionable material.
Although we deal with a greatly simplified model, some interesting implications
can be drawn.
By shooting neutrons into an uranium nucleus it may happen that the nucleus

breaks into two parts, releasing other neutrons already present in the nucleus and
causing a chain reaction. Some macroscopic aspects of this phenomenon can be
described by means of an elementary model.
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Suppose a cylinder with height h and radius R is made of a fissionable material
of constant density ρ, with total mass

M = π�R2h.

At a macroscopic level, the free neutrons diffuse like a chemical in a porous medium,
with a flux proportional and opposite to the density gradient. In other terms, if
N = N (x, y, z,t) is the neutron density and no fission occurs, the flux of neutrons
is equal to −k∇N , where k is a positive constant depending on the material. The
mass conservation then gives

Nt = kΔN.

When fission occurs at a constant rate γ > 0, we get the equation

Nt = DΔN + γN, (2.110)

where reaction and diffusion are competing: diffusion tends to slow down N, while,
clearly, the reaction term tends to exponentially increase N . A crucial question is
to examine the behavior of N in the long run (i.e. as t→ +∞).
We look for bounded solutions satisfying a homogeneous Dirichlet condition on

the boundary of the cylinder, with the idea that the density is higher at the center
of the cylinder and very low near the boundary. Then it is reasonable to assume
that N has a radial distribution with respect to the axis of the cylinder. More
precisely, using the cylindrical coordinates (r, θ, z) with

x = r cos θ, y = r sin θ,

we can write N = N (r, z, t) and the homogeneous Dirichlet condition on the
boundary of the cylinder translates into

N (R, z, t) = 0 0 < z < h (2.111)

N (r, 0, t) = N (r, h, t) = 0 0 < r < R

for every t > 0. Accordingly we prescribe an initial condition

N (r, z, 0) = N0 (r, z) (2.112)

such that

N0 (R, z) = 0 for 0 < z < h, and N0 (r, 0) = N0 (r, h) = 0. (2.113)

To solve problem (2.110), (2.111), (2.112), let us first get rid of the reaction
term by setting

N (r, z, t) = N (r, z, t)eγt. (2.114)

Then, writing the Laplace operator in cylindrical coordinates40, N solves

Nt = k
[
Nrr +

1

r
Nr +Nzz

]
(2.115)

40 Appendix C.
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with the same initial and boundary conditions of N . By maximum principle, we
know that there exists only one solution, continuous up to the boundary of the
cylinder. To find an explicit formula for the solution, we use the method of sepa-
ration of variables, first searching for bounded solutions of the form

N (r, z, t) = u (r) v (z)w (t) , (2.116)

satisfying the homogeneous Dirichlet conditions u (R) = 0 and v (0) = v (h) = 0.
Substituting (2.116) into (2.115), we find

u (r) v (z)w′ (t) = k[u′′ (r) v (z)w (t) +
1

r
u′ (r) v (z)w (t) + u (r) v′′ (z)w (t)].

Dividing by N and rearranging the terms, we get,

w′ (t)
kw (t)

−
[
u′′ (r)
u (r)

+
1

r

u′ (r)
u (r)

]
=
v′′ (z)
v (z)

. (2.117)

The two sides of (2.117) depend on different variables so that they must be equal
to a common constant b. Then for v we have the eigenvalue problem

v′′ (z)− bv (z) = 0

v (0) = v (h) = 0.

The eigenvalues are bm ≡ −ν2m = −m2π2

h2 , m ≥ 1 integer, with corresponding
eigenfunctions

νm (z) = sin νmz.

The equation for w and u can be written in the form:

w′ (t)
kw (t)

+ ν2m =
u′′ (r)
u (r)

+
1

r

u′ (r)
u (r)

(2.118)

where the variables r and t are again separated. This forces the two sides of (2.118)
to be equal to a common constant μ. Therefore, for w we have the equation

w′ (t) = k(μ− ν2m)w (t)

that gives

w (t) = c exp
[
k
(
μ − ν2m

)
t
]

c ∈ R. (2.119)

Then the equation for u is

u′′ (r) +
1

r
u′ (r) − μu (r) = 0 (2.120)

with

u (R) = 0 and u bounded in [0, R] . (2.121)
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The (2.120) is a Bessel equation of order zero with parameter −μ; conditions
(2.121) force41 μ = −λ2 < 0. Then the only bounded solution of (2.120), (2.121)
is J0 (λr), where

J0 (x) =

∞∑
k=0

(−1)k

(k!)
2

(x
2

)2k

is the Bessel function of first kind and order zero. To match the boundary condition
u (R) = 0 we require J0 (λR) = 0. Now, J0 has an infinite number of positive simple
zeros42 λn, n ≥ 1:

0 < λ1 < λ2 < ... < λn < ...

Thus, if λR = λn, we find infinitely many solutions of (2.120), given by

un (r) = J0

(
λnr

R

)
.

Thus

μ = μn = −
λ2n
R2
.

To summarize, we have determined so far a countable number of solutions

Nmn (r, z, t) = un (r) vm (z)wm,n (t) =

= J0

(
λnr

R

)
sin νmz exp

[
−k
(
ν2m +

λ2n
R2

)
t

]

satisfying the homogeneous Dirichlet conditions. It remains to satisfy the initial
condition. Due to the linearity of the problem, we look for a solution obtained by
superposition of the Nm,n, that is

N (r, z, t) =
∞∑

n,m=1

cmnNmn (r, z, t) .

41 In fact, write Bessel’s equation (2.120) in the form

(
ru′
)′ − μru = 0.

Multiplying by u and integrating over (0, R) , we have

∫ R

0

(
ru′
)′
udr = μ

∫ R

0

u2dr. (2.122)

Integrating by parts and using (2.121), we get

∫ R

0

(
ru′
)′
udr =

[(
ru′
)
u
]R
0
−
∫ R

0

(u′)2dr = −
∫ R

0

(u′)2dr < 0

and from (2.122) we get μ < 0.
42 The zeros of the Bessel functions are known with a considerable degree of accuracy.
The first five zeros of J0 are: 2.4048..., 5.5201..., 8.6537..., 11.7915..., 14.9309... .
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Then, we choose the coefficients cmn in order to have

∞∑
n,m=1

cmnNmn (r, z, 0) =
∞∑

n,m=1

cmnJ0

(
λnr

R

)
sin
mπ

h
z = N0 (r, z) . (2.123)

The second of (2.113) and (2.123) suggest an expansion of N0 in sine Fourier series
with respect to z. Let

cm (r) =
2

h

∫ h

0

N (r, z) sin
mπ

h
z, m ≥ 1,

and

N0 (r, z) =

∞∑
m=1

cm (r) sin
mπ

h
z.

Then (2.123) shows that, for fixed m ≥ 1, the cmn are the coefficients of the
expansion of cm (r) in the Fourier-Bessel series

∞∑
n=1

cmnJ0

(
λnr

R

)
= cm (r) .

We are not really interested in the exact formula for the cmn, however we will
come back to this point in Remark 2.5 below.
In conclusion, recalling (2.114), the analytic expression of the solution of our

original problem is the following:

N (r, z, t) =

∞∑
n,m=1

cmnJ0

(
λnr

R

)
exp

{(
γ − kν2m − k

λ2n
R2

)
t

}
sin νmz. (2.124)

Of course, (2.124) is only a formal solution, since we should check in which sense the
boundary and initial condition are attained and that term by term differentiation
can be performed. This can be done under reasonable smoothness properties of
N0 and we do not pursue the calculations here.
Rather, we notice that from (2.124) we can draw an interesting conclusion on

the long range behavior of N . Consider for instance the value of N at the center
of the cylinder, that is at the point r = 0 and z = h/2; we have, since J0 (0) = 1

and ν2m =
m2π2

h2 ,

N

(
0,
h

2
, t

)
=

∞∑
n,m=1

cmn exp

{(
γ − km

2π2

h2
− k λ

2
n

R2

)
t

}
sin
mπ

2
.

The exponential factor is maximized for m = n = 1, so the leading term in the
sum is

c11 exp

{(
γ − kπ

2

h2
− k λ

2
1

R2

)
t

}
.



2.7 An Example of Reaction−Diffusion (n = 3) 67

If now

γ − k
(
π2

h2
+
λ21
R2

)
< 0,

each term in the series goes to zero as t→ +∞ and the reaction dies out. On the
opposite, if

γ − k
(
π2

h2
+
λ21
R2

)
> 0,

that is
γ

k
>
π2

h2
+
λ21
R2
, (2.125)

the leading term increases exponentially with time. To be true, (2.125) requires
that the following relations be both satisfied:

h2 >
kπ2

γ
and R2 >

kλ21
γ
. (2.126)

The (2.126) gives a lower bound for the height and the radius of the cylinder. Thus,
we deduce that there exists a critical mass of material, below which the reaction
cannot be sustained.

Fig. 2.12. The Bessel function J0

Remark 2.5. A sufficiently smooth function f , for instance of class C1([0, R]), can
be expanded in a Fourier-Bessel series, where the Bessel functions J0

(
λnr
R

)
, n ≥ 1,

play the same role of the trigonometric functions. More precisely, the functions
J0(λnr) satisfy the following orthogonality relations:

∫ R

0

xJ0(λmx)J0(λnx)dx =

{
0 m �= n

R2

2
c2n m = n

where

cn =

∞∑
k=0

(−1)k
k! (k + 1)!

(
λn

2R

)2k+1
.
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Then

f (x) =

∞∑
n=0

fnJ0 (λnx) (2.127)

with the coefficients fn assigned by the formula

fn =
2

R2c2n

∫ R

0

xf (x)J0 (λnx) dx.

The series (2.127) converges in the following least square sense: if

SN (x) =
N∑
n=0

fnJ0 (λnx)

then

lim
N→+∞

∫ R

0

[f (x)− SN (x)]2 xdx = 0. (2.128)

In Chapter 6, we will interpret (2.128) from the point of view of Hilbert space
theory.

2.8 The Global Cauchy Problem (n = 1)

2.8.1 The homogeneous case

In this section we consider the global Cauchy problem

{
ut −Duxx = 0 in R× (0,∞)
u (x, 0) = g (x) in R

(2.129)

where g, the initial data, is given. We will limit ourselves to the one dimensional
case; techniques, ideas and formulas can be extended without too much effort to
the n−dimensional case.
The problem (2.129) models the evolution of the temperature or of the con-

centration of a substance along a very long (infinite) bar or channel, respectively,
given the initial (t = 0) distribution.
By heuristic considerations, we can guess what could be a candidate solution.

Consider a unit mass composed of a large numberM � 1 of particles and interpret
the solution u as their concentration (or percentage). Then, u (x, t) dx gives the
mass inside the interval (x, x+ dx) at time t.
We want to determine the concentration u (x, y), due to the diffusion of a mass

whose initial concentration is given by g.
Thus, the quantity g (y) dy represents the mass concentrated in the interval

(y, y + dy) at time t = 0. As we have seen, Γ (x− y, t) is a unit source solution,



2.8 The Global Cauchy Problem (n = 1) 69

representing the concentration at x at time t, due to the diffusion of a unit mass,
initially concentrated in the same interval. Accordingly,

ΓD (x− y, t) g (y) dy

gives the concentration at x at time t, due to the diffusion of the mass g (y) dy.
Thanks to the linearity of the diffusion equation, we can use the superposition

principle and compute the solution as the sum of all contributions. In this way,
we get the formula

u (x, t) =

∫

R

g (y) ΓD (x− y, t) dy =
1√
4πDt

∫

R

g (y) e−
(x−y)2
4Dt dy. (2.130)

Clearly, one has to check rigorously that, under reasonable hypotheses on the initial
data g, formula (2.130) really gives the unique solution of the Cauchy problem.
This is not a negligible question. First of all, if g grows too much at infinity, more
than an exponential of the type eax

2

, a > 0, in spite of the rapid convergence
to zero of the Gaussian, the integral in (2.130) could be divergent and formula
(2.130) loses any meaning. Even more delicate is the question of the uniqueness of
the solution, as we will see later.

Remark 2.6. Formula (2.130) has a probabilistic interpretation. Let D = 1
2
and let

Bx (t) be the position of a Brownian particle, started at x. Let g (y) be the gain
obtained when the particle crosses y. Then, we can write:

u (x, t) = Ex [g (Bx (t))]

where Ex denotes the expected value with respect to the probability P x, with
density Γ (x− y, t)43.
In other words: to compute u at the point (x, t) , consider a Brownian parti-

cle starting at x, compute its position Bx (t) at time t, and finally compute the
expected value of g (Bx (t)).

2.8.2 Existence of a solution

The following theorem states that (2.130) is indeed a solution of the global Cauchy
problem under rather general hypotheses on g, satisfied in most of the interesting
applications44.

Theorem 2.3. Assume that g is a function with a finite number of jump discon-
tinuities in R and there exist positive numbers a and c such that

|g (x)| ≤ ceax2 ∀x ∈ R. (2.131)

43 Appendix B.
44 We omit the long and technical proof.
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Let u be given by formula (2.130). Then:

i) u ∈ C∞ (R× (0, T )) for T < 1

4Da
, and in the strip R× (0, T )

ut −Duxx = 0.

ii) If x0 is a continuity point of g, then

u (y, t)→ g (x0) if (y, t)→ (x0, 0) , t > 0.

iii) There are positive numbers c1 and A such that

|u (x, t)| ≤ CeAx2 ∀ (x, t) ∈ R× (0,∞) .

Remark 2.7. The theorem says that, if we allow an initial data with a controlled
exponential growth at infinity expressed by (2.131), then (2.130) is a solution in the
strip R× (0, T ). We will see that, under the stated conditions, (2.130) is actually
the unique solution.
In some applications (e.g. to Finance), the initial data grows at infinity no more

than c1e
a1|x|. In this case (2.131) is satisfied by choosing any positive number a

and a suitable c. This means that there is really no limitation on T, since

T <
1

4Da

and a can be chosen as small as we like.

Remark 2.8. The property i) shows a typical and important phenomenon con-
nected with the diffusion equation: even if the initial data is discontinuous at
some point, immediately after the solution is smooth. The diffusion is therefore a
smoothing process. In figure 2.13, this phenomenon is shown for the initial data
g (x) = χ(−2,0) (x) + χ(1,4) (x), where χ(a,b) denotes the characteristic function of
the interval (a, b). By ii), if the initial data g is continuous in all of R, then the
solution is continuous up to t = 0, that is in R×[0, T ).

Fig. 2.13. Smoothing effect of the diffusion equation
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2.8.3 The non homogeneous case. Duhamel’s method

The difference equation (or the total probability formula)

p (x, t+ τ) =
1

2
p (x− h, t) + 1

2
p (x+ h, t)

that we found in subsection 2.4.2 during the analysis of the symmetric random walk
could be considered a probabilistic version of the mass conservation principle: the
density of the mass located at x at time t+ τ is the sum of the densities diffused
from x + h and x − h at time t; no mass has been lost or added over the time
interval [t, t+ τ ]. Accordingly, the expression

p (x, t+ τ ) − [ 1
2
p (x− h, t) + 1

2
p (x+ h, t)] (2.132)

could be considered as a measure of the lost/added mass density over the time
interval from t to t+ τ . Expanding with Taylor’s formula as we did in Section 4.2,
keeping h2/τ = 2D, dividing by τ and letting h, τ → 0 in (2.132), we find

pt −Dpxx.

Thus the differential operator ∂t−D∂xx measures the instantaneous density
production rate.
Suppose now that from time t = 0 until a certain time t = s > 0 no mass is

present and that at time s a unit mass at the point y (infinite density) appears.
We know we can model this kind of source by means of a Dirac measure at y, that
has to be time dependent since the mass appears only at time s. We can write it
in the form

δ (x− y, t− s) .
Thus, we are lead to the non homogeneous equation

pt −Dpxx = δ (x− y, t− s)

with p (x, 0) = 0 as initial condition. What could be the solution? Until t = s
nothing happens and after s we have δ (x− y, t − s) = 0. Therefore it is like
starting from time t = s and solving the problem

pt −Dpxx = 0, x ∈ R, t > s

with initial condition

p (x, s) = δ (x− y, t − s) .
We have solved this problem when s = 0; the solution is ΓD (x− y, t). By the time
translation invariance of the diffusion equation, we deduce that the solution for
any s > 0 is given by

p (x, t) = ΓD (x− y, t− s) . (2.133)
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Consider now a distributed source on the half-plane t > 0, capable to produce
mass density at the time rate f (x, t). Precisely, f (x, t) dxdt is the mass produced45

between x and x+dx, over the time interval (t, t+dt). If initially no mass is present,
we are lead to the non homogeneous Cauchy problem

{
vt −Dvxx = f (x, t) in R× (0, T )
v (x, 0) = 0 in R.

(2.134)

As in subsection 2.8.1, we motivate the form of the solution at the point (x, t)
using heuristic considerations. Let us compute the contribution dv to v (x, t) of a
mass f (y, s) dyds. It is like having a source term of the form

f∗ (x, t) = f (x, t) δ (x− y, t− s)

and therefore, recalling (2.133), we have

dv (x, t) = ΓD (x− y, t − s) f (y, s) dyds. (2.135)

We obtain the solution v (x, t) by superposition, summing all the contributions
(2.135). We split it into the following two steps:

• we sum over y the contributions for fixed s, to get the total density at (x, t) ,
due to the diffusion of mass produced at time s. The result is w (x, t, s)ds, where

w (x, t, s) =

∫

R

ΓD (x− y, t − s) f (y, s) dy. (2.136)

• we sum the above contributions for s ranging from 0 to t:

v (x, t) =

∫ t

0

∫

R

ΓD (x− y, t− s) f (y, s) dyds.

The above construction is an example of application of the Duhamel method,
that we state below:

Duhamel’s method. The procedure to solve problem (2.134) consists in the
following two steps:

1. Construct a family of solutions of homogeneous Cauchy problems, with vari-
able initial time s > 0, and initial data f (x, s).

2. Integrate the above family with respect to s, over (0, t).

Indeed, let us examine the two steps.

1. Consider the homogeneous Cauchy problems
{
wt −Dwxx = 0 x ∈ R, t > s
w (x, s, s) = f (x, s) x ∈ R (2.137)

where the initial time s plays the role of a parameter.

45 Negative production (f < 0) means removal.
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The function Γ y,s (x, t) = ΓD (x− y, t − s) is the fundamental solution of the
diffusion equation that satisfies for t = s, the initial condition

Γ y,s (x, s) = δ (x− y) .

Hence, the solution of (2.137) is given by the function (2.136):

w (x, t, s) =

∫

R

ΓD (x− y, t − s) f (y, s) dy.

Thus, w (x, t, s) is the required family.

2. Integrating w over (0, t) with respect to s, we find

v (x, t) =

∫ t

0

w (x, t, s)ds =

∫ t

0

∫

R

ΓD (x− y, t− s) f (y, s) dyds. (2.138)

Using (2.137) we have

vt −Dvxx = w (x, t, t) +
∫ t

0

[wt (x, t, s)−Dwxx (x, t, s)] = f (x, t) .

Moreover, v (x, 0) = 0 and therefore v is a solution to (2.134).

Everything works under rather mild hypotheses on f . More precisely:

Theorem 2.4. If f and its derivatives ft, fx, fxx are continuous and bounded
in R×[0, T ), then (2.138) gives a solution v of problem (2.134) in R × (0, T ),
continuous up to t = 0, with derivatives vt,vx, vxx continuous in R× (0, T ).

The formula for the general Cauchy problem

{
ut −Duxx = f (x, t) in R× (0, T )
u (x, 0) = g (x) in R

(2.139)

is obtained by superposition of (2.130) and (2.134):

u (x, t) =

∫

R

ΓD (x− y, t) g (y) dy+
∫ t

0

∫

R

Γ (x− y, t− s) f (y, s) dyds (2.140)

Under the hypotheses on f and g stated in Theorems 2.3 and 2.4, (2.140) is a
solution of (2.139) in R× (0, T ),

T <
1

4Da
,

continuous with its derivatives ut, ux, uxx.
The initial condition means that u (x, t) → g (x0) as (x, t) → (x0, 0) at any

point x0 of continuity of g. In particular, if g is continuous inR then u is continuous
in R×[0,T ).
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2.8.4 Maximum principles and uniqueness

The uniqueness of the solution to the global Cauchy problem is still to be discussed.
This is not a trivial question since the following counterexample of Tychonov shows
that there could be several solutions of the homogeneous problem. Let

h (t) =

{
e−t

2

for t > 0
0 for t ≤ 0.

It can be checked46 that the function

T (x, t) =
∞∑
k=0

x2k

(2k)!

dk

dtk
h (t)

is a solution of
ut − uxx = 0 in R× (0,+∞)

with
u (x, 0) = 0 in R.

Since also u (x, t) ≡ 0 is a solution of the same problem, we conclude that, in
general, the Cauchy problem is not well posed.
What is wrong with T ? It grows too much at infinity for small times. Indeed

the best estimate available for T is the following:

|T (x, t)| ≤ C exp
{
x2

θt

}
(θ > 0)

that quickly deteriorates when t→ 0+, due to the factor 1/θt.
If instead of 1/θt we had a constant A, as in condition iii) of Theorem 2.3,

then we can assure uniqueness.
In other words, among the class of functions with growth at infinity controlled

by an exponential of the type CeAx
2

for any t ≥ 0 (the so called Tychonov class),
the solution to the homogeneous Cauchy problem is unique.
This is a consequence of the following maximum principle.

Theorem 2.5 (Global maximum principle). Let z be continuous in R× [0, T ],
with derivatives zx, zxx, zt continuous in R × (0, T ), such that, in R × (0, T ) :

zt −Dzxx ≤ 0 (resp. ≥ 0)

and
z (x, t) ≤ CeAx2,

(
resp. ≥ −CeAx2

)
(2.141)

where C > 0. Then

sup
R×[0,T ]

z (x, t) ≤ sup
R

z (x, 0)

(
resp. inf

R×[0,T ]
z (x, t) ≥ inf

R

z (x, 0)

)
.

46 Not an easy task! See John’s book in the references.
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The proof is rather difficult, but if we assume that z is bounded from above or
below (A = 0 in (2.141)), then the proof relies on a simple application of the weak
maximum principle, Theorem 2.2.
In Problem 2.13 we ask the reader to fill in the details of the proof.

We now are in position to prove the following uniqueness result.

Corollary 2.2. Uniqueness I. Suppose u is a solution of
{
ut −Duxx = 0 in R× (0, T )
u (x, 0) = 0 in R,

continuous in R× [0, T ], with derivatives ux, uxx, ut continuous in R× (0, T ). If |u|
satisfies (2.141) then u ≡ 0.
Proof. From Theorem 2.5 we have

0 = inf
R

u (x, 0) ≤ inf
R×[0,T ]

u (x, t) ≤ sup
R×[0,T ]

u (x, t) ≤ sup
R

u (x, 0) = 0

so that u ≡ 0. �
Notice that if

|g(x)| ≤ ceax2 for every x ∈ R (c, a positive) , (2.142)

we know from Theorem 2.3 that

u (x, t) =

∫

R

ΓD (x− y, t) g (y) dy

satisfies the estimate

|u (x, t)| ≤ CeAx2 in R× (0, T ) (2.143)

and therefore it belongs to the Tychonov class in R× (0, T ), for T < 1/4Da.
Moreover, if f is as in Theorem 2.4 and

v (x, t) =

∫ t

0

∫

R

ΓD (x− y, t− s) f (y, s) dyds,

we easily get the estimate

t inf
R

f ≤ v (x, t) ≤ t sup
R

f, (2.144)

for every x ∈ R, 0 ≤ t ≤ T. In fact:

v (x, t) ≤ sup
R

f

∫ t

0

∫

R

ΓD (x− y, t − s) dyds = t sup
R

f

since ∫

R

ΓD (x− y, t− s) dy = 1

for every x, t, s, t > s. In the same way it can be shown that v (x, t) ≥ t infR f . As
a consequence, we have:
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Corollary 2.3. Uniqueness II. Let g be continuous in R, satisfying (2.143), and
let f be as in Theorem 2.4. Then the Cauchy problem (2.139) has a unique solution
u in R × (0, T ) for T < 1/4Da, belonging to the Tychonov class. This solution is
given by (2.140) and moreover

inf
R

g + t inf
R

f ≤ u (x, t) ≤ sup
R

g + t sup
R

f. (2.145)

Proof. If u and v are solutions of the same Cauchy problem (2.139), then w = u−v
is a solution of (2.139) with f = g = 0 and satisfies the hypotheses of Corollary
2.2. It follows that w (x, t) ≡ 0. �
• Stability and comparison. As in Corollary 2.1, inequality (2.145) is a stability

estimate for the correspondence

data �−→ solution.

Indeed, let u1 and u2 be solutions of (2.139) with data g1, f1 and g2, f2, respectively.
Under the hypotheses of Corollary 2.2, from (2.145) we can write

sup
R×[0,T ]

|u1 − u2| ≤ sup
R

|g1 − g2|+ T sup
R×[0,T ]

|f1 − f2| .

Therefore if

sup
R×[0,T ]

|f1 − f2| ≤ ε, sup
R

|g1 − g2| ≤ ε

also

sup
R×[0,T ]

|u1 − u2| ≤ ε (1 + T )

that means uniform pointwise stability.

This is not the only consequence of (2.145). We can use it to compare two
solutions. For instance, from the left inequality we immediately deduce that if
f ≥ 0 and g ≥ 0, also u ≥ 0.
Similarly, if f1 ≥ f2 and g1 ≥ g2, then

u1 ≥ u2.

• Backward equations arise in several applied contexts, from control theory and
dynamic programming to probability and finance. An example is the celebrated
Black–Scholes equation we will present in the next section.

Due to the time irreversibility, to have a well posed problem for the backward
equation in the time interval [0, T ] we must prescribe a final condition, that is
for t = T , rather than an initial one. On the other hand, the change of variable
t �−→ T − t transforms the backward into the forward equation, so that, from
the mathematical point of view, the two equations are equivalent. Except for this
remark the theory we have developed so far remains valid.
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2.9 An Application to Finance

2.9.1 European options

In this section we apply the above theory to determine the price of some financial
products, in particular of some derivative products, called European options.
A financial product is a derivative if its payoff depends on the price behavior of

an asset, in jargon the underlying, for instance a stock, a currency or a commodity.
Among the simplest derivatives are the European call and put options, that

are contracts on a prescribed asset between a holder and a subscriber, with the
following rules.
At the drawing up time of the contract (say at time t = 0) an exercise or

strike price E is fixed.

At an expiry date T , fixed in the future,

• the holder of a call option can (but is not obliged to) exercise the option
by purchasing the asset at the price E. If the holder decides to buy the asset,
the subscriber must sell it;

• the holder of a put option can (but is not obliged to) exercise the option
by selling at the price E. If the holder decides to sell the asset, the subscriber
must buy it.

Since an option gives to the holder a right without any obligation, the option
has a price and the basic question is: what is the “right” price that must be
paid at t = 0?
This price certainly depends on the evolution of the price S of the underlying,

on the strike price E, on the expiring time T and on the current riskless interest
rate r > 0.
For instance, for a call, to a lower E corresponds a greater price; the opposite

holds for a put. The price fluctuations of the underlying affect in crucial way the
value of an option, since they incorporate the amount of risk.
To answer our basic question, we introduce the value function V = V (S, t),

giving the proper price of the option if at time t the price of the underlying is S.
What we need to know is V (S (0) , 0). When we like to distinguish between call
and put, we use the notations C (S, t) and P (S, t), respectively.
The problem is then to determine V in agreement with the financial market,

where both the underlying and the option are exchanged. We shall use the Black-
Scholes method, based on the assumption of a reasonable evolution model for S
and on the fundamental principle of no arbitrage possibilities.

2.9.2 An evolution model for the price S

Since S depends on more or less foreseeable factors, it is clear that we cannot
expect a deterministic model for the evolution of S. To construct it we assume a
market efficiency in the following sense:
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a) The market responds instantaneously to new information on the asset.

b) The price has no memory: its past history is fully stored in the present price,
without further information.

Condition a) implies the adoption of a continuous model. Condition b) basically
requires that a change dS of the underlying price has the Markov property, like
Brownian motion.
Consider now a time interval from t to t + dt, during which S undergoes a

change from S to S + dS. One of the most common models assumes that the
return dS/S is given by the sum of two terms.
One is a deterministic term, which gives a contribution μdt due to a constant

drift μ, representing the average growth rate of S. With this term alone, we would
have

dS

S
= μdt

and therefore d logS = μdt, that gives the exponential growth S (t) = S (0) eμt.

The other term is stochastic and takes into account the random aspects of the
evolution. It gives the contribution

σdB

where dB is an increment of a Brownian motion and has zero mean and variance
dt. The coefficient σ, that we assume to be constant, is called the volatility and
measures the standard deviation of the return.

Summing the contributions we have

dS

S
= μdt+ σdB. (2.146)

Note the physical dimensions of μ and σ: [μ] = [time]
−1
, [σ] = [time]

− 12 .
The (2.146) is a stochastic differential equation (s.d.e.). To solve it one is

tempted to write
d logS = μdt+ σdB,

to integrate between 0 e t, and to obtain

log
S (t)

S (0)
= μt+ σ (B (t) −B (0)) = μt+ σB (t)

since B (0) = 0. However, this is not correct. The diffusion term σdB requires the
use of the Itô formula, a stochastic version of the chain rule. Let us make a few
intuitive remarks on this important formula.

Digression on Itô’s formula. Let B = B (t) the usual Brownian motion. An Itô
process X = X (t) is a solution of a s.d.e. of the type

dX = a (X, t) dt+ σ (X, t) dB (2.147)

where a is the drift term and σ is the volatility coefficient .
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When σ = 0, the equation is deterministic and the trajectories can be computed
with the usual analytic methods. Moreover, given a smooth function F = F (x, t),
we can easily compute the variation of F along those trajectories. It is enough to
compute

dF = Ftdt+ FxdX = {Ft + aFx} dt.
Let now be σ non zero; the preceding computation would give

dF = Ftdt+ FxdX = {Ft + aFx}dt+ σFxdB

but this formula does not give the complete differential of F . Indeed, using
Taylor’s formula, one has, letting X (0) = X0:

F (X, t) = F (X0, 0)+Ftdt+FxdX+
1

2

{
Fxx (dX)

2
+ 2FxtdXdt+ Ftt (dt)

2
}
+ ....

The differential of F along the trajectories of (2.147) is obtained by selecting in the
right hand side of the preceding formula the terms which are linear with respect
to dt or dX. We first find the terms

Ftdt+ FxdX = {Ft + aFx} dt+ σFxdB.

The terms 2FxtdXdt and Ftt (dt)
2
are non linear with respect to dt and dX and

therefore they are not in the differential. Let us now check the term (dX)
2
. We

have

(dX)
2
= [adt+ σdB]

2
= a2 (dt)

2
+ 2aσdBdt+ σ2 (dB)

2
.

While a2 (dt)
2
and 2aσdBdt are non linear with respect to dt and dX, the framed

term turns out to be exactly
σ2dt.

Formally, this is a consequence of the basic formula47 dB ∼
√
dtN (0, 1) that

assigns
√
dt for the standard deviation of dB.

Thus the differential of F along the trajectories of (2.147) is given by the
following Itô formula:

dF =

{
Ft + aFx +

1

2
σ2Fxx

}
dt+ σFxdB. (2.148)

We are now ready to solve (2.146), that we write in the form

dS = μSdt + σSdB.

Let F (S) = logS. Since

Ft = 0, FS =
1

S
, Fss = −

1

S2

47 See (2.86), subsection 2.4.3.
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Itô’s formula gives, with X = S, a (S, t) = μS, σ (S, t) = σS,

d logS =

(
μ− 1
2
σ2
)
dt+ σdB.

We can now integrate between 0 and t, obtaining

logS (t) = logS0 +

(
μ − 1
2
σ2
)
t+ σB (t) . (2.149)

The (2.149) shows that the random variable Y = logS has a normal distribution,
with mean logS0+

(
μ− 1

2σ
2
)
t and variance σ2t. Its probability density is therefore

f (y) =
1√
2πσ2t

exp

{
−
(
y − logS0 −

(
μ − 1

2
σ2
)
t
)2

2σ2t

}
.

and the density of S is given by

p (s) =
1

s
f (log s) =

1

s
√
2πσ2t

{
−
(
log s− logS0 −

(
μ− 1

2σ
2
)
t
)2

2σ2t

}

which is called a lognormal density.

2.9.3 The Black-Scholes equation

We now construct a differential equation able to describe the evolution of V (S, t).
We work under the following hypotheses:

• S follows a lognormal law.
• The volatility σ is constant and known.
• There are no transaction costs or dividends.
• It is possible to buy or sell any number of the underlying asset.
• There is an interest rate r > 0, for a riskless investment. This means that 1
dollar in a bank at time t = 0 becomes erT dollars at time T .

• The market is arbitrage free.

The last hypothesis is crucial in the construction of the model and means that
there is no opportunity for instantaneous risk-free profit. It could be considered as
a sort of conservation law for money!
The translation of this principle into mathematical terms is linked with the

notion of hedging and the existence of self-financing portfolios48. The basic idea
is first to compute the return of V through Itô formula and then to construct a
riskless portfolio Π , consisting of shares of S and the option. By the arbitrage free
hypothesis, Π must grow at the current interest rate r, i.e. dΠ = rΠdt, which
turns out to coincide with the fundamental Black-Scholes equation.

48 A portfolio is a collection of securities (e.g. stocks) holdings.
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Let us then use the Itô formula to compute the differential of V . Since

dS = μSdt + σSdB,

we find

dV =

{
Vt + μSVS +

1

2
σ2S2VSS

}
dt+ σSVSdB. (2.150)

Now we try to get rid of the risk term σSVSdB by constructing a portfolio Π ,
consisting of the option and a quantity49 −Δ of underlying:

Π = V − SΔ.

This is an important financial operation called hedging . Consider now the interval
of time (t, t+ dt) during which Π undergoes a variation dΠ . If we manage to keep
Δ equal to its value at t during the interval (t, t+ dt), the variation of Π is given
by

dΠ = dV −ΔdS.
This is a key point in the whole construction, that needs to be carefully justified50.
Although we content ourselves with an intuitive level, we will come back to this
question in the last section of this chapter.
Using (2.150) we find

dΠ = dV −ΔdS = (2.151)

=

{
Vt + μSVs +

1

2
σ2S2VSS − μSΔ

}
dt+ σS(VS −Δ)dB.

Thus, if we choose
Δ = VS , (2.152)

meaning that Δ is the value of VS at t, we eliminate the stochastic component
in (2.151). The evolution of the portfolio Π is now entirely deterministic and its
dynamics is given by the following equation:

dΠ =

{
Vt +

1

2
σ2S2VSS

}
dt. (2.153)

The choice (2.152) appears almost .... miraculous, but it is partly justified by the
fact that V and S are dependent and the random component in their dynamics
is proportional to S. Thus, in a suitable linear combination of V and S such
component should disappear.

It is the moment to use the no-arbitrage principle. Investing Π at the riskless
rate r, after a time dt we have an increment rΠdt. Compare rΠdt with dΠ given
by (2.153).

49 We borrow from finance the use of the greek letter Δ in this context. Clearly here it
has nothing to do with the Laplace operator.

50 In fact, saying that we keep Δ constant for an infinitesimal time interval so that we
can cancel SdΔ from the differential dΠ requires a certain amount of impudence....
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· If dΠ > rΠdt, we borrow an amount Π to invest in the portfolio. The return
dΠ would be greater of the cost rΠdt, so that we make an instantaneous riskless
profit

dΠ − rΠdt.
· If dΠ < rΠdt, we sell the portfolio Π investing it in a bank at the rate r.

This time we would make an instantaneous risk free profit

rΠdt− dΠ.

Therefore, the arbitrage free hypothesis forces

dΠ =

{
Vt +

1

2
σ2S2VSS

}
dt = rΠdt. (2.154)

Substituting
Π = V − SΔ = V − VSS

into (2.154), we obtain the celebrated Black-Scholes equation:

LV = Vt +
1

2
σ2S2VSS + rSVS − rV = 0. (2.155)

Note that the coefficient μ, the drift of S, does not appear in (2.155). This fact
is apparently counter-intuitive and shows an interesting aspect of the model. The
financial meaning of the Black-Scholes equation is emphasized from the following
decomposition of its right hand side:

LV = Vt +
1

2
σ2S2VSS

︸ ︷︷ ︸
portfolio return

− r(V − SVS)︸ ︷︷ ︸ .
bank investment

The Black-Scholes equation is a little more general than the equations we have
seen so far. Indeed, the diffusion and the drift coefficients are both depending on
S. However, as we shall see below, we can transform it into the diffusion equation
ut = uxx.
Observe that the coefficient of VSS is positive, so that (2.155) is a backward

equation. To get a well posed problem, we need a final condition (at t = T ), a
side condition at S = 0 and one condition for S → +∞.
• Final conditions. We examine what conditions we have to impose at t = T .
Call. If at time T we have S > E then we exercise the option, with a profit

S −E. If S ≤ E, we do not exercise the option with no profit. The final payoff of
the option is therefore

C (S, T ) = max {S − E, 0} = (S − E)+ , S > 0.

Put. If at time T we have S ≥ E, we do not exercise the option, while we
exercise the option if S < E. The final payoff of the option is therefore

P (S, T ) = max{E − S, 0} = (E − S)+ , S > 0.
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• Boundary conditions.We now examine the conditions to be imposed at S = 0
and for S → +∞.
Call. If S = 0 at a time t, (2.146) implies S = 0 thereafter, and the option has

no value; therefore
C (0, t) = 0 t ≥ 0.

As S → +∞, at time t, the option will be exercised and its value becomes practi-
cally equal to S minus the discounted exercise price, that is

C (S, t) − (S − e−r(T−t)E)→ 0 as S →∞.

Put. If at a certain time is S = 0, so that S = 0 thereafter, the final profit
is E. Thus, to determine P (0, t) we need to determine the present value of E at
time T , that is

P (0, t) = Ee−r(T−t).

If S → +∞, we do not exercise the option, hence

P (S, t) = 0 as S → +∞.

2.9.4 The solutions

Let us summarize our model in the two cases.

Black-Scholes equation

Vt +
1

2
σ2S2VSS + rSVS − rV = 0. (2.156)

Final payoffs

C (S, T ) = (S − E)+ (call)

P (S, T ) = (E − S)+ (put).

Boundary conditions

C (0, t) = 0, C (S, t)− (S − e−r(T−t)E)→ 0 as S →∞ (call)
P (0, t) = Ee−r(T−t), P (S, T ) = 0 as S →∞ (put).

It turns out that the above problems can be reduced to a global Cauchy problem
for the heat equation. In this way it is possible to find explicit formulas for the
solutions. First of all we make a change of variables to reduce the Black-Scholes
equation to constant coefficients and to pass from backward to forward in time.
Also note that 1/σ2 can be considered an intrinsic reference time while the exercise
price E gives a characteristic order of magnitude for S and V. Thus, 1/σ2and E
can be used as rescaling factors to introduce dimensionless variables.
Let us set

x = log
S

E
, τ =

1

2
σ2 (T − t) , w (x, τ) = 1

E
V

(
Eex, T − 2τ

σ2

)
.
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When S goes from 0 to +∞, x varies from −∞ to +∞. When t = T we have
τ = 0. Moreover:

Vt = −
1

2
σ2Ewτ

VS =
E

S
wx, VSS = −

E

S2
wx +

E

S2
wxx.

Substituting into (2.156), after some simplifications, we get

−1
2
σ2wτ +

1

2
σ2 (−wx +wxx) + rwx − rw = 0

or
wτ = wxx + (k − 1)wx − kw

where k = 2r
σ2
is a dimensionless parameter. By further setting51

w (x, τ) = e−
k−1
2 x− (k+1)24 τv (x, τ)

we find that v satisfies

vτ − vxx = 0, −∞ < x < +∞, 0 ≤ τ ≤ T.

The final condition for V becomes an initial condition for v. Precisely, after some
manipulations, we have

v (x, 0) = g (x) =

{
e
1
2 (k+1)x − e 12 (k−1)x x > 0
0 x ≤ 0

for the call option, and

v (x, 0) = g (x) =

{
e
1
2 (k−1)x − e 12 (k+1)x x < 0
0 x ≥ 0

for the put option.
Now we can use the preceding theory and in particular Theorem 2.3 and Corol-

lary 2.3. The solution is unique and it is given by formula

v (x, τ) =
1√
4πτ

∫

R

g (y) e−
(x−y)2
4τ dy.

To have a more significant formula, let y =
√
2τz + x; then, focusing on the call

option:

v (x, τ) =
1√
2π

∫

R

g
(√
2τz + x

)
e−

z2

2 dy =

=
1√
2π

{∫ ∞
−x/√2τ

e
1
2 (k+1)(

√
2τz+x)−12 z2dz −

∫ ∞
−x/√2τ

e
1
2 (k−1)(

√
2τz+x)− 12 z2dz

}
.

51 See Problem 2.14.
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After some manipulations in the two integrals52, we obtain

v (x, τ) = e
1
2 (k+1)x+

1
4 (k+1)

2τN (d+) − e
1
2 (k−1)x+ 14 (k−1)2τN (d−)

where

N (z) =
1√
2π

∫ z

−∞
e−

1
2y
2

dy

is the distribution of a standard normal random variable and

d± =
x√
2τ
+
1

2
(k ± 1)

√
2τ .

Going back to the original variables we have, for the call:

C (S, t) = SN (d+)−Ee−r(T−t)N (d−)

with

d± =
log (S/E) +

(
r ± 1

2σ
2
)
(T − t)

σ
√
T − t .

The formula for the put is

P (S, t) = Ee−r(T−t)N (−d−)− SN (−d+) .

It can be shown that53

Δ = CS = N (d+) > 0 for the call

Δ = PS = N (d+)− 1 < 0 for the put.

Note that CS e PS are strictly increasing with respect to S, since N is a strictly
increasing function and d+ is strictly increasing with S. The functions C, P are
therefore strictly convex functions of S, for every t, namely Css > 0 and Pss > 0.

• Put-call parity. Put and call options with the same exercise price and expiry
time can be connected by forming the following portfolio:

Π = S + P −C
52 For instance, to evaluate the first integral, complete the square at the exponent, writing

1

2
(k + 1)

(√
2τz + x

)
− 1
2
z2 =

1

2
(k + 1) x+

1

4
(k + 1)2 τ − 1

2

[
z − 1
2
(k + 1)

√
2τ

]2
.

Then, setting y =
1

2
(k + 1)

√
2τ,

∫ ∞

−x/√2τ
e
1
2
(k+1)(

√
2τz+x)− 12 z2dz = e

1
2
(k+1)x+

1

4
(k+1)2τ

∫ ∞

−x/√2τ−(k+1)√τ/√2
e−

1
2
y2dz.

53 The calculations are rather ... painful.
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where the minus in front of C shows a so called short position (negative holding).
For this portfolio the final payoff is

Π (S, T ) = S + (E − S)+ − (S −E)+ .
If E ≥ S, we have

Π (S, T ) = S + (E − S) − 0 = E
while if E ≤ S,

Π (S, T ) = S + 0− (S − E) = E.
Thus at expiry the payoff is always equal to E and it constitutes a riskless profit,
whose value at t must be equal to the discounted value of E, because of the no
arbitrage condition. Hence we find the following relation (put–call parity)

S + P −C = Ee−r(T−t). (2.157)

Formula (2.157) also shows that, given the value of C (or P ), we can find the value
of P (or C).
From (2.157), since Ee−r(T−t) ≤ E and P ≥ 0, we get

C (S, t) = S + P − Ee−r(T−t) ≥ S − E
and therefore, since C ≥ 0,

C (S, t) ≥ (S − E)+ .
It follows that the value of C is always greater than the final payoff. It is not so
for a put. In fact

P (0, t) = Ee−r(T−t) ≤ E
so that the value of P is below the final payoff when S is near 0, while it is above
just before expiring. The figures 2.14 and 2.15 show the behavior of C and P versus
S, for some values of T − t up to expiry.

Fig. 2.14. The value function for an European call option
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Fig. 2.15. The value function of an European put option

• Different volatilities. The maximum principle arguments in subsection 2.8.3
can be used to compare the value of two options with different volatilities σ1 and
σ2, having the same exercise price E and the same strike time T . Assume that
σ1 > σ2 and denote by C

(1), C(2) the value of the corresponding call options.
Diminishing the amount of risk the value of the option should decrease and indeed
we want to confirm that

C(1) > C(2) S > 0, 0 ≤ t < T.

Let W = C(1) −C(2). Then

Wt +
1

2
σ22S

2WSS + rSWS − rW =
1

2
(σ22 − σ21)S2C(1)SS (2.158)

with W (S, T ) = 0, W (0, t) = 0 and W → 0 as S → +∞.
The (2.158) is a nonhomogeneous equation, whose right hand side is negative

for S > 0, because C
(1)
SS > 0. SinceW is continuous in the half strip [0,+∞)×[0, T ]

and vanishes at infinity, it attains its global minimum at a point (S0, t0).

We claim that the minimum is zero and cannot be attained at a point in
(0,+∞) × [0, T ). Since the equation is backward, t0 = 0 is excluded. Suppose
W (S0, t0) ≤ 0 with S0 > 0 and 0 < t0 < T . We have

Wt (S0, t0) = 0

and

WS (S0, t0) = 0, WSS (S0, t0) ≥ 0.

Substituting S = S0, t = t0 into (2.158) we get a contradiction. Therefore W =
C(1) − C(2) > 0 for S > 0, 0 < t < T .
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2.9.5 Hedging and self-financing strategy

The mathematical translation of the no arbitrage principle can be made more
rigorously than we did in subsection 2.9.2, by introducing the concept of self-
financing portfolio. The idea is to “duplicate”V by means of a portfolio consisting
of a number of shares of S and a bond Z, a free risk investment growing at the
rate r, e.g. Z (t) = ert.
To this purpose let us try to determine two processes φ = φ (t) e ψ = ψ (t)

such that
V = φS + ψZ (0 ≤ t ≤ T ) (2.159)

in order to eliminate any risk factor. In fact, playing the part of the subscriber (that
has to sell), the risk is that at time T the price S (T ) is greater than E, so that the
holder will exercise the option. If in the meantime the subscriber has constructed
the portfolio (2.159), the profit from it exactly meets the funds necessary to pay
the holder. On the other hand, if the option has zero value at time T , the portfolio
has no value as well.
For the operation to make sense, it is necessary that the subscriber does not put

extra money in this strategy (hedging). This can be assured by requiring that the
portfolio (2.159) be self-financing that is, its changes in value be dependent
from variations of S and Z alone.
In formulas, this amount to requiring

dV = φdS + ψdZ (0 ≤ t ≤ T ). (2.160)

Actually, we have already met something like (2.160), when we have constructed
the portfolio Π = V − SΔ or

V = Π + SΔ,

asking that dV = dΠ+ΔdS. This construction is nothing else that a duplication of
V by means of a self-financing portfolio, withΠ playing the role of Z and choosing
ψ = 1.
But, what is the real meaning of (2.160)? We see it better in a discrete setting.

Consider a sequence of times

t0 < t1 < ... < tN

and suppose that the intervals (tj − tj−1) are very small. Denote by Sj e Zj the
values at tj of S and Z. Consequently, look for two sequences

φj and ψj

corresponding to the quantity of S and Z to be used in the construction of the
portfolio (2.159) from tj−1 to tj . Notice that φj and ψj are chosen at time tj−1.
Thus, given the interval (tj−1, tj),

Vj = φjSj + ψjZj
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represents the closing value of the portfolio while

φj+1Sj + ψj+1Zj

is the opening value, the amount of money necessary to buy the new one. The
self-financing condition means that the value Vj of the portfolio at time tj ,
determined by the couple

(
φj, ψj

)
, exactly meets the purchasing cost of the port-

folio in the interval (tj , tj+1), determined by
(
φj+1, ψj+1

)
. This means

φj+1Sj + ψj+1Zj = φjSj + ψjZj (2.161)

or that the financial gap

Dj = φj+1Sj + ψj+1Zj − Vj

must be zero, otherwise an amount of cash Dj has to be injected to substain the
strategy (Dj > 0) or the same amount of money can be drawn from it (Dj < 0).
From (2.161) we deduce that

Vj+1 − Vj = (φj+1Sj+1 + ψj+1Zj+1)− (φjSj + ψjZj)
= (φj+1Sj+1 + ψj+1Zj+1)−

(
φj+1Sj + ψj+1Zj

)

= φj+1(Sj+1 − Sj) + ψj+1(Zj+1 − Zj)

or

ΔVj = φj+1ΔSj + ψj+1ΔZj

whose continuous version is exactly (2.160).

Going back to the continuous case, by combining formulas (2.150) and (2.160)
for dV , we get

{
Vt + μSVS +

1

2
σ2S2VSS

}
dt+ σSVSdB = φ (μSdt+ σSdB) + ψrZdt.

Choosing φ = VS , we rediscover the Black and Scholes equation

Vt +
1

2
σ2S2VSS + rSVS − rV = 0. (2.162)

On the other hand, if V satisfies (2.162) and

φ = VS , ψ = Z
−1(V − VSS) = e−rt(V − VSS),

it can be proved that the self financing condition (2.160) is satisfied for the portfolio
φS + ψZ.
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2.10 Some Nonlinear Aspects

All the mathematical models we have examined so far are linear . On the other
hand, the nature of most real problems is nonlinear. For example, nonlinear diffu-
sion has to be taken into account in filtration problems, non linear drift terms are
quite important in fluid dynamics while nonlinear reaction terms occur frequently
in population dynamics and kinetics chemistry.

The presence of a nonlinearity in a mathematical model gives rise to many
interesting phenomena that cannot occur in the linear case; typical instances are
finite speed of diffusion, finite time blow-up or existence of travelling wave solutions
of certain special profiles, each one with its own characteristic velocity.

In this section we try to convey some intuition of what could happen in two
typical and important examples from filtration through a porous medium and
population dynamics. In Chapter 4, we shall deal with nonlinear transport models.

2.10.1 Nonlinear diffusion. The porous medium equation

Consider a gas of density ρ = ρ (x, t) flowing through a porous medium. Denote
by v = v (x, t) the velocity of the gas and by κ the porosity of the medium, rep-
resenting the volume fraction filled with gas. Conservation of mass reads, in this
case:

κρt + div (ρv) = 0. (2.163)

Besides (2.163), the flow is governed by the two following constitutive (empirical)
laws.

• Darcy’s law:
v = −μ

ν
∇p (2.164)

where p = p (x, t) is the pressure, μ is the permeability of the medium and ν is the

viscosity of the gas. We assume μ and ν are positive constants.

• Equation of state:

p = p0ρ
α p0 > 0, α > 0. (2.165)

From (2.164) and (2.165) we have, since p1/α∇p = (1 + 1/α)−1Δ(p1+1/α),

div (ρv) = − μ

(1 + 1/α)νp
1/α
0

Δ(p1+1/α) = −(m− 1)μp0
mν

Δ (ρm)

where m = 1 + α > 1. From (2.163) we obtain

ρt =
(m− 1)μp0
κmν

Δ(ρm).
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Rescaling time (t �→ (m− 1)μp0
κmν

t) we finally get the porous medium equation

ρt = Δ(ρ
m). (2.166)

Since
Δ(ρm) = div

(
mρm−1∇ρ

)

we see that the diffusion coefficient is D (ρ) = mρm−1, showing that the diffusive
effect increases with the density.
The porous medium equation can be written in terms of the pressure variable

u = p/p0 = ρ
m−1.

It is not difficult to check that the equation for u is given by

ut = uΔu+
m

m− 1 |∇u|
2

(2.167)

showing once more the dependence on u of the diffusion coefficient.
One of the basic questions related to the equation (2.166) or (2.167) is to

understand how an initial data ρ0, confined in a small region Ω, evolves with
time. The key object to examine is therefore the unknown boundary ∂Ω, or free
boundary of the gas, whose speed of expansion we expect to be proportional to
|∇u| (from (2.164)). This means that we expect a finite speed of propagation, in
contrast with the classical case m = 1.
The porous media equation cannot be treated by elementary means, since at

very low density the diffusion has a very low effect and the equation degenerates.
However we can get some clue of what happens by examining a sort of fundamental
solutions, the so called Barenblatt solutions, in spatial dimension 1.
The equation is

ρt = (ρ
m)xx . (2.168)

We look for nonnegative self-similar solutions of the form

ρ (x, t) = t−αU
(
xt−β

)
≡ t−αU (ξ)

satisfying ∫ +∞
−∞

ρ (x, t)dx = 1.

This condition requires

1 =

∫ +∞
−∞

t−αU
(
xt−β

)
dx = tβ−α

∫ +∞
−∞

U (ξ) dξ

so that we must have α = β and
∫ +∞
−∞ U (ξ) dξ = 1. Substituting into (2.168), we

find
αt−α−1(−U − ξU ′) = t−mα−2α(Um)′′.
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Thus, if we choose α = 1/ (m+ 1), we get for U the differential equation

(m+ 1) (Um)′′ + ξU ′ + U = 0

that can be written in the form

d

dξ

[
(m+ 1) (Um)′ + ξU

]
= 0.

Thus, we have

(m+ 1) (Um)
′
+ ξU = constant.

Choosing the constant equal to zero, we get

(m+ 1) (Um)
′
= (m+ 1)mUm−1U ′ = −ξU

or

(m+ 1)mUm−2U ′ = −ξ.

This in turn is equivalent to

(m+ 1)m

m− 1
(
Um−1

)′
= −ξ

whose solution is

U (ξ) =
[
A− Bmξ2

]1/(m−1)

where A is an arbitrary constant and Bm = (m− 1) /2m (m+ 1) . Clearly, to have
a physical meaning, we must have A > 0 and A− Bmξ2 ≥ 0.
In conclusion we have found solutions of the porous medium equation of the

form

ρ (x, t) =

⎧
⎪⎨
⎪⎩

1

tα

[
A− Bm

x2

t2α

]1/(m−1)
if x2 ≤ At2α/Bm

0 if x2 > At2α/Bm.

(α = 1/ (m+ 1)) .

known as Barenblatt solutions. The points

x = ±
√
A/Bmt

α ≡ ±r (t)

represent the gas interface between the part filled by gas and the empty part. Its
speed of propagation is therefore

ṙ (t) = α
√
A/Bmt

α−1.
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Fig. 2.16. The Barenblatt solution

ρ (x, t) = t−1/5
[
1− x2t−2/5

]1/3

+

for t = 1, 4, 10, 30

2.10.2 Nonlinear reaction. Fischer’s equation

In 1937 Fisher54 introduced a model for the spatial spread of a so called favoured55

(or advantageous) gene in a population, over an infinitely long one dimensional
habitat. Denoting by v the gene concentration, Fisher’s equation reads

vτ = Dvyy + rv
(
1− v
M

)
τ > 0, y ∈ R, (2.169)

where D, r, andM are positive parameters. An important question is to determine
whether the gene has a typical speed of propagation.
Accordingly to the terminology in the introduction, (2.169) is a semilinear

equation where diffusion is coupled with logistic growth through the reaction term

f (v) = rv
(
1− v
M

)
.

The parameter r represents a biological potential (net birth-death rate, with di-
mension [time]−1), while M is the carrying capacity of the habitat. If we rescale
time, space and concentration in the following way

t = rτ , x =
√
r/Dy, u = v/M,

(2.169) takes the dimensionless form

ut = uxx + u (1− u) , t > 0. (2.170)

Note the two equilibria u ≡ 0 and u ≡ 1. In absence of diffusion, 0 is unstable,
and 1 is asymptotically stable. A trajectory with initial data u (0) = u0 between
0 and 1 has the typical behavior shown in figure 2.17:

54 Fisher, R. A. (1937), The wave of advance of advantageous gene. Ann. Eugenics, 7,
355-69.

55 That is a gene that has an advantage in the struggle for life.
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Fig. 2.17. Logistic curve (r = 0.1, u0 = 1/3)

Therefore, if
u (x, 0) = u0 (x) , x ∈ R, (2.171)

is an initial data for the equation (2.169), with 0 < u0 (x) < 1, we expect a
competitive action between diffusion and reaction, with diffusion trying to spread
and lower u0 against the reaction tendency to increase u towards the equilibrium
solution 1.
What we intend to show here is the existence of permanent travelling waves

solutions connecting the two equilibrium states, that is solutions of the form

u (x, t) = U (z) , z = x− ct,

with c denoting the propagation speed, satisfying the conditions

0 < u < 1, t > 0, x ∈ R

and
lim

x→−∞u (x, t) = 1 and lim
x→+∞u (x, t) = 0. (2.172)

The first condition in (2.172), states that the gene concentration is saturated at
the far left end while the second condition denotes zero concentration at the far
right end. Clearly, this kind of solutions realize a balance between diffusion and
reaction.
Since the equation (2.169) is invariant under the transformation x �→ −x, it

suffices to consider c > 0, that is right-moving waves only.
Since

ut = −cU ′, ux = U
′, uxx = U

′′, (′ = d/dz)

substituting u (x, t) = U (z) into (2.170), we find for U the ordinary differential
equation

U ′′ + cU ′ + U − U2 = 0 (2.173)
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with
lim

z→−∞U (z) = 1 and lim
z→+∞U (z) = 0. (2.174)

Letting U ′ = V , the equation (2.173) is equivalent to the system

dU

dz
= V ,

dV

dz
= −cV − U + U2 (2.175)

in the phase plane (U, V ). This system has two equilibrium points (0, 0) and (1, 0)
corresponding to two steady states. Our travelling wave solution corresponds to
an orbit connecting (1, 0) to (0, 0), with 0 < U < 1.
We first examine the local behavior of the orbits near the equilibrium points.

The coefficients matrices of the linearized systems at (0, 0) and (1, 0) are, respec-
tively,

J (0, 0) =

(
0 1
−1 −c

)
and J (1, 0) =

(
0 1
1 −c

)
.

The eigenvalues of J (0, 0) are

λ± =
1

2

[
−c±

√
c2 − 4

]
,

with corresponding eigenvectors

h± =
(
−c∓

√
c2 − 4
2

)
.

If c ≥ 2 the eigenvalues are both negative while if c < 2 they are complex. Therefore

(0, 0) is a

{
stable node if c ≥ 2
stable focus if c < 2.

The eigenvalues of J (1, 0) are

μ± =
1

2

[
−c ±

√
c2 + 4

]
,

of opposite sign, hence (1, 0) is a saddle point. The unstable and stable separatrices
leave (1, 0) along the directions of the two eigenvectors

k+ =

(
c +

√
c2 + 4
2

)
and k− =

(
c−

√
c2 + 4
2

)
,

respectively.
Now, the constraint 0 < U < 1 rules out the case c < 2, since in this case

U changes sign along the orbit approaching (0, 0). For c ≥ 2, all orbits56 in a
neighborhood of the origin approach (0, 0) for z → +∞ asymptotically with slope
56 Except for two orbits on the stable manifold tangent to h− at (0, 0), in the case c > 2.
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Fig. 2.18. Orbits of the system (2.175)

λ+. On the other hand, the only orbit going to (1, 0) as z → −∞ and remaining
in the region 0 < U < 1 is the unstable separatrix γ of the saddle point.

Figure 2.18 shows the orbits configuration in the region of interest (see Problem
2.23). The conclusion is that for each c ≥ 2 there exists a unique travelling wave
solution of equation (2.169) with speed c. Moreover U is strictly decreasing .

In terms of original variables, there is a unique travelling wave solution for
every speed c satisfying the inequality c ≥ cmin = 2

√
rD.

Thus, we have a continuous “spectrum” of possible speeds of propagation. It
turns out that the minimum speed c = cmin is particularly important.

Indeed, having found a travelling solution is only the beginning of the story.
There is a number of questions that arise naturally. Among them, the study of the
stability of the travelling waves or of the asymptotic behavior (as t → +∞) of a
solution with an initial data u0 of transitional type, that is

u0 (x) =

⎧
⎨
⎩
1 x ≤ a
0 < u0 < 1 a < x < b
0 x ≥ b.

(2.176)

Should we expect that the travelling wave is insensitive to small perturbations?
Does the solution with initial condition (2.176) evolve towards one of the travelling
waves we have just found?

The interested reader can find the answers in the many specialized texts or
papers on the subject57 . Here we only mention that among the travelling wave
solutions we have found, only the minimum speed one can be the asymptotic rep-
resentation of solutions with transitional type initial condition. The biological im-
plication of this result is that cmin determines the required speed of propagation of
an advantageous gene.

57 See for instance, the books by Murray, vol I, 2001, or Grindrod, 1991.
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Problems

2.1. Use the method of separation of variables to solve the following initial-
Neumann problem:

⎧⎨
⎩
ut − uxx = 0 0 < x < L, t > 0
u (x, 0) = x 0 < x < L
ux (0, t) = ux (L, t) = 0 t > 0.

2.2. Use the method of separation of variables to solve the following non ho-
mogeneous initial-Neumann problem:

⎧⎨
⎩
ut − uxx = tx 0 < x < π, t > 0
u (x, 0) = 1 0 ≤ x ≤ π
ux (0, t) = ux (L, t) = 0 t > 0.

[Hint : Write the candidate solution as u (x, t) =
∑

k≥0 ck (t) vk (x) where vk
are the eigenfunctions of the eigenvalue problem associated with the homogeneous
equation].

2.3. Use the method of separation of variables to solve (at least formally) the
following mixed problem:

⎧
⎪⎪⎨
⎪⎪⎩

ut −Duxx = 0 0 < x < π, t > 0
u (x, 0) = g (x) 0 ≤ x ≤ π
ux (0, t) = 0
ux (L, t) + u (L, t) = U

t > 0.

[Answer : u (x, t) =
∑

k≥0 cke
−Dμ2kt cosμkx, where the numbers μk are the positive

solutions of the equation μ tanμ = 1].

2.4. Prove that, if wt −DΔw = 0 in QT and w ∈ C
(
QT
)
, then

min
∂pQT

w ≤ w (x,t) ≤ max
∂pQT

w for every (x,t) ∈ QT .

2.5. Prove Corollary 2.1.

[Hint : b). Let u = v − w, M = maxQT |f1 − f2| and apply Theorem 2.2 to
z± = ±u −Mt].

2.6. Let g (t) =M for 0 ≤ t ≤ 1 and g (t) =M − (1− t)4 for 1 < t ≤ 2. Let u
be the solution of ut − uxx = 0 in Q2 = (0, 2)× (0, 2) , u = g on ∂pQ2. Compute
u (1, 1) and check that it is the maximum of u. Is this in contrast with the strong
maximum principle of Remark 2.4?

2.7. Suppose u = u (x, t) is a solution of the heat equation in a plane domain
DT = QT \

(
Q̄1 ∪ Q̄2

)
where Q1 and Q2 are the rectangles in figure 2.19. Assume

that u attains its maximum M at the interior point (x1, t1). Where else u =M?
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Fig. 2.19. At which points (x, t) , u (x, t) = M?

2.8. Find the similarity solutions of the equation ut − uxx = 0 of the form
u (x, t) = U

(
x/
√
t
)
and express the result in term of the error function

erf (x) =
2√
π

∫ x

0

e−z
2

dz.

Find the solution of the problem ut − uxx = 0 in x > 0, t > 0 satisfying the
conditions u (0, t) = 1 and u (x, 0) = 0, x > 0.

2.9. Determine for which α and β there exist similarity solutions to ut−uxx =
f (x) of the form tαU

(
x/tβ

)
in each one of the following cases:

(a) f (x) = 0, (b) f (x) = 1, (c) f (x) = x.

[Answer : (a) α arbitrary, β = 1/2. (b) α = 1, β = 1/2. (c) α = 3/2, β = 1/2].

2.10. (Reflecting barriers and Neumann condition). Consider the symmetric
random walk of Section 2.4. Suppose that a perfectly reflecting barrier is located
at the point L = mh+ h

2 > 0. By this we mean that if the particle hits the point

L − h
2 at time t and moves to the right, then it is reflected and it comes back to

L − h
2 at time t + τ . Show that when h, τ → 0 and h2/τ = 2D, p = p (x, t) is a

solution of the problem

⎧
⎨
⎩
pt −Dpxx = 0 x < L, t > 0
p (x, 0) = δ x < L
px (L, t) = 0 t > 0

and moreover
∫ L
−∞ p (x, t)dx = 1. Compute explicitly the solution.

[Answer : p (x, t) = ΓD (x, t) + ΓD (x− 2L, t)].
2.11. (Absorbing barrires and Dirichlet condition). Consider the symmetric

random walk of Section 2.4. Suppose that a perfectly absorbing barrier is located
at the point L = mh > 0. By this we mean that if the particle hits the point L−h
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at time t and moves to the right then it is absorbed and stops at L. Show that
when h, τ → 0 and h2/τ = 2D, p = p (x, t) is a solution of the problem

⎧
⎨
⎩
pt −Dpxx = 0 x < L, t > 0
p (x, 0) = δ x < L
p (L, t) = 0 t > 0

Compute explicitly the solution.

[Answer : p (x, t) = ΓD (x, t)− ΓD (x− 2L, t).]
2.12. Use the partial Fourier transform û (ξ, t) =

∫
R
e−ixξu (x, t)dx to solve

the global Cauchy problem (2.129) and rediscover formula (2.130).

2.13. Prove Theorem 2.5 under the condition

z (x, t) ≤ C, x ∈ R, 0 ≤ t ≤ T,

using the following steps.
a) Let sup

R
z (x, 0) =M0 and define

w (x, t) =
2C

L2
(
x2

2
+Dt) +M0.

Check that wt−Dwxx = 0 and use the maximum principle to show that w ≥ z in
the rectangle RL = [−L, L]× [0, T ] .
b) Fix an arbitrary point (x0, t0) and choose L large enough to have (x0, t0) ∈

RL. Using a) deduce that z (x0, t0) ≤M0.
2.14. Find an explicit formula for the solution of the global Cauchy problem

{
ut = Duxx + bux + cu x ∈ R,t > 0
u (x, 0) = g (x) x ∈ R.

where D, b, c are constant coefficients. Show that, if c < 0 and g is bounded,
u (x, t)→ 0 as t→ +∞
[Hint : Choose h, k such that v (x, t) = u (x, t) ehx+kt is a solution of vt = Dvxx].

2.15. Find an explicit formula for the solution of the Cauchy problem
⎧
⎨
⎩
ut = uxx x > 0,t > 0
u (x, 0) = g (x)
u (0, t) = 0

x ≥ 0
t > 0.

with g continuous and g (0) = 0.

[Hint : Extend g to x < 0 by odd reflection: g (−x) = −g (x). Solve the correspond-
ing global Cauchy problem and write the result as an integral on (0,+∞)].
2.16. Let QT = Ω×(0, T ), with Ω bounded domain in Rn. Let u ∈ C2,1 (QT )∩

C
(
QT
)
satisfy the equation

ut = DΔu + b (x,t) · ∇u+ c (x,t)u in QT
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where b and c are continuous in QT . Show that if u ≥ 0 (resp. u ≤ 0) on ∂pQT
then u ≥ 0 (resp. u ≤ 0) in QT .
[Hint : Assume first that c (x,t) ≤ a < 0. Then reduce to this case by setting
u = vekt with a suitable k > 0].

2.17. Fill in the details in the arguments of Section 6.2, leading to formulas
(2.108) and (2.109).

2.18. Solve the following initial-Dirichlet problem in B1 =
{
x ∈R3: |x| < 1

}
:

⎧⎨
⎩
ut = Δu x ∈B1, t > 0
u (x, 0) = 0
u (σ, t) = 1

x ∈B1
σ ∈ ∂B1, t > 0.

Compute limt→+∞ u.
[Hint : The solution is radial so that u = u (r, t) , r = |x|. Observe that Δu =
urr+

2

r
ur =

1

r
(ru)rr . Let v = ru, reduce to homogeneous Dirichlet condition and

use separation of variables].

2.19. Solve the following initial-Dirichlet problem
⎧
⎨
⎩
ut = Δu x ∈K, t > 0
u (x, 0) = 0
u (σ, t) = 1

x ∈K
σ ∈ ∂K, t > 0.

where K is the rectangular box

K =
{
(x, y, z)∈R3: 0 < x < a, 0 < y < b, 0 < z < c

}
.

Compute limt→+∞ u.

2.20. Solve the following initial-Neumann problem in B1 =
{
x ∈R3: |x| < 1

}
:

⎧
⎨
⎩
ut = Δu x ∈B1, t > 0
u (x, 0) = |x|
uν (σ, t) = 1

x ∈B1
σ ∈ ∂B1 , t > 0.

2.21. Solve the following non homogeneous initial-Dirichlet problem in the unit
sphere B1 (u = u (r, t) , r = |x|):

⎧
⎪⎨
⎪⎩
ut − (urr +

2

r
ur) = qe

−t 0 < r < 1, t > 0

u (r, 0) = U
u (1, t) = 0

0 ≤ r ≤ 1
t > 0.

[Answer : The solution is

u (r, t) =
2

r

∞∑
n=1

(−1)n
λn

sin(λnr)

{
q

1− λ2n

(
e−t − e−λ2nt

)
− Ue−λ2nt

}

where λn = nπ].
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2.22. Using the maximum principle, compare the values of two call options
C(1) and C(2) in the following cases:
(a) Same exercise price and T1 > T2. (b) Same expiry time and E1 > E2.

2.23. Justify carefully the orbit configuration of figure 2.18 and in particular
that the unstable orbit γ connects the two equilibrium points of system (2.175),
by filling in the details in the following steps:

1. Let F = V i+
(
−cV + U2 − U

)
j and n be the interior normal to the bound-

ary of the triangle Ω in figure 2.20. Show that, if β is large enough, F · n > 0 along
∂Ω.

2. Deduce that all the orbits of system (2.175) starting at a point in Ω cannot
leave Ω (i.e. Ω is a positively invariant region) and converge to the origin as
z → +∞.
3. Finally, deduce that the unstable separatrix γ of the saddle point (1, 0)

approaches (0, 0) as z → +∞.

Fig. 2.20. Trapping region for the orbits of the vector field F =V i +
(−cV + U2 − U) j
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The Laplace Equation

Introduction – Well Posed Problems. Uniqueness – Harmonic Functions – Fundamental

Solution and Newtonian Potential – The Green Function – Uniqueness in Unbounded

Domains – Surface Potentials

3.1 Introduction

The Laplace equation Δu = 0 occurs frequently in applied sciences, in particular
in the study of the steady state phenomena. Its solutions are called harmonic
functions. For instance, the equilibrium position of a perfectly elastic membrane
is a harmonic function as it is the velocity potential of a homogeneous fluid. Also,
the steady state temperature of a homogeneous and isotropic body is a harmonic
function and in this case Laplace equation constitutes the stationary counterpart
(time independent) of the diffusion equation.
Slightly more generally, Poisson’s equation Δu = f plays an important role in

the theory of conservative fields (electrical, magnetic, gravitational,...) where the
vector field is derived from the gradient of a potential.
For example, let E be a force field due to a distribution of electric charges in

a domain Ω ⊂ R
3. Then, in standard units, div E =4πρ, where ρ represents the

density of the charge distribution. When a potential u exists such that ∇u = −E,
then Δu = div∇u = −4πρ, which is Poisson’s equation. If the electric field is
created by charges located outside Ω, then ρ = 0 in Ω and u is harmonic therein.
Analogously, the potential of a gravitational field due to a mass distribution is a
harmonic function in a region free from mass.

In dimension two, the theories of harmonic and holomorphic functions are
strictly connected1 . Indeed, the real and the imaginary part of a holomorphic

1 A complex function f = f (z) is holomorphic in an open subset Ω of the complex plane
if for every z0 ∈ Ω, the limit

lim
z→z0

f (z)− f (z0)
z − z0 = f ′ (z0)

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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function are harmonic. For instance, since the functions

zm = rm (cosmθ + i sinmθ) , m ∈ N,

(r, θ polar coordinates) are holomorphic in the whole plane C, the functions

u (r, θ) = rm cosmθ and v (r, θ) = rm sinmθ m ∈ N,

are harmonic in R2 (called elementary harmonics). In Cartesian coordinates, they
are harmonic polynomials; for m = 1, 2, 3 we find

x, y, xy, x2 − y2, x3 − 3xy2, 3x2y − y3.

Other examples are

u (x, y) = eαx cosαy, v (x, y) = eαx sinαy (α ∈ R),

the real and imaginary parts of f (z) = eiαz, both harmonic in R2, and

u (r, θ) = log r, v (r, θ) = θ,

the real and imaginary parts of f (z) = log0 z ≡ log r + iθ, harmonic in R2\ (0, 0)
and R2\ {θ = 0} , respectively.
In this chapter we present the formulation of the most important well posed

problems and the classical properties of harmonic functions, focusing mainly on
dimensions two and three. As in Chapter 2, we emphasize some probabilistic as-
pects, exploiting the connection among random walks, Brownian motion and the
Laplace operator. A central notion is the concept of fundamental solution, that
we develop in conjunction with the very basic elements of the so called potential
theory .

3.2 Well Posed Problems. Uniqueness

Consider the Poisson equation

Δu = f in Ω (3.1)

where Ω ⊂ Rn is a bounded domain. The well posed problems associated with
equation (3.1) are the stationary counterparts of the corresponding problems for
the diffusion equation. Clearly here there is no initial condition. On the boundary
∂Ω we may assign:

• Dirichlet data
u = g, (3.2)

exists and it is finite.
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• Neumann data
∂νu = h, (3.3)

where ν is the outward normal unit vector to ∂Ω,

• a Robin (radiation) condition

∂νu+ αu = h (α > 0), (3.4)

• a mixed condition; for instance,

u = g on ΓD (3.5)

∂νu = h on ΓN ,

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and ΓN is a relatively open subset of ∂Ω.
When g = h = 0 we say that the above boundary conditions are homogeneous.

We give some interpretations. If u is the position of a perfectly flexible mem-
brane and f is an external distributed load (vertical force per unit surface), then
(3.1) models a steady state.
The Dirichlet condition corresponds to fixing the position of the membrane at

its boundary. Robin condition describes an elastic attachment at the boundary
while a homogeneous Neumann condition corresponds to a free vertical motion of
the boundary.
If u is the steady state concentration of a substance, the Dirichlet condition

prescribes the level of u at the boundary, while the Neumann condition assigns
the flux of u through the boundary.

Using Green’s identity (1.13) we can prove the following uniqueness result.

Theorem 3.1. Let Ω ⊂ R
n be a smooth, bounded domain. Then there exists

at most one solution u ∈ C2 (Ω) ∩ C1
(
Ω
)
of (3.1), satisfying on ∂Ω one of the

conditions (3.2), (3.4) or (3.5).
In the case of the Neumann condition, that is when

∂νu = h on ∂Ω,

two solutions differ by a constant.

Proof. Let u and v be solutions of the same problem, sharing the same boundary
data, and let w = u− v. Then w is harmonic and satisfies homogeneous boundary
conditions (one among (3.2)-(3.5)). Substituting u = v = w into (1.13) we find

∫

Ω

|∇w|2 dx =
∫

∂Ω

w∂νw dσ.

If Dirichlet or mixed conditions hold, we have
∫

∂Ω

w∂νw dσ = 0.
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When a Robin condition holds
∫

∂Ω

w∂νw dσ = −
∫

∂Ω

αw2dσ ≤ 0.

In any case we obtain that ∫

Ω

|∇w|2 dx ≤0. (3.6)

From (3.6) we infer ∇w = 0 and therefore w = u− v = constant. This concludes
the proof in the case of Neumann condition. In the other cases, the constant must
be zero (why?), hence u = v. �

Remark 3.1. Consider the Neumann problem Δu = f in Ω, ∂νu = h on ∂Ω.
Integrating the equation on Ω and using Gauss’ formula we find

∫

Ω

f dx =

∫

∂Ω

h dσ. (3.7)

The relation (3.7) appears as a compatibility condition on the data f and h, that
has necessarily to be satisfied in order for the Neumann problem to admit a so-
lution. Thus, when having to solve a Neumann problem, the first thing to do is
to check the validity of (3.7). If it does not hold, the problem does not have any
solution. We will examine later the physical meaning of (3.7).

3.3 Harmonic Functions

3.3.1 Discrete harmonic functions

In Chapter 2 we have examined the connection between Brownian motion and
diffusion equation. We go back now to the multidimensional symmetric random
walk considered in Section 2.6, analyzing its relation with the Laplace operator Δ.
For simplicity we will work in dimension n = 2 but both arguments and conclusions
may be easily extended to any dimension n > 2. We fix a time step τ > 0, a space
step h > 0 and denote by hZ2 the lattice of points x =(x1, x2) whose coordinates
are integer multiples of h. Let p (x,t) = p (x1, x2, t) be the transition probability
function, giving the probability to find our random particle at x at time t. From
the total probability formula we found a difference equation for p, that we rewrite
in dimension two:

p (x, t+ τ) =
1

4
{p (x+he1, t) + p (x−he1, t) + p (x+he2, t) + p (x−he2, t)} .

(3.8)
We can write this formula in a more significant way by introducing the mean value
operator Mh, whose action on a function u = u(x) is defined by the following
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formula:

Mhf (x) =
1

4
{u (x+he1) + u (x−he1) + u (x+he2) + u (x−he2)}

=
1

4

∑
|x−y|=h

u (y) .

Note that Mhu (x) gives the average of u over the points of the lattice hZ
2 at

distance h from x. We say that these points constitute the discrete neighborhood
of x of radius h.
It is clear that (3.8) can be written in the form

p (x, t+ τ ) =Mhp (x,t) . (3.9)

In (3.9) the probability p at time t + τ is determined by the action of Mh at the
previous time, and then it is natural to interpret the mean value operator as the
generator of the random walk.
Now we come to the Laplacian. If u is twice continuously differentiable, it is

not difficult to show that2

lim
h→0
Mhu (x)− u (x)

h2
→ 1
4
Δu (x) . (3.10)

The formula (3.10) induces to define, for any fixed h > 0, a discrete Laplace
operator through the formula

Δ∗h =Mh − I

where I denotes the identity operator (i.e. Iu = u). The operator Δ∗h acts on
functions u defined in the whole lattice hZ2 and, coherently, we say that u is
d-harmonic (d for discrete) if Δ∗hu = 0.
Thus, the value of a d-harmonic function at any point x is given by the average

of the values at the points in the discrete neighborhood of x of radius h.
We can proceed further and define a discrete Dirichlet problem. Let A be a

subset of hZ2.
We say that A is connected if, given any couple of points x0, x1 in A, it is

possible to connect them by a walk3 on hZ2 entirely contained in A.
Moreover, we say that x ∈A is an interior point of A if its h−neighborhood

is contained in A. The points of A that are not interior are called boundary points
(Fig. 3.1). The set of the boundary points of A, the boundary of A, is denoted by
∂A.

2 Using a second order Taylor’s polynomial, after some simplifications, we get:

Mhu (x) = u (x) +
h2

4
{ux1x1 (x) + ux2x2 (x)}+ o

(
h2
)

from which formula (3.10) comes easily.
3 Recall that consecutive points in a walk have distance h.
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Fig. 3.1. A domain for the discrete Dirichlet problem

Discrete Dirichlet problem. Let A be a bounded connected subset of hZ2

and g be a function defined on the boundary ∂A of A. We want to determine u,
defined on A, such that

{
Δ∗hu = 0 at the interior points of A
u = g on ∂A.

(3.11)

We deduce immediately three important properties of a solution u:

1. Maximum principle: If u attains its maximum or its minimum at an interior
point then u is constant. Indeed, suppose x ∈A is an interior point and u (x) =
M ≥ u (y) for every y ∈A. Since u (x) is the average of the four values of u at
the points at distance h from x, at all these points u must be equal to M . Let
x1 �= x be one of these neighboring points. By the same argument, u (y) =M
for every y in the h−neighborhood of x1. Since A is connected, proceeding in
this way we prove that u (y) =M at every point of A.

2. u attains its maximum and its minimum on ∂A. This is an immediate conse-
quence of 1.

3. The solution of the discrete Dirichlet problem is unique (exercise).

The discrete Dirichlet problem (3.11) has a remarkable probabilistic interpre-
tation that can be used to construct its solution. Let us go back to our random
particle. First of all, we want to show that whatever its starting point x ∈A is, the
particle hits the boundary ∂A with probability one.
For every Γ ⊆ ∂A, we denote by

P (x,Γ )

the probability that the particle starting from x ∈A hits ∂A for the first time at a
point y ∈Γ . We have to prove that P (x, ∂A) = 1 for every x ∈A.
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Clearly, if x ∈Γ we have P (x,Γ ) = 1, while if x ∈∂A\Γ , P (x,Γ ) = 0. It turns
out that, for fixed Γ , the function

wΓ (x) = P (x,Γ )

is d-harmonic in the interior of A, that is Δ∗wΓ = 0. To see this, denote by

p (1,x,y)

the one step transition probability, i.e. the probability to go from x to y in one
step. Given the symmetry of the walk, we have p (1,x,y) = 1/4 if |x− y| = 1 and
p (1,x,y) = 0 otherwise.
Now, to hit Γ starting from x, the particle first hits a point y in its h−neigh-

borhood and from there it reaches Γ , independently of the first step. Then, by the
total probability formula we can write

wΓ (x) = P (x,Γ ) =
∑
y∈hZ2

p (1,x,y)P (y,Γ ) =MhP (x,Γ ) =MhwΓ (x) ,

which entails

(I −Mh)wΓ = Δ
∗
hwΓ = 0.

Thus, wΓ is d − harmonic in A. In particular w∂A (x) = P (x,∂A) is d − harmonic
in A and w∂A = 1 on ∂A. On the other hand, the function z (x) ≡ 1 satisfies the
same discrete Dirichlet problem, so that, by the uniqueness property 3 above,

w∂A (x) = P (x,∂A) ≡ 1 in A. (3.12)

This means that the particle hits the boundary ∂A with probability one. As a
consequence, observe that the set function

Γ �→ P (x,Γ )

defines a probability measure on ∂A, for any fixed x ∈A.
We construct now the solution u to (3.11). Interpret the boundary data g as a

payoff : if the particle starts from x and hits the boundary for the first time at y,
it wins g (y). We have:

Theorem 3.2. The value u (x) is given by the expected value of the winnings g (·)
with respect to the probability P (x, ·). That is

u (x) =
∑
y∈∂A

g (y)P (x, {y}) . (3.13)

Proof. Each term

g (y)P (x, {y}) = g (y)w{y} (x)
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is d−harmonic in A and therefore u is d−harmonic in A as well. Moreover, if
x ∈∂A then u (x) = g (x) since each term in the sum is equal to g (x) if y = x or
to zero if y �= x. �
As h→ 0, formula (3.10) shows that, formally, d−harmonic functions“become”

harmonic. Thus, it seems reasonable that appropriate versions of the above prop-
erties and results should hold in the continuous case. We start with the mean value
properties.

3.3.2 Mean value properties

Guided by their discrete characterization, we want to establish some fundamen-
tal properties of harmonic functions. To be precise, we say that a function u is
harmonic in a domain Ω ⊆ Rn if u ∈ C2 (Ω) and Δu = 0 in Ω.
Since d−harmonic functions are defined through a mean value property, we

expect that harmonic functions inherit a mean value property of the following
kind: the value at the center of any ball B ⊂⊂ Ω, i.e. compactly contained in Ω,
equals the average of the values on the boundary ∂B. Actually, something more is
true.

Theorem 3.3. Let u be harmonic in Ω ⊆ R
n. Then, for any ball BR (x) ⊂⊂ Ω

the following mean value formulas hold:

u (x) =
n

ωnRn

∫

BR(x)

u (y) dy (3.14)

u (x) =
1

ωnRn−1

∫

∂BR(x)

u (σ) dσ (3.15)

where ωn is the measure of ∂B1 .

Proof (for n = 2). Let us start from the second formula. For r < R define

g (r) =
1

2πr

∫

∂Br(x)

u (σ) dσ.

Perform the change of variables σ = x+rσ′. Then σ′ ∈ ∂B1 (0), dσ = rdσ′ and

g (r) =
1

2π

∫

∂B1(0)

u (x+rσ′) dσ′.

Let v (y) = u (x+ry) and observe that

∇v (y) = r∇u (x+ry)
Δv (y) = r2Δu (x+ry) .
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Then we have

g′ (r) =
1

2π

∫

∂B1(0)

d

dr
u (x+rσ′) dσ′ =

1

2π

∫

∂B1(0)

∇u (x+rσ′) · σ′dσ′

=
1

2πr

∫

∂B1(0)

∇v (σ′) · σ′dσ′ = (divergence theorem)

=
1

2πr

∫

B1(0)

Δv (y) dy =
r

2π

∫

B1(0)

Δu (x+ry) dy = 0.

Thus, g is constant and since g (r)→ u (x) for r→ 0, we get (3.15).
To obtain (3.14), let R = r in (3.15), multiply by r and integrate both sides

between 0 and R. We find

R2

2
u (x) =

1

2π

∫ R

0

dr

∫

∂Br(x)

u (σ) dσ=
1

2π

∫

BR(x)

u (y) dy

from which (3.14) follows. �

Even more significant is a converse of Theorem 3.2. We say that a continuous
function u satisfies the mean value property in Ω, if (3.14) or (3.15) holds for
any ball BR (x) ⊂⊂ Ω. It turns out that if u is continuous and possesses the
mean value property in a domain Ω, then u is harmonic in Ω. Thus we obtain a
characterization of harmonic functions through a mean value property, as in the
discrete case. As a by product we deduce that every harmonic function in a domain
Ω is continuously differentiable of any order in Ω, that is, it belongs to C∞ (Ω).
Notice that this is not a trivial fact since it involves derivatives not appearing
in the expression of the Laplace operator. For instance, u (x, y) = x + y |y| is a
solution of uxx + uxy = 0 in all R

2 but it is not twice differentiable with respect
to y at (0, 0).

Theorem 3.4. Let u ∈ C (Ω). If u satisfies the mean value property, then u ∈
C∞ (Ω) and it is harmonic in Ω.

We postpone the proof to the end of the Section 3.4.

3.3.3 Maximum principles

As in the discrete case, a function satisfying the mean value property in a domain4

Ω cannot attain its maximum or minimum at an interior point of Ω, unless it
is constant. In case Ω is bounded and u (non constant) is continuous up to the
boundary of Ω, it follows that u attains both its maximum and minimum only
on ∂Ω. This result expresses a maximum principle that we state precisely in the
following theorem.

4 Recall that a domain is an open connected set.
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Theorem 3.5. Let u ∈ C (Ω), Ω ⊆ R
n. If u has the mean value property and

attains its maximum or minimum at p ∈ Ω, then u is constant. In particular, if Ω
is bounded and u ∈ C(Ω) is not constant, then, for every x ∈Ω,

u (x) < max
∂Ω
u and u (x) > min

∂Ω
u (from strong maximum principle).

Proof. (n = 2). Let p be a minimum point5 for u:

m = u(p) ≤ u(y), ∀y ∈Ω.

We want to show that u ≡ m in Ω. Let q be another arbitrary point in Ω. Since
Ω is connected, it is possible to find a finite sequence of circles B (xj) ⊂⊂ Ω,
j = 0, ..., N , such that (Fig. 3.2):

• xj ∈ B (xj−1) , j = 1, ..., N
• x0 = p, xN = q.

Fig. 3.2. A sequence of overlapping circles connecting the points p and q

The mean value property gives

m = u (p) =
1

|B (p)|

∫

B(p)

u (y) dy.

Suppose there exists z ∈B (p) such that u (z) > m. Then, given a circle Br (z) ⊂
B (p), we can write:

m =
1

|B (p)|

∫

B(p)

u (y)dy (3.16)

=
1

|B (p)|

{∫

B(p)\Br(z)
u (y) dy +

∫

Br(z)

u (y) dy

}
.

5 The argument for the maximum is the same.
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Since u (y) ≥ m for every y and, by the mean value again,∫

Br(z)

u (y) dy =u (z) |Br (z)| > m |Br (z)| ,

continuing from (3.16) we obtain

>
1

|B (p)| {m |B (p) \Br (z)|+m |Br (z)|} = m

and therefore the contradiction m > m.
Thus it must be that u ≡ m in B (p) and in particular u(x1) = m. We repeat

now the same argument with x1 in place of p to show that u ≡ m in B (x1)
and in particular u(x2) = m. Iterating the procedure we eventually deduce that
u(xN) = u(q) =m. Since q is an arbitrary point of Ω, we conclude that u ≡ m in
Ω. �
An important consequence of the maximum principle is the following corollary.

Corollary 3.1. Let Ω ⊂ Rn be a bounded domain and g ∈ C (∂Ω). The problem
{
Δu = 0 in Ω
u = g on ∂Ω.

(3.17)

has at most a solution ug∈C2 (Ω) ∩ C
(
Ω
)
. Moreover, let ug1 and ug2 be the

solutions corresponding to the data g1, g2 ∈ C (∂Ω). Then:
(a) (Comparison). If g1 ≥ g2 on ∂Ω and g1 �= g2, then

ug1 > ug2 in Ω. (3.18)

(b) (Stability).

|ug1 (x) − ug2 (x)| ≤ max
∂Ω

|g1 − g2| for every x ∈Ω. (3.19)

Proof. We first show (a) and (b). Let w = ug1 − ug2 . Then w is harmonic and
w = g1 − g2 ≥ 0 on ∂Ω. Since g1 �= g2, w is not constant and from Theorem 3.5

w (x) > min
∂Ω
(g1 − g2) ≥ 0 for every x ∈Ω.

This is (3.18). To prove (b), apply Theorem 3.5 to w and −w to find
±w (x) ≤ max

∂Ω
|g1 − g2| for every x ∈Ω

which is equivalent to (3.19).
Now if g1 = g2, (3.19) implies w = ug1 −ug2 ≡ 0, so that the Dirichlet problem

(3.17) has at most one solution. �

Remark 3.2. Inequality (3.19) is a stability estimate. Indeed, suppose g is known
within an absolute error less than ε, or, in other words, suppose g1 is an approxi-
mation of g and max∂Ω |g − g1| < ε; then (3.19) gives

max
Ω̄
|ug1 − ug| < ε

so that the approximate solution is known within the same absolute error.
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3.3.4 The Dirichlet problem in a circle. Poisson’s formula

To prove the existence of a solution to one of the boundary value problems we
considered in Section 3.2 is not an elementary task. In Chapter 8, we solve this
question in a general context, using the more advanced tools of Functional Analysis.
However, in special cases, elementary methods, like separation of variables, work.
We use it to compute the solution of the Dirichlet problem in a circle. Precisely, let
BR = BR (p) be the circle of radius R centered at p =(p1, p2) and g ∈ C (∂BR).
We want to prove the following theorem.

Theorem 3.6. The unique solution u ∈ C2 (BR) ∩C
(
BR
)
of the problem

{
Δu = 0 in BR
u = g on ∂BR.

(3.20)

is given by Poisson’s formula

u (x) =
R2 − |x− p|2

2πR

∫

∂BR(p)

g (σ)

|x− σ|2
dσ. (3.21)

In particular, u ∈ C∞ (BR).

Proof. The symmetry of the domain suggests the use of polar coordinates

x1 = p1 + r cos θ x2 = p2 + r sin θ.

Accordingly, let

U (r, θ) = u (p1 + r cos θ, p2 + r sin θ) , G (θ) = g (p1 +R cos θ, p2 + R sin θ) .

The Laplace equation becomes6

Urr +
1

r
Ur +

1

r2
Uθθ = 0, 0 < r < R, 0 ≤ θ ≤ 2π, (3.22)

with the Dirichlet condition

U (R, θ) = G (θ) , 0 ≤ θ ≤ 2π.

Since we ask that u be continuous in BR, then U and G have to be continuous
in [0, R]× [0, 2π] and [0, 2π], respectively; moreover both have to be 2π−periodic
with respect to θ.
We use now the method of separation of variables, by looking first for solutions

of the form

U (r, θ) = v (r)w (θ)

6 Appendix B.
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with v, w bounded and w 2π−periodic. Substitution in (3.22) gives

v′′ (r)w (θ) +
1

r
v′ (r)w (θ) +

1

r2
v (r)w′′ (θ) = 0

or, separating the variables,

−r
2v′′ (r) + rv′ (r)

v (r)
=
w′′ (θ)
w (θ)

.

This identity is possible only when the two quotients have a common constant
value λ. Thus we are lead to the ordinary differential equation

r2v′′ (r) + rv′ (r)− λv (r) = 0 (3.23)

and to the eigenvalue problem

{
w′′ (θ)− λw (θ) = 0
w (0) = w (2π) .

(3.24)

We leave to the reader to check that problem (3.24) has only the zero solution
for λ ≥ 0. If λ = −μ2, μ > 0, the differential equation in (3.24) has the general
integral

w (θ) = a cosμθ + b sinμθ (a, b ∈ R) .
The 2π−periodicity forces μ = m, a nonnegative integer.
The equation (3.23), with λ = m, has the general solution7

v (r) = d1r
−m + d2rm (d1, d2 ∈ R) .

Since v has to be bounded we exclude r−m, m > 0 and hence d1 = 0.
We have found a countable number of 2π−periodic harmonic functions

rm {am cosmθ + bm sinmθ} m = 0, 1, 2, .... (3.25)

We superpose now the (3.25) by writing

U (r, θ) = a0 +

∞∑
m=1

rm {am cosmθ + bm sinmθ} (3.26)

with the coefficients am and bm still to be chosen in order to satisfy the boundary
condition

lim
(r,θ)→(R,ξ)

U(r, θ) = G (ξ) ∀ξ∈ [0, 2π] . (3.27)

7 It is an Euler equation. The change of variables s = log r reduces it to the equation

v′′ (s)−m2v (s) = 0.
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Case G ∈ C1 ([0, 2π]). In this case G can be expanded in a uniformly con-
vergent Fourier series

G (ξ) =
α0
2
+

∞∑
m=1

{αm cosmξ + βm sinmξ}

where

αm =
1

π

∫ 2π
0

G (ϕ) cosmϕ dϕ, βm =
1

π

∫ 2π
0

G (ϕ) sinmϕ dϕ.

Then, the boundary condition (3.27) is satisfied if we choose

a0 =
α0

2
, am = R

−mαm, bm = R−mβm.

Substitution of these values of a0, am, bm into (3.26) gives, for r ≤ R,

U (r, θ) =
α0

2
+
1

π

∞∑
m=1

( r
R

)m ∫ 2π
0

G (ϕ) {cosmϕ cosmθ + sinmϕ sinmθ} dϕ

=
1

π

∫ 2π
0

G (ϕ)

[
1

2
+

∞∑
m=1

( r
R

)m
{cosmϕ cosmθ + sinmϕ sinmθ}

]
dϕ

=
1

π

∫ 2π
0

G (ϕ)

[
1

2
+

∞∑
m=1

( r
R

)m
cosm(ϕ − θ)

]
dϕ.

Note that in the second equality above, the exchange of sum and integration is
possible because of the uniform convergence of the series. Moreover, for r < R, we
can differentiate under the integral sign and then term by term as many times as
we want (why?). Therefore, since for every m ≥ 1 the functions

( r
R

)m
cosm(ϕ − θ)

are smooth and harmonic, also U ∈ C∞ (BR) and is harmonic for r < R.
To obtain a better formula, observe that

∞∑
m=1

( r
R

)m
cosm(ϕ − θ) = Re

[ ∞∑
m=1

(
ei(ϕ−θ)

r

R

)m]
.

Since

Re

∞∑
m=1

(
ei(ϕ−θ)

r

R

)m
= Re

1

1− ei(ϕ−θ) rR
− 1 = R2 − rR cos (ϕ − θ)

R2 + r2 − 2rR cos (ϕ − θ) − 1

=
rR cos (ϕ − θ)− r2

R2 + r2 − 2rR cos (ϕ− θ)
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we find

1

2
+

∞∑
m=1

( r
R

)m
cosm(ϕ − θ) = 1

2

R2 − r2
R2 + r2 − 2rR cos (ϕ− θ) . (3.28)

Inserting (3.28) into the formula for U , we get Poisson’s formula in polar coor-
dinates:

U (r, θ) =
R2 − r2
2π

∫ 2π
0

G (ϕ)

R2 + r2 − 2Rr cos (θ − ϕ)dϕ. (3.29)

Going back to Cartesian coordinates8 we obtain Poisson’s formula (3.21). Corollary
3.1 assures that (3.29) is indeed the unique solution of the Dirichlet problem (3.20).

Case G ∈ C ([0, 2π]). We drop now the additional hypothesis that G (θ) is
continuously differentiable. Even with G only continuous, formula (3.29) makes
perfect sense and defines a harmonic function in BR and it can be shown that

9

lim
(r,θ)→(R,ξ)

U (r, θ) = G (ξ) , ∀ξ∈ [0, 2π] .

Therefore (3.29) is the unique (by Corollary 3.1) solution to (3.20). �

• Poisson’s formula in dimension n > 2. Theorem 3.6 has an appropriate
extension in any number of dimensions. When BR = BR (p) is an n− dimensional
ball, the solution of the Dirichlet problem (3.20) is given by (see subsection 3.5.3,
for the case n = 3)

u (x) =
R2 − |x− p|2
ωnR

∫

∂BR(p)

g (σ)

|x− σ|n dσ. (3.30)

An important consequence of Poisson’s formula is the possibility to control the
derivatives of any order of a harmonic function u at a point p by the maximum of
u in a small ball centered at p. We show it for first and second derivatives in the
following corollary.

Corollary 3.2. Let u be a harmonic function in a domain Ω and BR (p) ⊂⊂ Ω.
Then ∣∣uxj (p)

∣∣ ≤ n
R
max
∂BR(p)

|u| ,
∣∣uxjxk (p)

∣∣ ≤ c (n)
R2

max
∂BR(p)

|u| . (3.31)

8 With σ = R(cosϕ, sinϕ), dσ = Rdϕ and

|x− σ|2 = (r cos θ − R cosϕ)2 + (r sin θ − R sinϕ)2
= R2 + r2 − 2Rr (cosϕ cos θ + sinϕ sin θ)
= R2 + r2 − 2Rr cos (θ − ϕ) .

9 See Problem 3.20.
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Proof. From (3.30) we have

u (x) =
R2 − |x− p|2
ωnR

∫

∂BR(p)

u (σ)

|x− σ|n dσ.

Since we want to compute the derivatives at p, we can differentiate under the
integral obtaining:

uxj (x) =
−2 (xj − pj)
ωnR

∫

∂BR(p)

u (σ)

|x− σ|n dσ

−nR
2 − 2 |x − p|2
ωnR

∫

∂BR(p)

xj − σj
|x − σ|n+2

u (σ) dσ.

Now, at x = p we have
|pj − σj |
|p− σ|n+2

≤ R−n−1.

Therefore, since |∂BR (p)| = ωnRn−1,

∣∣uxj (p)
∣∣ ≤ nR
ωn

∫

∂BR(p)

|pj − σj |
|p− σ|n+2

|u (σ)|dσ ≤ n
R
max
∂BR(p)

|u| .

Similarly we get the estimates for the second derivatives; we leave the details to
the reader. �

We are now in position to prove Theorem 3.4, the converse of the mean value
property (m.v.p.).

• Proof of Theorem 3.4. First observe that if two functions satisfy the m.v.p. in
a domainΩ, their difference satisfies this property as well. Let u ∈ C (Ω) satisfying
the m.v.p. and consider a circle B ⊂⊂ Ω. We want to show that u is harmonic and
infinitely differentiable in Ω. Denote by v the solution of the Dirichlet problem

{
Δv = 0 in B
v = u on ∂B.

From Theorem 3.6 we know that v ∈ C∞ (B) ∩ C
(
B
)
and, being harmonic, it

satisfies the m.v.p. in B. Then, also w = v − u satisfies the m.v.p. in B and
therefore (Theorem 3.4) it attains its maximum and minimum on ∂B. Since w = 0
on ∂B, we conclude that u = v in B. Since B is arbitrary, u ∈ C∞ (Ω) and is
harmonic in Ω. �

3.3.5 Harnack’s inequality and Liouville’s theorem

From the mean value and Poisson’s formulas we deduce another maximum princi-
ple, known as Harnack’s inequality :
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Theorem 3.7. Let u be harmonic and nonnegative in the ball BR = BR (0) ⊂ Rn.
Then for any x ∈BR,

Rn−2 (R− |x|)
(R+ |x|)n−1

u (0) ≤ u (x) ≤ R
n−2 (R+ |x|)
(R− |x|)n−1

u (0) . (3.32)

Proof (n = 3). From Poisson’s formula:

u (x) =
R2 − |x|2
4πR

∫

∂BR

u (σ)

|σ − x|3
dσ.

Observe that R−|x| ≤ |σ − x| ≤ R+ |x| and R2−|x|2 = (R−|x|)(R+ |x|). Then,
by the mean value property,

u (x) ≤ R+ |x|
(R− |x|)2

1

4πR

∫

∂BR

u (σ) dσ =
R (R+ |x|)
(R − |x|)2

u (0) .

Analogously,

u (x) ≥ R(R− |x|)
(R+ |x|)2

1

4πR2

∫

∂BR

u (σ) dσ =
R (R− |x|)
(R+ |x|)2

u (0) .

�
Harnack’s inequality has an important consequence: the only harmonic func-

tions in Rn bounded from below or above are the constant functions.

Corollary 3.3. (Liouville′s Theorem). If u is harmonic in Rn and u (x) ≥ M ,
then u is constant.

Proof (n = 3). The function w = u −M is harmonic in R3 and nonnegative.
Fix x ∈R3 and choose R > |x|; Harnack’s inequality gives

R (R− |x|)
(R+ |x|)2

w (0) ≤ w (x) ≤ R (R + |x|)
(R− |x|)2

w (0) . (3.33)

Letting R →∞ in (3.33) we get

w (0) ≤ w (x) ≤ w (0)

whence w (0) = w (x). Since x is arbitrary we conclude that w, and therefore also
u, is constant. �

3.3.6 A probabilistic solution of the Dirichlet problem

In Section 3.1 we solved the discrete Dirichlet problem via a probabilistic method.
The key ingredients in the construction of the solution, leading to formula (3.13),
were the mean value property and the absence of memory of the random walk (each
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step is independent of the preceding ones). In the continuous case the appropriate
version of those tools are available, with the Markov property encoding the absence
of memory of Brownian motion10. Thus it is reasonable that a suitable continuous
version of formula (3.13) should give the solution of the Dirichlet problem for
the Laplace operator. As before, we work in dimension n = 2, but methods and
conclusions can be extended without much effort to any number of dimensions.
Let Ω ⊂ R

2 be a bounded domain and g ∈ C (∂Ω). We want to derive a
representation formula for the unique solution u ∈ C2 (Ω)∩C

(
Ω
)
of the problem

{
Δu = 0 in Ω
u = g on ∂Ω.

(3.34)

Let X (t) be the position of a Brownian particle started at x ∈ Ω and define the
first exit time from Ω, τ = τ (x), as follows (Fig. 3.3):

τ (x) =

{
inf
t≥0
t : X (t) ∈ R2\Ω

}
.

Fig. 3.3. First exit point from Ω

The time τ is a stopping time: to decide whether the event {τ ≤ t} occurs or
not, it suffices to observe the process until time t. In fact, for fixed t ≥ 0, to decide
whether or not τ ≤ t is true, it is enough to consider the event

E = {X (s) ∈ Ω, for all times s from 0until t, t included} .
If this event occurs, then it must be that τ > t. If E does not occur, it means
that there are points X (s) outside Ω for some s ≤ t and therefore it must be that
τ ≤ t.
The first thing we have to check is that the particle leaves Ω in finite time,

almost surely. Precisely:

10 Section 2.6.
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Lemma 3.1. For every x ∈ Ω, τ (x) is finite with probability 1, that is:

P {τ (x) <∞} = 1.

Proof. It is enough to show that our particle remains inside any circle Br =
Br (x) ⊂ Ω with zero probability. If we denote by τ r the first exit time from Br ,
we have to prove that P {τ r =∞} = 0.
Suppose X (t) ∈ Br until t = k (k integer). Then, for j = 1, 2, ..., k, it must be

that
|X (j)−X (j − 1)| < 2r.

Thus (the occurrence of) the event {τ r > k} implies (the occurrence of) all the
events

Ej = {|X (j) −X (j − 1)| < 2r} j = 1, 2, ..., k

and therefore also of their intersection. As a consequence

P {τ r > k} ≤ P
{
∩kj=1Ej

}
. (3.35)

On the other hand, the increments X (j) − X (j − 1) are mutually independent
and equidistributed according to a standard normal law, hence we can write

P {Ej} =
1

2π

∫

{|z|<2r}
exp

(
−|z|

2

2

)
dz ≡γ < 1

and

P
{
∩kj=1Ej

}
=

k∏
j=1

P {Ej} = γk. (3.36)

Since {τ r =∞} implies {τ r > k}, from (3.35) and (3.36) we have

P {τ r =∞} ≤ P {τ r > k} ≤ γk.

Letting k → +∞ we get P {τ r =∞} = 0. �
Lemma 3.1 implies that X (τ ) hits the boundary ∂Ω in finite time, with prob-

ability 1. We can therefore introduce on ∂Ω a probability distribution associated
with the random variable X(τ ) by setting

P (x,τ , F ) = P {X(τ ) ∈ F } (τ = τ (x) ),

for every “reasonable” subset F ⊂ ∂Ω11. P (x,τ , F ) is called the escape probability
from Ω through F . For fixed x in Ω, the set function

F �−→ P (x,τ (x) , F )

defines a probability measure on ∂Ω, since P (x,τ (x) , ∂Ω) = 1, according to
Lemma 3.1.

11 Precisely, for every Borel set (Appendix B).
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By analogy with formula (3.13), we can now guess the type of formula we expect
for the solution u of problem (3.34). To get the value u (x), let a Brownian particle
start from x, and let X (τ ) ∈ ∂Ω its first exit point from Ω. Then, compute the
random“gain”g (X (τ )) and take its expected value with respect to the distribution
P (x,τ , ·). This is u (x). Everything works if ∂Ω is not too bad. Precisely, we have:
Theorem 3.8. Let Ω be a bounded Lipschitz domain and g ∈ C (∂Ω). The unique
solution u ∈ C2 (Ω) ∩ C

(
Ω
)
of problem (3.34) is given by

u (x) = Ex [g (X (τ ))] =

∫

∂Ω

g (σ)P (x, τ (x) , dσ) . (3.37)

Proof (sketch). For fixed F ⊆ ∂Ω, consider the function

uF : x �−→P (x, τ (x) , F )).

We claim that uF is harmonic in Ω. Assuming that uF is continuous
12 in Ω, from

Theorem 3.4, it is enough to show that uF satisfies the mean value property. Let
BR = BR (x) ⊂⊂ Ω. If τR = τR (x) is the first exit time from BR, then X (τR) has
a uniform distribution on ∂BR, due to the invariance by rotation of the Brownian
motion.
This means that, starting from the center, the escape probability from BR

through any arc K ⊂ ∂BR is given by
length of K

2πR
.

Now, before reaching F , the particle must hit ∂BR. Since τR is a stopping time,
we may use the strong Markov property. Thus, after τR, X (t) can be considered
as a Brownian motion with uniform initial distribution on ∂BR , expressed by the
formula (Fig. 3.4)

μ (ds) =
ds

2πR
,

where ds is the length element on ∂BR. Therefore, the particle escapes ∂BR
through some arc of length ds centered at a point s and from there it reaches
F with probability P (s, τ (s) , F )μ (ds). By integrating this probability on ∂BR we
obtain P (x,τ (x),F ), namely:

P (x, τ (x) , F ) =

∫

∂BR(x)

P (s, τ (s) , F )μ (ds) =
1

2πR

∫

∂BR(x)

P (s, τ (s) , F )ds.

which is the mean value property for uF .
Observe now that if σ∈∂Ω then τ (σ) = 0 and hence

P (σ, τ (σ) , F ) =

{
1 if σ ∈F
0 if σ ∈∂Ω\F.

12 Which should be at least intuitively clear.
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Fig. 3.4. Strong Markov property of a Brownian particle

Therefore, on ∂Ω, uF coincides with the characteristic function of F . Thus if dσ
is an arc element on ∂Ω centered in σ, intuitively, the function

x �−→ g (σ)P (x,τ (x) , dσ) (3.38)

is harmonic in Ω, it attains the value g (σ) on dσ and it is zero on ∂Ω\dσ. To
obtain the harmonic function equal to g on ∂Ω, we integrate over ∂Ω all the
contributions from (3.38). This gives the representation (3.37).
Rigorously, to assert that (3.37) is indeed the required solution, we should check

that u (x) → g (σ) when x → σ. It can be proved13 that this is true if Ω is, for
instance, a Lipschitz domain. �

Remark 3.3. The measure
F �−→ P (x, τ (x) , F )

is called the harmonic measure at x of the domain Ω and in general it can not
be expressed by an explicit formula. In the particular case Ω = BR (p), Poisson’s
formula (3.21) indicates that the harmonic measure for the circle BR (p) is given
by

P (x,τ (x) , dσ) =
1

2πR

R2 − |x− p|2

|σ − x|2
dσ.

Remark 3.4. Formula (3.37) shows that the value of the solution at a point x
depends on the boundary data on all ∂Ω (except for sets of length zero). In the
case of figure 3.5, a change of the data g on the arc AB affects the value of the
solution at x, even if this point is far from AB and near ∂Ω.

3.3.7 Recurrence and Brownian motion

We have seen that the solution of a Dirichlet problem can be constructed by using
the general properties of a Brownian motion. On the other hand, the deterministic

13 The proof is rather delicate (see ∅ksendal, 1995).
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Fig. 3.5. A modification of the Dirichlet data on the arc AB, affects the value of the
solution at x

solution of some Dirichlet problems can be used to deduce interesting properties
of Brownian motion. We examine two simple examples. Recall from Section 3.1
that ln |x| is harmonic in the plane except x = 0.
Let a, R be real numbers, R > a > 0. It is easy to check that the function

uR (x) =
ln |R| − ln |x|
lnR− lna

is harmonic in the ring Ba,R =
{
x ∈R2; a < |x| < R

}
and moreover

uR (x) = 1 on ∂Ba (0) , uR (x) = 0 on ∂BR (0) .

Thus u (x) represents the escape probability from the ring through ∂Ba (0), start-
ing at x:

uR (x) = PR (x,τ (x) , ∂Ba (0)) .

Letting R → +∞, we get

PR (x,τ (x) , ∂Ba (0)) =
ln |R| − ln |x|
lnR− ln a → 1 = P∞ (x,τ (x) , ∂Ba (0)) .

This means that, starting at x, the probability we (sooner or later) enter the
circle Ba (0), is 1. Due to the invariance by translations of the Brownian motion,
the origin can be replaced by any other point without changing the conclusions.
Moreover, since we have proved in Lemma 3.1 that the exit probability from any
circle is also 1, we can state the following result: given any point x and any circle
in the plane, a Brownian particle started at x enters the circle and exit from it an
infinite number of times, with probability 1. We say that a bidimensional Brownian
motion is recurrent.

In three dimensions a Brownian motion is not recurrent. In fact (see the next
section), the function

u (x) =

1
|x| − 1

R

1
a − 1

R

is harmonic in the spherical shell Ba,R =
{
x ∈R3; a < |x| < R

}
and

u (x) = 1 on ∂Ba (0) , u (x) = 0 on ∂BR (0) .
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Then u (x) represents the escape probability from the shell through ∂Ba (0), start-
ing at x:

uR (x) = PR (x,τ (x) , ∂Ba (0)) .

This time, letting R→ +∞, we find

PR (x,τ (x) , ∂Ba (0)) =

1
|x| − 1

R

1
a − 1

R

→ a

|x| = P∞ (x,τ (x) , ∂Ba (0)) .

Thus, the probability to enter, sooner or later, the sphere Ba (0) is not 1 and it
becomes smaller and smaller as the distance of x from the origin increases.

3.4 Fundamental Solution and Newtonian Potential

3.4.1 The fundamental solution

The (3.37) is not the only representation formula for the solution of the Dirichlet
problem. We shall derive deterministic formulas involving various types of poten-
tials, constructed using a special function, called the fundamental solution of the
Laplace operator.
As we did for the diffusion equation, let us look at the invariance properties

characterizing the operator Δ: the invariances by translations and by rotations.
Let u = u (x) be harmonic in Rn. Invariance by translations means that the

function v (x) = u (x− y), for each fixed y, is also harmonic, as it is immediate to
check.
Invariance by rotations means that, given a rotation in Rn, represented by an

orthogonal matrix M (i.e. MT = M−1), also v (x) = u (Mx) is harmonic in Rn.
To check it, observe that, if we denote by D2u the Hessian of u, we have

Δu = TrD2u = trace of the Hessian of u.

Since
D2v (x) =MTD2u (Mx)M

andM is orthogonal, we have

Δv (x) = Tr[MTD2u (Mx)M] = TrD2u (Mx) = Δu (Mx) = 0

and therefore v is harmonic.
Now, a typical rotation invariant quantity is the distance function from a point,

for instance from the origin, that is r = |x|. Thus, let us look for radially symmetric
harmonic functions u = u (r).
Consider first n = 2; using polar coordinates and recalling (3.22), we find

∂2u

∂r2
+
1

r

∂u

∂r
= 0
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so that
u (r) = C log r +C1.

In dimension n = 3, using spherical coordinates (r, ψ, θ), r > 0, 0 < ψ < π,
0 < θ < 2π, the operator Δ has the following expression14:

Δ =
∂2

∂r2
+
2

r

∂

∂r︸ ︷︷ ︸
radial part

+
1

r2

{
1

(sinψ)2
∂2

∂θ2
+
∂2

∂ψ2
+ cotψ

∂

∂ψ

}

︸ ︷︷ ︸
.

spherical part (Laplace-Beltrami operator)

The Laplace equation for u = u (r) becomes

∂2u

∂r2
+
2

r

∂u

∂r
= 0

whose general integral is

u (r) =
C

r
+ C1 C,C1 arbitrary constants.

Choose C1 = 0 and C =
1
4π if n = 3, C = − 1

2π if n = 2. The function

Φ (x) =

⎧⎪⎨
⎪⎩

− 1
2π
log |x| n = 2
1

4π |x| n = 3
(3.39)

is called the fundamental solution for the Laplace operator Δ. As we shall prove
in Chapter 7, the above choice of the constant C is made in order to have

ΔΦ (x) = −δ (x)

where δ (x) denotes the Dirac measure at x = 0.
The physical meaning of Φ is remarkable: if n = 3, in standard units, 4πΦ

represents the electrostatic potential due to a unitary charge located at the origin
and vanishing at infinity15.
Clearly, if the origin is replaced by a point y, the corresponding potential is

Φ (x − y) and
ΔxΦ (x−y) = −δ (x− y) .

By symmetry, we also have ΔyΦ (x − y) = −δ (x− y).

Remark 3.5. In dimension n > 3, the fundamental solution of the Laplace operator
is Φ (x) = ω−1n |x|2−n.
14 Appendix D.
15 In dimension 2,

2πΦ (x1, x2) = − log
√
x21 + x

2
2

represents the potential due to a charge of density 1, distributed along the x3 axis.
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3.4.2 The Newtonian potential

Suppose that f (x) is the density of a charge located inside a compact set in R3.
Then Φ (x − y) f (y) dy represents the potential at x due to the charge f (y) dy
inside a small region of volume dy around y. The full potential is given by the
sum of all the contributions; we get

u (x) =

∫

R3

Φ (x− y) f (y) dy = 1
4π

∫

R3

f (y)

|x − y|dy (3.40)

which is the convolution between f and Φ and it is called the Newtonian poten-
tial of f . Formally, we have

Δu (x) =

∫

R3

ΔxΦ (x− y) f (y) dy = −
∫

R3

δ (x− y) f (y) dy = −f (x) . (3.41)

Under suitable hypotheses on f , (3.41) is indeed true (see Theorem 3.9 below).
Clearly, u is not the only solution of Δv = −f , since u+c, c constant, is a solution
as well. However, the Newtonian potential is the only solution vanishing at infinity.
All this is stated precisely in the theorem below, where, for simplicity, we assume
f ∈ C2

(
R
3
)
with compact support16. We have:

Theorem 3.9. Let f ∈ C2
(
R
3
)
with compact support. Let u be the Newtonian

potential of f , defined by (3.40). Then, u is the only solution in R3 of

Δu = −f (3.42)

belonging to C2
(
R
3
)
and vanishing at infinity.

Proof. The uniqueness part follows from Liouville’s Theorem. Let v ∈ C2
(
R
3
)

another solution to (3.42), vanishing at infinity. Then u−v is a bounded harmonic
function in all R3 and therefore is constant. Since it vanishes at infinity it must be
zero; thus u = v.
To show that (3.40) belongs to C2

(
R
3
)
and satisfies (3.42), observe that we

can write (3.40) in the alternative form

u (x) =

∫

R3

Φ (y) f (x− y) dy = 1
4π

∫

R3

f (x− y)
|y| dy.

Since 1/ |y| is integrable near the origin and f is zero outside a compact set, we
can take first and second order derivatives under the integral sign to get

uxjxk (x) =

∫

R3

Φ (y) fxjxk (x − y) dy. (3.43)

16 Recall that the support of a continuous function f is the closure of the set where f is
not zero.
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Since fxjxk ∈ C
(
R
3
)
, formula (3.43) shows that also uxjxk is continuous and

therefore u ∈ C2
(
R
3
)
.

It remains to prove (3.42). Since Δxf (x− y) = Δyf (x− y), from (3.43), we
have

Δu(x) =

∫

R3

Φ (y)Δxf (x− y) dy =
∫

R3

Φ (y)Δyf (x− y) dy.

We want to integrate by parts using formula (1.13) but since Φ has a singularity
at y = 0, we have first to isolate the origin, by choosing a small ball Br = Br (0)
and writing

Δu(x) =

∫

Br(0)

· · · dy+
∫

R3\Br(0)
· · · dy ≡ Ir+Jr. (3.44)

We have, using spherical coordinates,

|Ir| ≤
max |Δf |
4π

∫

Br(0)

1

|y| dy =max |Δf |
∫ r

0

ρ dρ =
max |Δf |
2

r2

so that
Ir → 0 if r→ 0.

Keeping in mind that f vanishes outside a compact set, we can integrate Jr by
parts (twice), obtaining

Jr =
1

4πr

∫

∂Br

∇σf (x − σ) · νσ dσ−
∫

R3\Br(0)
∇Φ (y) · ∇yf (x− y) dy

=
1

4πr

∫

∂Br

∇σf (x − σ) · νσ dσ−
∫

∂Br

f (x− σ)∇Φ (σ) · νσ dσ

since ΔΦ = 0 in R3\Br (0). We have:

1

4πr

∣∣∣∣
∫

∂Br

∇σf (x− σ) · νσ dσ
∣∣∣∣ ≤ rmax |∇f | → 0 as r→ 0.

On the other hand, ∇Φ (y) = −y |y|−3 and the outward pointing17 unit normal
on ∂Br is νσ = −σ/r, so that
∫

∂Br

f (x− σ)∇Φ (σ) · νσ dσ=
1

4πr2

∫

∂Br

f (x− σ) dσ→ f (x) as r→ 0.

Thus, Jr → −f (x) as r → 0. Passing to the limit as r → 0 in (3.44) we get
Δu (x) = −f (x). �

Remark 3.6. Theorem 3.9 actually holds under much less restrictive hypotheses on
f . For instance, it is enough that f ∈ C1

(
R
3
)
and |f (x)| ≤ C |x|−3−ε , ε > 0.

17 With respect to R3\Br .
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Remark 3.7. An appropriate version of Theorem 3.9 holds in dimension n = 2,
with the Newtonian potential replaced by the logarithmic potential

u (x) =

∫

R2

Φ (x − y) f (y) dy = − 1
2π

∫

R2

log |x − y| f (y) dy. (3.45)

The logarithmic potential does not vanish at infinity; its asymptotic behavior is
(see Problem 3.11)

u (x) = −M
2π
log |x|+O

(
1

|x|

)
as |x| → +∞ (3.46)

where

M =

∫

R2

f (y)dy.

Indeed, the logarithmic potential is the only solution of Δu = −f in R2 satisfying
(3.46).

3.4.3 A divergence-curl system. Helmholtz decomposition formula

Using the properties of the Newtonian potential we can solve the following two
problems, that appear in several applications e.g. to linear elasticity, fluid dynamics
or electrostatics.

(1) Reconstruction of a vector field in R3 from the knowledge of its curl and
divergence. Precisely, given a scalar f and a vector field ω, we want to find a
vector field u such that {

div u =f
curl u = ω

in R3.

We assume that u has continuous second derivatives and vanishes at infinity, as it
is required in most applications.

(2) Decomposition of a vector field u ∈R3 into the sum of a divergence free
vector field and a curl free vector field. Precisely, given u, we want to find ϕ and
a vector field w such that the following Helmholtz decomposition formula holds

u =∇ϕ+ curl w. (3.47)

Consider problem (1). First of all observe that, since div curl u =0, a necessary
condition for the existence of a solution is div ω =0.
Let us check uniqueness. If u1 and u2 are solutions sharing the same data f

and ω, their difference w = u1− u2 vanishes at infinity and satisfies

div w =0 and curl w = 0 in R3.

From curl w = 0 we infer the existence of a scalar function U such that

∇U = w.
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From div w =0 we deduce

div∇U = ΔU = 0.
Thus U is harmonic. Hence its derivatives, i.e. the components wj of w, are

bounded harmonic functions in R3. Liouville’s theorem implies that each wj is
constant and therefore identically zero since it vanishes at infinity. We conclude
that, under the stated assumptions, the solution of problem (1) is unique.
To find u, split it into u = v + z and look for v and z such that

div z = 0 curl z = ω

div v = f curl v = 0.

As before, from curl v = 0 we infer the existence of a scalar function ϕ such that
∇ϕ = v, while div v =f implies Δϕ = f . We have seen that, under suitable
hypotheses on f , ϕ is given by the Newtonian potential of f , that is:

ϕ (x) = − 1
4π

∫

R3

1

|x − y|f (y) dy

and v =∇ϕ. To find z, recall the identity

curl curl z =∇(div z)−Δz.

Since div z =0, we get

Δz = −curl curl z =curl ω
so that

z (x) =
1

4π

∫

R3

1

|x− y|curl ω (y)dy.

Let us summarize the conclusions in the next theorem, also specifying the hypothe-
ses18 on f and ω.

Theorem 3.10. Let f ∈ C1
(
R
3
)
, ω ∈ C2

(
R
3
)
such that div ω =0 and, for |x|

large,

|f (x)| ≤ M

|x|3+ε
, |curlω (x)| ≤ M

|x|3+ε
(ε > 0) .

Then, the unique solution vanishing at infinity of the system

{
div u =f
curl u = ω

in R3

is given by vector field

u (x) =

∫

R3

1

4π |x − y|curl ω (y) dy −∇
∫

R3

1

4π |x − y|f (y) dy. (3.48)

18 See Remark 3.6.
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Consider now problem (2). If u, div u and curl u satisfy the hypotheses of
theorem 3.10, we can write

u(x) =

∫

R3

1

4π |x − y|curl curl u (y) dy −∇
∫

R3

1

4π |x − y| div u (y) dy.

Since u is rapidly vanishing at infinity, we have19

∫

R3

1

|x− y|curl curl u (y) dy = curl
∫

R3

1

|x − y|curl u (y) dy. (3.49)

We conclude that

u =∇ϕ + curl w
where

ϕ (x) = −
∫

R3

1

4π |x− y|div u (y) dy

and

w (x) =

∫

R3

1

4π |x − y|curl u (y) dy.

• An application to fluid dynamics. Consider the three dimensional flow of an
incompressible fluid of constant density ρ and viscosity μ, subject to a conservative
external force20 F = ∇f . If u = u (x,t) denotes the velocity field and p = p (x,t) is
the hydrostatic pressure, the laws of conservation of mass and linear momentum
give for u and p the celebrated Navier-Stokes equations:

div u = 0 (3.50)

and

Du

Dt
= ut + (u·∇)u = −

1

ρ
∇p+ νΔu+1

ρ
∇f (ν = μ/ρ). (3.51)

We look for solution of (3.50), (3.51) subject to a given initial condition

u (x,0) = g (x) x ∈R3, (3.52)

where g is also divergence free:

div g =0.

19 In fact, if |g (x)| ≤ M
|x|3+ε , one can show that

∂

∂xj

∫

R3

1

|x− y|g (y) dy =
∫

R3

1

|x− y|
∂g

∂yj
dy.

20 Gravity, for instance.
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The quantity Du
Dt is called the material derivative of u, given by the sum of ut,

the fluid acceleration due to the non-stationary character of the motion, and of
(u·∇)u, the inertial acceleration due to fluid transport21.
In general, the system (3.50), (3.51) is extremely difficult to solve. In the case

of slow flow, for instance due to high viscosity, the inertial term becomes negligible,
compared for instance to νΔu, and (3.51) simplifies to the linearized equation

ut = −
1

ρ
∇p+ νΔu+∇f. (3.53)

It is possible to find an explicit formula for the solution of (3.50), (3.52), (3.53)
by writing everything in terms of ω =curl u. In fact, taking the curl of (3.53) and
(3.52), we obtain, since curl(∇p+ νΔu+∇f) = νΔω,

{
ωt = νΔω x ∈R3, t > 0
ω (x,0) = curl g (x) x ∈R3.

This is a global Cauchy problem for the heat equation. If g ∈C2
(
R
3
)
and curl g

is bounded, we have

ω (x,t) =
1

(4πνt)
3/2

∫

R3

exp

(
−|y|

2

4νt

)
curl g (x− y) dy. (3.54)

Moreover, for t > 0, we can take the divergence operator under the integral in
(3.54) and deduce that div ω =0. Therefore, if curl g (x) vanishes rapidly at infin-
ity22, we can recover u by solving the system

curl u = ω, div u =0,

according to formula (3.48) with f = 0.
Finally to find the pressure, from (3.53) we have

∇p = −ρut + μΔu−∇f. (3.55)

Since ωt = νΔω, the right hand side has zero curl; hence (3.55) can be solved and
determines p up to an additive constant (as it should be).

In conclusion: Let, f ∈ C1
(
R
3
)
, g ∈C2

(
R
3
)
, with div g = 0 and curl g rapidly

vanishing at infinity. There exist a unique u ∈C2
(
R
3
)
, with curl u vanishing at

infinity, and p ∈C1
(
R
3
)
unique up to an additive constant, satisfying the system

(3.50), (3.52), (3.53).

21 The i−component of (v·∇) v is given by∑3j=1 vj ∂vi∂xj
. Let us compute Dv

Dt
, for example,

for a plane fluid uniformly rotating with angular speed ω. Then v (x, y) = −ωyi+ωxj.
Since vt = 0, the motion is stationary and

Dv

Dt
= (v·∇) v =

(
−ωy ∂

∂x
+ωx

∂

∂y

)
(−ωyi+ωxj) = −ω2 (−xi+yj)

which is centrifugal acceleration.
22 |curl g (x)| ≤M/ |x|3+ε , ε > 0, it is enough.
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3.5 The Green Function

3.5.1 An integral identity

Formula (3.40) gives a representation of the solution to Poisson’s equation in all
R
3. In bounded domains, any representation formula has to take into account the
boundary values, as indicated in the following theorem.

Theorem 3.11. Let Ω ⊂ R
n be a smooth, bounded domain and u ∈ C2

(
Ω
)
.

Then, for every x ∈Ω,

u (x) = −
∫

Ω

Φ (x− y)Δu (y) dy+

+

∫

∂Ω

Φ (x− σ) ∂νσu (σ) dσ−
∫

∂Ω

u (σ) ∂νσΦ (x − σ) dσ
(3.56)

The last two terms in the right hand side of (3.56) are called single and double
layer potentials, respectively. We are going to examine these surface potentials
later. The first one is the Newtonian potential of −Δu in Ω.
Proof. We give it for n = 3. Fix x ∈Ω, and consider the fundamental solution

Φ (x− y) = 1

4πrxy
rxy = |x− y|

as a function of y: we write Φ (x− ·).
We would like to apply Green’s identity (1.15)

∫

Ω

(vΔu− uΔv)dx =
∫

∂Ω

(v∂νu −u∂νv)dσ (3.57)

to u and Φ (x− ·). However, Φ (x − ·) has a singularity in x, so that it cannot be
inserted directly into (3.57). Let us isolate the singularity inside a ball Bε (x), with
ε small. In the domain Ωε = Ω\Bε (x), Φ (x − ·) is smooth and harmonic.
Thus, replacing Ω with Ωε, we can apply (3.57) to u and Φ (x − ·). Since

∂Ωε = ∂Ω ∪ ∂Bε (x) ,
and ΔyΦ (x− y) = 0, we find:

∫

Ωε

1

rxy
Δu dy =

∫

∂Ωε

(
1

rxσ

∂u

∂νσ
−u ∂

∂νσ

1

rxσ

)
dσ

=

∫

∂Ω

(· · · ) dσ +
∫

∂Bε(x)

1

rxσ

∂u

∂νσ
dσ −

∫

∂Bε(x)

u
∂

∂νσ

1

rxσ
dσ.

(3.58)

We let now ε→ 0 in (3.58). We have:
∫

Ωε

1

rxσ
Δu dy→

∫

Ω

1

rxσ
Δu dy as ε→ 0 (3.59)

since Δu ∈ C
(
Ω
)
and r−1xσ is positive and integrable in Ω.
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On ∂Bε (x), we have rxσ = ε and |∂νu| ≤M , since |∇u| is bounded; then
∣∣∣∣∣
∫

∂Bε(x)

1

rxσ

∂u

∂νσ
dσ

∣∣∣∣∣ ≤ 4πεM → 0 as ε→ 0. (3.60)

The most delicate term is
∫

∂Bε(x)

u
∂

∂νσ

1

rxσ
dσ.

On ∂Bε (x), the outward pointing (with respect to Ωε) unit normal at σ is
νσ=

x−σ
ε , so that

∂

∂νσ

1

rxσ
= ∇y

1

rxσ
· νσ=

x − σ
ε3
x − σ
ε
=
1

ε2
.

As a consequence,

∫

∂Bε(x)

u
∂

∂νσ

1

rxσ
dσ =

1

ε2

∫

∂Bε(x)

u dσ→ 4π u (x) (3.61)

as ε→ 0, by the continuity of u.
Letting ε→ 0 in (3.58), from (3.59), (3.60), (3.61) we obtain (3.56). �

3.5.2 The Green function

The function Φ defined in (3.39) is the fundamental solution for the Laplace op-
erator Δ in all Rn (n = 2, 3). We can also define a fundamental solution for the
Laplace operator in any open set and in particular in any bounded domainΩ ⊂ Rn,
representing the potential due to a unit charge placed at a point x ∈ Ω and equal
to zero on ∂Ω.
This function, that we denote by G (x,y), is called the Green function in Ω,

for the operator Δ; for fixed x ∈Ω, G satisfies

ΔyG (x,y) = −δx in Ω

and
G (x,σ) = 0, σ ∈ ∂Ω.

More explicitly, the Green’s function can be written in the form

G (x,y) = Φ (x − y)− ϕ (x,y)

where ϕ, for fixed x ∈Ω, solves the Dirichlet problem
{

Δyϕ = 0 in Ω

ϕ (x,σ) = Φ (x − σ) on ∂Ω.
(3.62)
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Two important properties of the Green function are the following (see Prob-
lem 3.14):

(a) Positivity: G (x,y) > 0 for every x,y ∈ Ω, with G (x,y) → +∞ when
x− y→ 0;
(b) Symmetry: G (x,y) = G (y,x).

The existence of the Green function for a particular domain depends on the
solvability of the Dirichlet problem (3.62). From Theorem 3.8, we know that this
is the case if Ω is a Lipschitz domain, for instance.
Even if we know that the Green function exists, explicit formulas are available

only for special domains. Sometimes a technique known as method of electrostatic
images works. In this method ϕ (x, ·) is considered as the potential due to an
imaginary charge q placed at a suitable point x∗, the image of x, in the complement
of Ω. The charge q and the point x∗ have to be chosen so that ϕ (x, ·) on ∂Ω is
equal to the potential created by the unit charge in x.
The simplest way to illustrate the method is to find the Green function for the

upper half-space, although this is an unbounded domain. Clearly, we require that
G vanishes at infinity.

• Green’s function for the upper half space in R3. Let R3+ be the upper half
space :

R
3
+ = {(x1, x2, x3) : x3 > 0} .

Fix x =(x1, x2, x3) and observe that if we choose x
∗=(x1, x2,−x3) then, on y3 = 0

we have
|x∗ − y| = |x − y| .

Thus, if x ∈R3+, x∗ belongs to the complement of R3+, the function

ϕ (x,y) = Φ (x∗−y) = 1

4π |x∗ − y|
is harmonic in R3+ and ϕ (x,y) = Φ (x− y) on the plane y3 = 0. In conclusion,

G (x,y) =
1

4π |x− y| −
1

4π |x∗ − y| (3.63)

is the Green function for the upper half space.

• Green function for sphere. Let Ω = BR = BR (0) ⊂ R3. To find the Green
function for BR, set

ϕ (x,y) =
q

4π |x∗ − y| ,

x fixed in BR, and try to determine x
∗, outside BR, and q, so that

q

4π |x∗ − y| =
1

4π |x − y| (3.64)

when |y| = R. The (3.64) gives

|x∗ − y|2 = q2 |x − y|2 (3.65)
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or
|x∗|2 − 2x∗ · y + R2 = q2(|x|2 − 2x · y +R2).

Rearranging the terms we have

|x∗|2 + R2 − q2(R2 + |x|2) = 2y · (x∗ − q2x). (3.66)

Since the left hand side does not depend on y, it must be that x∗ = q2x and

q4 |x|2 − q2(R2 + |x|2) +R2 = 0

from which q = R/ |x| . This works for x �= 0 and gives

G (x,y) =
1

4π

[
1

|x− y| −
R

|x| |x∗ − y|

]
, x∗=

R2

|x|2
x, x �= 0. (3.67)

Since

|x∗ − y| = |x|−1
(
R4 − 2R2x · y + y |x|2

)1/2
,

when x→ 0 we have

ϕ (x,y) =
1

4π

R

|x| |x∗ − y| →
1

4πR

and therefore we can define

G (0,y) =
1

4π

[
1

|y| −
1

R

]
.

Fig. 3.6. The image x∗ of x in the construction of the Green’s function for the sphere

3.5.3 Green’s representation formula

From Theorem 3.11 we know that every smooth function u can be written as the
sum of a volume (Newtonian) potential with density −Δu, a single layer potential
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of density ∂νu and a double layer potential of moment u. Suppose u solves the
Dirichlet problem {

Δu = f in Ω
u = g on ∂Ω.

(3.68)

Then (3.56) gives, for x ∈Ω,

u (x) = −
∫

Ω

Φ (x − y) f (y) dy+

+

∫

∂Ω

Φ (x− σ) ∂νσu (σ) dσ−
∫

∂Ω

g (σ) ∂νσΦ (x− σ) dσ.
(3.69)

This representation formula for u is not satisfactory, since it involves the data f
and g but also the normal derivative ∂νσu, which is unknown. To get rid of ∂νσu,
let G (x,y) = Φ (x − y) − ϕ (x,y) be the Green function in Ω. Since ϕ (x, ·) is
harmonic in Ω, we can apply (3.57) to u and ϕ (x, ·); we find

0 =

∫

Ω

ϕ (x,y) f (y) dy +

−
∫

∂Ω

ϕ (x,σ) ∂νσu (σ) dσ +

∫

∂Ω

g (σ) ∂νσϕ (x,σ) dσ.
(3.70)

Adding (3.69), (3.70) and recalling that ϕ (x,σ) = Φ (x− σ) on ∂Ω, we obtain:

Theorem 3.12. Let Ω be a smooth domain and u be a smooth solution of (3.68).
Then:

u (x) = −
∫

Ω

f (y)G (x,y) dy−
∫

∂Ω

g (σ) ∂νσG (x,σ) dσ. (3.71)

Thus the solution of the Dirichlet problem (3.68) can be written as the sum of
the two Green potentials in the right hand side of (3.71) and it is known as soon
as the Green function in Ω is known. In particular, if u is harmonic, then

u (x) = −
∫

∂Ω

g (σ) ∂νσG (x,σ) dσ. (3.72)

Comparing with (3.37), we deduce that

−∂νσG (x,σ) dσ

represents the harmonic measure in Ω. The function

P (x,σ) = −∂νσG (x,σ)

is called Poisson’s kernel. Since G (·,σ) > 0 inside Ω and vanishes on Ω, P is
nonnegative (actually positive).
On the other hand, the formula

u (x) = −
∫

Ω

f (y)G (x,y) dy
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gives the solution of the Poisson equation Δu = f in Ω, vanishing on ∂Ω. From
the positivity of G we have that:

f ≥ 0 in Ω implies u ≤ 0 in Ω,
which is another form of the maximum principle.

• Poisson’s kernel and Poisson’s formula. From (3.67) we can compute Pois-
son’s kernel for the sphere BR (0). We have, recalling that x

∗=R2 |x|−2 x, if x �= 0,

∇y
[
1

|x − y| −
R

|x| |x∗ − y|

]
=
x − y
|x− y|3

− R|x|
x∗−y
|x∗ − y|3

.

If σ ∈∂BR (0), from (3.65) we have |x∗ − σ| = R |x|−1 |x− σ| , therefore

∇yG (x,σ) =
1

4π

[
x− σ
|x − σ|3

− |x|
2

R2
x∗−σ
|x− σ|3

]
=

−σ
4π |x− σ|3

[
1− |x|

2

R2

]
.

Since on ∂BR (0) the exterior unit normal is νσ= σ/R, we have

P (x,σ) = −∂νσG (x,σ) = −∇yG (x,σ) · νσ =
R2 − |x|2
4πR

1

|x − σ|3
.

As a consequence, we obtain Poisson’s formula

u (x) =
R2 − |x|2
4πR

∫

∂BR(0)

g (σ)

|x− σ|3
dσ (3.73)

for the unique solution of the Dirichlet problem Δu = 0 in BR (0) and u = g on
∂BR (0) .

3.5.4 The Neumann function

We can find a representation formula for the solution of a Neumann problem as
well. Let u be a smooth solution of the problem

{
Δu = f in Ω

∂νu = h on ∂Ω
(3.74)

where f and h have to satisfy the solvability condition
∫

∂Ω

h (σ) dσ=

∫

Ω

f (y) dy, (3.75)

keeping in mind that u is uniquely determined up to an additive constant. From
Theorem 3.11 we can write

u (x) = −
∫

Ω

Φ (x − y) f (y) dy+

+

∫

∂Ω

h (σ)Φ (x− σ) dσ−
∫

∂Ω

u (σ) ∂νσΦ (x− σ) dσ.
(3.76)
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and this time we should get rid of the second integral, containing the unknown
data u on ∂Ω. Mimicking what we have done for the Dirichlet problem, we try to
find an analog of the Green function, that is a function N = N (x,y) given by

N (x,y) = Φ (x − y)− ψ (x,y)
where, for x fixed, ψ is a solution of

{
Δyψ = 0 in Ω

∂νσψ (x,σ) = ∂νσΦ (x− σ) on ∂Ω,

in order to have ∂νσN (x,σ) = 0 on ∂Ω. But this Neumann problem has no
solution because the compatibility condition∫

∂Ω

∂νσΦ (x− σ) dσ = 0

is not satisfied. In fact, letting u ≡ 1 in (3.56), we get
∫

∂Ω

∂νσΦ (x− σ) dσ = −1. (3.77)

Thus, taking into account (3.77), we require ψ to satisfy
{
Δyψ = 0 in Ω

∂νσψ (x,σ) = ∂νσΦ (x− σ) + 1
|∂Ω| on ∂Ω.

(3.78)

In this way, ∫

∂Ω

(
∂νσΦ (x− σ) +

1

|∂Ω|

)
dσ = 0

and (3.78) is solvable. Note that, with this choice of ψ, we have

∂νσN (x,σ) = −
1

|∂Ω| on ∂Ω. (3.79)

Apply now (3.57) to u and ψ (x, ·); we find:

0 = −
∫

∂Ω

ψ (x,σ) ∂νσu (σ) dσ+

∫

∂Ω

h (σ) ∂νσψ (σ) dσ +

∫

Ω

ψ (y) f (y) dy.

(3.80)
Adding (3.80) to (3.76) and using (3.79) we obtain:

Theorem 3.13. Let Ω be a smooth domain and u be a smooth solution of (3.74).
Then:

u (x)− 1

|∂Ω|

∫

∂Ω

u (σ) dσ =

∫

∂Ω

h (σ)N (x,σ) dσ −
∫

Ω

f (y)N (x,y) dy.

Thus, the solution of the Neumann problem (3.74) can also be written as the
sum of two potentials, up to the additive constant c = 1

|∂Ω|
∫
∂Ω
u (σ) dσ, the mean

value of u.
The function N is called Neumann’s function (also Green’s function for the

Neumann problem) and it is defined up to an additive constant.
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3.6 Uniqueness in Unbounded Domains

3.6.1 Exterior problems

Boundary value problems in unbounded domains occur in important applications,
for instance in the motion of fluids past an obstacle, capacity problems or scattering
of acoustic or electromagnetic waves.
As in the case of Poisson’s equation in all Rn, a problem in an unbounded

domain requires suitable conditions at infinity to be well posed.
Consider for example the Dirichlet problem

{
Δu = 0 in |x| > 1
u = 0 on |x| = 1. (3.81)

For every real number a,

u (x) = a log |x| and u (x) = a (1− 1/ |x|)

are solutions to (3.81) in dimension two and three, respectively. Thus there is no
uniqueness.
To restore uniqueness, a typical requirement in two dimensions is that u be

bounded, while in three dimensions that u (x) has a limit, say u∞, as |x| → ∞:
under these conditions, in both cases we select a unique solution.
Problem (3.81) is an exterior Dirichlet problem. Given a bounded domain Ω,

we call exterior of Ω the set
Ωe = R

n\Ω.
Without loss of generality we will assume that 0 ∈Ω and for simplicity, we will
consider only connected exterior sets, i.e. exterior domains. Note that ∂Ωe = ∂Ω.
As we have seen in several occasions, maximum principles are very useful to

prove uniqueness. In exterior three dimensional domains we have (for n = 2 see
Problem 3.16):

Theorem 3.14. Let Ωe ⊂ R
3 be an exterior domain and u ∈ C2 (Ωe) ∩ C(Ωe),

be harmonic in Ωe and vanishing as |x| → ∞. If u ≥ 0 (resp. u ≤ 0) on ∂Ωe then
u ≥ 0 (resp. u ≤ 0) in Ωe.
Proof. Let u ≥ 0 on ∂Ωe. Fix ε > 0 and choose r0 so large that Ω ⊂ {|x| < r}

and u ≥ −ε on {|x| = r} , for every r ≥ r0. In the bounded set

Ωe,r = Ωe ∩ {|x| < r}

we can apply Theorem 3.5 and we get u ≥ −ε in this set. Since ε is arbitrary and
r may be taken as large as we like, we deduce that u ≥ 0 in Ωe.
The argument for the case u ≤ 0 on ∂Ωe is similar and we leave the details to

the reader. �
An immediate consequence is the following uniqueness result in dimension n =

3 (for n = 2 see Problem 3.16):
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Theorem 3.15. (Exterior Dirichlet problem). Let Ωe ⊂ R3 be an exterior domain.
Then there exists at most one solution u ∈ C2 (Ωe)∩C(Ωe) of the Dirichlet problem

⎧⎪⎨
⎪⎩

Δu = f in Ωe

u = g on ∂Ωe

u (x)→ u∞ |x| → ∞.
(3.82)

Proof. Apply Theorem 3.14 to the difference of two solutions. �

We point out another interesting consequence of Theorem 3.14 and Corollary
3.2: a harmonic function vanishing at infinity, for |x| large is controlled by the
fundamental solution.
Actually, more is true:

Corollary 3.4. Let u be harmonic in Ωe ⊂ R3 and u (x)→ 0 as |x| → ∞. There
exists r0 such that, if |x| ≥ r0,

|u (x)| ≤ M|x| ,
∣∣uxj (x)

∣∣ ≤ M

|x|2
,

∣∣uxjxk (x)
∣∣ ≤ M

|x|3
(3.83)

where M depends on r0.

Proof. Choose r0 such that |u (x)| ≤ 1 if |x| ≥ r0. Let w (x) = u(x)−r0/ |x|.
Then w is harmonic for |x| ≥ r0, w (x) ≤ 0 on |x| = r0 and vanishes at infinity.
Then, by Theorem 3.14,

w (x) ≤ 0 in Ωe ∩ {|x| ≥ r0} . (3.84)

Setting v (x) = r0/ |x|−u(x), a similar argument gives v (x) ≥ 0 in Ωe∩{|x| ≥ r0}.
This and (3.84) imply |u (x)| ≤ r0/ |x| in Ωe ∩ {|x| ≥ r0} .
The gradient bound follows from (3.31) and (3.83). In fact, choose m ≥ 2 such

that (m − 1)r0 ≤ |x| ≤ (m+ 1) r0. Then ∂B(m−1)r0 (x) ⊂ {|x| ≥ r0} and from
(3.31) ∣∣uxj (x)

∣∣ ≤ 3

(m− 1)r0
max

∂Bmr0(x)
|u| .

But we know that max∂Bmr0(x) |u| ≤ r0/ |x| and r0 ≥ |x| / (m+ 1) so that we get

∣∣uxj (x)
∣∣ ≤ m+ 1

(m− 1)
3 r0

|x|2
≤ 6 r0
|x|2

since (m+ 1) < 2(m− 1).
Similarly we can prove ∣∣uxjxk (x)

∣∣ ≤ c r0
|x|3

�
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The estimates (3.83) assure the validity of the Green identity
∫

Ωe

∇u · ∇v dx =
∫

∂Ωe

v∂νu dσ (3.85)

for any pair u, v ∈ C2 (Ωe)∩C1(Ωe), harmonic in Ωe and vanishing at infinity. To
see this, apply the identity (3.85) in the bounded domain Ωe,r = Ωe ∩ {|x| < r} .
Then let r→∞ to get (3.85) in Ωe.
In turn, via the Green identity (3.85), we can prove an appropriate version of

Theorem 3.15 for the exterior problem
⎧⎪⎨
⎪⎩

Δu = f in Ωe

∂νu+ ku = g on ∂Ωe, (k ≥ 0)
u→ u∞ as |x| → ∞.

(3.86)

Observe that k �= 0 corresponds to the Robin problem while k = 0 corresponds to
the Neumann problem.

Theorem 3.16. (Exterior Neumann and Robin problems). Let Ωe ⊂ R
3 be an

exterior domain. Then there exists at most one solution u ∈ C2 (Ωe) ∩ C1(Ωe) of
problem (3.86).

Proof. Suppose u, v are solutions of (3.86) and let w = u−v. Then w is harmonic
Ωe, ∂νw + kw = 0 on ∂Ωe and w→ 0 as |x| → ∞.
Apply the identity (3.85) with u = v = w. Since ∂νw = −kw on ∂Ωe we have:

∫

Ωe

|∇w|2 dx =
∫

∂Ωe

w∂νw dσ = −
∫

∂Ωe

kw2dσ ≤ 0.

Thus ∇w = 0 and w is constant, because Ωe is connected. But w vanishes at
infinity so that w = 0. �

3.7 Surface Potentials

In this section we go back to examine the meaning and the main properties of the
surface potentials appearing in the identity (3.56). A remarkable consequence is
the possibility to convert a boundary value problem into a boundary integral
equation. This kind of formulation can be obtained for more general operators
and more general problems as soon as a fundamental solution is known. Thus it
constitutes a flexible method with important implications. In particular, it consti-
tutes the theoretical basis for the so called boundary element method, which may
offer several advantages from the point of view of the computational cost in numer-
ical approximations, due to a dimension reduction. Here we present the integral
formulations of the main boundary value problems and state some basic results.
The reader can find complete proofs and the integral formulation of more general
or different problems in the literature at the end of the book (e.g. Dautrait-Lions,
vol 3, 1985).
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3.7.1 The double and single layer potentials

The last integral in (3.56) is of the form

D (x;μ) =
∫

∂Ω

μ (σ) ∂νσΦ (x − σ) dσ (3.87)

and it is called the double layer potential of μ. In three dimensions it represents
the electrostatic potential generated by a dipole distribution23 of moment μ on ∂Ω.
To get a clue of the main features ofD (x;μ), it is useful to look at the particular

case μ (σ) ≡ 1, that is

D (x;1) =
∫

∂Ω

∂νσΦ (x− σ) dσ. (3.88)

Inserting u ≡ 1 into (3.56) we get

D (x;1) = −1 for every x ∈Ω. (3.89)

On the other hand, if x ∈Rn\Ω is fixed, Φ (x− ·) is harmonic in Ω and can be
inserted into (3.57) with u ≡ 1; the result is

D (x;1) = 0 for every x ∈Rn\Ω. (3.90)

What happens for x ∈ ∂Ω? First of all we have to check that D (x;1) is well defined
(i.e. finite) on ∂Ω. Indeed the singularity of ∂νσΦ (x− σ) becomes critical when
x ∈ ∂Ω since as σ → x the order of infinity equals the topological dimension of
∂Ω. For instance, in the two dimensional case we have

D (x;1) = − 1
2π

∫

∂Ω

∂νσ log |x− σ|dσ = −
1

2π

∫

∂Ω

(x− σ) · νσ
|x− σ|2

dσ.

The order of infinity of the integrand is one and the boundary ∂Ω is a curve, a
one dimensional object. In the three dimensional case we have

D (x;1) = 1
4π

∫

∂Ω

∂

∂νσ

1

|x − σ|dσ =
1

4π

∫

∂Ω

(x − σ) · νσ
|x − σ|3

dσ.

23 For every σ ∈ ∂Ω, let −q (σ), q (σ) two charges placed at the points σ, σ+hνσ,
respectively. If h > 0 is very small, the pair of charges constitutes a dipole of axis νσ.
The induced potential at x is given by

u (x,σ) = q (σ) [Φ (x− (σ+hν)) − Φ (x− σ)] = q (σ) h

[
Φ (x− (σ+hν)) − Φ (x− σ)

h

]
.

Since h is very small, setting q (σ)h = μ (σ), we can write, at first order of approxi-
mation,

uh (x) � μ (σ)∂νσΦ (x− σ) .
Integrating on ∂Ω we obtain D (x;μ).
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The order of infinity of the integrand is two and ∂Ω is a bidimensional surface.
However, if we assume that Ω is a C2 domain, then it can be proved that

D (x;1) is well defined on ∂Ω.
To compute the value of D (x;1) on ∂Ω we first observe that formulas (3.89)

and (3.90) follow immediately from the geometric interpretation of the integrand in
D (x;1). Precisely, set rxσ = |x − σ| and, in dimension two, consider the quantity

dσ∗ = −(x − σ) · νσ
r2xσ

dσ =
(σ − x) · νσ
r2xσ

dσ.

We have (see Fig. 3.7),
(σ − x)
rxσ

·νσ = cosϕ

and therefore

dσ′ =
(σ − x) · νσ
rxσ

dσ = cosϕ dσ

is the projection of the length element dσ on the circle ∂Brxσ (x), up to an error
of lower order. Then

dσ∗ =
dσ′

rxσ

is the projection of dσ on ∂B1 (x).
Integrating on ∂Ω, the contributions to dσ∗ sum up to 2π if x ∈ Ω (case a)

of figure 3.8) and to 0 if x ∈Rn\Ω, due to the sign compensations induced by the
orientation of νσ (case c) of figure 3.8). Thus

∫

∂Ω

dσ∗ =
{
2π if x ∈Ω
0 if x ∈R2\Ω

Fig. 3.7. Geometrical interpretation of the integrand in D (x, 1) (n = 2)
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which are equivalent to (3.89) and (3.90), since

D (x;1) = − 1
2π

∫

∂Ω

dσ∗.

The case b) in figure 3.8 corresponds to x ∈ ∂Ω. It should be now intuitively clear
that the point x “ sees” a total angle of only π radiants and D (x;1) = −1/2.
The same kind of considerations hold in dimension three; this time, the quantity

(see Fig. 3.9)

dσ∗ = −(x − σ) · νσ
r3xσ

dσ =
(σ − x) · νσ
r3xσ

dσ

is the projection on ∂B1 (x) (solid angle) of the surface element dσ. Integrating
over ∂Ω, the contributions to dσ∗ sum up to 4π if x ∈Ω and to 0 if x ∈R3\Ω.
If x ∈ ∂Ω, it “ sees” a total solid angle of measure 2π. Since

D (x;1) = − 1
4π

∫

∂Ω

dσ∗,

we find again the values −1, 0,−1/2 in the three cases, respectively.

Fig. 3.8. Values of
∫
∂Ω

dσ∗ for n = 2

We gather the above results in the following Lemma.

Lemma 3.2 (Gauss). Let Ω ⊂ Rn be a bounded, C2-domain. Then

D (x;1) =
∫

∂Ω

∂νσΦ (x − σ) dσ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 x ∈Ω

−1
2

x ∈∂Ω

0 x ∈ Rn\Ω.

Thus, when μ ≡ 1, the double layer potential is constant outside ∂Ω and has
a jump discontinuity across ∂Ω. Observe that if x ∈∂Ω,

lim
z→x, z∈Rn\Ω̄

D (z;1) = D (x;1) + 1
2
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Fig. 3.9. The solid angle dσ∗, projected from dσ

and

lim
z→x, z∈Ω

D (z;1) = D (x;1)− 1
2
.

These formulas are the key for understanding the general properties of D (x;μ),
that we state in the following theorem.

Theorem 3.17. Let Ω ⊂ Rn be a bounded, C2 domain and μ a continuous func-
tion on ∂Ω. Then, D (x;μ) is harmonic in Rn\∂Ω and the following jump relations
hold for every x ∈ ∂Ω :

lim
z→x, z∈Rn\Ω

D (z;μ) = D (x;μ) + 1
2
μ (x) (3.91)

and

lim
z→x, z∈Ω

D (z;μ) = D (x;μ)− 1
2
μ (x) . (3.92)

Proof (Sketch). If x /∈ ∂Ω there is no problem in differentiating under the
integral sign and, for σ fixed on ∂Ω, the function

∂νσΦ (x − σ) = ∇σΦ (x− σ) · νσ
is harmonic. Thus D (x;μ) is harmonic in Rn\∂Ω.
Consider (3.91). This is not an elementary formula and we cannot take the

limit under the integral sign, once more because of the critical singularity of
∂νσΦ (x − σ) when x ∈ ∂Ω.
Let z ∈Rn\Ω. From Gauss Lemma 3.2

μ (x)

∫

∂Ω

∂νσΦ (z − σ) dσ = 0

and we can write

D (z;μ) =
∫

∂Ω

∂νσΦ (z− σ) [μ (σ) − μ (x)]dσ. (3.93)
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Now, when σ is near x, the smoothness of ∂Ω and the continuity of μ mitigate
the singularity of ∂νσΦ (x− σ) and allow to take the limit under the integral sign.
Thus

lim
z→x

∫

∂Ω

∂νσΦ (z− σ) [μ (σ) − μ (x)] dσ =
∫

∂Ω

∂νσΦ (x − σ) [μ (σ)− μ (x)]dσ.

Exploiting once more Gauss lemma, we have

=

∫

∂Ω

∂νσΦ (x− σ) μ (σ) dσ − μ (x)
∫

∂Ω

∂νσΦ (x− σ) dσ

= D (x;μ) + 1
2
μ (x) .

The proof of (3.92) is similar. �
The second integral in (3.56) is of the form

S (x,ψ) =
∫

∂Ω

Φ (x − σ)ψ (σ) dσ

and it is called the single layer potential of ψ.
In three dimensions it represents the electrostatic potential generated by a

charge distribution of density ψ on ∂Ω. If Ω is a C2−domain and ψ is continuous
on ∂Ω, then S is continuous across ∂Ω and

ΔS = 0 in Rn\∂Ω,
because there is no problem in differentiating under the integral sign.
Since the flux of an electrostatic potential undergoes a jump discontinuity

across a charged surface, we expect a jump discontinuity of the normal deriva-
tive of S across ∂Ω. Precisely
Theorem 3.18. Let Ω ⊂ Rn be a bounded, C2-domain and ψ a continuous func-
tion on ∂Ω. Then, S (x;ψ) is harmonic in Rn\∂Ω, continuous across ∂Ω and the
following jump relations hold for every x ∈ ∂Ω :

lim
z→x, z∈Rn\Ω

∂νxS (z;ψ) =
∫

∂Ω

∂νxΦ (x− σ)ψ (σ) dσ −
1

2
ψ (x) (3.94)

and

lim
z→x, z∈Ω

∂νxS (z;ψ) =
∫

∂Ω

∂νxΦ (x − σ)ψ (σ) dσ +
1

2
ψ (x) . (3.95)

3.7.2 The integral equations of potential theory

By means of the jump relations (3.92)-(3.95) of the double and single layer poten-
tials we can reduce the main boundary value problems of potential theory into inte-
gral equations of a special form. Let Ω ⊂ Rn be a smooth domain and g ∈ C (∂Ω).
We first show the reduction procedure for the interior Dirichlet problem

{
Δu = 0 in Ω

u = g on ∂Ω.
(3.96)
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The starting point is once more the identity (3.56), which gives for the solution
u of (3.96) the representation

u (x) =

∫

∂Ω

Φ (x− σ) ∂νσu (σ) dσ−
∫

∂Ω

g (σ) ∂νσΦ (x − σ) dσ.

In subsection 3.5.3 we used the Green function to get rid of the single layer potential
containing the unknown ∂νσu. Here we adopt a different strategy: we forget the
single layer potential and try to represent u in the form of a double layer potential,
by choosing an appropriate density. In other words, we seek a continuous function
μ on ∂Ω, such that the solution u of (3.96) is given by

u (x) =

∫

∂Ω

μ (σ) ∂νσΦ (x − σ) dσ = D (x;μ) . (3.97)

The function u given by (3.97) is harmonic in Ω so that we have only to check
the boundary condition

lim
x→z∈∂Ω

u (x) = g (z) .

Letting x→ z ∈ ∂Ω and taking into account the jump relation (3.91), we obtain
for μ the integral equation

∫

∂Ω

μ (σ) ∂νσΦ (z − σ) dσ −
1

2
μ (z) = g (z) z ∈ ∂Ω. (3.98)

If μ ∈ C (∂Ω) solves (3.98), then (3.97) is a solution of (3.96) in C2 (Ω) ∩ C
(
Ω
)
.

The following theorem holds.

Theorem 3.19. Let Ω ⊂ Rn be a bounded, C2 domain and g a continuous func-
tion on ∂Ω. Then, the integral equation (3.98) has a unique solution μ ∈ C (∂Ω)
and the solution u ∈ C2 (Ω) ∩ C

(
Ω
)
of the Dirichlet problem (3.96) can be rep-

resented as the double layer potential of μ.

We consider now the interior Neumann problem

{
Δu = 0 in Ω

∂νu = g on ∂Ω
(3.99)

where g ∈ C(∂BR) satisfies the solvability condition
∫

∂BR

g dσ = 0. (3.100)

This time we seek a continuous function ψ on ∂Ω, such that the solution u of
(3.99) is given in the form

u (x) =

∫

∂Ω

ψ (σ)Φ (x − σ) dσ = S (x,ψ) . (3.101)
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The function u given by (3.101) is harmonic in Ω, so that we have only to check
the boundary condition

lim
x→z∈∂Ω

∂νzu (x) = g (z) .

Letting x→ z ∈ ∂Ω and taking into account the jump relation (3.95), we obtain
for ψ the integral equation

∫

∂Ω

ψ (σ) ∂νzΦ (z − σ) dσ +
1

2
ψ (z) = g (z) z ∈ ∂Ω. (3.102)

If ψ ∈ C (∂Ω) solves (3.102), then (3.101) is a solution of (3.99) in C2 (Ω)∩C1
(
Ω
)
.

It turns out that the general solution of (3.102) has the form

ψ = ψ +C0ψ0 C0 ∈ R,

where ψ is a particular solution of (3.102) and ψ0 is a solution of the homogeneous
equation

∫

∂Ω

ψ0 (σ) ∂νzΦ (z − σ) dσ +
1

2
ψ0 (z) = 0 z ∈ ∂Ω. (3.103)

As expected, we have infinitely many solutions to the Neumann problem. Observe
that

S (x,ψ0) =
∫

∂Ω

ψ0 (σ)Φ (x− σ) dσ

is harmonic in Ω with vanishing normal derivative on ∂Ω, because of (3.95) and
(3.103). Consequently, S (x,ψ0) is constant and the following theorem holds.

Theorem 3.20. Let Ω ⊂ Rn be a bounded, C2-domain and g a continuous func-
tion on ∂Ω satisfying (3.100). Then, the Neumann problem (3.99) has infinitely
many solutions u ∈ C2 (Ω) ∩ C1

(
Ω
)
of the form

u (x) = S
(
x,ψ

)
+C,

where ψ is a particular solution of (3.102) andC is an arbitrary constant.

Another advantage of the method is that, in principle, exterior problems can
be treated as the interior problems, with the same level of difficulty. It is enough
to use the exterior jump conditions (3.91), (3.94) and proceed in the same way
(see Problem 3.16).
As an example of an elementary application of the method we solve the interior

Neumann problem for the circle.

• The Neumann problem for the circle. Let BR = BR (0) ⊂ R
2 and consider

the Neumann problem {
Δu = 0 in BR

∂νu = g on ∂BR
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where g ∈ C(∂BR) satisfies the solvability condition (3.100). We know that u is
unique up to an additive constant. We want to express the solution as a single
layer potential:

u (x) = − 1
2π

∫

∂BR

ψ (σ) log |x − σ| dσ. (3.104)

The Neumann condition ∂νu = g on ∂BR translates into the following integral
equation for the density ψ:

− 1
2π

∫

∂BR

(z − σ) · νz
|z − σ|2

ψ (σ) dσ +
1

2
ψ (z) = g (z) (z ∈ ∂BR). (3.105)

On ∂BR we have

νz= z/R and (z− σ) · z =R2 − z · σ

and

|z− σ|2 = 2
(
R2 − z ·σ

)

so that (3.105) becomes

− 1

4πR

∫

∂BR

ψ (σ) dσ +
1

2
ψ (z) = g (z) (z ∈ ∂BR). (3.106)

The solutions of the homogeneous equation (g = 0) are constant functions ψ0 (x) =
C (why?). A particular solution ψ̄ with

∫

∂BR

ψ̄ (σ) dσ = 0

is given by

ψ̄ (z) = 2g (z) .

Thus, the general solution of (3.106) is

ψ (z) = 2g (z) + C C ∈ R

and up to an additive constant, the solution of the Neumann problem is given by

u (x) = − 1
π

∫

∂BR

g (σ) log |x − σ| dσ.

Remark 3.8. The integral equations (3.98) and (4.114) are of the form

∫

∂Ω

K (z,σ) ρ(σ)dσ ± 1
2
ρ (z) = g (z) (3.107)
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and are called Fredholm integral equations of the first kind . Their solution is based
on the following so called Fredholm alternative: either equation (3.107) has
exactly one solution for every g ∈ C(∂Ω), or the homogeneous equation

∫

∂Ω

K (z,σ)φ(σ)dσ ± 1
2
φ (z) = 0

has a finite number φ1, ..., φN of non trivial, linearly independent solutions.

In this last case equation (3.107) is not always solvable and we have:

(a) the adjoint homogeneous equation

∫

∂Ω

K (σ, z)φ∗(σ)dσ ± 1
2
φ∗ (z) = 0

has N non trivial linearly independent solutions φ∗1, ..., φ
∗
N ;

(b) equation (3.107) has a solution if and only if g satisfies the following N
compatibility conditions:

∫

∂Ω

φ∗j (σ)g (σ) dσ = 0, j = 1, ..., N (3.108)

(c) if g satisfies (3.108), the general solution of (3.107) is given by

ρ = ρ+C1φ1 + ...CNφN

where ρ is a particular solution of equation (3.107) and C1, ..., CN are arbitrary
real constants.

The analogy with the solution of a system of linear algebraic equations should
be evident. We will come back to Fredholm’s alternative in Chapter 6.

Problems

3.1. Show that if u is harmonic in a domain Ω, also the derivatives of u of any
order are harmonic in Ω.

3.2. We say that a function u ∈ C2(Ω), Ω ⊆ Rn is subharmonic (resp. super-
harmonic) in Ω if Δu ≥ 0 (Δu ≤ 0) in Ω. Show that:
a) If u is subharmonic, then, for every BR (x) ⊂⊂ Ω,

u (x) ≤ n

ωnRn

∫

BR(x)

u (y) dy

and

u (x) ≤ 1

ωnRn−1

∫

∂BR(x)

u (y) dy.

If u is superharmonic, the reverse inequalities hold.



Problems 151

b) If u ∈ C
(
Ω
)
is subharmonic, (superharmonic), the maximum (minimum)

of u is attained on ∂Ω.

c) If u is harmonic in Ω then u2 is subharmonic.

d) Let u be subharmonic in Ω and F : R→ R, smooth. Under which conditions
on F is F ◦ u subharmonic?
3.3. Let Ω ⊂ R2 be a bounded domain and v ∈ C2 (Ω)∩C1

(
Ω
)
be a solution

of (torsion problem) {
vxx + vyy = −2 in Ω

v = 0 on ∂Ω.

Show that u = |∇v|2 attains its maximum on ∂Ω.
3.4. Let BR be the unit circle centered at (0, 0). Use the method of separation

of variables to solve the problem
{
Δu = f in BR

u = 1 on ∂BR.

Find an explicit formula when f (x, y) = y.

[Hint : Use polar coordinates; expand f = f (r, ·) in sine Fourier series in [0, 2π]
and derive a set of ordinary differential equations for the Fourier coefficients of
u (r, ·)].
3.5. Let B1,2 =

{
(r, θ) ∈ R2; 1 < r < 2

}
. Examine the solvability of the Neu-

mann problem
⎧⎨
⎩
Δu = −1 in B1,2
uν = cos θ on r = 1
uν = λ(cos θ)

2 on r = 2
(λ ∈ R)

and write an explicit formula for the solution, when it exists.

3.6 (Schwarz’s reflection principle). Let

B+1 =
{
(x, y) ∈ R2 : x2 + y2 < 1, y > 0

}

and u ∈ C2
(
B+1
)
∩ C(B+1 ), harmonic B+1 , u (x, 0) = 0. Show that the function

U (x, y) =

{
u (x, y) y ≥ 0
−u (x,−y) y < 0

obtained from u by odd reflection with respect to y, is harmonic in all B1.

[Hint : Let v be the solution of Δv = 0 in B1, v = U on ∂B1. Define

w (x, y) = v (x, y) + v (x,−y)

and show that w ≡ 0 ...].
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Fig. 3.10. Interior circle condition at x0

3.7. State and prove the Schwarz reflection principle in dimension three.

3.8. Let u be harmonic in R3 such that
∫

R3

|u (x)|2 dx <∞.

Show that u ≡ 0.
[Hint. Write the mean formula in a ball BR (0) for u. Use the Schwarz inequality
and let R → +∞].
3.9. Let u be harmonic in Rn and M an orthogonal matrix of order n. Using

the mean value property, show that v (x) = u (Mx) is harmonic in Rn.

3.10. (Hopf’s maximum principle). Let Ω be a domain in R2 and u ∈ C1(Ω),
harmonic and positive in Ω. Assume that u (x0) = 0 at a point x0∈ ∂Ω and that
at x0 the following interior circle condition holds (see Fig. 3.10): there exists a
circle CR (p) ⊂ Ω such that

CR (p) ∩ ∂Ω = {x0} .

(a) Show that the exterior normal derivative of u at x0 is (strictly) negative:
uν (x0) < 0.

(b) Generalize to any number of dimensions.

[Hint. (a) Use the maximum principle to compare u with the function

w (x) =
ln |R| − ln |x− p|
lnR− ln(R/2) min

∂CR/2(p)
u

in the ring
A = CR (p)\CR/2 (p) .

Then, compare the normal derivatives at x0].
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3.11. Let f ∈ C2
(
R
2
)
with compact support K and

u (x) = − 1
2π

∫

R2

log |x− y| f (y) dy.

Show that

u (x) = −M
2π
log |x|+O(|x|−1), as |x| → +∞

where

M =

∫

R2

f (y)dy.

[Hint: Write
log |x− y| = log (|x − y| / |x|) + log |x|

and show that, if y ∈K,

|log (|x− y| / |x|)| ≤ C/ |x|].

3.12. Prove the representation formula (3.56) in dimension two.

3.13. Compute the Green function for the circle of radius R.

[Answer :

G (x,y) = − 1
2π
[log |x − y| − log( |x|

R
|x∗−y|)],

where x∗ = R2x |x|−2 , x �= 0].
3.14. Let Ω ⊂ Rn be a bounded smooth domain and G be the Green function

in Ω. Prove that, for every x,y ∈Ω, x �= y:
(a) G (x,y) > 0;

(b) G (x,y) = G (y,x).

[Hint. (a) Let Br (x) ⊂ Ω and let w be the harmonic function in Ω\Br (x) such
that w = 0 on ∂Ω and w = 1 on ∂Br (x). Show that, for every r small enough,

G (x, ·) > w (·)

in Ω\Br (x).
(b) For fixed x ∈Ω, define w1 (y) = G (x,y) and w2 (y) = G (y,x). Apply

Green’s identity (3.57) in Ω\Br (x) to w1 and w2. Let r→ 0].
3.15. Compute the Green function for the half plane R2+ = {(x, y) ; y > 0} and

(formally) derive the Poisson formula

u (x, y) =
y

π

∫

R

u (x, 0)

(x− ξ)2 + y2
dξ

for a bounded harmonic function in R2+.
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3.16. Prove that the exterior Dirichlet problem in the plane has a unique
bounded solution u ∈ C2 (Ωe) ∩ C

(
Ωe
)
, through the following steps. Let w be

the difference of two solutions. Then w is harmonic Ωe, vanishes on ∂Ωe and is
bounded, say |w| ≤M .
1) Assume that the 0 ∈ Ω. Let Ba (0) and BR (0) such that

Ba (0) ⊂ Ω ⊂ BR (0)

and define

uR (x) =M
ln |x| − ln |a|
lnR− ln a .

Use the maximum principle to conclude that w ≤ uR, in the ring

Ba,R =
{
x ∈R2; a < |x| < R

}
.

2) Let R→∞ and deduce that w ≤ 0 in Ωe.
3) Proceed similarly to show that w ≥ 0 in Ωe.
3.17. Find the Poisson formula for the circle BR, by representing the solution

of Δu = 0 in BR, u = g on ∂BR, as a double layer potential.

3.18. Consider the exterior Neumann-Robin problem in R3

⎧
⎪⎨
⎪⎩

Δu = 0 in Ωe

∂νu+ ku = g on ∂Ωe, (k ≥ 0)
u→ 0 as |x| → ∞.

(3.109)

(a) Show that the condition
∫

∂Ω

gdσ = 0

is necessary for the solvability of (3.109) if k = 0.

(b) Represent the solution as a single layer potential and derive the integral
equations for the unknown density.

[Hint. (a) Show that, for R large,
∫

∂Ω

g dσ =

∫

{|x|=R}
∂νu dσ.

Then let R→∞ and use Corollary 3.2].
3.19. Solve (formally) the Neumann problem in the half space R3+, using a

single layer potential.

3.20. Let B = B1 (0) ⊂ R
2. To complete the proof of Theorem 3.6 we must

show that, if g ∈ C (∂B) and u is given by formula (3.21) with R = 1 and p = 0,
then

lim
x→ξ
u (x) = g (ξ) for every ξ ∈ ∂B.
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Fill in the details in the following steps and conclude the proof.

1. First show that:

1− |x|2
2π

∫

∂B

1

|x− σ|2
dσ = 1

and that therefore

u (x) − g (ξ) = 1− |x|
2

2π

∫

∂B

g (σ) − g (ξ)
|x− σ|2

dσ.

2. For δ > 0, write

u (x) − g (ξ) = 1− |x|
2

2π

∫

∂B∩{|σ−ξ|<δ}
· · ·dσ + 1− |x|

2

2π

∫

∂B∩{|σ−ξ|>δ}
· · ·dσ

≡ I + II.
Fix ε > 0, and use the continuity of g to show that, if δ is small enough, then

|I| < ε.
3. Show that, if |x − ξ| < δ/2 and |σ − ξ| > δ, then |x− σ| > δ/2 and therefore

lim
x→ξ
II = 0.

3.21. Consider the equation

Lu ≡ Δu+ k2u = 0 in R3

called Helmoltz or reduced wave equation.

(a) Show that the radial solutions u = u (r), r = |x|, satisfying the outgoing
Sommerfeld condition

ur + iku = O

(
1

r2

)
as r→∞,

are of the form

ϕ (r; k) = c
e−ikr

r
c ∈ C.

(b) For f smooth and compactly supported in R3 define the potential

U (x) = c0

∫

R3

f (y)
e−ik|x−y|

|x− y| dy .

Select the constant c0 such that

LU (x) = −f (x) .

[Answer (b): c0 = (4π)
−1
].
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Scalar Conservation Laws and First Order

Equations

Introduction – Linear Transport Equation – Traffic Dynamics – Integral (or Weak) Solu-

tions – The Method of Characteristics For Quasilinear Equations – General First Order

Equations

4.1 Introduction

In the first part of this chapter we consider equations of the form

ut + q (u)x = 0, x ∈ R, t > 0. (4.1)

In general, u = u (x, t) represents the density or the concentration of a physical
quantity Q and q (u) is its flux function1. Equation (4.1) constitutes a link between
density and flux and expresses a (scalar) conservation law for the following
reason. If we consider a control interval [x1, x2], the integral∫ x2

x1

u (x, t)dx

gives the amount of Q between x1 and x2 at time t. A conservation law states
that, without sources or sinks, the rate of change of Q in the interior of [x1, x2]
is determined by the net flux through the end points of the interval. If the flux is
modelled by a function q = q (u) , the law translates into the equation

d

dt

∫ x2

x1

u (x, t)dx = −q (u (x2, t)) + q (u (x1, t)) , (4.2)

where we assume that q > 0 (q < 0) for a flux along the positive (negative)
direction of the x axes. If u and q are smooth functions, equation (4.2) can be
rewritten in the form ∫ x2

x1

[ut (x, t) + q (u (x, t))x] dx = 0

which implies (4.1), due to the arbitrariness of the interval [x1, x2].

1 The dimensions of q are [mass]× [time]−1.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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At this point we have to decide which type of flux function we are dealing with,
or, in other words, we have to establish a constitutive relation for q.
In the next section we go back to the model of pollution in a channel, considered

in section 2.5.3, neglecting the diffusion and choosing for q a linear function of u,
namely:

q (u) = vu,

where v is constant. The result is a pure transport model, in which the vector vi
is the advection2 speed. In the sequel, to introduce and motivate some important
concepts and results, we shall use a nonlinear model from traffic dynamics, with
speed v depending on u.
The conservation law (4.1) occurs, for instance, in 1−dimensional fluid dynam-

ics where it often describes the formation and propagation of the so called shock
waves. Along a shock curve a solution undergoes a jump discontinuity and an im-
portant question is how to reinterpret the differential equation (4.1) in order to
admit discontinuous solutions.
A typical problem associated with equation (4.1) is the initial value problem:

{
ut + q (u)x = 0

u (x, 0) = g (x)
(4.3)

where x ∈ R. Sometimes x varies in a half-line or in a finite interval; in these cases
some other conditions have to be added to obtain a well posed problem.

4.2 Linear Transport Equation

4.2.1 Pollution in a channel

We go back to the simple model for the evolution of a pollutant in a narrow channel,
considered in section 2.5.3.When diffusion and transport are both relevant we have
derived the equation

ct = Dcxx − vcx,
where c is the concentration of the pollutant and vi is the stream speed (v > 0,
constant). We want to discuss here the case of the pure transport equation

ct + vcx = 0 (4.4)

i.e. when D = 0. Introducing the vector

v =vi + j

equation (4.4) can be written in the form

vcx + ct = ∇c · v =0,
2 Advection is usually synonymous of linear convection.
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pointing out the orthogonality of ∇c and v. But ∇c is orthogonal to the level lines
of c, along which c is constant. Therefore the level lines of c are the straight lines
parallel to v, of equation

x = vt + x0.

These straight lines are called characteristics. Let us compute c along the char-
acteristic x = vt + x0 letting

w (t) = c (x0 + vt, t) .

Since3

ẇ (t) = vcx (x0 + vt, t) + ct(x0 + vt, t),

equation (4.4) becomes the ordinary differential equation ẇ (t) = 0 which implies
that c is constant along the characteristic.
We want to determine the evolution of the concentration c, by knowing its

initial profile
c (x, 0) = g (x) . (4.5)

Fig. 4.1. Characteristic line for the linear transport problem

The method to compute the solution at a point (x̄, t̄), t > 0, is very simple.
Let x = vt + x0 be the equation of the characteristic passing through (x̄, t̄).
Go back in time along this characteristic from (x̄, t̄) until the point (x0, 0), of

intersection with the x− axes (see Fig. 4.1).
Since c is constant along the characteristic and c (x0, 0) = g (x0), it must be

c (x̄, t̄) = g (x0) = g (x̄− vt̄) .
Thus, if g ∈ C1 (R), the solution of the initial value problem (4.4), (4.5) is given
by

c (x, t) = g (x− vt) . (4.6)

The solution (4.6) represents a travelling wave, moving with speed v in the
positive x−direction. In figure 4.2, an initial profile g (x) = sin (πx)χ[0,1] (x) is
transported in the plane x, t along the straight-lines x − t = constant, i.e. with
speed v = 1.

3 The dot denotes derivative with respect to time.
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Fig. 4.2. Travelling wave solution of the linear transport equation

4.2.2 Distributed source

The equation
ct + vcx = f (x, t) , (4.7)

with the initial condition
c (x, 0) = g (x) , (4.8)

describes the effect of an external distributed source along the channel. The func-
tion f represents the intensity of the source, measured in concentration per unit
time.
Again, to compute the value of the solution u at a point (x̄, t̄) is not difficult.

Let x = x0 + vt be the characteristic passing through (x̄, t̄) and compute u along
this characteristic, setting w (t) = c (x0 + vt, t). From (4.7), w satisfies the ordinary
differential equation

ẇ (t) = vcx (x0 + vt, t) + ct(x0 + vt, t) = f (x0 + vt, t)

with the initial condition
w (0) = g (x0) .

Thus

w (t) = g (x0) +

∫ t

0

f (x0 + vs, s) ds.

Letting t = t̄ and recalling that x0 = x̄− vt̄, we get

c (x̄, t̄) = w (t̄) = g (x̄− vt̄) +
∫ t

0

f (x̄− v(t̄ − s), s) ds. (4.9)

Since (x̄, t̄) is arbitrary, if g and f are reasonably smooth functions, (4.9) is our
solution.

Proposition 4.1. Let g ∈ C1 (R) and f, fx ∈ C (R× R+). The solution of the
initial value problem

{
ct + vcx = f (x, t) x ∈ R, t > 0
c(x, 0) = g (x) x ∈ R
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is given by the formula

c (x, t) = g (x− vt) +
∫ t

0

f (x− v(t − s), s) ds. (4.10)

Remark 4.1. Formula (4.10) can be derived using the Duhamel method, as in sec-
tion 2.2.8 (see Problem 4.1.)

4.2.3 Decay and localized source

Suppose that, due to biological decomposition, the pollutant decays at the rate

r (x, t) = −γc (x, t) γ > 0.

Without external sources and diffusion, the mathematical model is

ct + vcx = −γc,

with the initial condition
c (x, 0) = g (x) .

Setting

u (x, t) = c (x, t) e
γ
v x, (4.11)

we have

ux =
(
cx +

γ

v
c
)
e
γ
v x and ut = cte

γ
v x

and therefore the equation for u is

ut + vux = 0

with the initial condition

u (x, 0) = g (x) e
γ
v x.

From Proposition 4.1, we get

u (x, t) = g (x− vt) e γv (x−vt)

and from (4.11)
c (x, t) = g (x− vt) e−γt

which is a damped travelling wave.

We now examine the effect of a source of pollutant placed at a certain point
of the channel, e.g. at x = 0. Typically, one can think of waste material from
industrial machineries. Before the machines start working, for instance before time
t = 0, we assume that the channel is clean. We want to determine the pollutant
concentration, supposing that at x = 0 it is kept at a constant level β > 0, for
t > 0.
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To model this source we introduce the Heaviside function

H (t) =
{
1 t ≥ 0
0 t < 0,

with the boundary condition
c (0, t) = βH (t) (4.12)

and the initial condition

c (x, 0) = 0 for x > 0. (4.13)

As before, let u (x, t) = c (x, t) e
γ
v x, which is a solution of ut + vux = 0. Then:

u (x, 0) = c (x, 0) e
γ
v x = 0 x > 0

u (0, t) = c (0, t) = βH (t) .

Since u is constant along the characteristics it must be of the form

u (x, t) = u0 (x− vt) (4.14)

where u0 is to be determined from the boundary condition (4.12) and the initial
condition (4.13).
To compute u for x < vt, observe that a characteristic leaving the t−axis from

a point (0, t) carries the data βH (t). Therefore, we must have

u0 (−vt) = βH (t) .

Letting s = −vt we get
u0 (s) = βH

(
−s
v

)

and from (4.14),

u (x, t) = βH
(
t− x
v

)
.

This formula gives the solution also in the sector

x > vt, t > 0,

since the characteristics leaving the x−axis carry zero data and hence we deduce
u = c = 0 there. This means that the pollutant has not yet reached the point x at
time t, if x > vt.
Finally, recalling (4.11), we find

c (x, t) = βH
(
t− x
v

)
e−

γ
v x.

Observe that in (0, 0) there is a jump discontinuity which is transported along the
characteristic x = vt. Figure 4.3 shows the solution for β = 3, γ = 0.7, v = 2.
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Fig. 4.3. Propagation of a discontinuity

4.2.4 Inflow and outflow characteristics. A stability estimate

The domain in the localized source problem is the quadrant x > 0, t > 0. To
uniquely determine the solution we have used the initial data on the x−axis, x > 0,
and the boundary data on the t−axis, t > 0. The problem is therefore well posed.
This is due to the fact that, since v > 0, when time increases, all the characteristics
carry the information (the data) towards the interior of the quadrant x > 0, t > 0.
In other words the characteristics are inflow characteristics.

More generally, consider the equation

ut + aux = f (x, t)

in the domain x > 0, t > 0, where a is a constant (a �= 0). The characteristics are
the lines

x− at = constant

as shown in figure 4.4. If a > 0, we are in the case of the pollutant model: all the
characteristics are inflow and the data must be assigned on both semi-axes.

If a < 0, the characteristics leaving the x− axis are inflow, while those leaving
the t− axis are outflow. In this case the initial data alone are sufficient to uniquely
determine the solution, while no data has to be assigned on the semi-axis
x = 0, t > 0.

Coherently, a problem in the half-strip 0 < x < R, t > 0, besides the initial
data, requires a data assignment on the inflow boundary, namely (Fig. 4.4):

{
u (0, t) = h0 (t) if a > 0

u (R, t) = hR (t) if a < 0.

The resulting initial-boundary value problem is well posed, since the solution is
uniquely determined at every point in the strip by its values along the characteris-
tics. Moreover, a stability estimate can be proved as follows. Consider, for instance,
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Fig. 4.4. The arrows indicate where the data should be assigned

the case a > 0 and the problem4

⎧
⎪⎨
⎪⎩

ut + aux = 0 0 < x < R, t > 0

u (0, t) = h (t) t > 0

u (x, 0) = g (x) 0 < x < R.

(4.15)

Multiply the differential equation by u and write

uut + auux =
1

2

d

dt
u2 +

a

2

d

dx
u2 = 0.

Integrating in x over (0, R) we get:

d

dt

∫ R

0

u2 (x, t)dx+ a
[
u2 (R, t)− u2 (0, t)

]
= 0.

Now use the data u (0, t) = h (t) and the positivity of a to obtain

d

dt

∫ R

0

u2 (x, t)dx ≤ ah2 (t) .

Integrating in t we have, using the initial condition u (x, 0) = g (x),

∫ R

0

u2 (x, t)dx ≤
∫ R

0

g2 (x) dx+ a

∫ t

0

h2 (s) ds. (4.16)

Now, let u1 and u2 be solutions of problem (4.15) with initial data g1, g2 and
boundary data h1, h2 on x = 0. Then, by linearity, w = u1 − u2 is a solution
4 For the case ut + aux = f �= 0, see Problem 4.2.
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of problem (4.15) with initial data g1− g2 and boundary data h1− h2 on x = 0.
Applying the inequality (4.16) to w we have

∫ R

0

[u1 (x, t)− u2 (x, t)]2dx ≤
∫ R

0

[g1 (x)− g2 (x)]2dx+ a
∫ t

0

[h1 (s) − h2 (s)]2ds.

Thus, a least-squares approximation of the data controls a least-squares approxi-
mation of the corresponding solutions. In this sense, the solution of problem (4.15)
depends continuously on the initial data and on the boundary data on x = 0.We
point out that the values of u on x = R do not appear in (4.16).

4.3 Traffic Dynamics

4.3.1 A macroscopic model

From far away, an intense traffic on a highway can be considered as a fluid flow
and described by means of macroscopic variables such as the density of cars5 ρ,
their average speed v and their flux6 q. The three (more or less regular) functions
ρ, u and q are linked by the simple convection relation

q = vρ.

To construct a model for the evolution of ρ we assume the following hypotheses.

1. There is only one lane and overtaking is not allowed. This is realistic for
instance for traffic in a tunnel (see Problem 4.7). Multi-lanes models with overtak-
ing are beyond the scope of this introduction. However the model we will present
is often in agreement with observations also in this case.

2. No car“sources”or“sinks”.We consider a road section without exit/entrance
gates.

3. The average speed is not constant and depends on the density alone, that is

v = v (ρ) .

This rather controversial assumption means that at a certain density the speed is
uniquely determined and that a density change causes an immediate speed varia-
tion. Clearly

v′ (ρ) =
dv

dρ
≤ 0

since we expect the speed to decrease as the density increases.

As in Section 4.1, from hypotheses 2 and 3 we derive the conservation law:

ρt + q(ρ)x = 0 (4.17)

5 Number of cars per unit length.
6 Cars per unit time.
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where

q(ρ) = v (ρ) ρ.

We need a constitutive relation for v = v (ρ). When ρ is small, it is reasonable
to assume that the average speed v is more or less equal to the maximal velocity
vm, given by the speed limit. When ρ increases, traffic slows down and stops at the
maximum density ρm (bumper-to-bumper traffic). We adopt the simplest model
consistent with the above considerations7, namely

v (ρ) = vm

(
1− ρ

ρm

)
,

so that

q (ρ) = vmρ

(
1− ρ

ρm

)
. (4.18)

Since

q(ρ)x = q
′ (ρ) ρx = vm

(
1− 2ρ
ρm

)
ρx

equation (4.17) becomes

ρt + vm

(
1− 2ρ
ρm

)

︸ ︷︷ ︸
q′(ρ)

ρx = 0. (4.19)

According to the terminology in Section 1.1, this is a quasilinear equation. We
also point out that

q′′ (ρ) = −2vm
ρm
< 0

so that q is strictly concave. We couple the equation (4.19) with the initial condition

ρ (x, 0) = g (x) . (4.20)

4.3.2 The method of characteristics

We want to solve the initial value problem (4.19), (4.20). To compute the density ρ
at a point (x, t) we follow the idea we used in the linear transport case: to connect
the point (x, t) with a point (x0, 0) on the x−axis, through a curve along which ρ
is constant (Fig. 4.5).
Clearly, if we manage to find such a curve, that we call characteristic based

at (x0, 0), the value of ρ at (x, t) is given by ρ (x0, 0) = g (x0). Moreover, if this
procedure can be repeated for every point (x, t), x ∈ R, t > 0, then we can
compute ρ at every point and the problem is completely solved. This is the method
of characteristics.

7 And in good agreement with experimental data.
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Fig. 4.5. Characteristic curve

Adopting a slightly different point of view, we can implement the above idea
as follows: assume that x = x (t) is the equation of the characteristic based at the
point (x0, 0); along x = x (t) we observe always the same initial density g (x0) . In
other words

ρ (x (t) , t) = g (x0) (4.21)

for every t > 0. If we differentiate identity (4.21), we get

d

dt
ρ (x (t) , t) = ρx (x (t) , t)x

′ (t) + ρt (x (t) , t) = 0 (t > 0). (4.22)

On the other hand, (4.19) yields

ρt (x (t) , t) + q
′ (g (x0)) ρx (x (t) , t) = 0

so that, subtracting (4.23) from (4.22), we obtain

ρx (x (t) , t) [ẋ (t)− q′ (g (x0))] = 0. (4.23)

Assuming ρx (x (t) , t) �= 0, we deduce

ẋ (t) = q′ (g (x0)) .

Since x (0) = x0 we find

x (t) = q′ (g (x0)) t+ x0. (4.24)

Thus, the characteristics are straight lines with slope q′ (g (x0)). Different values
of x0 give, in general, different values of the slope.
We can now derive a formula for ρ. To compute ρ (x, t), t > 0, go back in time

along the characteristic through (x, t) until its base point (x0, 0). Then ρ (x, t) =
g (x0). From (4.24) we have, since x (t) = x,

x0 = x− q′ (g (x0)) t

and finally

ρ (x, t) = g (x− q′ (g (x0)) t) . (4.25)
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Fig. 4.6. Characteristic straight line (g0 = g (x0))

Formula (4.25) represents a travelling wave propagatingwith speed q′ (g (x0))
along the positive x−direction.
We emphasize that q′ (g (x0)) is the local wave speed and it must not be confused

with the traffic velocity. In fact, in general,

dq

dρ
=
d (ρv)

dρ
= v + ρ

dv

dρ
≤ v

since ρ ≥ 0 and dv
dρ ≤ 0.

The different nature of the two speeds becomes more evident if we observe
that the wave speed may be negative as well. This means that, while the traffic
advances along the positive x−direction, the disturbance given by the travelling
wave may propagate in the opposite direction. Indeed, in our model (4.18), dqdρ < 0

when ρ > ρm
2
.

Formula (4.25) seems to be rather satisfactory, since, apparently, it gives the
solution of the initial value problem (4.19), (4.20) at every point. Actually, a more
accurate analysis shows that, even if the initial data g are smooth, the solution
may develop a singularity in finite time (e.g. a jump discontinuity). When this
occurs, the method of characteristics does not work anymore and formula (4.25) is
not effective. A typical case is described in figure 4.7: two characteristics based at
different points (x1, 0) e (x2, 0) intersect at the point (x, t) and the value u (x, t)
is not uniquely determined as soon as g (x1) �= g (x2).

Fig. 4.7. Intersection of characteristics
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In this case we have to weaken the concept of solution and the computation
technique. We will come back on these questions later. For the moment, we analyze
the method of characteristics in some particularly significant cases.

4.3.3 The green light problem

Suppose that bumper-to-bumper traffic is standing at a red light, placed at x = 0,
while the road ahead is empty. Accordingly, the initial density profile is

g (x) =

{
ρm for x ≤ 0
0 for x > 0.

At time t = 0 the traffic light turns green and we want to describe the car flow
evolution for t > 0. At the beginning, only the cars nearer to the light start moving
while most remain standing.

Since q′ (ρ) = vm
(
1− 2ρ

ρm

)
, the local wave speed is given by

q′ (g (x0)) =
{
−vm for x0 ≤ 0
vm for x0 > 0

and the characteristics are the straight lines

x = −vmt+ x0 if x0 < 0

x = vmt+ x0 if x0 > 0.

The lines x = vmt and x = −vmt partition the upper half-plane in the three regions
R, S and T , shown in figure 4.8.

Fig. 4.8. Characteristics for the green light problem

Inside R we have ρ (x, t) = ρm, while inside T we have ρ (x, t) = 0. Consider
the points on the horizontal line t = t. At the points

(
x, t
)
∈ T the density is zero:

the traffic has not yet arrived in x at time t = t. The front car is located at the
point

x = vmt

which moves at the maximum speed, since ahead the road is empty.
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The cars placed at the points
(
x, t
)
∈ R are still standing. The first car that

starts moving at time t = t is at the point

x = −vmt.

In particular, it follows that the green light signal propagates back through the
traffic at the speed vm.
What is the value of the density inside the sector S? No characteristic extends

into S due to the discontinuity of the initial data at the origin, and the method as
it stands does not give any information on the value of ρ inside S.
A strategy that may give a reasonable answer is the following:
a) approximate the initial data by a continuous function gε, which converges

to g as ε→ 0 at every point x, except 0;
b) construct the solution ρε of the ε−problem by the method of characteristics;
c) let ε→ 0 and check that the limit of ρε is a solution of the original problem.
Clearly we run the risk of constructing many solutions, each one depending on

the way we regularize the initial data, but for the moment we are satisfied if we
construct at least one solution.

a) Let us choose as gε the function (Fig. 4.9)

gε (x) =

⎧
⎪⎨
⎪⎩

ρm x ≤ 0
ρm(1 −

x

ε
) 0 < x < ε

0 x ≥ ε.

When ε→ 0, gε (x)→ g (x) for every x �= 0.

Fig. 4.9. Smoothing of the initial data in the green light problem

b) The characteristics for the ε−problem are:

x = −vmt+ x0 if x0 < 0

x = −vm
(
1− 2x0

ε

)
t+ x0 if 0 ≤ x0 < ε

x = vmt+ x0 if x0 ≥ ε

since, for 0 ≤ x0 < ε,

q′ (gε (x0)) = vm

(
1− 2gε (x0)

ρm

)
= −vm

(
1− 2x0

ε

)
.
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The characteristics in the region −vmt < x < vmt + ε form a rarefaction fan
(Fig. 4.10).

Fig. 4.10. Fanlike characteristics

Clearly, ρε (x, t) = 0 for x ≥ vmt +ε and ρε (x, t) = ρm for x ≤ −vmt. Let now
(x, t) belong to the region

−vmt < x < vmt+ ε.

Solving for x0 in the equation of the characteristic x = −vm
(
1− 2x0

ε

)
t+ x0, we

find

x0 = ε
x+ vmt

2vmt+ ε
.

Then

ρε (x, t) = gε (x0) = ρm(1−
x0

ε
) = ρm

(
1− x+ vmt
2vmt+ ε

)
. (4.26)

c) Letting ε→ 0 in (4.26) we obtain

ρ (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ρm for x ≤ −vmt
ρm
2

(
1− x

vmt

)
for − vmt < x < vmt

0 for x ≥ vmt
. (4.27)

It is easy to check that ρ is a solution of the equation (4.19) in the regions R, S, T .
For fixed t, the function ρ decreases linearly from ρm to 0 as x varies from −vmt
to vmt. Moreover, ρ is constant on the fan of straight lines

x = ht − vm < h < vm.

These type of solutions are called rarefaction or simple waves (centered at the
origin).
The formula for ρ (x, t) in the sector S can be obtained, a posteriori, by a formal

procedure that emphasizes its structure. The equation of the characteristics can
be written in the form

x = vm

(
1− 2g (x0)

ρm

)
t + x0 = vm

(
1− 2ρ (x, t)

ρm

)
t + x0.
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Fig. 4.11. Characteristics in a rarefaction wave

Fig. 4.12. Profile of a rarefaction wave at time t

because ρ (x, t) = g (x0). Inserting x0 = 0 we obtain

x = vm

(
1− 2ρ (x, t)

ρm

)
t.

Solving for ρ we find exactly

ρ (x, t) =
ρm
2

(
1− x

vmt

)
(t > 0). (4.28)

Since vm

(
1− 2ρ

ρm

)
= q′ (ρ), we see that (4.28) is equivalent to

ρ (x, t) = r
(x
t

)

where r = (q′)−1 is the inverse function of q′. Indeed this is the general form of a
rarefaction wave (centered at the origin) for a conservation law.

We have constructed a continuous solution ρ of the green light problem, con-
necting the two constant states ρm and 0 by a rarefaction wave. However, it is
not clear in which sense ρ is a solution across the lines x = ±vmt, since, there,
its derivatives undergo a jump discontinuity. Also, it is not clear whether or not
(4.27) is the only solution. We will return on these important points.
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4.3.4 Traffic jam ahead

Suppose that the initial density profile is

g (x) =

{
1
8ρm for x < 0

ρm for x > 0.

For x > 0, the density is maximal and therefore the traffic is bumper-to-bumper.
The cars on the left move with speed v = 7

8
vm so that we expect congestion

propagating back into the traffic. We have

q′ (g (x0)) =

{
3
4vm if x0 < 0

−vm if x0 > 0

and therefore the characteristics are

x =
3

4
vmt + x0 if x0 < 0

x = −vmt+ x0 if x0 > 0.

The characteristics configuration (Fig. 4.13 ) shows that the latter intersect some-
where in finite time and the theory predicts that ρ becomes a "multivalued" func-
tion of position. In other words, ρ should assume two different values at the same
point, which clearly makes no sense in our situation. Therefore we have to admit
solutions with jump discontinuities (shocks), but then we have to reexamine the
derivation of the conservation law, because the smoothness assumption for ρ does
not hold anymore.
Thus, let us go back to the conservation of cars in integral form (see (4.2)):

d

dt

∫ x2

x1

ρ (x, t) dx = −q (ρ (x2, t)) + q (ρ (x1, t)) , (4.29)

valid in any control interval [x1, x2]. Suppose now that ρ is a smooth function
except along a curve

x = s (t) t ∈ [t1, t2] ,
that we call shock curve, on which ρ undergoes a jump discontinuity.
For fixed t, let [x1, x2] be an interval containing the discontinuity point

x = s (t) .

From(4.29) we have

d

dt

{∫ s(t)

x1

ρ (y, t) dy +

∫ x2

s(t)

ρ (y, t) dy

}
+ q [ρ (x2, t)]− q [ρ (x1, t)] = 0. (4.30)

The fundamental theorem of calculus gives

d

dt

∫ s(t)

x1

ρ (y, t) dy =

∫ s(t)

x1

ρt (y, t) dy + ρ
− (s (t) , t)

ds

dt
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Fig. 4.13. Expecting a shock

and
d

dt

∫ x2

s(t)

ρ (y, t) dy =

∫ x2

s(t)

ρt (y, t) dy − ρ+ (s (t) , t)
ds

dt
,

where

ρ− (s (t) , t) = lim
y↑s(t)

ρ (y, t) , ρ+ (s (t) , t) = lim
y↓s(t)

ρ (y, t) .

Hence, equation (4.30) becomes

∫ x2

x1

ρt (y, t) dy +
[
ρ− (s (t) , t)− ρ+ (s (t) , t)

]
ṡ (t) = q [ρ (x1, t)]− q [ρ (x2, t)] .

Letting x2 ↓ s (t) and x1 ↑ s (t) we obtain
[
ρ− (s (t) , t)− ρ+ (s (t) , t)

]
ṡ (t) = q

[
ρ− (s (t) , t)

]
− q

[
ρ+ (s (t) , t)

]

that is:

ṡ =
q [ρ+ (s, t)]− q [ρ− (s, t)]
ρ+ (s, t)− ρ− (s, t) . (4.31)

The relation (4.31) is an ordinary differential equation for s and it is known as
Rankine-Hugoniot condition. The discontinuity propagating along the shock
curve is called shock wave. The Rankine-Hugoniot condition gives the shock speed
ṡ (t) as the quotient of the flux jump over the density jump. To determine the shock
curve we need to know its initial point and the values of ρ from both sides of the
curve.

Let us apply the above considerations to our traffic problem8. We have

ρ+ = ρm, ρ− =
ρm
8

8 In the present case the following simple formula holds:

q (w)− q (z)
w − z = vm

(
1− w + z

ρm

)
.
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while

q
[
ρ+
]
= 0 q

[
ρ−
]
=
7

64
vmρm

and (4.31) gives

ṡ (t) =
q [ρ+]− q [ρ−]
ρ+ − ρ− = −1

8
vm.

Since clearly s (0) = 0, the shock curve is the straight line

x = −1
8
vmt.

Note that the slope is negative: the shock propagates back with speed −18vm, as it
is revealed by the braking of the cars, slowing down because of a traffic jam ahead.

As a consequence, the solution of our problem is given by the following formula
(Fig. 4.14)

ρ (x, t) =

{
1
8
ρm x < −1

8
vmt

ρm x > −1
8
vmt.

This time the two constant states 1
8
ρm and ρm are connected by a shock wave.

Fig. 4.14. Shock wave

4.4 Integral (or Weak) Solutions

4.4.1 The method of characteristics revisited

The method of characteristics applied to the problem
{
ut + q (u)x = 0

u (x, 0) = g (x)
(4.32)

gives the travelling wave (see (4.25) with x0 = ξ)

u(x, t) = g [x− q′ (g (ξ)) t]
(
q′ =

dq

du

)
(4.33)
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with local speed q′ (g (ξ)), in the positive x−direction. Since u (x, t) ≡ g (ξ) along
the characteristic based at (ξ, 0), from (4.33) we obtain that u is implicitly defined
by the equation

G (x, t, u) ≡ u− g [x− q′ (u) t] = 0. (4.34)

If g and q′ are smooth, the Implicit Function Theorem, implies that equation (4.34)
defines u as a function of (x, t), as long as the condition

Gu (x, t, u) = 1 + tq
′′(u)g′ [x− q′ (u) t] �= 0 (4.35)

holds. An immediate consequence is that if q′′ and g′ have the same sign, the
solution given by the method of characteristics is defined and smooth for all times
t ≥ 0. Precisely, we have:

Proposition 4.2. Suppose that q ∈ C2 (R), g ∈ C1 (R) and g′q′′ ≥ 0 in R. Then
formula (4.34) defines the unique solution u of problem (4.32) in the half-plane
t ≥ 0. Moreover, u (x, t) ∈ C1 (R× [0,∞)).

Thus, if q′′ and g′ have the same sign, the characteristics do not intersect. Note
that in the ε−approximation of the green light problem, q is concave and gε is
decreasing. Although gε is not smooth, the characteristics do not intersect and ρε
is well defined for all times t > 0. In the limit as ε → 0, the discontinuity of g
reappears and the fan of characteristics produces a rarefaction wave.

What happens if q′′ and g′ have a different sign in an interval [a, b]? Proposition
4.2 still holds for small times, since Gu ∼ 1 if t ∼ 0, but when time goes on we
expect the formation of a shock. Indeed, suppose, for instance, that q is concave
and g is increasing. The family of characteristics based on a point in the interval
[a, b] is

x = q′ (g (ξ)) t+ ξ ξ ∈ [a, b] . (4.36)

When ξ increases, g increases as well, while q′ (g (ξ)) decreases so that we expect
intersection of characteristics along a shock curve. The main question is to find
the positive time ts (breaking time) and the location xs of first appearance of
the shock.

According to the above discussion, the breaking time must coincide with the
first time t at which the expression

Gu (x, t, u) = 1 + tq
′′(u)g′ [x− q′ (u) t]

becomes zero. Computing Gu along the characteristic (4.36), we have u = g (ξ)
and

Gu (x, t, u) = 1 + tq
′′(g (ξ))g′(ξ).

Assume that the nonnegative function

z (ξ) = −q′′(g(ξ))g′(ξ)
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attains its maximum only at the point ξM ∈ [a, b]. Then z (ξM) > 0 and

ts = min
ξ∈[a,b]

1

z (ξ)
=

1

z (ξM )
. (4.37)

Since xs belongs to the characteristics x = q
′ (g (ξM )) t+ ξM , we find

xs =
q′ (g (ξM ))
z (ξM )

+ ξM . (4.38)

The point (xs, ts) has an interesting geometrical meaning. In fact, it turns out that
if q′′g′ < 0, the family of characteristics (4.36) admits an envelope9 and (xs, ts) is
the point on the envelope with minimum time coordinate (see Problem 4.8).

Fig. 4.15. Breaking time for problem (4.39)

Example 4.1. Consider the initial value problem
{
ut + (1− 2u)ux = 0
u (x, 0) = arctanx.

(4.39)

We have q (u) = u − u2, q′ (u) = 1 − 2u, q′′ (u) = −2, and g (ξ) = arctan ξ,
g′ (ξ) = 1/

(
1 + ξ2

)
. Therefore, the function

z (ξ) = −q′′(g(ξ))g′(ξ) = 2(
1 + ξ2

)

9 Recall that the envelope of a family of curves φ (x, t, ξ) = 0, depending on the pa-
rameter ξ, is a curve ψ (x, t) = 0 tangent at each one of its points to a curve of the
family. If the family of curves φ (x, t, ξ) = 0 has an envelope, its parametric equations
are obtained by solving the system

{
φ (x, t, ξ) = 0
φξ (x, t, ξ) = 0

with respect to x and t.
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has a maximum at ξM = 0 and z (0) = 2. The breaking-time is tS = 1/2 and
xS = 1/2. Thus, the shock curve starts from (1/2, 1/2) . For 0 ≤ t < 1/2 the
solution u is smooth and implicitly defined by the equation

u− arctan [x− (1− 2u) t] = 0. (4.40)

After t = 1/2, equation (4.40) defines u as a multivalued function of (x, t) and
does not define a solution anymore. Figure 4.15 shows what happens for t = 1/4,
1/2 and 1. Note that the common point of intersection is (1/2, tan1/2) which is
not the first shock point.

How does the solution evolve after t = 1/2?We have to insert a shock wave into
the multivalued graph in figure 4.15 in such a way the conservation law is preserved.
We will see that the correct insertion point is prescribed by the Rankine-Hugoniot
condition. It turns out that this corresponds to cutting off from the multivalued
profile two equal area lobesA and B as described in figure 4.16 (G. B. Whitham
equal area rule10).

Fig. 4.16. Inserting a shock wave by the Whitham equal-area rule

4.4.2 Definition of integral solution

We have seen that the method of characteristics is not sufficient, in general, to
determine the solution of an initial value problem for all times t > 0. In the green
light problem a rarefaction wave was used to construct the solution in a region not
covered by characteristics. In the traffic jam case the solution undergoes a shock,
propagating according to the Rankine-Hugoniot condition.

10 The equal-area rule holds for a general conservation law (see Whitham, 1974).
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Some questions arise naturally.

Q1. In which sense is the differential equation satisfied across a shock or, more
generally, across a separation curve where the constructed solution is not differen-
tiable?
One way to solve the problem is simply to not care about those points. However,

in this case it would be possible to construct solutions that do not have anything
to do with the physical meaning of the conservation law.

Q2. Is the solution unique?

Q3. If there is no uniqueness, is there a criterion to select the “physically
correct” solution?
To answer, we need first of all to introduce a more flexible notion of solution,

in which the derivatives of the solution are not directly involved. Let us go back
to the problem {

ut + q (u)x = 0 x ∈ R, t > 0
u (x, 0) = g (x) x ∈ R (4.41)

and assume for the moment that u is a smooth solution, at least of class C1 in
R×[0,∞). We say that u is a classical solution.
Let v be a smooth function in R×[0,∞), with compact support. We call v a

test function. Multiply the differential equation by v and integrate on R×(0,∞).
We get ∫ ∞

0

∫

R

[ut + q (u)x] v dxdt = 0. (4.42)

The idea is to carry the derivatives onto the test function v via an integration by
parts. If we integrate by parts the first term with respect to t we obtain11:

∫ ∞
0

∫

R

utv dxdt = −
∫ ∞
0

∫

R

uvt dxdt−
∫

R

u (x, 0)v (x, 0)dx

= −
∫ ∞
0

∫

R

uvt dxdt−
∫

R

g (x)v (x, 0)dx.

Integrating by parts the second term in (4.42) with respect to x, we have:

∫ ∞
0

∫

R

q (u)x v dxdt = −
∫ ∞
0

∫

R

q(u)vx dxdt.

Then, equation (4.42) becomes

∫ ∞
0

∫

R

[uvt + q(u)vx]dxdt+

∫

R

g (x) v (x, 0)dx = 0. (4.43)

We have obtained an integral equation, valid for every test function v. Observe
that no derivative of u appears in (4.43).

11 Since v is compactly supported and u, v are smooth, there is no problem in exchanging
the order of integration.
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On the other hand, suppose that a smooth function u satisfies (4.43) for every
test function v. Integrating by parts in the reverse order, we arrive to the equation

∫ ∞
0

∫

R

[ut + q (u)x] v dxdt+

∫

R

[g (x)− u (x, 0)] v (x, 0)dx = 0, (4.44)

still true for every test function v. Choose v vanishing for t = 0; then the second
integral is zero and the arbitrariness of v implies

ut + q (u)x = 0 in R× (0,+∞) . (4.45)

Choosing now v non vanishing for t = 0, from (4.44) and (4.45), we get

∫

R

[g (x)− u (x, 0)] v (x, 0)dx = 0.

Once more, the arbitrariness of v implies

u (x, 0) = g (x) in R.

Therefore u is a solution of problem (4.41).
Conclusion: a function u ∈ C1 (R× [0×∞)) is a solution of problem (4.41) if

and only if the equation (4.43) holds for every test function v.
But (4.43) makes perfect sense for u merely bounded, so that it constitutes an

alternative integral or weak formulation of problem (4.41). This motivates the
following definition.

Definition 4.1. A function u, bounded in R×[0,∞), is called integral (or weak)
solution of problem (4.41) if equation (4.43) holds for every test function v in
R×[0,∞), with compact support.

We point out that an integral solutionmay be discontinuous, since the definition
requires only boundedness.

4.4.3 The Rankine-Hugoniot condition

Definition 4.1 looks rather satisfactory, because of its flexibility. However we have to
understand which information about the weak solutions behavior at a singularity,
e.g. across a shock curve, is hidden in the integral formulation.
Consider an open set V , contained in the half-plane t > 0, partitioned into two

disjoint domains V +and V − by a smooth (shock) curve Γ of equation x = s (t)
(Fig. 4.17).
Suppose u is a weak solution in V , of class C1 in both V + and V −, separately12.

We have seen that u is a classical solution of ut + q (u)x = 0 in V
+ and V −.

12 That is, u and its the first derivatives extend continuously up to Γ , from both sides,
separately.
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Fig. 4.17. A shock curve dividing a domain V

Choose now a test function v, supported in a compact set K ⊂ V , such that
K ∩ Γ is non empty. Since v (x, 0) = 0, we can write:

0 =

∫ ∞
0

∫

R

[uvt + q(u)vx] dxdt

=

∫

V+
[uvt + q(u)vx]dxdt+

∫

V −
[uvt + q(u)vx] dxdt.

Integrating by parts and observing that v = 0 on ∂V +\Γ , we have:
∫

V +
[uvt + q(u)vx]dxdt =

= −
∫

V +
[ut + q(u)x] v dxdt+

∫

Γ

[u+ n2 + q(u+)n1] v dl

=

∫

Γ

[u+ n2 + q(u+)n1] v dl

where u+ denotes the value of u on Γ from the V
+ side, n = (n1, n2) is the outward

unit normal vector on ∂V + and dl denotes the arc length on Γ . Similarly, since n
is inward with respect to V −:

∫

V−
[uvt + q(u)vx]dxdt = −

∫

Γ

[u− n2 + q(u−)n1] v dl

where u− denotes the value of u on Γ from the V − side. Therefore we deduce that
∫

Γ

{[q(u+)− q(u−)]n1 + [u+ − u−]n2} v dl = 0.

The arbitrariness of v yields

[q(u+)− q(u−)]n1 + [u+ − u−]n2 = 0 (4.46)
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on Γ . If u is continuous across Γ , (4.46) is automatically satisfied. If u+ �= u− we
write the relation (4.46) more explicitly. Since x = s (t) on Γ , we have

n =(n1, n2) =
1√

1 + (ṡ (t))
2
(−1, ṡ (t)) .

Hence (4.46) becomes, after simple calculations,

ṡ =
q [u+ (s, t)]− q [u− (s, t)]
u+ (s, t)− u− (s, t)

(4.47)

which is the Rankine-Hugoniot condition for the shock curve Γ .

In general, functions constructed by connecting classical solutions and rarefac-
tion waves in a continuous way are weak solutions. The same is true for shock
waves satisfying the Rankine-Hugoniot condition. Then, the solutions of the green
light and of the traffic jam problems are precisely integral solutions.
Thus, Definition 4.1 gives a satisfactory answer to question Q1. The other two

questions require a deeper analysis as the following example shows.

Fig. 4.18. The rarefaction wave of example 4.3

Example 4.2. (Non uniqueness). Imagine a flux of particles along the x−axis, each
one moving with constant speed. Suppose that u = u (x, t) represents the velocity
field, which gives the speed of the particle located at x at time t. If x = x (t) is the
path of a particle, its velocity at time t is given by

ẋ (t) = u (x (t) , t) ≡ constant.
Thus, we have

0 =
d

dt
u (x (t) , t) = ut (x (t) , t) + ux (x (t) , t) ẋ (t)

= ut (x (t) , t) + ux (x (t) , t) u (x (t) , t) .

Therefore u = u (x, t) satisfies Burger’s equation

ut + uux = ut +

(
u2

2

)

x

= 0 (4.48)
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which is a conservation law with q (u) = u2/2. Note that q is strictly convex:
q′ (u) = u and q′′ (u) = 1. We couple (4.48) with the initial condition u (x, 0) =
g (x), where

g (x) =

{
0 x < 0

1 x > 0.

The characteristics are the straight lines

x = g (x0) t + x0. (4.49)

Therefore, u = 0 if x < 0 and u = 1 if x > t. The region S = {0 < x < t} is not
covered by characteristics. As in the green light problem, we connect the states 0
and 1 through a rarefaction wave. Since q′ (u) = u, we have r (s) = (q′)−1 (s) = s,
so that we construct the weak solution.

u (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ 0
x

t
0 < x < t

1 x ≥ t.
(4.50)

However, u is not the unique weak solution ! There exists also a shock wave
solution. In fact, since

u− = 0, u+ = 1, q (u−) = 0, q (u+) =
1

2
,

the Rankine-Hugoniot condition yields

ṡ (t) =
q(u+)− q(u−)
u+ − u−

=
1

2
.

Given the discontinuity at x = 0 of the initial data, the shock curve starts at
s (0) = 0 and it is the straight line

x =
t

2
.

Hence, the function

w (x, t) =

{
0 x < t

2

1 x > t
2

is another weak solution (Fig. 4.19). As we shall see, this shock wave has to be
considered not physically acceptable.

The example shows that the answer to question Q2 is negative and question
Q3 becomes relevant. We need a criterion to establish which one is the physically
correct solution.
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Fig. 4.19. A non physical shock

4.4.4 The entropy condition

From Proposition 4.2 we have seen that the equation

G (x, t, u) ≡ u− g [x− q′ (u) t] = 0

defines the unique classical solution u of problem (4.41), at least for small times.
The Implicit Function Theorem gives

ux = −
Gx
Gu
=

g′

1 + tg′q′′
.

If we assume g′ > 0, q′′ ≥ C > 0, we get

ux ≤
E

t

where13 E = 1
C . Using the mean value theorem we deduce the following condition,

called entropy condition: there exists E ≥ 0 such that14, for every x, z ∈ R,
z > 0, and every t > 0,

u (x+ z, t)− u (x, t) ≤ E
t
z. (4.51)

The denomination comes from an analogy with gas dynamics, where a condi-
tion like (4.51) implies that entropy increases across a shock. The entropy condition
does not involve any derivative of u and makes perfect sense for discontinuous solu-
tions as well. A weak solution satisfying (4.51) is said to be an entropy solution.
A number of consequences follows directly from (4.51).

13 In the case g′ < 0 and q′′ ≤ C < 0 we already have ux < 0.
14

u (x+ z, t)− u (x, t) = ux (x+ z
∗) z

with a suitable z∗ between 0 e z.
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• The function

x �−→ u (x, t)− E
t
x

is decreasing. In fact, let x + z = x2, x = x1 and z > 0. Then x2 > x1 and
(4.51) is equivalent to

u (x2, t)−
E

t
x2 ≤ u (x1, t)−

E

t
x1. (4.52)

• If x is a discontinuity point for u (·, t), then

u+ (x, t) < u− (x, t) (4.53)

where u± (x, t) = limy→x± u (y, t). In fact, choose x1 < x < x2 and let x1 and
x2 both go to x in (4.52).

If q is strictly convex, (4.53) yields

q′ (u+) <
q(u+)− q(u−)
u+ − u−

< q′
(
u−
)
.

Then, the Rankine-Hugoniot implies that, if x = s (t) is a shock curve,

q′ (u+ (x, t)) < ṡ (t) < q′ (u− (x, t)) (4.54)

that is called entropy inequality. The geometrical meaning of (4.54) is remark-
able: the slope of a shock curve is less than the slope of the left-characteristics and
greater than the slope of the right-characteristics. Roughly, the characteristics hit
forward in time the shock line, so that it is not possible to go back in time along
characteristics and hit a shock line, expressing a sort of irreversibility after a shock.

The above considerations lead us to select the entropy solutions as the only
physically meaningful ones. On the other hand, if the characteristics hit a shock
curve backward in time, the shock wave is to be considered non-physical.

Thus, in the non-uniqueness Example 4.3, the solution w represents a non-
physical shock since it does not satisfy the entropy condition. The correct solution
is therefore the simple wave (4.50). The following important result holds (see e.g.
Smoller, 1983).

Theorem 4.1. If q ∈ C2 (R) is convex (or concave) and g is bounded, there exists
a unique entropy solution of the problem

{
ut + q (u)x = 0 x ∈ R, t > 0
u (x, 0) = g (x) x ∈ R. (4.55)
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4.4.5 The Riemann problem

We apply Theorem 4.1 to solve explicitly problem (4.55) with initial data

g (x) =

{
u+ x > 0

u− x < 0,
(4.56)

where u+and u− are constants, u+ �= u−. This problem is known as Riemann
problem, and it is particularly important for the numerical approximation of more
complex problems.

Theorem 4.2. Let q ∈ C2 (R) be strictly convex and q′′ ≥ h > 0.
a) If u+ < u−, the unique entropy solution is the shock wave

u (x, t) =

{
u+

x
t > s

′ (t)

u− x
t
< s′ (t)

(4.57)

where

ṡ (t) =
q(u+)− q(u−)
u+ − u−

.

b) If u+ > u−, the unique entropy solution is the rarefaction wave

u (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

u− x
t < q

′ (u−)

r
(
x
t

)
q′ (u−) < x

t < q
′ (u+)

u+
x
t > q

′ (u+)

where r = (q′)−1, is the inverse function of q′.

Proof. a) The shock wave (4.57) satisfies the Rankine Hugoniot condition and
therefore it is clearly a weak solution. Moreover, since u+ < u− the entropy con-
dition holds as well, and u is the unique entropy solution of problem (4.56) by
Theorem 4.1.
b) Since

r (q′ (u+)) = u− and r (q′ (u−)) = u−,

u is continuous in the half-plane t > 0 and we have only to check that u satisfies
the equation ut + q (u)x = 0 in the region

S =
{
(x, t) : q′ (u−) <

x

t
< q′ (u+)

}
.

Let u (x, t) = r
(
x
t

)
.We have:

ut + q (u)x = −r′
(x
t

) x
t2
+ q′ (r) r′

(x
t

) 1
t
= r′

(x
t

) 1
t

[
q′ (r) − x

t

]
≡ 0.

Thus, u is a weak solution in the upper half-plane.
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Let us check the entropy condition. We consider only the case

q′ (u−) t ≤ x < x+ z ≤ q′ (u+) t

leaving the others to the reader. Since q′′ ≥ h > 0, we have

r′ (s) =
1

q′′ (r)
≤ 1
h

(s = q′ (r))

so that (0 < z∗ < z)

u (x+ z)− u (x, t) = r
(
x+ z

t

)
− r

(x
t

)

= R′
(
x+ z∗

t

)
z

t
≤ 1
h

z

t

which is the entropy condition with E = 1/h. �

4.4.6 Vanishing viscosity method

There is another instructive and perhaps more natural way to construct discon-
tinuous solutions of the conservation law

ut + q (u)x = 0, (4.58)

the so called vanishing viscosity method. This method consists in viewing equation
(4.58) as the limit for ε→ 0+ of the equation

ut + q (u)x = εuxx, (4.59)

that corresponds to choosing the flux function

q̃ (u) = q (u) − εux, (4.60)

where ε is a small positive number. Although we recognize εuxx as a diffusion term,
this kind of model arises mostly in fluid dynamics where u is the fluid velocity and
ε its viscosity, from which comes the name of the method.
There are several good reasons in favor of this approach. First of all, a small

amount of diffusion or viscosity makes the mathematical model more realistic in
most applications. Note that εuxx becomes relevant only when uxx is large, that
is in a region where ux changes rapidly and a shock occurs. For instance in our
model of traffic dynamics, it is natural to assume that drivers would slow down
when they see increased (relative) density ahead. Thus, an appropriate model for
their velocity is

ṽ (ρ) = v (ρ) − ερx
ρ

which corresponds to q̃ (ρ) = ρv (ρ) − ερx for the flow-rate of cars.



4.4 Integral (or Weak) Solutions 187

Another reason comes from the fact that shocks constructed by the vanishing
viscosity method are physical shocks, since they satisfy the entropy inequality.
As for the heat equation, in principle we expect to obtain smooth solutions

even with discontinuous initial data. On the other hand, the nonlinear term may
force the evolution towards a shock wave.
Here we are interested in solutions of (4.59) connecting two constant states uL

and uR, that is, satisfying the conditions

lim
x→−∞u (x, t) = uL, lim

x→+∞u (x, t) = uR. (4.61)

Since we are looking for shock waves, it is reasonable to seek a solution depending
only on a coordinate ξ = x− vt moving with the (unknown) shock speed v. Thus,
let us look for bounded travelling waves solution of (4.59) of the form

u (x, t) = U (x− vt) ≡ U (ξ)

with
U (−∞) = uL and U (+∞) = uR (4.62)

and uL �= uR. We have

ut = −v
dU

dξ
, ux =

dU

dξ
, uxx =

d2U

dξ2

so that we obtain for U the ordinary differential equation

(q′ (U)− v) dU
dξ
= ε
d2U

dξ2

which can be integrated to yield

q (U)− vU + A = εdU
dξ

where A is an arbitrary constant. Assuming that
dU

dξ
→ 0 as ξ → ±∞ and using

(4.62) we get

q (uL)− vuL + A = 0 and q (uR) − vuR + A = 0. (4.63)

Subtracting these two equations we find

v =
q (uR)− q (uL)
uR − uL

≡ v̄. (4.64)

and then A =
−q (uR)uL + q (uL)uR

uR − uL
≡ Ā.

Thus, if there exists a travelling wave solution satisfying conditions (4.61), it
moves with a speed v̄ predicted by the Rankine-Hugoniot formula. Still it is not
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clear whether such travelling wave solution exists. To verifies this, examine the
equation

ε
dU

dξ
= q (U)− v̄U + Ā. (4.65)

From (4.63), equation (4.65) has the two equilibria U = uR and U = uL. A
bounded travelling wave connecting uR and uL corresponds to a solution of (4.65)
starting from a point ξ0 between uR and uL. On the other hand, conditions (4.62)
require uR to be asymptotically stable and uL unstable. At this point, we need to
have information on the shape of q.
Assume q′′ < 0. Then the phase diagram for equation (4.65) is described in

Fig. 4.20 for the two cases uL > uR and uL < uR.
Between uL and uR, q (U) − v̄U + Ā > 0 and, as the arrows indicate, U is

increasing. We see that only the case uL < uR is compatible with conditions
(4.62) and this corresponds precisely to a shock formation for the non diffusive
conservation law. Thus,

q′ (uL) − v̄ > 0 and q′ (uR)− v̄ < 0

or
q′ (uR) < v̄ < q′ (uL) (4.66)

which is the entropy inequality.
Similarly, if q′′ > 0, a travelling wave solution connecting the two states uR

and uL exists only if uL > uR and (4.66) holds.

Fig. 4.20. Case b) only is compatible with conditions (4.61)

Let us see what happens when ε → 0. Assume q′′ < 0. For ε small, we expect
that our travelling wave increases abruptly from a value U (ξ1) close to uL to a
value U (ξ2) close to uR within a narrow region called the transition layer. For
instance we may choose ξ1 and ξ2 such that

U (ξ2)− U (ξ1) ≥ (1− β)(uR − uL)

with a positive β, very close to 0. We call the number κ = ξ2− ξ1 thickness of the
transition layer. To compute it, we separate the variables U and ξ in (4.65) and
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integrate over (ξ1, ξ2); this yields

ξ2 − ξ1 = ε
∫ U(ξ2)

U(ξ1)

ds

q (s) − vs + Ā .

Thus, the thickness of the transition layer is proportional to ε. As ε → 0, the
transition region becomes more and more narrow and eventually a shock wave
that satisfies the entropy inequality is obtained.
This phenomenon is clearly seen in the important case of viscous Burger’s

equation that we examine in more details in the next subsection.

Example 4.3. Burger’s shock solution. Let us determine a travelling wave solution
of the viscous Burger equation

ut + uux = εuxx (4.67)

connecting the states uL = 1 and uR = 0. Note that q (u) = u
2/2 is convex. Then

v̄ = 1/2 and Ā = 0. Equation (4.65) becomes

2ε
dU

dξ
= U2 − U

that can be easily integrated to give

U (ξ) =
1

1 + exp

(
ξ

2ε

) .

Thus the travelling wave is given by

u (x, t) = U

(
x− t
2

)
=

1

1 + exp

(
2x− t
4ε

) . (4.68)

When ε→ 0,
u (x, t)→ w (x, t) =

{
0 x > t/2
1 x < t/2

which is the entropy shock solution for the non viscous Burger equation with initial
data 1 if x < 0 and 0 if x > 0.

4.4.7 The viscous Burger equation

The viscous Burger equation is one of the most celebrated examples of nonlinear
diffusion equation. It arose (Burger, 1948) as a simplified form of the Navier-Stokes
equation, in an attempt to study some aspects of turbulence. It appears also in
gas dynamics, in the theory of sound waves and in traffic flow modelling and
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Fig. 4.21. The travelling wave in Example 4.3

it constitutes a basic example of competition between dissipation (due to linear
diffusion) and steepening (shock formation due to the nonlinear transport term
uux).
The success of Burger’s equation is in large part due to the rather surprising fact

that the initial value problem can be solved analytically. In fact, via the so called
Hopf-Cole transformation, Burger’s equation is converted into the heat equation.
Let us see how this can be done. Write the equation in the form

∂u

∂t
+
∂

∂x

(
1

2
u2 − εux

)
= 0.

Then, the planar vector field

(
−u, 1
2
u2 − εux

)
is curl-free and therefore there

exists a potential ψ = ψ (x, t) such that

ψx = −u and ψt =
1

2
u2 − εux.

Thus, ψ solves the equation

ψt =
1

2
ψ2x + εψxx. (4.69)

Now we try to get rid of the quadratic term letting ψ = g (ϕ), with g to be chosen.
We have

ψt = g
′ (ϕ)ϕt, ψx = g

′ (ϕ)ϕx, ψxx = g
′′ (ϕ) (ϕx)

2 + g′ (ϕ)ϕxx.

Substituting into (4.69) we find

g′ (ϕ) [ϕt − εϕxx] = [
1

2
(g′ (ϕ))2 + εg′′ (ϕ)](ϕx)

2.

Hence, if we choose g (s) = 2ε log s, then the right hand side vanishes and we are
left with

ϕt − εϕxx = 0. (4.70)
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Thus
ψ = 2ε logϕ

and from u = −ψx we obtain
u = −2εϕx

ϕ
(4.71)

which is the Hopf-Cole transformation. An initial data

u (x, 0) = u0 (x) (4.72)

transforms into an initial data of the form15

ϕ0 (x) = exp

{
−
∫ x

a

u0 (z)

2ε
dz

}
(a ∈ R). (4.73)

If (see Theorem 2.4)

1

x2

∫ x

a

u0 (z) dz → 0 as |x| → ∞,

the initial value problem (4.70), (4.73) has a unique smooth solution in the half-
plane t > 0, given by formula (2.137):

ϕ (x, t) =
1√
4πεt

∫ +∞
−∞

ϕ0 (y) exp

(
−(x− y)

2

4εt

)
dy.

This solution is continuous with its x−derivative16 up to t = 0 at any continuity
point of u0. Consequently, from (4.71), problem (4.67) has a unique smooth solu-
tion in the half-plane t > 0, continuous up to t = 0 at any continuity point of u0,
given by

u (x, t) =

∫ +∞
−∞

x− y
t
ϕ0 (y) exp

(
−(x− y)

2

4εt

)
dy

∫ +∞
−∞

ϕ0 (y) exp

(
−(x− y)

2

4εt

)
dy

. (4.74)

We use formula (4.74) to solve an initial pulse problem.

Example 4.4. Initial pulse. Consider problem (4.67), (4.67) with the initial condi-
tion

u0 (x) =Mδ (x)

where δ denotes the Dirac density at the origin. We have, choosing a = 1,

ϕ0 (x) = exp

{
−
∫ x

1

u0 (y)

2ε
dy

}
=

⎧⎨
⎩
1 x > 0

exp

(
M

2ε

)
x < 0.

15 The choice of a is arbitrary and does not affect the value of u.
16 Check it.
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Formula (4.74), gives, after some routine calculations,

u (x, t) =

√
4ε

πt

exp

(
− x

2

4εt

)

2

exp (M/2ε)− 1 +
√
π

2

[
1− erf

(
x√
4εt

)]

where

erf(x) =

∫ x

0

e−z
2

dz

is the error function.

Fig. 4.22. Evolution of an initial pulse for the viscous Burger’s equation (M = 1, ε =
0.04)

4.5 The Method of Characteristics for Quasilinear
Equations

In this section we apply the characteristics method to general quasilinear equations.
We consider mainly the case of two independent variables, where the intuition is
supported by the geometric interpretation. However, the generalization to any
number of dimensions should not be too difficult for the reader.

4.5.1 Characteristics

We consider equations of the form

a (x, y, u)ux + b (x, y, u)uy = c (x, y, u) (4.75)
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where
u = u (x, y)

and a, b, c are continuously differentiable functions.
The solutions of (4.75) can be constructed via geometric arguments. The tan-

gent plane to the graph of a solution u at a point (x0, y0, z0) has equation

ux (x0, y0) (x− x0) + uy (x0, y0) (y − y0) − (z − z0) = 0

and the vector
n0 = (ux (x0, y0) , uy (x0, y0) ,−1)

is normal to the plane. Introducing the vector

v0 = (a (x0, y0, z0) , b (x0, y0, z0) , c (x0, y0, z0)) ,

equation (4.75) implies that
n0 · v0 = 0.

Thus, v0 is tangent to the graph of u (Fig. 4.23). In other words, (4.75) says that,
at every point (x, y, z), the graph of any solution is tangent to the vector field

v (x, y, z)= (a (x, y, z) , b (x, y, z) , c (x, y, z)) .

In this case we say that the graph of a solution is an integral surface of the
vector field v.

Fig. 4.23. Integral surface

Now, we may construct integral surfaces of v as union of integral curves of
v, that is curves tangent to v at every point. These curves are solutions of the



194 4 Scalar Conservation Laws and First Order Equations

system
dx

dt
= a (x, y, z) ,

dy

dt
= b (x, y, z) ,

dz

dt
= c (x, y, z) (4.76)

and are called characteristics. Note that

z = z (t)

gives the values u along a characteristic, that is

z (t) = u (x (t) , y (t)) . (4.77)

In fact, differentiating (4.77) and using (4.76) and (4.75), we have

dz

dt
= ux (x (t) , y (t))

dx

dt
+ uy (x (t) , y (t))

dy

dt
= a (x (t) , y (t) , z (t))ux (x (t) , y (t)) + b((x (t) , y (t) , z (t))uy (x (t) , y (t))

= c (x (t) , y (t) , z (t)) .

Thus, along a characteristic the partial differential equation (4.75) degenerates
into an ordinary differential equation.
In the case of a conservation law (with t = y)

uy + q
′ (u)ux = 0

(
q′ (u) =

dq

du

)
,

we have introduced the notion of characteristic in a slightly different way, but we
shall see later that there is no contradiction.

The following proposition is a consequence of the above geometric reasoning
and of the existence and uniqueness theorem for system of ordinary differential
equations17.

Proposition 4.3. a) Let the surface S be the graph of a C1 function u = u (x, y).
If S is union of characteristics then u is a solution of the equation (4.75).
b) Every integral surface S of the vector field v is union of characteristics.

Namely: every point of S belongs exactly to one characteristic, entirely contained
in S.
c) Two integral surfaces intersecting at one point intersect along the whole

characteristic passing through that point.

4.5.2 The Cauchy problem

Proposition 4.3 gives a characterization of the integral surfaces as a union of char-
acteristics. The problem is how to construct such unions to get a smooth surface.
One way to proceed is to look for solutions u whose values are prescribed on a
curve γ0, contained in the x, y plane.

17 We leave the details of the proof to the reader.
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In other words, suppose that

x (s) = f (s) , y (s) = g (s) s ∈ I ⊆ R

is a parametrization of γ0. We look for a solution u of (4.75) such that

u (f (s) , g (s)) = h (s) , s ∈ I, (4.78)

where h = h (s) is a given function. We assume that I is a neighborhood of s = 0,
and that f, g, h are continuously differentiable in I.

The system (4.75), (4.78) is called Cauchy problem. If we consider the three-
dimensional curve Γ0 given by the parametrization

x (s) = f (s) , y (s) = g (s) , z (s) = h (s) ,

then, solving the Cauchy problem (4.75), (4.78) amounts to determining an integral
surface containing Γ0 (Fig. 4.24).

The data are often assigned in the form of initial values

u (x, 0) = h (x) ,

with y playing the role of "time". In this case, γ0 is the axis y = 0 and x plays the
role of the parameter s. Then a parametrization of Γ0 is given by

x = x, y = 0, z (x) = h (x) .

By analogy, we often refer to Γ0 as to the initial curve. The strategy to solve a
Cauchy problem comes from its geometric meaning: since the graph of a solution

Fig. 4.24. Characteristics flowing out of Γ0
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u = u (x, y) is a union of characteristics, we determine those flowing out from Γ0,
by solving the system

dx

dt
= a (x, y, z) ,

dx

dt
= b (x, y, z) ,

dx

dt
= c (x, y, z) , (4.79)

with the family of initial conditions

x(0) = f (s) , y(0) = g (s) , z(0) = h (s) , (4.80)

parametrized by s ∈ I. The union of the characteristics of this family should give18
u. Why only should? We will come back to this question.
Under our hypotheses, the Cauchy problem (4.79), (4.80) has exactly one so-

lution
x = X (s, t) , y = Y (s, t) , z = Z (s, t) . (4.81)

in a neighborhood of t = 0, for every s ∈ I.
A couple of questions arise:

a) Do the three equations (4.81) define a function z = u (x, y)?

b) Even if the answer to question a) is positive, is z = u (x, y) the unique
solution of the Cauchy problem?

Let us reason in a neighborhood of s = t = 0, setting

X (0, 0) = f (0) = x0, Y (0, 0) = g (0) = y0, Z (0, 0) = h (0) = z0.

The answer to question a) is positive if we can solve for s and t the first two equa-
tions in (4.81), and find s = S (x, y) e t = T (x, y) of class C1 in a neighborhood
of (x0, y0), such that

S (x0, y0) = 0, T (x0, y0) = 0.

Then, from the third equation z = Z (s, t), we get

z = Z (S (x, y) , T (x, y)) = u (x, y) . (4.82)

From the Inverse Function Theorem, the system

{
X (s, t) = x
Y (s, t) = y

defines
s = S (x, y) and t = T (x, y)

in a neighborhood of (x0, y0) if

J (0, 0) =

∣∣∣∣∣
Xs (0, 0) Ys (0, 0)

Xt (0, 0) Yt (0, 0)

∣∣∣∣∣ �= 0. (4.83)

18 Identifying u with its graph.
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From (4.79) and (4.80) we have

Xs (0, 0) = f
′ (0) , Ys (0, 0) = g′ (0)

and
Xt (0, 0) = a (x0, y0, z0) , Yt (0, 0) = b (x0, y0, z0) ,

so that (4.83) becomes

J (0, 0) =

∣∣∣∣∣
f ′ (0) g′ (0)

a (x0, y0, z0) b (x0, y0, z0)

∣∣∣∣∣ �= 0 (4.84)

or
b (x0, y0, z0) f

′ (0) �= a (x0, y0, z0) g′ (0) . (4.85)

Condition (4.85) means that the vectors

(a (x0, y0, z0) , b (x0, y0, z0)) and (f ′ (0) , g′ (0))

are not parallel.
In conclusion: if condition (4.84) holds, then (4.82) is a well defined C1−function.
Now consider question b). The above construction of u implies that the surface

z = u (x, y) contains Γ0 and all the characteristics flowing out from Γ0, so that
u is a solution of the Cauchy problem. Moreover, by Proposition 4.5 c), two in-
tegral surfaces containing Γ0 must contain the same characteristics and therefore
coincide.
We summarize everything in the following theorem, recalling that

(x0, y0, z0) = (f (0) , g (0) , h (0)) .

Theorem 4.3. Let a, b, c be C1−functions in a neighborhood of (x0, y0, z0) and
f, g, h be C1−functions in I. If J (0, 0) �= 0, then, in a neighborhood of (x0, y0),
there exists a unique C1−solution u = u (x, y) of the Cauchy problem

{
a (x, y, u)ux + b (x, y, u)uy = c (x, y, u)

u (f (s) , g (s)) = h (s) .
(4.86)

Moreover, u is defined by the parametric equations (4.81).

Remark 4.2. If a, b, c and f, g, h are Ck−functions, k ≥ 2, then u is a Ck−function
as well.

It remains to examine what happens when J (0, 0) = 0, that is when the vectors
(a (x0, y0, z0) , b (x0, y0, z0)) and (f

′ (0) , g′ (0)) are parallel.
Suppose that there exists a C1−solution u of the Cauchy problem (4.86). Dif-

ferentiating the second equation in (4.86) we get

h′ (s) = ux (f (s) , g (s)) f ′ (s) + uy (f (s) , g (s)) g′ (s) . (4.87)
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Computing at x = x0, y = y0, z = z0 and s = 0, we obtain

{
a (x0, y0, z0)ux (x0, y0) + b (x0, y0, z0)uy (x0, y0) = c (x0, y0, z0)

f ′ (0)ux (x0, y0) + g′ (0)uy (x0, y0) = h′ (0) .
(4.88)

Since u is a solution of the Cauchy problem, the vector (ux (x0, y0) , uy (x0, y0)) is
a solution of the algebraic system (4.88). But then, from Linear Algebra, we know
that the condition

rank

(
a (x0, y0, z0) b (x0, y0, z0) c (x0, y0, z0)

f ′ (0) g′ (0) h′ (0)

)
= 1 (4.89)

must hold and therefore the two vectors

(a (x0, y0, z0) b (x0, y0, z0) , c (x0, y0, z0)) and (f ′ (0) , g′ (0) , h′ (0)) (4.90)

are parallel. This is equivalent to saying that Γ0 is parallel to the characteristic
curve at (x0, y0, z0). When this occurs, we say that Γ0 is characteristic at the
point (x0, y0, z0).

Conclusion: If J (0, 0) = 0, a necessary condition for the existence of a
C1−solution u = u (x, y) of the Cauchy problem in a neighborhood of (x0, y0)
is that Γ0 be characteristic at (x0, y0, z0).

Now, assume Γ0 itself is a characteristic and let P0 = (x0, y0, z0) ∈ Γ0. If we
choose a curve Γ ∗ transversal19 to Γ0 at P0, by Theorem 4.3 there exists a unique
integral surface containing Γ ∗ and, by Proposition 4.3 c), this surface contains Γ0.
In this way we can construct infinitely many smooth solutions.

We point out that the condition (4.89) is compatible with the existence of a
C1−solution only if Γ0 is characteristic at P0. On the other hand, it may occur
that J (0, 0) = 0, that Γ0 is non characteristic at P0 and that solutions of the
Cauchy problem exist anyway; clearly, these solutions cannot be of class C1.

Let us summarize the steps to solve the Cauchy problem (4.86):

Step 1. Determine the solution

x = X (s, t) , y = Y (s, t) , z = Z (s, t) (4.91)

of the characteristic system

dx

dt
= a (x, y, z) ,

dy

dt
= b (x, y, z) ,

dz

dt
= c (x, y, z) (4.92)

with initial conditions

X (s, 0) = f (s) , Y (s, 0) = g (s) , Z (s, 0) = h (s) , s ∈ I.
19 Not tangent.



4.5 The Method of Characteristics for Quasilinear Equations 199

Step 2. Compute J (s, t) on the initial curve Γ0 i.e.

J (s, 0) =

∣∣∣∣∣
f ′ (s) g′ (s)
Xt (s, 0) Yt (s, 0)

∣∣∣∣∣ .

The following cases may occur:

2a. J (s, 0) �= 0, for every s ∈ I. This means that Γ0 does not have char-
acteristic points. Then, in a neighborhood of Γ0, there exists a unique solution
u = u (x, y) of the Cauchy problem, defined by the parametric equations (4.91).

2b. J (s0, 0) = 0 for some s0 ∈ I and Γ0 is characteristic at the point
P0 = (f (s0) , g (s0) , h (s0)). A C

1−solution may exist in a neighborhood of P0
only if the rank condition (4.89) holds at P0.

2c. J (s0 , 0) = 0 for some s0 ∈ I and Γ0 is not characteristic at P0.
There are no C1−solutions in a neighborhood of P0. There may exist less regular
solutions.

2d. Γ0 is a characteristic. Then there exist infinitely many C
1−solutions

in a neighborhood of Γ0.

Example 4.5. Consider the non-homogeneous Burger equation

uux + uy = 1. (4.93)

As in Example 4.2, if y is the time variable y, u = u (x, y) represents a velocity field
of a flux of particles along the x−axis. Equation (4.93) states that the acceleration
of each particle is equal to 1. Assume

u (x, 0) = h (x) , x ∈ R.

The characteristics are solutions of the system

dx

dt
= z,

dy

dt
= 1,

dz

dt
= 1

and the initial curve Γ0 has the parametrization

x = f (s) = s, y = g (s) = 0, z = h (s) s ∈ R.

The characteristics flowing out from Γ0 are

X (s, t) = s+
t2

2
+ th (s) , Y (s, t) = t, Z (s, t) = t + h (s) .

Since

J (s, t) =

∣∣∣∣∣
1 + th′ (s) 0

t+ h (s) 1

∣∣∣∣∣ = 1 + th
′ (s) ,
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we have J (s, 0) = 1 and we are in the case 2a: in a neighborhood of Γ0 there exists
a unique C1−solution. If, for instance, h (s) = s, we find the solution

u = y +
2x− y2
2 + 2y

(x ∈ R, y ≥ −1) .

Now consider the same equation with initial condition

u

(
y2

4
, y

)
=
y

2
,

equivalent to assigning the values of u on the parabola x = y2

4 . A parametrization
of Γ0 is given by

x = s2, y = 2s, z = s, s ∈ R.
Solving the characteristic system with these initial conditions, we find

X (s, t) = s2 + ts+
t2

2
, Y (s, t) = 2s+ t, Z (s, t) = s+ t. (4.94)

Observe that Γ0 does not have any characteristic point, since its tangent vector
(2s, 2, 1) is never parallel to the characteristic direction (s, 1, 1). However

J (s, t) =

∣∣∣∣
2s+ t 2
s+ t 1

∣∣∣∣ = −t

which vanishes for t = 0, i.e. exactly on Γ0. We are in the case 2c. Solving for s
and t, t �= 0, in the first two equations (4.94), and substituting into the third one,
we find

u (x, y) =
y

2
±
√
x− y

2

4
.

We have found two solutions of the Cauchy problem, satisfying the differential

equation in the region x > y2

4 . However, these solutions are not smooth in a
neighborhood of Γ0, since on Γ0 they are not differentiable.

• Conservation laws. According to the new definition, the characteristics of the
equation

uy + q
′ (u)ux = 0

(
q′ (u) =

dq

du

)
,

with initial conditions
u (x, 0) = g (x) ,

are the three-dimensional solution curves of the system

dx

dt
= q′ (z) ,

dy

dt
= 1,

dz

dt
= 0

with initial conditions

x (s, 0) = s, y (s, 0) = 0, z (s, 0) = g (s) , s ∈ R.
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Integrating, we find

z = g (s) , x = q′ (g (s)) t + s, y = t.

The projections of these straight-lines on the x, y plane are

x = q′ (g (s)) y + s.

which are the “old characteristics”, called projected characteristics in the general
quasilinear context.

• Linear equations. Consider a linear equation

a (x, y) ux + b (x, y)uy = 0. (4.95)

Introducing the vector w =(a, b), we may write the equation (4.95) in the form

Dwu = ∇u ·w =0.

Thus, every solution of the (4.95) is constant along the integral lines of the vector
w, i.e. along the projected characteristics, solutions of the reduced characteristic
system

dx

dt
= a (x, y) ,

dy

dt
= b (x, y) , (4.96)

locally equivalent to the ordinary differential equation

b (x, y) dx− a (x, y) dy = 0.

If a first integral20 ψ = ψ (x, y) of the system (4.96) is known, then the family of
the projected characteristics is given in implicit form by

ψ (x, y) = k, k ∈ R

and the general solution of (4.95) is given by the formula

u (x, y) = G (ψ (x, y)) ,

where G = G (r) is an arbitrary C1−function, that can be determined by the
Cauchy data.

Example 4.6. Let us solve the problem

{
yux + xuy = 0
u (x, 0) = x4.

20 We recall that a first integral (also called constant of motion) for a system of o.d.e.
dx

dt
= f (x), is a C1−function ϕ = ϕ (x) which is constant along the trajectories of the

system, i.e. such that ∇ϕ · f ≡0.
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Here w = (y, x) and the reduced characteristic system is

dx

dt
= y,

dy

dt
= x

locally equivalent to
xdx− ydy = 0.

Integrating we find that the projected characteristics are the hyperbolas

ψ (x, y) = x2 − y2 = k

and therefore ψ (x, y) = x2 − y2 is a first integral. Then, the general solution of
the equation is

u (x, y) = G(x2 − y2).
Imposing the Cauchy condition, we have

G(x2) = x4

from which G (r) = r2. The solution of the Cauchy problem is

u (x, y) = (x2 − y2)2.

Example 4.7. An interesting situation occurs when we want to find a solution of
the equation (4.95) in a smooth domain Ω ⊂ R2, that assumes prescribed values
on a subset of the boundary γ = ∂Ω. Figure 4.25 shows a possible situation. In
analogy with the problems in subsection 4.2.4, for the solvability of the problem
we have to assign the Cauchy data only on the so called inflow boundary γi
defined by

γi = {σ ∈ γ : w · ν <0}
where ν is the outward unit normal to γ. If a smooth Cauchy data is prescribed on
γi, a smooth solution is obtained by defining u to be constant along the projected
characteristics like l1 and piecewise constant on those like l2. Observe that the
points at which w is tangent to γ are characteristic.

4.5.3 Lagrange method of first integrals

We have seen that, in the linear case, we can construct a general solution, depend-
ing on an arbitrary function from the knowledge of a first integral for the reduced
characteristic system. The method can be extended to equations of the form

a (x, y, u)ux + b (x, y, u)uy = c (x, y, u) . (4.97)

We say that two first integrals ϕ = ϕ (x, y, u) are independent if ∇ϕ and ∇ψ are
nowhere colinear. Then:
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Fig. 4.25. Cauchy problem in a domain

Theorem 4.4. Let ϕ = ϕ (x, y, u), ψ = ψ (x, y, u) be two independent first inte-
grals of the characteristic system and F = F (h, k) be a C1−function. If

Fhϕu + Fkψu �= 0,

the equation
F (ϕ (x, y, u) , ψ (x, y, u)) = 0

defines the general solution of (4.97) in implicit form.

Proof. It is based on the following two observations. First, the function

w = F (ϕ (x, y, u) , ψ (x, y, u)) (4.98)

is a first integral. In fact,
∇w = Fh∇ϕ+ Fk∇ψ

so that
∇w · (a, b, c) = Fh∇ϕ · (a, b, c) + Fk∇ψ · (a, b, c) ≡ 0

since ϕ and ψ are first integrals. Moreover, by hypothesis,

wu = Fhϕu + Fkψu �= 0.

Second, if w is a first integral and wu �= 0, then equation

w (x, y, u) = 0 (4.99)

defines implicitly an integral surface u = u (x, y) of (4.97). In fact, since w is a first
integral it satisfies the equation

a (x, y, u)wx + b (x, y, u)wy + c (x, y, u)wu = 0. (4.100)
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Moreover, from the Implicit Function Theorem, we have

ux = −
wx
wu
, uy = −

wy
wu

and from (4.100) we get easily (4.97). �

Remark 4.3. As a by-product of the proof, we have that the general solution of the
three-dimensional homogeneous equation (4.100) is given by (4.98).

Remark 4.4. The search for first integrals is sometimes simplified by writing the
characteristic system in the form

dx

a (x, y, u)
=

dy

b (x, y, u)
=

du

c (x, y, u)
.

Example 4.8. Consider again the nonhomogeneous Burger equation

uux + uy = 1

with initial condition

u

(
1

2
y2, y

)
= y.

A parametrization of the initial curve Γ0 is

x =
1

2
s2 , y = s, z = s

and therefore Γ0 is a characteristic. We are in the case 2d.
Let us use the Lagrange method. To find two independent first integrals, we

write the characteristic system in the form

dx

z
= dy = dz

or
dx = zdz, dy = dz.

Integrating the two equations, we get

x− 1
2
z2 = c2, y − z = c1

so that

ϕ (x, y, z) = x− 1
2
z2, ψ (x, y, z) = y − z

are two first integral. Since

∇ϕ (x, y, z) = (1, 0,−z)
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and

∇ψ (x, y, z) = (0, 1,−1)
we see that they are also independent.
Thus, the general solution of Burger equation is given by

F

(
x− 1
2
z2, y− z

)
= 0

where F is an arbitrary C1−function.
Finally, to satisfy the Cauchy condition, it is enough to choose F such that

F (0, 0) = 0. As expected, there exist infinitely many solutions of the Cauchy
problem.

4.5.4 Underground flow

Consider the underground flow of a fluid (like water). In the wet region, only a
fraction of any control volume is filled with fluid. This fraction, denoted by φ, is
called porosity and, in general, it depends on position, temperature and pressure.
Here, we assume φ depends on position only: φ = φ (x, y, z).
If ρ is the fluid density and q =(q1, q2, q3) is the flux vector (the volumetric

flow rate of the fluid), the conservation of mass yields, in this case,

φρt + div(ρq) = 0.

For q the following modified Darcy law is commonly adopted:

q =− k
μ
(∇p+ ρg)

where p is the pressure and g is the gravity acceleration; k > 0 is the permeability
of the medium and μ is the fluid viscosity21. Thus, we have:

φρt − div
[
ρk

μ
(∇p+ ρg)

]
= 0. (4.101)

Now, suppose that two immiscible fluids, of density ρ1 and ρ2, flow under-
ground. Immiscible means that the two fluids cannot dissolve one into the other or
chemically interact. In particular, the conservation law holds for the mass of each
fluid. Thus, if we denote by S1 and S2 the fractions (saturations) of the available
space filled by the two fluids, respectively, we can write

φ (S1ρ1)t + div(ρ1q1) = 0 (4.102)

φ (S2ρ2)t + div(ρ2q2) = 0. (4.103)

21 For water: μ = 1.14 · 103 Kg ×m × s−1.
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We assume that S1+S2 = 1, i.e. that the medium is completely saturated and
that capillarity effects are negligible. We set S1 = S and S2 = 1 − S. The Darcy
law for the two fluids becomes

q1=− k
k1

μ1
(∇p+ ρ1g)

q2=− k
k2

μ2
(∇p+ ρ2g)

where k1, k2 are the relative permeability coefficients, in general depending on S.
We make now some other simplifying assumptions:

– gravitational effects are negligible,

– k, φ, ρ1, ρ2, μ1, μ2 are constant,

– k1 = k1 (S) , k2 = k2 (S) are known.

Equations (4.103) and (4.102) become:

φSt + div q1 = 0, −φSt + div q2 = 0 (4.104)

while the Darcy laws take the form

q1= − k
k1
μ1
∇p, q2=− k

k2
μ2
∇p. (4.105)

Letting q = q1 + q2 and adding the two equations in (4.104) we have

div q =0.

Adding the two equations in (4.105) yields

∇p = −1
k

(
k1
μ1
+
k2
μ2

)−1
q

from which

div ∇p = Δp = −1
k
q·∇

(
k1
μ1
+
k2
μ2

)−1
.

From the first equations in (4.104) and (4.105) we get

φSt = − divq1 = k∇
(
k1

μ1

)
· ∇p+ k k1

μ1
Δp

= −
(
k1

μ1
+
k2

μ2

)−1
q·∇

(
k1

μ1

)
− k1
μ1
q·∇

(
k1

μ1
+
k2

μ2

)−1

= q·∇H (S) = H ′ (S) q·∇S

where

H (S) = −k1 (S)
μ1

(
k1 (S)

μ1
+
k2 (S)

μ2

)−1
.
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When q is known, the resulting quasilinear equation for the saturation S is

φSt = H
′ (S)q·∇S,

known as the Bukley-Leverett equation.
In particular, if q can be considered one-dimensional and constant, i.e. q =qi,

we have
qH ′ (S) Sx + φSt = 0

which is of the form (4.97), with u = S and y = t. The characteristic system is
(see Remark 4.10)

dx

qH ′ (S)
=
dt

φ
=
dS

0
.

Two first integrals are
w1 = φx− qH ′ (S) t

and w2 = S. Thus, the general solution is given by

F (φx− qH ′ (S) t, S) = 0.

The choice
F (w1, w2) = w2 − f (w1) ,

yields
S = f (φx− qH ′ (S) t)

that satisfies the initial condition S (x, 0) = f (φx) .

4.6 General First Order Equations

4.6.1 Characteristic strips

We extend the characteristic method to nonlinear equations of the form

F (x, y, u, ux, uy) = 0 (4.106)

We assume that F = F (x, y, u, p, q) is a smooth function of its arguments and, to
avoid trivial cases, that F 2p + F

2
q �= 0. In the quasilinear case,

F (x, y, u, p, q) = a (x, y, u) p+ b (x, y, u) q − c (x, y, u)

and
Fp = a (x, y, u) , Fq = b (x, y, u) (4.107)

so that F 2p + F
2
q �= 0 says that a and b do not vanish simultaneously.

Equation (4.106) has a geometrical interpretation as well. Let u = u (x, y) be
a smooth solution and consider a point (x0, y0, z0) on its graph. Equation (4.106)
constitutes a link between the components ux and uy of the normal vector

n0 = (−ux (x0, y0) ,−uy (x0, y0) , 1)
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but it is a little more complicated than in the quasilinear case22 and it is not a
priori clear what a characteristic system for equation (4.106) should be. Reasoning
by analogy, from (4.107) we are lead to the choice

dx

dt
= Fp (x, y, z, p, q)

dy

dt
= Fq (x, y, z, p, q) .

(4.108)

where z (t) = u (x (t) , y (t)) and

p = p (t) = ux (x (t) , y (t)) , q = q (t) = uy (x (t) , y (t)) . (4.109)

Thus, taking account of (4.108), the equation for z is:

dz

dt
= ux

dx

dt
+ uy

dy

dt
= pFp + qFq (4.110)

Equations (4.110) and (4.108) correspond to the characteristic system (4.76), but
with two more unknown functions: p (t) e q (t).
We need two more equations. Proceeding formally, from (4.108) we can write

dp

dt
= uxx (x (t) , y (t))

dx

dt
+ uxy (x (t) , y (t))

dy

dt
= uxx (x (t) , y (t))Fp + uxy (x (t) , y (t))Fq.

We have to get rid of the second order derivatives. Since u is a solution of (4.106),
the identity

F (x, y, u (x, y) , ux (x, y) , uy (x, y)) ≡ 0.
holds. Partial differentiation with respect to x yields, since uxy = uyx:

Fx + Fuux + Fpuxx + Fquxy ≡ 0.

Computing along x = x (t), y = y (t), we get

uxx (x (t) , y (t))Fp + uxy (x (t) , y (t))Fq = −Fx − p (t)Fu. (4.111)

22 If, for instance Fq �= 0, by the Implicit Function Theorem, the equation
F (x0, y0, z0, p, q) = 0 defines q = q (p) so that

F (x0, y0, z0, p, q (p)) = 0.

Therefore, the possible tangent planes to u at (x0, y0, z0) form a one parameter family
of planes, given by

p (x − x0) + q (p) (y − y0)− (z − z0) = 0.
This family, in general, envelopes a cone with vertex at (x0, y0, z0) , calledMonge cone.
Each possible tangent plane touches the Monge cone along a generatrix.
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Thus, we deduce for p the following differential equation:

dp

dt
= −Fx (x, y, z, p, q)− pFu (x, y, z, p, q) .

Similarly, we find

dq

dt
= −Fy (x, y, z, p, q)− qFu (x, y, z, p, q) .

In conclusion, we are lead to the following characteristic system of five au-
tonomous equations

dx

dt
= Fp,

dy

dt
= Fq,

dz

dt
= pFp + qFq (4.112)

and

dp

dt
= −Fx − pFu,

dq

dt
= −Fy − qFu. (4.113)

Observe that F = F (x, y, u, p, q) is a first integral of (4.112), (4.113). In fact

d

dt
F (x (t) , y (t) , z (t) , p (t) , q (t))

= Fx
dx

dt
+ Fy

dy

dt
+ Fu

dz

dt
+ Fp

dp

dt
+ Fq

dq

dt
= FxFp + FyFq + Fu (pFp + qFq) + Fp (−Fx − pFp) + Fq (−Fy − qFq)
≡ 0

and therefore, if F (x (t0) , y (t0) , z (t0) , p (t0) , q (t0)) = 0 at some t0, then

F (x (t) , y (t) , z (t) , p (t) , q (t)) ≡ 0. (4.114)

Thus, the curve,

x = x (t) , y = y (t) , z = z (t) ,

still called a characteristic curve, is contained in an integral surface, while

p = p (t) , q = q (t)

give the normal vector at each point, and can be associated with a piece of the
tangent plane, as shown in figure 4.26.
For this reason, a solution (x (t) , y (t) , z (t) , p (t) , q (t)) of (4.112), (4.113) is

called characteristic strip (Fig. 4.26).

Fig. 4.26. Characteristic strip
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4.6.2 The Cauchy Problem

As usual, the Cauchy problem consists in looking for a solution u of (4.106), as-
suming prescribed values on a given curve γ0 in the x, y plane. If γ0 has the
parametrization

x = f (s) , y = g (s) s ∈ I ⊆ R
we want that

u (f (s) , g (s)) = h (s) , s ∈ I,
where h = h (s) is a given function. We assume that 0 ∈ I and that f, g, h are
smooth functions in I.
Let Γ0 be the initial curve, given by the parametrization

x = f (s) , y = g (s) , z = h (s) . (4.115)

Equations (4.115) only specify the “initial” points for x, y and z. To solve the
characteristic system, we have first to complete Γ0 into a strip

(f (s) , g (s) , h (s) , ϕ (s) , ψ (s))

where
ϕ (s) = ux (f (s) , g (s)) and ψ (s) = uy (f (s) , g (s)) .

The two functions ϕ (s) and ψ (s) represent the initial values for p and q and cannot
be chosen arbitrarily. In fact, a first condition that ϕ (s) and ψ (s) have to satisfy
is (recall (4.114)):

F (f (s) , g (s) , h (s) , ϕ (s) , ψ (s)) ≡ 0. (4.116)

A second condition comes from differentiating h (s) = u (f (s) , g (s)). The result
is the so called strip condition

h′ (s) = ϕ (s) f ′ (s) + ψ (s) g′ (s) . (4.117)

Now we are in position to give a (formal) procedure to construct a solution of
our Cauchy problem: Determine a solution u = u (x, y) of

F (x, y, u, ux, uy) = 0,

containing the initial curve (f (s) , g (s) , h (s)):

1. Solve for ϕ (s) and ψ (s) the (nonlinear) system

{
F (f (s) , g (s) , h (s) , ϕ (s) , ψ (s)) = 0

ϕ (s) f ′ (s) + ψ (s) g′ (s) = h′ (s) .
(4.118)

2. Solve the characteristic system (4.112), (4.113) with initial conditions

x (0) = f (s) , y (0) = g (s) , z (0) = h (s) , p (0) = ϕ (s) , q (0) = ψ (s) .
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Suppose we find the solution

x = X (s, t) , y = Y (s, t) , z = Z (s, t) , p = P (s, t) , q = Q (s, t) .

3. Solve x = X (s, t) , y = Y (s, t) for s, t in terms of x, y. Substitute s = S (x, y)
and t = T (x, y) into z = Z (t, s) to yield a solution z = u (x, y).

Example 4.9.We want to solve the equation

u = u2x − 3u2y
with initial condition u (x, 0) = x2. We have F (p, q) = p2 − 3q2 − u and the
characteristic system is

dx

dt
= 2p,

dy

dt
= −6q, dz

dt
= 2p2 − 6q2 = 2z (4.119)

dp

dt
= p,

dq

dt
= q. (4.120)

A parametrization of the initial line Γ0 is

f (s) = s, g (s) = 0, h (s) = s2 .

To complete the initial strip we solve the system (4.118):
{
ϕ2 − 3ψ2 = s2
ϕ = 2s.

There are two solutions:

ϕ (s) = 2s, ψ (s) = ±s.

The choice of ψ (s) = s yields, integrating equations (4.120),

P (s, t) = 2set, Q (s, t) = set

whence, from (4.119),

X (s, t) = 4s(et − 1) + s, Y (s, t) = −6s(et − 1), Z (s, t) = s2e2t.

Solving the first two equations for s, t and substituting into the third one, we get

u (x, y) =
(
x+
y

2

)2
.

The choice of ψ (s) = −s yields

u (x, y) =
(
x− y
2

)2
.

As the example shows, in general there is no uniqueness, unless system (4.118)
has a unique solution. On the other hand, if this system has no (real) solution,
then the Cauchy problem has no solution as well.
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Furthermore, observe that if (x0, y0, z0) = (f (0) , g (0) , h (0)) and (p0, q0) is a
solution of the system

{
F (x0, y0, z0, p0, q0) = 0

p0f
′ (0) + q0g′ (0) = h′ (0) ,

by the Implicit Function Theorem, the condition

∣∣∣∣∣
f ′ (0) Fp(x0, y0, z0, p0, q0)

g′ (0) Fq(x0, y0, z0, p0, q0)

∣∣∣∣∣ �= 0 (4.121)

assures the existence of a solution ϕ (s) and ψ (s) of (4.118), in a neighborhood of
s = 0. Condition (4.121) corresponds to (4.84) in the quasilinear case.
The following theorem summarizes the above discussion on the Cauchy problem

F (x, y, u, ux, uy) = 0 (4.122)

with initial curve Γ0 given by

x = f (s) , y = g (s) , z = h (s) . (4.123)

Theorem 4.5. Assume that:

i) F is twice continuously differentiable in a domain D ⊆ R5 and F 2p +F 2q �= 0;
ii) f, g, h are twice continuously differentiable in a neighborhood of s = 0.

iii) (p0, q0) is a solution of the system (5.30) and condition (4.121) holds.

Then, in a neighborhood of (x0, y0), there exists a C
2 solution z = u (x, y) of

the Cauchy problem (4.122), (4.123).

• Geometrical optics. The equation

c2
(
u2x + u

2
y

)
= 1 (c > 0) (4.124)

is called eikonal equation and arises in (two dimensional) geometrical optics. The
level lines γt of equation

u (x, y) = t (4.125)

represent the “wave fronts” of a wave perturbation (i.e. light) moving with time t
and c denotes the propagation speed, that we assume to be constant. An orthogonal
trajectory to the wave fronts coincides with a light ray. A point (x (t) , y (t)) on a
ray satisfies the identity

u (x (t) , y (t)) = t (4.126)

and its velocity vector v =(ẋ, ẏ) is parallel to ∇u. Therefore

∇u · v = |∇u| |v| = c |∇u| .
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On the other hand, differentiating (4.126) we get

∇u · v =uxẋ+ uyẏ = 1
from which

c2 |∇u|2 = 1.
Geometrically, if we fix a point (x0, y0, z0), equation c

2(p2+ q2) = 1 states that
the family of planes

z − z0 = p (x− x0) + q (y − y0) ,
tangent to an integral surface at (x0, y0, z0), all make a fixed angle θ = arctan |∇u|−1 =
arctan c with the z−axis. This family envelopes the circular cone (exercise)

(x− x0)2 + (y − y0)2 = c2(z − z0)2

called the light cone, with opening angle 2θ.
The eikonal equation is of the form (4.106) with23

F (x, y, u, p, q) =
1

2

[
c2(p2 + q2)− 1

]
.

The characteristic system is24:

dx

dτ
= c2p,

dy

dτ
= c2q,

dz

dτ
= c2p2 + c2q2 = 1 (4.127)

and
dp

dτ
= 0,

dq

dτ
= 0. (c3)

An initial curve Γ0

x = f (s) , y = g (s) , z = h (s) ,

can be completed into an initial strip by solving for φ and ψ the system
{
φ (s)

2
+ ψ (s)

2
= c−2

φ (s) f ′ (s) + ψ (s) g′ (s) = h′ (s) .
(4.128)

This system has two real distinct solutions if

f ′ (s)2 + g′ (s)2 > c2h′ (s)2 (4.129)

while it has no real solutions if25

f ′ (s)2 + g′ (s)2 < c2h′ (s)2 . (4.130)

23 The factor 12 is there for esthetic reasons.
24 Using τ as a parameter along the characteristics.
25 System (4.128) is equivalent to finding the intersection between the circle ξ2+η2 = c−2

and the straight line f ′ξ + g′η = h′. The distance of the center (0, 0) from the line is
given by

d =
|h′|

√
(f ′)2 + (g′)2

so that there are 2 real intersections if d < c−1, while there is no real intersection if
d > c−1.
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If (4.129) holds, Γ0 forms an angle greater than θ with the z−axis and therefore
it is exterior to the light cone (Fig. 4.22). In this case we say that Γ0 is space-like
and we can find two different solutions of the Cauchy problem. If (4.130) holds,
Γ0 is contained in the light cone and we say it is time-like. The Cauchy problem
does not have any solution.
Given a space-like curve Γ0 and φ, ψ solutions of the system (4.128), the cor-

responding characteristic strip is, for s fixed,

x (t) = f (s) + c2φ (s) t, y (t) = g (s) + c2ψ (s) t, z (t) = h (s) + t

p (t) = φ (s) , q (t) = ψ (s) .

Observe that the point (x (t) , y (t)) moves along the characteristic with speed

√
ẋ2 (t) + ẏ2 (t) =

√
φ2 (s) + ψ2 (s) = c

with direction (φ (s) , ψ (s)) = (p (t) , q (t)). Therefore, the characteristic lines are
coincident with the light rays. Moreover, we see that the fronts γt can be con-
structed from γ0 by shifting any point on γ0 along a ray at a distance ct. Thus,
the wave fronts constitute a family of “parallel” curves.

Fig. 4.27. Space-like and time-like initial curves

Problems

4.1. Using Duhamel’s method (see subsection 2.8.3) solve the problem

{
ct + vcx = f (x, t) x ∈ R, t > 0
c(x, 0) = 0 x ∈ R.

Find an explicit formula when f (x, t) = e−t sinx.
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[Hint. For fixed s ≥ 0 and t > s, solve
{
wt + vwx = 0

w (x, s; s) = f (x, s) .

Then, integrate w with respect to s over (0, t)].

4.2. Consider the following problem (a > 0):

⎧
⎪⎨
⎪⎩

ut + aux = f (x, t) 0 < x < R, t > 0

u (0, t) = 0 t > 0

u (x, 0) = 0 0 < x < R.

Prove the stability estimate

∫ R

0

u2 (x, t) dx ≤ et
∫ t

0

∫ R

0

f2 (x, s) dxds, t > 0.

[Hint. Multiply by u the equation. Use a > 0 and the inequality 2fu ≤ f2 + u2 to
obtain

d

dt

∫ R

0

u2 (x, t) dx ≤
∫ R

0

f2 (x, t) dx+

∫ R

0

u2 (x, t)dx.

Prove that if E (t) satisfies

E′ (t) ≤ G (t) +E (t) , E (0) = 0

then E (t) ≤ et
∫ t
0
G (s) ds].

4.3. Solve Burger’s equation ut + uux = 0 with initial data

g (x) =

⎧⎨
⎩
1 x ≤ 0
1− x 0 < x < 1
0 x ≥ 1.

[Answer : See figure 4.28].

4.4. In the Green light problem (subsection 4.3.3) compute:

a) the car density at the light for t > 0.

b) The time that a car located at the point x0 = −vmt0 at time t0 takes to
reach the light.

[Hint. b) If x = x (t) is the position of the car at time t, show that dxdt =
vm
2 +

x(t)
2t ].

4.5. Consider equation (4.19) in section 4.3.1, with initial density

ρ0 (x) =

{
ρ1 x < 0

ρm x > 0.
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Fig. 4.28. The solution of problem 4.3

Assuming 0 < ρ1 < ρm, determine the characteristics and construct a solution in
the whole half-plane t > 0. Give an interpretation of your result.

4.6. Solve the problem
{
ut + uux = 0 x ∈ R, t > 0
u (x, 0) = g (x) x ∈ R

where.

g (x) =

⎧
⎨
⎩
0 x < 0
1 0 < x < 1
0 x > 1.

4.7. Traffic in a tunnel. A rather realistic model for the car speed in a very
long tunnel is the following:

v (ρ) =

{
vm 0 ≤ ρ ≤ ρc
λ log

(
ρm
ρ

)
ρc ≤ ρ ≤ ρm

where
λ =

vm
log (ρm/ρc)

.

Observe that v is continuous also at ρc = ρme
−vm/λ, which represents a critical

density : if ρ ≤ ρc the drivers are free to reach the speed limit. Typical values are:
ρc = 7 car/Km, vm = 90 Km/h, ρm = 110 car/Km, vm/λ = 2.75.
Assume the entrance is placed at x = 0 and that cars are waiting (with max-

imum density) the tunnel to open to the traffic at time t = 0. Thus, the initial
density is.

ρ =

{
ρm x < 0

0 x > 0.
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a) Determine density and car speed; draw their graphs as a function of time.
b) Determine and draw in the x, t plane the trajectory of a car initially at

x = x0 < 0, and compute the time it takes to enter the tunnel.

4.8. Consider the equation

ut + q
′ (u)ux = 0

with initial condition u (x, 0) = g (x). Assume that g, q′ ∈ C1 ([a, b]) and g′q′′ < 0
in [a, b] . Show that the family of characteristics

x = q′ (u) t+ ξ, ξ ∈ [a, b] (4.131)

admits an envelope and that the point (xs, ts) of shock formation, given by formulas
(4.37) and (4.38), is the point on this envelope with minimum time coordinate
(Fig. 4.29).

Fig. 4.29. Envelope of characteristics and point of shock formation

4.9. Find the solutions of the problems{
ut ± uux = 0 t > 0, x ∈ R
u (x, 0) = x x ∈ R.

4.10. Draw the characteristics and describe the evolution for t → +∞ of the
solution of the problem

⎧
⎨
⎩
ut + uux = 0 t > 0, x ∈ R

u (x, 0) =

{
sinx
0

0 < x < π
x ≤ 0 or x ≥ π

4.11. Show that, for every α > 1, the function

uα (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

−1 2x < (1− α) t
−α (1− α) t < 2x < 0
α 0 < 2x < (α− 1) t
1 (α− 1) t < 2x
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is a weak solution of the problem

⎧
⎨
⎩
ut + uux = 0 t > 0, x ∈ R

u (x, 0) =

{
−1
1

x < 0
x > 0.

Is it also an entropy solution, at least for some α?

4.12. Using the Hopf-Cole transformation, solve the following problem for the
viscous Burger equation

{
ut + uux = εuxx t > 0, x ∈ R
u (0, x) = H (x) x ∈ R.

where H is the Heaviside function.
Show that, as t→ +∞, u (x, t) converges to a travelling wave similar to (4.68).

[Answer. The solution is

u (x, t) =
1

1 +
erfc

(
−x/

√
4εt
)

erfc
(
(x− t)/

√
4εt
) exp

(
x− t/2
2ε

)

where

erfc (s) =

∫ +∞
s

exp
(
−z2

)
dz

is the complementary error function].

4.13. Find the solution of the linear equation

ux + xuy = y

satisfying the initial condition u (0, y) = g (y), y ∈ R, with

(a) g (y) = cos y and (b) g (y) = y2.

[Answer of (a):

u = xy − x
3

3
+ cos

(
y − x

2

2

)
].

4.14. Consider the linear equation

aux + buy = c (x, y) ,

where a, b are constants (b �= 0), and the initial condition u (x, 0) = h (x).
1) Show that

u (x, y) = h (x− γy) +
∫ y/b

0

c (aτ + x− γy, bτ ) dτ γ = a/b.



Problems 219

2) Deduce that a jump discontinuity at x0 of h, propagates into a jump of the
same size for u along the characteristic of equation x− γy = x0.
4.15. Let D =

{
(x, y) : y > x2

}
and a = a (x, y) be a continuous function in

D.

1) Check the solvability of the problem
{
a (x, y)ux − uy = −u (x, y) ∈ D
u
(
x, x2

)
= g (x) x ∈ R.

2) Examine the case

a (x, y) = y/2 and g (x) = exp
(
−γx2

)
,

where γ is a real parameter.

4.16. Solve the Cauchy problem
{
xux − yuy = u− y x > 0, y > 0

u
(
y2, y

)
= y y > 0.

May a solution exist in a neighborhood of the origin?

[Answer.

u (x, y) =
(
y + x2/3y−1/3

)
/2.

In no neighborhood of (0, 0) a solution can exist].

4.17. Consider a cylindrical pipe with axis along the x−axis, filled with a
fluid moving along the positive direction. Let ρ = ρ (x, t) and q = 1

2ρ
2 be the

fluid density and the flux function. Assume the walls of the pipe are composed by
porous material, from which the fluid leaks at the rate H = kρ2.
a) Following the derivation of the conservation law given in the introduction,

show that ρ satisfies the equation.

ρt + ρρx = −kρ2

b) Solve the Cauchy problem with ρ (x, 0) = 1.

[Answer. b) ρ (x, t) = 1/ (1 + kt)].

4.18. Solve the Cauchy problem
{
ux = −(uy)2 x > 0, y ∈ R
u (0, y) = 3y y ∈ R. ,

4.19. Solve the Cauchy problem
{
u2x + u

2
y = 4u

u (x,−1) = x2 x ∈ R.

[Answer : u (x, y) = x2 + (y + 1)
2
]
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4.20. Solve the Cauchy problem

{
c2
(
u2x + u

2
y

)
= 1

u (cos s, sin s) = 0 s ∈ R.

[Answer : There are two solutions

u± (x, y) =
±1
c

{
1−

√
x2 + y2

}

whose wave fronts are shown in figure 4.30].

Fig. 4.30. Solutions of problem 4.20
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5.1 General Concepts

5.1.1 Types of waves

Our dayly experience deals with sound waves, electromagnetic waves (as radio or
light waves), deep or surface water waves, elastic waves in solid materials. Oscil-
latory phenomena manifest themselves also in contexts and ways less macroscopic
and known. This is the case, for instance, of rarefaction and shock waves in traffic
dynamics or of electrochemical waves in human nervous system and in the regula-
tion of the heart beat. In quantum physics, everything can be described in terms
of wave functions, at a sufficiently small scale.
Although the above phenomena share many similarities, they show several dif-

ferences as well. For example, progressive water waves propagate a disturbance,
while standing waves do not. Sound waves need a supporting medium, while elec-
tromagnetic waves do not. Electrochemical waves interact with the supporting
medium, in general modifying it, while water waves do not.
Thus, it seems too hard to give a general definition of wave, capable of covering

all the above cases, so that we limit ourselves to introducing some terminology and
general concepts, related to specific types of waves. We start with one-dimensional
waves.

a. Progressive or travelling waves are disturbances described by a function
of the following form:

u (x, t) = g (x− ct) .
For t = 0, we have u (x, 0) = g (x), which is the “initial”profile of the perturbation.
This profile propagates without change of shape with speed |c|, in the positive

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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(negative) x−direction if c > 0 (c < 0). We have already met this kind of waves in
Chapters 2 and 4.

b. Harmonic waves are particular progressive waves of the form

u (x, t) = A exp {i (kx− ωt)} , A, k, ω ∈ R. (5.1)

It is understood that only the real part (or the imaginary part)

A cos (kx− ωt)

is of interest, but the complex notation may often simplify the computations. In
(5.1) we distinguish, considering for simplicity ω and k positive:

• The wave amplitude |A|;

• The wave number k, which is the number of complete oscillations in the space
interval [0, 2π], and the wavelength

λ =
2π

k

which is the distance between successive maxima (crest) or minima (troughs)
of the waveform;

• The angular frequency ω, and the frequency

f =
ω

2π

which is the number of complete oscillations in one second (Hertz) at a fixed
space position;

• The wave or phase speed

cp =
ω

k

which is the crests (or troughs) speed;

Fig. 5.1. Sinusoidal wave
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c. Standing waves are of the form

u (x, t) = B cos kx cosωt.

In these disturbances, the basic sinusoidal wave, cos kx, is modulated by the time
dependent oscillationB cosωt. A standing wave may be generated, for instance, by
superposing two harmonic waves with the same amplitude, propagating in opposite
directions:

A cos(kx− ωt) + A cos(kx+ ωt) = 2A cos kx cosωt. (5.2)

Consider now waves in dimension n > 1.

d. Plane waves. Scalar plane waves are of the form

u (x,t) = f (k · x−ωt) .

The disturbance propagates in the direction of k with speed cp = ω/ |k|. The
planes of equation

θ (x,t) = k · x−ωt = constant
constitute the wave-fronts.
Harmonic or monochromatic plane waves have the form

u (x, t) = A exp {i (k · x−ωt)} .

Here k is the wave number vector and ω is the angular frequency. The vector k
is orthogonal to the wave front and |k| /2π gives the number of waves per unit
length. The scalar ω/2π still gives the number of complete oscillations in one
second (Hertz) at a fixed space position.

e. Spherical waves are of the form

u (x,t) = v (r, t)

where r = |x− x0| and x0 ∈ Rn is a fixed point. In particular u (x,t) = eiωtv (r)
represents a stationary spherical wave, while u (x,t) = v (r − ct) is a progressive
wave whose wavefronts are the spheres r − ct = constant, moving with speed |c|
(outgoing if c > 0, incoming if c < 0).

5.1.2 Group velocity and dispersion relation

Many oscillatory phenomena can be modelled by linear equations whose solutions
are superpositions of harmonic waves with angular frequency depending on the
wave number:

ω = ω (k) . (5.3)

A typical example is the wave system produced by dropping a stone in a pond.
If ω is linear, e.g. ω (k) = ck, c > 0, the crests move with speed c, independent

of the wave number. However, if ω (k) is not proportional to k, the crests move with
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speed cp = ω (k) /k, that depends on the wave number. In other words, the crests
move at different speeds for different wavelengths. As a consequence, the various
components in a wave packet given by the superposition of harmonic waves of
different wavelengths will eventually separate or disperse. For this reason, (5.3) is
called dispersion relation.
In the theory of dispersive waves, the group velocity, given by

cg = ω
′ (k)

is a central notion, mainly for the following three reasons.

1. It is the speed at which an isolated wave packet moves as a whole. A wave
packet may be obtained by the superposition of dispersive harmonic waves, for
instance through a Fourier integral of the form

u (x, t) =

∫ +∞
−∞

a (k) ei[kx−ω(k)t]dk (5.4)

where the real part only has a physical meaning. Consider a localized wave packet,
with wave number k ≈ k0, almost constant, and with amplitude slowly varying
with x. Then, the packet contains a large number of crests and the amplitudes
|a (k)| of the various Fourier components are negligible except that in a small
neighborhood of k0, (k0 − δ, k0 + δ), say.
Figure 5.2 shows the initial profile of a Gaussian packet,

Reu (x, 0) =
3√
2
exp

{
−x

2

32

}
cos 14x,

slowly varying with x, with k0 = 14, and its Fourier transform:

a (k) = 6 exp{−8 (k − 14)2}.

As we can see, the amplitudes |a (k)| of the various Fourier components are negli-
gible except when k is near k0.

Fig. 5.2. Wave packet and its Fourier transform

Then we may write

ω (k) ≈ ω (k0) + ω′ (k0) (k − k0) = ω (k0) + cg (k − k0)
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and

u (x, t) ≈ ei{k0x−ω(k0)t}
∫ k0+δ

k0−δ
a (k) ei(k−k0)(x−cgt)dk. (5.5)

Thus, u turns out to be well approximated by the product of two waves. The first
one is a pure harmonic wave with relatively short wavelength 2π/k0 and phase
speed ω (k0) /k0. The second one depends on x, t through the combination x− cgt,
and is a superposition of waves of very small wavenumbers k−k0, which correspond
to very large wavelengths. We may interpret the second factor as a sort of envelope
of the short waves of the packet, that is the packet as a whole, which therefore
moves with the group speed.

2. An observer that travels at the group velocity sees constantly waves of the
same wavelength 2π/k, after the transitory effects due to a localized initial per-
turbation (e.g. a stone thrown into a pond). In other words, cg is the propagation
speed of the wave numbers.
Imagine dropping a stone into a pond. At the beginning, the water pertur-

bation looks complicated, but after a sufficiently long time, the various Fourier
components will be quite dispersed and the perturbation will appear as a slowly
modulated wave train, almost sinusoidal near every point, with a local wave num-
ber k (x, t) and a local frequency ω (x, t). If the water is deep enough, we expect
that, at each fixed time t, the wavelength increases with the distance from the
stone (longer waves move faster, see subsection 5.10.4) and that, at each fixed
point x, the wavelength tends to decrease with time.
Thus, the essential features of the wave system can be observed at a relatively

long distance from the location of the initial disturbance and after some time has
elapsed.
Let us assume that the free surface displacement u is given by a Fourier integral

of the form (5.4). We are interested on the behavior of u for t � 1. An impor-
tant tool comes from the method of stationary phase1 which gives an asymptotic
formula for integrals of the form

I (t) =

∫ +∞
−∞

f (k) eitϕ(k)dk (5.6)

as t→ +∞. We can put u into the form (5.6) by writing

u (x, t) =

∫ +∞
−∞

a (k) eit[k
x
t −ω(k)]dk,

then by moving from the origin at a fixed speed V (thus x = V t) and defining

ϕ (k) = kV − ω (k) .

Assume for simplicity that ϕ has only one stationary point k0, that is

ω′ (k0) = V ,
1 See subsection 5.10.6
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and that ω′′ (k0) �= 0. Then, according to the method of stationary phase, we can
write

u (V t, t) =

√
π

|ω′′(k0)|
a(k0)√
t
exp {it [k0V − ω (k0)]}+O

(
t−1
)
. (5.7)

Thus, if we allow errors of order t−1, moving with speed V = ω′ (k0) = cg, the
same wave number k0 always appears at the position x = cgt. Note that the
amplitude decreases like t−1/2 as t→ +∞. This is an important attenuation effect
of dispersion.

3. Energy is transported at the group velocity by waves of wavelength 2π/k.
In a wave packet like (5.5), the energy is proportional to2

∫ k0+δ

k0−δ
|a (k)|2 dk � 2δ |a (k0)|2

so that it moves at the same speed of k0, that is cg.
Since the energy travels at the group velocity, there are significant differences

in the wave system according to the sign of cg − cp, as we will see in Section 10.

5.2 Transversal Waves in a String

5.2.1 The model

We derive a classical model for the small transversal vibrations of a tightly
stretched horizontal string (e.g. a string of a guitar). We assume the following
hypotheses:

1. Vibrations of the string have small amplitude. This entails that the changes in
the slope of the string from the horizontal equilibrium position are very small.

2. Each point of the string undergoes vertical displacements only. Horizontal dis-
placements can be neglected, according to 1.

3. The vertical displacement of a point depends on time and on its position on
the string. If we denote by u the vertical displacement of a point located at
x when the string is at rest, then we have u = u (x, t) and, according to 1,
|ux (x, t)| � 1.

4. The string is perfectly flexible. This means that it offers no resistance to bend-
ing. In particular, the stress at any point on the string can be modelled by
a tangential3 force T of magnitude τ , called tension. Figure 5.3 shows how
the forces due to the tension acts at the end points of a small segment of the
string.

5. Friction is negligible.

Under the above assumptions, the equation of motion of the string can be
derived from conservation of mass and Newton law.

2 See A. Segel, 1987.
3 Consequence of absence of distributed moments along the string.
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Fig. 5.3. Tension at the end points of a small segment of a string

Let ρ0 = ρ0 (x) be the linear density of the string at rest and ρ = ρ (x, t) be its
density at time t. Consider an arbitrary part of the string between x and x+Δx
and denote by Δs the corresponding length element at time t. Then, conservation
of mass yields

ρ0 (x)Δx = ρ (x, t)Δs. (5.8)

To write Newton law of motion we have to determine the forces acting on our small
piece of string. Since the motion is vertical, the horizontal forces have to balance.
On the other hand they come from the tension only, so that if τ (x, t) denotes the
magnitude of the tension at x at time t, we can write (Fig. 5.3):

τ (x+Δx, t) cosα (x+Δx, t)− τ (x, t) cosα (x, t) = 0.

Dividing by Δx and letting Δx→ 0, we obtain

∂

∂x
[τ (x, t) cosα (x, t)] = 0

from which
τ (x, t) cosα (x, t) = τ0 (t) (5.9)

where τ0 (t) is positive
4.

The vertical forces are given by the vertical component of the tension and by
body forces such as gravity and external loads.
Using (5.9), the scalar vertical component of the tension at x, at time t, is given

by:

τvert (x, t) = τ (x, t) sinα (x, t) = τ0 (t) tanα(x, t) = τ0 (t) ux (x, t) .

4 It is the magnitude of a force.
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Therefore, the (scalar) vertical component of the force acting on our small piece
of string, due to the tension, is

τvert (x+Δx, t)− τvert (x, t) = τ0 (t) [ux (x+Δx, t)− ux (x, t)].

Denote by f (x, t) the magnitude of the (vertical) body forces per unit mass. Then,
using (5.8), the magnitude of the body forces acting on the string segment is given
by: ∫ x+Δx

x

ρ (y, t) f (y, t) ds =

∫ x+Δx

x

ρ0 (y) f (y, t) dy.

Thus, using (5.8) again and observing that utt is the (scalar) vertical acceleration,
Newton law gives:

∫ x+Δx

x

ρ0 (y) utt (y, t) dy = τ0 (t) [ux (x+Δx, t)−ux (x, t)]+
∫ x+Δx

x

ρ0 (y) f (y, t) dy.

Dividing by Δx and letting Δx→ 0, we obtain the equation

utt − c2 (x, t)uxx = f (x, t) (5.10)

where c2 (x, t) = τ0 (t) /ρ0 (x).

If the string is homogeneous then ρ0 is constant. If moreover it is perfectly
elastic5 then τ0 is constant as well, since the horizontal tension is nearly the same
as for the string at rest, in the horizontal position. We shall come back to equation
(5.10) shortly.

5.2.2 Energy

Suppose that a perfectly flexible and elastic string has length L at rest, in the
horizontal position. We may identify its initial position with the segment [0, L] on
the x axis. Since ut(x, t) is the vertical velocity of the point at x, the expression

Ecin (t) =
1

2

∫ L

0

ρ0u
2
t dx (5.11)

represents the total kinetic energy during the vibrations. The string stores
potential energy too, due to the work of elastic forces. These forces stretch an
element of string of length Δx at rest by6

Δs−Δx =
∫ x+Δx

x

√
1 + u2x dx−Δx =

∫ x+Δx

x

(√
1 + u2x − 1

)
dx ≈ 1

2
u2xΔx

5 For instance, guitar and violin strings are nearly homogeneous, perfectly flexible and
elastic.

6 Recall that, at first order, if ε� 1, √1 + ε − 1 � ε/2.
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since |ux| � 1. Thus, the work done by the elastic forces on that string element is

dW =
1

2
τ0u

2
xΔx.

Summing all the contributions, the total potential energy is given by:

Epot (t) =
1

2

∫ L

0

τ0u
2
x dx. (5.12)

From (5.11) and (5.12) we find, for the total energy:

E (t) =
1

2

∫ L

0

[ρ0u
2
t + τ0u

2
x] dx. (5.13)

Let us compute the variation of E. Taking the time derivative under the integral,
we find (remember that ρ0 = ρ0 (x) and τ0 is constant),

Ė (t) =

∫ L

0

[ρ0ututt + τ0uxuxt]dx.

By an integration by parts we get

∫ L

0

τ0uxuxt dx = τ0[ux (L, t)ut (L, t)− ux (0, t)ut (0, t)]− τ0
∫ L

0

utuxxdx

whence

Ė (t) =

∫ L

0

[ρ0utt − τ0uxx]utdx+ τ0[ux (L, t)ut (L, t)− ux (0, t)ut (0, t)].

Using (5.10), we find:

Ė (t) =

∫ L

0

ρ0fut dx+ τ0[ux (L, t)ut (L, t)− ux (0, t)ut (0, t)]. (5.14)

In particular, if f = 0 and u is constant at the end points 0 and L (therefore
ut (L, t) = ut (0, t) = 0) we deduce Ė (t) = 0. This implies

E (t) = E (0)

which expresses the conservation of energy.

5.3 The One-dimensional Wave Equation

5.3.1 Initial and boundary conditions

Equation (5.10) is called the one-dimensional wave equation. The coefficient c has
the dimensions of a speed and in fact, we will shortly see that it represents the wave
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propagation speed along the string. When f ≡ 0, the equation is homogeneous and
the superposition principle holds: if u1 and u2 are solutions of

utt − c2uxx = 0 (5.15)

and a, b are (real or complex) scalars, then au1 + bu2 is a solution as well. More
generally, if uk (x,t) is a family of solutions depending on the parameter k (integer
or real) and g = g (k) is a function rapidly vanishing at infinity, then

∞∑
k=1

uk (x,t) g (k) and

∫ +∞
−∞

uk (x,t) g (k) dk

are still solutions of (5.15).
Suppose we are considering the space-time region 0 < x < L, 0 < t < T . In

a well posed problem for the (one-dimensional) heat equation it is appropriate to
assign the initial profile of the temperature, because of the presence of a first order
time derivative, and a boundary condition at both ends x = 0 and x = L, because
of the second order space derivative.
By analogy with the Cauchy problem for second order ordinary differential

equations, the second order time derivative in (5.10) suggests that not only the
initial profile of the string but the initial velocity has to be assigned as well.
Thus, our initial (or Cauchy) data are

u (x, 0) = g (x) , ut (x, 0) = h (x) , x ∈ [0, L] .
The boundary data are formally similar to those for the heat equation. Typi-

cally:

Dirichlet data describe the displacement of the end points of the string:

u (0, t) = a (t) , u (L, t) = b (t) , t > 0.

If a (t) = b (t) ≡ 0 (homogeneous data), both ends are fixed, with zero displace-
ment.

Neumann data describe the applied (scalar) vertical tension at the end points.
As in the derivation of the wave equation, we may model this tension by τ0ux so
that the Neumann conditions take the form

τ0ux (0, t) = a (t) , τ0ux (L, t) = b (t) , t > 0.

In the special case of homogeneous data, a (t) = b (t) ≡ 0, both ends of the string
are attached to a frictionless sleeve and are free to move vertically.

Robin data describe a linear elastic attachment at the end points. One way to
realize this type of boundary condition is to attach an end point to a linear spring7

whose other end is fixed. This translates into assigning

τ0ux (0, t) = ku (0, t) , τ0ux (L, t) = −ku (L, t) , t > 0,

where k (positive) is the elastic constant of the spring.

7 Which obeys Hooke’s law: the strain is a linear function of the stress.
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In several concrete situations, mixed conditions have to be assigned. For in-
stance, Robin data at x = 0 and Dirichlet data at x = L.

Global Cauchy problem. We may think of a string of infinite length and assign
only the initial data

u (x, 0) = g (x) , ut (x, 0) = h (x) , x ∈ R.

Although physically unrealistic, it turns out that the solution of the global Cauchy
problem is of fundamental importance. We shall solve it in Section 5.4.
Under reasonable assumptions on the data, the above problems are well posed.

In the next section we use separation of variables to show it for a Cauchy-Dirichlet
problem.

Remark 5.1. Other kinds of problems for the wave equation are the so called Gour-
sat problem and the characteristic Cauchy problem. Some examples are given in
Problems 5.9, 5.10.

5.3.2 Separation of variables

Suppose that the vibration of a violin chord is modelled by the following Cauchy-
Dirichlet problem

⎧⎨
⎩
utt − c2uxx = 0 0 < x < L, t > 0
u (0, t) = u (L, t) = 0 t ≥ 0
u (x, 0) = g (x) , ut (x, 0) = h (x) 0 ≤ x ≤ L

(5.16)

where c2 = τ0/ρ0 is constant.
We want to check whether this problem is well posed, that is, whether a solution

exists, is unique and it is stable (i.e. it depends “continuously” on the data g and
h). For the time being we proceed formally, without worrying too much about the
correct hypotheses on g and h and the regularity of u.

• Existence. Since the boundary conditions are homogeneous8, we try to con-
struct a solution using separation of variables.
Step 1. We start looking for solutions of the form

U (x, t) = w (t) v (x)

with v (0) = v (L) = 0. Inserting U into the wave equation we find

0 = Utt − c2Uxx = w′′ (t) v (x) − c2w (t) v′′ (x)

or, separating the variables,

1

c2
w′′ (t)
w (t)

=
v′′ (x)
v (x)

. (5.17)

8 Remember that this is essential for using separation of variables.
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We have reached a familiar situation: (5.17) is an identity between two functions,
one depending on t only and the other one depending on x only. Therefore the two
sides of (5.17) must be both equal to the same constant, say λ. Thus, we are lead
to the equation

w′′ (t)− λc2w (t) = 0 (5.18)

and to the eigenvalue problem

v′′ (x)− λv (x) = 0 (5.19)

v (0) = v (L) = 0. (5.20)

Step 2. Solution of the eigenvalue problem. There are three possibilities for the
general integral of (5.19).

a) If λ = 0, then v (x) = A+ Bx and (5.20) imply A = B = 0.

b) If λ = μ2 > 0, then v (x) = Ae−μx+Beμx and again (5.20) implyA = B = 0.
c) If λ = −μ2 < 0, then v (x) = A sinμx+B cosμx. From (5.20) we get

v (0) = B = 0

v (1) = A sinμL +B cosμL = 0

whence

A arbitrary, B = 0, μL = mπ, m = 1, 2, ... .

Thus, in case c) only we find non trivial solutions, of the form

vm (x) = Am sinμmx, μm =
mπ

L
. (5.21)

Step 3. Insert λ = −μ2m = −m2π2/L2 into (5.18). Then, the general solution
is

wm (t) = Cm cos (μmct) +Dm sin (μmct) . (5.22)

From (5.21) and (5.22) we construct the family of solutions

Um (x, t) = [am cos (μmct) + bm sin(μmct)] sinμmx, m = 1, 2, ...

where am and bm are arbitrary constants.
Um is called the m

th−normal mode of vibration or mth − harmonic, and
is a standing wave with frequency m/2L. The first harmonic and its frequency
1/2L, the lowest possible, are said to be fundamental. All the other frequencies
are integral multiples of the fundamental one. Because of this reason it seems that
a violin chord produces good quality tones, pleasant to the ear (this is not so, for
instance, for a vibrating membrane like a drum, as we will see shortly).

Step 4. If the initial conditions are

u (x, 0) = am sinμmx ut (x, 0) = cbmμm sinμmx
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then the solution of our problem is exactly Um and the string vibrates at its
mth−mode. In general, the solution is constructed by superposing the harmonics
Um through the formula

u (x, t) =

∞∑
m=1

[am cos (μmct) + bm sin(μmct)] sinμmx, (5.23)

where the coefficients am and bm have to be chosen such that the initial conditions

u (x, 0) =

∞∑
m=1

am sinμmx = g (x) (5.24)

and

ut (x, 0) =

∞∑
m=1

cμmbm sinμmx = h (x) (5.25)

are satisfied, for 0 ≤ x ≤ L.
Looking at (5.24) and (5.25), it is natural to assume that both g and h have

an expansion in Fourier sine series in the interval [0, L]. Let

ĝm =
2

L

∫ L

0

g (x) sinμmx dx and ĥm =
2

L

∫ L

0

h (x) sinμmx dx

be the Fourier sine coefficients of g and h. If we choose

am = ĝm, bm =
ĥm

μmc
, (5.26)

then (5.23) becomes

u (x, t) =

∞∑
m=1

[
ĝm cos(μmct) +

ĥm
μmc

sin(μmct)

]
sinμmx (5.27)

and satisfies (5.24) and (5.25).
Although every Um is a smooth solution of the wave equation, in principle

(5.27) is only a formal solution, unless we may differentiate term by term twice
with respect to both x and t, obtaining

(∂tt − c2∂2xx)u (x, t) =
∞∑
m=1

(∂tt − c2∂2xx)Um (x, t) = 0. (5.28)

This is possible if ĝm and ĥm vanish sufficiently fast as m → +∞. In fact, differ-
entiating term by term twice, we have

uxx (x, t) = −
∞∑
m=1

[
μ2mĝm cos(μmct) +

μmĥm
c
sin(μmct)

]
sinμmx (5.29)
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and

utt (x, t) = −
∞∑
m=1

[
μ2mĝmc

2 cos(μmct) + μmĥmc sin(μmct)
]
sinμmx. (5.30)

Thus, if, for instance,

|ĝm| ≤
C

m4
and

∣∣∣ĥm
∣∣∣ ≤ C

m3
, (5.31)

then

∣∣μ2mĝm cos(μmct)
∣∣ ≤ Cπ2

L2m2
, and

∣∣∣μmĥmc sin(μmct)
∣∣∣ ≤ cC

Lm2

so that, by the Weierstrass test, the series in (5.29), (5.30) converge uniformly
in [0, L] × [0,+∞). Since also the series (5.27) is clearly uniformly convergent in
[0, L]× [0,+∞), differentiation term by term is allowed and u is a C2 solution of
the wave equation.
Under which assumptions on g and h do the (5.31) hold?
Let g ∈ C4 ([0, L]), h ∈ C3 ([0, L]) and assume the following compatibility

conditions:

g (0) = g (L) = g′′ (0) = g′′ (L) = 0
h (0) = h (L) = 0.

Then (5.31) hold9.
Moreover, under the same assumptions, it is not difficult to check that

u (y, t)→ g (x) , ut (y, t)→ h (x) , as (y, t)→ (x, 0) (5.32)

for every x ∈ [0, L] and we conclude that u is a smooth solution of (5.16).
• Uniqueness. To show that (5.27) is the unique solution of problem (5.16), we

use conservation of energy. Let u and v be solutions of (5.16). Then w = u− v is
a solution of the same problem with zero initial and boundary data. We want to
show that w ≡ 0.
Formula (5.13) gives, for the total mechanical energy,

E (t) = Ecin (t) +Epot (t) =
1

2

∫ L

0

[ρ0w
2
t + τ0w

2
x] dx

9 It is an exercise on integration by parts. For instance, if f ∈ C4 ([0,L]) and f (0) =
f (L) = f ′′ (0) = f ′′ (L) = 0, then, integrating by parts four times, we have

f̂m =

∫ L

0

f (x) sin
(mπ
L

)
dx =

1

m4

∫ L

0

f (4) (x) sin
(mπ
L

)
dx

and ∣
∣∣f̂m
∣
∣∣ ≤ max

∣
∣∣f (4)

∣
∣∣
L

m4
.
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and in our case we have
Ė (t) = 0

since f = 0 and wt (L, t) = wt (0, t) = 0, whence

E (t) = E (0)

for every t ≥ 0. Since, in particular, wt (x, 0) = wx (x, 0) = 0, we have
E (t) = E (0) = 0

for every t ≥ 0. On the other hand, Ecin (t) ≥ 0, Epot (t) ≥ 0, so that we deduce
Ecin (t) = 0, Epot (t) = 0

which force wt = wx = 0. Therefore w is constant and since w (x, 0) = 0, we
conclude that w (x, t) = 0 for every t ≥ 0.
• Stability. We want to show that if the data are slightly perturbed, the cor-

responding solutions change only a little. Clearly, we need to establish how we
intend to measure the distance for the data and for the corresponding solutions.
For the initial data, we use the least square distance, given by10

‖g1 − g2‖0 =
(∫ L

0

|g1 (x)− g2 (x)|2 dx
)1/2

.

For functions depending also on time, we define

‖u− v‖0,∞ = sup
t>0

(∫ L

0

|u (x, t)− v (x, t)|2 dx
)1/2

which measures the maximum in time of the least squares distance in space.
Now, let u1 and u2 be solutions of problem (5.16) corresponding to the data

g1, h1 and g2, h2, respectively. Their difference w = u1− u2 is a solution of the
same problem with Cauchy data g = g1− g2 and h = h1− h2. From (5.27) we
know that

w (x, t) =

∞∑
m=1

[
ĝm cos(μmct) +

ĥm
μmc

sin(μmct)

]
sinμmx.

From Parseval’s identity11 and the elementary inequality (a+ b)
2 ≤ 2(a2 + b2),

a, b ∈ R, we can write
∫ L

0

|w (x, t)|2 dx = L
2

∞∑
m=1

[
ĝm cos(μmct) +

ĥm

μmc
sin(μmct)

]2

≤ L
∞∑
m=1

⎡
⎣ĝ2m +

(
ĥm
μmc

)2⎤
⎦ .

10 The symbol ‖g‖ denotes a norm of g. See Chapter 6.
11 Appendix A.
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Since μm ≥ π/L, using Parseval’s equality again, we obtain
∫ L

0

|w (x, t)|2 dx ≤ Lmax
{
1,

(
L

πc

)2} ∞∑
m=1

[
ĝ2m + ĥ

2
m

]

= 2max

{
1,

(
L

πc

)2}[
‖g‖20 + ‖h‖

2
0

]

whence the stability estimate

‖u1 − u2‖20,∞ ≤ 2max
{
1,

(
L

πc

)2}[
‖g1 − g2‖20 + ‖h1 − h2‖

2
0

]
. (5.33)

Thus, “close” data produce “close” solutions.

Remark 5.2. From (5.27), the chord vibration is given by the superposition of har-
monics corresponding to the non-zero Fourier coefficients of the initial data. The
complex of such harmonics determines a particular feature of the emitted sound,
known as the timbre, a sort of signature of the musical instrument!

Remark 5.3. The hypotheses we have made on g and h are unnaturally restrictive.
For example, if we pluck a violin chord at a point, the initial profile is continuous
but has a corner at that point and cannot be even C1. A physically realistic
assumption for the initial profile g is continuity.
Similarly, if we are willing to model the vibration of a chord set into motion

by a strike of a little hammer, we should allow discontinuity in the initial velocity.
Thus it is realistic to assume h bounded.
Under these weak hypotheses the separation of variables method does not work.

On the other hand, we have already faced a similar situation in Chapter 4, where
the necessity to admit discontinuous solutions of a conservation law has lead to a
more general and flexible formulation of the initial value problem. Also for the wave
equation it is possible to introduce suitable weak formulations of the various initial-
boundary value problems, in order to include realistic initial data and solutions
with a low degree of regularity. A first attempt is shown in subsection 5.4.2. A
weak formulation more suitable for numerical methods is treated in Chapter 9.

5.4 The d’Alembert Formula

5.4.1 The homogeneous equation

In this section we establish the celebrated formula of d’Alembert for the solution
of the following global Cauchy problem:

{
utt − c2uxx = 0 x ∈ R, t > 0
u (x, 0) = g (x) , ut (x, 0) = h (x) x ∈ R. (5.34)



5.4 The d’Alembert Formula 237

To find the solution, we first factorize the wave equation in the following way:

(∂t − c∂x) (∂t + c∂x)u = 0. (5.35)

Now, let
v = ut + cux. (5.36)

Then v solves the linear transport equation

vt − cvx = 0

whence
v (x, t) = ψ (x+ ct)

where ψ is a differentiable arbitrary function. From (5.36) we have

ut + cux = ψ (x+ ct)

and formula (4.10) in subsection 4.2.2 yields

u (x, t) =

∫ t

0

ψ (x− c (t − s) + cs) ds+ ϕ (x− ct) ,

where ϕ is another arbitrary differentiable function.
Letting x− ct+ 2cs = y, we find

u (x, t) =
1

2c

∫ x+ct

x−ct
ψ (y) dy+ ϕ (x− ct) . (5.37)

To determine ψ and ϕ we impose the initial conditions:

u (x, 0) = ϕ (x) = g (x) (5.38)

and
ut (x, 0) = ψ (x)− cϕ′ (x) = h (x)

whence
ψ (x) = h (x) + cg′ (x) . (5.39)

Inserting (5.39) and (5.38) into (5.37) we get:

u (x, t) =
1

2c

∫ x+ct

x−ct
[h (y) + cg′ (y)] dy + g (x− ct)

=
1

2c

∫ x+ct

x−ct
h (y) dy +

1

2
[g (x+ ct) − g (x− ct)] + g (x− ct)

and finally the d’Alembert formula

u (x, t) =
1

2
[g(x+ ct) + g (x− ct)] + 1

2c

∫ x+ct

x−ct
h (y) dy. (5.40)
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If g ∈ C2(R) and h ∈ C1 (R), formula (5.40) defines a C2−solution in the half-
plane R×[0,+∞). On the other hand, a C2−solution u in R×[0,+∞) has to be
given by (5.40), just because of the procedure we have used to solve the Cauchy
problem. Thus the solution is unique. Observe however, that no regularizing effect
takes place here: the solution u remains no more than C2 for any t > 0. Thus, there
is a striking difference with diffusion phenomena, governed by the heat equation.
Furthermore, let u1 and u2 be the solutions corresponding to the data g1, h1

and g2, h2, respectively. Then, the d’Alembert formula for u1−u2 yields, for every
x ∈ R and t ∈ [0, T ],

|u1 (x, t)− u2 (x, t)| ≤ ‖g1 − g2‖∞ + T ‖h1 − h2‖∞
where

‖g1 − g2‖∞ = sup
x∈R

|g1 (x)− g2 (x)| , ‖h1 − h2‖∞ = sup
x∈R

|h1 (x)− h2 (x)| .

Therefore, we have stability in pointwise uniform sense, at least for finite time.

Rearranging the terms in (5.40), we may write u in the form12

u (x, t) = F (x+ ct) +G (x− ct) (5.41)

which gives u as a superposition of two progressive waves moving at constant speed
c in the negative and positive x−direction, respectively. Thus, these waves are not
dispersive.
The two terms in (5.41) are respectively constant along the two families of

straight lines γ+ and γ− given by

x+ ct = constant, x− ct = constant.

These lines are called characteristics13 and carry important information, as we
will see in the next subsection.
An interesting consequence of (5.41) comes from looking at figure 5.4. Consider

the characteristic parallelogram with vertices at the point A,B, C,D. From (5.41)
we have

F (A) = F (C) , G (A) = G (B)

F (D) = F (B) , G (D) = G (C) .

12 For instance:

F (x + ct) =
1

2
g (x+ ct) +

1

2c

∫ x+ct

0

h (y) dy

and

G (x − ct) = 1
2
g (x− ct) + 1

2c

∫ 0

x−ct
h (y) dy.

13 In fact they are the characteristics for the two first order factors in the factorization
(5.35).
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Fig. 5.4. Characteristic parallelogram

Summing these relations we get

[F (A) +G (A)] + [F (D) +G (D)] = [F (C) +G (C)] + [F (B) +G (B)]

which is equivalent to

u (A) + u (D) = u (C) + u (B) . (5.42)

Thus, knowing u at three points of a characteristic parallelogram, we can compute
u at the fourth one.

From d’Alembert formula it follows that the value of u at the point (x, t)
depends on the values of g at the points x− ct e x+ ct and on the values of h over
the whole interval [x− ct, x+ ct]. This interval is called domain of dependence
of (x, t) (Fig. 5.5).
From a different perspective, the values of g and h at a point z affect the value

of u at the points (x, t) in the sector

z − ct ≤ x ≤ z + ct,

which is called range of influence of z (Fig. 5.5). This entails that a disturbance
initially localized at z is not felt at a point x until time

t =
|x− z|
c
.

Remark 5.4. Differentiating the last term in (5.40) with respect to time we get:

∂

∂t

1

2c

∫ x+ct

x−ct
h (y) dy =

1

2c
[ch (x+ ct) − (−c)h (x− ct)]

=
1

2
[h (x+ ct) + h (x− ct)]
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Fig. 5.5. Domain of dependence and range of influence

which has the form of the first term with g replaced by h. It follows that if wh
denotes the solution of the problem

{
wtt − c2wxx = 0 x ∈ R, t > 0
w (x, 0) = 0, wt (x, 0) = h (x) . x ∈ R (5.43)

then, d’Alembert formula can be written in the form

u (x, t) =
∂

∂t
wg (x, t) +wh (x, t) . (5.44)

Actually, (5.44), can be established without reference to d’Alembert formula, as
we will see later.

5.4.2 Generalized solutions and propagation of singularities

In Remark 5.3 we have emphasized the necessity of a weak formulation to include
physically realistic data. On the other hand, observe that d’Alembert formula
makes perfect sense even for g continuous and h bounded. The question is in
which sense the resulting function satisfies the wave equation, since, in principle,
it is not even differentiable, only continuous. There are several ways to weaken the
notion of solution to include this case; here, for instance, we mimic what we did
for conservation laws.

Assuming for the moment that u is a smooth solution of the global Cauchy
problem, we multiply the wave equation by a C2−test function v, defined in
R× [0,+∞) and compactly supported. Integrating over R× [0,+∞) we obtain

∫ ∞
0

∫

R

[utt− c2uxx]v dxdt = 0.
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Fig. 5.6. Chord plucked at the origin (c = 1)

Now we integrate by parts both terms twice, to transfer all the derivatives from u
to v. This yields, being v zero outside a compact subset of R× [0,+∞),

∫ ∞
0

∫

R

c2uxxv dxdt =

∫ ∞
0

∫

R

c2uvxx dxdt

and
∫ ∞
0

∫

R

uttv dxdt = −
∫

R

ut (x, 0)v (x, 0)dx−
∫ ∞
0

∫

R

utvt dxdt

= −
∫

R

[ut (x, 0)v (x, 0)− u (x, 0)vt (x, 0)]dx+
∫ ∞
0

∫

R

uvttdxdt.

Using the Cauchy data u (x, 0) = g (x) and ut (x, 0) = h (x), we arrive to the
integral equation

∫ ∞
0

∫

R

u[vtt − c2vxx] dxdt−
∫

R

[h (x) v (x, 0)− g (x) vt (x, 0)]dx = 0. (5.45)

Note that (5.45) makes perfect sense for u continuous, g continuous and h bounded,
only. Conversely, if u is a C2 function that satisfies (5.45) for every test function
v, then it turns out14 that u is a solution of problem (5.34).
Thus we may adopt the following definition.

Definition 5.1. Let g ∈ C (R) and h be bounded in R. We say that u ∈
C (R × [0,+∞)) is a generalized solution of problem (5.34) if (5.45) holds for
every test function v.

If g is continuous and h is bounded, it can be shown that formula (5.41) con-
stitutes precisely a generalized solution.

14 Check it.
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Figure 5.6 shows the wave propagation along a chord of infinite length, plucked
at the origin and originally at rest, modelled by the solution of the problem

{
utt − uxx = 0 x ∈ R, t > 0
u (x, 0) = g (x) , ut (x, 0) = 0 x ∈ R

where g has a triangular profile. As we see, this generalized solution displays lines
of discontinuities of the first derivatives, while outside these lines it is smooth.

We want to show that these lines are characteristics. More generally, consider
a region G ⊂ R× (0,+∞), divided into two domainsG(1) e G(2) by a smooth curve
Γ of equation x = s (t), as in figure 5.7. Let

ν = ν1i+ν2j =
1√

1 + (ṡ (t))2
(−i + ṡ (t) j) (5.46)

be the unit normal to Γ , pointing inward to G(1).

Given any function f defined in G, we denote by

f(1) and f(2)

its restriction to the closure of G(1) and G(2), respectively, and we use the symbol

[f (s (t) , t)] = f(1) (s (t) , t)− f(2) (s (t) , t) .

for the jump of f across Γ , or simply [f ] when there is no risk of confusion.

Now, let u be a generalized solution of our Cauchy problem, of class C2 both in
the closure15 of G(1) and G(2), whose first derivatives undergo a jump discontinuity
on Γ . We want to prove that:

Proposition 5.1. Γ is a characteristic.

Proof. First of all observe that, from our hypotheses, we have [u] = 0 and
[ux] , [ut] �= 0. Moreover, the jumps [ux] and [ut] are continuous along Γ .
By analogy with conservation laws, we expect that the integral formulation

(5.45) should imply a sort of Rankine-Hugoniot condition, relating the jumps of
the derivatives with the slope of Γ and expressing the balance of linear momentum
across Γ .

In fact, let v be a test function with compact support in G. Inserting v into
(5.45), we can write

0 =

∫

G

(
c2uvxx − uvtt

)
dxdt =

∫

G(2)
(...)dxdt+

∫

G(1)
(...) dxdt. (5.47)

15 That is, the first and second derivatives of u extend continuously up to Γ , from both
sides, separately.
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Fig. 5.7. Line of discontinuity of first derivatives

Integrating by parts, since v = 0 on ∂G (dl denotes arc length on Γ ),

∫

G(2)

(
c2u(2)vxx − u(2)vtt

)
dxdt

=

∫

Γ

(ν1c
2u(2)vx − ν2u(2)vt) dl−

∫

G(2)
(c2xu

(2)vx − u(2)t vt) dxdt

=

∫

Γ

(
ν1c

2vx − ν2vt
)
u(2) dl−

∫

Γ

(ν1c
2u(2)x − ν2u(2)t )v dl,

because
∫
G(2)
[c2u

(2)
xx − u(2)tt ]v dxdt = 0. Similarly,

∫

G(1)
(c2u(1)vxx − u(1)vtt) dxdt

= −
∫

Γ

(
ν1c

2vx − ν2vt
)
u(1) dl+

∫

Γ

(ν1c
2u(1)x − ν2u(1)t )v dl,

because
∫
G(2) [c

2u
(1)
xx − u(1)tt ]v dxdt = 0 as well.

Thus, since [u] = 0 on Γ , or more explicitly [u (s (t) , t)] ≡ 0, (5.47) yields
∫

Γ

(
c2 [ux] ν1 − [ut] ν2

)
v dl = 0.

Due to the arbitrariness of v and the continuity of [ux] and [ut] on Γ , we deduce

c2 [ux] ν1 − [ut] ν2 = 0, on Γ ,

or, recalling (5.46),

ṡ = −c2 [ux]
[ut]

on Γ , (5.48)

which is the analogue of the Rankine-Hugoniot condition for conservation laws.
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On the other hand, differentiating [u (s (t) , t)] ≡ 0 we obtain
d

dt
[u (s (t) , t)] = [ux (s (t) , t)]ṡ (t) + [ut (s (t) , t)] ≡ 0

or

ṡ = − [ut]
[ux]

on Γ . (5.49)

Equations (5.48) and (5.49) entail

ṡ (t) = ±c
which yields

s (t) = ±ct+ constant
showing that Γ is a characteristic. �

5.4.3 The fundamental solution

It is rather instructive to solve the global Cauchy problem with g ≡ 0 and a special
h: the Dirac delta at a point ξ, that is h (x) = δ(x− ξ). For instance, this models
the vibrations of a violin string generated by a unit impulse localized at ξ (a strike
of a sharp hammer). The corresponding solution is called fundamental solution
and plays the same role of the fundamental solution for the diffusion equation.
Certainly, the Dirac delta is a quite unusual data, out of reach of the theory

we have developed so far. Therefore, we proceed formally.
Thus, letK = K (x, ξ, t) denote our fundamental solution and apply d’Alembert

formula; we find

K (x, ξ, t) =
1

2c

∫ x+ct

x−ct
δ (y − ξ) dy (5.50)

which at first glance looks like a mathematical UFO.
To get a more explicit formula, we first compute

∫ x
−∞ δ (y) dy. To do it, recall

that (subsection 2.3.3), if H is the Heaviside function and

Iε (y) =
H (y + ε) −H (y − ε)

2ε
=

{ 1
2ε − ε ≤ y < ε

0 everywhere else
(5.51)

is the unit impulse of extent ε, then limε↓0 Iε (y) = δ (y). Then it seems appropriate
to compute

∫ x
−∞ δ (y) dy by means of the formula

∫ x

−∞
δ (y) dy = lim

ε↓0

∫ x

−∞
Iε (y) dy.

Now, we have:

∫ x

−∞
Iε (y) dy =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ −ε
(x+ ε) /2ε − ε < x < ε
1 x ≥ ε.
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Letting ε → 0 we deduce that (the value at zero is irrelevant)
∫ x

−∞
δ (y) dy = H (x) , (5.52)

which actually is not surprising, if we remember that H′ = δ. Everything works
nicely.
Let us go back to our mathematical UFO, by now ... identified; we write

∫ x+ct

x−ct
δ (y − ξ) dy = lim

ε↓0

∫ x+ct

−∞
Iε (y − ξ) dy − lim

ε↓0

∫ x−ct

−∞
Iε (y − ξ) dy.

Then, using (5.50), (5.51) and (5.52), we conclude:

K (x, ξ, t) =
1

2c
{H (x− ξ + ct) −H (x− ξ − ct)} . (5.53)

Figure 5.8 shows the graph of K (x, ξ, t), with c = 1

Fig. 5.8. The fundamental solution K (x, ξ, t)

Note how the initial discontinuity at x = ξ propagates along the characteristics

x = ξ ± t.

We have found the fundamental solution (5.53) through d’Alembert formula.
Conversely, using the fundamental solution we may derive d’Alembert formula.
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Namely, consider the solution wh of the Cauchy problem (5.43), that is with data
(see Remark 5.4)

w (x, 0) = 0, wt (x, 0) = h (x) , x ∈ R.

We may write

h (x) =

∫ +∞
−∞

δ (x− ξ)h (ξ) dξ

looking at h (x) as a superposition of impulses δ (x− ξ)h (ξ), concentrated at ξ.
Then, we may construct wh by superposing the solutions of the same problem with
data δ (x− ξ)h (ξ) instead of h. But these solutions are given by

K (x, ξ, t)h (ξ)

and therefore we obtain

wh (x, t) =

∫ +∞
−∞

K (x, ξ, t)h (ξ) dξ.

More explicitly, from (5.53):

wh (x, t) =
1

2c

∫ +∞
−∞

{H (x− ξ + ct)−H (x− ξ − ct)} h (ξ) dξ

=
1

2c

∫ x+ct

−∞
h (ξ) dξ − 1

2c

∫ x−ct

−∞
h (ξ) dξ

=
1

2c

∫ x+ct

x−ct
h (y) dy.

At this point, (5.44) yields d’Alembert formula.
We shall use this method to construct the solution of the global Cauchy problem

in dimension 3.

5.4.4 Non homogeneous equation. Duhamel’s method

To solve the nonhomogeneous problem

{
utt − c2uxx = f (x, t) x ∈ R, t > 0
u (x, 0) = 0, ut (x, 0) = 0 x ∈ R. (5.54)

we use the Duhamel’s method (see subsection 2.2.8). For s ≥ 0 fixed, let w =
w (x, t; s) be the solution of problem

{
wtt − c2wxx = 0 x ∈ R, t ≥ s
w (x, s; s) = 0, wt (x, s; s) = f (x, s) x ∈ R. (5.55)
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Since the wave equation is invariant under (time) translations, from (5.40) we get

w (x, t; s) =
1

2c

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy.

Then, the solution of (5.54) is given by

u (x, t) =

∫ t

0

w (x, t; s) ds =
1

2c

∫ t

0

ds

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy.

In fact, u (x, 0) = 0 and

ut (x, t) = w (x, t; t) +

∫ t

0

wt (x, t; s) ds =

∫ t

0

wt (x, t; s) ds

since w (x, t; t) = 0. Thus ut (x, 0) = 0. Moreover,

utt (x, t) = wt (x, t; t)+

∫ t

0

wtt (x, t; s) ds = f (x, t) +

∫ t

0

wtt (x, t; s) ds

and

uxx (x, t) =

∫ t

0

wxx (x, t; s) ds.

Therefore, since wtt − c2wxx = 0,

utt (x, t)− c2uxx (x, t) = f (x, t) +
∫ t

0

wtt (x, t; s) ds− c2
∫ t

0

wxx (x, t; s) ds

= f (x, t) .

Everything works and gives the unique solution in C2(R × [0,+∞)), under rather
natural hypotheses on f : we require f and fx be continuous in R× [0,+∞).
Finally note that the value of u at the point (x, t) depends on the values of the

forcing term f in all the triangular sector Sx,t in figure 5.5.

5.4.5 Dissipation and dispersion

Dissipation and dispersion effects are quite important in wave propagation phe-
nomena. Let us go back to our model for the vibrating string, assuming that its
weight is negligible and that there are no external loads.

• External damping. External factors of dissipation like friction due to the
medium may be included into the model through some empirical constitutive law.
Wemay assume, for instance, a linear law of friction expressing a force proportional
to the speed of vibration. Then, a force given by −kρ0utΔxj, where k > 0 is a
damping constant, acts on the segment of string between x and x+Δx. The final
equation takes the form

ρ0utt − τ0uxx + kρ0ut = 0. (5.56)
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For a string with fixed end points, the same calculations in subsection 5.2.2 yield

Ė (t) = −
∫ L

0

kρ0u
2
t dx = −kEcin (t) ≤ 0 (5.57)

which shows a rate of energy dissipation proportional to the kinetic energy.
For equation (5.56), the usual initial-boundary value problems are still well

posed under reasonable assumptions on the data. In particular, the uniqueness of
the solution follows from (5.57), since E (0) = 0 implies E (t) = 0 for all t > 0.

• Internal damping. The derivation of the wave equation in subsection 5.2.1
leads to

ρ0utt = (τvert)x

where τvert is the (scalar) vertical component of the tension. The hypothesis of
vibrations of small amplitude corresponds to taking

τvert � τ0ux, (5.58)

where τ0 is the (scalar) horizontal component of the tension. In other words, we
assume that the vertical forces due to the tension at two end points of a string
element are proportional to the relative displacement of these points. On the other
hand, the string vibrations convert kinetic energy into heat, because of the friction
among the particles. The amount of heat increases with the speed of vibration
while, at the same time, the vertical tension decreases. Thus, the vertical tension
depends not only on the relative displacements ux, but also on how fast these
displacements change with time16. Hence, we modify (5.58) by inserting a term
proportional to uxt:

τvert = τux + γuxt (5.59)

where γ is a positive constant. The positivity of γ follows from the fact that energy
dissipation lowers the vertical tension, so that the slope ux decreases if ux > 0 and
increases if ux < 0. Using the law (5.59) we derive the third order equation

ρ0utt − τuxx − γuxxt = 0. (5.60)

In spite of the presence of the term uxxt, the usual initial-boundary value prob-
lems are again well posed under reasonable assumptions on the data. In particular,
uniqueness of the solution follows once again from dissipation of energy, since, in
this case17 ,

Ė (t) = −
∫ L

0

γρ0u
2
xt ≤ 0.

• Dispersion. When the string is under the action of a vertical elastic restoring
force proportional to u, the equation of motion becomes

utt − c2uxx + λu = 0 (λ > 0) (5.61)

16 In the movie The Legend of 1900 there is a spectacular demo of this phenomenon.
17 Check it.
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known as the linearized Klein-Gordon equation. To emphasize the effect of the
zero order term λu, let us seek for harmonic waves solutions of the form

u (x, t) = Aei(kx−ωt).

Inserting u into (5.61) we find the dispersion relation

ω2 − c2k2 = λ =⇒ ω (k) = ±
√
c2k2 + λ.

Thus, this waves are dispersive with phase and group velocities given respectively
by

cp (k) =

√
c2k2 + λ

|k| , cg =
dω

dk
=

c2 |k|√
c2k2 + λ

.

Observe that cg < cp.
A wave packet solution can be obtained by an integration over all possible wave

numbers k :

u (x, t) =

∫ +∞
−∞

A (k) ei[kx−ω(k)t]dk (5.62)

where A (k) is the Fourier transform of the initial condition:

A (k) =

∫ +∞
−∞

u (x, 0) e−ikxdx.

This entails that, even if the initial condition is localized inside a small interval, all
the wavelength contribute to the value of u. Although we have seen in subsection
5.1.2 that we observe a decaying in amplitude of order t−1/2 (see formula (5.7)),
these dispersive waves do not dissipate energy. For example, if the ends of the
string are fixed, the total mechanical energy is given by

E (t) =
ρ0
2

∫ L

0

(
u2t + c

2u2x + λu
2
)
dx

and one may check that Ė (t) = 0, t > 0.

5.5 Second Order Linear Equations

5.5.1 Classification

To derive formula (5.41) we may use the characteristics in the following way. We
change variables by setting

ξ = x+ ct, η = x− ct (5.63)

or

x =
ξ + η

2
, t =

ξ − η
2c



250 5 Waves and Vibrations

and define

U (ξ, η) = u

(
ξ + η

2
,
ξ − η
2c

)
.

Then

Uξ =
1

2
ux +

1

2c
ut

and since utt = c
2uxx

Uξη =
1

4
uxx −

1

4c
uxt +

1

4c
uxt −

1

4c2
utt = 0.

The equation
Uξη = 0 (5.64)

is called the canonical form of the wave equation; its solution is immediate:

U (ξ, η) = F (ξ) +G (η)

and going back to the original variables (5.41) follows.
Consider now a general equation of the form:

autt + 2buxt + cuxx + dut + eux + hu = f (5.65)

with x, t varying, in general, in a domain Ω. We assume that the coefficients
a, b, c, d, e, h, f are smooth functions18 in Ω. The sum of second order terms

a (x, t)utt + 2b (x, t)uxt + c (x, t)uxx (5.66)

is called principal part of equation (5.65) and determines the type of equation
according to the following classification. Consider the algebraic equation

H (p, q) = ap2 + 2bpq + cq2 = 1 (a > 0). (5.67)

in the plane p, q. If b2−ac < 0, (5.67) defines a hyperbola, if b2−ac = 0 a parabola
and if b2 − ac < 0 an ellipse. Accordingly, equation (5.65) is called:
a) hyperbolic when b2 − ac < 0,
b) parabolic when b2 − ac = 0,
c) elliptic when b2 − ac > 0.

Note that the quadratic form H (p, q) is, in the three cases, indefinite, nonnegative,
positive, respectively. In this form, the above classification extends to equations in
any number of variables, as we shall see later on.
It may happen that a single equation is of different type in different subdomains.

For instance, the Tricomi equation xutt − uxx = 0 is hyperbolic in the half plane
x > 0, parabolic on x = 0 and elliptic in the half plane x < 0.
Basically all the equations in two variables we have met so far are particular

cases of (5.65). Specifically,

18 E.g. C2 functions.
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• the wave equation
utt − c2uxx = 0

is hyperbolic: a (x, t) = 1, c (x, t) = −c2, and the other coefficients are zero;
• the diffusion equation

ut −Duxx = 0
is parabolic: c (x, t) = −D, d (x, t) = 1, and the other coefficients are zero;
• Laplace equation (using y instead of t)

uxx + uyy = 0

is elliptic: a (x, y) = 1, c (x, y) = 1, and the other coefficients are zero.

May we reduce to a canonical form, similar to (5.64), the diffusion and the
Laplace equation? Let us briefly examine why the change of variables (5.63) works
for the wave equation. Decompose the wave operator as follows

∂tt − c2∂xx = (∂t + c∂x) (∂t − c∂x). (5.68)

If we introduce the vectors v =(c, 1) and w = (−c, 1), then (5.68) can be written
in the form

∂tt − c2∂xx = ∂v∂w.
On the other hand, the characteristics

x+ ct = 0, x− ct = 0

of the two first order equations

φt − cφx = 0 and ψt + cψt = 0,

corresponding to the two factors in (5.68), are straight lines in the direction of w
and v, respectively. The change of variables

ξ = φ (x, t) = x+ ct η = ψ (x, t) = x− ct

maps these straight lines into ξ = 0 and η = 0 and

∂ξ =
1

2c
(∂t + c∂x) =

1

2c
∂v, ∂η =

1

2c
(∂t − c∂x) =

1

2c
∂w.

Thus, the wave operator is converted into a multiple of its canonical form:

∂tt − c2∂xx = ∂v∂w = 4c2∂ξη .

Once the characteristics are known, the change of variables (5.63) reduces the wave
equation to the form (5.64).
Proceeding in the same way, for the diffusion operator we would have

∂xx = ∂x∂x.
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Therefore we find only one family of characteristics, given by

t = constant.

Thus, no change of variables is necessary and the diffusion equation is already in
its canonical form.
For the Laplace operator we find

∂xx + ∂yy = (∂y + i∂x) (∂y − i∂x)

and there are two families of complex characteristics given by

φ (x, y) = x+ iy = constant, ψ (x, y) = x− iy = constant.

The change of variables

z = x+ iy, z = x− iy

leads to the equation
∂zzU = 0

whose general solution is

U (z, z) = F (z) +G (z) .

This formula may be considered as a characterization of the harmonic function in
the complex plane.
It should be clear, however, that the characteristics for the diffusion and the

Laplace equations do not play the same relevant role as they do for the wave
equation.

5.5.2 Characteristics and canonical form

Let us go back to the equation in general form (5.65). Can we reduce to a canonical
form its principal part? There are at least two substantial reasons to answer the
question.
The first one is tied to the type of well posed problems associated with (5.65):

which kind of data have to be assigned and where, in order to find a unique
and stable solution? It turns out that hyperbolic, parabolic and elliptic equations
share their well posed problems with their main prototypes: the wave, diffusion
and Laplace equations, respectively. Also the choice of numerical methods depends
very much on the type of problem to be solved.
The second reason comes from the different features the three types of equation

exhibit. Hyperbolic equations model oscillatory phenomena with finite speed of
propagation of the disturbances, while for parabolic equation, “information”travels
with infinite speed. Finally, elliptic equations model stationary situations, with no
evolution in time.
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To obtain the canonical form of the principal part we try to apply the ideas
at the end of the previous subsection. First of all, note that, if a = c = 0, the
principal part is already in the form (5.64), so that we assume a > 0 (say). Now
we decompose the differential operator in (5.66) into the product of two first order
factors, as follows19:

a∂tt + 2b∂xt + c∂xx = a
(
∂t − Λ+∂x

) (
∂t − Λ−∂x

)
(5.69)

where

Λ± =
−b±

√
b2 − ac
a

.

Case 1: b2 − ac > 0, the equation is hyperbolic. The two factors in (5.69)
represent derivatives along the direction fields

v (x, t) =
(
−Λ+ (x, t) , 1

)
and w (x, t) =

(
−Λ− (x, t) , 1

)

respectively, so that we may write

a∂tt + 2b∂xt + c∂xx = a∂v∂w.

The vector fields v and w are tangent at any point to the characteristics

φ (x, t) = k1 and ψ (x, t) = k2 (5.70)

of the following quasilinear first-order equations

φt − Λ+φx = 0 and ψt − Λ−ψx = 0. (5.71)

Note that we may write the two equations (5.71) in the compact form

av2t + 2bvxvt + cv
2
x = 0. (5.72)

By analogy with the case of the wave equation, we expect that the change of
variables

ξ = φ (x, t) , η = ψ (x, t) (5.73)

should straighten the characteristics, at least locally, converting ∂v∂w into a mul-
tiple of ∂ξη .
First of all, however, we have to make sure that the transformation (5.73)

is non-degenerate, at least locally, or, in other words, that the Jacobian of the
transformation does not vanish:

φtψx − φxψt �= 0. (5.74)

19 Remember that
ax2 + 2bxy + cy2 = a (x− x1) (x− x2)

where
x1,2 =

[
−b±

√
b2 − ac

]
/a.
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On the other hand, this follows from the fact that the vectors ∇φ and ∇ψ are
orthogonal to v and w, respectively, and that v, w are nowhere colinear (since
b2 − ac > 0).
Thus, at least locally, the inverse transformation

x = Φ (ξ, η) , t = Ψ (ξ, η)

exists. Let
U (ξ, η) = u (Φ (ξ, η) , Ψ (ξ, η)) .

Then
ux = Uξφx + Uηψx, ut = Uξφt + Uηψt

and moreover

utt = φ
2
tUξξ + 2φtψtUξη + ψ

2
tUηη + φttUξ + ψttUη

uxx = φ
2
xUξξ + 2φxψxUξη + ψ

2
xUηη + φxxUξ + ψxxUη

uxt = φtφxUξξ + (φxψt + φtψx)Uξη + ψtψxUηη + φxtUξ + ψxtUη.

Then
autt + 2buxy + cuxx = AUξξ + 2BUξη + CUηη +DUξ + EUη

where20

A = aφ2t + 2bφtφx + cφ
2
x, C = aψ2t + 2bψtψx + cψ

2
x

B = aφtψt + b(φxψt + φtψx) + cφxψx

D = aφtt + 2bφxt + cφxx, E = aψtt + 2bψxt + cψxx.

Now, A = C = 0, since φ and ψ both satisfy (5.72), so that

autt + 2buxt + cuxx = 2BUξη +DUξ + EUη .

We claim that B �= 0; indeed, recalling that Λ+Λ− = c/a, Λ+ + Λ+ = −2b/a and

φt = Λ
+φx, ψt = Λ

−ψx,

after elementary computations we find

B =
2

a

(
ac − b2

)
φxψx.

From (5.71) and (5.74) we deduce that B �= 0. Thus, (5.65) assumes the form

Uξη = F (ξ, η, U, Uξ, Uη)

which is its canonical form.

20 It is understood that all the functions are evaluated at x = Φ (ξ, η) and t = Ψ (ξ, η) .
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The curves (5.70) are called characteristics for (5.65) and are the solution
curves of the ordinary differential equations

dx

dt
= −Λ+, dx

dt
= −Λ−, (5.75)

respectively. Note that the two equations (5.75) can be put into the compact form

a

(
dx

dt

)2
− 2bdx

dt
+ c = 0. (5.76)

Example 5.1. Consider the equation

xutt −
(
1 + x2

)
uxt = 0. (5.77)

Since b2 − ac =
(
1 + x2

)
/4 > 0, (5.77) is hyperbolic. Equation (5.76) is

x

(
dx

dt

)2
+
(
1 + x2

) dx
dt
= 0

which yields, for x �= 0,
dx

dt
= −1 + x

2

x
and

dx

dt
= 0 .

Thus, the characteristics curves are:

φ (x, t) = e2t
(
1 + x2

)
= k1 and ψ (x, t) = x = k2.

We set
ξ = e2t

(
1 + x2

)
and η = x.

After routine calculations, we find D = E = 0 so that the canonical form is

Uξη = 0.

The general solution of (5.77) is therefore

u (x, t) = F
(
e2t
(
1 + x2

))
+G (x)

with F and G arbitrary C2 functions.

Case 2: b2−ac ≡ 0, the equation is parabolic. There exists only one family
of characteristics, given by φ (x, t) = k, where φ is a solution of the first order
equation

aφt + bφx = 0,

since Λ+ = Λ− = −b/a. If φ is known, choose any smooth function ψ such that
∇φ and ∇ψ are linearly independent and

aψ2t + 2bψtψx + cψ
2
x = C �= 0.



256 5 Waves and Vibrations

Set

ξ = φ (x, t) , η = ψ (x, t)

and

U (ξ, η) = u (Φ (ξ, η) , Ψ (ξ, η)) .

For the derivatives of U we can use the computations done in case 1. However,
observe that, since b2 − ac = 0 and aφt + bφx = 0, we have

B = aφtψt + b(φtψx + φxψt) + cφxψx = ψt(aφt + bφx) + ψx(bφt + cφx)

= bψx

(
φt +

c

b
φx

)
= bψx

(
φt +

b

a
φx

)
=
b

a
ψx(aφt + bφx) = 0.

Thus, the equation for U becomes

CUηη = F (ξ, η, U, Uξ, Uη)

which is the canonical form.

Example 5.2. The equation

utt − 6uxt + 9uxx = u

is parabolic. The family of characteristics is

φ (x, t) = 3t+ x = k.

Choose ψ (x, t) = x and set

ξ = 3t+ x, η = x.

Since ∇φ = (3, 1) and ∇ψ = (1, 0), the gradients are independent and we set

U (ξ, η) = u

(
ξ − η
3
, η

)
.

We have, D = E = 0, so that the equation for U is

Uηη − U = 0

whose general solution is

U (ξ, η) = F (ξ) e−η +G (ξ) eη

with F and G arbitrary C2 functions. Finally, we find

u (x, t) = F (3t+ x) e−x +G (3t+ x) ex.
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Case 3: b2 − ac < 0, the equation is elliptic. In this case there are no real
characteristics. If the coefficients a, b, c are analytic functions21 we can proceed as
in case 1, with two families of complex characteristics. This yields the canonical
form

Uzw = G (z, w, U, Uz, Uw) z, w ∈ C.
Letting

z = ξ + iη, w = ξ − iη
and Ũ (ξ, η) = U (ξ + iη, ξ − iη) we can eliminate the complex variables arriving
at the real canonical form

Ũξξ + Ũηη = G̃
(
ξ, η, Ũ, Ũξ, Ũη

)
.

5.6 Hyperbolic Systems with Constant Coefficients

In principle, it is always possible and often convenient, to reduce second order
equations to first order systems. For instance, the change of variables

ux = w1 and ut = w2

transforms the wave equation utt − c2uxx = f into the system

wt +Awx = f , (5.78)

where22 w = (w1, w2)
�
, f =(0, f)

�
and

A =

(
0 −1
−c2 0

)
.

Note that the matrix A has the two real distinct eigenvalues λ± = ±c, with
eigenvectors

v+ = (1,−c)� and v− = (1, c)
�

normal to the characteristics, reflecting the hyperbolic nature of the wave equation.
More generally, consider the linear system

ut +Aux +Bu = f (x, t) x ∈ R, t > 0,

where u and f are column vectors in Rm and A,B are constant m×m matrices,
with the initial condition

u (x, 0) = g (x) x ∈ R.

We say that the system is hyperbolic if A has m real distinct eigenvalues λ1,
λ2, ..., λm.

21 I.e. they can be locally expanded in Taylor series.
22 The symbol � denotes transposition .
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In this case, we can solve our initial value problem, extending the method of
characteristics. Namely, there exists in Rm a base of m (column) eigenvectors

V1, V2, ...,Vm.

If we introduce the non singular matrix

Γ =
(
V1 | V2 | ... | Vm

)

then
Γ−1AΓ = Λ = diag (λ1, λ2, ..., λm) .

Now, letting v = Γ−1u, we discover that v solves the system

vt +Λvx = B
∗v + f∗ x ∈ R, t > 0 (5.79)

where B∗ = Γ−1BΓ and f ∗= Γ−1f , with initial condition

v (x, 0) = g∗ (x) = Γ−1g (x) x ∈ R.

The left hand side of system (5.79) is uncoupled and the equation for the component
vk of v takes the form:

(vk)t + λk(vk)x =

m∑
j=1

b∗kjvj + f
∗
k k = 1, ..., m.

Note that if b∗kj = 0 for j �= k, then the right hand side is uncoupled as well. Thus
the above equation becomes

(vk)t + λk(vk)x = b
∗
kkvk + f

∗
k k = 1, ..., m (5.80)

and can be solved by the method of characteristic, as described in Chapter 4.
Coherently, we call characteristics the straight lines γk

x− λkt = k, k = 1, ..., m.

In the particular case of homogeneous systems, that is

ut +Aux = 0 x ∈ R, t > 0, (5.81)

equation (5.80) is (vk)t + λk(vk)x = 0 and its general solution is the travelling
wave vk (x, t) = wk(x − λkt), with wk arbitrary and differentiable. Then, since
u = Γv, the general solution of (5.81) is given by the following linear combination
of travelling waves:

u (x, t) =

m∑
k=1

wk(x− λkt)Vk. (5.82)

Choosing wk = g
∗
k we find the unique solution satisfying u (x, 0) = g (x).
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• The telegrapher’s system. Systems of first order equations arise in many areas
of applied sciences. A classical example is

LIt + Vx +RI = 0, (5.83)

CVt + Ix +GV = 0 (5.84)

which describes the flow of electricity in a line, such as a coaxial cable. The variable
x is a coordinate along the cable. I = I (x, t) and V (x, t) represent the current
in the inner wire and the voltage across the cable, respectively. The electrical
properties of the line are encoded by the constants C, capacitance to ground, R,
resistance and G, conductance to ground, all per unit length.
We assign initial conditions

I (x, 0) = I0 (x) , V (x, 0) = V0 (x) .

Introducing the column vector u =(V, I)
�
and the matrices

A =

(
0 1/L
1/C 0

)
M =

(
−R/L 0
0 −G/L

)
,

we may write the system in the form

ut +Aux =Mu. (5.85)

Also in this case the matrix A has real distinct eigenvalues λ1,2 = ±1/
√
LC, with

corresponding eigenvectors

v1 =
(√
C,
√
L
)�

v2 =
(√
C,−

√
L
)�
.

Thus, system (5.85) is hyperbolic. Let

Γ =

(√
C
√
C√

L −
√
L

)

and

w = Γ−1u =
1

2

(
1/
√
C 1/

√
L

1/
√
C −1/

√
L

)(
u1
u2

)
.

Then w solves
wt +Λux = Dw (5.86)

where

Λ =

(
1/
√
LC 0

0 −1/
√
LC

)
, D = Γ−1MΓ = − 1

2LC

(
RC +GL RC −GL
RC −GL RC +GL

)
.

The left hand side of (5.86) is uncoupled. In the special case RC = GL (see
Problem 5.13), the full system is uncoupled and reduces to the equations

w±t ±
1√
LC
w±x = −

R

L
w± (5.87)
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with initial conditions

w± (x, 0) =
1

2

[
I0 (x)√
C
± V0 (x)√

L

]
≡ w±0 (x) .

Applying to both equations (5.87) the method of characteristics, we find (Section
4.2.3.)

w± (x, t) = w±0

(
x± 1√

LC
t

)
e−

R
L t.

Finally, formula (5.82) gives

u (x, t) =

{
w+0 (x+ t/

√
LC)

(√
C√
L

)
+w−0 (x− t/

√
LC)

( √
C

−
√
L

)}
e−

R
L t.

Thus, the solution is given by the superposition of two damped travelling waves. If
RC �= GL there is no explicit formulas and one has to resort to numerical methods.

Remark 5.5. When the relevant domain is a quadrant, say x > 0, t > 0, or a half-
strip (a, b)× (0 +∞), some caution is necessary to get a well posed problem. For
instance, consider the problem

ut +Aux = 0 x ∈ [0, R] , t > 0 (5.88)

with the initial condition

u (x, 0) = g (x) x ∈ [0, R] .

Which kind of data and where should they be assigned to uniquely determine u?
Look at the k−th equation of the uncoupled problem

(vk)t + λk(vk)x = 0.

Suppose λk > 0, so that the characteristic γk is inflow on x = 0 and outflow on
x = R. Guided by the scalar case (subsection 4.2.4), we must assign the value of
vk only on x = 0. On the contrary, if λk < 0, the value of vk has to be assigned
on x = R.
The conclusion is: suppose that r eigenvalues (say λ1, λ2, ..., λr) are positive

and the other m − r eigenvalues are negative. Then the values of v1, ..., vr have
to be assigned on x = 0 and the values of vr+1, ..., vm on x = R. In terms of
the original unknown u, this amounts to assign, on x = 0, r independent linear
combinations of the u components:

(
Γ−1u

)
k
=

m∑
j=1

cjkuj k = 1, 2, ..., r,

while other m− r have to be assigned on x = R.
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5.7 The Multi-dimensional Wave Equation (n > 1)

5.7.1 Special solutions

The wave equation
utt − c2Δu = f, (5.89)

constitutes a basic model for describing a remarkable number of oscillatory phe-
nomena in dimension n > 1. Here u = u (x,t), x ∈Rn and, as in the one-dimensional
case, c is the speed of propagation. If f ≡ 0, the equation is said homogeneous and
the superposition principle holds. Let us examine some relevant solutions of (5.89).

• Plane waves. If k ∈Rn and ω2 = c2 |k|2, the function

u (x,t) = w (x · k−ωt)

is a solution of the homogeneous (5.89). Indeed,

utt (x,t) − c2Δu (x,t) = ω2w′′ (x · n−ωt)− c2 |k|2 w′′ (x · n−ωt) = 0.

We have already seen in subsection 5.1.1 that the planes

x · k−ωt = constant

constitute the wave fronts, moving at speed cp = ω/ |k| in the k direction. The
scalar λ = 2π/ |k| is the wavelength. If w (z) = Aeiz , the wave is said monochro-
matic or harmonic.

• Cylindrical waves (n = 3) are of the form

u (x,t) = w (r, t)

where x =(x1, x2, x3), r =
√
x21 + x

2
2. In particular, solutions like u (x,t) =

eiωtw (r) represent stationary cylindrical waves, that can be found solving the ho-
mogeneous version of equation (5.89) using the separation of variables, in axially
symmetric domains.
If the axis of symmetry is the x3 axis, it is appropriate to use the cylindrical

coordinates x1 = r cos θ, x2 = r sin θ, x3. Then, the wave equation becomes
23

utt − c2
(
urr +

1

r
ur +

1

r2
uθθ + ux3x3

)
= 0.

Looking for standing waves of the form u (r, t) = eiλctw (r), λ ≥ 0, we find, after
dividing by c2eiλct,

w′′ (r) +
1

r
w′ + λ2w = 0.

This is a Bessel equation of zero order. We know that the only solutions bounded
at r = 0 are

w (r) = aJ (λr) , a ∈ R
23 Appendix C.
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where, we recall,

J0 (x) =

∞∑
k=0

(−1)k

(k!)
2

(x
2

)2k

is the Bessel function of first kind of zero order. In this way we obtain waves of
the form

u (r, t) = aJ0 (λr) e
iλct.

• Spherical waves (n = 3) are of the form

u (x,t) = w (r, t)

where x =(x1, x2, x3), r = |x| =
√
x21 + x

2
2 + x

2
3. In particular u (x,t) = e

iωtw (r)
represent standing spherical waves and can be determined by solving the homoge-
neous version of equation (5.89) using separation of variables in spherically sym-
metric domains. In this case, spherical coordinates

x1 = r cos θ sinψ, x2 = r sin θ sinψ, x3 cosψ,

are appropriate and the wave equation becomes24

1

c2
utt − urr −

2

r
ur −

1

r2

{
1

(sinψ)2
uθθ + uψψ +

cosψ

sinψ
uψ

}
= 0. (5.90)

Let us look for solutions of the form u (r, t) = eiλctw (r), λ ≥ 0. We find, after
simplifying out c2eiλct,

w′′ (r) +
2

r
w′ + λ2w = 0

which can be written25

(rw)′′ + λ2rw = 0.

Thus, v = rw is solution of
v′′ + λ2v = 0

which gives v (r) = a cos (λr)+b sin (λr) and hence the attenuated spherical waves

w (r, t) = aeiλct
cos (λr)

r
, w (r, t) = beiλct

sin (λr)

r
. (5.91)

Let us now determine the general form of a spherical wave in R3. Inserting
u (x,t) = w (r, t) into (5.90) we obtain

wtt − c2
{
wrr (r) +

2

r
wr

}
= 0

24 Appendix C.
25 Thanks to the miraculous presence of the factor 2 in the coefficient of w′!
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which can be written in the form

(rw)tt − c2 (rw)rr = 0. (5.92)

Then, formula (5.41) gives

w (r, t) =
F (r + ct)

r
+
G (r − ct)
r

≡ wi (r, t) +wo (r, t) (5.93)

which represents the superposition of two attenuated progressive spherical waves.
The wave fronts of uo are the spheres r−ct = k, expanding as time goes on. Hence,
wo represents an outgoing wave. On the contrary, the wave wi is incoming, since
its wave fronts are the contracting spheres r + ct = k.

5.7.2 Well posed problems. Uniqueness

The well posed problems in dimension one, are still well posed in any number of
dimensions. Let

QT = Ω × (0, T )
a space-time cylinder, where Ω is a bounded C1−domain26 in Rn. A solution
u (x,t) is uniquely determined by assigning initial data and appropriate boundary
conditions on the boundary ∂Ω of Ω.
More specifically, we may pose the following problems: Determine u = u (x, t)

such that:
⎧⎪⎪⎨
⎪⎪⎩

utt − c2Δu = f in QT

u (x, 0) = g (x) , ut (x,0) = h (x) in Ω

+ boundary conditions on ∂Ω × [0, T )
(5.94)

where the boundary conditions are:

(a) u = h (Dirichlet),

(b) ∂νu = h (Neumann),

(c) ∂νu+ αu = h (α > 0, Robin),

(d) u = h1 on ∂DΩ and ∂νu = h2 on ∂NΩ (mixed problem) with ∂NΩ a
relatively open subset of ∂Ω and ∂DΩ = ∂Ω\∂NΩ.
The global Cauchy problem

{
utt − c2Δu = f x ∈Rn, t > 0
u (x, 0) = g (x) , ut (x,0) = h (x) x ∈Rn (5.95)

is quite important also in dimension n > 1. We will examine it with some details
later on. Particularly relevant are the different features that the solutions exhibit
for n = 2 and n = 3.
26 As usual we can afford corner points (e.g. a triangle or a cone) and also some edges
(e.g. a cube or a hemisphere).
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Under rather natural hypotheses on the data, problem (5.94) has at most one
solution. To see it, we may use once again the conservation of energy, which is
proportional to:

E (t) =
1

2

∫

Ω

{
u2t + c

2 |∇u|2
}
dx.

The growth rate is:

Ė (t) =

∫

Ω

{
ututt + c

2∇ut · ∇u
}
dx.

Integrating by parts, we have
∫

Ω

c2∇ut · ∇u dx =c2
∫

∂Ω

uνut dσ −
∫

Ω

c2utΔu dx

whence, since utt − c2Δu = f ,

Ė (t) =

∫

Ω

{
utt − c2Δu

}
ut dx+c

2

∫

∂Ω

uνut dσ =

∫

Ω

fut dx+c
2

∫

∂Ω

uνut dσ.

Now it is easy to prove the following result, where we use the symbol Ch,k (D)
to denote the set of functions h times continuously differentiable with respect to
space and k times with respect to time in D.

Theorem 5.1. Problem (5.94), coupled with one of the boundary conditions (a)−
(d) above, has at most one solution in C2,2 (QT ) ∩ C1,1

(
QT
)
.

Proof. Let u1 and u2 be solutions of the same problem, sharing the same data.
Their difference w = u1− u2 is a solution of the homogeneous equation, with zero
data. We show that w (x,t) ≡ 0.
In the case of Dirichlet, Neumann and mixed conditions, since either wν = 0

or wt = 0 on ∂Ω × [0, T ), we have Ė (t) = 0. Thus, since E (0) = 0, we infer:

E (t) =
1

2

∫

Ω

{
w2t + c

2 |∇w|2
}
dx =0, ∀t > 0.

Therefore, for each t > 0, both wt and |∇w (x,t)| vanish so that w (x,t) is constant.
Then w (x,t) ≡ 0, since w (x, 0) = 0.
For the Robin problem

Ė (t) = −c2
∫

∂Ω

αwwt dσ = −
c2

2

d

dt

∫

∂Ω

αw2 dσ

that is
d

dt

{
E (t) +

c2

2

∫

∂Ω

αw2 dσ

}
= 0.

Hence,

E (t) +
c2

2

∫

∂Ω

αw2dσ = constant
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Fig. 5.9. Retrograde cone

and, being zero initially, it is zero for all t > 0. Since α > 0, we again conclude
that w ≡ 0. �
Uniqueness for the global Cauchy problem follows from another energy inequal-

ity, with more interesting consequences.
First a remark. For sake of clarity, let n = 2. Suppose that a disturbance

governed by the homogeneous wave equation (f = 0) is felt at x0 at time t0. Since
the disturbances travel with speed c, u (x0, t0) is, in principle, only affected by the
values of the initial data in the circle Bct0 (x0). More generally, at time t0 − t,
u (x0, t0) is determined by those values in the circle Bc(t0−t) (x0). As t varies from
0 to t0, the union of the circles Bc(t0−t) (x0) in the x,t space coincides with the so
called backward or retrograde cone with vertex at (x0, t0) and opening θ = tan

−1 c,
given by (see Fig. 5.9):

Cx0,t0 = {(x,t) : |x− x0| ≤ c(t0 − t), 0 ≤ t ≤ t0} .
Thus, given a point x0, it is natural to introduce an energy associated with its
backward cone by the formula

e (t) =
1

2

∫

Bc(t0−t)(x0)
(u2t + c

2 |∇u|2)dx.

It turns out that e (t) is a decreasing function. Namely:

Lemma 5.1. Let u be a C2−solution of the homogeneous wave equation in Rn ×
[0,+∞). Then

ė (t) ≤ 0.
Proof. We may write

e (t) =
1

2

∫ c(t0−t)

0

dr

∫

∂Br(x0)

(u2t + c
2 |∇u|2)dσ
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so that

ė (t) = − c
2

∫

∂Bc(t0−t)(x0)
(u2t + c

2 |∇u|2)dσ +
∫

Bc(t0−t)(x0)

(
ututt + c

2∇u · ∇ut
)
dx.

An integration by parts yields

∫

Bc(t0−t)(x0)
∇u · ∇ut dx =

∫

∂Bc(t0−t)(x0)
utuν dσ −

∫

Bc(t0−t)(x0)
utΔu dx

whence

ė (t) =

∫

Bc(t0−t)(x0)
ut(utt − c2Δu)dx+

c

2

∫

∂Bc(t0−t)(x0)
(2cutuν − u2t − c2 |∇u|2)dσ

=
c

2

∫

∂Bc(t0−t)(x0)
(2cutuν − u2t − c2 |∇u|2)dσ

Now

|utuν | ≤ |ut| |∇u|
so that

2cutuν − u2t − c2 |∇u|2 ≤ 2c |ut| |∇u| − u2t − c2 |∇u|2 = − (ut − c |∇u|)2 ≤ 0

and therefore ė (t) ≤ 0. �
Two almost immediate consequences are stated in the following theorem:

Theorem 5.2. Let u ∈ C2 (Rn × [0,+∞)) be a solution of the Cauchy problem
(5.95). Then:

(a) If g ≡ h ≡ 0 in Bct0 (x0) and f ≡ 0 in Cx0,t0 then u ≡ 0 in Cx0,t0.
(b) Problem (5.95) has at most one solution in C2 (Rn × [0,+∞)) .

5.8 Two Classical Models

5.8.1 Small vibrations of an elastic membrane

In subsection 5.2.3 we have derived a model for the small transversal vibrations of
a string. Similarly, we may derive the governing equation of the small transversal
vibrations of a highly stretched membrane (think e.g. of a drum), at rest in the
horizontal position. We briefly sketch the derivation leaving it to the reader to fill
in the details. Assume the following hypotheses.

1. The vibrations of the membrane are small and vertical. This means that the
changes from the plane horizontal shape are very small and horizontal dis-
placements are negligible.
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2. The vertical displacement of a point of the membrane depends on time and
on its position at rest. Thus, if u denotes the vertical displacement of a point
located at rest at (x, y), we have u = u (x, y, t).

3. The membrane is perfectly flexible and elastic. There is no resistance to bend-
ing. In particular, the stress in the membrane can be modelled by a tangential
force T of magnitude τ , called tension27. Perfect elasticity means that τ is a
constant.

4. Friction is negligible.

Under the above assumptions, the equation of motion of the membrane can be
derived from conservation of mass and Newton’s law.
Let ρ0 = ρ0 (x, y) be the surface mass density of the membrane at rest and

consider a small “rectangular” piece of membrane, with vertices at the points
A,B, C,D of coordinates (x, y), (x + Δx, y), (x, y+Δy) and (x+Δx, y+Δy),
respectively. Denote by ΔS the corresponding area at time t. Then, conservation
of mass yields

ρ0 (x, y)ΔxΔy = ρ (x, y, t)ΔS. (5.96)

To write Newton’s law of motion we have to determine the forces acting on our
small piece of membrane. Since the motion is vertical, the horizontal forces have
to balance.
The vertical forces are given by body forces (e.g. gravity and external loads)

and the vertical component of the tension.
Denote by f (x, y, t)k the resultant of the body forces per unit mass. Then, us-

ing (5.96), the body forces acting on the membrane element are well approximated
by:

ρ (x, y, t) f (x, y, t)ΔS k = ρ0 (x, y) f (x, y, t)ΔxΔy k.

Along the edges AB and CD, the tension is perpendicular to the x−axis and
almost parallel to the y−axis. Its (scalar) vertical components are respectively
given by

τvert (x, y, t) � τuy (x, y, t)Δx, τvert (x, y +Δy, t) � τuy (x, y+Δy, t)Δx.

Similarly, along the edge AC, the tension is perpendicular to the y−axis and almost
parallel to the x−axis. Its (scalar) vertical components are respectively given by

τvert (x, y, t) � τux (x, y, t)Δy, τvert (x+Δx, y, t) � τux (x+Δx, y, t)Δy.
27 The tension T has the following meaning. Consider a small region on the membrane,
delimited by a closed curve γ. The material on one side of γ exerts on the material on
the other side a force per unit length T (pulling) along γ. A constitutive law for T is

T (x, y,t)=τ (x, y,t)N (x, y,t) (x, y)∈ γ
where N is the outward unit normal vector to γ, tangent to the membrane.
Again, the tangentiality of the tension force is due to the absence of distributed

moments over the membrane.
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Thus, using (5.96) again and observing that utt is the (scalar) vertical acceleration,
Newton’s law gives:

ρ0 (x, y)ΔxΔy utt =

= τ [uy (x, y+Δy, t)− uy (x, y, t)]Δx+ τ [ux (x+Δx, y, t)− ux (x, y, t)]Δy+
+ρ0 (x, y) f (x, y, t)ΔxΔy.

Dividing for ΔxΔy and letting Δx,Δy→ 0, we obtain the equation

utt − c2(uyy + uxx) = f (x, y, t) (5.97)

where c2 (x, y, t) = τ/ρ0 (x, y).

• Square Membrane. Consider a membrane occupying at rest a square of side
a, pinned at the boundary. We want to study its vibrations when the membrane
is initially horizontal, with speed h = h (x, y). If there is no external load and the
weight of the membrane is negligible, the vibrations are governed by the following
initial-boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

utt − c2Δu = 0 0 < x < a, 0 < y < a, t > 0

u (x, y, 0) = 0, ut (x, y, 0) = h (x, y) 0 < x < a, 0 < y < a

u (0, y, t) = u (a, y, t) = 0
u (x, 0, t) = u (x, a, t) = 0

0 ≤ y ≤ a, t ≥ 0
0 ≤ x ≤ a, t ≥ 0.

The square shape of the membrane and the homogeneous boundary conditions
suggest the use of separation of variables. Let us look for solution of the form

u (x, y, t) = v (x, y) q (t)

with v = 0 at the boundary. Substituting into the wave equation we find

q′′ (t) v (x, y) − c2q (t)Δv (x, y) = 0

and, separating the variables,

q′′ (t)
c2q (t)

=
Δv (x, y)

v (x, y)
= −λ2

whence28 the equation
q′′ (t) + c2λ2q (t) = 0. (5.98)

and the eigenvalue problem
Δv + λ2v = 0 (5.99)

v (0, y) = v (a, y) = v (x, 0) = v (x, a) = 0, 0 ≤ x, y ≤ a.
28 The two ratios must be equal to the same constant. The choice of −λ2 is guided by
our former experience....
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We first solve the eigenvalue problem, using once more separation of variables and
setting v (x, y) = X (x)Y (y), with the conditions

X (0) = X (a) = 0, Y (0) = Y (a) = 0.

Substituting into (5.99), we obtain

Y ′′ (y)
Y (y)

+ λ2 = −X
′′ (x)
X (x)

= μ2

where μ is a new constant.
Letting ν2 = λ2 − μ2, we have to solve the following two one-dimensional

eigenvalue problems, in 0 < x < a and 0 < y < a, respectively:
{
X′′ (x) + μ2X (x) = 0
X (0) = X (a) = 0

{
Y ′′ (y) + ν2Y (y) = 0
Y (0) = Y (a) = 0.

The solutions are:

X (x) = Am sinμmx, μm =
mπ

a

Y (y) = Bn sin νny, νn =
nπ

a

where m, n = 1, 2, ... . Since λ2 = ν2 + μ2, we have

λ2mn =
π2

a2
(
m2 + n2

)
, m, n = 1, 2, ... (5.100)

corresponding to the eigenfunctions

vmn (x, y) = Cmn sinμmx sinνny.

For λ = λmn, the general integral of (5.98) is

qmn (t) = amn cos cλmnt + bm sin cλmnt.

Thus we have found infinitely many special solutions to the wave equations, of the
form,

umn = (amn cos cλmnt+ bmn sin cλmnt) sinμmx sin νny.

which, moreover, vanish on the boundary.
Every umn is a standing wave and corresponds to a particular mode of vi-

bration of the membrane. The fundamental frequency is f11 = c
√
2/2a, while the

other frequencies are fmn = c
√
m2 + n2/2a, which are not integer multiple of the

fundamental one (as they do for the vibrating string).

Going back to our problem, to find a solution which satisfies the initial condi-
tions, we superpose the modes umn defining

u (x, y, t) =

∞∑
m,n=1

(amn cos cλmnt+ bmn sin cλmnt) sinμmx sinνny.
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Since u (x, y, 0) = 0 we choose amn = 0 for every m, n ≥ 1. From ut (x, y, 0) =
h (x, y) we find the condition

∞∑
m,n=1

cbmnλmn sinμmx sinνnx = h (x, y) . (5.101)

Therefore, we assume that h can be expanded in a double Fourier sine series as
follows:

h (x, y) =

∞∑
m,n=1

hmn sinμmx sin νny,

where the coefficients hmn are given by

hmn =
4

a2

∫

Q

h (x, y) sin
mπ

a
x sin

nπ

a
y dxdy.

Then, if we choose bmm = hmm/cλmn, (5.101) is satisfied. Thus, we have con-
structed the formal solution

u (x, y, t) =

∞∑
m,n=1

hmn
cλmn

sin cλmnt sinμmx sin νny. (5.102)

If the coefficients hmm/cλmn vanish fast enough as m, n → +∞, it can be shown
that (5.102) gives the unique solution29.

5.8.2 Small amplitude sound waves

Sound waves are small disturbances in the density and pressure of a compressible
gas. In an isotropic gas, their propagation can be described in terms of a single
scalar quantity. Moreover, due to the small amplitudes involved, it is possible to
linearize the equations of motion, within a reasonable range of validity. Three are
the relevant equations: two of them are conservation of mass and balance of linear
momentum, the other one is a constitutive relation between density and pressure.
Conservation of mass expresses the relation between the gas density ρ = ρ (x,t)

and its velocity v = v (x,t):

ρt + div (ρv) = 0. (5.103)

The balance of linear momentum describes how the volume of gas occupying a
region V reacts to the pressure exerted by the rest of the gas. Assuming that the
viscosity of the gas is negligible, this force is given by the normal pressure −pν on
the boundary of V (ν is the exterior normal to ∂V ).

29 We leave it the reader to find appropriate smoothness hypotheses on h, in order to
assure that (5.102) is the unique solution.
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Thus, if there are no significant external forces, the linear momentum equation
is

Dv

Dt
≡ vt + (v·∇)v = −

1

ρ
∇p. (5.104)

The last equation is an empirical relation between p and ρ. Since the pressure
fluctuations are very rapid, the compressions/expansions of the gas are adiabatic,
without any loss of heat .
In these conditions, if γ = cp/cv is the ratio of the specific heats of the gas

(γ ≈ 1.4 in air) then p/ργ is constant, so that we may write
p = f (ρ) = Cργ (5.105)

with C constant.
The system of equations (5.103), (5.104), (5.105) is quite complicated and it

would be extremely difficult to solve it in its general form. Here, the fact that
sound waves are only small perturbation of normal atmospheric conditions allows
a major simplification. Consider a static atmosphere, where ρ0 and p0 are constant
density and pressure, with zero velocity field. We may write

ρ = (1 + s) ρ0 ≈ ρ0
where s is a small dimensionless quantity, called condensation and representing
the fractional variation of the density from equilibrium. Then, from (5.105), we
have

p− p0 ≈ f ′ (ρ0) (ρ− ρ0) = sρ0f ′ (ρ0) (5.106)

and
∇p ≈ ρ0f ′ (ρ0)∇s.

Now, if v is also small, we may keep only first order terms in s and v. Thus,
we may neglect the convective acceleration (v·∇)v and approximate (5.104) and
(5.103) by the linear equations

vt= −c20∇s (5.107)

and
st + div v =0 (5.108)

where we have set c20 = f
′ (ρ0) = Cγρ

γ−1
0 .

Let us pause for a moment to examine which implications the above lineariza-
tion has. Suppose that V and S are average values of |v| and s, respectively.
Moreover, let L and T typical order of magnitude for space and time in the wave
propagation, such as wavelength and period. Rescale v, s, x and t as follows:

ξ =
x

L
, τ =

t

T
, U (ξ, τ) =

v (Lξ, T τ)

V
, σ (ξ, τ) =

s (Lξ, T τ)

S
. (5.109)

Substituting (5.109) into (5.107) and (5.108) we obtain

V

T
Uτ +

c20S

L
∇σ = 0 and

S

T
στ +

V

L
divU =0.
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In this equations the coefficients must be of the same order of magnitude, therefore

V

T
≈ c

2
0S

L
and

S

T
≈ V
L

which implies
L

T
≈ c0.

As we see, c0 is a typical propagation speed, namely it is the sound speed. Now,
the convective acceleration is negligible with respect to (say) vt, if

V 2

L
U·∇U�V

T
Uτ

or V � c0.
Thus if the gas speed is much smaller than the sound speed, our linearization

makes sense. The ratio M = V/c0 is calledMach number.

We want to derive from (5.107) and (5.108) the following theorem in which we
assume that both s and v are smooth functions.

Theorem 5.3. a) The condensation s is a solution of the wave equation

stt − c20Δs = 0 (5.110)

where c0 =
√
f ′ (ρ0) =

√
γp0/ρ0 is the speed of sound.

b) If v (x,0) = 0, there exists an acoustic potential φ such that v =∇φ. More-
over φ satisfies (5.110) as well.

Proof. a) Taking the divergence on both sides of (5.107) and the t−derivative
on both sides of (5.108) we get, respectively:

div vt= −c20Δs

and
stt= −(div v)t.

Since (div v)t = div vt, equation (5.110) follows.

b) From (5.107) we have
vt= −c20∇s.

Let

φ (x,t) = −c20
∫ t

0

s (x,z) dz.

Then
φt = −c20s

and we may write (5.107) in the form

∂

∂t
[v−∇φ] = 0.
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Hence, since φ (x,0) = 0, v (x,0) = 0, we infer

v (x,t)−∇φ (x,t) = v (x,0)−∇φ (x,0) = 0.

Thus v =∇φ. Finally, from (5.108),

φtt = −c20st = c20div v =c20Δφ

which is (5.110). �
Once the potential φ is known, the velocity field v, the condensation s and the

pressure fluctuation p− p0 can be computed from the following formulas:

v =∇φ, s = − 1
c20
φt, p− p0 = −ρ0φt.

Consider, for instance, a plane wave represented by the following potential:

φ (x,t) = w (x · k−ωt) .

We know that if c20 |k|2 = ω2, φ is a solution of (5.110). In this case, we have:

v =w′k, s =
ω

c20
w′, p − p0 = ρ0ωw′.

Example 5.3. Motion of a gas in a tube. Consider a straight cylindrical tube with
axis along the x1−axis, filled with gas in the region x1 > 0. A flat piston, whose
face moves according to x1 = h (t), sets the gas into motion. We assume that
|h (t)| � 1 and |h′ (t)| � c0. Under these conditions, the motion of the piston
generates sound waves of small amplitude and the acoustic potential φ is a solution
of the homogeneous wave equation. To compute φ we need boundary conditions.
The continuity of the normal velocity of the gas at the contact surface with the
piston gives

φx1 (h (t) , x2, x3, t) = h
′ (t) .

Since h (t) ∼ 0, we may approximate this condition by

φx1 (0, x2, x3, t) = h
′ (t) . (5.111)

At the tube walls the normal velocity of the gas is zero, so that, if ν denotes the
outward unit normal vector at the tube wall, we have

∇φ · ν =0. (5.112)

Finally since the waves are generated by the piston movement, we may look for
outgoing plane waves30 solution of the form:

φ (x,t) = w (x · n−ct)
30 We do not expect incoming waves, which should be generated by sources placed far
from the piston.
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where n is a unit vctor. From (5.112) we have

∇φ · ν =w′ (x · n−ct)n · ν =0

whence n · ν =0 for every ν orthogonal to the wall tube. Thus, we infer n = (1, 0, 0)
and, as a conseguence,

φ (x,t) = w (x1−ct) .
From (5.111) we get

w′ (−ct) = h′ (t)
so that (assuming h (0) = 0),

w (s) = −ch
(
−s
c

)
.

Hence, the acoustic potential is given by

φ (x,t) = −ch
(
t− x1
c

)

which represents a progressive wave propagating along the tube. In this case:

v =ci, s =
1

c
h′
(
t− x1
c

)
, p = cρ0h

′
(
t− x1
c

)
+ p0.

5.9 The Cauchy Problem

5.9.1 Fundamental solution (n = 3) and strong Huygens’ principle

In this section we consider the global Cauchy problem for the three-dimensional
homogeneous wave equation:

{
utt − c2Δu = 0 x ∈R3, t > 0
u (x, 0) = g (x) , ut (x,0) = h (x) x ∈R3. (5.113)

We know from Theorem 5.2 that problem (5.113) has at most one solution u ∈
C2
(
R
3 × [0,+∞)

)
. Our purpose here is to show that the solution u exists and

to find an explicit formula for it, in terms of the data g and h. Our derivation is
rather heuristic so that, for the time being, we do not worry too much about the
correct hypotheses on h and g, which we assume as smooth as we need to carry
out the calculations.
First we need a lemma that reduces the problem to the case g = 0 (and which

actually holds in any dimension). Denote by wh the solution of the problem

{
wtt − c2Δw = 0 x ∈R3, t > 0
w (x, 0) = 0, wt (x,0) = h (x) x ∈R3.

(5.114)
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Lemma 5.2. If wg has continuous third-order partials, then v = ∂twg solves the
problem {

wtt − c2Δw = 0 x ∈R3, t > 0
w (x, 0) = g (x) , wt (x,0) = 0 x ∈R3.

(5.115)

Therefore the solution of (5.113) is given by

u = ∂twg +wh. (5.116)

Proof. Let v = ∂twg. Differentiating the wave equation with respect to t we
have

0 = ∂t(∂ttwg − c2Δwg) = (∂tt − c2Δ)∂twg = vtt − c2Δv.
Moreover,

v (x,0) = ∂twg (x,0) = g (x) , vt (x,0) = ∂ttwg (x,0) = c
2Δwg (x,0) = 0.

Thus, v is a solution of (5.115) and u = v + wh is the solution of (5.113). �

The lemma shows that, once the solution of (5.114) is determined, the solution
of the complete problem (5.113) is given by (5.116).
Therefore, we focus on the solution of (5.114), first with a special h, given by the

three-dimensional Dirac measure at y, δ (x− y). For example, in the case of sound
waves, this initial data models a sudden change of the air density, concentrated at
a point y. If w represents the density variation with respect to a static atmosphere,
then w solves the problem

{
wtt − c2Δw = 0 x ∈R3, t > 0
w (x, 0) = 0, wt (x,0) = δ (x− y) x ∈R3. (5.117)

The solution of (5.117), which we denote by K (x,y,t), is called fundamental
solution of the three-dimensional wave equation. To solve (5.117) we use ... the
heat equation (!), approximating the Dirac measure with the fundamental solution
of the three-dimensional diffusion equation. Indeed, from section 2.3.4, (choosing
t = ε, D = 1, n = 3) we know that

Γ (x − y,ε) = 1

(4πε)3/2
exp

{
−|x− y|

2

4ε

}
→ δ (x− y)

as ε → 0. Denote by wε the solution of (5.117) with δ (x − y) replaced by
Γ (x− y,ε). Since Γ (x− y,ε) is radially symmetric with pole at y, we expect
that wε shares the same type of symmetry and is a spherical wave of the form
wε = wε (r, t), r = |x − y|. Thus, from (5.93) we may write

wε (r, t) =
F (r + ct)

r
+
G (r − ct)
r

. (5.118)
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The initial conditions require

F (r) +G (r) = 0 and c(F ′ (r) −G′ (r)) = rΓ (r,ε)
or

F = −G and G′ (r) = −rΓ (r,ε) /2c.
Integrating the second relation yields

G (r) = − 1

2c(4πε)3/2

∫ r

0

s exp

{
−s
2

4ε

}
ds =

1

4πc

1√
4πε

(
exp

{
− r
2

4ε

}
− 1
)

and finally

wε (r, t) =
1

4πcr

{
1√
4πε
exp

{
−(r − ct)

2

4ε

}
− 1√
4πε
exp

{
−(r + ct)

2

4ε

}}
.

Now observe that the function

Γ̃ (r, ε) =
1√
4πε
exp

{
− r
2

4ε

}

is the fundamental solution of the one-dimensional diffusion equation with x = r
and t = ε. Letting ε→ 0 we find31

wε (r, t)→
1

4πcr
{δ(r − ct)− δ(r + ct)} .

Since r + ct > 0 for every t > 0, we deduce that δ(r + ct) = 0 and therefore we
conclude that

K (x,y,t) =
δ(r − ct)
4πcr

r = |x − y| . (5.119)

Thus, the fundamental solution is an outgoing travelling wave, initially concen-
trated at y and thereafter on

∂Bct (y) = {x : |x− y| = ct} .
The union of the surfaces ∂Bct (y) is called the support of K and coincides with
the boundary of the forward space-time cone, with vertex at (y, 0) and opening
θ = tan−1 c, given by

C∗y,0 = {(x, t): |x− y| ≤ ct, t > 0} .
In the terminology of Section 4, ∂C∗y,0 constitutes the range of influence of the
point y.
The fact that the range of influence of the point y is only the boundary of

the forward cone and not the full cone has important consequences on the nature
of the disturbances governed by the three-dimensional wave equation. The most
striking phenomenon is that a perturbation generated at time t = 0 by a point
source placed at y is felt at the point x0 only at time t0 = |x0−y| /c (Fig. 5.10).
This is known as strong Huygens’ principle and explains why sharp signals are
propagated from a point source.
We will shortly see that this is not the case in two dimensions.

31 Here δ is one-dimensional.
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Fig. 5.10. Huygens principle

5.9.2 The Kirchhoff formula

Using the fundamental solution as in subsection 5.4.3, we may derive a formula
for the solution of (5.114) with a general h. Since

h (x) =

∫

R3

δ (x− y)h (y) dy,

we may see h as a superposition of impulses δ (x− y)h (y) localized at y, of
strength h (y). Accordingly, the solution of (5.114) is given by the superposition
of the corresponding solutions K (x,y,t)h (y), that is

wh (x,t) =

∫

R3

K (x,y,t)h (y) dy =

∫

R3

δ(|x− y| − ct)
4πc |x− y| h (y) dy =

=

∫ ∞
0

δ(r − ct)
4πcr

dr

∫

∂Br(x)

h (σ) dσ =
1

4πc2t

∫

∂Bct(x)

h (σ) dσ.

where we have used the formula
∫ ∞
0

δ (r − ct) f (r) dr = f (ct) .

Lemma 5.2 and the above intuitive argument lead to the following theorem:

Theorem 5.4. (Kirchhoff′s formula). Let g ∈ C3
(
R
3
)
and h ∈ C2

(
R
3
)
. Then,

u (x,t) =
∂

∂t

[
1

4πc2t

∫

∂Bct(x)

g (σ) dσ

]
+

1

4πc2t

∫

∂Bct(x)

h (σ) dσ (5.120)

is the unique solution u ∈ C2
(
R
3 × [0,+∞)

)
of problem (5.113)

Proof. Letting σ = x+ctω, where ω ∈ ∂B1 (0), we have dσ = c2t2dω and we
may write

wg (x,t) =
1

4πc2t

∫

∂Bct(x)

g (σ) dσ =
t

4π

∫

∂B1(0)

g (x+ctω) dω.
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Since g ∈ C3
(
R
3
)
, this formula shows that wg satisfies the hypotheses of Lemma

5.2. Therefore it is enough to check that

wh (x,t) =
1

4πc2t

∫

∂Bct(x)

h (σ) dσ =
t

4π

∫

∂B1(0)

h (x+ctω) dω

solves problem (5.114). We have:

∂twh (x,t) =
1

4π

∫

∂B1(0)

h (x+ctω) dω +
ct

4π

∫

∂B1(0)

∇h (x+ctω) · ω dω. (5.121)

Thus,
wh (x,0) = 0 and ∂twh (x,0) = h (x) .

Moreover, by Gauss’ formula, we may write

ct

4π

∫

∂B1(0)

∇h (x+ctω) · ω dω = 1

4πct

∫

∂Bct(x)

∂νh (σ) dσ

=
1

4πct

∫

Bct(x)

Δh (y) dy

=
1

4πct

∫ ct

0

dr

∫

∂Br(x)

Δh (σ) dσ

whence, from (5.121),

∂ttwh (x,t) =
c

4π

∫

∂B1(0)

∇h (x+ctω) ·ω dω − 1

4πct2

∫

Bct(x)

Δh (y) dy

+
1

4πt

∫

∂Bct(x)

Δh (σ) dσ

=
1

4πt

∫

∂Bct(x)

Δh (σ) dσ.

On the other hand,

Δwh (x,t) =
t

4π

∫

∂B1(0)

Δh (x+ctω) dω =
1

4πc2t

∫

∂Bct(x)

Δh (σ) dσ

and therefore
∂ttwh−c2Δwh = 0.

�
Using the calculations in the proof of the above theorem, we may write the

Kirchhoff formula in the following form:

u (x,t) =
1

4πc2t2

∫

∂Bct(x)

{g (σ) +∇g (σ) · (σ − x) + th (σ)} dσ. (5.122)
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The presence of the gradient of g in (5.122) suggests that, unlike the one-
dimensional case, the solution u may be more irregular than the data. Indeed,
if g ∈ Ck

(
R
3
)
and h ∈ Ck−1

(
R
3
)
, k ≥ 2, then we can only guarantee that u is

Ck−1 and ut is Ck−2 at a later time.
Formula (5.122) makes perfect sense also for g ∈ C1

(
R
3
)
and h bounded.

Clearly, under these weaker hypotheses, (5.122) satisfies the wave equation in an
appropriate generalized sense, as in subsection 5.4.2, for instance.

In this case, scattered singularities in the initial data h may concentrate at
later time on smaller sets, giving rise to stronger singularities (focussing effect, see
problem 5.17).

According to (5.122), u (x, t) depends upon the data g and h only on the surface
∂Bct (x), which therefore coincides with the domain of dependence for (x,t).

Assume that the support of g and h is the compact set D. Then u (x, t) is
different from zero only for tmin < t < tmax where tmin and tmax are the first and
the last time t such that D ∩ ∂Bct (x) �= ∅. In other words, a disturbance, initially
localized inside D, starts affecting the point x at time tmin and ceases to affect it
after time tmax. This is another way to express the strong Huygens’ principle.

Fix t and consider the union of all the spheres ∂Bct (ξ) as ξ varies on ∂D. The
envelope of these surfaces constitutes the wave front and bounds the support of
u, which spreads at speed c (see Problem 5.16).

5.9.3 Cauchy problem in dimension 2

The solution of the Cauchy problem in two dimensions can be obtained from
Kirchhoff’s formula, using the so called Hadamard’s method of descent. Consider
first the problem

{
wtt − c2Δw = 0 x ∈R2, t > 0
w (x, 0) = 0, wt (x,0) = h (x) x ∈R2.

(5.123)

The key idea is to “immerse” the two-dimensional problem (5.123) in a three-
dimensional setting. More precisely, write points in R3 as (x,x3) and set h (x,x3) =
h (x). The solution U of the three-dimensional problem is given by Kirchhoff for-
mula:

U (x, x3, t) =
1

4πc2t

∫

∂Bct(x,x3)

h dσ. (5.124)

We claim that, since h does not depend on x3, U is independent of x3 as well, and
therefore the solution of (5.123) is given by (5.124) with, say, x3 = 0.

To prove the claim, note that the spherical surface ∂Bct (x,x3) is a union of
the two hemispheres whose equation are

y3 = F± (y1, y2) = x3 ±
√
c2t2 − r2,
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where r2 = (y1 − x1)2 + (y2 − x2)2. On both hemispheres we have:

dσ =

√
1 + |∇F±|2 dy1dy2

=

√
1 +

r2

c2t2 − r2 dy1dy2 =
ct√

c2t2 − r2
dy1dy2

so that we may write (dy = dy1dy2)

U (x, x3, t) =
1

2πc

∫

Bct(x)

h (y)√
c2t2 − |x− y|2

dy

and U is independent of x3 as claimed. From the above calculations and recalling
Lemma 5.2 we deduce the following theorem.

Theorem 5.5. (Poisson′s formula). Let g ∈ C3
(
R
2
)
and h ∈ C2

(
R
2
)
. Then,

u (x,t) =
1

2πc

⎧⎨
⎩
∂

∂t

∫

Bct(x)

g (y) dy√
c2t2 − |x− y|2

+

∫

Bct(x)

h (y) dy√
c2t2 − |x− y|2

⎫⎬
⎭ .

is the unique solution u ∈ C2
(
R
2 × [0,+∞)

)
of the problem

{
utt − c2Δu = 0 x ∈R2, t > 0
u (x, 0) = g (x) , ut (x,0) = h (x) x ∈R2.

Also Poisson’s formula can be written in a somewhat more explicit form. In-
deed, letting y − x = ctz, we have

dy =c2t2dz, |x − y|2 = c2t2 |z|2

whence ∫

Bct(x)

g (y)√
c2t2 − |x − y|2

dy = ct

∫

B1(0)

g (x+ctz)√
1− |z|2

dz.

Then

∂

∂t

∫

Bct(x)

g (y)√
c2t2 − |x − y|2

dy

= c

∫

B1(0)

g (x+ctz)√
1− |z|2

dz+c2t

∫

B1(0)

∇g (x+ctz) · z√
1− |z|2

dz

and, going back to the original variables, we obtain

u (x,t) =
1

2πct

∫

Bct(x)

g (y) +∇g (y) · (y − x) + th (y)√
c2t2 − |x− y|2

dy. (5.125)



5.9 The Cauchy Problem 281

Poisson’s formula displays an important difference with respect to its three-
dimensional analogue, Kirkhhoff’s formula. In fact the domain of dependence for
the point (x,t) is given by the full circle Bct (x) = {y: |x− y| < ct}. This entails
that a disturbance, initially localized at ξ, starts affecting the point x at time
tmin = |x − ξ| /c. However, this effect does not vanish for t > tmin, since ξ still
belongs to the circle Bct (x) after tmin.

It is the phenomenon one may observe by placing a cork on still water and
dropping a stone not too far away. The cork remains undisturbed until it is reached
by the wave front but its oscillations persist thereafter.

Thus, sharp signals do not exist in dimension two and the strong Huygens
principle does not hold.

Remark 5.6. An examination of Poisson’s formula reveals that the fundamental
solution for the two dimensional wave equation is given by

K (x,y,t) =
1

2πc

H (ct− r)√
c2t2 − r2

where r2 = |x− y| and H is the Heaviside function. For y fixed, its support is the
full forward space-time cone, with vertex at (y, 0) and opening θ = tan−1 c, given
by

C∗y,0 = {(x, t): |x− y| ≤ ct, t > 0} .

5.9.4 Non homogeneous equation. Retarded potentials

The solution of the non-homogeneous Cauchy problem can be obtained via
Duhamel’s method. We give the details for n = 3 only (for n = 2 see Problem
5.18). By linearity it is enough to derive a formula for the solution of the problem
with zero initial data:

{
utt − c2Δu = f (x,t) x ∈R3, t > 0
u (x, 0) = 0, ut (x,0) = 0 x ∈R3. (5.126)

Assume that f ∈ C2
(
R
3 × [0,+∞

)
). For s ≥ 0 fixed, let w = w (x, t; s) be the

solution of the problem

{
wtt − c2Δw = 0 x ∈ R3, t ≥ s
w (x, s; s) = 0, wt (x, s; s) = f (x, s) x ∈ R3.

Since the wave equation is invariant under time translations, w is given by
Kirkhhoff’s formula with t replaced by t− s:

w (x, t; s) =
1

4πc2(t− s)

∫

∂Bc(t−s)(x)
f (σ, s) dσ.
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Then,

u (x, t) =

∫ t

0

w (x, t; s) ds =
1

4πc2

∫ t

0

ds

(t − s)

∫

∂Bc(t−s)(x)
f (σ, s) dσ (5.127)

is the unique solution u ∈ C2
(
R
3 × [0,+∞

)
) of (5.126)32.

Formula (5.126) shows that u (x,t) depends on the values of f in the full back-
ward cone

Cx,t = {(z,s) : |z− x| ≤ c(t− s), 0 ≤ s ≤ t} .
Note that (5.126) may be written in the form

u (x,t) =
1

4π

∫

Bct(x)

1

|x− y|f
(
y,t− |x− y|

c

)
dy (5.128)

which is a so called retarded potential. Indeed, u (x,t) depends on the values of the
source f at the earlier times

t′ = t− |x− y|
c
.

5.10 Linear Water Waves

A great variety of interesting phenomena occurs in the analysis of water waves.
Here we briefly analyze surface water waves, that is disturbances of the free surface
of an incompressible fluid, resulting from the balance between a restoring force,
due to gravity and/or surface tension, and fluid inertia due to an external action
(such as wind, passage of a ship, sub-sea earthquakes). We will focus on the special
case of linear waves, whose amplitude is small compared to wavelength, analyzing
the dispersive relations in the approximation of deep water.

5.10.1 A model for surface waves

We start deriving a basic model for surface water waves, assuming the following
hypotheses:

1. The fluid has constant density ρ and negligible viscosity. In particular, the force
exerted on a control fluid volume V by the rest of the fluid is given by the
normal pressure33 −pν on ∂V .

2. The motion is laminar (no breaking waves or turbulence) and two dimensional.
This means that in a suitable coordinate system x, z, where the coordinate x
measures horizontal distance and z is a vertical coordinate, we can describe
the free surface by a function z = h (x, t), while the velocity vector has the
form w =u (x, z, t) i+v (x, z, t)k.

32 Check it, mimicking the proof in dimension one (subsection 5.4.4).
33 ν is the exterior normal unit vector to ∂V .
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3. The motion is irrotational, so that there exists a (smooth) scalar potential
φ = φ (x, z, t) such that:

w =∇φ = φxi+φzk.
We need equations for the unknowns h and φ, together with initial conditions and

Fig. 5.11. Vertical section of the fluid region

suitable conditions at the boundary of our relevant domain, composed by the free
surface, the lower boundary and the lateral sides.
We assume that the side boundaries are so far apart that their influence can

be neglected. Therefore x varies all along the real axis.
Furthermore, we assume, for simplicity, that the lower boundary is flat, at the

level z = −H .
Two equations for h and φ come from conservation of mass and balance of

linear momentum, taking into account hypotheses 2 and 3 above.

Mass conservation gives:

div w =Δφ =0 x ∈ R, −H < z < h (x, t) . (5.129)

Thus, φ is a harmonic function.

Balance of linear momentum yields:

wt + (w·∇)w = g−
1

ρ
∇p (5.130)

where g is the gravitational acceleration.
Let us rewrite (5.130) in terms of the potential φ. From the identity

w× curl w =1
2
∇(|w|2)− (w·∇)w

we get, being curl w = 0,

(w·∇)w =1
2
∇(|∇φ|2).
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Moreover, writing g =∇(−gz), (5.130) becomes
∂

∂t
(∇φ) + 1

2
∇(|∇φ|2) = −1

ρ
∇p+∇(−gz)

or

∇
{
φt +

1

2
|∇φ|2 + p

ρ
+ gz

}
= 0.

As a consequence

φt +
1

2
|∇φ|2 + p

ρ
+ gz = C (t)

with C = C (t) is an arbitrary function. Since φ is uniquely defined up to an
additive function of time, we can choose C (t) = 0 by adding to φ the function∫ t
0
C (s) ds.
In this case, we obtain Bernoulli’s equation

φt +
1

2
|∇φ|2 + p

ρ
+ gz = 0. (5.131)

We consider now the boundary conditions. On the bottom, we impose the so called
bed condition, according to which the normal component of the velocity vanishes
there; therefore

φz (x,−H, t) = 0, x ∈ R. (5.132)

More delicate is the condition on the free surface z = h (x, t); in fact, since this
surface is itself an unknown of the problem, we actually need two conditions on it.
The first one comes from Bernoulli’s equation. Namely, the total pressure on

the free surface is given by

p = pat − σhxx
{
1 + h2x

}−3/2
. (5.133)

In (5.133) the term pat is the atmospheric pressure, that we can take equal to zero,
while the second term is due to the surface tension, as we will shortly see below.
Thus, inserting z = h (x, t) and (5.133) into (5.131), we obtain the following

dynamic condition at the free surface:

φt +
1

2
|∇φ|2 − σhxx

ρ {1 + h2x}3/2
+ gh = 0, x ∈ R, z = h (x, t) . (5.134)

A second condition follows imposing that fluid particles on the free surface always
remain there. If the particle path is described by the equations x = x (t), z = z (t),
this amounts to requiring that

z (t) − h (x (t) , t) ≡ 0.

Differentiating yields

ż (t)− hx (x (t) , t) ẋ (t)− ht (x (t) , t) = 0
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that is, since ẋ (t) = φx (x (t) , z (t) , t) and ż = φz (x (t) , z (t) , t),

φz − ht − φxhx = 0, x ∈ R, z = h (x, t) . (5.135)

which is known as the kinematic condition at the free surface.

Finally, we require a reasonable behavior of φ and h as x→ ±∞, for instance
∫

R

|φ| <∞,
∫

R

|h| <∞ and φ, h→ 0 as x→ ±∞. (5.136)

Equation (5.129) and the boundary conditions (5.132), (5.134), (5.135) con-
stitute our model for water waves. After a brief justification of formula (5.133),
in the next subsection we go back to the above model, deriving a dimensionless
formulation and a linearized version of it.

• Effect of surface tension. In a water molecule the two hydrogen atoms take an
asymmetric position with respect to the oxygen atom. This asymmetric structure
generates an electric dipole moment. Inside a bulk of water these moments balance,
but on the surface they tend to be parallel and create a macroscopic inter-molecular
force per unit length, confined to the surface, called surface tension.
The way this force manifests itself is similar to the action exerted on a small

portion of an elastic material by the surrounding material and described by a stress
vector, which is a force per unit area, on the boundary of the portion. Analogously,
consider a small region on the water surface, delimited by a closed curve γ. The
surface water on one side of γ exerts on the water on the other side a force per
unit length f (pulling) along γ.
Let n be a unit vector normal to the water surface and τ a unit tangent vector

to γ (Fig. 5.12a) so chosen that N = τ × n points outwards the region bounded
by γ. A simple constitutive law for f is

f (x,t)=σ (x,t)N (x,t) x ∈ γ.

Thus, f acts in the direction of N; its magnitude σ, independent of N, is called
surface tension.
Formula (5.133) is obtained by balancing the net vertical component of the

force produced by surface tension with the difference of the pressure force across
the surface.
Consider the section ds of a small surface element shown in figure 5.12b. A

surface tension of magnitude σ acts tangentially at both ends. Up to higher order
terms, the downward vertical component is given by 2σ sin (α/2). On the other
hand, this force is equal to (pat − p)ds where p is the fluid pressure beneath the
surface. Thus,

(pat − p)ds = 2σ sin (α/2) .
Since for small α we have ds ≈ Rdα and 2 sin (α/2) ≈ α, we may write

pat − p =
σ

R
= σκ (5.137)
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Fig. 5.12. Surface tension σN

where κ = R−1 is the curvature of the surface. If the atmospheric pressure
prevails, the curvature is positive and the surface is convex, otherwise the curvature
is negative and the surface is concave, as in figure 5.12b. If the surface is described
by z = h (x, t), we have

κ =
hxx

{1 + h2x}3/2

which inserted into (5.137) gives (5.133).

5.10.2 Dimensionless formulation and linearization

The nonlinearities in (5.134), (5.135) and the fact that the free surface is an un-
known make the above model quite difficult to analyze by elementary means. How-
ever, if we restrict our considerations to waves whose amplitude is much smaller
than their wavelength, then both difficulties disappear. In spite of this simplifica-
tion, the resulting theory has a rather wide range of applications, since it is not
rare to observe waves with amplitude from 1 to 2 meters and a wavelength of up
to a kilometer or more.

To perform a correct linearization procedure, we first introduce dimensionless
variables. Denote by L, A and T , an average wavelength, amplitude and period34,
respectively. Set

τ =
t

T
, ξ =

x

L
, η =

z

L
.

Since the dimensions of h and φ are, respectively [length] and [length]
2× [time]−1,

we may rescale φ and h by setting:

Φ(ξ, η, τ) =
T

LA
φ(Lξ, Lη, Tτ), Γ (ξ, τ) =

1

A
h(Lξ, Lη, Tτ).

34 The time a crest takes to travel a distance of order L.
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In terms of these dimensionless variables, our model becomes, after elementary
calculations:

ΔΦ = 0, −H0 < η < εΓ (ξ, τ), ξ ∈ R

Φτ +
ε
2 |∇Φ|

2
+F

{
Γ −BΓξξ

{
1 + ε2Γ 2ξ

}3/2}
= 0, η = εΓ (ξ, τ), ξ ∈ R

Φη − Γτ − εΦξΓξ = 0, η = εΓ (ξ, τ), ξ ∈ R
Φη (ξ,−H0, τ) = 0, ξ ∈ R
where we have emphasized the four dimensionless combinations35

ε =
A

L
, H0 =

H

L
, F = gT

2

L
, B = σ

ρgL2
. (5.138)

The parameter B, called Bond number, measures the importance of surface
tension while F , the Froude number, measures the importance of gravity.
At this point, the assumption of small amplitude compared to the wavelength,

translates simply into

ε =
A

L
� 1

and the linearization of the above system is achieved by letting ε = 0 :

ΔΦ = 0, −H0 < η < 0, ξ ∈ R
Φτ +F {Γ − BΓξξ} = 0, η = 0, ξ ∈ R
Φη − Γτ = 0, η = 0, ξ ∈ R
Φη (ξ,−H0, τ) = 0, ξ ∈ R.

Going back to the original variables, we finally obtain the linearized system
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δφ = 0, −H < z < 0, x ∈ R (Laplace)

φt + gh− σ
ρ
hxx = 0, z = 0, x ∈ R (Bernoulli)

φz − ht = 0, z = 0, x ∈ R (kinematic)

φz (x,−H, t) = 0, x ∈ R (bed condition)

(5.139)

It is possible to obtain an equation for φ only. Differentiate twice with respect to
x the kinematic equation and use φxx = −φzz; this yields

htxx = φzxx = −φzzz. (5.140)

Differentiate Bernoulli’s equation with respect to t , then use ht = φz and (5.140).
The result is:

φtt + gφz +
σ

ρ
φzzz = 0, z = 0, x ∈ R. (5.141)

35 Note the reduction of the number of relevant parameters from seven (A,L, T, H, g, σ, ρ)
to four.
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5.10.3 Deep water waves

We solve now system (5.139) with the following initial conditions:

φ (x, z, 0) = 0, h (x, 0) = h0 (x) , ht (x, 0) = 0. (5.142)

Thus, initially (t = 0) the fluid velocity is zero and the free surface has been per-
turbed into a non horizontal profile h0, that we assume (for simplicity) smooth,
even (i.e. h0 (−x) = h0 (x)) and compactly supported. In addition we consider the
case of deep water (H≫ 1) so that the bed condition can be replaced by36

φz (x, z, t)→ 0 as z → −∞. (5.143)

The resulting initial-boundary value problem is not of the type we considered so
far, but we are reasonably confident that it is well posed. Since x varies over all
the real axis, we may use the Fourier transform with respect to x, setting

φ̂ (k, z, t) =

∫

R

e−ikxφ (x, z, t)dx, ĥ (k, t) =

∫

R

e−ikxh (x, t) dx.

Note that, the assumptions on h0 implies that ĥ0 (k) = ĥ0 (k, 0) rapidly vanishes as

|k| → ∞ and ĥ0 (−k) = ĥ0 (k). Moreover, since φ̂xx = −k2φ̂, the Laplace equation
transforms into the ordinary differential equation

φ̂zz − k2φ̂ = 0

whose general solution is

φ̂ (k, z, t) = A (k, t) e|k|z + B (k, t) e−|k|z.

From (5.143) we deduce B (k, t) = 0, so that

φ̂ (k, z, t) = A (k, t) e|k|z. (5.144)

Trasforming (5.141) we get

φ̂tt + gφ̂z +
σ

ρ
φ̂zzz = 0, z = 0, k ∈ R

and (5.144) yields for A the equation

Att +

(
g |k|+ σ

ρ
|k|3
)
A = 0.

Thus, we obtain

A (k, t) = a (k) eiωt + b (k) e−iωt

36 For the case of finite depth see Problem 5.19.
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where (dispersion relation)

ω (k) =

√
g |k|+ σ

ρ
|k|3,

and

φ̂ (k, z, t) =
{
a (k) eiω(k)t + b (k) e−iω(k)t

}
e|k|z.

To determine a (k) e b (k), observe that the Bernoulli condition gives

φ̂t (k, 0, t) +

{
g +
σ

ρ
k2
}
ĥ (k, t) = 0, k ∈ R (5.145)

from which

iω (k)
{
a (k) eiω(k)t − b (k) e−iω(k)t

}
+

(
g +
σ

ρ
k2
)
ĥ (k, t) = 0, k ∈ R

and for t = 0

iω (k) {a (k)− b (k)}+
(
g +
σ

ρ
k2
)
ĥ0 (k) = 0. (5.146)

Similarly, the kinematic condition gives

φ̂z (k, 0, t) + ĥt (k, t) = 0, k ∈ R. (5.147)

We have

φ̂z (k, 0, t) = |k|
{
a (k) eiω(k)t + b (k) e−iω(k)t

}

and since ĥt (k, 0) = 0, we get, from (5.147) for t = 0 and k �= 0,

a (k) + b (k) = 0. (5.148)

From (5.146) and (5.148) we have (k �= 0)

a (k) = −b (k) =
i
(
g + σ

ρk
2
)

2ω (k)
ĥ0 (k)

and therefore

φ̂ (k, y, t) =
i
(
g + σ

ρ
k2
)

2ω (k)

{
eiω(k)t − e−iω(k)t

}
e|k|zĥ0 (k) .

From (5.145) we deduce:

ĥ (k, t) =

(
g +
σ

ρ
k2
)−1
φ̂t (k, 0, t) =

1

2

{
eiω(k)t + e−iω(k)t

}
ĥ0 (k)
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and finally, transforming back37

h (x, t) =
1

4π

∫

R

{
ei(kx−ω(k)t) + ei(kx+ω(k)t)

}
ĥ0 (k) dk. (5.149)

5.10.4 Interpretation of the solution

The surface displacement appears in wave packet form. The dispersion relation

ω (k) =

√
g |k|+ σ

ρ
|k|3

shows that each Fourier component of the initial free surface propagates both
in the positive and negative x−directions. The phase and group velocities are
(considering only k > 0, for simplicity)

cp =
ω

k
=

√
g

k
+
σk

ρ

and

cg =
g + 3σk2/ρ

2
√
gk + σk3/ρ

.

Thus, we see that the speed of a wave of wavelength λ = 2π/k depends on its
wavelength. The fundamental parameter is

B∗ = 4π2B=σk
2

ρg

where B is the Bond number. For water, under “normal” conditions,

ρ = 1 gr/cm3, σ = 72 gr/sec
2
, g = 980 cm/sec2 (5.150)

so that B∗ = 1 for wavelengths λ � 1.7 cm. When λ � 1.7 cm, then B∗ < 1,
k = 2π

λ � 1 and surface tension becomes negligible. This is the case of gravity
waves (generated e.g. by dropping a stone into a pond) whose phase speed is well
approximated by

cp =

√
g

k
=

√
gλ

2π

while their group velocity is

cg =
1

2

√
g

k
=
1

2
cp.

37 Note that, since also ω (k) is even, we may write

h (x, t) =
1

2π

∫

R

cos [kx− ω (k) t] ĥ0 (k) dk.
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Thus, longer waves move faster and energy is slower than the crests.
On the other hand, if λ � 1.7 cm, then B∗ > 1, k = 2π

λ � 1 and this time
surface tension prevails over gravity. In fact, short wavelengths are associated with
relative high curvature of the free surface and high curvature is concomitant with
large surface tension effects. This is the case of capillarity waves (generated e.g.
by raindrops in a pond) and their speed is well approximated by

cp =

√
σk

ρ
=

√
2πσ

λρ

while the group velocity is

cg =
3

2

√
σk

ρ
=
3

2
cp.

Thus shorter waves move faster and energy is faster than the crests.
When both gravity and surface tension are relevant, figure 5.13 shows the graph

of c2p versus λ, for water, with the values (5.150):

c2p = 156. 97 λ+
452. 39

λ
.

The main feature of this graph is the presence of the minimum

cmin = 23 cm/sec

corresponding just to the value λ = 1.7 cm. The consequence is curious: linear
gravity and capillarity deep water waves can appear simultaneously only when the
speed is greater than 23 cm/sec. A typical situation occurs when a small obstacle
(e.g. a twig) moves at speed v in still water. The motion of the twig results in the
formation of a wave system that moves along with it, with gravity waves behind
and capillarity waves ahead. In fact, the result above shows that this wave system
can actually appear only if v > 23 cm/sec.

Fig. 5.13. c2p versus λ
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5.10.5 Asymptotic behavior

As we have already observed, the behavior of a wave packet is dominated for short
times by the initial conditions and only after a relatively long time it is possible
to observe the intrinsic features of the perturbation. For this reason, information
about the asymptotic behavior of the packet as t→ +∞ are important. Thus, we
need a good asymptotic formula for the integral in (5.149) when t� 1.
For simplicity, consider gravity waves only, for which

ω (k) =
√
g |k|.

Let us follow a particle x = x (t) moving along the positive x−direction with
constant speed v > 0, so that x = vt. Inserting x = vt into (5.149) we find

h (vt, t) =
1

4π

∫

R

eit(kv−ω(k))ĥ0 (k) dk +
1

4π

∫

R

eit(kv+ω(k))ĥ0 (k) dk

≡ h1 (vt, t) + h2 (vt, t) .

According to Theorem 5.6 in the next subsection (see also Remark 5.10), with

ϕ (k) = kv − ω (k) ,

if there exists exactly one stationary point for ϕ, i.e. only one point k0 such that

ω′ (k0) = v and ϕ′′ (k0) = −ω′′ (k0) �= 0,

we may estimate h1 for t� 1 by the following formula:

h1 (vt, t) =
A (k0)

t
exp {it[k0v − ω (k0)]}+ O

(
t−1
)

(5.151)

where

A (k0) = ĥ0 (k0)

√
1

8π |ω′′ (k0)|
exp i

{
−π
4
sign ω′′(k0)

}
.

We have

ω′ (k) =
1

2

√
g |k|−1/2 sign (k)

and

ω′′ (k) = −
√
g

4
|k|−3/2 .

Since v > 0, equation ω′ (k0) = v gives the unique point of stationary phase

k0 =
g

4v2
=
gt2

4x2
.

Moreover,

k0v − ω (k0) = −
g

4v
= − gt
4x
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and

ω′′(k0) = −
2v3

g
= −2x

3

gt3
< 0

so that from (5.151) we find

h1 (vt, t) =
1

4
ĥ0

( g
4v2

)√ g

πtv3
exp i

{
− gt
4v
+
π

4

}
+O

(
t−1
)

Similarly, since
ĥ0 (k0) = ĥ0 (−k0) ,

we find

h2 (vt, t) =
1

4
ĥ0

( g
4v2

)√ g

πtv3
exp i

{
gt

4v
− π
4

}
+O

(
t−1
)
.

Finally,

h (vt, t) = h1 (vt, t) + h2 (vt, t)

= ĥ0

( g
4v2

)√ g

4πv3t
cos

{
gt

4v
− π
4

}
+O

(
t−1
)
.

This formula shows that, for large x and t, with x/t = v, constant, the wave packet
is locally sinusoidal with wave number

k (x, t) =
gt

4vx
=
gt2

4x2
.

In other words, an observer moving at the constant speed v = x/t sees a domi-
nant wavelength 2π/k0, where k0 is the solution of ω

′ (k0) = x/t. The amplitude
decreases as t−1/2. This is due to the dispersion of the various Fourier components
of the initial configuration, after a sufficiently long time.

5.10.6 The method of stationary phase

The method of stationary phase, essentially due to Laplace, gives an asymptotic
formula for integrals of the form

I (t) =

∫ b

a

f (k) eitϕ(k)dk (−∞ ≤ a < b ≤ ∞)

as t → +∞. Actually, only the real part of I (t), in which the factor cos[tϕ (k)]
appears, is of interest. Now, as t increases and ϕ (k) varies, cos[tϕ (k)] oscillates
more and more and eventually much more than f . For this reason, the contributions
of the intervals where cos[tϕ (k)] > 0 will balance those in which cos[tϕ (k)] < 0,
so that we expect that I (t)→ 0 as t→ +∞, just as the Fourier coefficients of an
integrable function tend to zero as the frequency goes to infinity.
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To obtain information on the vanishing speed, assume ϕ is constant on a certain
interval J . On this interval cos[tϕ (k)] is constant as well and hence there are neither
oscillations nor cancellations. Thus, it is reasonable that, for t � 1, the relevant
contributions to I (t) come from intervals where ϕ is constant or at least almost
constant. The same argument suggests that eventually, a however small interval,
containing a stationary point k0 for ϕ, will contribute to the integral much more
than any other interval without stationary points.
The method of stationary phase makes the above argument precise through

the following theorem.

Theorem 5.6. Let f and ϕ belong to C2 ([a, b]). Assume that

ϕ′ (k0) = 0, ϕ′′(k0) �= 0 and ϕ′ (k) �= 0 for k �= k0.

Then, as t→ +∞
∫ b

a

f (k) eitϕ(k)dk =

√
2π

|ϕ′′(k0)|
f(k0)√
t
exp

{
i
[
tϕ(k0) +

π

4
signϕ′′(k0)

]}
+O

(
t−1
)

First a lemma.

Lemma 5.3. Let f, ϕ as in Theorem 5.6. Let [c, d] ⊆ [a, b] and assume that
|ϕ′ (k)| ≥ C > 0 in (c, d). Then

∫ d

c

f (k) eitϕ(k)dk = O
(
t−1
)

t→ +∞. (5.152)

Proof. Integrating by parts we get (multiplying and dividing by ϕ′):

∫ d

c

f

ϕ′
ϕ′eitϕdk =

1

it

{
f (d) eitϕ(d)

ϕ′ (d)
− f (c) e

itϕ(c)

ϕ′ (c)
−
∫ d

c

f ′ϕ′ − fϕ′′
(ϕ′)2

eitϕdk

}
.

Thus, from
∣∣eitϕ(k)∣∣ ≤ 1 and our hypotheses, we have

∣∣∣∣∣
∫ d

c

f eitϕdk

∣∣∣∣∣ ≤
1

Ct

{
|f (d)|+ |f (c)|+ 1

C

∫ d

c

|f ′ϕ′ − fϕ′′| dk
}

≤ K
t

which gives (5.152). �
Proof of Theorem 5.6. Without loss of generality, we may assume k0 = 0, so

that ϕ′ (0) = 0, ϕ′′ (0) �= 0. From Lemma 5.3, it is enough to consider the integral
∫ ε

−ε
f (k) eitϕ(k)dk

where ε > 0 is as small as we wish. We distinguish two cases.
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Case 1: ϕ is a quadratic polynomial, that is

ϕ (k) = ϕ (0) +Ak2, A =
1

2
ϕ′′ (0) .

Then, write

f (k) = f (0) +
f (k)− f (0)

k
k ≡ f (0) + q (k) k,

and observe that, since f ∈ C2 ([−ε, ε]), q′ (k) is bounded in [−ε, ε]. Then, we have:
∫ ε

−ε
f (k) eitϕ(k)dk = 2f(0)eitϕ(0)

∫ ε

0

eitAk
2

dk + eitϕ(0)
∫ ε

−ε
q (k) keitAk

2

dk.

Now, an integration by parts shows that the second integral is O (1/t) as t → ∞
(the reader should check the details).
In the first integral, if A > 0, let

tAk2 = y2 .

Then ∫ ε

0

eitAk
2

dk =
1√
tA

∫ ε
√
tA

0

eiy
2

dy.

Since38 ∫ ε
√
tA

0

eiy
2

dy =

√
π

2
ei
π
4 +O

(
1

ε
√
tA

)
,

we get

∫ ε

0

f (k) eitϕ(k)dk =

√
2π

|ϕ′′(0)|
f(0)√
t
exp

{
i
[
ϕ(0)t+

π

4

]}
+ O

(
1

t

)
,

which proves the theorem when A > 0. The proof is similar if A < 0.
Case 2. General ϕ. By a suitable change of variable we reduce case 2 to case 1.

First we write

ϕ (k) = ϕ (0) +
1

2
a (k) k2 (5.153)

where

a (k) = 2

∫ 1
0

(1− r)ϕ′′ (rk)dr.

38 Recall that eiπ/4 =
(√
2 + i

√
2
)
/2. Moreover, the following formulas hold:

∣∣∣
∣

√
π

2
√
2
−
∫ λ

0

cos(y2)dy

∣∣∣
∣ ≤
√
π

λ
∣∣∣
∣

√
π

2
√
2
−
∫ λ

0

sin(y2)dy

∣∣∣
∣ ≤
√
π

λ
.



296 5 Waves and Vibrations

Equation (5.153) follows by applying to ψ (s) = ϕ (sk) the following Taylor for-
mula:

ψ (1) = ψ (0) + ψ′ (0) s+
1

2

∫ 1
0

(1− r)ψ′′ (r) dr.

Note that a (0) = ϕ′′ (0). Consider the function

p (k) = k
√
a (k) /ϕ′′ (0).

We have p (0) = 0 and p′ (0) = 1. Therefore, p is invertible near zero. Let

k = p−1 (y) .

Then, since

ϕ (k) = ϕ (0) +
ϕ′′ (0)
2
[p (k)]

2
,

we have,

ϕ̃ (y) ≡ ϕ
(
p−1 (y)

)

= ϕ (0) +
ϕ′′ (0)
2

[
p
(
p−1 (y)

)]2

= ϕ (0) +
ϕ′′ (0)
2
y2

and ∫ ε

−ε
f (k) eitϕ(k)dk =

∫ p−1(ε)

p−1(−ε)
F (y) eitϕ̃(y)dy

where

F (y) =
f
(
p−1 (y)

)
p′ (p−1 (y))

.

Since F (0) = f (0) and ϕ̃ is a quadratic polynomial with ϕ̃ (0) = ϕ (0), ϕ̃′′ (0) =
ϕ′′ (0), case 2 follows from case 1. �

Remark 5.7. Theorem 5.6 holds for integrals extended over the whole real axis as
well (actually this is the most interesting case) as long as, in addition, f is bounded,

|ϕ′ (±∞)| ≥ C > 0, and
∫
R
|f ′ϕ′ − fϕ′′| (ϕ′)−2 dk <∞. Indeed, it is easy to check

that Lemma 5.3 is true under these hypotheses and then the proof of Theorem 5.6
is exactly the same.

Problems

5.1. The chord of a guitar of length L is plucked at its middle point and then
released. Write the mathematical model which governs the vibrations and solve it.
Compute the energy E (t).
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5.2. Solve the problem

⎧⎨
⎩
utt − uxx = 0 0 < x < 1, t > 0
u (x, 0) = ut (x, 0) = 0 0 ≤ x ≤ 1
ux (0, t) = 1, u (1, t) = 0 t ≥ 0.

5.3. Forced vibrations. Solve the problem.

⎧⎨
⎩
utt − uxx = g (t) sinx 0 < x < π, t > 0
u (x, 0) = ut (x, 0) = 0 0 ≤ x ≤ π
u (0, t) = u (π, t) = 0 t ≥ 0

[Answer. u (x, t) = sinx
∫ t
0
g (t − τ ) sin τ dτ ].

5.4. Equipartition of energy. Let u = u (x, t) be the solution of the global
Cauchy problem for the equation utt− cuxx = 0, with initial data u (x, 0) = g (x),
ut (x, 0) = h (x). Assume that g and h are smooth functions with compact support
contained in the interval (a, b). Show that there exists T such that, for t ≥ T ,

Ecin (t) = Epot (t) .

5.5. Solve the global Cauchy problem for the equation utt− cuxx = 0, with the
following initial data:

a) u (x, 0) = 1 if |x| < a, u (x, 0) = 0 if |x| > a; ut (x, 0) = 0
b) u (x, 0) = 0; ut (x, 0) = 1 if |x| < a, ut (x, 0) = 0 if |x| > a.
5.6. Check that formula (5.42) may be written in the following form:

u (x+ cξ − cη, t+ ξ + η)− u (x+ cξ, t+ ξ)− u (x− cη, t+ η) + u (x, t) = 0.
(5.154)

Show that if u is a C2 function and satisfies (5.154), then

utt − c2uxx = 0.

Thus, (5.154) can be considered as a weak formulation of the wave equation.

5.7. The small longitudinal free vibrations of an elastic bar are governed by
the following equation

ρ (x)σ (x)
∂2u

∂t2
=
∂

∂x

[
E (x)σ (x)

∂u

∂x

]
(5.155)

where u is the longitudinal displacement, ρ is the linear density of the material, σ
is the cross section of the bar and E is its Young’s modulus39.

39 E is the proportionality factor in the strain-stress relation given by Hooke’s law: T
(strain) = E ε (stress). Here ε � ux. For steel, E = 2×1011 dine/cm2, for alluminium,
E = 7× 1012 dine/cm2.
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Assume the bar has constant cross section but it is constructed by welding
together two bars, of different (constant) Young’s modulus E1, E2 and density
ρ1, ρ2, respectively.
Since the two bars are welded together, the displacement u is continuous across

the junction, which we locate at x = 0. In this case:

(a) Give a weak formulation of the global initial value problem for equation
(5.155).

(b) Deduce that the following jump condition must hold at x = 0:

E1u(0−, t) = E2u(0+, t) t > 0. (5.156)

(c) Let cj = Ej/ρj, j = 1, 2. A left incoming wave uinc (x, t) = exp [i (x− c1t)]
produces at the junction a reflected wave uref (x, t) = a exp [i (x+ c1t)] and a
transmitted wave utr (x, t) = b exp [i (x− c2t)] . Determine a, b and interpret the
result.

[Hint. (c) Look for a solution of the form

u = uinc + uref

for x < 0 and u = utr for x > 0. Use the continuity of u and the jump condition
(5.156)].

5.8. Determine the characteristics of Tricomi equation

utt − tuxx = 0.

[Answer : 3x± 2t3/2 = k, for t > 0].
5.9. Classify the equation

t2utt + 2tuxt + uxx − ux = 0
and find the characteristics. After a reduction to canonical form, find the general
solution.
[Answer :

u (x, t) = F
(
te−x

)
+G

(
te−x

)
ex,

with F , G arbitrary].

5.10. Consider the following characteristic Cauchy problem40 for the wave
equation in the half-plane x > t:

⎧⎨
⎩
utt − uxx = 0 x > t
u (x, x) = f (x) x ∈ R
uν (x, x) = g (x) x ∈ R

where ν =(1,−1) /
√
2. Establish whether or not this problem is well posed.

40 Note that the data are the values of u and of the normal derivative on the characteristic
y = x.
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5.11. Consider the following so called Goursat problem41 for the wave equation
in the sector −t < x < t:

⎧⎨
⎩
utt − uxx = 0 − t < x < t
u (x, x) = f (x) , u (x,−x) = g (x) x > 0
f (0) = g (0) .

Establish whether or not this problem is well posed.

5.12. Ill posed non-characteristic Cauchy problem for the heat equation. Check
that for every integer k, the function

uk (x, t) =
1

k
[cosh kx cos kx cos 2k2t− sinhkx sin kx sin 2k2t]

solves ut = uxx and the (non characteristic) initial conditions:

u (0, t) =
1

k
cos 2k2t, ux (0, t) = 0.

Deduce that the corresponding Cauchy problem in the half-plane x > 0 is ill
posed.

5.13. Consider the telegrapher’s system (5.83), (5.84).
(a) By elementary manipulations derive the following second order equation

for the inner current I:

Itt −
1

LC
Ixx +

RC +GL

LC
It +

RG

LC
I = 0.

(b) Let
I = e−ktv

and choose k in order for v to satisfy an equation of the form

vtt −
1

LC
vxx + hv = 0.

Check that the condition RC = GL is necessary to have non dispersive waves
(distorsionless transmission line).

5.14. Circular membrane. A perfectly flexible and elastic membrane at rest
has the shape of the circle B1 =

{
(x, y) : x2 + y2 ≤ 1

}
. If the boundary is fixed

and there are no external loads, the vibrations of the membrane are governed by
the following system:

⎧⎪⎪⎨
⎪⎪⎩

utt − c2
(
urr +

1
rur +

1
r2 uθθ

)
= 0 0 < r < 1, 0 ≤ θ ≤ 2π, t > 0

u (r, θ, 0) = g (r, θ) , ut (r, 0) = h (r, θ) 0 < r < 1, 0 ≤ θ ≤ 2π
u (1, θ, t) = 0 0 ≤ θ ≤ 2π, t ≥ 0.

41 Note that the data are the values of u on the characteristics y = x and y = −x, for
x > 0.
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In the case h = 0 e g = g (r), use the method of separation of variables to find the
solution

u (r, t) =
∞∑
n=1

anJ0 (λnr) cosλnt

where J0 is the Bessel function of order zero, λ1, λ2, ... are the zeros of J0 and the
coefficients an are given by

an =
2

c2n

∫ 1
0

sg (s) J0 (λns) ds

where

cn =

∞∑
n=1

(−1)k
k! (k + 1)!

(
λn

2

)2k+1

(see Remark 2.2.5).

5.15. Circular waveguide. Consider the equation utt−c2Δu = 0 in the cylinder

CR = {(r, θ, z) : 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, −∞ < z < +∞} .

Determine the axially symmetric solutions of the form

u (r, z, t) = v (r)w (z)h (t)

satisfying the Neumann condition ur = 0 on r = R.

[Answer.

un (r, z, t) = exp {−i (ωt− kz)} J0 (μnr/R) , n ∈ N.

where J0 is the Bessel function, μn are its stationary points (J
′
0 (μn) = 0) and

ω2

c2
= k2 +

μ2n
R2
].

5.16. Let u be the solution of utt − c2Δu = 0 in R3 × (0,+∞) with data

u (x, 0) = g (x) and ut (x, 0) = h (x) ,

both supported in the sphere B̄ρ (0). Describe the support of u for t > 0.

[Answer : The spherical shell B̄�+ct (0) \ B�−ct (0), of width 2ρ, which expands at
speed c].

5.17. Focussing effect. Solve the problem

{
wtt − c2Δw = 0 x ∈R3, t > 0
w (x, 0) = 0, wt (x,0) = h (|x|) x ∈R3



Problems 301

where (r = |x|)

h (r) =

{
1 0 ≤ r ≤ 1
0 r > 1.

Check that w (r, t) displays a discontinuity at the origin at time t = 1/c.

5.18. Show that the solution of the two-dimensional non-homogeneous Cauchy
problem with zero initial data is given by

u (x, t) =
1

2πc

∫ t

0

∫

Bc(t−s)(x)

1√
c2 (t− s)2 + |x − y|2

f(y,s) dyds.

5.19. For linear gravity waves (σ = 0), examine the case of uniform finite
depth, replacing condition (5.143) by

φz (x,−H, t) = 0

under the initial conditions (5.142).

(a) Write the dispersion relation.

Deduce that:

(b) The phase and group velocity have a finite upper bound.

(c) The square of the phase velocity in deep water (H � λ) is proportional to
the wavelength.

(d) Linear shallow water waves (H � λ) are not dispersive.
[Answer: (a) ω2 = gk tanh (kH),

(b) cpmax =
√
kH ,

(c) c2p ∼ gλ/2π,
(d) c2p ∼ gH ].
5.20. Determine the travelling wave solutions of the linearized system (5.139)

of the form
φ (x, z, t) = F (x− ct)G (z) .

Rediscover the dispersion relation found in Problem 5.19 (a).
[Answer:

φ (x, z, t) = cosh k (z +H) {A cos k (x− ct) +B sin k (x− ct)} ,

A, B arbitrary constants and c2 = g tanh (kH) /k].
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Elements of Functional Analysis

Motivations – Norms and Banach Spaces – Hilbert Spaces – Projections and Bases – Lin-

ear Operators and Duality – Abstract Variational Problems – Compactness and Weak

Convergence – The Fredholm Alternative – Spectral Theory for Symmetric Bilinear

Forms

6.1 Motivations

The main purpose in the previous chapters has been to introduce part of the basic
and classical theory of some important equations of mathematical physics. The
emphasis on phenomenological aspects and the connection with a probabilistic
point of view should have conveyed to the reader some intuition and feeling about
the interpretation and the limits of those models.

The few rigorous theorems and proofs we have presented had the role of bring-
ing to light the main results on the qualitative properties of the solutions and
justifying, partially at least, the well-posedness of the relevant boundary and ini-
tial/boundary value problems we have considered.

However, these purposes are somehow in competition with one of the most
important role of modern mathematics, which is to reach a unifying vision of large
classes of problems under a common structure, capable not only of increasing
theoretical understanding, but also of providing the necessary flexibility to guide
the numerical methods which will be used to compute approximate solutions.

This conceptual jump requires a change of perspective, based on the introduc-
tion of abstract methods, historically originating from the vain attempts to solve
basic problems (e.g. in electrostatics) at the end of the 19th century. It turns out
that the new level of knowledge opens the door to the solution of complex problems
in modern technology.

These abstract methods, in which analytical and geometrical aspects fuse, are
the core of the branch of Mathematics, called Functional Analysis.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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It could be useful for understanding the subsequent development of the theory,
to examine in an informal way how the main ideas come out, working on a couple
of specific examples.
Let us go back to the derivation of the diffusion equation, in subsection 2.1.2. If

the body is heterogeneous or anisotropic, may be with discontinuities in its thermal
parameters (e.g. due to the mixture of two different materials), the Fourier law of
heat conduction gives for the flux function q the form

q = −A (x)∇u,

where the matrix A satisfies the condition

q·∇u = −A (x)∇u · ∇u ≤ 0 (ellipticity condition),

reflecting the tendency of heat to flow from hotter to cooler regions. If ρ = ρ (x)
and cv = cv (x) are the density and the specific heat of the material, and f = f (x)
is the rate of external heat supply per unit volume, we are led to the diffusion
equation

ρcvut − div (A (x)∇u) = f.
In stationary conditions, u (x,t) = u (x), and we are reduced to

−div (A (x)∇u) = f. (6.1)

Since the matrix A encodes the conductivity properties of the medium, we expect
a low degree of regularity of A, but then a natural question arises: what is the
meaning of equation (6.1) if we cannot compute the divergence of A?
We have already faced similar situations in subsections 4.4.2, where we have

introduced discontinuous solutions of a conservation law, and in subsection 5.4.2,
where we have considered solutions of the wave equation with irregular initial data.
Let us follow the same ideas.
Suppose we want to solve equation (6.1) in a bounded domain Ω, with zero

boundary data (Dirichlet problem). Formally, we multiply the differential equation
by a smooth test function vanishing on ∂Ω, and we integrate over Ω:

∫

Ω

−div (A (x)∇u) v dx =
∫

Ω

fv dx.

Since v = 0 on ∂Ω, using Gauss’ formula we obtain

∫

Ω

A (x)∇u · ∇v dx =
∫

Ω

fv dx (6.2)

which is called weak or variational formulation of our Dirichlet problem.
Equation (6.2) makes perfect sense for A and f bounded (possibly discontinu-

ous) and u, v ∈ C̊1
(
Ω
)
, the set of of functions in C1

(
Ω
)
, vanishing on ∂Ω. Then,

we may say that u ∈ C̊1
(
Ω
)
is a weak solution of our Dirichlet problem if (6.2)
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holds for every v ∈ C̊1
(
Ω
)
. Fine, but now we have to prove the well-posedness of

the problem so formulated!
Things are not so straightforward, as we have experienced in section 4.4.3 and,

actually, it turns out that C̊1
(
Ω
)
is not the proper choice, although it seems to

be the natural one. To see why, let us consider another example, somewhat more
revealing.
Consider the equilibrium position of a stretched membrane having the shape

of a square Ω, subject to an external load f (force per unit mass) and kept at level
zero on ∂Ω.
Since there is no time evolution, the position of the membrane may be described

by a function u = u (x), solution of the Dirichlet problem

{
−Δu = f in Ω
u = 0 on ∂Ω.

(6.3)

For problem (6.3), equation (6.2) becomes

∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx ∀v ∈ C̊1
(
Ω
)
. (6.4)

Now, this equation has an interesting physical interpretation. The integral in the
left hand side represents the work done by the internal elastic forces, due to a
virtual displacement v. On the other hand

∫
Ω
fv expresses the work done by the

external forces.
Thus, the weak formulation (6.4) states that these two works balance, which

constitutes a version of the principle of virtual work.
There is more, if we bring into play the energy. In fact, the total potential energy

is proportional to

E (v) =

∫

Ω

|∇v|2 dx
︸ ︷︷ ︸

internal elastic energy

−
∫

Ω

fv dx

︸ ︷︷ ︸
.

external potential energy

(6.5)

Since nature likes to save energy, the equilibrium position u corresponds to the
minimizer of (6.5) among all the admissible configurations v. This fact is closely
connected with the principle of virtual work and, actually, it is equivalent to it
(see subsection 8.4.1).
Thus, changing point of view, instead of looking for a weak solution of (6.4)

we may, equivalently, look for a minimizer of (6.5).
However there is a drawback. It turns out that the minimum problem does not

have a solution, except for some trivial cases. The reason is that we are looking in
the wrong set of admissible functions.
Why C̊1

(
Ω
)
is a wrong choice? To be minimalist, it is like looking for the

minimizer of the function
f (x) = (x− π)2

among the rational numbers!
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Anyway, the answer is simple: C̊1
(
Ω
)
is not naturally tied to the physical

meaning of E (v), which is an energy and only requires the gradient of u to be
square integrable, that is |∇u| ∈ L2 (Ω). There is no need of a priori continuity
of the derivatives, actually neither of u. The space C̊1

(
Ω
)
is too narrow to have

any hope of finding the minimizer there. Thus, we are forced to enlarge the set of
admissible functions and the correct one turns out to be the so called Sobolev space
H10 (Ω), whose elements are exactly the functions belonging to L

2 (Ω), together
with their first derivatives, vanishing on ∂Ω. We could call them functions of finite
energy!

Although we feel we are on the right track, there is a price to pay, to put
everything in a rigorous perspective and avoid risks of contradiction or non-senses.
In fact many questions arise immediately.

For instance, what do we mean by the gradient of a function which is only
in L2(Ω), maybe with a lot of discontinuities? More: a function in L2(Ω) is, in
principle, well defined except on sets of measure zero. But, then, what does it mean
“vanishing on ∂Ω”, which is precisely a set of measure zero?

We shall answer these questions in Chapter 7. We may anticipate that, for the
first one, the idea is the same we used to define the Dirac delta as a derivative
of the Heaviside function, resorting to a weaker notion of derivative (we shall say
in the sense of distributions), based on the miraculous formula of Gauss and the
introduction of a suitable set of test function.

For the second question, there is a way to introduce in a suitable coherent way
a so called trace operator which associates to a function u ∈ L2 (Ω), with gradient
in L2 (Ω), a function u|∂Ω representing its values on ∂Ω (see subsection 6.6.1).
The elements of H10 (Ω) vanish on ∂Ω in the sense that they have zero trace.

Another question is what makes the space H10 (Ω) so special. Here the con-
junction between geometrical and analytical aspects comes into play. First of all,
although it is an infinite-dimensional vector space, we may endow H10 (Ω) with a
structure which reflects as much as possible the structure of a finite dimensional
vector space like Rn, where life is obviously easier.

Indeed, in this vector space (thinking of R as the scalar field) we may introduce
an inner product given by

(u, v)1 =

∫

Ω

∇u · ∇v

with the same properties of an inner product in Rn. Then, it makes sense to talk
about orthogonality between two functions u and v in H10 (Ω), expressed by the
vanishing of their inner product:

(u, v)1 = 0.

Having defined the inner product (·, ·)1, we may define the size (norm) of u by

‖u‖1 =
√
(u, u)1
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and the distance between u and v by

dist (u, v) = ‖u− v‖1 .

Thus, we may say that a sequence {un} ⊂ H10 (Ω) converges to u in H10 (Ω) if

dist (un, u)→ 0 as n→∞.

It may be observed that all of this can be done, even more comfortably, in the
space C̊1

(
Ω
)
. This is true, but with a key difference.

Let us use an analogy with an elementary fact. The minimizer of the function

f (x) = (x− π)2

does not exist among the rational numbers Q, although it can be approximated as
much as one likes by these numbers. If from a very practical point of view, rational
numbers could be considered satisfactory enough, certainly it is not so from the
point of view of the development of science and technology, since, for instance,
no one could even conceive the achievements of Calculus without the real number
system.
As R is the completion of Q, in the sense that R contains all the limits of

sequences in Q that converge somewhere, the same is true for H10 (Ω) with respect
to C̊1

(
Ω
)
. This makes H10 (Ω) a so called Hilbert space and gives it a big advantage

with respect to C̊1
(
Ω
)
, which we illustrate going back to our membrane problem

and precisely to equation (6.4). This time we use a geometrical interpretation.
In fact, (6.4) means that we are searching for an element u, whose inner product

with any element v of H10 (Ω) reproduces “the action of f on v”, given by the linear
map

v �−→
∫

Ω

fv.

This is a familiar situation in Linear Algebra. Any function F : Rn → R, which is
linear, that is such that

F (ax+ by) = aF (x) + bF (y) ∀a, b ∈ R, ∀x,y ∈Rn,

can be expressed as the inner product with a unique representative vector zF∈Rn
(Representation Theorem). This amounts to saying that there is exactly one solu-
tion zF of the equation

z · y = F (y) for every y ∈Rn. (6.6)

The structure of the two equations (6.4), (6.6) is the same: on the left hand side
there is an inner product and on the other one a linear map.
Another natural question arises: is there any analogue of the Representation

Theorem in H10 (Ω)?
The answer is yes (see Riesz’s Theorem 6.3), with a little effort due to the

infinite dimension of H10 (Ω). The Hilbert space structure of H
1
0 (Ω) plays a key
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role. This requires the study of linear functionals and the related concept of dual
space. Then, an abstract result of geometric nature, implies the well-posedness of
a concrete boundary value problem.

What about equation (6.2)? Well, if the matrix A is symmetric and strictly
positive, the left hand side of (6.2) still defines an inner product in H10 (Ω) and
again Riesz’s Theorem yields the well-posedness of the Dirichlet problem.
If A is not symmetric, things change only a little. Various generalizations of

Riesz’s Theorem (e.g. the Lax-Milgram Theorem 6.4) allow the unified treatment
of more general problems, through their weak or variational formulation. Actually,
as we have experienced with equation (6.2), the variational formulation is often the
only way of formulating and solving a problem, without losing its original features.

The above arguments should have convinced the reader of the existence of a
general Hilbert space structure underlying a large class of problems, arising in the
applications. In this chapter we develop the tools of Functional Analysis, essential
for a correct variational formulation of a wide variety of boundary value problems.
The results we present constitute the theoretical basis for numerical methods such
as finite elements or more generally,Galerkin’s methods, and this makes the theory
even more attractive and important.
More advanced results, related to general solvability questions and the spectral

properties of elliptic operators are included at the end of this chapter.

A final comment is in order. Look again at the minimization problem above. We
have enlarged the class of admissible configurations from a class of quite smooth
functions to a rather wide class of functions. What kind of solutions are we find-
ing with these abstract methods? If the data (e.g. Ω and f , for the membrane)
are regular, could the corresponding solutions be irregular? If yes, this does not
sound too good! In fact, although we are working in a setting of possibly irregular
configurations, it turns out that the solution actually possesses its natural degree
of regularity, once more confirming the intrinsic coherence of the method.
It also turns out that the knowledge of the optimal regularity of the solution

plays an important role in the error control for numerical methods. However, this
part of the theory is rather technical and we do not have much space to treat it
in detail. We shall only state some of the most common results.

The power of abstract methods is not restricted to stationary problems. As we
shall see, Sobolev spaces depending on time can be introduced for the treatment
of evolution problems, both of diffusive or wave propagation type (see Chapter 7).
Also, in this introductory book, the emphasis is mainly to linear problems.

6.2 Norms and Banach Spaces

It may be useful for future developments, to introduce norm and distance inde-
pendently of an inner product, to emphasize better their axiomatic properties.
Let X be a linear space over the scalar field R or C. A norm in X, is a real

function
‖·‖ : X → R (6.7)
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such that, for each scalar λ and every x,y ∈ X, the following properties hold:

1. ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0 (positivity)

2. ‖λx‖ = |λ| ‖x‖ (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality).

A norm is introduced to measure the size (or the“length”) of each vector x ∈ X,
so that properties 1, 2, 3 should appear as natural requirements.
A normed space is a linear space X endowed with a norm ‖·‖. With a norm is

associated the distance between two vectors given by

d (x, y) = ‖x− y‖

which makes X a metric space and allows to define a topology in X and a notion
of convergence in a very simple way.
We say that a sequence {xn} ⊂ X converges to x in X, and we write xm → x

in X, if
d (xm, x) = ‖xm − x‖ → 0 as m→∞.

An important distinction is between convergent and Cauchy sequences. A sequence
{xm} ⊂ X is a Cauchy sequence if

d (xm, xk) = ‖xm − xk‖ → 0 as m, k→∞.

If xm → x in X, from the triangular inequality, we may write

‖xm − xm‖ ≤ ‖xm − x‖+ ‖xk − x‖ → 0 as m, k→∞

and therefore

{xm} convergent implies that {xm} is a Cauchy sequence. (6.8)

The converse in not true, in general. Take X = Q, with the usual norm given by
|x| . The sequence of rational numbers

xm =

(
1 +

1

m

)m

is a Cauchy sequence but it is not convergent in Q, since its limit is the irrational
number e.
A normed space in which every Cauchy sequence converges is called complete

and deserves a special name.

Definition 6.1. A complete, normed linear space is called Banach space.

The notion of convergence (or of limit) can be extended to functions from a
normed space into another, always reducing it to the convergence of distances,
that are real functions.
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Let X, Y linear spaces, endowed with the norms ‖·‖X and ‖·‖Y , respectively,
and let F : X → Y . We say that F is continuous at x ∈ X if

‖F (y) − F (x)‖Y → 0 when ‖y − x‖X → 0

or, equivalently, if, for every sequence {xm} ⊂ X,

‖xm − x‖X → 0 implies ‖F (xm)− F (x)‖Y → 0.

F is continuous in X if it is continuous at every x ∈ X. In particular:

Proposition 6.1. Every norm in a linear space X is continuous in X.

Proof. Let ‖·‖ be a norm in X. From the triangular inequality, we may write

‖y‖ ≤ ‖y − x‖+ ‖x‖ and ‖x‖ ≤ ‖y − x‖+ ‖y‖

whence
|‖y‖ − ‖x‖| ≤ ‖y − x‖ .

Thus, if ‖y − x‖ → 0 then |‖y‖ − ‖x‖| → 0, which is the continuity of the norm.
�
Some examples are in order.

Spaces of continuous functions. Let X = C (A) be the set of (real or
complex) continuous functions on A, where A is a compact subset of Rn, endowed
with the norm (called maximum norm)

‖f‖C(A) = maxA |f | .

A sequence {fm} converges to f in C (A) if

max
A
|fm − f | → 0,

that is, if fm converges uniformly to f in A. Since a uniform limit of continuous
functions is continuous, C (A) is a Banach space.
Note that other norms may be introduced in C (A), for instance the least

squares or L2 (A) norm

‖f‖L2(A) =
(∫

A

|f |2
)1/2

.

Equipped with this norm C (A) is not complete. Let, for example A = [−1, 1] ⊂ R.
The sequence

fm(t) =

⎧⎪⎨
⎪⎩

0 t ≤ 0
mt 0 < t ≤ 1

m

1 t > 1
m

(m ≥ 1) ,



310 6 Elements of Functional Analysis

contained in C ([−1, 1]), is a Cauchy sequence with respect to the L2 norm. In fact
(letting m > k),

‖fm − fk‖2L2(A) =
∫ 1
−1
|fm(t)− fk(t)|2 dt = (m− k)2

∫ 1/m
0

t2dt+

∫ 1/k
0

(1− kt)2 dt

=
(m− k)2
3m3

+
1

3k
<
1

3

(
1

m
+
1

k

)
→ 0 as m, k→ ∞.

However, fn converges in L
2 (−1, 1)−norm (and pointwise) to the Heaviside func-

tion

H(t) =
{
1 t ≥ 0
0 t < 0,

which is discontinuous at t = 0 and therefore does not belong to C ([−1, 1]).
More generally, letX = Ck (A), k ≥ 0 integer, the set of functions continuously

differentiable in A up to order k, included.
To denote a derivative of order m, it is convenient to introduce an n− uple of

nonnegative integers, α = (α1, ..., αn), called multi-index, of length

|α| = α1 + ...+ αn =m,

and set

Dα =
∂α1

∂xα11
...
∂αn

∂xαnn
.

We endow Ck (A) with the norm (maximum norm of order k)

‖f‖Ck(A) = ‖f‖C(A) +
k∑

|α|=1
‖Dαf‖C(A) .

If {fn} is a Cauchy sequence in Ck (A), all the sequences {Dαfn} with 0 ≤ |α| ≤ k
are Cauchy sequences in C (A). From the theorems on term by term differentiation
of sequences, it follows that the resulting space is a Banach space.

Remark 6.1. With the introduction of function spaces we are actually making a
step towards abstraction, regarding a function from a different perspective. In
calculus we see it as a point map while here we have to consider it as a single
element (or a point or a vector) of a vector space.

Summable and bounded functions. Let Ω be an open set in Rn and p ≥ 1
a real number. Let X = Lp (Ω) be the set of functions f such that |f |p is Lebesgue
integrable in Ω. Identifying two functions f and g when they are equal a.e.1 in Ω,

1 A property is valid almost everywhere in a set Ω, a.e. in short, if it is true at all points
in Ω, but for a subset of measure zero (Appendix B).
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Lp (Ω) becomes a Banach space2 when equipped with the norm (integral norm of
order p)

‖f‖Lp(Ω) =
(∫

Ω

|f |p
)1/p

.

The identification of two functions equal a.e. amounts to saying that an element
of Lp (Ω) is not a single function but, actually, an equivalence class of functions,
different from one another only on subsets of measure zero. At first glance, this
fact could be annoying, but after all, the situation is perfectly analogous to con-
sidering a rational number as an equivalent class of fractions (2/3, 4/6, 8/12 ....
represent the same number). For practical purposes one may always refer to the
more convenient representative of the class.

Let X = L∞ (Ω) the set of essentially bounded functions in Ω. Recall3 that
f : Ω → R (or C) is essentially bounded if there exists M such that

|f (x)| ≤M a.e. in Ω. (6.9)

The infimum of all numbersM with the property (6.9) is called essential supremum
of f , and denoted by

‖f‖L∞(Ω) = ess sup
Ω
|f | .

If we identify two functions when they are equal a.e., ‖f‖L∞(Ω) is a norm in
L∞ (Ω), and L∞ (Ω) becomes a Banach space.
Hölder inequality (1.9) mentioned in chapter 1, may be now rewritten in terms

of norms as follows: ∣∣∣∣
∫

Ω

fg

∣∣∣∣ ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) , (6.10)

where q = p/(p− 1) is the conjugate exponent of p, allowing also the case p = 1,
q =∞.
Note that, if Ω has finite measure and 1 ≤ p1 < p2 ≤∞, from (6.10) we have,

choosing g ≡ 1, p = p2/p1 and q = p2/(p2 − p1):
∣∣∣∣
∫

Ω

|f |p1
∣∣∣∣ ≤ |Ω|1/q ‖f‖p1Lp2(Ω)

and therefore Lp2 (Ω) ⊂ Lp1 (Ω). If the measure of Ω is infinite, this inclusion is
not true, in general; for instance, f ≡ 1 belongs to L∞ (R) but is not in Lp (R) for
1 ≤ p <∞.

6.3 Hilbert Spaces

Let X be a linear space over R. An inner or scalar product in X is a function

(·, ·) : X ×X → R

2 See e.g. Yoshida, 1965.
3 Appendix B.
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with the following three properties. For every x, y, z ∈ X and scalars λ, μ ∈ R:
1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0 (positivity)

2. (x, y) = (y, x) (symmetry)

3. (μx+ λy, z) = μ (x, z) + λ (y, z) (bilinearity).

A linear space endowed with an inner product is called an inner product space.
Property 3 shows that the inner product is linear with respect to its first argument.
From 2, the same is true for the second argument as well. Then, we say that (·, ·)
constitutes a symmetric bilinear form in X. When different inner product spaces
are involved it may be necessary the use of notations like (·, ·)X , to avoid confusion.

Remark 6.2. If the scalar field is C, then

(·, ·) : X ×X → C

and property 2 has to be replaced by

2bis. (x, y) = (y, x) where the bar denotes complex conjugation. As a consequence,

we have
(z, μx+ λy) = μ (z, x) + λ (z, y)

and we say that (·, ·) is antilinear with respect to its second argument or that it
is a sesquilinear form in X.

An inner product induces a norm, given by

‖x‖ =
√
(x, x) (6.11)

In fact, properties 1 and 2 in the definition of norm are immediate, while the
triangular inequality is a consequence of the following quite important theorem.

Theorem 6.1. Let x, y ∈ X. Then:
(1) Schwarz’s inequality:

|(x, y)| ≤ ‖x‖ ‖y‖ . (6.12)

Moreover equality holds in (6.12) if and only if x and y are linearly dependent.

(2) Parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

The parallelogram law generalizes an elementary result in euclidean plane ge-
ometry: in a parallelogram, the sum of the squares of the sides length equals the
sum of the squares of the diagonals length. The Schwarz inequality implies that
the inner product is continuous; in fact, writing

(w, z)− (x, y) = (w − x, z) + (x, z − y)
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we have

|(w, z)− (x, y)| ≤ ‖w − x‖ ‖z‖+ ‖x‖ ‖z − y‖
so that, if w→ x and z → y, then (w, z)→ (x, y).
Proof. (1) We mimic the finite dimensional proof. Let t ∈ R and x, y ∈ X.

Using the properties of the inner product and (6.11), we may write:

0 ≤ (tx+ y, tx+ y) = t2 ‖x‖2 + 2t (x, y) + ‖y‖2 ≡ P (t) .

Thus, the second degree polynomial P (t) is always nonnegative, whence

(x, y)
2 − ‖x‖2 ‖y‖2 ≤ 0

which is the Schwarz inequality. Equality is possible only if tx+y = 0, i.e. if x and
y are linearly dependent.
(2) Just observe that

‖x± y‖2 = (x± y, y ± y) = ‖x‖2 ± 2 (x, y) + ‖y‖2 . (6.13)

�

Definition 6.2. Let H be an inner product space. We say that H is a Hilbert
space if it is complete with respect to the norm (6.11), induced by the inner
product.

Two Hilbert spaces H1 and H2 are isomorphic if there exists a linear map
L : H1 → H2 which preserves the inner product, i.e.:

(x, y)H1 = (Lx, Ly)H2 ∀x, y ∈ H1.

In particular

‖x‖H1 = ‖Lx‖H2
Example 6.1. Rn is a Hilbert space with respect to the usual inner product

(x,y)
Rn
= x · y =

n∑
j=1

xjyj, x = (x1, ..., xn) , y =(y1, ..., yn).

The induced norm is

|x| = √x · x =
n∑
j=1

x2j .

More generally, if A =(aij)i,j=1,...,n is a square matrix of order n, symmetric and
positive,

(x,y)A = x ·Ay = Ax · y =
n∑
i=1

aijxiyj (6.14)
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defines another scalar product in Rn. Actually, every inner product in Rn may be
written in the form (6.14), with a suitable matrix A.

C
n is a Hilbert space with respect to the inner product

x · y =
n∑
j=1

xjyj x = (x1, ..., xn) ,y =(y1, ..., yn).

It is easy to show that every real (resp. complex) linear space of dimension n
is isomorphic to Rn (resp. Cn).

Example 6.2. L2(Ω) is a Hilbert space (perhaps the most important one) with
respect to the inner product

(u, v)L2(Ω) =

∫

Ω

uv.

If Ω is fixed, we will simply use the notations (u, v)0 instead of (u, v)L2(Ω)
and ‖u‖0 instead of ‖u‖L2(Ω).

Example 6.3. Let l2
C
be the set of complex sequences x = {xm} such that

∞∑
i=1

|xm|2 <∞.

For x = {xm} and y = {ym}, define

(x,y)l2
C

=

∞∑
i=1

xiyj, x = {xn} ,y = {yn} .

Then (x,y)l2
C

is an inner product which makes l2
C
a Hilbert space over C (see

Problem 6.3). This space constitutes the discrete analogue of L2(0, 2π). Indeed,
each u ∈ L2 (0, 2π) has an expansion in Fourier series (Appendix A)

u(x) =
∑
m∈Z
ûme

imx,

where

ûm =
1

2π

∫ 2π
0

u (x) e−imxdx.

Note that ûm = û−m, since u is a real function. From Parseval’s identity, we have

(u, v)0 =

∫ 2π
0

uv = 2π
∑
m∈Z
ûmv̂−m

and (Bessel’s equation)

‖u‖20 =
∫ 2π
0

u2 = 2π
∑
m∈Z

|ûm|2 .
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Example 6.4. A Sobolev space. It is possible to use the frequency space introduced
in the previous example to define the derivatives of a function in L2 (0, 2π) in a
weak or generalized sense. Let u ∈ C1 (R), 2π−periodic. The Fourier coefficients
of u′ are given by

û′m = imûm

and we may write

‖u′‖20 =
∫ 2π
0

(u′)2 = 2π
∑
m∈Z
m2 |ûm|2 . (6.15)

Thus, both sequences {ûm} and {mûm} belong to l2C. But the right hand side in
(6.15) does not involve u′ directly, so that it makes perfect sense to define

H1per (0, 2π) =
{
u ∈ L2 (0, 2π) : {ûm} , {mûm} ∈ l2

}

and introduce the inner product

(u, v)1,2 = (2π)
∑
m∈Z

[
1 +m2

]
ûmv̂−m

which makes H1per (0, 2π) into a Hilbert space. Since

{mûm} ∈ l2C,

with each u ∈ H1per (0, 2π) is associated the function v ∈ L2 (0, 2π) given by

v(x) =
∑
m∈Z
imûme

imx.

We see that v may be considered as a generalized derivative of u and H1per (0, 2π)
as the space of functions in L2 (0, 2π), together with their first derivatives. Let u ∈
H1per (0, 2π) and

u(x) =
∑
m∈Z
ûme

imx.

Since ∣∣ûmeimx
∣∣ = 1
m
m |ûm| ≤

1

2

(
1

m2
+m2 |ûm|2

)

the Weierstrass test entails that the Fourier series of u converges uniformly in R.
Thus u has a continuous, 2π−periodic extension to all R. Finally observe that, if
we use the symbol u′ also for the generalized derivative of u, the inner product in
H1per (0, 1) can be written in the form

(u, v)1,2 =

∫ 1
0

(u′v′ + uv).
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6.4 Projections and Bases

6.4.1 Projections

Hilbert spaces are the ideal setting to solve problems in infinitely many dimensions.
They unify through the inner product and the induced norm, both an analytical
and a geometric structure. As we shall shortly see, we may coherently introduce
the concepts of orthogonality, projection and basis, prove a infinite-dimensional
Pythagoras’ Theorem (an example is just Bessel’s equation) and introduce other
operations, extremely useful from both a theoretical and practical point of view.
As in finite-dimensional linear spaces, two elements x, y belonging to an inner

product space are called orthogonal or normal if (x, y) = 0, and we write x⊥y.
Now, if we consider a subspace V of Rn, e.g. a hyperplane through the origin,

every x ∈ Rn has a unique orthogonal projection on V . In fact, if dimV = k and
the unit vectors v1,v2, ...,vk constitute an orthonormal basis in V , we may always
find an orthonormal basis in Rn, given by

v1,v2, ...,vk,wk+1, ...,wn,

where wk+1, ...,wn are suitable unit vectors. Thus, if

x =

k∑
j=1

xjvj +

n∑
j=k+1

xjwj ,

the projection of x on V is given by

PV x =

k∑
j=1

xjvj.

On the other hand, the projection PV x can be characterized through the follow-
ing property, which does not involve a basis in Rn: PV x is the point in V that
minimizes the distance from x, that is

|PV x− x| = inf
y∈V

|y − x| . (6.16)

In fact, if y =
∑k

j=1 yjvj , we have

|y − x|2 =
k∑
j=1

(yj − xj)2 +
n∑

j=k+1

x2j ≥
N∑

j=k+1

x2j = |PV x − x|2 .

In this case, the “infimum” in (6.16) is actually a “minimum”.
The uniqueness of PV x follows from the fact that, if y

∗ ∈ V and

|y∗−x| = |PV x − x| ,
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then we must have
k∑
j=1

(y∗j − xj)2 = 0,

whence y∗j = xj for j = 1, ..., k, and therefore y
∗ = PV x. Since

(x − PV x)⊥v, ∀v ∈ V

every x ∈ Rn may be written in a unique way in the form

x = y + z

with y ∈ V and z ∈ V ⊥, where V ⊥ denotes the subspace of the vectors orthogonal
to V .
Then, we say that Rn is direct sum of the subspaces V and V ⊥ and we write

R
n = V ⊕ V ⊥.

Finally,
|x|2 = |y|2 + |z|2

which is the Pythagoras’ Theorem in Rn.

Fig. 6.1. Projection Theorem

We may extend all the above consideration to infinite-dimensional Hilbert
spaces H , if we consider closed subspaces V of H . Here closed means with
respect to the convergence induced by the norm. More precisely, a subset U ⊂ H
is closed in H if it contains all the limit points of sequences in U . Observe that if
V has finite dimension k, it is automatically closed, since it is isomorphic to Rk

(or Ck). Also, a closed subspace of a Hilbert space is a Hilbert space as well, with
respect to the inner product in H .
Unless stated explicitly, from now on we consider Hilbert spaces over R

(real Hilbert spaces), endowed with inner product (·, ·) and induced norm ‖·‖.
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Theorem 6.2. (Projection Theorem). Let V be a closed subspace of a Hilbert
space H. Then, for every x ∈ H, there exists a unique element PV x ∈ V such that

‖PV x− x‖ = inf
v∈V

‖v − x‖ . (6.17)

Moreover, the following properties hold:

1. PV x = x if and only if x ∈ V .
2. Let QV x = x− PV x. Then QV x ∈ V ⊥ and

‖x‖2 = ‖PV x‖2 + ‖QV x‖2 .

Proof. Let
d = inf

v∈V
‖v − x‖ .

By the definition of least upper bound, we may select a sequence {vm} ⊂ V , such
that ‖vm − x‖ → d asm→∞. In fact, for every integerm ≥ 1 there exists vm ∈ V
such that

d ≤ ‖vm − x‖ < d+
1

m
. (6.18)

Letting m→∞ in (6.18), we get ‖vm − x‖ → d.
We now show that {vm} is a Cauchy sequence. In fact, using the parallelogram

law for the vectors vk − x and vm − x, we obtain

‖vk + vm − 2x‖2 + ‖vk − vm‖2 = 2 ‖vk − x‖2 + 2 ‖vm − x‖2 . (6.19)

Since vk+vm
2

∈ V , we may write

‖vk + vm − 2x‖2 = 4
∥∥∥∥
vk + vm
2

− x
∥∥∥∥
2

≥ 4d2

whence, from (6.19):

‖vk − vm‖2 = 2 ‖vk − x‖2 + 2 ‖vm − x‖2 − ‖vk + vm − 2x‖2

≤ 2 ‖vk − x‖2 + 2 ‖vm − x‖2 − 4d2.

Letting k,m→∞, the right hand side goes to zero and therefore

‖vk − vm‖ → 0

as well. This proves that {vm} is a Cauchy sequence.
Since H is complete, vm converges to an element w ∈ H which belongs to V ,

because V is closed . Using the norm continuity (Proposition 6.1) we deduce

‖vm − x‖ → ‖w − x‖ = d

so that w realizes the minimum distance from x among the elements in V .
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We have to prove the uniqueness of w. Suppose w̄ ∈ V is another element such
that ‖w̄ − x‖ = d. The parallelogram law, applied to the vectors w−x and w̄− x,
yields

‖w − w̄‖2 = 2 ‖w − x‖2 + 2 ‖w̄ − x‖2 − 4
∥∥∥∥
w + w̄

2
− x
∥∥∥∥
2

≤ 2d2 + 2d2 − 4d2 = 0

whence w = w̄.

We have proved that there exists a unique element w = PV x ∈ V such that

‖x− PV x‖ = d.

To prove 1, observe that, since V is closed, x ∈ V if and only if d = 0, which means
x = PV x.
To show 2, let QV x = x− PV x, v ∈ V e t ∈ R. Since PV x+ tv ∈ V for every

t, we have:

d2 ≤ ‖x− (PV x+ tv)‖2 = ‖QV x− tv‖2

= ‖QV x‖2 − 2t (QV x, v) + t2 ‖v‖2

= d2 − 2t (QV x, v) + t2 ‖v‖2 .

Erasing d2 and dividing by t > 0, we get

(QV x, v) ≤
t

2
‖v‖2

which forces (QV x, v) ≤ 0; dividing by t < 0 we get

(QV x, v) ≥
t

2
‖v‖2

which forces (QV x, v) ≥ 0. Thus (QV x, v) = 0 which means QV x ∈ V ⊥ and
implies that

‖x‖2 = ‖PV x+QV x‖2 = ‖PV x‖2 + ‖QV x‖2 ,
concluding the proof. �

The elements PV x, QV x are called orthogonal projections of x on V and
V ⊥, respectively. The least upper bound in (6.17) is actually a minimum.Moreover
thanks to properties 1, 2, we say that H is direct sum of V and V ⊥ :

H = V ⊕ V ⊥.

Note that

V ⊥ = {0} if and only if V = H.
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Remark 6.3. Another characterization of PV x is the following (see Problem 6.4):
u = PV x if and only if

{
1. u ∈ V
2. (x− u, v) = 0, ∀v ∈ V.

Remark 6.4. It is useful to point out that, even if V is not a closed subspace of H ,
the subspace V ⊥ is always closed. In fact, if yn → y and {yn} ⊂ V ⊥, we have, for
every x ∈ V ,

(y, x) = lim(yn, x) = 0

whence y ∈ V ⊥.

Example 6.5. Let Ω ⊂ R
n be a set of finite measure. Consider in L2 (Ω) the

1−dimensional subspace V of constant functions (a basis is given by f ≡ 1, for
instance). Since it is finite-dimensional, V is closed in L2 (Ω) . Given f ∈ L2 (Ω),
to find the projection PV f , we solve the minimization problem

min
λ∈R

∫

Ω

(f − λ)2.

Since ∫

Ω

(f − λ)2 =
∫

Ω

f2 − 2λ
∫

Ω

f + λ2 |Ω| ,

we see that the minimizer is

λ =
1

|Ω|

∫

Ω

f.

Therefore

PV f =
1

|Ω|

∫

Ω

f and QV f = f −
1

|Ω|

∫

Ω

f.

Thus, the subspace V ⊥ is given by the functions g ∈ L2 (Ω) with zero mean value.
In fact these functions are orthogonal to f ≡ 1:

(g, 1)0 =

∫

Ω

g = 0.

6.4.2 Bases

A Hilbert space is said to be separable when there exists a countable dense subset
of H . An orthonormal basis in a separable Hilbert space H is sequence {wk}k≥1 ⊂
H such that4 {

(wk, wj) = δkj k, j ≥ 1, ...
‖wk‖ = 1 k ≥ 1

4 δjk is the Kronecker symbol.
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and every x ∈ H may be expanded in the form

x =

∞∑
k=1

(x, wk)wk. (6.20)

The series (6.20) is called generalized Fourier series and the numbers ck =
(x, wk) are the Fourier coefficients of x with respect to the basis {wk}. Moreover
(Pythagoras again!):

‖x‖2 =
∞∑
k=1

(x, wk)
2
.

Given an orthonormal basis {wk}k≥1, the projection of x ∈ H on the subspace V
spanned by, say, w1, ..., wN is given by

PV x =

N∑
k=1

(x, wk)wk.

An example of separable Hilbert space is L2 (Ω), Ω ⊆ Rn. In particular, the set of
functions

1√
2π
,
cosx√
π
,
sinx√
π
,
cos 2x√
π
,
sin 2x√
π
, ...,

cosmx√
π
,
sinmx√
π
, ...

constitutes an orthonormal basis in L2 (0, 2π) (see Appendix A).
It turns out that:

Proposition 6.2. Every separable Hilbert space H admits an orthonormal basis.

Proof (sketch). Let {zk}k≥1 be dense in H . Disregarding, if necessary, those
elements which are spanned by other elements in the sequence, we may assume
that {zk}k≥1 constitutes an independent set, i.e. every finite subset of {zk}k≥1 is
composed by independent elements.
Then, an orthonormal basis {wk}k≥1 is obtained by applying to {zk}k≥1 the

following so called Gram-Schmidt process. First, construct by induction a sequence
{w̃}k≥1 as follows. Let w̃1 = z1. Once w̃k−1 is known, we construct w̃k by sub-
tracting from zk its components with respect to w̃1, ..., w̃k−1:

w̃k = zk −
(zk, w̃k−1)
‖w̃k−1‖2

w̃k−1 − · · · −
(zk, w̃1)

‖w̃1‖2
w̃1.

In this way, w̃k is orthogonal to w̃1, ..., w̃k−1. Finally, set wk = w̃k/ ‖w̃k−1‖. Since
{zk}k≥1 is dense in H , then {wk}k≥1 is dense in H as well. Thus {wk}k≥1 is an
orthonormal basis. �
In the applications, orthonormal bases arise from solving particular boundary

value problems, often in relation to the separation of variables method. Typical
examples come form the vibrations of a non homogeneous string or from diffusion
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in a rod with non constant thermal properties cv, ρ, κ. The first example leads to
the wave equation

ρ (x)utt − τuxx = 0.
Separating variables (u(x, t) = v (x) z (t)), we find for the spatial factor the equa-
tion

τv′′ + λρv = 0.

In the second example we are led to

(κv′)′ + λcvρv = 0.

These equations are particular cases of a general class of ordinary differential
equations of the form

(pu′)′ + qu+ λwu = 0 (6.21)

called Sturm-Liouville equations. Usually one looks for solutions of (6.21) in an
interval (a, b), −∞ ≤ a < b ≤ +∞, satisfying suitable conditions at the end
points. The natural assumptions on p and q are p �= 0 in (a, b) and p, q, p−1 locally
integrable in (a, b). The function w plays the role of a weight function, continuous
in [a, b] and positive in (a, b) .
In general, the resulting boundary value problem has non trivial solutions only

for particular values of λ, called eigenvalues. The corresponding solutions are called
eigenfunctions and it turns out that, when suitably normalized, they constitute an
orthonormal basis in the Hilbert space L2w (a, b), the set of Lebesgue measurable
functions in (a, b) such that

‖u‖2L2w =
∫ b

a

u2 (x)w (x) dx <∞,

endowed with the inner product

(u, v)L2w
=

∫ b

a

u (x) v (x)w (x) dx.

We list below some examples5.

• Consider the problem
{(
1− x2

)
u′′ − xu′ + λu = 0 in (−1, 1)

u (−1) <∞, u (1) <∞.

The differential equation is known as Chebyshev’s equation and may be written in
the form (6.21):

((1− x2)1/2u′)′ + λ
(
1− x2

)−1/2
u = 0

5 For the proofs, see Courant-Hilbert, vol. I, 1953.
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which shows the proper weight function w (x) =
(
1− x2

)−1/2
. The eigenvalues

are λn = n
2, n = 0, 1, 2, .... The corresponding eigenfunctions are the Chebyshev

polynomials Tn, recursively defined by T0 (x) = 1, T1 (x) = x and

Tn+1 = 2xTn − Tn−1 (n > 1) .

For instance:

T2 (x) = 2x
2 − 1, T3 (x) = 4x3 − 3x, T4 (x) = 8x4 − 8x2 − 1.

The normalized polynomials
√
1/πT0,

√
2/πT1, ...,

√
2/πTn, ... constitute an

orthonormal basis in L2w (−1, 1).
• Consider the problem6

((
1− x2

)
u′
)′
+ λu = 0 in (−1, 1)

with weighted Neumann conditions

(
1− x2

)
u′ (x)→ 0 as x→ ±1.

The differential equation is known as Legendre’s equation. The eigenvalues are
λn = n (n+ 1), n = 0, 1, 2, ... The corresponding eigenfunctions are the Legendre
polynomials, defined by L0 (x) = 1, L1 (x) = x,

(n+ 1)Ln+1 = (2n + 1)xLn − nLn−1 (n > 1)

or by Rodrigues’ formula

Ln (x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
(n ≥ 0) .

For instance, L2 (x) = (3x
2 − 1)/2, L3 (x) = (5x3 − 3x)/2. The normalized poly-

nomials √
2n+ 1

2
Ln

constitute an orthonormal basis in L2 (−1, 1) (here w (x) ≡ 1). Every function
f ∈ L2 (−1, 1) has an expansion

f (x) =
∞∑
n=0

fnLn (x)

where fn =
2n+1
2

∫ 1
−1 f (x)Ln (x) dx, with convergence in L

2 (−1, 1).
• Consider the problem

{
u′′ − 2xu′ + 2λu = 0 in (−∞,+∞)
e−x

2/2u (x)→ 0 as x→ ±∞.
6 See also Problem 8.5.
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The differential equation is known as Hermite’s equation (see Problem 6.6) and
may be written in the form (6.21):

(e−x
2

u′)′ + 2λe−x
2

u = 0

which shows the proper weight function w (x) = e−x
2

. The eigenvalues are λn =
n, n = 0, 1, 2, .... The corresponding eigenfunctions are the Hermite polynomials
defined by Rodrigues’ formula

Hn (x) = (−1)n ex
2 dn

dxn
e−x

2

(n ≥ 0) .

For instance

H0 (x) = 1, H1 (x) = 2x, H2 (x) = 4x
2 − 2, H3 (x) = 8x3 − 12x.

The normalized polynomials π−1/4 (2nn!)−1/2Hn constitute an orthonormal basis
in L2w (R), with w (x) = e

−x2 . Every f ∈ L2w (R) has an expansion

f (x) =

∞∑
n=0

fnHn (x)

where fn = [π
1/22nn!]−1

∫
R
f (x)Hn (x) e

−x2dx, with convergence in L2w (R).

• After separating variables in the model for the vibration of a circular mem-
brane the following parametric Bessel equation of order p arises (see Problem 6.8):

x2u′′ + xu′ +
(
λx2 − p2

)
u = 0 x ∈ (0, a) (6.22)

where p ≥ 0, λ ≥ 0, with the boundary conditions

u (0) finite, u (a) = 0. (6.23)

Equation (6.22) may be written in Sturm-Liouville form as

(xu′)′ +
(
λx− p

2

x

)
u = 0

which shows the proper weight function w (x) = x. The simple rescaling z =
√
λx

reduces (6.22) to the Bessel equation of order p

z2
d2u

dz2
+ z
du

dz
+
(
z2 − p2

)
u = 0 (6.24)

where the dependence on the parameter λ is removed. The only bounded solutions
of (6.24) are the Bessel functions of first kind and order p, given by

Jp (z) =

∞∑
k=0

(−1)k
Γ (k + 1)Γ (k + p+ 1)

(z
2

)p+2k
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Fig. 6.2. Graphs of J0,J1 and J2

where

Γ (s) =

∫ ∞
0

e−tts−1dt (6.25)

is the Euler Γ− function. In particular, if p = n ≥ 0, integer:

Jn (z) =

∞∑
k=0

(−1)k
k! (k + n)!

(z
2

)n+2k
.

For every p, there exists an infinite, increasing sequence {αpj}j≥1 of positive zeroes
of Jp:

Jp (αpj) = 0 (j = 1, 2, ...).

Then, the eigenvalues of problem (6.22), (6.23) are given by λpj =
(αpj
a

)2
, with

corresponding eigenfunctions upj (x) = Jp

(αpj
a
x
)
. The normalized eigenfunctions

√
2

aJp+1 (αpj)
Jp

(αpj
a
x
)

constitute an orthonormal basis in L2w (0, a), with w (x) = x. Every function f ∈
L2w (0, a) has an expansion in Fourier-Bessel series

f (x) =

∞∑
j=1

fjJp

(αpj
a
x
)
,

where

fj =
2

a2J2p+1 (αpj)

∫ a

0

xf (x)Jp

(αpj
a
x
)
dx,

convergent in L2w (0, a).
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6.5 Linear Operators and Duality

6.5.1 Linear operators

Let H1 and H2 be Hilbert spaces. A linear operator from H1 into H2 is a
function

L : H1 → H2
such that7, ∀α, β ∈ R and ∀x, y ∈ H1

L(αx+ βy) = αLx + βLy.

For every linear operator we define its Kernel, N (L) and Range, R (L), as follows:

Definition 6.3. The kernel of L, is the pre-image of the null vector in H2:

N (L)= {x ∈ H1 : Lx = 0} .

The range of L is the set of all outputs from points in H1:

R (L) = {y ∈ H2 : ∃x ∈ H1, Lx = y} .

N (L) and R (L) are linear subspaces of H1 and H2, respectively.
Our main objects will be linear bounded operators.

Definition 6.4. A linear operator L : H1 → H2 is bounded if there exists a
number C such that

‖Lx‖H2 ≤ C ‖x‖H1 , ∀x ∈ H1. (6.26)

The number C controls the expansion rate operated by L on the elements of
H1. In particular, if C < 1, L contracts the sizes of the vectors in H1.
If x �= 0, using the linearity of L, we may write (6.26) in the form

∥∥∥∥∥L
(
x

‖x‖H1

)∥∥∥∥∥
H2

≤ C

which is equivalent to

sup
‖x‖H1=1

‖Lx‖H2 = K <∞, (6.27)

since x/ ‖x‖H1 is a unit vector in H1. Clearly K ≤ C.

Proposition 6.3. A linear operator L : H1 → H2 is bounded if and only if it is
continuous.

7 Notation: if L is linear, when no confusion arises, we may write Lx instead of L (x).
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Proof. Let L be bounded. From (6.26) we have, ∀x, x0 ∈ H1,

‖L (x− x0)‖H2 ≤ C ‖x− x0‖H1
so that, if ‖x− x0‖H1 → 0, also ‖Lx− Lx0‖H2 = ‖L (x− x0)‖H2 → 0. This shows
the continuity of L.
Let L be continuous. In particular, L is continuous at x = 0 so that there exists

δ such that
‖Lx‖H2 ≤ 1 if ‖x‖H1 ≤ δ.

Choose now y ∈ H1 with ‖y‖H1 = 1 and let z = δy. We have ‖z‖H1 = δ which
implies

δ ‖Ly‖H2 = ‖Lz‖H2 ≤ 1
or

‖Ly‖H2 ≤
1

δ

and (6.27) holds with K ≤ C = 1
δ . �

Given two Hilbert spaces H1 and H2, we denote by

L (H1, H2)

the family of all linear bounded operators from H1 into H2. If H1 = H2 we simply
write L (H). L (H1, H2) becomes a linear space if we define, for x ∈ H1 and λ ∈ R,

(G+ L) (x) = Gx+ Lx

(λL)x = λLx.

Also, we may use the number K in (6.27) as a norm in L (H1, H2):

‖L‖L(H1,H2) = sup
‖x‖H1=1

‖Lx‖H2 . (6.28)

When no confusion arises we will write simply ‖L‖ instead of ‖L‖L(H1,H2). Thus,
for every L ∈ L (H1, H2), we have

‖Lx‖H2 ≤ ‖L‖ ‖x‖H1 .

The resulting space is complete, so that:

Proposition 6.4. Endowed with the norm (6.28), L (H1, H2) is a Banach space.

Example 6.6. Let A be an m× n real matrix. The map

L : x �−→ Ax

is a linear operator from Rn into Rm. To compute ‖L‖, note that

‖Ax‖2 = Ax ·Ax = A�Ax · x.
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The matrix A�A is symmetric and nonnegative and therefore, from Linear Alge-
bra,

sup
‖x‖=1

A�Ax · x =ΛM

where ΛM is the maximum eigenvalue of A
�A. Thus, ‖L‖ = √ΛM .

Example 6.7. Let V be a closed subspace of a Hilbert space H . The projections

x �−→ PV x, x �−→ QV x,

defined in Theorem 6.2, are bounded linear operators from H intoH . In fact, from
‖x‖2 = ‖PV x‖2 + ‖QV x‖2, it follows immediately that

‖PV x‖ ≤ ‖x‖ , ‖QV x‖ ≤ ‖x‖

so that (6.26) holds with C = 1. Since PV x = x when x ∈ V and QV x = x when
x ∈ V ⊥, it follows that ‖PV ‖ = ‖QV ‖ = 1. Finally, observe that

N (PV ) = R (QV ) = V ⊥ and N (QV ) = R (PV ) = V.

Example 6.8. Let V andH be Hilbert spaces with8 V ⊂ H . Considering an element
in V as an element of H , we define the operator IV→H : V → H ,

IV→H (u) = u,

which is called embedding of V into H . IV→H is clearly a linear operator and it
is also bounded if there exists a constant C such that

‖u‖H ≤ C ‖u‖V , for every u ∈ V

In this case, we say that V is continuously embedded in H and we write

V ↪→ H.

For instance, H1per (0, 2π) ↪→ L2 (0, 2π) .

6.5.2 Functionals and dual space

When H2 = R (or C, for complex Hilbert spaces), a linear operator L : H → R

takes the name of functional.

Definition 6.5. The collection of all bounded linear functionals on a Hilbert space
H is called dual space of H and denoted by H∗ (instead of L (H,R)).
8 The inner products in V and H may be different.
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Example 6.9. Let H = L2 (Ω), Ω ⊆ Rn and fix g ∈ L2 (Ω). The functional defined
by

Lg : f �−→
∫

Ω

fg

is linear and bounded. In fact, Schwarz’s inequality yields

|Lgf | =
∣∣∣∣
∫

Ω

fg

∣∣∣∣ ≤
(∫

Ω

|f |2
)1/2(∫

Ω

|g|2
)1/2

= ‖g‖0 ‖f‖0

so that Lg ∈ L2 (Ω)∗ and ‖Lg‖ ≤ ‖g‖0. Actually ‖Lg‖ = ‖g‖0 since, choosing
f = g, we have

‖g‖20 = Lg(g) ≤ ‖Lg‖ ‖g‖0
whence also ‖Lg‖ ≥ ‖g‖0.

Example 6.10. The functional in Example 6.13 is induced by the inner product
with a fixed element in L2 (Ω). More generally, let H be a Hilbert space. For fixed
y ∈ H , the functional

L1 : x �−→ (x, y)
is continuous. In fact Schwarz’s inequality yields |(x, y)| ≤ ‖x‖ ‖y‖, whence L1 ∈
H∗ and ‖L1‖ ≤ ‖y‖. Actually ‖L1‖ = ‖y‖ since, choosing x = y, we have

‖y‖2 = |L1y| ≤ ‖L1‖ ‖y‖ ,

or ‖L1‖ ≥ ‖y‖. Observe that this argument provides the following alternative
definition of the norm of an element y ∈ H :

‖y‖ = sup
‖x‖=1

(x, y) . (6.29)

To identify the dual space of a Hilbert space H is crucial in many instances.
Example 6.14 shows that the inner product with a fixed element y in H defines an
element of H∗, whose norm is exactly ‖y‖. From Linear Algebra it is well known
that all linear functionals in a finite-dimensional space can be represented in that
way. Precisely, if L is linear in Rn, there exists a vector a ∈ Rn such that, for every
h ∈ Rn,

Lh = a · h
and ‖L‖ = |a|. The following theorem says that an analogous result holds in Hilbert
spaces.

Theorem 6.3. (Riesz′s Representation Theorem). Let H be a Hilbert space. For
every L ∈ H∗ there exists a unique uL ∈ H such that:

1. Lx = (uL, x) for every x ∈ H,
2. ‖L‖ = ‖uL‖ .



330 6 Elements of Functional Analysis

Proof. Let N be the kernel of L. If N = H , then L is the null operator and
uL = 0. If N ⊂ H , then N is a closed subspace of H . In fact, if {xn} ⊂ N and
xn → x, then 0 = Lxn → Lx so that x ∈ N ; thus N contains all its limit points
and therefore is closed.
Then, by the Projection Theorem, there exists z ∈ N⊥, z �= 0. Thus Lz �= 0

and, given any x ∈ H , the element

w = x− Lx
Lz
z

belongs to N . In fact

Lw = L

(
x− Lx
Lz
z

)
= Lx− Lx

Lz
Lz = 0.

Since z ∈ N⊥, we have

0 = (z, w) = (z, x)− Lx
Lz
‖z‖2

which entails

Lx =
L (z)

‖z‖2
(z, x) .

Therefore if uL = L (z) ‖z‖−2 z, then Lx = (uL, x).
For the uniqueness, observe that, if v ∈ H and

Lx = (v, x) for every x ∈ H,

subtracting this equation from Lx = (uL, x), we infer

(uL − v, x) = 0 for every x ∈ H

which forces v = uL.

To show ‖L‖ = ‖uL‖, use Schwarz’s inequality

|(uL, x)| ≤ ‖x‖ ‖uL‖

to get
‖L‖ = sup

‖x‖=1
|Lx| = sup

‖x‖=1
|(uL, x)| ≤ ‖uL‖ .

On the other hand,

‖uL‖2 = (uL, uL) = LuL ≤ ‖L‖ ‖uL‖

whence
‖uL‖ ≤ ‖L‖ .

Thus ‖L‖ = ‖uL‖. �
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The Riesz’s map R : H∗ → H given by

L �−→ uL

is a canonical isometry, since it preserves the norm:

‖L‖ = ‖uL‖ .

We say that uL is the Riesz element associated with L, with respect to the scalar
product (·, ·). Moreover, H∗ endowed with the inner product

(L1, L2)H∗ = (uL1 , uL2)

is clearly a Hilbert space. Thus, in the end, the Representation Theorem allows
the identification of a Hilbert space with its dual.
Typically, L2 (Ω) or l2 are identified with their duals.

Remark 6.5.Warning: there are situations in which the above canonical identifi-
cation requires some care. A typical case we shall meet later occurs when dealing
with a pair of Hilbert spaces V , H such that

V ↪→ H and H∗ ↪→ V ∗.

As we will see in subsection 6.8.1, in this conditions it is possible to identify H
and H∗ and write

V ↪→ H ↪→ V ∗,
but at this point the identification of V with V ∗ is forbidden, since it would give
rise to nonsense!

Remark 6.6. A few words about notations. The symbol (·, ·) or (·, ·)H denotes
the inner product in a Hilbert space H . Let now L ∈ H∗. For the action of the
functional L on an element x ∈ H we used the symbol Lx. Sometimes, when it is
useful or necessary to emphasize the duality (or pairing) between H and H∗, we
shall use the notation 〈L, x〉∗ or even H∗〈L, x〉H .

6.5.3 The adjoint of a bounded operator

The concept of adjoint operator extends the notion of transpose of an m × n
matrix A and plays a crucial role in determining compatibility conditions for the
solvability of several problems. The transpose A� is characterized by the identity

(Ax,y)
Rm
=(x,A�y)

Rn
, ∀x ∈Rn, ∀y ∈Rm.

We extend precisely this relation to define the adjoint of a bounded linear operator.
Let L ∈ L(H1, H2). If y ∈ H2 is fixed, the real map

Ty : x �−→ (Lx,y)H2
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defines an element of H∗1 . In fact

|Tyx| =
∣∣(Lx,y)H2

∣∣ ≤ ‖Lx‖H2 ‖y‖H2 ≤ ‖L‖L(H1,H2) ‖y‖H2 ‖x‖H1
so that ‖Ty‖ ≤ ‖L‖L(H1,H2) ‖y‖H2 .
From Riesz’s Theorem, there exists a unique w ∈ H1 depending on y, which

we denote by w = L∗y, such that

Tyx = (x,L
∗y)H1 ∀x ∈ H1, ∀y ∈ H2.

This defines L∗ as an operator from H2 into H1, which is called the adjoint of L.
Precisely:

Definition 6.6. The operator L∗ : H2 → H1 defined by the identity

(Lx,y)H2 =(x,L
∗y)H1 , ∀x ∈ H1, ∀y ∈ H2 (6.30)

is called the adjoint of L.

Example 6.11. Let R : H∗ → H the Riesz operator. Then R∗ = R−1 : H → H∗.
In fact, for every F ∈ H∗ and v ∈ H , we have:

(RF, v)H = 〈F, v〉∗ =
(
F,R−1v

)
H∗ .

Example 6.12. Let T : L2 (0, 1)→ L2 (0, 1) be the linear map

Tu (x) =

∫ x

0

u (t) dt.

Schwarz’s inequality gives ∣∣∣∣
∫ x

0

u

∣∣∣∣
2

≤ x
∫ x

0

u2,

whence

‖Tu‖20 =
∫ 1
0

|Tu|2 =
∫ 1
0

∣∣∣∣
∫ x

0

u

∣∣∣∣
2

dx ≤
∫ 1
0

(x

∫ x

0

u2)dx ≤ 1
2

∫ 1
0

u2 ≤ 1
2
‖u‖20

and therefore T is bounded. To compute T ∗, observe that

(Tu,v)0 =

∫ 1
0

[v (x)

∫ x

0

u (y) dy] dx = exchanging the order of integration

=

∫ 1
0

[u (y)

∫ 1
x

v (x) dx] dy = (u, T ∗v)0 .

Thus,

T ∗v (x) =
∫ 1
x

v (t) dt.
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Symmetric matrices correspond to selfadjoint operators. We say that L is self-
adjoint if H1 = H2 and L

∗ = L. Then, (6.30) reduces to

(Lx,y)= (x,Ly) .

An example of a selfadjoint operator in a Hilbert space H is the projection PV on
a closed subspace of H ; in fact, recalling the Projection Theorem:

(PV x,y) = (PV x,PV y +QV y) = (PV x,PV y) = (PV x+QV x,PV y) = (x,PV y) .

Important self-adjoint operators are associated with inverses of differential oper-
ators, as we will see in Chapter 8.
The following properties are immediate consequences of the definition of adjoint

(for the proof, see Problem 6.10).

Proposition 6.5. Let L , L1 ∈ L(H1, H2) and L2 ∈ L(H2, H3). Then:
(a) L∗ ∈ L(H2, H1). Moreover L∗∗ = L and

‖L∗‖L(H2,H1) = ‖L‖L(H1,H2) .
(b) (L2L1)

∗
= L∗1L∗2. In particular, if L is an isomorphism, then(

L−1
)∗
= (L∗)−1 .

The next theorem extends relations well known in the finite-dimensional case.

Theorem 6.4. Let L ∈ L (H1, H2) . Then
a) R (L) = N (L∗)⊥

b) N (L) = R (L∗)⊥ .
Proof. a) Let z ∈ R (L). Then, there exists x ∈ H1 such that z = Lx and, if

y ∈ N (L∗), we have
(z,y)H2 = (Lx,y)H2 = (x,L

∗y)H1 = 0.

Thus, R (L) ⊆ N (L∗)⊥. Since N (L∗)⊥ is closed9, it follows that
R (L) ⊆ N (L∗)⊥

as well. On the other hand, if z ∈ R (L)⊥, for every x ∈ H1 we have
0 = (Lx,z)H2 = (x,L

∗z)H1
whence L∗z = 0. Therefore

R (L)⊥ ⊆ N (L∗) ,
equivalent to

N (L∗)⊥ ⊆ R (L).
b) letting L = L∗ in a) we deduce

R (L∗) = N (L)⊥ ,
equivalent to R (L∗)⊥ = N (L). �
9 Remark 6.8.
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6.6 Abstract Variational Problems

6.6.1 Bilinear forms and the Lax-Milgram Theorem

In the variational formulation of boundary value problems a key role is played by
bilinear forms. Given two linear spaces V1, V2, a bilinear form in V1 × V2 is a
function

a : V1 × V2 → R

satisfying the following properties:

i) For every y ∈ V2, the function

x �−→ a(x, y)

is linear in V1.

ii) For every x ∈ V1, the function

y �−→ a(x, y)

is linear in V2.

When V1 = V2, we simply say that a is a bilinear form in V .

Remark 6.7. In complex inner product spaces we define sesquilinear forms, instead
of bilinear forms, replacing ii) by:

iibis) for every x ∈ V1, the function

y �−→ a(x, y)

is anti-linear10 in V2.

Here are some examples.

• A typical example of bilinear form in a Hilbert space is its inner product.
• The formula

a (u, v) =

∫ b

a

(p(x)u′v′ + q(x)u′v + r(x)uv) dx

where p, q, r are bounded functions, defines a bilinear form in C1 ([a, b]).
More generally, if Ω is a bounded domain in Rn,

a(u,v) =

∫

Ω

(α ∇u · ∇v + ub (x) · ∇v + a0 (x)uv) dx (α > 0) ,

10 That is

a (x, αy + βz) = αa (x, y) + βa (x, z)
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or

a(u,v) =

∫

Ω

α ∇u · ∇v dx+
∫

∂Ω

huv dσ (α > 0) ,

(b, a0, h bounded) are bilinear forms in C
1
(
Ω
)
.

• A bilinear form in C2
(
Ω
)
involving higher order derivatives is

a (u, v) =

∫

Ω

Δu Δv dx.

Let V be a Hilbert space, a be a bilinear form in V and F ∈ V ∗. Consider the
following problem, called abstract variational problem:

⎧⎨
⎩

Find u ∈ V
such that

a (u, v) = 〈F, v〉∗ ∀v ∈ V.
(6.31)

As we shall see, many boundary values problems can be recast in this form.
The fundamental result is:

Theorem 6.5. (Lax−Milgram). Let V be a real Hilbert space endowed with
inner product (·, ·) and norm ‖·‖. Let a = a (u, v) be a bilinear form in V . If:
i) a is continuous, i.e. there exists a constant M such that

|a(u, v)| ≤M ‖u‖ ‖v‖ , ∀u, v ∈ V ;

ii) a is V−coercive, i.e. there exists a constant α > 0 such that

a(v, v) ≥ α ‖v‖2 , ∀v ∈ V, (6.32)

then there exists a unique solution u ∈ V of problem (6.31). Moreover, the
following stability estimate holds:

‖u‖ ≤ 1
α
‖F ‖V ∗ . (6.33)

Remark 6.8. The coercivity inequality (6.32) may be considered as an abstract
version of the energy or integral estimates we met in the previous chapters. Usually,
it is the key estimate to prove in order to apply Theorem 6.5. We shall come back
to the general solvability of a variational problem in Section 6.8, when a is not
V−coercive.

Remark 6.9. Inequality (6.61) is called stability estimate for the following reason.
The functional F, element of V ∗, encodes the “data” of the problem (6.31). Since
for every F there is a unique solution u(F ), the map

F �−→ u(F )
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is a well defined function from V ∗ onto V . Also, everything here has a linear
nature, so that the solution map is linear as well. To check it, let λ, μ ∈ R, F1,
F2 ∈ V ∗ and u1, u2 the corresponding solutions. The bilinearity of a, gives

a(λu1 + μu2, v) = λa(u1, v) + μa(u2, v) =

= λF1v + μF2v.

Therefore, the same linear combination of the solutions corresponds to a linear
combination of the data; this expresses the principle of superposition for problem
(6.31). Applying now (6.33) to u1− u2, we obtain

‖u1 − u2‖ ≤
1

α
‖F1 − F2‖V ∗ .

Thus, close data imply close solutions. The stability constant 1/α plays an im-
portant role, since it controls the norm-variation of the solutions in terms of the
variations on the data, measured by ‖F1 − F2‖V ∗ . This entails, in particular, that
the more the coercivity constant α is large, the more “stable” is the solution.

Proof of theorem 6.5. We split it into several steps.

1. Reformulation of problem (6.31). For every fixed u ∈ V , by the continuity
of a, the linear map

v �→ a (u, v)
is bounded in V and therefore it defines an element of V ∗. From Riesz’s Represen-
tation Theorem, there exists a unique A [u] ∈ V such that

a (u, v) = (A[u],v) , ∀v ∈ V. (6.34)

Since F ∈ V ∗ as well, there exists a unique zF ∈ V such that

Fv = (zF ,v) ∀v ∈ V

and moreover ‖F ‖V ∗ = ‖zF ‖. Then, problem (6.31) can be recast in the following
way: ⎧⎨

⎩
Find u ∈ V
such that

(A [u] ,v) = (zF ,v) , ∀v ∈ V
which, in turn, is equivalent to finding u such that

A [u] = zF . (6.35)

We want to show that (6.35) has exactly one solution. To do this we show that

A : V → V

is a linear, continuous, one-to-one, surjective map.
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2. Linearity and continuity of A. We repeatedly use the definition of A and the
bilinearity of a. To show linearity, we write, for every u1, u2, v ∈ V and λ1, λ2 ∈ R,

(A [λ1u1 + λ2u2] ,v) = a (λ1u1 + λ2u2, v) = λ1a (u1, v) + λ2a (u2, v)

= λ1 (A [u1] ,v) + λ2 (A [u2] ,v) = (λ1A [u1] + λ2A [u2] ,v)

whence

A [λ1u1 + λ2u2] = λ1A [u1] + λ2A [u2] .

Thus A is linear and we may write Au instead of A [u]. For the continuity, observe
that

‖Au‖2 = (Au,Au) = a(u, Au)
≤M ‖u‖ ‖Au‖

whence

‖Au‖ ≤M ‖u‖ .
3. A is one-to-one and has closed range, i.e.

N (A) = {0} and R (A) is a closed subspace of V.

In fact, the coercivity of a yields

α ‖u‖2 ≤ a (u, u) = (Au, u) ≤ ‖Au‖ ‖u‖

whence

‖u‖ ≤ 1
α
‖Au‖ . (6.36)

Thus, Au = 0 implies u = 0 and hence N (A) = {0}.
To prove that R (A) is closed we have to consider a sequence {ym} ⊂ R (A)

such that

ym → y ∈ V
as m → ∞, and show that y ∈ R (A). Since ym ∈ R (A) , there exists um such
that Aum = ym. From (6.36) we infer

‖uk − um‖ ≤
1

α
‖yk − ym‖

and therefore, since {ym} is convergent, {um} is a Cauchy sequence. Since V is
complete, there exists u ∈ V such that

um → u

and the continuity of A yields ym = Aum → Au. Thus Au = y, so that y ∈ R (A)
and R (A) is closed.
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4. A is surjective, that is R (A) = V . Suppose R (A) ⊂ V . Since R (A) is a
closed subspace, by the Projection Theorem there exists z �= 0, z ∈ R (A)⊥. In
particular, this implies

0 = (Az, z) = a (z, z) ≥ α ‖z‖2

whence z = 0. Contradiction. Therefore R (A) = V .
5. Solution of problem (6.31). Since A is one-to-one and R (A) = V , there

exists exactly one solution u ∈ V of equation

Au = zF .

From point 1, u is the unique solution of problem (6.31) as well.

6. Stability estimate. From (6.36) with u = u, we obtain

‖u‖ ≤ 1
α
‖Au‖ = 1

α
‖zF ‖ =

1

α
‖F ‖V ∗

and the proof is complete. �

Remark 6.10. Some applications require the solution to be in some Hilbert space
W , while asking the variational equation

a (u, v) = 〈F, v〉∗
to hold for every v ∈ V , with V �= W . A variant of Theorem 6.5 deals with this
asymmetric situation. Let F ∈ V ∗ and a = a (u, v) be a bilinear form in W × V
satisfying the following three hypotheses:

i) there exists M such that

|a(u, v)| ≤M ‖u‖W ‖v‖V , ∀u ∈W, ∀v ∈ V ;
ii) there exists α > 0 such that

sup
‖v‖V =1

a(u, v) ≥ α ‖u‖W , ∀u ∈W ;

iii)
sup
w∈W
a(w, v) > 0, ∀v ∈ V.

Condition ii) is an asymmetric coercivity, while iii) assures that, for every fixed
v ∈ V , a (v, ·) is positive at some point in W . We have (for the proof see Problem
6.11):

Theorem 6.6. (Neças). If i), ii), iii) hold, there exists a unique u ∈ W such that

a (u, v) = 〈F, v〉∗ ∀v ∈ V.

Moreover

‖u‖W ≤ 1
α
‖F ‖V ∗ . (6.37)
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6.6.2 Minimization of quadratic functionals

When a is symmetric, i.e. if

a (u, v) = a (v, u) ∀u, v ∈ V,

the abstract variational problem (6.31) is equivalent to a minimization problem.
In fact, consider the quadratic functional

E (v) =
1

2
a (v, v) − 〈F, v〉∗ .

We have:

Theorem 6.7. Let a be symmetric. Then u is solution of problem (6.31) if and
only if u is a minimizer of E, that is

E (u) = min
v∈V
E (v) .

Proof. For every ε ∈ R and every “variation” v ∈ V we have

E (u+ εv) −E (u)

=

{
1

2
a (u+ εv, u+ εv) − 〈F, u+ εv〉∗

}
−
{
1

2
a (u, u)− 〈F, u〉∗

}

= ε {a (u, v)− 〈F, v〉∗}+
1

2
ε2a (v, v) .

Now, if u is the solution of problem (6.31), then a (u, v) − 〈F, v〉∗ = 0. Therefore

E (u+ εv) − E (u) = 1
2
ε2a (v, v) ≥ 0

so that u minimizes E. On the other hand, if u is a minimizer of E, then

E (u+ εv) −E (u) ≥ 0,

which entails

ε {a (u, v) − 〈F, v〉∗}+
1

2
ε2a (v, v) ≥ 0.

This inequality forces (why?)

a (u, v) − 〈F, v〉∗ = 0 ∀v ∈ V (6.38)

and u is a solution of problem (6.31)). �

Letting ϕ (ε) = E (u+ εv), from the above calculations we have

ϕ′(0) = a (u, v) − 〈F, v〉∗ .
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Thus, the linear functional

v �−→ a (u, v)− 〈F, v〉∗
appears as the derivative of E at u along the direction v and we write

E′ (u) v = a (u, v)− 〈F, v〉∗ . (6.39)

In Calculus of Variation E′ is called first variation and denoted by δE.
If a is symmetric, the variational equation

E′ (u)v = a (u, v) − 〈F, v〉∗ = 0, ∀v ∈ V (6.40)

is called Euler equation for the functional E.

Remark 6.11. A bilinear form a, symmetric and coercive, induces in V the inner
product

(u, v)a = a (u, v) .

In this case, existence, uniqueness and stability for problem (6.31) follow directly
from Riesz’s Representation Theorem. In particular, there exists a unique mini-
mizer u of E.

6.6.3 Approximation and Galerkin method

The solution u of the abstract variational problem (6.31), satisfies the equation

a (u, v) = 〈F, v〉∗ (6.41)

for every v in the Hilbert space V . In concrete applications, it is important to
compute approximate solutions with a given degree of accuracy and the infinite
dimension of V is the main obstacle. Often, however, V may be written as a union
of finite-dimensional subspaces, so that, in principle, it could be reasonable to
obtain approximate solutions by “projecting” equation (6.41) on those subspaces.
This is the idea of Galerkin’s method. In principle, the higher the dimension
of the subspace the better should be the degree of approximation. More precisely,
the idea is to construct a sequence {Vk} of subspaces of V with the following
properties:

a) Every Vk is finite-dimensional : dimVk = k,

b) Vk ⊂ Vk+1 (actually, not strictly necessary),
c) ∪Vk = V.
To realize the projection, assume that the vectors ψ1, ψ2, ..., ψk span Vk. Then,

we look for an approximation of the solution u in the form

uk =

k∑
j=1

cjψj, (6.42)
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by solving the projected problem

a (uk, v) = 〈F, v〉∗ ∀v ∈ Vk. (6.43)

Since {ψ1, ψ2, ..., ψk} constitutes a basis in Vk, (6.43) amounts to requiring

a (uk, ψr) = 〈F, ψr〉∗ r = 1, ..., k. (6.44)

Substituting (6.42) into (6.44), we obtain the k linear algebraic equations

k∑
j=1

cja
(
ψj, ψr

)
= 〈F, ψr〉∗ r = 1, 2, ..., k (6.45)

for the unknown coefficients c1, c2, ..., ck. Introducing the vectors

c =

⎛
⎜⎜⎜⎝

c1
c2
...
ck

⎞
⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎝

〈F, ψ1〉∗
〈F, ψ2〉∗
...
〈F, ψk〉∗

⎞
⎟⎟⎟⎠

and the matrix A =(arj), with entries

arj = a
(
ψj, ψr

)
, j, r = 1, ..., k,

we may write (6.45) in the compact form

Ac = F. (6.46)

The matrixA is called stiffness matrix and clearly plays a key role in the numerical
analysis of the problem.
If the bilinear form a is coercive, A is strictly positive. In fact, let ξ ∈Rk. Then,

by linearity and coercivity:

Aξ · ξ =
k∑

r,j=1

arjξrξj =

k∑
r,j=1

a
(
ψj, ψr

)
ξrξj

=

k∑
r,j=1

a
(
ξjψj, ξrψr

)
= a

⎛
⎝

k∑
i=1

ξjψj ,

k∑
j=1

ξrψr

⎞
⎠

≥ α ‖v‖2

where

v =

k∑
j=1

ξjψj∈Vk.

Since {ψ1, ψ2, ..., ψk} is a basis in Vk, we have v = 0 if and only if ξ = 0. Therefore
A is strictly positive and, in particular, non singular.
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Thus, for each k ≥ 1, there exists a unique solution uk ∈ Vk of (6.46). We want
to show that uk → u, as k → ∞, i.e. the convergence of the method, and give a
control of the approximation error.
For this purpose, we prove the following lemma, which also shows the role of

the continuity and the coercivity constants (M and α, respectively) of the bilinear
form a.

Lemma 6.1. (Céa). Assume that the hypotheses of the Lax-Milgram Theorem
hold and let u be the solution of problem (6.31). If uk is the solution of problem
(6.44), then

‖u− uk‖ ≤
M

α
inf
v∈Vk

‖u− v‖ . (6.47)

Proof. We have
a (uk, v) = 〈F, v〉∗ , ∀v ∈ Vk

and
a (u, v) = 〈F, v〉∗ , ∀v ∈ Vk.

Subtracting the two equations we obtain

a (u− uk, v) = 0, ∀v ∈ Vk.
In particular, since v − uk ∈ Vk, we have

a (u− uk, v − uk) = 0, ∀v ∈ Vk
which implies

a (u− uk, u− uk) = a (u− uk, u− v) + a (u− uk, v − uk)
= a (u− uk, u− v) .

Then, by the coercivity of a,

α ‖u− uk‖2 ≤ a (u− uk, u− uk) ≤M ‖u− uk‖ ‖u− v‖
whence,

‖u− uk‖ ≤
M

α
‖u− v‖ . (6.48)

This inequality holds for every v ∈ Vk, with M
α independent of k. Therefore (6.48)

still holds if we take in the right hand side the infimum over all v ∈ Vk. �
Convergence of Galerkin’s method. Since we have assumed that

∪Vk = V,
there exists a sequence {wk} ⊂ Vk such that wk → u as k → ∞. Céa’s Lemma
gives, for every k:

‖u− uk‖ ≤
M

α
inf
v∈Vk

‖u− v‖ ≤ M
α
‖u−wk‖

whence
‖u− uk‖ → 0.
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6.7 Compactness and Weak Convergence

6.7.1 Compactness

The solvability of boundary value problems and the analysis of numerical meth-
ods involve several questions of convergence. In typical situations one is able to
construct a sequence of approximations and the main task is to prove that this
sequence converges to a solution of the problem in a suitable sense. It is often
the case that, through energy type estimates11, one is able to show that these
sequences of approximations are bounded in some Hilbert space. How can we use
this information? Although we cannot expect these sequences to converge, we may
reasonably look for convergent subsequences, which is already quite satisfactory. In
technical words, we are asking to our sequences to have a compactness property.
Let us spend a few words on this important topological concept 12. Once more,
the difference between finite and infinite dimension plays a big role.

Let X be a normed space. The general definition of compact set involves open
coverings: an open covering of E ⊆ X is a family of open sets whose union contains
E.

Definition 6.7. (Compactness 1). We say that E ⊆ X is compact if from every
open covering of E it is possible to extract a finite subcovering of E.

It is somewhat more convenient to work with pre-compact sets as well, i.e.
sets whose closure is compact. In finite-dimensional spaces the characterization of
pre-compact sets is well known: E ⊂ Rn is pre-compact if and only if E is bounded.
What about infinitely many dimensions? Let us introduce a characterization of
pre-compact sets in normed spaces in terms of convergent sequences, much more
comfortable to use.
First, let us agree that a subset E of a normed space X is sequentially pre-

compact (resp. compact), if for every sequence {xk} ⊂ E there exists a subsequence
{xks}, convergent in X (resp. in E).
We have:

Theorem 6.8. (Compactness 2). Let X be a normed space and E ⊂ X. Then E
is pre-compact (compact) if and only if it is sequentially pre-compact (compact).

While a compact set is always closed and bounded (see Problem 6.12), the
following example exhibits a closed and bounded set which is not compact in l2.
Consider the real Hilbert space

l2 =

{
x = {xk}∞k=1 :

∞∑
k=1

x2k <∞, xk ∈ R
}

11 I.e. estimates for a function and its gradient in L2.
12 For the proofs see e.g. Rudin, 1964 or Yhosida, 1968.
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endowed with

(x,y) =

∞∑
k=1

xkyk and ‖x‖2 =
∞∑
k=1

x2k.

Let E =
{
ek
}
k≥1, where e

1 = {1, 0, 0, ...}, e2 = {0, 1, 0, ...}, etc.. Observe that E
constitutes an orthonormal basis in l2. Then, E is closed and bounded in l2.
However, E is not sequentially compact. Indeed,

∥∥ej − ek∥∥ = √2, if j �= k, and
therefore no subsequence of

{
ek
}
k≥1 can be convergent.

Thus, in infinite-dimensions, closed and bounded does not imply compact. Ac-
tually, this can only happen in finite-dimensional spaces. In fact:

Theorem 6.9. Let B be a Banach space. B is finite-dimensional if and only if the
unit ball {x : ‖x‖ ≤ 1} is compact.

Criterion of compactness in L2. To recognize that a subset of a Hilbert
space is compact is usually a hard task. The following theorem gives a criterion
for recognizing pre-compact sets S ⊂ L2(Ω).

Theorem 6.10. Let Ω ⊂ Rn be a bounded domain and S ⊂ L2(Ω). If:
i) S is bounded: i.e. there exists K such that ‖u‖L2(Ω) ≤ K, ∀u ∈ S,
ii) there exist α and L, positive, such that, if u is extended by zero outside Ω,

‖u (·+ h)− u (·)‖L2(Ω) ≤ L |h|
α
, for every h ∈Rn and u ∈ S,

then S is pre-compact.

The second condition expresses an equicontinuity in norm of all the elements
in S. We shall meet this condition in subsection 7.10.1.

6.7.2 Weak convergence and compactness

We have seen that the compactness in a normed space is equivalent to sequential
compactness. In the applications, this translates into a very strong requirement
for approximating sequences.
Fortunately, in normed spaces, and in particular in Hilbert spaces, there is

another notion of convergence, much more flexible, which turns out to be perfectly
adapted to the variational formulation of boundary value problems.
Let H be a Hilbert space with inner product (·, ·) and norm ‖·‖. If F ∈ H∗, we

know that 〈F, xk〉∗ → 〈F, x〉∗ when ‖xk − x‖ → 0. However, it could be that

〈F, xk〉∗ → 〈F, x〉∗
for every F ∈ H∗, even if ‖xk − x‖ � 0. Then, we say that xk converges weakly
to x. Precisely:
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Definition 6.8. A sequence {xk} ⊂ H converges weakly to x ∈ H, and we
write

xk ⇀ x

(with an “half arrow”), if

〈F, xk〉∗ → 〈F, x〉∗ , ∀F ∈ H∗.
The convergence in norm is then called strong convergence. From Riesz’s Rep-

resentation Theorem, it follows that {xk} ⊂ H converges weakly to x ∈ H if and
only if

(xk, y)→ (x, y) , ∀y ∈ H.
The weak limit is unique, since xk ⇀ x and xk ⇀ z implies

(x− z, y) = 0 ∀y ∈ H,
whence x = z. Moreover, Schwarz’s inequality gives

|(xk − x, y)| ≤ ‖xk − x‖ ‖y‖
so that strong convergence implies weak convergence, which should not be surpris-
ing.
The two notions of convergence are equivalent in finite-dimensional spaces. It

is not so in infinite dimensions, as the following example shows.

Example 6.13. Let H = L2 (0, 2π). The sequence vk (x) = cos kx, k ≥ 1, is weakly
convergent to zero. In fact, for every f ∈ L2 (0, 2π) , the Riemann-Lebesgue The-
orem on the Fourier coefficients of f implies that

(f, vk)0 =

∫ 2π
0

f (x) cos kx dx→ 0

as k→∞. However
‖vk‖0 =

√
π

and therefore {vk}k≥1 does not converge strongly.
Remark 6.12. If L ∈ L (H1, H2) and xk ⇀ x in H1 we cannot say that Lxk → Lx
in H2. However, by definition of weak convergence, Lxk ⇀ Lx is true. Thus, if L
is (strongly) continuous then it is weakly continuous as well.

Remark 6.13.Warning: Not always strong implies weak ! Take a strongly closed
set E ⊂ H . Can we deduce that E is weakly closed as well? The answer is no. In-
deed, “strongly closed”means that E contains all the limits of strongly convergent
sequences {xk} ⊂ E. But suppose that xk ⇀ x (only weakly); since the conver-
gence is not strong, we can not affirm that x ∈ E. Thus, E is not weakly closed,
in general13.
For instance, let E = {vk} where vk (x) = cos kx, as in Example 6.23. Then,

E is a strongly closed subset of L2 (0, 2π) and contained in the set {‖v‖0 =
√
π}.

However vk ⇀ 0 /∈ E, so that E is not weakly closed.
13 See Problem 6.14.
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We have observed that the norm in a Hilbert space is strongly continuous. With
respect to weak convergence, the norm is only lower semicontinuous, as property
2 in the following theorem shows.

Theorem 6.11. Let {xk} ⊂ H such that xk ⇀ x. Then
1) {xk} is bounded,
2) ‖x‖ ≤ lim infk→∞ ‖xk‖.

We omit the proof of 1. For the second point, it is enough to observe that

‖x‖2 = lim
k→∞

(xk, x) ≤ ‖x‖ lim inf
k→∞

‖xk‖

and simplify by ‖x‖.
The usefulness of weak convergence is revealed by the following compactness

result. Basically, it says that if we substitute strong with weak convergence, any
bounded sequence in a Hilbert space is weakly pre-compact. Precisely:

Theorem 6.12. Every bounded sequence in a Hilbert space H contains a subse-
quence which is weakly convergent to an element x∈H .

Proof. We give it under the additional hypothesis that H is separable. Thus,
there exists a sequence {zk} dense inH . Let now {xj} ⊂ H be a bounded sequence:
‖xj‖ ≤M , ∀j ≥ 1. We split the proof into three steps.
1. Using a “diagonal”process, we construct a subsequence {x(s)s } such that the

real sequence (x
(s)
s , zk) is convergent for every fixed zk. To do this, observe that

the sequence
(xj, z1)

is bounded in R and therefore there exists {x(1)j } ⊂ {xj} such that

(x
(1)
j , z1)

is convergent. For the same reason, from {x(1)j } we may extract a subsequence
{x(2)j } such that

(x
(2)
j , z2)

is convergent. By induction, we construct {x(k)j } such that

(x
(k)
j , zk)

converges. Consider the diagonal sequence {x(s)s }, obtained by selecting x(1)1 from
{x(1)j }, x

(2)
2 from {x(2)j } and so on. Then,

(x(s)s , zk)
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is convergent for every fixed k ≥ 1.
2. We use the density of {zk} to show that (x(s)s , zk) converges for every z ∈ H .

In fact, for fixed ε > 0 and z ∈ H , we may find zk such that ‖z − zk‖ < ε. Write

(x(s)s − x(m)m , z) = (x
(s)
s − x(m)m , z − zk) + (x(s)s − x(m)m , zk).

If j and m are large enough
∣∣∣(x(s)s − x(m)m , zk)

∣∣∣ < ε

since (x
(s)
s , zk) is convergent. Moreover, from Schwarz’s inequality,

∣∣∣(x(s)s − x(m)m , z − zk)
∣∣∣ ≤

∥∥∥x(s)s − x(m)m

∥∥∥ ‖z − zk‖ ≤ 2Mε.

Thus, if j and m are large enough, we have
∣∣∣(x(s)s − x(m)m , z)

∣∣∣ ≤ (2M + 1)ε,

hence the sequence (x
(s)
s − x(m)m , z) is a Cauchy sequence in R and therefore con-

vergent.
3. From 2, we may define a linear functional T in H by setting

Tz = lim
s→∞(x

(s)
s , z).

Since
∥∥∥x(s)s

∥∥∥ ≤M , we have
|Tz| ≤M ‖z‖

whence T ∈ H∗. From the Riesz Representation theorem, there exists a unique
x∞ ∈ H such that

Tz = (x∞, z) , ∀z ∈ H.
Thus

(x(s)s , z)→ (x∞, z) , ∀z ∈ H
or

x(s)s ⇀ x∞.

�

Example 6.14. Let H = L2 (Ω), Ω ⊆ R
n and consider a sequence {uk}k≥1 ⊂

L2 (Ω). To say that {uk} is bounded means that

‖uk‖0 ≤M, for every k ≥ 1.

Theorem 6.11 implies the existence of a subsequence {ukm}m≥1 and of u ∈ L2 (Ω)
such that, as m→ +∞,

∫

Ω

ukmv →
∫

Ω

uv, for every v ∈ L2 (Ω) .
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6.7.3 Compact operators

By definition, every operator in L (H1, H2) transforms bounded sets in H1 into
bounded sets in H2. The subclass of operators that transform bounded sets into
pre-compact sets is particularly important.

Definition 6.9. Let H1 and H2 Hilbert spaces and L ∈ L (H1, H2). We say that
L is compact if, for every bounded E ⊂ H1, the image L (E) is pre-compact in
H2.

An equivalent characterization of compact operators may be given in terms of
weak convergence. Indeed, an operator is compact if and only if “converts weak
convergence into strong convergence”. Precisely:

Proposition 6.6. Let L ∈ L (H1, H2). L is compact if and only if, for every se-
quence {xk} ⊂ H1,

xk ⇀ 0 in H1 implies Lxk → 0 in H2. (6.49)

Proof. Assume that (6.49) holds. Let E ⊂ H1, bounded, and {zk} ⊂ L (E).
Then zk = Lxk with xk ∈ E.
From theorem 6.11, there exists a subsequence {xks} weakly convergent to

x ∈ H1. Then ys = xks − x ⇀ 0 in H1 and, from (6.49), Lyks → 0 in H2, that is
zks = Lxks → Lx ≡ z in H2.
Thus, L (E) is sequentially pre-compact, and therefore pre-compact in H2.
Viceversa, let L be compact and xk ⇀ 0 in H1. Suppose Lxk � 0. Then, for

some ε̄ > 0 and infinitely many indexes kj, we have
∥∥Lxkj

∥∥ > ε̄. Since
xkj ⇀ 0,

by Theorem 6.10
{
xkj
}
is bounded in H1, so that

{
Lxkj

}
contains a subsequence

(that we still call)
{
Lxkj

}
strongly (and therefore weakly) convergent to some

y ∈ H2. On the other hand, we have Lxkj ⇀ 0 as well, which entails y = 0. Thus∥∥Lxkj
∥∥→ 0. Contradiction. �

Example 6.15. Let H1per (0, 2π) be the Hilbert space introduced in Example 6.4.
The embedding

IH1per→L2 : H
1
per (0, 2π)→ L2 (0, 2π)

is compact (see Problem 6.15).

Example 6.16. From Theorem 6.8, the identity operator I : H → H is compact if
and only if dimH <∞. Also, any bounded operator with finite dimensional range
is compact.

Example 6.17. Let Q = (0, 1)×(0, 1) and g ∈ C
(
Q
)
. Consider the integral operator

Tv (x) =

∫ 1
0

g (x, y) v (y) dy. (6.50)
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We want to show that T is compact from L2 (0, 1) into L2 (0, 1). In fact, for every
x ∈ (0, 1), Schwarz’s inequality gives

|Tv (x)| ≤
∫ 1
0

|g (x, y) v (y)|dy ≤ ‖g (x, ·)‖L2(0,1) ‖v‖L2(0,1) , (6.51)

whence ∫ 1
0

|Tv (x)|2 dx ≤ ‖g‖2L2(Q) ‖v‖
2
L2(0,1)

which implies that Tv ∈ L2 (0, 1) and that T is bounded.
To check compactness, we use Proposition 6.7. Let {vk} ⊂ L2 (0, 1) such that

vk ⇀ 0, that is ∫ 1
0

vkw → 0, for every w ∈ L2 (0, 1) . (6.52)

We have to show that Tvk → 0 in L2 (0, 1). Being weakly convergent, {vk} is
bounded so that

‖vk‖L2(0,1) ≤M, (6.53)

for some M and every k. From (6.51) we have

|Tvk (x)| ≤M ‖g (x, ·)‖L2(0,1) .

Moreover, inserting w (·) = g (x, ·) into (6.52), we infer that

Tvk (x) =

∫ 1
0

g (x, y) vk (y) dy → 0 for every x ∈ (0, 1) .

From the Dominated Convergence Theorem14 we infer that Tvk → 0 in
L2 (0, 1). Therefore T is compact.

The following proposition is useful.

Proposition 6.7. Let L : H1 → H2 be compact. Then:
a) L∗ : H2 → H1 is compact;
b) if G ∈ L (H2, H3) or G ∈ L (H0, H1), the operator G◦L or L◦G is compact.

Proof . a). We use Proposition 6.7. Let {xk} ⊂ H2 and xk ⇀ 0. Let us show
that ‖L∗xk‖H1 → 0. We have:

‖L∗xk‖2H1 = (L
∗xk, L∗xk)H1 = (xk, LL

∗xk)H2 .

Since L∗ ∈ L (H2, H1), we have

L∗xk ⇀ 0
14 Appendix B.
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in H1 and the compactness of L entails LL
∗xn → 0 in H2. Since ‖xk‖ ≤ M , we

finally have

‖L∗xk‖2H1 = (xk, LL
∗xk)H2 ≤M ‖LL∗xk‖2H2 → 0.

b). We leave it as an exercise. �

6.8 The Fredholm Alternative

6.8.1 Solvability for abstract variational problems

Let us go back to the variational problem

a (u, v) = 〈F, v〉∗ ∀v ∈ V, (6.54)

and suppose that Lax-Milgram Theorem cannot be applied, since, for instance, a
is not V−coercive. In this situation it may happen that the problem does not have
a solution, unless certain compatibility conditions on F are satisfied. A typical
example is given by the Neumann problem

{
−Δu = f in Ω

∂νu = g on ∂Ω.

A necessary and sufficient solvability condition is given by.

∫

Ω

f +

∫

∂Ω

g = 0. (6.55)

Moreover, if (6.55) holds, there are infinitely many solutions, differing among each
other by an additive constant. Condition (6.55) has both a precise physical inter-
pretation in terms of a resultant of forces at equilibrium and a deep mathematical
meaning, with roots in Linear Algebra!

Indeed, the results we are going to present are extensions of well known facts
concerning the solvability of linear algebraic systems of the form

Ax = b (6.56)

where A is an n × n matrix and b ∈Rn. The following dichotomy holds: either
(6.56) has a unique solution for every b or the homogeneous equation Ax = 0 has
non trivial solutions.
More precisely, system (6.56) is solvable if and only if b belongs to the column

space of A, which is the orthogonal complement of ker(A�). If w1, ...,ws span
ker(A�), this amounts to asking the s compatibility conditions, 0 ≤ s ≤ n,

b ·wj = 0 j = 1, ..., s.
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Finally, ker (A) and ker(A�) have the same dimension and if v1, ...,vs span
ker (A), the general solution of (6.56) is given by

x =x+

s∑
j=1

cjvj

where x is a particular solution of (6.56) and c, ..., cs are arbitrary constants.
The extension to infinite-dimensional spaces requires some care. In particular,

in order to state an analogous dichotomy theorem for the variational problem
(6.54), we need to clarify the general setting, to avoid confusion.
The problem involves two Hilbert spaces: V , the space where we seek the so-

lution, and V ∗, which the data F belongs to. Let us introduce a third space H ,
intermediate between V and V ∗. In boundary value problems, usuallyH = L2 (Ω),
with Ω bounded domain in Rn, while V is a Sobolev space. In practice, we often
meet a pair of Hilbert spaces V , H with the following properties:

1. V ↪→ H , i.e. V is continuously embedded in H. Recall that this simply means
that the identity operator IV→H , from V intoH , is continuous or, equivalently
that there exists C such that

‖u‖H ≤ C ‖u‖V ∀u ∈ V. (6.57)

2. V is dense in H .

Using Riesz’s Theorem, we may identify H with H∗. Also, we may continuously
embed H into V ∗, so that any element in H can be thought as an element of V ∗.
It is enough to observe that, for any fixed u ∈ H , the functional Tu defined by

〈Tu, v〉∗ = (u, v)H v ∈ V, (6.58)

is continuous in V . In fact, Schwarz’s inequality and (6.57) give

|(u, v)H | ≤ ‖u‖H ‖v‖H ≤ C ‖u‖H ‖v‖V . (6.59)

Then, we have a continuous map u→ Tu, from H into V ∗, with ‖Tu‖V ∗ ≤ C ‖u‖H .
If Tu = 0 then

(u, v)H = 0 ∀v ∈ V
which forces u = 0, by the density of V in H .
Thus, the map u �−→ Tu is one to one and defines a continuous embedding

IH→V ∗ . This allows the identification of u with an element of V ∗, which means
that, instead of (6.58), we can write

〈u, v〉∗ = (u, v)H ∀v ∈ V,
regarding u on the left as an element of V ∗ and on the right as an element of H .
Finally, it can be shown that V and H are dense in V ∗. Thus, we have

V ↪→ H ↪→ V ∗

with dense embeddings. We call (V,H, V ∗) a Hilbert triplet.
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This is the right setting. We use the symbols

(·, ·) = (·, ·)H , ‖·‖ = ‖·‖H
to denote inner product and norm in H , respectively, while 〈·, ·〉∗ = V ∗〈·, ·〉V is
reserved for the duality between V ∗ and V .
To state the main result we need to introduce weakly coercive forms and their

adjoints.

Definition 6.10. We say that the bilinear form a (u, v) is weakly coercive with
respect to the pair (V,H) if there exist λ0 ∈ R and α > 0 such that

a (v, v) + λ0 ‖v‖2 ≥ α ‖v‖2V ∀v ∈ V.

The adjoint form a∗ of a is given by

a∗ (u, v) = a (v, u) ,

obtained by interchanging the arguments in the analytical expression of a. In the
applications to boundary value problems, a∗ is associated with the so called formal
adjoint of a differential operator (see subsection 8.5.1).
We shall denote by N (a) and N (a∗), the set of solutions u and w, respectively,

of the variational problems

a (u, v) = 0, ∀v ∈ V and a∗ (w, v) = 0, ∀v ∈ V.

Observe that N (a) and N (a∗) are both subspaces of V , playing the role of kernels
for a and a∗

Theorem 6.13. Let (V,H, V ∗) be a Hilbert triplet, with V compactly embedded
in H . Let F ∈ V ∗ and a be a bilinear form in V , continuous and weakly coercive
with respect to (V,H). Then:
a) Either equation

a (u, v) = 〈F, v〉∗ ∀v ∈ V (6.60)

has a unique solution u and

‖u‖ ≤ C ‖F ‖V ∗ (6.61)

b) or
dimN (a) = dimN (a∗) = d <∞.

and (6.60) is solvable if and only if 〈F, w〉∗ = 0 for every w ∈ N (a∗).
The proof of Theorem 6.12 relies on a more general result, known as Fredholm’s

Alternative, presented in the next section.

Some comments are in order. The following dichotomy holds: either (6.60) has
a unique solution for every F ∈ V ∗ or the homogeneous equation a (u, v) = 0 has
non trivial solutions. The same conclusions hold for the adjoint equation

a∗ (u, v) = 〈F, v〉∗, ∀v ∈ V.
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If w1, w2, ..., wd span N (a∗), (6.60) is solvable if and only if the d compatibility
conditions

〈F, wj〉∗ = 0, j = 1, ..., d

hold. In this case, equation (6.60) has infinitely many solutions given by

u = u+

d∑
j=1

cjzj

where u is a particular solution of (6.60), z1, ..., zd span N (a) and c1, ..., cd are
arbitrary constants.
We shall apply Theorem 6.12 to boundary value problems in Chapter 8. Here

is however a preliminary example.

Example 6.18. Let V = H1per (0, 2π), H = L
2 (0, 2π) and assume that w = w (t)

is a positive, continuous function in [0, 2π]. We know (Example 6.27) that V is
compactly embedded in H. Moreover, it can be shown that V is dense in H .
Thus (V,H, V ∗) is a Hilbert triplet.
Given f ∈ H , consider the variational problem

∫ 2π
0

u′v′wdt =
∫ 2π
0

fv dt, ∀v ∈ V. (6.62)

The bilinear form a (u, v) =
∫ 2π
0 u

′v′wdt is continuous in V but it is not V −coercive.
In fact

|a (u, v)| ≤ wmax ‖u′‖0 ‖v′‖0 ≤ wmax ‖u‖1 ‖v‖1 ,
but a (u, u) = 0 if u is constant. However it is weakly coercive with respect to
(V,H), since

a (u, u) + ‖u‖20 =
∫ 2π
0

(u′)2wdt+
∫ 2π
0

u2dt ≥ min{wmin, 1} ‖u‖21,2 .

Moreover, ∣∣∣∣
∫ 2π
0

fv dt

∣∣∣∣ ≤ ‖f‖0 ‖v‖0 ≤ ‖f‖0 ‖v‖1,2

hence the functional F : v �→
∫ 2π
0
fv dt defines an element of V ∗.

We are under the hypotheses of Theorem 6.12. The bilinear form is symmetric,
so that N (a) = N (a∗). The solutions of the homogeneous equation

a (u, v) =

∫ 2π
0

u′v′wdt = 0, ∀v ∈ V (6.63)

are the constant functions. In fact, letting v = u in (6.63) we obtain

∫ 2π
0

(u′)2wdt = 0
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which forces u (t) ≡ c, constant, since w > 0. Then, dimN (a) = 1. Thus, from
Theorem 6.11 we can draw the following conclusions: equation (6.62) is solvable if
and only if

〈F, 1〉∗ =
∫ 2π
0

fdt = 0.

Moreover, in this case, (6.62) has infinitely many solutions of the form u = u+ c.
The variational problem has a simple interpretation as a boundary value prob-

lem. By an integration by parts, recalling that v (0) = v (2π), we may rewrite
(6.62) as

∫ 2π
0

[(−wu′)′ − f ]vdt + v (0) [w (2π)u′ (2π)− w (0)u′ (0)] = 0, ∀v ∈ V.

Choosing v vanishing at 0 we are left with

∫ 2π
0

[−(wu′)′ − f ]vdt = 0, ∀v ∈ V , v (0) = v (2π) = 0.

which forces
(u′w)′ = −f.

Then
v (0) [w (2π)u′ (2π)− w (0)u′ (0)] = 0, ∀v ∈ V

which, in turn, forces
w (2π)u′ (2π) = w (0)u′ (0) .

Thus, problem (6.62) constitutes the variational formulation of the following
boundary value problem:

⎧
⎨
⎩
(wu′)′ = −f in (0, 2π)
u (0) = u (2π)
w (2π)u′ (2π) = w (0)u′ (0) .

It is important to point out that the periodicity condition u (0) = u (2π) is forced
by the choice of the space V while the Neuman type periodicity condition is en-
coded in the variational equation (6.62).

6.8.2 Fredholm’s Alternative

We introduce some terminology. Let V1, V2 Hilbert spaces and Φ : V1 → V2. We
say that Φ is a Fredholm operator if N (Φ) and R (Φ)⊥ have finite dimension. The
index of Φ is the integer

ind (Φ) = dimN (Φ)− dimR (Φ)⊥ = dimN (Φ)− dimN (Φ∗) .

We have15:

15 For the proof, see e.g. Brezis, 1983.
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Theorem 6.14. (Fredholm′s Alternative). Let V be a Hilbert space and K ∈
L (V ) be a compact operator. Then

Φ = I −K

is a Fredholm operator with zero index. Moreover Φ∗ = I −K∗,

R (Φ) = N (Φ∗)⊥ (6.64)

and

N (Φ) = {0} ⇐⇒ R (Φ) = V. (6.65)

The last formula shows that Φ is one-to-one if and only if it is onto. In other
words, uniqueness for the equation

x−Kx = f (6.66)

is equivalent to existence for every f ∈ V and viceversa. The same thing holds for
the adjoint Φ∗ = I −K∗ and the associated equation

y −K∗y = g.

Let d = dimR (Φ)⊥ = dimN (Φ∗) > 0. Then, (6.64) says that equation (6.66)
is solvable if and only if f ⊥ N (Φ∗), that is, if and only if (f, y) = 0 for every
solution y of

y −K∗y = 0. (6.67)

If y1, y2, ..., yd span N (Φ∗), this amounts to asking the d compatibility relations

(f, yj) = 0, j = 1, ..., d

as necessary and sufficient conditions for the solvability of (6.66).

Remark 6.14. Clearly, Theorem 6.13 holds for operators K − λI with λ �= 0. The
case λ = 0 cannot be included. Trivially, for the operator K = 0 (which is com-
pact), we have N (K) = V , hence, if dimV = ∞, Theorem 6.13 does not hold. A
more significant example is the one-dimensional range operator

Kx = L (x)x0

where L ∈ L (V ) and x0 is fixed in V . Assume dimV =∞. From Riesz’s Theorem,
there exists z ∈ V such that Lx = (z, x) for every x ∈ V . Thus, N (K) is given
by the subspace of the elements in V orthogonal to z, which has infinitely many
dimensions.

• Proof of Theorem 6.12 (sketch). The strategy is to write equation

a (u, v) = 〈F, v〉∗ (6.68)
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in the form
(IV −K)u = g.

where IV is the identity operator in V and K : V → V is compact.
Let J : V → V ∗ the embedding of V into V ∗. Recall that J is the composition

of the embeddings IV→H and IH→V ∗ . Since IV→H is compact and IH→V ∗ is con-
tinuous, we infer from Proposition 6.8 that J is compact. We write (6.68) in the
form

aλ0 (u, v) ≡ a (u, v) + λ0 (u, v)H = 〈λ0Ju+ F, v〉∗
where λ0 > 0 is such that aλ0 (u, v) is coercive. Since, for fixed u ∈ V , the linear
map

v �→ aλ0 (u, v)
is continuous in V , there exists L ∈ L (V, V ∗) such that

〈Lu, v〉∗ = aλ0 (u, v) ∀u, v ∈ V.

Thus, equation a (u, v) = 〈F, v〉∗ is equivalent to

〈Lu, v〉∗ = 〈λ0Ju+ F, v〉∗ ∀v ∈ V

and therefore to
Lu = λ0Ju+ F. (6.69)

Since aλ0 is V−coercive, from the Lax-Milgram Theorem, the operator L is an
isomorphism between V and V ∗ and (6.69) can be written in the form

u− λ0L−1Ju = L−1F.

Letting g = L−1F ∈ V and K = λ0L−1J , (6.69) becomes

(IV −K)u = g.

where K:V → V.
Since J is compact and L−1 is continuous, K is compact (Proposition 6.8).

Applying the Fredholm Alternative Theorem and rephrasing the conclusions in
terms of bilinear forms we conclude the proof16. �

6.9 Spectral Theory for Symmetric Bilinear Forms

6.9.1 Spectrum of a matrix

Let A be an n× n matrix and λ ∈ C. Then, either the equation

Ax−λx = b
16 We omit the rather long and technical details.
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has a unique solution for every b or there exists u �= 0 such that

Au =λu.

In the last case we say that λ,u constitutes an eigenvalue-eigenvector pair. The
set of eigenvalues of A is called spectrum of A, denoted by σP (A). If λ /∈ σP (A)
the resolvent matrix (A−λI)−1 is well defined. The set

ρ (A) = C\σP (A)

is called the resolvent of A. If λ ∈ σP (A), the kernel N (A−λI) is the subspace
spanned by the eigenvectors corresponding to λ and it is called the eigenspace of
λ. Note that σP (A) = σP (A

ᵀ).
The symmetric matrices are particularly important: all the eigenvalues λ1, ...λn

are real (possibly of multiplicity greater than 1) and there exists in Rn an orthonor-
mal basis of eigenvectors u1, ...,un.
We are going to extend these concepts in the Hilbert space setting. A motivation

is .... the method of separation of variables.

6.9.2 Separation of variables revisited

Using the method of separation of variables, in the first chapters we have con-
structed solutions of boundary value problems by superposition of special solu-
tions. However, explicit computations can be performed only when the geometry
of the relevant domain is quite particular. What may we say in general? Let us
consider an example from diffusion.
Suppose we have to solve the problem

⎧⎨
⎩
ut = Δu (x, y) ∈ Ω, t > 0
u (x, y, 0) = g (x, y) (x, y) ∈ Ω
u (x, y, t) = 0 (x, y) ∈ ∂Ω, t > 0

where Ω is a bounded bi-dimensional domain. Let us look for solutions of the form

u (x, y, t) = v (x, y)w (t) .

Substituting into the differential equation, with some elementary manipulations,
we obtain

w′ (t)
w (t)

=
Δv (x, y)

v (x, y)
= −λ,

where λ is a constant, which leads to the two problems

w′ + λw = 0 t > 0 (6.70)

and {
−Δv = λv in Ω
v = 0 on ∂Ω.

(6.71)
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A number λ such that there exists a non trivial solution v of (6.71) is called a
Dirichlet eigenvalue of the operator −Δ in Ω and v is a corresponding eigen-
function. Now, the original problem can be solved if the following two properties
hold:

a) There exists a sequence of (real) eigenvalues λk with corresponding eigen-
vectors uk. Solving (6.70) for λ = λk yields

wk (t) = ce
−λkt c ∈ R.

b) The initial data g can be expanded is series of eigenfunctions:

u(x, y) =
∑
gkuk (x, y) .

Then, the solution is given by

u (x, y, t) =
∑
gke

−λktuk (x, y)

where the series converges in some suitable sense.

Condition b) requires that the set of Dirichlet eigenfunctions of −Δ constitutes
a basis in the space of initial data. This leads to the problem of determining the
spectrum of a linear operator in a Hilbert space and, in particular, of self-adjoint
compact operators. Indeed, it turns out that the solution map of a symmetric
variational boundary value problem is often a self-adjoint compact operator. We
will go back to the above problem in subsection 8.4.3.

6.9.3 Spectrum of a compact self-adjoint operator

We define resolvent and spectrum for a bounded linear operator. Although the
natural setting is the complex field C, we limit ourselves to R, mainly for simplicity
but also because this is the interesting case for us.

Definition 6.11. Let H be a Hilbert space, L ∈ L (H), and I the identity in H .
a) The resolvent set ρ (L) of L is the set of real numbers λ such that L− λI is

one-to-one and onto:

ρ (L) = {λ ∈ R: L − λI is one-to-one and onto} .

b) The (real) spectrum σ (L) of L is

σ (L) = R\ρ (L) .

Remark 6.15. If λ ∈ ρ (L), the resolvent (L − λI)−1 is bounded17.
17 It is a consequence of the Closed Graph Theorem: If the graph of a linear operator
A : H1 → H2 is closed in H1 ×H2 then A is bounded.
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IfH has finite dimension, any linear operator is represented by a matrix, so that
its spectrum is given by the set of its eigenvalues. In infinitely many dimensions
the spectrum may be divided in three subsets. In fact, if λ ∈ σ (L), different things
can go wrong with (L − λI)−1.
First of all, it may happen that L − λI is not one-to-one so that (L− λI)−1

does not even exist. This means that N (L − λI ) �= ∅, i.e. that the equation

Lx = λx (6.72)

has non trivial solutions. Then, we say that λ is an eigenvalue of L and that the
non zero solutions of (6.72) are the eigenvectors corresponding to λ. The linear
space spanned by these eigenvectors is called the eigenspace of λ and denoted by
N (L− λI ).

Definition 6.12. The set σP (L) of the eigenvalues of L is called the point spec-
trum of L.

Other things can occur. L − λI is one-to-one, R(L − λI ) is dense in H , but
(L−λI)−1 is unbounded. Then, we say that λ belongs to the continuous spectrum
of L, denoted by σC (L) .
Finally, L − λI is one-to-one but R(L − λI ) is not dense in H. This defines

the residual spectrum of L.

Example 6.19. Let H = l2 and L : l2 → l2 be the shift operator which maps
x = {x1, x2, ...} ∈ l2 into y = {0, x1, x2, ...}. We have

(L − λI)x = {−λx1, x1 − λx2, x2 − λx3, ...} .

If λ �= 0, then λ ∈ ρ (L). In fact for every z = {z1, z2, ...} ∈ l2,

(L − λI)−1 z =
{
−z1
λ
,−z2
λ
+
z1

λ2
, ...

}
.

Since R(L) contains only sequences whose first element is zero, R(L) is not dense
in l2, therefore 0 ∈ σR (L) = σ (L).

We are mainly interested in the spectrum of a compact self-adjoint operator.
The following theorem is fundamental18.

Theorem 6.15. Let K be a compact, self-adjoint operator on a separable Hilbert
space H. Then:

a) 0 ∈ σ (K) and σ (K) \ {0} = σP (K) \ {0}.
b) H has an orthonormal basis {um} consisting of eigenvectors for K.
c) If dim H =∞, the corresponding eigenvalues different from zero {λm} can

be arranged in a decreasing sequence |λ1| ≥ |λ2| ≥ · · · , with λm → 0, as m→∞.
18 For the proof, see Brezis, 1983.
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Thus, the spectrum of a compact self-adjoint operator contains always λ = 0,
which is not necessarily an eigenvalue. The other elements in σ (L) are eigenvalues,
arranged in a sequence converging to zero if H is infinite dimensional.
If λ �= 0 is an eigenvalue, Fredholm’s Alternative applies to L− λI, so that, in

particular, the eigenspace N (L − λI) has finite dimension.
A consequence of Theorem 6.15 is the spectral decomposition formula forK. If

x ∈ H and {um}m≥1 is an orthonormal set of eigenvectors corresponding to all
non-zero eigenvalues {λm}m≥1, we can describe the action of K as follows:

Kx =
∑
m≥1
(Kx, um)um =

∑
m≥1
λm (x, um)um, ∀x ∈ H . (6.73)

6.9.4 Application to abstract variational problems

We now apply theorems 6.13 and 6.14 to our abstract variational problems. The
setting is the same of theorem 6.12, given by a Hilbert triplet (V,H, V ∗), with
compact embedding of V into H . We assume that H is also separable. Let a be a
bilinear form in V , continuous and weakly coercive; in particular:

aλ0 (u, v) ≡ a (v, v) + λ0 ‖v‖2 ≥ α ‖v‖2V ∀v ∈ V

The notion of resolvent and spectrum can be easily defined. Consider the problem

a (u, v) = λ (u, v) + 〈F, v〉∗ ∀v ∈ V. (6.74)

The resolvent ρ (a) is the set of real numbers λ such that (6.74) has a unique
solution u (F ) ∈ V for every F ∈ V ∗ and the solution map

Sλ : F �−→ u (F )

is an isomorphism between V ∗ and V .
The (real) spectrum is σ (a) = R\ρ (a), while the point spectrum σP (a) is the

subset of the spectrum given by the eigenvalues, i.e. the numbers λ such that the
homogeneous problem

a (u, v) = λ (u, v) ∀v ∈ V (6.75)

has non-trivial solutions (eigenfunctions). We call eigenspace of λ the space
spanned by the corresponding eigenfunctions and we denote it by N (a, λ).
The following theorem is a consequence of the Fredholm Alternative and The-

orem 7.4. and it is based on the following relation between σP (Sλ0) and σP (aλ0).
Note that 0 /∈ σ (Sλ0) and that σ (aλ0 ) ⊂ (0,+∞).
Let μ ∈ σP (Sλ0) and f be a corresponding eigenvector, that is,

Sλ0f = μf.
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Thus, necessarily f ∈ V and

aλ0 (Sλ0f, v) = μaλ0 (f, v) = (f, v)

or

aλ0 (f, v) =
1

μ
(f, v)

for all v ∈ V . Therefore λ = 1/μ is an eigenvalue of aλ0 , with the same eigenspace.
As a consequence

N (aλ0 ) = N (Sλ0 ) ⊂ V.
Moreover, since the eigenvalues of aλ0 are all positive, if follows that μ > 0 as well.

Theorem 6.16. Let (V,H, V ∗) be a Hilbert triplet with H separable and V com-
pactly embedded in H. Let F ∈ V ∗ and a be a symmetric bilinear form in V,
continuous and weakly coercive. We have:

(a) σ (a) = σP (a) ⊂ (−λ0,+∞).Moreover, if the sequence of eigenvalues {λm}
is infinite, then λm → +∞.
(b) If u, v are eigenfunctions corresponding to different eigenvalues, then

a (u, v) = (u, v) = 0. Moreover, H has an orthonormal basis of eigenvectors um.

(c)
{
um/

√
λm + λ0

}
constitutes an orthonormal basis in V , with respect to

the scalar product

((u, v)) = a (u, v) + λ0 (u, v) . (6.76)

Proof. By hypothesis, Sλ0 is an isomorphism between V
∗ and V . In particular,

it is well defined as a map from H into V ⊂ H . Since the embedding of V in
H is compact, then Sλ0 is compact as an operator from H into H . Also, by the
symmetry of a, Sλ0 is selfadjoint, that is

(Sλ0f, g) = (f, Sλ0g) for all f, g ∈ H .

In fact, let u = Sλ0f and w = Sλ0g. Then, for every v ∈ V ,

aλ0 (u, v) = (f, v) and aλ0 (w, v) = (g, v) .

In particular,

aλ0 (u, w) = (f, w) and aλ0 (w, u) = (g, u)

so that, since aλ0 (u, w) = aλ0 (w, u) and (g, u) = (u, g), we can write

(Sλ0f, g) = (u, g) = (f, w) = (f, Sλ0g) .

Since 0 /∈ σ (Sλ0), from Theorem 6.15 it follows that σ (Sλ0) = σP (Sλ0) and
the eigenvalues form a sequence {μm} with μm ↓ 0. Using Theorem 6.15 and the
relation between σP (Sλ0) and σP (aλ0), (a) and (b) follow easily.
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Finally if {um} is an orthonormal basis of eigenvectors for a in H , then19

a (um, uk) = λm (um, uk) = λmδmk

so that
((um, uk)) ≡ aλ0 (um, uk) = (λm + λ0) δmk

which easily gives (c). �

Problems

6.1. Heisenberg Uncertainty Principle. Let ψ ∈ C1 (R) such that x [ψ (x)]2 → 0
as |x| → ∞ and

∫
R
[ψ (x)]

2
dx = 1. Show that

1 ≤ 2
∫

R

x2 |ψ (x)|2 dx
∫

R

∣∣ψ′ (x)∣∣2 dx.

(If ψ is a Schrödinger wave function, the first factor in the right hand side
measures the spread of the density of a particle, while the second one measures
the spread of its momentum).

6.2. Let H be a Hilbert space and a (u, v) be a symmetric and non negative
bilinear form in H :

a (u, v) = a (v, u) and a (u, v) ≥ 0 ∀u, v ∈ H .
Show that

|a (u, v)| ≤
√
a (u, u)

√
a (v, v).

[Hint. Mimic the proof of Schwarz’s inequality].

6.3. Show the completeness of l2.

[Hint. Take a Cauchy sequence
{
xk
}
where xk =

{
xkm
}
. In particular,

∣∣xkm − xhm
∣∣→

0 as h, k → ∞ and therefore xhm → xm for every m. Define x = {xm} and show
that xk → x in l2].
6.4. LetH be a Hilbert space and V a closed subspace ofH . Show that u = PV x

if and only if {
1. u ∈ V
2. (x− u, v) = 0, ∀v ∈ V.

6.5. Let f ∈ L2 (−1, 1). Find the polynomial of degree ≤ n that gives the
best approximation of f in the least squares sense, that is, the polynomial p that
minimizes ∫ 1

−1
(f − q)2

among all polynomials q with degree ≤ n.
19 δmk is Kronecker symbol.
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[Answer: p (x) = a0L0 (x) + a1L1 (x) + ... + anLn (x), where Ln is the n − th
Legendre polynomials and aj = (n+ 1/2) (f, Ln)L2(−1,1)].

6.6. Hermite’s equation and the quantum mechanics harmonic oscillator. Con-
sider the equation

w′′ +
(
2λ+ 1− x2

)
w = 0 x ∈ R (6.77)

with w (x)→ 0 as x→ ±∞.
a) Show that the change of variables z = wex

2/2 transforms (6.77) into Her-
mite’s equation for z :

z′′ − 2xz′ + 2λz = 0
with e−x

2/2z (x)→ 0 as x→ ±∞.
b) Consider the Schrödinger wave equation for the harmonic oscillator

ψ′′ +
8π2m

h2
(
E − 2π2mν2x2

)
ψ = 0 x ∈ R

where m is the mass of the particle, E is the total energy, h is the Plank constant
and ν is the vibrational frequency. The physically admissible solutions are those
satisfying the following conditions:

ψ → 0 as x→ ±∞ and ‖ψ‖L2(R) = 1.

Show that there is a solution if and only if

E = hν

(
n+
1

2

)
n = 0, 1, 2....

and, for each n, the corresponding solution is given by

ψn (x) = knHn

(
2π
√
νm/hx

)
exp

(
−2π

2νm

h
x2
)

where kn =

(
4πνm

22n (n!)
2
h

)1/2
and Hn is the n − th Hermite polynomial.

6.7. Using separation of variables, solve the following steady state diffusion
problem in three dimensions (r, θ, ϕ spherical coordinates, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π):

{
Δu = 0 r < 1, 0 < ϕ < π

u (1, ϕ) = g (ϕ) 0 ≤ ϕ ≤ π.

[Answer:

u (r, ϕ) =

∞∑
n=0

anr
nLn (cosϕ) ,



364 6 Elements of Functional Analysis

where Ln is the n− th Legendre polynomial and

an =
2n+ 1

2

∫ 1
−1
g
(
cos−1 x

)
Ln (x) dx.

At a certain point, the change of variable x = cosϕ is required].

6.8. The vertical displacement u of a circular membrane of radius a satisfies
the bidimensional wave equation utt = Δu, with boundary condition u (a, θ, t) = 0.
Supposing the membrane initially at rest, write a formal solution of the problem.

[Hint:

u (r,θ, t) =

∞∑
p,j=0

Jp (αpjr) {Apj cos pθ+ Bpj sin pθ} cos(√αpjt)

where the coefficients Apj and Bpj are determined by the expansion of the initial
condition u (r, θ, 0) = g (r, θ)].

6.9. In calculus, we say that f : Rn → R is differentiable at x0 if there exists
a linear mapping L : Rn → R such that

f (x0 + h)− f (x0) = Lh+o (‖h‖) as h→ 0.

Determine the Riesz elements associated with L, with respect to the inner prod-
ucts:

a) (x,y) = x · y =∑n
j=1 xjyj , b) (x,y)A = Ax · y =

∑n
i,j=1 aijxiyj ,

where A = (aij) is a positive and symmetric matrix (see Example 6.3).

6.10. Prove Proposition 6.5.

[Hint. First show that
‖L∗‖L(H2,H1) ≤ ‖L‖L(H1,H2)

and then that L∗∗ = L. Reverse the role of L and L∗ to show that ‖L∗‖L(H2,H1) ≥
‖L‖L(H1,H2)].
6.11. Prove Neças Theorem 6.6.

[Hint. Try to follow the same steps in the proof of the Lax-Milgram Theorem].

6.12. Let E ⊂ X, X Banach space. Prove the following facts:
a) If E is compact, then it is closed and bounded.

b) Let E ⊂ F and F be compact; if E closed then E is compact.
6.13. Projection on a closed convex set. Let H be a Hilbert space and E ⊂ H ,

closed and convex.
a) Show that, for every x ∈ H , there is a unique element PEx ∈ E (the

projection of x on E) such that

‖PEx− x‖ = inf
v∈E

‖v − x‖ . (6.78)



Problems 365

b) Show that x∗ = PEx if and only if

(x∗ − x, v − x∗) ≥ 0 for every v ∈ E. (6.79)

c) Give a geometrical interpretation of (6.79).

[Hint. a) Follow the proof of the Projection Theorem 6.2. b) Let 0 ≤ t ≤ 1 and
define

ϕ (t) = ‖x∗ + t(v − x∗)− x‖2 v ∈ E.
Show that x∗ = PEx if and only if ϕ′ (0) ≥ 0. Check that ϕ′ (0) ≥ 0 is equivalent
to (6.79)].

6.14. Let H be a Hilbert space and E ⊂ H be closed and convex. Show that
E is weakly closed.

[Hint. Let {xk} ⊂ E such that xk ⇀ x. Use (6.79) to show that PEx = x, so that
x ∈ E].
6.15. Show that the embedding of H1per (0, 2π) into L

2 (0, 2π) is compact.

[Hint. Let {uk} ⊂ H1per (0, 2π) with

‖uk‖2 =
∑
m∈Z

(
1 +m2

)
|ûkm|2 < M.

Show that, by a diagonal process, it is possible to select indexes kj such that, for
each m, ûkjm converges to some number Um. Let

u (x) =
∑
m∈Z
Ume

imx

and show that ukj → u in L2 (0, 2π)].
9.16. Let L : L2 (R) → L2 (R) be defined by Lv (x) = v (−x) . Show that

σ (L) = σP (L) = {1}.
6.17. Let V and W be two closed subspaces of a Hilbert space H , with inner

product (·, ·). Let x0 ∈ H and define the following sequence of projections (see
Fig. 6.3):

x2n+1 = PW (x2n), x2n+2 = PV (x2n+1) , n ≥ 0.

Prove that:

(a) If V ∩W = {0} then xn → 0.
(b) If V ∩W �= {0}, then xn → PV ∩W (x0)

by filling in the details in the following steps.

1. Observe that
‖xn+1‖2 = (xn+1, xn) .

Computing ‖xn+1 − xn‖2, show that ‖xn‖ is decreasing (hence ‖xn‖ ↓ l ≥ 0) and
‖xn+1 − xn‖ → 0.
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2. If V ∩W = {0}, show that if a subsequence x2nk ⇀ x, then x2nk+1 ⇀ x as
well. Deduce that x = 0 (so that the entire sequence converges weakly to 0).

3. Show that

‖xn‖2 = (xn+1, xn−2) = (xn+2, xn−3) = · · · = (x2n−1, x0)

and deduce that xn → 0.
4. If V ∩W �= {0}, let

zn = xn − PV ∩W (x0)

and reduce to the case (a).

Fig. 6.3. The sequence of projections in problem 6.17 (a)
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lus – Multiplication, Composition, Division, Convolution – Fourier Transform – Sobolev

Spaces – Approximations by Smooth Functions and Extensions – Traces – Compactness

and Embeddings – Spaces Involving Time

7.1 Distributions. Preliminary Ideas

We have seen the concept of Dirac measure arising in connection with the fun-
damental solutions of the diffusion and the wave equations. Another interesting
situation is the following, where the Dirac measure models a mechanical impulse.

Fig. 7.1. Elastic collision at time t = t0

Consider a mass m moving along the x−axis with constant speed vi (see
Fig. 7.1). At time t = t0 an elastic collision with a vertical wall occurs. After
the collision, the mass moves with opposite speed −vi. If v2, v1 denote the scalar
speeds at times t1, t2, t1 < t2, by the laws of mechanics we should have

m(v2 − v1) =
∫ t2

t1

F (t) dt,

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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where F denotes the intensity of the force acting on m. When t1 < t2 < t0 or
t0 < t1 < t2, then v2 = v1 = v or v2 = v1 = −v and therefore F = 0: no force
is acting on m before and after the collision. However, if t1 < t0 < t2, the left
hand side is equal to 2mv �= 0. If we insist to model the intensity of the force by a
function F , the integral in the right hand side is zero and we obtain a contradiction.

Indeed, in this case, F is a force concentrated at time t0, of intensity 2mv, that
is

F (t) = 2mv δ (t− t0) .

In this chapter we see how the Dirac delta is perfectly included in the theory of
distributions or Schwartz generalized functions. We already mentioned in subsec-
tion 2.3.3 that the key idea in this theory is to describe a mathematical object
through its action on smooth test functions ϕ, with compact support. In the case
of the Dirac δ, such action is expressed by the formula (see Definition 2.2)

∫
δ (x)ϕ (x) dx = ϕ (0)

where, we recall, the integral symbol is purely formal. As we shall shortly see, the
appropriate notation is 〈δ, ϕ〉 = ϕ (0).
Of course, by a principle of coherence, among the generalized functions we

should be able to recover the usual functions of Analysis. This fact implies that
the choice of the test functions cannot be arbitrary. In fact, let Ω ⊆ R

n be a
domain and take for instance a function u ∈ L2 (Ω). A natural way to define the
action of u on a test ϕ is

〈u, ϕ〉 = (u, ϕ)0 =
∫

Ω

uϕ dx.

If we let ϕ be varying over all L2 (Ω), we know from the last chapter, that 〈u, ϕ〉
identifies uniquely u. Indeed, if v ∈ L2 (Ω) is such that 〈u, ϕ〉 = 〈v, ϕ〉 for every
ϕ ∈ L2 (Ω), we have

0 = 〈u− v, ϕ〉 =
∫

Ω

(u− v)ϕ dx ∀ϕ ∈ L2 (Ω) (7.1)

which forces (why?) u = v a.e. in Ω.

On the other hand, we cannot use L2−functions as test functions since, for
instance, 〈δ, ϕ〉 = ϕ (0) does not have any meaning.
We ask: is it possible to reconstruct u from the knowledge of (u, ϕ)0, when ϕ

varies on a set of nice functions?

Certainly this is impossible if we use only a restricted set of test functions.
However, it is possible to recover u from the value of (u, ϕ)0, when ϕ varies in a
dense set in L2 (Ω). In fact, let (u, ϕ)0 = (v, ϕ)0 for every test function. Given
ψ ∈ L2 (Ω), there exists a sequence of test functions {ϕk} such that ‖ϕk − ψ‖0 →
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0. Then1,

0 =

∫

Ω

(u− v)ϕk dx→
∫

Ω

(u− v)ψ dx

so that (7.1) still holds for every ψ ∈ L2 (Ω) and (u, ϕ)0 identifies a unique element
in L2 (Ω).

Thus, the set of test functions must be dense in L2 (Ω) if we want L2−functions
to be seen as distributions. In the next section we construct an appropriate set of
test functions.
However, the main purpose of introducing the Schwartz distributions is not re-

stricted to a mere extension of the notion of function but it relies on the possibility
of broadening the domain of calculus in a significant way, opening the door to an
enormous amount of new applications. Here the key idea is to use integration by
parts to carry the derivatives onto the test functions. Actually, this is not a new
procedure. For instance, we have used it in subsection 2.3.3, when have interpreted
the Dirac delta at x = 0 as the derivative of the Heaviside function H, (see formula
(2.63) and footnote 24).
Also, the weakening of the notion of solution of conservation laws (subsection

4.4.2) or of the wave equation (subsection 5.4.2) follows more or less the same
pattern.

In the first part of this chapter we give the basic concepts of the theory of
Schwartz distributions, mainly finalized to the introduction of Sobolev spaces.
The basic reference is the book of L. Schwartz, 1966, to which we refer for the
proofs we do not present here.

7.2 Test Functions and Mollifiers

Recall that, given a continuous function v, defined in a domain Ω ⊆ R
n, the

support of v is given by the closure of the set of points where v is different from
zero:

supp(v) = Ω ∩ closure of {x ∈Ω : v (x) �= 0} .
Actually, the support or, better, the essential support, is defined also for measurable
functions, not necessarily continuous in Ω. Namely, let Z be the union of the open
sets on which v = 0 a.e. Then, Ω\Z is called the essential support of v and we use
the same symbol supp(v) to denote it.

We say that v is compactly supported in Ω, if supp(v) is a compact subset of Ω.

Definition 7.1. Denote by C∞0 (Ω) the set of functions belonging to C∞ (Ω),
compactly supported in Ω. We call test functions the elements of C∞0 (Ω) .

1 From ∣∣
∣∣

∫

Ω

(u− v) (ϕk − ψ) dx
∣∣
∣∣ ≤ ‖u− v‖0 ‖ϕk − ψ‖0 .
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Example 7.1. The reader can easily check that the function given by

η (x) =

{
c exp

(
1

|x|2−1
)
0 ≤ |x| < 1

0 |x| ≥ 1 (c ∈ R). (7.2)

belongs to C∞0 (Ω).

The function (7.2) is a typical and important example of test function. Indeed,
we will see below that many other test functions can be generated by convolution
with (7.2).
Let us briefly recall the definition and the main properties of the convolution

of two functions. Given two functions u and v defined in Rn, the convolution u ∗ v
of u and v is given by the formula:

(u ∗ v) (x) =
∫

Rn

u (x − y) v (y) dy =
∫

Rn

u (y) v (x− y) dy.

It can be proved that (Young’s Theorem): if u ∈ Lp(Rn) and v ∈ Lq(Rn), p, q ∈
[1,∞], then u ∗ v ∈ Lr(Rn) where 1r = 1

p +
1
q − 1 and

‖u ∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn) ‖u‖Lq(Rn) .

The convolution is a very useful device to regularize “wild functions”. Indeed,
consider the function η defined in (7.2). We have:

η ≥ 0 and supp (η) = B1 (0)

where, we recall, BR (0) = {x ∈ Rn: |x| < R}. Choose

c =

(∫

B1(0)

exp

(
1

|x|2 − 1

)
dx

)−1

so that
∫
Rn
η = 1. Set, for ε > 0,

ηε (x) =
1

εn
η

( |x|
ε

)
. (7.3)

This function belongs to C∞0 (Rn) (and therefore to all Lp (Rn)), with support
equal to Bε (0), and still

∫
Rn
ηε = 1.

Let now f ∈ Lp(Ω). If we set f ≡ 0 outside Ω, we obtain a function in Lp(Rn),
still denoted by f , for which the convolution f ∗ ηε is well defined in all Rn:

fε (x) = (f ∗ ηε) (x) =
∫

Ω

ηε (x− y) f (y) dy

=

∫

Bε(0)

η (z) f (x − z) dz.
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Observe that, since
∫
Rn
ηε = 1, f ∗ ηε may be considered as a convex weighted

average of f and, as such, we expect a smoothing effect on f . Indeed, even if f
is very irregular, fε is a C

∞−function. For this reason ηε is called a mollifier.
Moreover, as ε → 0, fε is an approximation of f in the sense of the following
important lemma.

Lemma 7.1. Let f ∈ Lp(Ω); then fε has the following properties:
a. The support of fε is a ε−neighborhood of the support of f:

supp (fε) ⊆ {x ∈ Rn : dist (x, supp (f)) ≤ ε} .

b. fε ∈ C∞ (Rn) and if the support of f is a compactK⊂Ω, then fε ∈ C∞0 (Ω) ,
for ε� 1.
c. If f ∈ C (Ω), fε → f uniformly in every compact K ⊂ Ω as ε→ 0.
d. If 1 ≤ p <∞ , then

‖fε‖Lp(Ω) ≤ ‖f‖Lp(Ω) and ‖fε − f‖Lp(Ω) → 0 as ε→ 0.

Fig. 7.2. Support of the convolution with a ε-mollifier

Proof. a. Let K =supp(f). If |z| ≤ ε and dist(x,K) > ε, then f (x− z) = 0 so
that fε (x) = 0.

b. Since ηε (x − y) ∈ C∞0 (Rn), fε is continuous and there is no problem in
differentiating under the integral sign, obtaining all the time a continuous function.
Thus fε ∈ C∞ (Rn). From a., if K is compact, the support of fε is compact as
well and contained in Ω if ε� 1. Therefore fε ∈ C∞0 (Ω) .
c. Since

∫
Rn
ηε = 1, We can write

fε (x)− f (x) =
∫

{|z|≤ε}
η (z) [f (x − z) − f (x)] dz.

Then, if x ∈K ⊂ Ω, compact,

|fε (x) − f (x)| ≤ sup
|z|≤ε

|f (x− z)− f (x)| .
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Since f is uniformly continuous inK we have that sup|z|≤ε |f (x − z)− f (x)| → 0,
uniformly in x, as ε→ 0. Thus fε → f uniformly in K.
d. From Hölder’s inequality, we have, for q = p/ (p− 1),

fε (x) =

∫

Ω

ηε (x− y) f (y) dy =
∫

Ω

ηε (x− y)1/q ηε (x − y)1/p f (y) dy

≤
(∫

Ω

ηε (x− y) |f (y)|p dy
)1/p

.

This inequality and Fubini’s Theorem2 yield

‖fε‖Lp(Ω) ≤ ‖f‖Lp(Ω) . (7.4)

In fact:

‖fε‖pLp(Ω) =
∫

Ω

|fε (x)|p dx ≤
∫

Ω

(∫

Ω

ηε (x− y) |f (y)|p dy
)
dx

=

∫

Ω

|f (y)|p
(∫

Ω

ηε (x − y) dx
)
dy ≤

∫

Ω

|f (y)|p dy = ‖f‖pLp(Ω) .

FromTheorem B.6, given any δ > 0, there exists g ∈ C0 (Ω) such that ‖g − f‖Lp(Ω) <
δ. Then, (7.4) implies

‖gε − fε‖Lp(Ω) ≤ ‖g − f‖Lp(Ω) < δ.

Moreover, since the support of g is compact, gε → g uniformly in Ω, by c, so that,
we have, in particular, ‖gε − g‖Lp(Ω) < δ, for ε small. Thus,

‖f − fε‖Lp(Ω) ≤ ‖f − g‖Lp(Ω) + ‖g − gε‖Lp(Ω) + ‖gε − fε‖Lp(Ω) ≤ 3δ.

This shows that ‖f − fε‖Lp(Ω) → 0 as ε→ 0. �

Remark 7.1. Let f ∈ L1loc(Ω), i.e. f ∈ L1(Ω′) for every3 Ω′ ⊂⊂ Ω. The convolution
fε (x) is well defined if x stays ε−away from ∂Ω, that is if x belongs to the set

Ωε = {x ∈Ω: dist (x,∂Ω) > ε} .

Moreover, fε ∈ C∞ (Ωε) .

Remark 7.2. In general ‖f − fε‖L∞(Ω) � 0 as ε → 0. However ‖fε‖L∞(Ω) ≤
‖f‖L∞(Ω) is clearly true.

2 Appendix B.
3 Ω′ ⊂⊂ Ω means that the closure of Ω′ is a compact subset of Ω.



7.3 Distributions 373

Example 7.2. Let Ω′ ⊂⊂ Ω and f = χΩ′ be the characteristic function of Ω′.
Then, fε = χΩ′ ∗ ηε ∈ C∞0 (Ω) as long as ε < dist(Ω′, ∂Ω). Note that 0 ≤ fε ≤ 1.
In fact

fε (x) =

∫

Ω

ηε (x − y)χΩ′ (y) dy =
∫

Ω′∩Bε(x)
ηε (x − y) dy =

∫

Ω′∩Bε(0)
ηε (y) dy≤1.

Moreover, f ≡ 1 in Ω′ε . In fact, if x ∈Ω′ε, the ball Bε (x) is contained in Ω′ and
therefore ∫

Ω′∩Bε(x)
ηε (x− y) dy =

∫

Bε(0)

ηε (y) dy =1.

A consequence of Lemma 7.1 is the following approximation theorem.

Theorem 7.1. C∞0 (Ω) is dense in Lp (Ω) for every 1 ≤ p <∞.
Proof. Denote by Lpc (Ω) the space of functions in L

p (Ω) , with (essential)
support compactly contained in Ω. Let f ∈ Lpc (Ω) andK = supp(f). From Lemma
7.1.a, we know that supp(fε) is a ε−neighborhood of K, which is still a compact
subset of Ω, for ε small.
Since by Lemma 7.1.d, fε → f in Lp (Ω), we deduce that C∞0 (Ω) is dense in

Lpc (Ω), if 1 ≤ p < ∞. On the other hand, Lpc (Ω) is dense in Lp (Ω); in fact, let
{Km} be a sequence of compact subsets of Ω such that

Km ⊂ Km+1 and ∪Km = Ω.
Denote by χ

Km
the characteristic function of Km. Then, we have

{
χ
Km
f
}
⊂ Lpc (Ω) and

∥∥∥χ
Km
f − f

∥∥∥
Lp
→ 0 as m→ +∞

by the Dominated Convergence Theorem4, since
∣∣∣χ
Km
f
∣∣∣ ≤ |f |. �

7.3 Distributions

We now endow C∞0 (Ω) with a suitable notion of convergence. Recall that the
symbol

Dα =
∂α1

∂xα11
...
∂αn

∂xαnn
, α = (α1, ..., αn) ,

denotes a derivative of order |α| = α1 + ...+ αn.
Definition 7.2. Let {ϕk} ⊂ C∞0 (Ω) and ϕ ∈ C∞0 (Ω) . We say that

ϕk → ϕ in C∞0 (Ω) as k → +∞
if:
1. Dαϕk → Dαϕ uniformly in Ω, ∀α = (α1, ..., αn);
2. there exists a compact set K ⊂ Ω containing the support of every ϕk.

4 Appendix B.
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It is possible to show that the limit so defined is unique. The space C∞0 (Ω) is
denoted by D (Ω), when endowed with the above notion of convergence.
Following the discussion in the first section, we focus on the linear functionals

in D (Ω). If L is one of those, we shall use the bracket (or pairing) 〈L, ϕ〉 to denote
the action of L on a test function ϕ.

We say that linear functional

L : D (Ω)→ R

is continuous in D (Ω) if

〈L, ϕk〉 → 〈L, ϕ〉, whenever ϕk → ϕ in D (Ω) . (7.5)

Note that, given the linearity of L, it would be enough to check (7.5) in the case
ϕ = 0.

Definition 7.3. A distribution in Ω is a linear continuous functional in D (Ω).
The set of distributions is denoted by D′ (Ω).

Two distributions F and G coincide when their action on every test function
is the same, i.e. if

〈F, ϕ〉 = 〈G, ϕ〉, ∀ϕ ∈ D (Ω) .
To every u ∈ L2 (Ω) corresponds the functional Iu whose action on ϕ is

〈Iu, ϕ〉 =
∫

Ω

uϕ dx,

which is certainly continuous in D (Ω). Therefore Iu is a distribution in D′ (Ω)
and we have seen at the end of Section 7.1 that Iu may be identified with u.

Thus, the notion of distribution generalizes the notion of function (in L2 (Ω))
and the pairing 〈·, ·〉 between D (Ω) and D′ (Ω) generalizes the inner product in
L2 (Ω).

The same arguments show that every function u ∈ L1loc (Ω) belongs to D′ (Ω)
and

〈u, ϕ〉 =
∫

Ω

uϕ dx.

On the other hand, if u /∈ L1loc, u cannot represent a distribution. A typical
example is u (x) = 1/x which does not belongs to L1loc (R). However, there is a
distribution closely related to 1/x as we show in Example 7.6.

Example 7.3. (Dirac delta). The Dirac delta at the point y, i.e. δy : D (Rn)→ R,
whose action is

〈δy, ϕ〉 = ϕ (y) ,
is a distribution D′ (Rn), as it is easy to check.
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D′ (Ω) is a linear space. Indeed if α, β are real (or complex) scalars, ϕ ∈ D (Ω)
and L1, L2 ∈ D′ (Ω), we define αL1 + βL2 ∈ D′ (Ω) by means of the formula

〈αL1 + βL2, ϕ〉 = α〈L1, ϕ〉 + β〈L2, ϕ〉.
In D′ (Ω) we may introduce a notion of (weak) convergence: {Lk} converges to L
in D′ (Ω) if

〈Lk, ϕ〉 → 〈L, ϕ〉, ∀ϕ ∈ D (Ω) .
If 1 ≤ p ≤∞, we have the continuous embeddings:

Lp (Ω) ↪→ L1loc (Ω) ↪→ D′ (Ω) .
This means that, if uk → u in Lp (Ω) or in L1loc (Ω), then5 uk → u in D′ (Ω) as
well.
With respect to this convergence, D′ (Ω) possesses a completeness property

that may be used to construct a distribution or to recognize that some linear
functional in D (Ω) is a distribution. Precisely, one can prove the following result.
Proposition 7.1. Let {Fk} ⊂ D′ (Ω) such that

lim
k→∞

〈Fk, ϕ〉

exists and is finite for all ϕ ∈ D (Ω). Call F (ϕ) this limit. Then, F ∈ D′ (Ω) and
Fk → F in D′ (Ω) .
In particular, if the numerical series

∞∑
k=1

〈Fk, ϕ〉

converges for all ϕ ∈ D (Ω), then ∑∞k=1 Fk = F ∈ D′ (Ω).
Example 7.4. (Dirac comb). For every ϕ ∈ D (R), the numerical series

∞∑
k=−∞

〈δ (x− k) , ϕ〉 =
∞∑

k=−∞
ϕ (k)

is convergent, since only a finite number of terms is different from zero6 . From
Proposition 7.1, we deduce that the series

comb (x) =

∞∑
k=−∞

δ (x− k) . (7.6)

5 For instance, let ϕ ∈ D (Ω). We have, by Hőlder’s inequality:
∣∣
∣∣

∫

Ω

(uk − u)ϕdx
∣∣
∣∣ ≤ ‖uk − u‖Lp(Ω) ‖ϕ‖Lq(Ω)

where q = p/(p − 1). Then, if ‖uk − u‖Lp(Ω) → 0, also
∫
Ω
(uk − u)ϕdx→0, showing

the convergence of {uk} in D′ (Ω) .
6 Only a finite number of integers k belongs to the support of ϕ.
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is convergent in D′ (R) and its sum is a distribution calledDirac comb. This name
is due to the fact it models a train of impulses concentrated at the integers (see
Fig. 7.3, using some ...fantasy).

Fig. 7.3. A train of impluses

Example 7.5. Let hr (x) = 1 − χ[−r,r] (x) be the characteristic function of the set
R\ [−r, r]. Define

p.v.
1

x
= lim

r→0
1

x
hr (x) .

We want to show that p.v. 1x defines a distribution in D′ (R), called principal value
of 1x . By Proposition 7.1 it is enough to check that, for all ϕ ∈ D (R), the limit

lim
r→0

∫

R

1

x
hr (x)ϕ (x) dx

is finite. Indeed, assume that supp(ϕ) ⊂ [−a, a]. Then,
∫

R

1

x
hr (x)ϕ (x) dx =

∫

{r<|x|<a}

ϕ (x)

x
dx =

∫

{r<|x|<a}

ϕ (x)− ϕ (0)
x

dx

since ∫

{r<|x|<a}

ϕ (0)

x
dx = 0,

due to the odd symmetry of 1/x. Now, we have

ϕ (x)− ϕ (0) = ϕ′ (0)x+ o (x) , as x→ 0,

so that
ϕ (x)− ϕ (0)

x
= ϕ′ (0) + o (1) as x→ 0.

This implies that [ϕ (x)− ϕ (0)] /x is summable in [−a, a] and therefore

lim
r→0

∫

{r<|x|<a}

ϕ (x)− ϕ (0)
x

dx =

∫

{|x|<a}

ϕ (x)− ϕ (0)
x

dx
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is a finite number. Thus, p.v. 1x ∈ D′ (R) and the above computations yield

〈p.v. 1
x
, ϕ〉 = lim

r→0

∫

{r<|x|}

ϕ (x)

x
dx ≡ p.v.

∫

R

ϕ (x)

x
dx

where p.v. stays for principal value7.

• Support of a distribution. The Dirac δ is concentrated at a point. More pre-
cisely, we say that its support coincides with a point. The support of a general
distribution F may be defined in the following way. We want to characterize the
smallest closed set outside of which F vanishes. However, we cannot proceed as in
the case of a function, since a distribution is defined on the elements of D (Ω), not
on subsets of Rn.
Thus, let us start saying that F ∈ D′ (Ω) vanishes in an open set A ⊂ Ω if

〈F, ϕ〉 = 0

for every ϕ ∈ D (Ω) whose support is contained in A. Let A be the union of all
open sets where F vanishes. A is open. Then, we define:

supp (F ) = Ω\A.

For example, supp(comb) = Z.

Remark 7.3. Let F ∈ D′ (Ω) with compact support K. Then the bracket 〈F, v〉 is
well defined for all v ∈ C∞ (Ω), not necessarily with compact support. In
fact, let ϕ ∈ D (Ω), 0 ≤ ϕ ≤ 1, such that ϕ ≡ 1 in an open neighborhood of K
(see Remark 7.4). Then vϕ ∈ D (Ω) and we can define

〈F, v〉 = 〈F, vϕ〉 .

Note that 〈F, vϕ〉 is independent of the choice of ϕ. Indeed if ψ has the same
property of ϕ, then

〈F, vϕ〉 − 〈F, vψ〉 = 〈F, v(ϕ− ψ)〉 = 0

since ϕ − ψ = 0 in an open neighborhood of K.

7.4 Calculus

7.4.1 The derivative in the sense of distributions

A central concept in the theory of the Schwartz distributions is the notion of weak
or distributional derivative. Clearly we have to abandon the classical definition,

7 Whence the symbol p.v. 1x .
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since, for instance, we are going to define the derivative for a function u ∈ L1loc ,
which may be quite irregular.
The idea is to carry the derivative onto the test functions, as if we were using

the integration by parts formula.
Let us start from a function u ∈ C1 (Ω). If ϕ ∈ D (Ω), denoting by ν =(ν1, ..., νn)

the outward normal unit vector to ∂Ω, we have∫

Ω

ϕ∂xiu dx =

∫

∂Ω

ϕu νi dx−
∫

Ω

u∂xiϕ dx

= −
∫

Ω

u∂xiϕ dx

since ϕ = 0 on ∂Ω. The equation
∫

Ω

ϕ ∂xiu dx = −
∫

Ω

u ∂xiϕ dx,

interpreted in D′ (Ω), becomes
〈∂xiu, ϕ〉 = −〈u, ∂xiϕ〉. (7.7)

Formula (7.7) shows that the action of ∂xiu on the test function ϕ equals the
action of u on the test function −∂xiϕ. On the other hand, formula (7.7) makes
perfect sense if we replace u by any F ∈ D′ (Ω) and it is not difficult to check
that it defines a continuous linear functional in D (Ω). This leads to the following
fundamental notion:

Definition 7.4. Let F ∈ D′ (Ω). The derivative ∂xiF is the distribution defined
by the formula

〈∂xiF, ϕ〉 = −〈F, ∂xiϕ〉, ∀ϕ ∈ D (Ω) .
From (7.7), if u ∈ C1 (Ω) its derivatives in the sense of distributions coincide

with the classical ones. This is the reason we keep the same notations in the two
cases.

Note that the derivative of a distribution is always defined! Moreover, since
any derivative of a distribution is a distribution, we deduce the convenient fact
that every distribution possesses derivatives of any order (in D′ (Ω)):

〈DαFk, ϕ〉 = (−1)|α|〈Fk, Dαϕ〉.
For example, the second order derivative

∂xixkF = ∂xi (∂xkF )

is defined by
〈∂xixkF, ϕ〉 = 〈F, ∂xixkϕ〉. (7.8)

Not only. Since ϕ is smooth, then ∂xixkϕ = ∂xkxiϕ so that (7.8) yields

∂xixkF = ∂xkxiF.

Thus, for all F ∈ D′ (Ω) we may always reverse the order of differentiation without
any restriction.
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Example 7.6. Let u (x) = H (x), the Heaviside function. In D′ (R) we have H′ = δ.
In fact, let ϕ ∈ D (R) . By definition,

〈H′, ϕ〉 = −〈H, ϕ′〉.
On the other hand, H ∈ L1loc (R), hence

〈H, ϕ′〉 =
∫

R

H (x)ϕ′ (x) dx =
∫ ∞
0

ϕ′ (x) dx = −ϕ (0)

whence
〈H′, ϕ〉 = ϕ (0) = 〈δ, ϕ〉

or H′ = δ.
Another aspect of the idyllic relationship between calculus and distributions is

given by the following theorem, which expresses the continuity in D′ (Ω) of every
derivative Dα.

Proposition 7.2. If Fk → F in D′ (Ω) then DαFk → DαF in D′ (Ω) for any
multi-index α.

Proof. Fk → F in D′ (Ω) means that 〈Fk, ϕ〉 → 〈F, ϕ〉, ∀ϕ ∈ D (Ω).
In particular, since Dαϕ ∈ D (Ω),

〈DαFk, ϕ〉 = (−1)|α|〈Fk, Dαϕ〉 → (−1)|α|〈F,Dαϕ〉 = 〈DαF, ϕ〉.

�
As a consequence, if

∑∞
k=1 Fk = F in D′ (Ω), then
∞∑
k=1

DαFk = D
αF in D′ (Ω) .

Thus, term by term differentiation is always permitted in D′ (Ω).
More difficult is the proof of the following theorem, which expresses a well

known fact for functions.

Proposition 7.3. Let Ω be a domain in Rn. If F ∈ D′ (Ω) and ∂xjF = 0 for
every j = 1, ..., n, then F is a constant function.

7.4.2 Gradient, divergence, laplacian

There is no problem to define vector valued distributions. The space of test func-
tions is D (Ω;Rn), i.e. the set of vectors ϕ =(ϕ1, ..., ϕn) whose components belong
to D (Ω).
A distribution F ∈D′ (Ω;Rn) is given by F = (F1, ..., Fn) with Fj ∈ D′ (Ω),

j = 1, ..., n. The pairing between D (Ω;Rn) and D′ (Ω;Rn) is defined by

〈F,ϕ〉 =
n∑
i=1

〈Fi,ϕi〉. (7.9)



380 7 Distributions and Sobolev Spaces

• The gradient of F ∈ D′ (Ω), Ω ⊂ Rn, is simply

∇F = (∂x1F, ∂x2F, ..., ∂xnF ) .

Clearly ∇F ∈ D′ (Ω;Rn). If ϕ ∈ D (Ω;Rn), we have

〈∇F ,ϕ〉 =
n∑
i=1

〈∂xiF, ϕi〉 = −
n∑
i=1

〈F, ∂xiϕi〉 = −〈F, divϕ〉

whence
〈∇F ,ϕ〉 = −〈F, divϕ〉 (7.10)

which shows the action of ∇F on ϕ.
• For F ∈ D′ (Ω;Rn), we set

divF =

n∑
i=1

∂xiFi.

Clearly divF ∈D′ (Ω). If ϕ ∈ D (Ω), then

〈divF,ϕ〉 = 〈
n∑
1=1

∂xiFi,ϕ〉 = −
n∑
1=1

〈Fi,∂xiϕ〉 = −〈F,∇ϕ〉

whence
〈divF,ϕ〉 = −〈F,∇ϕ〉. (7.11)

• The Laplace operator is defined in D′ (Ω) by

ΔF =

n∑
i=1

∂xixiF.

If ϕ ∈ D (Ω), then
〈ΔF,ϕ〉 = 〈F ,Δϕ〉 .

Using (7.10), (7.11) we get

〈ΔF,ϕ〉 = 〈F ,div∇ϕ〉 = −〈∇F ,∇ϕ〉 = 〈div∇F ,ϕ〉

whence Δ =div∇ also in D′ (Ω).

Example 7.7. Consider the fundamental solution for the Laplace operator in R3

u (x) =
1

4π

1

|x| .

Observe that u ∈ L1loc
(
R
3
)
so that u ∈ D′

(
R
3
)
.We want to show that, in D′

(
R
3
)
,

−Δu = δ. (7.12)
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First of all, if Ω ⊂ R3 and 0 /∈Ω, we know that u is harmonic in Ω, that is

Δu = 0 in Ω

in the classical sense and therefore also in D′
(
R
3
)
. Thus, let ϕ ∈ D

(
R
3
)
with

0 ∈supp(ϕ). We have, since u ∈ L1loc
(
R
3
)
:

〈Δu,ϕ〉 = 〈u,Δϕ〉 = 1
4π

∫

R3

1

|x|Δϕ (x) dx. (7.13)

We would like to carry the laplacian onto 1/ |x|. However, this cannot be done
directly, since the integrand is not continuous at 0. Therefore we exclude a small
sphere Br = Br (0) from our integration region and write

∫

R3

1

|x|Δϕ (x) dx = limr→0
∫

BR\Br

1

|x|Δϕ (x) dx (7.14)

where BR = BR (0) is a sphere containing the support of ϕ. An integration by
parts in the spherical shell CR,r = BR\Br yields8

∫

CR,r

1

|x|Δϕ (x) dx =
∫

∂Br

1

r
∂νϕ (x) dσ−

∫

CR,r

∇
(
1

|x|

)
· ∇ϕ (x) dx

where ν = − x
|x| is the outward normal unit vector on ∂Br . Integrating once more

by parts the last integral, we obtain:

∫

CR,r

∇
(
1

|x|

)
· ∇ϕ (x) dx =

∫

∂Br

∂ν

(
1

|x|

)
ϕ (x) dσ−

∫

CR,r

Δ

(
1

|x|

)
ϕ (x) dx

=

∫

∂Br

∂ν

(
1

|x|

)
ϕ (x) dσ,

since Δ
(
1
|x|
)
= 0 inside CR,r . From the above computations we infer

∫

CR,r

1

|x|Δϕ (x) dx =
∫

∂Br

1

r
∂νϕ (x) dσ−

∫

∂Br

∂ν

(
1

|x|

)
ϕ (x) dσ. (7.15)

We have:

1

r

∣∣∣∣
∫

∂Br

∂νϕ (x) dσ

∣∣∣∣ ≤
1

r

∫

∂Br

|∂νϕ (x)| dσ ≤ 4πrmax
R3
|∇ϕ|

and therefore

lim
r→0

∫

∂Br

1

r
∂νϕ (x) dσ = 0.

8 Recall that ϕ = 0 and ∇ϕ = 0 on ∂BR.
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Moreover, since

∂ν

(
1

|x|

)
= ∇

(
1

|x|

)
·
(
− x|x|

)
=

(
− x
|x|3

)
·
(
− x|x|

)
=
1

|x|2
,

we may write

∫

∂Br

∂ν

(
1

|x|

)
ϕ (x) dσ = 4π

1

4πr2

∫

∂Br

ϕ (x) dσ → 4πϕ (0) .

Thus, from (7.15) we get

lim
r→0

∫

BR\Br

1

|x|Δϕ (x) dx = −4πϕ (0)

and finally (7.13) yields

〈Δu,ϕ〉 = −ϕ (0) = −〈δ, ϕ〉

whence −Δu=δ.

7.5 Multiplication, Composition, Division, Convolution

7.5.1 Multiplication. Leibniz rule

Let us analyze the multiplication between two distributions. Does it make any
sense to define, for instance, the product δ · δ = δ2 as a distribution in D′ (R)?
Things are not so smooth. An idea for defining δ2 may be the following: take

a sequence {uk} of functions in L1loc (R) such that uk → δ in D′(R), compute u2k
and set

δ2 = lim
k→∞

u2k in D′(R).

Since we may approximate δ in D′(R) in many ways (see Problem 7.1), it is neces-
sary that the definition does not depend on the approximating sequence. In other
words, to compute δ2 we must be free to choose any approximating sequence.
However, this is illusory. Indeed choose

uk = kχ[0,1/k].

We have uk → δ in D′ (R) but, if ϕ ∈ D (R), by the Mean Value Theorem we have
∫

R

u2kϕ = k
2

∫ 1/k
0

ϕ = kϕ (xk)

for some xk ∈ [0, 1/k]. Now, if ϕ (0) > 0, say, we deduce that
∫

R

u2kϕ→ +∞, k → +∞
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so that
{
u2k
}
does not converge in D′ (R).

The method does not work and it seems that there is no other reasonable way
to define δ2. Thus, we simply give up defining δ2 as a distribution or, in general,
the product of a pair of distributions. However, if F ∈ D′ (Ω) and u ∈ C∞ (Ω),
we may define the product uF by the formula

〈uF, ϕ〉 = 〈F, uϕ〉 , ∀ϕ ∈ D (Ω) .

First of all, this makes sense since uϕ ∈ D (Ω). Also, if ϕk → ϕ in D (Ω), then
uϕk → uϕ in D (Ω) and

〈uF, ϕk〉 = 〈F, uϕk〉 → 〈F, uϕ〉 = 〈uF, ϕ〉 .

so that uF is a well defined element of D′ (Ω).

Example 7.8. Let u ∈ C∞ (R). We have

uδ = u (0) δ.

Indeed, if ϕ ∈ D (R),

〈uδ, ϕ〉 = 〈δ, uϕ〉 = u (0)ϕ (0) = 〈u (0) δ, ϕ〉 .

Note that the product uδ makes sense even if u is only continuous. In particular

xδ = 0.

The Leibniz rule holds: let F ∈ D′ (Ω) and u ∈ C∞ (Ω) ; then

∂xi (uF ) = u ∂xiF + ∂xiu F . (7.16)

In fact, let ϕ ∈ D (Ω); we have:

〈∂xi (uF ) , ϕ〉 = −〈uF, ∂xiϕ〉 = −〈F, u∂xiϕ〉

while

〈u ∂xiF + ∂xiu F, ϕ〉 = 〈∂xiF, uϕ〉 + 〈F, ϕ∂xiu〉
= −〈F, ∂xi (uϕ)〉+ 〈F, ϕ∂xiu〉 = 〈F, u∂xiϕ〉

and (7.16) follows.

Example 7.9. From xδ = 0 and Leibniz formula we obtain

δ + xδ′ = 0.

More generally,
xmδ(k) = 0 in D′ (R) , if 0 ≤ k < m.
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7.5.2 Composition

Composition in D′ (R) requires caution as well. For instance, if F = δ and u (x) =
x3, is there a natural way to define F ◦ u as a distribution in D′ (R)?
As above, consider the sequence uk = kχ[0,1/k] and compute wk = uk ◦ u. If

ϕ ∈ D′ (R), we have
∫

R

wkϕ = k

∫

R

χ[0,1/k](x
3)ϕ (x) dx = k

∫ k−1/3

0

ϕ (x) dx = k2/3ϕ (xk)

for some xk ∈ [0, 1/k]. Then, if ϕ (0) > 0,
∫
R
wkϕ→ +∞ and F ◦ u does not make

any sense. Thus, it seems hard to define the composition between two general
distributions. To see what can be done, let us start analyzing the case of two
functions.
Let ψ : Ω′ → Ω be one to one, with ψ and ψ−1 of class C∞. If F : Ω → R

is a C1−function we may consider the composition

w = F ◦ ψ.

For ϕ ∈ D (Ω), we have, using the change of variables y = ψ (x):
∫

Ω′
w (x)ϕ (x) dx =

∫

Ω′
F (ψ(x))ϕ (x) dx =

∫

Ω

F (y))ϕ
(
ψ−1(y)

) ∣∣det Jψ−1 (y)
∣∣ dy

which becomes, in terms of distributions,

〈F ◦ ψ, ϕ〉 = 〈F, ϕ ◦ ψ−1 ·
∣∣det Jψ−1

∣∣〉. (7.17)

This formula makes sense also if F ∈ D′ (Ω) and leads to the following

Definition 7.5. If F ∈ D′ (Ω) and ψ : Ω′ → Ω is one to one, with ψ and ψ−1
of class C∞, then formula (7.17) defines the composition F ◦ ψ as an element of
D′ (Ω).

Abuses of notation are quite common, like F (ψ (x)) to denote F ◦ ψ. For in-
stance, we have repeatedly used the (comfortable and incorrect) notation δ (x − x0)
instead of the (uncomfortable and correct....) notation δ ◦ ψ, with ψ (x) = x− x0.

Example 7.10. In D′ (Rn), we have

δ (ax) =
1

|a|n δ (x) .

Using formula (7.17) we may extend to distributions some properties, typical of
functions. We list some of them.

We say that F ∈ D′ (Rn) is:
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• radial, if

F (Ax) = F (x) , for every orthogonal matrix A;

• homogeneous of degree λ, if

F (tx) = tλF (x) , ∀t > 0;

• even, odd if, respectively,

F (−x) = F (x) , F (−x) = −F (x) ;

• periodic with period P, if

F (x+P) = F (x) .

Example 7.11. a. δ ∈ D′ (Rn) is radial, even and homogeneous of degree λ = −n.
b. v.p. 1x ∈ D′ (R) is odd and homogeneous of degree λ = −1.
c. In D′ (R), comb is periodic with period 1.

7.5.3 Division

The division in D′ (Ω) is rather delicate, even restricting to F ∈ D′ (Ω) and u ∈
C∞ (Ω). To divide F by u means to find G ∈ D′ (Ω) such that uG = F . If u never
vanishes there is no problem, since in this case 1/u ∈ C∞ (Ω) and the answer is
simply

G =
1

u
F.

If u vanishes somewhere, things get complicated. We only consider a particular
case in one dimension.

Let I ⊆ R be an open interval and u ∈ C∞ (I). If u vanishes at z, we say that
z is a zero of order m (z) if the derivatives of u up to order m (z) − 1, included,
vanish at z, while the derivative of order m (z) does not vanish at z.
For instance, z = 0 is a zero of order 3 for u (x) = sinx− x.
One can prove the following theorem.

Proposition 7.4. Assume that u vanishes at isolated points z1, z2, ... with order
m (z1) , m (z2),.... Then, the equation

uG = 0

has infinitely many solutions in D′ (I), given by the following formula:

G =
∑
j

m(zj)−1∑
k=0

cjkδ
(k) (x− zj) (7.18)

where cjk are arbitrary constants and δ
(k) is the derivative of δ of order k.



386 7 Distributions and Sobolev Spaces

Example 7.12. The solutions in D′ (R) of the equation

xG = 0.

are the distributions of the form G = cδ, with c ∈ R. To solve the equation

xG = 1 (7.19)

we add to the solutions of the homogeneous equation xG = 0 a particular solution
of (7.19). It turns out that one of these is

G1 = v.p.
1

x
.

In fact, if ϕ ∈ D (R), from Example 7.6 we get

〈x · (v.p. 1
x
), ϕ〉 = 〈v.p. 1

x
, xϕ〉 =

= v.p.

∫

R

xϕ (x)

x
dx =

∫

R

ϕ (x)dx = 〈1, ϕ〉

whence

x · (v.p. 1
x
) = 1.

Therefore, the general solution of (7.19) is

G = v.p.
1

x
+ cδ, c ∈ R.

7.5.4 Convolution

The convolution of two distributions may be defined with some restrictions as well.
Let us see why. If u, w ∈ L1 (Rn) and ϕ ∈ D (Rn) we may write:

〈u ∗ w, ϕ〉 = 〈
∫

Rn

u (x − y)w (y) dy,ϕ〉 =

=

∫

Rn

[∫

Rn

u (x− y)w (y) dy
]
ϕ(x) dx =

=

∫

Rn

∫

Rn

u (x)w (y)ϕ(x+ y) dydx.

Now, the question is: may we give any meaning to this formula if u and v are
generic distributions? The answer is negative, mainly because the function

φ (x,y) = ϕ(x+ y)

does not have compact support9 in Rn ×Rn (unless ϕ ≡ 0).
9 For instance: if ϕ ∈ D′ (R) and supp(ϕ) = [a, b], then the support of ϕ (x+ y) in R2 is
the unbounded strip a ≤ x+ y ≤ b.
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However, a small modification of the above formula would give the possibil-
ity to define the convolution between two distributions, if at least one of them
has compact support. Here we limit ourselves to define the convolution between
a distribution T and a C∞−function u. For x fixed, let ψx (y) = x− y so that
u (x − y) = u ◦ ψx.
If T ∈ L1 (Rn), with compact support, then the usual definition of convolution

is

(T ∗ u) (x) =
∫

Rn

T (y)u (x− y) dy = 〈T, u ◦ ψx〉 . (7.20)

Since u ◦ψx is a C∞−function, recalling Remark 7.4, the last bracket makes sense
if T is a distribution with compact support as well. Precisely, we have:

Proposition 7.5. Let T ∈ D′ (Rn), with compact support, and u ∈ C∞ (Rn).
Then, the following formula

(T ∗ u) (x) = 〈T, u ◦ ψx〉 (7.21)

defines a C∞−function called convolution of T and u.

Example 7.13. Let u ∈ C∞0 (Rn). Then

(δ ∗ u) (x) = 〈δ, u (x − ·)〉 = u (x)

i.e
δ ∗ u = u. (7.22)

Thus, the Dirac distribution at zero, acts as the identity with respect to the
convolution. Formula (7.22) actually holds for all u ∈ D′ (Rn). In particular:

δ ∗ δ = δ.

Proposition 7.6. The convolution commutes with derivatives. Actually, we have:

∂xj (T ∗ u) = ∂xjT ∗ u = T ∗ ∂xju.

The last equality is easy to prove, under the hypotheses of Proposition 7.5:

(∂xjT ∗ u) (z) =
〈
∂xjT, u ◦ ψz

〉
= −

〈
T, ∂xj(u ◦ ψz)

〉

=
〈
T, ∂xju ◦ ψz

〉
=
(
T ∗ ∂xju

)
(z) .

In particular, if T = H and u ∈ D (R),

(H ∗ u)′ = (H′ ∗ u) = δ ∗ u = u.

Warning: The convolution of functions is associative. For distributions, the
convolution is, in general, not associative. In fact, consider the three distributions
1, δ′,H; we have (formally):

δ′ ∗ 1 = (δ ∗ 1)′ = 1′ = 0
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whence

H ∗
(
δ′ ∗ 1

)
= H ∗ 0 = 0.

However, (
H ∗ δ′

)
∗ 1 = (H′ ∗ δ) ∗ 1 = (δ ∗ δ) ∗ 1 = 1.

The problem is that two out of three factors (1 and H) have non compact support.
If at least two factors have compact support one can show that the convolution is
associative.

7.6 Fourier Transform

7.6.1 Tempered distributions

We introduce now the Fourier transform F̂ of a distribution. As usual, the idea
is to define the action of F̂ by carrying the transform onto the test functions.
However a problem immediately arises: if ϕ ∈ D(Rn) is not identically zero, then

ϕ̂ (ξ) =

∫

Rn

e−ix·ξϕ (x) dx

cannot belong10 to D(Rn). Thus, it is necessary to choose a larger space of test
functions. It turns out that the correct one consists in the set of functions rapidly
vanishing at ∞, which obviously contains D(Rn). It is convenient to consider
functions and distributions with complex values.

Definition 7.6. Denote by S (Rn) the space of functions v ∈ C∞(Rn) rapidly
vanishing at infinity, i.e. such that

Dαv (x) = o
(
|x|−m

)
, |x| → ∞,

for all m ∈ N and every multi-index α.
10 Let n = 1 and ϕ ∈ D (R) . Assume that

supp (ϕ) ⊂ (−a, a) .
We may write

ϕ̂ (ξ) =

∫ a

−a
e−ixξϕ (x) dx =

∫ a

−a

∞∑

n=0

(−ixξ)n
n!

ϕ (x) dx =

∞∑

n=0

(−iξ)n
n!

∫ a

−a
xnϕ (x) dx.

Since ∣∣
∣∣

∫ a

−a
xnϕ (x) dx

∣∣
∣∣ ≤ max |ϕ| an,

it follows that ϕ̂ is an analytic function in all C. Therefore ϕ̂ cannot vanish outside a
compact interval, unless ϕ̂ ≡ 0. But then ϕ ≡ 0 as well.
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Example 7.14. The function v (x) = e−|x|
2

belongs to S (Rn) while v (x) =
e−|x|

2

sin(e|x|
2

) does not (why?).

We endow S (Rn) with an “ad hoc” notion of convergence. If β = (β1, ..., βn) is a
multi-index, we set

xβ = x
β1
1 · · · xnn1 .

Definition 7.7. Let {vk} ⊂ S (Rn) and v ∈ S (Rn). We say that

vk → v in S (Rn)

if for every pair of multi-indexes α, β,

xβDαvk → xβDαv, uniformly in Rn.

Remark 7.4. If {vk} ⊂ D (Rn) and vk → v in D (Rn), then

vk → v in S (Rn)

as well, since each vk vanishes outside a common compact set so that the multi-
plication by xβ does not have any influence.

The Fourier transform will be defined for distributions in D′ (Rn), continuous
with respect to the convergence in Definition 7.7. These are the so called tempered
distributions. Precisely:

Definition 7.8. We say that T ∈ D′ (Rn) is a tempered distribution if

〈T, vk〉 → 0

for all sequences {vk} ⊂ D (Rn) such that vk → 0 in S (Rn). The set of tempered
distributions is denoted by S′ (Rn) .

So far, a tempered distribution T is only defined on D (Rn). To define T on
S (Rn), first we observe that D (Rn) is dense in S (Rn).
In fact, given v ∈ S (Rn), let

vk (x) = v (x) ρ (|x| /k)

where ρ = ρ (s), s ≥ 0, is a non-negative C∞−function, equal to 1 in [0, 1] and
zero for s ≥ 2 (see Fig. 7.4). We have {vk} ⊂ D (Rn) and vk → v in S (Rn), since
ρ (|x| /k) is equal to 1 for {|x| < k} and zero for {|x| > 2k}.
Then, we set

〈T, v〉 = lim
k→∞

〈T, vk〉 . (7.23)

It can be shown that this limit exists and is finite, and it is independent of the
approximating sequence {vk} . Thus, a tempered distribution is a continuous
functional on S (Rn).
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Fig. 7.4. A smooth decreasing and nonnegative function, equal to 1 in [0, 1] and vanishing
for s ≥ 2

Example 7.15.We leave it as an exercise to show that the following distributions
are tempered.
a. Any polynomial.
b. Any compactly supported distribution.
c. Any periodic distribution (e.g. the Dirac comb).
d. Any function u ∈ Lp (Rn), 1 ≤ p ≤ ∞. Thus, we have

S (Rn) ⊂ Lp (Rn) ⊂ S′ (Rn) .
On the contrary:

e. ex /∈ S′ (R) (why?).
Like D′ (Ω), S′ (Rn) possesses a completeness property that may be used to

construct a tempered distribution or to recognize that some linear functional in
D (Rn) is a tempered distribution. First, we say that a sequence {Tk} ⊂ S′ (Rn)
converges to T in S′ (Rn) if

〈Tk, v〉 → 〈T, v〉 , ∀v ∈ S (Rn) .
We have:

Proposition 7.7. Let {Tk} ⊂ S′ (Rn) such that
lim
k→∞

〈Tk, v〉 exists and is finite, ∀v ∈ S (Rn) .

Then, this limit defines T ∈ S′ (Rn) and Tk converges to T in S′ (Rn) .
Example 7.16. The Dirac comb is a tempered distribution. In fact, if v ∈ S(R), we
have

〈comb (x) , v〉 =
∞∑

k=−∞
v (k)

and the series is convergent since v (k) → 0 more rapidly than |k|−m for every
m > 0. From Proposition 7.7, comb(x) ∈ S′(R).
Remark 7.5. Convolution. If T ∈ S′(Rn) and v ∈ S(Rn), the convolution is well
defined by formula (7.21). Then, T ∗ v ∈ S′(Rn) and coincides with a function in
C∞ (Rn).
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7.6.2 Fourier transform in S′

If u ∈ L1 (Rn), its Fourier transform is given by

û (ξ) = F [u] (ξ) =
∫

Rn

e−ix·ξu (x) dx.

It could be that, even if u is compactly supported, û /∈ L1 (Rn). For instance, if
pa (x) = χ[−a,a] (x) then

p̂ (ξ) = 2
sin (aξ)

ξ

which is not11 in L1 (R). When also û ∈ L1 (Rn), u can be reconstructed from û
through the following inversion formula:

Theorem 7.2. Let u ∈ L1 (Rn), û ∈ L1 (Rn). Then

u (x) =
1

(2π)
n

∫

Rn

eix·ξû(ξ)dξ ≡F−1 [û] (x) . (7.24)

In particular, the inversion formula (7.24) holds for u ∈ S(Rn), since (exercise)
û ∈ S(Rn) as well. Moreover, it may be proved that

uk → u in S (Rn)

if and only if

ûk → û in S (Rn) ,
which means that

F , F−1 : S(Rn)→ S(Rn)
are continuous operators

Now observe that, if u, v ∈ S(Rn),

〈û, v〉 = 〈
∫

Rn

e−ix·ξu(x)dx,v〉 =
∫

Rn

(∫

Rn

e−ix·ξu(x)dx
)
v (ξ) dξ

=

∫

Rn

(∫

Rn

e−ix·ξv (ξ) dξ
)
u(x)dx = 〈u, v̂〉

so that (weak Parseval identity):

〈û, v〉 = 〈u, v̂〉 . (7.25)

The key point is that the last bracket makes sense for u = T ∈ S′(Rn) as well,
and defines a tempered distribution. In fact:

11 Appendix B.
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Lemma 7.2. Let T ∈ S′(Rn). The linear functional

v �→ 〈T, v̂〉 , ∀v ∈ S(Rn)

is a tempered distribution.

Proof. Let vk → v in D(Rn). Then vk → v and v̂k → v̂ in S(Rn) as well. Since
T ∈ S′(Rn), we have

lim
k→∞

〈T, v̂k〉 = 〈T, v̂〉

so that v �→ 〈T, v̂〉 defines a distribution. If vk → 0 in S(Rn), then v̂k → 0 in
S(Rn) and 〈T, v̂k〉 → 0. Thus, v �→ 〈T, v̂〉 is a tempered distribution. �
We are now in position to define the Fourier transform of T ∈ S′(Rn).

Definition 7.9. Let T ∈ S′(Rn). The Fourier transform T̂ = F [T ] is the tempered
distribution defined by

〈T̂ , v〉 = 〈T, v̂〉 , ∀v ∈ S(Rn).

We see that the transform has been carried onto the test function v ∈ (Rn). As
a consequence, all the properties valid for functions, continue to hold for tempered
distributions. We list some of them. Let T ∈ S′(Rn) and v ∈ S(Rn).
1. Translation. If a ∈ Rn,

F [T (x − a)] = e−ia·ξT̂ and F
[
eia·xT

]
= T̂ (ξ − a) .

In fact (v = v (ξ)):

〈F [T (x − a)] , v〉 = 〈T (x− a) , v̂〉 = 〈T, v̂ (x + a)〉
=
〈
T,F

[
e−ia·ξv

]〉
= 〈T̂ , e−ia·ξv〉 = 〈e−ia·ξT̂ , v〉.

2. Rescaling. If h ∈ R, h �= 0,

F [T (hx)] = 1

|h|n T̂
(
ξ

h

)
.

In fact:

〈F [T (hx)] , v〉 = 〈T (hx) , v̂〉 = 〈T, 1|h|n v̂
(x
h

)
〉

= 〈T,F [v (hξ)]〉 = 〈T̂ , v (hξ)〉 = 〈 1|h|n T̂
(
ξ

h

)
, v〉.

In particular, choosing h = −1, it follows that if T is even (odd) then T̂ is even
(odd).

3. Derivatives:

a) F
[
∂xjT

]
= iξj T̂ and b) F [xjT ] = i∂ξj T̂ .
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Namely:
〈
F
[
∂xjT

]
, v
〉
=
〈
∂xjT, v̂

〉
= −

〈
T, ∂xj v̂

〉

=
〈
T,F

[
iξjv

]〉
= 〈iξjT̂ , v〉.

For the second formula, we have:

〈F [xjT ] , v〉 = 〈xjT, v̂〉 = 〈T, xj v̂〉
=
〈
T,−iF [∂ξjv]

〉
= 〈−iT̂ , ∂ξjv〉 = 〈i∂ξj T̂ , v〉.

4. Convolution12. If T ∈ S′(Rn) and v ∈ S(Rn),

F [T ∗ v] = T̂ · v̂.
Example 7.17.We know that δ ∈ S′(Rn). We have:

δ̂ = 1, 1̂ = (2π)
n
δ.

In fact

〈δ̂, v〉 = 〈δ, v̂〉 =
∫

Rn

v (x) dx = 〈1, v〉 .

For the second formula, using (7.24) we have:

〈1̂, v〉 = 〈1, v̂〉 =
∫

Rn

v̂ (ξ) dξ = (2π)
n
v (0)

= 〈(2π)n δ, v〉 .
Example 7.18. Transform of xj :

x̂j = i (2π)
n
∂ξj δ.

Indeed, from 3, b) and Example 7.20, we may write

x̂j = F [xj · 1] = i∂ξj 1̂ = i (2π)
n
∂ξjδ.

7.6.3 Fourier transform in L2

Since L2 (Rn) ⊂ S′ (Rn), the Fourier transform is well defined for all functions in
L2 (Rn) . The following theorem holds, where v denotes the complex conjugate of
v.

Theorem 7.3. u ∈ L2 (Rn) if and only if û ∈ L2 (Rn). Moreover, if u, v ∈ L2 (Rn),
the following strong Parseval identity holds:

∫

Rn

û · v̂ = (2π)n
∫

Rn

u · v. (7.26)

In particular
‖û‖2L2(Rn) = (2π)

n ‖u‖2L2(Rn) . (7.27)

12 We omit the proof.
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Formula (7.27) shows that the Fourier transform is an isometry in L2 (Rn)
(but for the factor (2π)

n
).

Proof. Since S (Rn) is dense in L2 (Rn), it is enough to prove (7.26) for u, v ∈
S (Rn). Let w = v̂. From (7.25) we have

∫

Rn

û · w =
∫

Rn

u · ŵ.

On the other hand,

ŵ (x) =

∫

Rn

e−ix·yv̂ (y)dy = (2π)nF−1 [v̂] (x) = (2π)n v (x)

and (7.26) follows. �

Example 7.19. Let us compute

∫

R

(
sinx

x

)2
dx.

We know that the Fourier transform of p1 = χ[−1,1] is p̂1 (ξ) = 2 sin ξ/ξ, which
belongs to L2 (R). Thus, (7.27) yields

4

∫

R

(
sin ξ

ξ

)2
dξ = 2π

∫

R

(
χ[−1,1] (x)

)2
dx = 4π

whence ∫

R

(
sinx

x

)2
dx = π.

7.7 Sobolev Spaces

7.7.1 An abstract construction

Sobolev spaces constitute one of the most relevant functional settings for the treat-
ment of boundary value problems. Here, we will be mainly concerned with Sobolev
spaces based on L2 (Ω), developing only the theoretical elements we will need in
the sequel13.
The following abstract theorem is a flexible tool for generating Sobolev Spaces.

The ingredients of the construction are:

• The space D′ (Ω;Rn), in particular, for n = 1, D′ (Ω).
13 We omit the most technical proofs, that can be found, for instance, in the classical
books of Adams, 1975, or Mazja, 1985.
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• Two Hilbert spaces H and Z with Z ↪→ D′ (Ω;Rn) for some n ≥ 1. In particular
vk → v in Z implies vk → v in D′ (Ω;Rn) . (7.28)

• A linear continuous operator L : H → D′ (Ω;Rn) (such as a gradient or a
divergence).

We have:

Theorem 7.4. Define
W = {v ∈ H : Lv ∈ Z}

and
(u, v)W = (u, v)H + (Lu, Lv)Z . (7.29)

Then W is a Hilbert space with inner product given by (7.29). The embedding of
W in H is continuous and the restriction of L to W is continuous from W into Z.

Proof. It is easy to check that (7.29) has all the properties of an inner product,
with induced norm

‖u‖2W = ‖u‖
2
H + ‖Lu‖

2
Z .

Thus W is an inner-product space. It remains to check its completeness. Let {vk}
a Cauchy sequence in W. We must show that there exists v ∈ H such that

vk → v in H and Lvk → Lv in Z.
Observe that {vk} and {Lvk} are Cauchy sequences in H and Z, respectively.
Thus, there exist v ∈ H and z ∈ Z such that

vk → v in H and Lvk → z in Z.
The continuity of L and (7.28) yield

Lvk → Lv in D′ (Ω;Rn) and Lvk → z in D′ (Ω;Rn) .
Since the limit of a sequence in D′ (Ω;Rn) is unique, we infer that

Lv = z.

Therefore Lvk → Lv in Z and W is a Hilbert space.
The continuity of the embedding W ⊂ H follows from

‖u‖H ≤ ‖u‖W
while the continuity of L|W :W → Z follows from

‖Lu‖Z ≤ ‖u‖W .
Thus, the proof is complete. �
Remark 7.6. The norm induced by the inner product (7.29) is

‖u‖W =
√
‖u‖2H + ‖Lu‖

2
Z

which is called the graph norm of L.
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7.7.2 The space H1 (Ω)

Let Ω ⊆ Rn be a domain. Choose in Theorem 7.4:

H = L2(Ω), Z = L2(Ω;Rn) ↪→D′ (Ω;Rn)

and L : H → D′ (Ω;Rn) given by

L = ∇

where the gradient is considered in the sense of distributions. Then, W is the
Sobolev space of the functions in L2 (Ω), whose first derivatives in the sense of
distributions are functions in L2 (Ω). For this space we use the symbol14 H1(Ω).
Thus:

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω;Rn)

}
.

In other words, if v ∈ H1(Ω), every partial derivative ∂xiv is a function vi ∈ L2(Ω).
This means that

〈∂xiv, ϕ〉 = − (v, ∂xiϕ)0 = (vi, ϕ)0 , ∀ϕ ∈ D (Ω)

or, more explicitly,

∫

Ω

v (x) ∂xiϕ (x) dx = −
∫

Ω

vi (x)ϕ (x) dx, ∀ϕ ∈ D (Ω) .

In many applied situations, the Dirichlet integral

∫

Ω

|∇v|2

represents an energy. The functions in H1 (Ω) are therefore associated with config-
urations having finite energy. From Theorem 7.4 and the separability15 of L2(Ω),
we have:

Proposition 7.8. H1(Ω) is a separable Hilbert space, continuously embedded in
L2(Ω). The gradient operator is continuous from H1(Ω) into L2(Ω;Rn).

The inner product and the norm in H1 (Ω) are given, respectively, by

(u, v)H1(Ω) =

∫

Ω

uv dx+

∫

Ω

∇u · ∇v dx.

14 Also H1,2(Ω) or W 1,2 (Ω) are used.
15 If we associate with each element u of H1 (Ω) the vector u, ux1 , ..., uxn , we see that
H1 (Ω) can be identified with a subspace of

L2 (Ω)× L2 (Ω)× ...× L2 (Ω) = L2 (Ω;Rn+1)

which is separable because L2 (Ω) is separable.
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and

‖u‖2H1(Ω) =
∫

Ω

u2dx+

∫

Ω

|∇u|2 dx.

If no confusion arises, we will use the symbols

(u, v)1,2 instead of (u, v)H1(Ω)

and16

‖u‖1,2 instead of ‖u‖H1(Ω) .

Example 7.20. Let Ω = B1 (0) =
{
x ∈R2 : |x| < 1

}
and

u (x) = (− log |x|)a , x �= 0.

We have, using polar coordinates,

∫

B1(0)

u2 = 2π

∫ 1
0

(− log r)2a rdr <∞, for every a ∈ R,

so that u ∈ L2 (B1 (0)) for every a ∈ R. Moreover:

uxi = −axi |x|−2 (− log |x|)a−1 , i = 1, 2,

and therefore
|∇u| =

∣∣∣a (− log |x|)a−1
∣∣∣ |x|−1 .

Thus, using polar coordinates, we get

∫

B1(0)

|∇u|2=2πa2
∫ 1
0

|log r|2a−2 r−1dr.

This integral is finite only if 2−2a > 1 or a < 1/2. In particular,∇u represents the
gradient of u in the sense of distribution as well. We conclude that u ∈ H1 (B1 (0))
only if a < 1/2.
We point out that when a > 0, u is unbounded near 0.

We have affirmed that the Sobolev spaces constitute an adequate functional
setting to solve boundary value problems. This point requires that we go more
deeply into the arguments in Section 6.1 and make some necessary observations.
When we write f ∈ L2 (Ω), we may think of a single function

f : Ω → R (or C),

square summable in the Lebesgue sense. However, if we want to exploit the Hilbert
space structure of L2 (Ω), we need to identify two functions when they are equal
a.e. in Ω. Adopting this point of view, each element in L2 (Ω) is actually an

16 The numbers 1, 2 in the symbol ‖·‖1,2 stay for “first derivatives in L2”.
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equivalence class of which f is a representative. The drawback here is that it does
not make sense anymore to compute the value of f at a single point, since a point
is a set with measure zero!
The same considerations hold for “functions” in H1 (Ω), since

H1 (Ω) ⊂ L2 (Ω) .

On the other hand, if we deal with a boundary value problem, it is clear that we
would like to compute the solution at any point in Ω!
Even more important is the question of the trace of a function on the boundary

of a domain. By trace of f on ∂Ω we mean the restriction of f to ∂Ω. In a Dirichlet
or Neumann problem we assign precisely the trace of the solution or of its normal
derivative on ∂Ω, which is a set with measure zero. Does this make any sense if
u ∈ H1 (Ω)?
It could be objected that, after all, one always works with a single representative

and that the numerical approximation of the solution, only involves a finite number
of points, making meaningless the distinction between functions in L2 (Ω) or in
H1 (Ω) or continuous. Then, why do we have to struggle to give a precise meaning
to the trace of a function in H1 (Ω)?
One reason comes from numerical analysis, in particular from the need to keep

under control the approximation errors and to give stability estimates.
Let us ask, for instance: if a Dirichlet data is known within an error of order ε

in L2−norm on ∂Ω, can we estimate in terms of ε the corresponding error in the
solution?
If we are satisfied with an L2 or an L∞ norm in the interior of the domain,

this kind of estimate may be available. But often, an energy estimate is required,
involving the norm inL2 (Ω) of the gradient of the solution. In this case, the
L2 norm of the boundary data is not sufficient and it turns out that the exact
information on the data, necessary to restore an energy estimate, is encoded in the
trace characterization of Section 7.9.
We shall introduce the notion of trace on ∂Ω for a function in H1 (Ω), using

an approximation procedure with smooth functions. However, there are two cases,
in which the trace problem may be solved quite simply: the one-dimensional case
and the case of functions with zero trace. We start with the first case.

• Characterization of H1(a, b). As Example 7.26 shows, a function in H1 (Ω)
may be unbounded. In dimension n = 1 this cannot occur. In fact, the elements
in H1 (a, b) are continuous functions17 in [a, b].

Proposition 7.9. Let u ∈ L2 (a, b) . Then u ∈ H1 (a, b) if and only if u is contin-
uous in [a, b] and there exists w ∈ L2 (a, b) such that

u(y) = u(x) +

∫ y

x

w (s) ds, ∀x, y ∈ [a, b]. (7.30)

Moreover u′ = w (both a.e. and in the sense of distribution).
17 Rigorously: every equivalence class in H1 (a, b) has a representative continuous in [a, b].
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Proof. Assume that u is continuous in [a, b] and that (7.30) holds with w ∈
L2 (a, b). Choose x = a. Replacing, if necessary, u by u − u (a), we may assume
u (a) = 0, so that

u(y) =

∫ y

a

w (s) ds, ∀x, y ∈ [a, b].

Let v ∈ D (a, b). We have:

〈u′, v〉 = −〈u, v′〉 = −
∫ b

a

u (s) v′ (s) ds = −
∫ b

a

[∫ s

a

w (t) dt

]
v′ (s) ds =

(exchanging the order of integration)

= −
∫ b

a

[∫ b

t

v′ (s) ds

]
w (t) dt =

∫ b

a

v (t)w (t) dt = 〈w, v〉 .

Thus u′ = w in D′ (a, b) and therefore u ∈ H1 (a, b). From the Lebesgue Differen-
tiation Theorem18 we deduce that u′ = w a.e. as well.
Viceversa, let u ∈ H1 (a, b). Define

v (x) =

∫ x

c

u′ (s) ds, x ∈ [a, b]. (7.31)

The function v is continuous in [a, b] and the above proof shows that v′ = u′ in
D′ (a, b). Then (Proposition 7.3) u = v + C, C ∈ R and therefore u is continuous
in [a, b] as well. Moreover, (7.31) yields

u(y) − u (x) = v(y) − v (x) =
∫ y

x

u′ (s) ds

which is (7.30). �
Since a function u ∈ H1 (a, b) is continuous in [a, b], the value u (x0) at every

point x0 ∈ [a, b] makes perfect sense. In particular the trace of u at the end points
of the interval is given by the values u (a) and u (b).

7.7.3 The space H10 (Ω)

Let Ω ⊆ Rn. We introduce an important subspace of H1 (Ω).
Definition 7.10. We denote by H10 (Ω) the closure of D (Ω) in H1 (Ω).
Thus u ∈ H10(Ω) if and only if there exists a sequence {ϕk} ⊂ D (Ω) such that

ϕk → u in H1 (Ω), i.e. both ‖ϕk − u‖0 → 0 and ‖∇ϕk −∇u‖0 → 0 as k →∞.
Since the test functions in D (Ω) have zero trace on ∂Ω, every u ∈ H10 (Ω)

“inherits” this property and it is reasonable to consider the elements H10 (Ω) as the
functions in H1 (Ω) with zero trace on ∂Ω. Clearly, H10(Ω) is a Hilbert subspace
of H1 (Ω).
An important property that holds in H10 (Ω), particularly useful in the solution

of boundary value problems, is expressed by the following inequality of Poincaré.

18 Appendix B.



400 7 Distributions and Sobolev Spaces

Theorem 7.5. Let Ω ⊂ Rn be a bounded domain. There exists a positive constant
CP (Poincaré’s constant) such that, for every u ∈ H10 (Ω),

‖u‖0 ≤ CP ‖∇u‖0 . (7.32)

Proof. We use a strategy which is rather common for proving formulas in
H10 (Ω). First, we prove the formula for v ∈ D (Ω); then, if u ∈ H10 (Ω), select
a sequence {vk} ⊂ D (Ω) converging to u in norm ‖·‖1,2 as k →∞, that is

‖vk − u‖0 → 0, ‖∇vk −∇u‖0 → 0.
In particular

‖vk‖0 → ‖u‖0 , ‖∇vk‖0 → ‖∇u‖0 .
Since (7.32) holds for every vk, we have

‖vk‖0 ≤ CP ‖∇vk‖0 .
Letting k → ∞ we obtain (7.32) for u. Thus, it is enough to prove (7.32) for
v ∈ D (Ω). To this purpose, from the Gauss Divergence Theorem, we may write

∫

Ω

div
(
v2x

)
dx = 0 (7.33)

since v = 0 on ∂Ω. Now,

div
(
v2x
)
= 2v∇v · x+nv2

so that (7.33) yields ∫

Ω

v2dx = − 2
n

∫

Ω

v∇v · x dx.

Since Ω is bounded, we have max
x∈Ω

|x| = M < ∞; therefore, using Schwarz’s in-
equality, we get

∫

Ω

v2dx =
2

n

∣∣∣∣
∫

Ω

v∇v · x dx
∣∣∣∣≤
2M

n

(∫

Ω

v2dx

)1/2(∫

Ω

|∇v|2 dx
)1/2

.

Simplyfying, it follows that
‖v‖0 ≤ CP ‖∇v‖0

with CP = 2M/n. �
Inequality (7.32) implies that inH10(Ω) the norm ‖u‖1,2 is equivalent to ‖∇u‖0.

Indeed

‖u‖1,2 =
√
‖u‖20 + ‖∇u‖

2
0

and from (7.32),

‖∇u‖0 ≤ ‖u‖1,2 ≤
√
C2P + 1 ‖∇u‖0 .

Unless explicitly stated, we will choose in H10 (Ω)

(u, v)1 = (∇u,∇v)0 and ‖u‖1 = ‖∇u‖0
as inner product and norm, respectively.
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7.7.4 The dual of H10(Ω)

In the applications of the Lax-Milgram theorem to boundary value problems, the
dual of H10 (Ω) plays an important role. In fact it deserves a special symbol.

Definition 7.11. We denote by H−1(Ω) the dual of H10(Ω) with the norm

‖F ‖−1 = sup
{
|Fv| : v ∈ H10(Ω), ‖v‖1 ≤ 1

}
.

The first thing to observe is that, since D (Ω) is dense (by definition) and
continuously embedded in H10 (Ω), H

−1(Ω) is a space of distributions. This means
two things:

a) if F ∈ H−1(Ω), its restriction to D (Ω) is a distribution;
b) if F,G ∈ H−1(Ω) and Fϕ = Gϕ for every ϕ ∈ D (Ω), then F = G.
To prove a) it is enough to note that if ϕk → ϕ in D (Ω), then ϕk → ϕ in

H10 (Ω) as well, and therefore Fϕk → Fϕ. Thus F ∈ D′ (Ω).
To prove b), let u ∈ H10 (Ω) and ϕk → u in H10 (Ω), with ϕk ∈ D (Ω). Then,

since Fϕk = Gϕk we may write

Fu = lim
k→+∞

Fϕk = lim
k→+∞

Gϕk = Gu

whence F = G.
Thus, H−1(Ω) is in one-to-one correspondence with a subspace of D′ (Ω) and

in this sense we will write
H−1(Ω) ⊂ D′ (Ω) .

Which distributions belong to H−1(Ω)? The following theorem gives a satisfactory
answer.

Theorem 7.6. H−1(Ω) is the set of distributions of the form

F = f0 + divf (7.34)

where f0 ∈ L2(Ω) and f =(f1, ..., fn) ∈ L2(Ω;Rn). Moreover:

‖F ‖−1 ≤ (1 + CP ) {‖f0‖0 + ‖f‖0} . (7.35)

Proof. Let F ∈ H−1(Ω). From Riesz’s Representation Theorem, there exists a
unique u ∈ H10 (Ω) such that

(u, v)1 = Fv ∀v ∈ H10 (Ω) .

Since
(u, v)1 = (∇u,∇v) = −〈div∇u, v〉

in D′ (Ω) , it follows that (7.34) holds with f0 = 0 and f = −∇u.Moreover, ‖u‖1 =
‖F ‖−1.
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Viceversa, let F = f0+div f , with f0 ∈ L2(Ω) and f =(f1, ..., fn) ∈ L2(Ω;Rn).
Then F ∈ D′ (Ω) and, letting Fv = 〈F, v〉, we have;

Fv =

∫

Ω

f0v dx+

∫

Ω

f ·∇v dx ∀v ∈ D (Ω) .

From the Schwarz and Poincaré inequalities, we have

|Fv| ≤ (CP + 1) {‖f0‖0 + ‖f‖0} ‖v‖1 . (7.36)

Thus, F is continuous in the H10− norm. It remains to show that F has a unique
continuous extension to all H10 (Ω). Take u ∈ H10 (Ω) and {vk} ⊂ D (Ω) such that
‖vk − u‖1 → 0. Then, (7.36) yields

|Fvk − Fvh| ≤ (1 +CP ) {‖f0‖0 + ‖f‖0} ‖vk − vh‖1 .

Therefore {Fvk} is a Cauchy sequence in R and converges to a limit which is
independent of the sequence approximating u (why?) and which we may denote
by Fu. Finally, since

|Fu| = lim
k→∞

|Fvk| and ‖u‖1 = limk→∞‖vk‖1 ,

from (7.36) we get:

|Fu| ≤ (1 +CP ) {‖f0‖0 + ‖f‖0} ‖u‖1
showing that F ∈ H−1 (Ω). �
Theorem 7.6 says that the elements of H−1(Ω) are represented by a linear

combination of functions in L2(Ω) and their first derivatives (in the sense of dis-
tributions). In particular, L2(Ω) ↪→ H−1(Ω).
Example 7.21. If n = 1, the Dirac δ belongs toH−1(−a, a). Indeed, we have δ = H′
where H is the Heaviside function, and H ∈ L2(−a, a).
However, if n ≥ 2 and 0 ∈ Ω, δ /∈ H−1(Ω). For instance, let n = 2 and

Ω = B1 (0). Assume δ ∈ H−1(Ω). Then we may write

δ = f0 + div f

for some f0∈L2(Ω) and f ∈L2(Ω;R2). Thus, for every ϕ ∈ D (Ω),

ϕ (0) = 〈δ, ϕ〉 = 〈f0 + div f , ϕ〉 =
∫

Ω

[f0ϕ− f ·∇ϕ]dx.

From Schwarz’s inequality, it follows that

|ϕ (0)|2 ≤
{
‖f0‖20 + ‖f‖

2
0

}
‖ϕ‖21,2

and, using the density of D (Ω) in H10 (Ω), this estimate should hold for any ϕ ∈
H10(Ω) as well. But this is impossible, since in H

1
0 (Ω) there are functions which

are unbounded near the origin, as we have seen in Example 7.26.
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Example 7.22. Let Ω be a smooth, bounded domain in Rn. Let u = χΩ be its
characteristic function. Since χΩ ∈ L2 (Rn), the distribution F = ∇χΩ belongs to
H−1 (Rn;Rn). The support of F = ∇χΩ coincides with ∂Ω and its action on a
test ϕ ∈ D (Rn;Rn) is described by the following formula:

〈∇χΩ,ϕ〉 = −
∫

Rn

χΩdiv ϕ dx = −
∫

∂Ω

ϕ · ν dσ.

We may regard F as a “delta uniformly distributed on ∂Ω”.

Remark 7.7. It is important to avoid confusion between H−1 (Ω) and H1 (Ω)∗,
the dual of H1 (Ω). Since, in general, D (Ω) is not dense in H1 (Ω), the space
H1 (Ω)

∗
is not a space of distributions. Indeed, although the restriction to D (Ω)

of every T ∈ H1 (Ω)∗ is a distribution, this restriction does not identifies T . As a
simple example, take f ∈L2 (Ω;Rn) with |f | ≥ c > 0 a.e. and div f = 0. Define

Tϕ =

∫

Ω

f · ∇ϕ dx.

Since |Tϕ| ≤ ‖f‖0 ‖∇ϕ‖0, we infer that T ∈ H1 (Ω)
∗
. However, the restriction of

T to D (Ω) is the null operator, since in D′ (Ω) we have

〈T, ϕ〉 = −〈div f ,ϕ〉 = 0 ∀ϕ ∈ D (Ω) .

7.7.5 The spaces Hm (Ω), m > 1

Involving higher order derivatives, we may construct new Sobolev spaces. Let N
be the number of multi-indexes α = (α1, ..., αn) such that |α| =

∑n
i=1 αi ≤ m.

Choose in Theorem 7.4

H = L2(Ω), Z = L2(Ω;RN) ⊂ D′
(
Ω;RN

)
,

and L : L2(Ω)→ D′
(
Ω;RN

)
given by

Lv = {Dαv}|α|≤m .

Then W is the Sobolev space of the functions in L2 (Ω), whose derivatives (in
the sense of distributions) up to order m included, are functions in L2 (Ω). For
this space we use the symbol Hm(Ω). Thus:

Hm(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω), ∀α : |α| ≤ m

}
.

From Theorem 7.4 and the separability of L2 (Ω), we deduce:

Proposition 7.10. Hm(Ω) is a separable Hilbert space, continuously embedded
in L2(Ω). The operators Dα, |α| ≤ m, are continuous from Hm(Ω) into L2(Ω).
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The inner product and the norm in Hm are given, respectively, by

(u, v)Hm(Ω) = (u, v)m,2 =
∑
|α|≤m

∫

Ω

DαuDαv dx

and

‖u‖2Hm(Ω) = ‖u‖
2
m,2 =

∑
|α|≤m

∫

Ω

|Dαu|2 dx.

If u ∈ Hm (Ω), any derivative of u of order k belongs toHm−k (Ω); more generally,
if |α| = k ≤ m, then

Dαu ∈ Hm−k (Ω)

and Hm(Ω) ↪→ Hm−k (Ω), k ≥ 1.

Example 7.23. Let B1 (0) ⊂ R3 and consider u (x) = |x|−a . It is easy to check (see
Problem 7.15) that u ∈ H1 (B1 (0)) if a < 1/2. The second order derivatives of u
are given by:

uxixj = a (a+ 2)xixj |x|−a−4 − aδij |x|−a−2 .
Then ∣∣uxixj

∣∣ ≤ |a (a+ 2)| |x|−a−2
so that uxixj ∈ L2 (B1 (0)) if 2a + 4 < 3, or a < −12 . Thus u ∈ H2 (B1 (0)) if
a < −1/2.

7.7.6 Calculus rules

Most calculus rules in Hm are formally similar to the classical ones, although their
proofs are not so trivial. We list here a few of them:

Derivative of a product. Let u ∈ H1(Ω) and v ∈ D (Ω) . Then uv ∈ H1(Ω)
and

∇ (uv) = u∇v + v∇u. (7.37)

Formula (7.37) holds if both u, v ∈ H1(Ω) as well. In this case, however,

uv ∈ L1 (Ω) and ∇ (uv) ∈ L1 (Ω;Rn) .

Composition I. Let u ∈ H1(Ω) and g : Ω′ → Ω be one-to-one and Lipschitz.
Then, the composition

u ◦ g : Ω′ → R

belongs to H1 (Ω′) and

∂xi [u ◦ g] (x) =
n∑
k=1

∂xku (g (x)) ∂xigk (x) (7.38)

both a.e. in Ω and in D′ (Ω). In particular, the Lipschitz change of variables
y =g (x) transforms H1 (Ω) into H1 (Ω′).
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Composition II. Let u ∈ H1(Ω) and f : R→R be Lipschitz. Then, the
composition

f ◦ u : Ω → R

belongs to H1 (Ω) and

∂xi [f ◦ u] (x) = f ′ (u (x)) ∂xiu (x) (7.39)

both a.e. in Ω and in D′ (Ω).
In particular, choosing respectively

f (t) = |t| , f (t) = max {t, 0} and f (t) = −min {t, 0} ,

it follows that the following functions:

|u| , u+ = max{u, 0} , and u− = −min{u, 0}

all belong to H1(Ω). For these functions, (7.39) yields

∇u+ =
{
∇u if u > 0
0 if u ≤ 0 , ∇u

− =
{
0 if u ≥ 0

−∇u if u < 0

and ∇(|u|) = ∇u++∇u−, ∇u = ∇u+−∇u−. As a consequence, if u ∈ H1 (Ω) is
constant in a set K ⊆ Ω, then ∇u = 0 a.e. in K.

7.7.7 Fourier Transform and Sobolev Spaces

The spaces Hm (Rn), m ≥ 1, may be defined in terms of the Fourier transform. In
fact, by Theorem 7.3,

u ∈ L2 (Rn) if and only if û ∈ L2 (Rn)

and

‖u‖2L2(Rn) = (2π)
−n ‖û‖2L2(Rn) .

It follows that, for every multi-index α with |α| ≤m,

Dαu ∈ L2 (Rn) if and only if ξαû ∈ L2 (Rn)

and

‖Dαu‖2L2(Rn) = (2π)
−n ‖ξαû‖2L2(Rn) .

Finally, observe that

|ξα|2 ≤ |ξ|2|α| ≤ C(1 + |ξ|2)m

whence we obtain the following result.
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Proposition 7.11. Let u ∈ L2 (Rn) . Then:
i) u ∈ Hm (Rn) if and only if (1 + |ξ|2)m/2û ∈ L2 (Rn) .
ii) The norms

‖u‖Hm(Rn) and
∥∥∥(1 + |ξ|2)m/2û

∥∥∥
L2(Rn)

are equivalent.

• Sobolev spaces of real order. The norm

‖u‖Hm(Rn) =
∥∥∥(1 + |ξ|2)m/2û

∥∥∥
L2(Rn)

makes perfect sense even if m is not an integer and we are led to the following
definition.

Definition 7.12. Let s ∈ R, 0 < s < ∞. We denote by Hs (Rn) the space of
functions u ∈ L2 (Rn) such that |ξ|s û ∈ L2 (Rn).

Intuitively, the function
F−1

[(
iξj
)s
û
]

represents a “derivative of order s” of u. Then,

u ∈ Hs (Rn)

if the “derivatives of order s” of u belong to L2 (Rn). We have:

Proposition 7.12. Hs (Rn) is a Hilbert space with inner product and norm given
by

(u, v)Hs(Rn) =

∫

Rn

(
1 + |ξ|2

)s
û v̂ dξ

and

‖u‖Hs(Rn) =
∥∥∥∥
(
1 + |ξ|2

)s/2
û

∥∥∥∥
L2(Rn)

.

The space H1/2 (Rn) of the L2−functions possessing “half derivatives” in
L2 (Rn) plays an important role in Section 7.9.

7.8 Approximations by Smooth Functions and Extensions

7.8.1 Local approximations

The functions in H1(Ω) may be quite irregular. However, using mollifiers, any
u ∈ H1(Ω) may be approximated locally by smooth functions, in the sense that
the approximation holds in every compact subset of Ω.
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Denote by ηε =
1
εn
η
(
|x|
ε

)
the mollifier introduced in section 7.2 and by Ωε the

set of points ε−away from ∂Ω, i.e. (see Remark 7.2):

Ωε = {x ∈Ω: dist (x,∂Ω) > ε} .

We have:

Theorem 7.7. Let u ∈ H1(Ω) and, for ε > 0, small, define

uε = u ∗ ηε.

Then

1. uε∈ C∞ (Ωε) ,
2. if ε→ 0, uε → u in H1 (Ω′) for every Ω′ ⊂⊂ Ω.

Proof. Property 1 follows from Remark 7.2. To prove 2, recall that, for every
i = 1, 2, ..., n, we have

∂xiuε = ∂xiu ∗ ηε. (7.40)

Then, 2 follows from property d of Lemma 7.1, applied to any Ω′ ⊂⊂ Ω. �

7.8.2 Estensions and global approximations

By Theorem 7.7, we may approximate a function inH1 (Ω) by smooth functions, as
long as we stay at positive distance from ∂Ω. We wonder whether an approximation
is possible in all Ω. First we give the following definition.

Definition 7.13. Denote by D
(
Ω
)
the set of restrictions to Ω of functions in

D (Rn).
Thus, ϕ ∈ D

(
Ω
)
if there is ψ ∈ D (Rn) such that ϕ = ψ in Ω. Clearly,

D
(
Ω
)
⊂ C∞

(
Ω
)
. We want to establish whether

D
(
Ω
)
is dense in H1 (Ω) . (7.41)

The case Ω = Rn is special, since D (Ω) coincides with D
(
Ω
)
. We have:

Theorem 7.8. D (Rn) is dense in H1 (Rn). In particular H1 (Rn) = H10 (Rn).
Proof. First observe that H1c (R

n), the subspace of functions with compact
(essential) support in Rn, is dense in H1(Rn). In fact, let u ∈ H1 (Rn) and v ∈
D (Rn), such that 0 ≤ v ≤ 1 and v ≡ 1 if |x| ≤ 1. Define

us (x) = v
(x
s

)
u (x) .

Then us ∈ H1c (Rn) and

∇us (x) = v
(x
s

)
∇u (x) + 1

s
u (x)∇v

(x
s

)
.
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From the Dominated Convergence Theorem19, it follows that

us → u in H1(Rn) as s→∞.
On the other hand D (Rn) is dense in H1c (Rn). In fact, if u ∈ H1c (Rn), we have

uε = u ∗ ηε ∈ D (Rn)
and uε → u in H1(Rn). �
However, in general (7.41) is not true, as the following example shows.

Example 7.24. Consider, for instance,

Ω = {(ρ, θ) : 0 < ρ < 1, 0 < θ < 2π} .
The domain Ω coincides with the open unit circle, centered at the origin, without
the radius

{(ρ, θ) : 0 < ρ < 1, θ = 0} .
The closure Ω is given by the full closed circle. Let

u (ρ, θ) = ρ1/2 cos(θ/2).

Then u ∈ L2 (Ω), since u is bounded. Moreover20,

|∇u|2 = u2ρ +
1

ρ2
u2θ =

1

4ρ
in Ω,

so that u ∈ H1 (Ω). However, u (ρ, 0+) = ρ1/2 while u (ρ, 2π−) = −ρ1/2. Thus, u
has a jump discontinuity across θ = 0 and no sequence of smooth functions can
converge to u in H1 (Ω).

The difficulty in Example 7.24 is that the domain Ω lies on both sides of part
of its boundary (the radius 0 < ρ < 1, θ = 0). Thus, to have a hope that (7.41) is
true we have to avoid domains with this anomaly and consider domains with some
degree of regularity.
Thus, assume Ω is a C1 or even a Lipschitz domain. Theorem 7.8 suggests a

strategy to prove (7.41): given u ∈ H1(Ω), extend the definition of u to all Rn in
order to obtain a function in H1(Rn) and then apply Theorem 7.8. The first thing
to do is to introduce an extension operator :

Definition 7.14. We say that a linear operator E : H1(Ω) → H1(Rn) is an
extension operator if, ∀u ∈ H1(Ω):
1. E (u) = u in Ω,

2. if Ω is bounded, E (u) is compactly supported,

3. E is continuous:

‖Eu‖H1(Rn) ≤ c (n,Ω) ‖u‖H1(Ω) .
19 Observe that |us| ≤ |u| and |∇us| ≤ |∇u|+M |u| where M = max |∇v| .
20 Appendix C.
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How do we construct E? The first thing that comes into mind is to define
Eu = 0 outside Ω (trivial extension). This certainly works if u ∈ H10 (Ω). In fact:
u ∈ H10 (Ω) if and only if its trivial extension belongs to H1 (Rn).
However, the trivial extension works in this case only. For instance, let u ∈

H1 (0,∞) with u (0) = a �= 0. Let Eu be the trivial extension of u. Then, in
D′ (R), (Eu)′ = u′ + aδ which is not even in L2 (R).
Thus, we have to use another method. If Ω is a half space. i.e.

Ω = Rn+ = {(x1, ..., xn) : xn > 0}
an extension operator can be defined by a reflection method as follows:

• Reflection method. Let H1
(
R
n
+

)
. Write x = (x′, xn). We reflect in an even

way with respect to the hyperplane xn = 0, by setting Eu = ũ where

ũ (x) = u (x′, |xn|) .
Then, it is possible to prove that, in D′ (Rn):

ũxj (x) =

{
uxj (x

′, |xn|) j < n

uxn (x
′, |xn|) sign xn j = n.

(7.42)

It is now easy to check that E has the properties 1,2,3 listed above. In particular,

‖Eu‖2H1(Rn) = 2 ‖u‖
2
H1(Rn+)

.

• Extension operator for Lipschitz domains. Suppose now that Ω is a bounded
Lipschitz domain. To construct an extension operator we use two rather general
ideas, which may be applied in several different contexts: localization and reduction
to the half space.

Localization. It is based on the following lemma. Given a set K, by open
covering of K we mean a collection U of open sets, such that K ⊂ ∪U∈UU .
Lemma 7.3. (Partition of unity). Let K ⊂ Rn be a compact set and U1, ..., UN be
an open covering of K. There exist functions ψ1, ..., ψN with the following proper-
ties:

1. For every j = 1, ..., N , ψj ∈ C∞0 (Uj) and 0 ≤ ψj ≤ 1.
2. For every x ∈K, ∑N

j=1 ψj (x) = 1.

Proof (sketch). Since K ⊂ ∪Nj=1Uj and each Uj is open, we can find open sets
Kj ⊂⊂ Uj such that

K ⊂ ∪Nj=1Kj .
Let χKj be the characteristic function of Kj and ηε the mollifier (7.3). Define
ϕj,ε = ηε ∗χKj . According to Example 7.2, we may fix ε so small in order to have
ϕj,ε ∈ C∞0 (Uj) and ϕj,ε > 0 on Kj . Then the functions

ψj =
ϕj,ε∑N
s=1 ϕs,ε
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Fig. 7.5. A set Ω and an open covering of its closure

satisfy conditions 1 and 2. �
The set of functions ψ1, ..., ψN is called a partition of unity for K, associated

with the covering U1, ..., UN. Now, if u : K → R, the localization procedure consists
in writing

u =

N∑
j=1

ψju (7.43)

i.e. as a sum of functions uj = ψju supported in Uj .

Reduction to a half space. Take an open covering of ∂Ω by N balls Bj =
B (xj), centered at xj ∈ ∂Ω and such that ∂Ω∩Bj is locally a graph of a Lipschitz
function yn = ϕj (y

′) . This is possible, since ∂Ω is compact. Moreover, let A0 ⊂ Ω
be an open set containing Ω\ ∪Nj=1 Bj (Fig. 7.5).
Then, A0, B1, ..., BN is an open covering of Ω. Let ψ0, ψ1, ..., ψN be a partition

of unity for Ω, associated with A0, B1, ..., BN .

Fig. 7.6. The bi-Lipschitz transformation Φj flattens Bj ∩ ∂Ω

By the definition of Lipschitz domain (see Section 1.4), for each Bj , 1 ≤ j ≤ N ,
there is a bi-Lipschitz transformation z = Φj (x) such that

Φj (Bj ∩Ω) ≡ Uj ⊂ Rn+
and (Fig. 7.6)

Φj (Bj ∩ ∂Ω) ⊂ ∂Rn+ = {zn = 0} .
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Let u ∈ H1 (Ω) and uj = ψju. Then, wj = uj ◦Φ−1j is supported in Uj, so that,

extending it to zero in Rn+\Uj , we have wj ∈ H1
(
R
n
+

)
.

The functionEwj = w̃j, obtained by the reflection method, belongs toH
1 (Rn).

Now we go back defining

Euj = w̃j ◦Φj , 1 ≤ j ≤ N ,

in Bj and Euj = 0 outside Bj . Finally, let u0 = ψ0u0 and let Eu0 be the trivial
extension of u0. Set

Eu =

N∑
j=0

Euj .

At this point, it is not difficult to show that E satisfies the requirements 1, 2, 3 of
Definition 7.14. We have proved the following

Theorem 7.9. Let Ω be either Rn+ or a bounded, Lipschitz domain. Then, there
exists an extension operator E : H1(Ω)→ H1(Rn).
An immediate consequence of Theorems 7.8 and 7.9 is the following global

approximation result:

Theorem 7.10. Let Ω be either Rn+ or a bounded, Lipschitz domain. Then

D
(
Ω
)
is dense in H1 (Ω). In other words, if u ∈ H1 (Ω), there exists a se-

quence {um} ⊂ D
(
Ω
)
such that

‖um − u‖1,2 → 0 as m→ +∞.

7.9 Traces

7.9.1 Traces of functions in H1 (Ω)

The possibility of approximating any element u ∈ H1 (Ω) by smooth functions in
Ω represents a key tool for introducing the notion of restriction of u on Γ = ∂Ω.
Such restriction is called the trace of u on Γ and it will be an element of L2 (Γ ).
Observe that if Ω = Rn+, then Γ = ∂R

n
+ = R

n−1 and L2 (Γ ) is well defined.
If Ω is a Lipschitz domain, we define L2 (Γ ) by localization. More precisely, let
B1, ..., BN be an open covering of Γ by balls centered at points on Γ , as in sub-
section 7.8.2. If g : Γ → R, write

g =
N∑
j=1
ψjg

where ψ1, ..., ψN is a partition of unity for Γ , associated with B1, ..., BN . Since
Γ ∩ Bj is the graph of a Lipschitz function yn = ϕj (y′), on Γ ∩ Bj there is a
natural notion of “area element”, given by

dσ=

√
1 +

∣∣∇ϕj
∣∣2dy′.
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Thus, we say that g ∈ L2 (Γ ) if21

‖g‖2L2(Γ) =
N∑
j=1

∫

Γ∩Bj
ψj |g|2 dσ<∞. (7.44)

L2 (Γ ) is a Hilbert space with respect to the inner product

(g, h)L2(Γ) =
N∑
j=1

∫

Γ∩Bj
ψj gh dσ.

Let us go back to our trace problem. We may consider n > 1, since there is no
problem if n = 1. The strategy consists in the following two steps.

Let τ 0 : D
(
Ω
)
→ L2 (Γ ) be the operator that associates to every function v

its restriction v|Γ to Γ : τ 0v = v|Γ . This makes perfect sense, since each v ∈ D
(
Ω
)

is continuous on Γ .
First step: show that ‖τ 0u‖L2(Γ) ≤ c (Ω, n) ‖u‖1,2. Thus, τ 0 is continuous from

D
(
Ω
)
⊂ H1(Ω) into L2 (Γ ).

Second step: extend τ 0 to all H
1(Ω) using the density of D

(
Ω
)
in H1(Ω).

An elementary analogy may be useful. Suppose we have a function f : Q→ R

and we want to define the value of f at an irrational point x. What do we do?
Since Q is dense in R, we select a sequence {rk} ⊂ Q such that rk → x. Then we
compute f (rk) and set f (x) = limk→∞ f (rk). Of course, we have to prove that
the limit exists, by showing, for example, that {f (rn)} is a Cauchy sequence and
that the limit does not depend on the approximating sequence {rn}.
Theorem 7.11. Let Ω be either Rn+ or a bounded, Lipschitz domain. Then there
exists a linear operator (trace operator) τ 0 : H

1(Ω)→ L2 (Γ ) such that:
1. τ 0u = u|Γ if u ∈ D

(
Ω
)
,

2. ‖τ 0u‖L2(Γ) ≤ c (Ω, n)‖u‖1,2 .

Proof. Let Ω = Rn+. First, we prove inequality 2 for u ∈ D
(
Ω
)
. In this case

τ 0u = u(x
′, 0) and we must show that there is a constant c such that∫

Rn−1
|u(x′, 0)|2 dx′ ≤ c ‖u‖2H1(Rn+) ∀u ∈ D

(
Ω
)
. (7.45)

For every xn ∈ (0, 1) we may write:

u(x′, 0) = u(x′, xn) −
∫ xn

0

uxn (x
′, t)dt.

Since by Schwarz’s inequality
(∫ 1
0

|uxn (x′, t)|dt
)2
≤
∫ 1
0

|uxn (x′, t)|
2
dt,

21 Observe that the norm (7.44) depends on the particular covering and partition of
unity. However, norms corresponding to different coverings and partitions of unity are
all equivalent and induce the same topology on L2 (Γ ).
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we deduce that (recalling the elementary inequality (a+ b)
2 ≤ 2a2 + 2b2)

|u(x′, 0)|2 ≤ 2 |u(x′, xn)|2 + 2
(∫ 1
0

|uxn (x′, t)| dt
)2

≤ 2 |u(x′, xn)|2 + 2
∫ 1
0

|uxn (x′, t)|
2
dt

≤ 2 |u(x′, xn)|2 + 2
∫ 1
0

|∇u (x′, t)|2 dt

Integrating both sides in Rn−1 with respect to x′ and in (0, 1) with respect to xn
we easily obtain (7.45) with c = 2.
Assume now u ∈ H1

(
R
n
+

)
. Since D

(
Ω
)
is dense in H1

(
R
n
+

)
, we can select

{uk} ⊂ D
(
Ω
)
such that uk → u in H1

(
R
n
+

)
.

The linearity of τ 0 and estimate (7.45) yield

‖τ 0uh − τ 0uk‖L2(Rn−1) ≤
√
2 ‖uh − uk‖H1(Rn+) .

Since {uk} is a Cauchy sequence in H1
(
R
n
+

)
, we infer that {τ 0uk} is a Cauchy

sequence in L2
(
R
n−1). Therefore, there exists u0 ∈ L2(Rn−1) such that

τ 0uk → u0 in L2(Rn−1).

The limiting element u0 does not depend on the approximating sequence {uk}. In
fact, if {vk} ⊂ D

(
Ω
)
and vk → u in H1

(
R
n
+

)
, then

‖vk − uk‖H1(Rn+) → 0.

From
‖τ 0vk − τ 0uk‖L2(Rn−1) ≤

√
2 ‖vk − uk‖H1(Rn+)

it follows that τ 0vk → u0 in L2(Rn−1) as well.
Thus, if u ∈ H1

(
R
n
+

)
, it makes sense to define τ 0u = u0. It should be clear

that τ 0 has the properties 1, 2.
If Ω is a bounded Lipschitz domain, the theorem can be proved once more by

localization and reduction to a half space. We omit the details. �
Definition 7.15. The function τ 0u, also denoted by u|Γ , is called the trace of
u on Γ .

The following integration by parts formula for functions in H1 (Ω) is a conse-
quence of the trace theorem 7.11.

Corollary 7.1. Assume Ω is either Rn+ or a bounded, Lipschitz domain. Let
u ∈ H1 (Ω) and v ∈H1 (Ω;Rn). Then

∫

Ω

∇u · v dx = −
∫

Ω

u divv dx+

∫

Γ

(τ 0u) (τ 0v) · ν dσ. (7.46)

where ν is the outward unit normal to Γ and τ 0v =(τ 0v1, ..., τ0vn) .
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Proof. Formula (7.46) holds if u ∈ D
(
Ω
)
and v ∈D

(
Ω;Rn

)
. Let u ∈ H1 (Ω)

and v ∈H1 (Ω;Rn) . Select {uk} ⊂ D
(
Ω
)
, {vk} ⊂ D

(
Ω;Rn

)
such that uk → u in

H1 (Ω) and vk → v in H1 (Ω;Rn). Then:
∫

Ω

∇uk · vk dx = −
∫

Ω

uk div vk dx+

∫

Γ

(τ 0uk) (τ 0vk) · ν dσ.

Letting k →∞, by the continuity of τ 0, we obtain (7.46). �
It is not surprising that the kernel of τ 0 is precisely

22 H10 (Ω):

τ 0u = 0 ⇐⇒ u ∈ H10 (Ω) .
In similar way, we may define the trace of u ∈ H1 (Ω) on a relatively open

subset Γ0 ⊂ Γ .
Theorem 7.12. Assume Ω is either Rn+ or a bounded, Lipschitz domain. Let Γ0
be an open subset of Γ.
Then there exists a trace operator τ Γ0 : H

1(Ω)→ L2 (Γ0) such that:
1. τΓ0u = u|Γ0 if u ∈ D

(
Ω
)
,

2. ‖τ Γ0u‖L2(Γ0) ≤ c (Ω, n) ‖u‖1,2.
The function τΓ0u is called the trace of u on Γ0, often denoted by u|Γ0 . The

kernel of τ Γ0 is denoted by H
1
0,Γ0
(Ω):

τ
Γ0
u = 0 ⇐⇒ u ∈ H10,Γ0 (Ω) .

This space can be characterized in another way. Let V0,Γ0 be the set of functions
in D

(
Ω
)
vanishing in a neighborhood of Γ 0. Then:

Proposition 7.13. H10,Γ0(Ω) is the closure of V0,Γ0 in H
1 (Ω).

7.9.2 Traces of functions in Hm (Ω)

We have seen that u ∈ Hm(Rn+), m ≥ 1, has a trace on Γ = ∂Rn+. However, if
m = 2, every derivative of u belongs to H1(Rn+), so that it has a trace on Γ . In
particular, we may define the trace of ∂xnu on Γ . Let

τ 1u = (∂xnu)|Γ .

In general, for m ≥ 2, we may define the trace on Γ of the derivatives ∂jxnu = ∂ju

∂xjn
for j = 0, 1, ...,m− 1 and set

τ ju = (∂
j
xnu)|Γ .

In this way, we construct a linear operator τ : Hm(Rn+)→ L2 (Γ ;Rm), given by
τu = (τ 0u, ..., τm−1u) .

22 However, only the proof of the “ ⇐= ” part is trivial. The proof of the “ =⇒ ” part is
rather tecnical and we omit it.
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From Theorem 7.11, τ satisfies the following conditions:

1. τu = (u|Γ , (∂xnu)|Γ , ..., (∂m−1xn u)|Γ ), if u ∈ D
(
Rn+

)
,

2. ‖τu‖L2(Γ ;Rn) ≤ c ‖u‖Hm(Rn+) .

The operator τ associates to u ∈ Hm
(
R
n
+

)
the trace on Γ of u and its deriva-

tives up to the order m− 1, in the direction xn. This direction corresponds to the
interior normal to Γ = ∂Rn+.
Analogously, for a bounded domain Ω we may define the trace on Γ of the

(interior or exterior) normal derivatives of u, up to order m− 1. This requires Ω
to be at least a Cm−domain. The following theorem holds, where ν denotes the
exterior unit normal to ∂Ω.

Theorem 7.13. Assume Ω is either Rn+ or a bounded, C
m−domain, m ≥ 2. Then

there exists a trace operator τ : Hm(Ω)→ L2 (Γ ;Rm) such that:

1. τu = (u|Γ , ∂u∂ν |Γ , ...,
∂m−1u
∂νm−1 |Γ ) if u ∈ D

(
Ω
)
,

2. ‖τu‖L2(Γ ;Rm) ≤ c (Ω, n)‖u‖Hm(Ω) .

Similarly, we may define a trace of the (interior or exterior) normal derivatives
of u, up to order m− 1, on an open subset Γ0 ⊂ Γ .
It turns out that the kernel of the operator τ is given by the closure of D (Ω)

in Hm (Ω), denoted by Hm
0 (Ω). Precisely:

τu = (0, ..., 0) ⇐⇒ u ∈ Hm
0 (Ω) .

Clearly, Hm
0 (Ω) is a Hilbert subspace of H

m (Ω). If u ∈ Hm
0 (Ω), u and its normal

derivatives up to order m− 1 have zero trace on Γ .

7.9.3 Trace spaces

The operator τ 0 : H
1 (Ω) → L2 (Γ ) is not surjective. In fact the image of τ 0 is

strictly contained in L2 (Γ ) . In other words, there are functions in L2 (Γ ) which
are not traces of functions in H1(Ω). So, the natural question is: which functions
g ∈ L2 (Γ ) are traces of functions inH1(Ω)? The answer is not elementary: roughly
speaking, we could characterize them as functions possessing half derivatives in
L2 (Γ ). It is as if in the restriction to the boundary, a function of H1 (Ω) loses
“one half of each derivative”. To give an idea of what this means, let us consider
the case Ω = Rn+. We have:

Theorem 7.14. Let u ∈ H1
(
R
n
+

)
. Then Im τ 0 = H

1/2
(
R
n−1) .

Proof (sketch). First we show that Imτ 0 ⊆ H1/2
(
R
n−1). Let u ∈H1 (Rn+

)
and

extend it to all Rn by even reflection with respect to the plane xn = 0. We write
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the points in Rn as x =(x′, xn), with x′ = (x1, ..., xn). Define g (x′) = u (x′, 0).
We show that g ∈ H1/2

(
R
n−1), that is

‖g‖2H1/2(Rn−1) =
∫

Rn−1
(1 +

∣∣ξ′∣∣2)1/2 ∣∣ĝ (ξ′)∣∣2 dξ′ <∞.

First, we consider u ∈ D (Rn) and express ĝ in terms of û. By the Fourier inversion
formula, we may write

u (x′, xn) =
1

(2π)n

∫

Rn−1
eix

′·ξ′
(∫

R

û
(
ξ′, ξn

)
eixnξndξn

)
dξ′

so that

g (x′) =
1

(2π)n−1

∫

Rn−1
eix

′·ξ′
(
1

2π

∫

R

û
(
ξ′, ξn

)
dξn

)
dξ′.

This shows that

ĝ
(
ξ′
)
=
1

2π

∫

R

û
(
ξ′, ξn

)
dξn.

Thus:

‖g‖2H1/2(Rn−1) =
1

(2π)2

∫

Rn−1
(1 +

∣∣ξ′∣∣2)1/2
∣∣∣∣
∫

R

û
(
ξ′, ξn

)
dξn

∣∣∣∣
2

dξ′.

Note now the following two facts. First, from Schwarz’s inequality, we may write
∣∣∣∣
∫

R

û
(
ξ′, ξn

)
dξn

∣∣∣∣ ≤
∫

R

(1 + |ξ|2)−1/2(1 + |ξ|2)1/2
∣∣û (ξ′, ξn

)∣∣dξn

≤
(∫

R

(1 + |ξ|2)
∣∣û (ξ′, ξn

)∣∣2 dξn
)1/2(∫

R

(1 + |ξ|2)−1dξn
)1/2

.

Second,23

∫

R

(1 + |ξ|2)−1dξn =
∫

R

(1 +
∣∣ξ′∣∣2 + ξ2n)−1dξn =

π

(1 +
∣∣ξ′∣∣2)1/2

.

Thus,

‖g‖2H1/2(Rn−1) ≤
1

4π

∫

Rn

(1 + |ξ|2) |û (ξ)|2 dξ = 1
4π
‖u‖2H1(Rn) =

1

2π
‖u‖2H1(Rn+) <∞.

Therefore, g ∈ H1/2(Rn−1). By the usual density argument, this is true for every
u ∈ H1 (Rn) and shows that Imτ 0 ⊆ H1/2

(
R
n−1).

To prove the opposite inclusion, take any g ∈ H1/2(Rn−1) and define

u (x′, xn) =
1

(2π)n−1

∫

Rn−1
e−(1+|ξ′|)xn ĝ

(
ξ′
)
eix

′·ξ′dξ′, xn ≥ 0.

23
∫
R
(a2 + t2)−1dt =

[
1

a
arctan

(
t

a

)]+∞

−∞
=
π

a
(a > 0) .
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Then, clearly u (x′, 0) = g (x′) and it can be proved that u ∈ H1
(
R
n
+

)
. Therefore,

g ∈ Imτ 0 so that H1/2
(
R
n−1) ⊆ Im τ 0. �

If Ω is a bounded, Lipschitz domain, it is possible to define H1/2 (Γ ) by local-
ization and reduction to the half space, as we did for L2 (Γ ). In this way we can
endow H1/2 (Γ ) with an inner product that makes it a Hilbert space, continuously
embedded in L2 (Γ ). It turn out that H1/2 (Γ ) coincides with Im τ 0:

H1/2 (Γ ) =
{
u|Γ : u ∈ H1(Ω)

}
. (7.47)

Actually, changing slightly our point of view, we could take (7.47) as a definition
of H1/2 (Γ ) and endow H1/2 (Γ ) with the equivalent norm

‖g‖H1/2(Γ) = inf
{
‖u‖H1(Ω) : u ∈ H1(Ω), u|Γ = g

}
. (7.48)

This norm is equal to the smallest among the norms of all elements in H1(Ω)
sharing the same trace g on Γ and takes into account that the trace operator τ 0
is not injective, since we know that Ker τ 0 = H

1
0 (Ω). In particular, the following

trace inequality holds: ∥∥u|Γ
∥∥
H1/2(Γ)

≤ ‖u‖1,2 , (7.49)

which means that the trace operator τ 0 is continuous from H
1(Ω) onto H1/2 (Γ ) .

In similar way, if Γ0 is a relatively open subset of Γ , by localization and reduc-
tion to the half space, we may define the space H1/2 (Γ0) and make it a Hilbert
space, continuously embedded in L2 (Γ0). H

1/2 (Γ0) coincides with ImτΓ0 , that is

H1/2 (Γ0) =
{
u|Γ0 : u ∈ H1(Ω)

}
,

and can be endowed with the norm

‖g‖H1/2(Γ0) = inf
{
‖u‖H1(Ω) : u ∈ H1(Ω), u|Γ0 = g

}
.

In particular, the following trace inequality holds:

∥∥u|Γ0
∥∥
H1/2(Γ0)

≤ ‖u‖H1(Ω) . (7.50)

which means that the trace operator τ Γ0 is continuous from H
1(Ω) in H1/2 (Γ0) .

Finally, if Ω is Rn+ or a bounded C
m− domain,m ≥ 2, the space of the traces of

functions inHm(Ω) is the fractional order Sobolev space Hm−1/2 (Γ ), still showing
a loss of “half derivative”. Coherently, the trace of a normal derivative undergoes
a loss of one more derivative and belongs to Hm−3/2 (Γ ); the derivatives of order
m− 1 have traces in H1/2 (Γ ). Thus we obtain:

τ : Hm(Ω)→
(
Hm−1/2 (Γ ) , Hm−3/2 (Γ ) , ..., H1/2 (Γ )

)
.

The kernel of τ is Hm
0 (Ω).
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7.10 Compactness and Embeddings

7.10.1 Rellich’s theorem

Since

‖u‖0 ≤ ‖u‖1,2 ,

H1 (Ω) is continuously embedded in L2 (Ω) i.e., if a sequence {uk} converges to u
in H1 (Ω) it converges to u in L2 (Ω) as well.
If we assume that Ω is a bounded, Lipschitz domain, then the embedding

of H1 (Ω) in L2 (Ω) is also compact. Thus, a bounded sequence {uk} ⊂ H1 (Ω)
has the following important property:

There exists a subsequence
{
ukj
}
and u ∈ H1 (Ω), such that

a. ukj → u in L2 (Ω) ,
b. ukj ⇀ u in H

1 (Ω) (i.e. ukj converges weakly
24 to u in H1 (Ω)).

Actually, only property a follows from the compactness of the embedding.
Property b expresses a general fact in every Hilbert space H : every bounded
subset E ⊂ H is sequentially weakly compact (Theorem 6.11).

Theorem 7.15. Let Ω be a bounded, Lipschitz domain. Then H1 (Ω) is com-
pactly embedded in L2 (Ω).

Proof. We use the compactness criterion expressed in Theorem 6.9. First, ob-
serve that, for every v ∈ D (Rn) we may write

v (x+ h)− v (x) =
∫ 1
0

d

dt
v (x+th) dt =

∫ 1
0

∇v (x+th) · h dt

whence

|v (x+ h) − v (x)|2 =
∣∣∣∣
∫ 1
0

∇v (x+th) · h dt
∣∣∣∣
2

≤ |h|2
∫ 1
0

|∇v (x+th)|2 dt.

Integrating on Rn we find

∫

Rn

|v (x+ h)− v (x)|2 dx ≤ |h|2
∫

Rn

dx

∫ 1
0

|∇v (x+th)|2 dt ≤ |h|2 ‖∇v‖2L2(Rn)

so that ∫

Rn

|v (x+ h) − v (x)|2 dx ≤ |h|2 ‖∇v‖2L2(Rn) . (7.51)

Since D (Rn) is dense in H1 (Rn), we infer that (7.51) holds for every u ∈ H1 (Rn)
as well.

24 Section 6.7.



7.10 Compactness and Embeddings 419

Let now S ⊂ H1 (Ω) be bounded, i.e. there exists a number M such that:

‖u‖H1(Ω) ≤M, ∀u ∈ S.

By Theorem 7.9, every u ∈ S has an extension ũ ∈ H1 (Rn), with support cotained
in an open set Ω′ ⊃⊃ Ω. Thus, ũ ∈ H10 (Ω′) and moreover,

‖∇ũ‖L2(Ω′) ≤ c ‖∇u‖L2(Ω) ≤ cM.

Denote by S̃ the set of such extensions. Then (7.51) holds for every ũ ∈ S̃ :
∫

Ω′
|ũ (x+ h) − ũ (x)|2 dx ≤ |h|2 ‖∇ũ‖2L2(Rn) ≤ c2M2 |h|

2
.

Theorem 6.9 implies that S̃ is precompact in L2 (Ω′), which implies that S is
precompact in L2 (Ω). �

7.10.2 Poincaré’s inequalities

Under suitable hypotheses, the norm ‖u‖1,2 is equivalent to ‖∇u‖0. This means
that there exists a constant CP , depending only on n and Ω, such that

‖u‖0 ≤ CP ‖∇u‖0 . (7.52)

Inequalities like (7.52) are called Poincaré’s inequalities and play a big role
in the variational treatment of boundary value problems, as we shall realize in
the next chapter. We have already proved (Theorem 7.5) that (7.52) holds if u ∈
H10 (Ω), i.e. for functions vanishing on ∂Ω.
On the other hand, (7.52) cannot hold if u = constant �= 0. Roughly speaking,

the hypotheses that guarantee the validity of (7.52) require that u vanishes in some
“non trivial set”. For instance, under each one of the following conditions, (7.52)
holds:

i) u ∈ H10,Γ0 (Ω) (u vanishes on a non empty relatively open subset Γ0 ⊂ ∂Ω);
ii) u ∈ H1 (Ω) and u = 0 on a set E ⊂ Ω with positive measure: |E| = a > 0;
iii) u ∈ H1(Ω) and

∫
Ω
u = 0 (u has mean value zero in Ω).

Theorem 7.16. Let Ω be a bounded Lipschitz domain. Assume that u satisfies
one among the hypotheses i), ii), iii) above. Then, there exists CP such that

‖u‖0 ≤ CP ‖∇u‖0 . (7.53)

Proof. Assume i) holds. By contradiction suppose (7.53) is not true. This means
that for every integer j ≥ 1, there exists uj ∈ H10,Γ0 (Ω) such that

‖uj‖0 > j ‖∇uj‖0 . (7.54)
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Normalize uj in L
2 (Ω) by setting

wj =
uj

‖uj‖0
.

Then, from (7.54),

‖wj‖0 = 1 and ‖∇wj‖0 <
1

j
≤ 1.

Thus {wj} is bounded in H1 (Ω) and by Rellich’s Theorem there exists a subse-
quence {wjk} and w ∈ H10,Γ0 (Ω) such that
• wjk → w in L2 (Ω) ,
• ∇wjk ⇀ ∇w in L2 (Ω).
The continuity of the norm gives

‖w‖0 = limj→∞ ‖wj‖0 = 1.

On the other hand, the weak semicontinuity of the norm (Theorem 6.10) yields,

‖∇w‖0 ≤ lim infj→∞
‖∇wj‖0 = 0

so that ∇w = 0. Since Ω is connected, w is constant and since w ∈ H10,Γ0 (Ω), we
infer w = 0, in contradiction to ‖w‖0 = 1.
The proof in the other cases is identical. �

Remark 7.8. If u ∈ H1 (Ω), let
1

|Ω|

∫

Ω

u = uΩ. (7.55)

Then w = u − uΩ has zero mean value and (7.53) holds for w. Thus, in general,
the Poincaré inequality takes the form:

‖u− uΩ‖0 ≤ CP ‖∇u‖0 .

7.10.3 Sobolev inequality in Rn

From Proposition 7.9 we know that the elements of H1 (R) are continuous and
(Problem 7.19) vanish as x→ ±∞. Moreover, if u ∈ D (R), we may write

u2 (x) =

∫ x

−∞

d

ds
u2 (s) ds = 2

∫ x

−∞
u (s) u′ (s) ds.

Using Schwarz’s inequality and 2ab ≤ 2a2 + 2b2, we get
u (x)

2 ≤ 2 ‖u‖L2(R) ‖u′‖L2(R) ≤ ‖u‖
2
L2(R) + ‖u′‖

2
L2(R) = ‖u‖

2
H1(R) .

Since D (R) is dense in H1 (R) , this inequality holds if u ∈ H1 (R) as well. We
have proved:
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Proposition 7.14. Let u ∈ H1 (R). Then u ∈ L∞ (R) and

‖u‖L∞(R) ≤ ‖u‖H1(R) .

On the other hand, Example 7.26 implies that, when Ω ⊆ Rn, n ≥ 2,

u ∈ H1(Ω)� u ∈ L∞ (Ω) .

However, it is possible to prove that u is actually p−summable with a suitable
p > 2. Moreover, the Lp−norm of u can be estimated by the H1−norm of u.
To realize which exponent p is the correct one, assume that the inequality

‖u‖Lp(Rn) ≤ c ‖∇u‖L2(Rn) (7.56)

is valid for every u ∈ D (Rn), where c may depend on p and n but not on u.
We now use a typical “dimensional analysis” argument.
Inequality (7.56) must be invariant under dilations in the following sense. Let

u ∈ D (Rn) and for λ > 0 set

uλ (x) = u (λx) .

Then uλ ∈ D (Rn) so that inequality (7.56) must be true for uλ, with c indepen-
dent of λ:

‖uλ‖Lp(Rn) ≤ c ‖∇uλ‖L2(Rn) . (7.57)

Now, ∫

Rn

|uλ|p dx =
∫

Rn

|u (λx)|p dx = 1
λn

∫

Rn

|u (y)|p dy

while ∫

Rn

|∇uλ|2 dx =
∫

Rn

|∇u (λx)|2 dx = 1

λn−2

∫

Rn

|∇u (y)|2 dy.

Therefore, (7.57) becomes

1

λn/p

(∫

Rn

|u|p dy
)1/p

≤c (n, p) 1

λ(n−2)/2

(∫

Rn

|∇u|2 dy
)1/2

or
‖u‖Lp(Rn) ≤ cλ1−

n
2 +

n
p ‖∇u‖L2(Rn) .

The only way to get a constant independent of λ is to choose p such that

1− n
2
+
n

p
= 0.

Hence, if n > 2, the correct p is given by

p∗ =
2n

n− 2
which is called the Sobolev exponent for H1 (Rn). The following theorem of Sobolev,
Gagliardo, Nirenberg holds:
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Theorem 7.17. Let u ∈ H1 (Rn) , n ≥ 3. Then u ∈ Lp∗ (Rn) with p∗ = 2n
n−2 , and

the following inequality holds.

‖u‖Lp∗(Rn) ≤ c ‖∇u‖L2(Rn) (7.58)

where c = c (n).

In the case n = 2 the correct statement is:

Proposition 7.15. Let u ∈ H1
(
R
2
)
. Then u ∈ Lp (R) for 2 ≤ p <∞, and

‖u‖Lp(R2) ≤ c (p) ‖u‖H1(R2) .

7.10.4 Bounded domains

We now consider bounded domains. In dimension n = 1, the elements of H1 (a, b)
are continuous in [a, b] and therefore bounded as well. Furthermore, the following
inequality holds:

‖v‖L∞(a,b) ≤ C∗ ‖v‖H1(a,b) (7.59)

with
C∗ =

√
2max

{
(b− a)−1/2 , (b− a)1/2

}
.

Indeed, by Schwarz’s inequality we have, for any x, y ∈ [a, b], y > x:

u (y) = u (x) +

∫ y

x

u′ (s) ds

≤ u (x) +
√
b− a‖u′‖L2(a,b)

whence, using the elementary inequality (A+ B)
2 ≤ 2A2 + 2B2,

u (y)
2 ≤ 2u (x)2 + 2 (b− a) ‖u′‖2L2(a,b) .

Integrating over (a, b) with respect to x we get

(b− a)u (y)2 ≤ 2 ‖u‖2L2(a,b) + 2 (b− a)
2 ‖u′‖2L2(a,b)

from which (7.59) follows easily.

In dimension n ≥ 2, the improvement in summability is indicated in the fol-
lowing theorem.

Theorem 7.18. Let Ω be a bounded, Lipschitz domain. Then:

1. If n > 2, H1(Ω) ↪→ Lp (Ω) for 2 ≤ p ≤ 2n
n−2 . Moreover, if 2 ≤ p < 2n

n−2 , the
embedding of H1(Ω) in Lp (Ω) is compact.

2. If n = 2, H1(Ω) ↪→ Lp (Ω) for 2 ≤ p <∞, with compact embedding.
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In the above cases

‖u‖Lp(Ω) ≤ c(n, p, Ω) ‖u‖H1(Ω) .

For instance, in the important case n = 3, we have

p∗ =
2n

n − 2 = 6.

Hence
H1(Ω) ↪→ L6 (Ω)

and
‖u‖L6(Ω) ≤ c(Ω) ‖u‖H1(Ω) .

When the embedding of H1(Ω) in Lp (Ω) is compact, the Poincaré inequality in
Theorem 7.16 may be replaced by (see Problem 7.20)

‖u‖Lp(Ω) ≤ c (n, p, Ω)‖∇u‖L2(Ω) . (7.60)

Theorem 7.18 shows what we can conclude about a H1−function with regards to
further regularity. It is natural to expect something more for Hm−functions, with
m > 1. In fact:

Theorem 7.19. Let Ω be a bounded, Lipschitz domain, and m > n/2. Then

Hm(Ω) ↪→ Ck
(
Ω
)
, for 0 ≤ k < m− n

2

with compact embedding. In particular,

‖u‖Ck(Ω) ≤ c(n, k, Ω) ‖u‖Hm(Ω) .

Theorem 7.19 implies that, in dimension n = 2,

H2(Ω) ⊂ C0
(
Ω
)
.

In fact, if m = 2, n = 2 then m− n/2 = 1, so that k = 0. Similarly

H3(Ω) ⊂ C1
(
Ω
)
,

since m− n/2 = 3− 1 = 2.
Also in dimension n = 3, we have

H2(Ω) ⊂ C0
(
Ω
)
and H3(Ω) ⊂ C1

(
Ω
)
,

as it is easy to check.

Remark 7.9. If u ∈ Hm(Ω) for any m ≥ 1, then u ∈ C∞
(
Ω
)
. This kind of results

is very useful in the regularity theory for boundary value problems.
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7.11 Spaces Involving Time

7.11.1 Functions with values in Hilbert spaces

The natural functional setting for evolution problems requires spaces which involve
time. Given a function u = u(x,t), it is often convenient to separate the roles of
space and time adopting the following point of view. Assume that t ∈ [0, T ] and
that for every t, or at least for a.e. t, the function u (·, t) belongs to a Hilbert space
V (e.g. L2 (Ω) or H1 (Ω)).
Then, we may consider u as a function of the real variable t with values in V :

u: [0, T ]→ V.
When we adopt this convention, we write u (t) and u̇ (t) instead of u(x,t) and
ut (x,t).
We can extend to these types of functions the notions of measurability and

integral, without too much effort, following more or less the procedure outlined in
Appendix B. First, we introduce the set of functions s: [0, T ] → V which assume
only a finite number of values. These functions are called simple and are of the
form

s (t) =

N∑
j=1

χEj (t)uj (0 ≤ t ≤ T ) (7.61)

where, u1, ..., uN ∈ V and E1, ..., EN are Lebesgue measurable, mutually disjoint
subsets of [0, T ].
We say that f : [0, T ] → V is measurable if there exists a sequence of simple

functions sk: [0, T ]→ V such that, as k→∞,
‖sk (t)− f (t)‖V → 0, a.e. in [0, T ] .

It is not difficult to prove that, if f is measurable and v ∈ V , the (real) function
t �−→ (f (t) , v)V is Lebesgue measurable in [0, T ].
The notion of integral is defined first for simple functions. If s is given by (7.61),

we define ∫ T

0

s (t) dt =

N∑
j=1

|Ej| uj.

Then:

Definition 7.16. We say that f : [0, T ]→ V is summable in [0, T ] if there exists a
sequence sk: [0, T ]→ V of simple functions such that

∫ T

0

‖sk (t)− f (t)‖V dt→ 0 as k→ +∞. (7.62)

If f is summable in [0, T ], we define the integral of f as follows:
∫ T

0

f (t) dt = lim
k→+∞

∫ T

0

sk (t) dt as k→ +∞. (7.63)
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Since (check it)
∥∥∥∥∥
∫ T

0

[sh (t)− sk (t)] dt
∥∥∥∥∥
V

≤
∫ T

0

‖sh (t) − sk (t)‖V dt

≤
∫ T

0

‖sk (t) − f (t)‖V dt+
∫ T

0

‖sk (t)− f (t)‖V dt

it follows from (7.62) that the real sequence

{∫ T

0

sk (t) dt

}

is a Cauchy sequence so that the limit (7.63) is well defined and does not depend on
the choice of the approximating sequence {sk}. Moreover, the following important
theorem holds:

Theorem 7.20. (Bochner). A measurable function f : [0, T ] → V is summable in
[0, T ] if and only if the real function t �−→ ‖f (t)‖V is summable in [0, T ].Moreover

∥∥∥∥∥
∫ T

0

f (t) dt

∥∥∥∥∥
V

≤
∫ T

0

‖f (t)‖V dt (7.64)

and (
u,

∫ T

0

f (t) dt

)

V

=

∫ T

0

(u, f (t))V dt, ∀u ∈ V. (7.65)

The inequality (7.64) is well known in the case of real or complex functions.
By Riesz’s Representation Theorem, (7.65) shows that the action of any element
of V ∗ commutes with the integrals.

7.11.2 Sobolev spaces involving time

Once the definition of integral has been given, we can introduce the spaces
C ([0, T ]; V ) and Lp (0, T ; V ), 1 ≤ p ≤∞. The symbol C ([0, T ]; V ) denotes the set
of continuous functions u: [0, T ]→ V. Endowed with the norm

‖u‖L∞(0,T ;V ) = max0≤t≤T
‖u (t)‖V ,

C ([0, T ]; V ) is a Banach space.

We define Lp (0, T ; V ) as the set of measurable functions u: [0, T ] → V such
that:
if 1 ≤ p <∞

‖u‖Lp(0,T ;V ) =
(∫ T

0

‖u (t)‖pV dt
)1/p

<∞ (7.66)
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while if p =∞

‖u‖L∞(0,T ;V ) = ess sup
0≤t≤T

‖u (t)‖V <∞.

Endowed with the above norms, Lp (0, T ; V ) becomes a Banach space for 1 ≤ p ≤
∞. If p = 2, the norm (7.66) is induced by the inner product

(u, v)L2(0,T ;V ) =

∫ T

0

(u (t) , v (t))V dt

that makes L2 (0, T ; V ) a Hilbert space.
To define Sobolev spaces, we need to give the notion of derivative in the sense

of distributions for functions u∈L1loc (0, T ; V ).
We say that u̇∈L1loc (0, T ; V ) is the derivative in the sense of distribution (or

the weak derivative) of u if

∫ T

0

ϕ (t) u̇ (t) dt = −
∫ T

0

ϕ̇ (t)u (t) dt

for every ϕ ∈ D (0, T ) or, equivalently, if
∫ T

0

ϕ (t) (u̇ (t) , v)V dt = −
∫ T

0

ϕ̇ (t) (u (t) , v)V dt ∀v ∈ V . (7.67)

Then, we can introduce the following spaces:

a)We denote by W 1,p (0, T ; V ) the Sobolev space of the functions u∈Lp (0, T ; V )
whose weak derivative

u̇ ∈ Lp (0, T ; V ) .
With the norm

‖u‖W1,p(0,T ;V ) =

(∫ T

0

‖u (t)‖pV dt+
∫ T

0

‖u̇ (t)‖pV dt
)1/p

, if 1 ≤ p <∞

and
‖u‖W1,∞(0,T ;V ) = sup

0≤t≤T
‖u (t)‖V + sup

0≤t≤T
‖u̇ (t)‖V , if p =∞

these spaces are all Banach spaces.

b) If p = 2, we may write H1 (0, T ; V ) instead of W 1,2 (0, T ; V ). This is a
Hilbert space with inner product

(u, v)H1(0,T ;V ) =

∫ T

0

{(u (t) , v (t))V + (u̇ (t) , u̇ (t))V } dt.

Since functions in H1 (a, b) are continuous in [a, b], it makes sense to consider
the value of u at any point of [a, b]. In a certain way, the functions inW 1,p (0, T ; V )
depends only on the real variable t, so that the following theorem is not surprising.
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Theorem 7.21. Let u∈H1 (0, T ; V ). Then, u ∈ C ([0, T ]; V ) and
max
0≤t≤T

‖u (t)‖V ≤ C (T ) ‖u‖H1(0,T ;V ) .

Moreover, the fundamental theorem of calculus holds:

u (t) = u (s) +

∫ t

s

u̇ (r) dr 0 ≤ s ≤ t ≤ T.

The typical functional setting for the applications to initial-boundary value
problems is a Hilbert triplet (V,H, V ∗),

V ↪→ H ↪→ V ∗,
with V separable. It is necessary to deal with functions u ∈ L2 (0, T ; V ) whose
derivative u̇ belongs to L2 (0, T ; V ∗). This means that in the left hand side of
(7.67), the inner product (u̇ (t) , v)V has to be replaced by the duality 〈u̇ (t) , v〉∗.
The following result is fundamental25.

Theorem 7.22. Let u∈L2 (0, T ; V ), with u̇∈L2 (0, T ; V ∗) . Then :
a) u ∈ C ([0, T ] ;H) and

max
0≤t≤T

‖u (t)‖H ≤ C
{
‖u‖L2(0,T ;V ) + ‖u̇‖L2(0,T ;V ∗)

}
. (7.68)

b) If also v∈L2 (0, T ; V ) and v̇∈L2 (0, T ; V ∗), the following integration by parts
formula holds:∫ t

s

{〈u̇ (r) , v (r)〉∗ + 〈u (r) , v̇ (r)〉∗} dr = (u (t) , v (t))H − (u (s) , v (s))H (7.69)

for all s, t ∈ [0, T ].
Remark 7.10. From (7.69) we infer,

d

dt
(u (t) , v (t))H = 〈u̇ (t) , v (t)〉∗ + 〈u (t) , v̇ (t)〉∗

a.e. t ∈ [0, T ] and (letting u = v)
∫ t

s

d

dt
‖u (r)‖2H dt = ‖u (t)‖

2
H − ‖u (s)‖

2
H . (7.70)

We conclude this chapter with a useful result (see Problem 7.25): the weak
convergence in L2 (0, T ; V ) “preserves boundedness in L∞ (0, T ; V )”.

Proposition 7.16. Let {uk} ⊂ L2 (0, T ; V ), weakly convergent to u. Assume that
sup
t∈[0,T ]

‖uk (t)‖V ≤ C

with C independent of k. Then, also,

sup
t∈[0,T ]

‖u (t)‖V ≤ C.

25 For the proof, see Dautray-Lions, volume 5, chapter XVIII, 1985.
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Problems

7.1. Approximations of δ.

(a) Let Br = Br (0) ⊂ R
n. Show that, if χBr is the characteristic function of

Br ,

lim
r→0

1

|Br|
χBr = δ in D′ (Rn) .

(b) Let ηε be the mollifier in (7.3). Show that limε→0 ηε = δ, in D′ (Rn) .
(c) Let ΓD (x, t) be the fundamental solution of the heat equation ut = DΔu.

Show that
ΓD (·, t)→ δ, in D′ (Rn)

as t→ 0+.
7.2. Let {xk} ⊂ R, xk → +∞. Show that ∑∞k=1 ckδ (x− xk) converges in

D′(R) for all {ck} ⊂ R.
7.3. Show that the series ∞∑

k=1

ck sin kx

converges in D′(R) if the numerical sequence {ck} is slowly increasing, i.e. if there
exists p ∈ R such that ck = O (kp) as k→∞.
7.4. Show that if F ∈ D′(Rn), v ∈ D(Rn) and v vanishes in an open set

containing the support of F, then 〈F, v〉 = 0. Is it true that 〈F, v〉 = 0 if v vanishes
only on the support of F ?

7.5. Let u (x) = |x| and S (x) = sign(x). Prove that u′ = S in D′ (R) .
7.6. Prove that xmδ(k) = 0 in D′ (R), if 0 ≤ k < m.
7.7. Let u (x) = ln |x|. Then, u′ = p.v. 1

x
, in D′ (R) .

[Hint. Write

〈u′, ϕ〉 = −〈u, ϕ′〉 = −
∫

R

ln |x|ϕ′ (x) dx = − lim
ε→0

∫

{|x|>ε}
ln |x|ϕ′ (x) dx

and integrate by parts].

7.8. Let n = 3 and F ∈ D′
(
Ω;R3

)
. Define curl F ∈ D′

(
Ω;R3

)
by the formula

curl F =(∂x2F3 − ∂x3F2, ∂x3F1 − ∂x1F3, ∂x1F2 − ∂x2F1) .

Check that, for all ϕ =(ϕ1, ϕ2, ϕ3) ∈ D
(
Ω;R3

)
,

〈curl F,ϕ〉 = 〈F,curl ϕ〉 .
7.9. Show that if

u (x1, x2) = −
1

2π
ln(x21 + x

2
2)
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then
−Δu = δ, in D′

(
R
2
)
.

7.10. Show that if uk → u in Lp(Rn) then uk → u in S′(Rn).
7.11. Solve the equation x2δ = 0 in D′ (R) .
7.12. Let u ∈ C∞ (R) with compact support in [0, 1]. Compute comb ∗ u.

[Answer.
∑+∞

k=−∞ u (x− k)].
7.13. Let H = H (x) be the Heaviside function. Prove that

a) F [signx] = 2
i
p.v.
1

ξ
, b) F [H] = πδ + 1

i
p.v.
1

ξ
.

[Hint. a) Let u (x) =sign(x) . Note that u′ = 2δ. Transform this equation to obtain

ξû (ξ) = −2i.

Solve this equation using formula (7.18), and recall that û is odd while δ is even.

b) Write H (x) = 1
2
+ 1
2
signx and use a)].

7.14. Compute the Fourier transform of comb.

7.15. Let Ω = B1 (0) ⊂ R
n, n > 2, and u (x) = |x|−a, x �= 0. Determine for

which values of a, u ∈ H2 (Ω).
7.16. Choose in Theorem 7.4,

H = L2(Ω;Rn), Z = L2(Ω) ⊂ D′ (Ω)

and L : H → D′ (Ω) given by L = div. Identify the resulting space W .
7.17. Let X and Z be Banach spaces with Z ↪→ D′ (Ω;Rn) (e.g. Lp(Ω) or

Lp(Ω;Rn)).
Let L : X → D′ (Ω;Rn) be a linear continuous operator (e.g. a gradient or a

divergence). Define
W = {v ∈ X : Lv ∈ Z}

with norm
‖u‖2W = ‖u‖

2
X + ‖Lu‖

2
Z .

Prove that W is a Banach space, continuously embedded in X.

[Hint : Follow the proof of Theorem 7.4].

7.18. The Sobolev spaces W 1,p. Let Ω ⊆ Rn be a domain. For p ≥ 1. Define

W 1,p(Ω) = {v ∈ Lp(Ω) : ∇v ∈ Lp(Ω;Rn)} .

Using the result of Problem 7.17, show that W 1,p(Ω) is a Banach space.

7.19. Let u ∈ Hs (R). Prove that, if s > 1/2, u ∈ C (R) and u (x) → 0 as
x→ ±∞.
[Hint : Show that û ∈ L1 (R)].
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7.20. Let u and Ω satisfy the hypotheses of Theorem 7.16. Prove that, if the
embedding H1(Ω) ↪→ Lp (Ω) is compact, then

‖u‖Lp(Ω) ≤ c (n, p, Ω)‖∇u‖L2(Ω) .

7.21. Let Ω be a bounded domain (not necessarily Lipschitz). Show that
H10 (Ω) is compactly embedded in L

2 (Ω).

[Hint: Extend u by zero outside Ω].

7.22. Let
H10,a (a, b) =

{
u ∈ H1 (a, b) : u (a) = 0

}
.

Show that Poincaré’s inequality holds in H10,a (a, b).

7.23. Let n > 1 and

Ω =
{
(x′, xn) : x′ ∈ Rn−1, 0 < xn < d

}
.

Show that in H10 (Ω) a Poincaré inequality holds.

7.24. Let Ω be a bounded, Lipschitz domain and let Γ = ∂Ω.

a) Show that

(u, v)1,∂ =

∫

Γ

u|Γ v|Γ dσ+
∫

Ω

∇u · ∇v dx

is an inner product in H1 (Ω) .

b) Show that the norm

‖u‖1,∂ =
(∫

∂Ω

u2|Γ dσ+
∫

Ω

|∇u|2 dx
)1/2

(7.71)

is equivalent to ‖u‖1,2.
[Hint: b) Let u|Γ = g. By the Projection Theorem 6.2, it is possible to write in a
unique way

u = u0 + g̃,

with u0 ∈ H10 (Ω), g̃ ∈ H1 (Ω) and (u0, g̃)1,2 = 0. Using (7.48), show that
‖g‖H1/2(Γ) = ‖g̃‖1,2].
7.25. Prove Proposition 7.16.

[Hint. Recall that a sequence of real functions {gk} convergent to g in L1 (0, T ),
has a subsequence converging a.e. to the same limit (Theorem B.4).
Apply this result to the sequence gk (t) = (uk (t) , v)V and observe that

|gk (t)| ≤ C ‖v‖V ].
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Variational Formulation of Elliptic Problems

Elliptic Equations – The Poisson Problem – Diffusion, Drift and Reaction (n = 1) –

Variational Formulation of Poisson’s Problem – General Equations in Divergence Form –

Regularity – Equilibrium of a plate – A Monotone Iteration Scheme for Semilinear Equa-

tions – A Control Problem

8.1 Elliptic Equations

Poisson’s equation Δu = f is the simplest among the elliptic equations, according
to the classification in Section 5.5, at least in dimension two. This type of equations
plays an important role in the modelling of a large variety of phenomena, often
of stationary nature. Typically, in drift, diffusion and reaction models, like those
considered in Chapter 2, a stationary condition corresponds to a steady state, with
no more dependence on time.

Elliptic equations appear in the theory of electrostatic and electromagnetic
potentials or in the search of vibration modes of elastic structures as well (e.g.
through the method of separation of variables for the wave equation).

Let us define precisely what we mean by elliptic equation in dimension n.

Let Ω ⊆ Rn be a domain, A (x) = (aij (x)) a square matrix of order n, b(x) =
(b1 (x) , ..., bn (x)), c(x) = (c1 (x) , ..., cn (x)) vector fields in R

n, a0 = a0(x) and
f = f(x) real functions. An equation of the form

−
n∑

i,j=1

∂xi
(
aij (x)uxj

)
+

n∑
i=1

∂xi (bi(x)u) +

n∑
i=1

ci(x)uxi + a0 (x)u = f (x) (8.1)

or

−
n∑

i,j=1

aij (x)uxixj +

n∑
i=1

bi (x) uxi + a0 (x)u = f (x) (8.2)

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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is said to be elliptic in Ω if A is positive in Ω, i.e. if the following ellipticity
condition holds:

n∑
i,j=1

aij (x) ξiξj > 0, ∀x ∈Ω, ∀ξ ∈Rn, ξ �= 0.

We say that (8.1) is in divergence form since it mat be written as

−div(A (x)∇u)︸ ︷︷ ︸
diffusion

+ div(b(x)u) + c (x) · ∇u︸ ︷︷ ︸
transport

+ a0 (x)u︸ ︷︷ ︸
reaction

= f (x)︸ ︷︷ ︸
external source

(8.3)

which emphasizes the particular structure of the higher order terms. Usually, the
first term models the diffusion in heterogeneous or anisotropic media, when the
constitutive law for the flux function q is given by the Fourier or Fick law:

q = −A∇u.

Here u may represent a temperature or the concentration of a substance. Thus, the
term −div(A∇u) is associated with thermal or molecular diffusion. The matrix A
is called diffusion matrix ; the dependence of A on x denotes anisotropic diffusion.
The examples in Chapter 2 explain the meaning of the other terms in equation

(8.3). In particular, div(bu) models convection or transport and corresponds to a
flux function given by

q = bu.

The vector b has the dimensions of a velocity. Think, for instance, of the fumes
emitted by a factory installations, which diffuse and are transported by the wind.
In this case b is the wind velocity. Note that, if divb = 0, then div(bu) reduces to
b · ∇u which is of the same form of the third term c · ∇u.
The term a0u models reaction. If u is the concentration of a substance, a0

represents the rate of decomposition (a0 > 0) or growth (a0 < 0).
Finally, f represents an external action, distributed in Ω, e.g. the rate of heat

per unit mass supplied by an external source.
If the entries aij of the matrix A and the component bj of b are all differen-

tiable, we may compute the divergence of both A∇u and bu, and reduce (8.1) to
the non-divergence form

−
n∑

i,j=1

aij (x)uxixj +

n∑
k=1

b̃k (x)uxk + c̃ (x)u = f (x)

where

b̃k (x) =

n∑
i=1

∂xiaik (x) + bk (x) + ck (x) and c̃ (x) = divb (x) + a0 (x) .

However, when the aij or the bj are not differentiable, we must keep the divergence
form and interpret the differential equation (8.3) in a suitable weak sense.
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A non-divergence form equation is also associated with diffusion phenomena
through stochastic processes which generalize the Brownian motion, called diffu-
sion processes. In simple cases, we may proceed as in Section 2.6. For example,
considering a random walk in hZ2, separately symmetric along each axis, and pass-
ing to the limit in a suitable way as h and the time step τ go to zero, we obtain
an equation of the form

ut = D1 (x, y)uxx +D2 (x, y)uyy

with diffusion matrix

A (x, y) =

(
D1 (x, y) 0
0 D2 (x, y)

)

where D1 (x, y) > 0, D2 (x, y) > 0. Thus, the steady state case is a solution of a
non-divergence form equation.

In the next section we give a brief account of the various notions of solution
available for these kinds of equations, using the Poisson equation as a model.
We develop the basic theory of elliptic equations in divergence form, recasting

the most common boundary value problems within the functional framework of
the abstract variational problems of Section 6.6.

8.2 The Poisson Problem

Assume we are given a domain Ω ⊂ Rn, a constant α > 0 and two real functions
a0, f : Ω → R. We want to determine a function u satisfying the equation

−αΔu+ a0u = f in Ω

and one of the usual boundary conditions on ∂Ω.

Let us examine what we mean by solving the above Poisson problem. The
obvious part is the final goal: we have to show existence, uniqueness and stability
of the solution; then, based on these results, we want to compute the solution by
Numerical Analysis methods.
Less obvious is the meaning of solution. In fact, in principle, every problem

may be formulated in several ways and a different notion of solution is associated
with each way. What is important in the applications is to select the“most efficient
notion” for the problem under examination, where “efficiency” may stand for the
best compromise between simplicity of both formulation and theoretical treatment,
sufficient flexibility and generality, adaptability to numerical methods.
Here is a (non exhaustive!) list of various notions of solution for the Poisson

problem.

• Classical solutions are twice continuously differentiable functions; the dif-
ferential equation and the boundary conditions are satisfied in the usual pointwise
sense.
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• Strong solutions belong to the Sobolev space H2 (Ω). Thus, they possess
derivatives in L2(Ω) up to the second order, in the sense of distributions.

The differential equation is satisfied in the pointwise sense, a.e. with respect to
the Lebesgue measure in Ω, while the boundary condition is satisfied in the sense
of traces.

• Distributional solutions belong to L1loc (Ω) and the equation holds in the
sense of distributions, i.e.:

∫

Ω

{−αuΔϕ+ a0(x)uϕ}dx =
∫

Ω

fϕdx, ∀ϕ ∈ D (Ω) .

The boundary condition is satisfied in a very weak sense.

• Weak or variational solutions belong to the Sobolev space H1 (Ω). The
boundary value problem is recast within the framework of the abstract variational
theory developed in Section 6.6. Often the new formulation represents a version of
the principle of virtual work.

Clearly, all these notions of solutionmust be connected by a coherence principle,
which may be stated as follows: if all the data (domain, boundary data, forcing
terms) and the solution are C∞, all the above notions must be equivalent. Thus,
the non-classical notions constitute a generalization of the classical one.

An important task, with consequences in the error control in numerical meth-
ods, is to establish the optimal degree of regularity of a non-classical solution.

More precisely, let u be a non-classical solution of the Poisson problem. The
question is: how much does the regularity of the data a0, f and of the domain Ω
affect the regularity of the solution?

An exhaustive answer requires rather complicated tools. In the sequel we shall
indicate only the most relevant results.

The theory for classical and strong solutions is well established and can be
found, e.g. in the book of Gilbarg-Trudinger, 1998. From the numerical point of
view, the method of finite differences best fits the differential structure of the
problem and aims at approximating classical solutions.

The distributional theory is well developed, is quite general, but is not the most
appropriate framework for solving boundary value problems.

Indeed, the sense in which the boundary values are attained is one of the most
delicate points, when one is willing to widen the notion of solution.

For our purposes, the most convenient notion of solution is the last one: it leads
to a quite flexible formulation with a sufficiently high degree of generality and a
basic theory solely relying on the Lax-Milgram Theorem (Section 6.6). Moreover,
the analogy (and often the coincidence) with the principle of virtual work indicates
a direct connection with the physical interpretation.

Finally, the variational formulation is the most natural to implement the
Galerkin method (finite elements, spectral elements, etc...), widely used in the
numerical approximation of the solutions of boundary value problems.
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To present the main ideas behind the variational formulation, we start from
one-dimensional problems with an equation slightly more general than Poisson’s
equation.

8.3 Diffusion, Drift and Reaction (n = 1)

8.3.1 The problem

We shall derive the variational formulation of the following problem:

⎧⎪⎨
⎪⎩

−(p(x)u′)′︸ ︷︷ ︸
diffusion

+ q (x)u′︸ ︷︷ ︸
transport

+ r(x)u︸ ︷︷ ︸
reaction

= f (x) , in the interval (a, b)

boundary conditions at x = a and x = b.

(8.4)

We may interpret (8.4) as a stationary problem of diffusion, drift and reaction.

The main steps for the weak formulation are the following:

a. Select a space of smooth test functions, adapted to the boundary conditions.

b. Multiply the differential equation by a test function and integrate over (a, b) .

c. Carry one of the derivatives in the divergence term onto the test function via
an integration by parts, using the boundary conditions and obtaining an integral
equation.

d. Interpret the integral equation as an abstract variational problem (Section 6.6)
in a suitable Hilbert space. In general, this is a Sobolev space, given by the closure
of the space of test functions.

8.3.2 Dirichlet conditions

We start by analyzing homogeneous Dirichlet conditions:

{
−(p(x)u′)′ + q (x)u′ + r(x)u = f (x) , in (a, b)

u (a) = u (b) = 0.
(8.5)

Assume first that p ∈ C1 ([a, b]), with p > 0, and q, r, f ∈ C ([a, b]).
Let u ∈ C2 (a, b)∩ C ([a, b]) be a classical solution of (8.5). We select C10 (a, b)

as the space of test functions. These test functions have a continuous derivative
and compact support in (a, b). In particular, they vanish at the end points.

Now we multiply the equation by an arbitrary v ∈ C10 (a, b) and integrate over
(a, b). We find:

−
∫ b

a

(pu′)′vdx+
∫ b

a

[qu′ + ru]vdx =
∫ b

a

fvdx. (8.6)
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Integrating by parts the first term and using v (a) = v (b) = 0, we get:

−
∫ b

a

(pu′)′vdx =
∫ b

a

pu′v′dx− [pu′v]ba =
∫ b

a

pu′v′dx.

From (8.6) we derive the integral equation

∫ b

a

[pu′v′ + qu′v + ruv]dx =
∫ b

a

fvdx, ∀v ∈ C10 (a, b) . (8.7)

Thus, (8.5) implies (8.7).
On the other hand, assume that (8.7) is true. Integrating by parts in the reverse

order, we recover (8.6), which can be written in the form

∫ b

a

{−(pu′)′ + q (x)u′ + r(x)u− f (x)} vdx = 0 ∀v ∈ C10 (a, b) .

The arbitrariness of v entails1

−(p(x)u′)′ + q (x)u′ + r(x)u− f (x) = 0 in (a, b)

i.e. the original differential equation.
Thus, for classical solutions, the two formulations (8.5) e (8.7) are

equivalent. Observe that equation (8.7)

• involves only one derivative of u, instead of two,
• makes perfect sense even if p, q, r and f are merely locally integrable,
• has transformed (8.5) into an integral equation, valid on an infinite-dimensional
space of test functions.

These features lead to the following functional setting:

a) we enlarge the class of test functions to H10 (a, b), which is the closure of
C10 (a, b) in H

1−norm;
b) we look for a solution belonging to H10 (a, b), in which the homogeneous

Dirichlet conditions are already included.

Thus, the weak or variational formulation of problem (8.5) is:

Determine u ∈ H10(a, b) such that
∫ b

a

{pu′v′ + qu′v + ruv} dx =
∫ b

a

fvdx, ∀v ∈ H10 (a, b). (8.8)

If we introduce the bilinear form

B (u, v) =

∫ b

a

{pu′v′ + qu′v + ruv} dx

1 If g ∈ C ([a, b]) and ∫ b
a
gvdx = 0 for every v ∈ C10 (a, b), then g ≡ 0 (exercise).
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and the linear functional

Lv =

∫ b

a

fv dx,

equation (8.8) can be recast as

B (u, v) = Lv, ∀v ∈ H10 (a, b).
Then existence, uniqueness and stability follow from the Lax-Milgram Theorem
6.5, under rather natural hypotheses on p, q, r, f . Recall that, by Poincaré’s in-
equality (7.32) we have

‖u‖0 ≤ CP ‖u′‖0 ,
so that we may choose in H10 (a, b) the norm

‖u‖1 = ‖u′‖0
equivalent to ‖u‖1,2 = ‖u‖0 + ‖u′‖0
Proposition 8.1. Assume that p, q, q′, r ∈ L∞(a, b) and f ∈ L2(a, b). If

p (x) ≥ α > 0 and − 1
2
q′ (x) + r (x) ≥ 0 a.e. in (a, b), (8.9)

then (8.8) has a unique solution u ∈ H10(a, b). Moreover

‖u′‖0 ≤
CP

α
‖f‖0 . (8.10)

Proof. Let us check that the hypotheses of the Lax-Milgram Theorem hold,
with V = H10(a, b).

Continuity of the bilinear form B. We have:

|B (u, v)| ≤
∫ b

a

{‖p‖L∞ |u′v′|+ ‖q‖L∞ |u′v|+ ‖r‖L∞ |uv|}dx.

Using the Schwarz and Poincaré inequalities, we obtain

|B (u, v)| ≤ ‖p‖L∞ ‖u′‖0 ‖v′‖0 + ‖q‖L∞ ‖u′‖0 ‖v‖0 + ‖r‖L∞ ‖u‖0 ‖v‖0
≤
(
‖p‖L∞ +CP ‖q‖L∞ +C2P ‖r‖L∞

)
‖u′‖0 ‖v′‖0

so that B is continuous in V .

Coercivity of B. We may write:

B (u, u) =

∫ b

a

{
p(u′)2 + qu′u + ru2

}
dx

≥ α ‖u′‖20 +
1

2

∫ b

a

q
(
u2
)′
dx+

∫ b

a

ru2dx

(integrating by parts) = α ‖u′‖20 +
∫ b

a

{
−1
2
q′ + r

}
u2dx

(from (8.9)) ≥ α ‖u′‖20
and therefore B is V−coercive.
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Continuity of L in V . The Schwarz and Poincaré inequalities yield

|Lv| =
∣∣∣∣∣
∫ b

a

fv dx

∣∣∣∣∣ ≤ ‖f‖0 ‖v‖0 ≤ CP ‖f‖0 ‖v
′‖0 .

so that ‖L‖V ∗ ≤ CP ‖f‖0.
Then, the Lax-Milgram Theorem gives existence, uniqueness and the stability

estimate (8.10). �

Remark 8.1. The hypotheses on the coefficient q are rather restrictive; a better
result can be achieved using the Fredholm Alternative Theorem and a weak maxi-
mum principle, as we will show later on. This remark holds for the other types of
boundary value problems as well.

Remark 8.2. If q = 0, the bilinear form B is symmetric. From Proposition 6.6, in
this case the weak solution minimizes in H10 (a, b) the “energy functional”

J (u) =

∫ b

a

{
p (u′)2 + ru2 − 2fu

}
dx.

Then, equation (8.8) coincides with the Euler equation of J :

J ′ (u) v = 0, ∀v ∈ H10 (a, b) .

Remark 8.3. In the case of nonhomogeneous Dirichlet conditions, e.g. u (a) = A,
u (b) = B, set w = u − y, where y = y (x) is the straight line through the points
(a, A), (b, B), given by

y (x) = A+ (x− a) B −A
b− a .

Then, the variational problem for w is

∫ b

a

[pw′v′ + qw′v + rwv]dx =
∫ b

a

(Fv +Gv′) dx ∀v ∈ H10 (a, b) (8.11)

with

F (x) = f (x) +
B − A
b− a q (x)− r(x)

(
A+ (x− a) B − A

b− a

)

and

G (x) =
B − A
b− a p (x) .

Proposition 8.1 still holds with small adjustments (see Problem 8.1).

Remark 8.4. In subsection 6.6.3. we presented the Galerkin approximation method
in an abstract setting. In this case, we have to construct a sequence {Vk} of sub-
spaces of H10 (a, b) such that:
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a) Every Vk is finite-dimensional (for instance, but not necessarily, of dimension
k);

b) Vk ⊂ Vk+1 (this is actually not strictly necessary);
c) ∪Vk = H10(a, b).
Given a basis ψ1, ψ2, ..., ψk for Vk, we write

uk =

k∑
j=1

cjψj

and determine c1, c2, ..., ck by solving the k linear algebraic equations

k∑
i=1

aijcj = Lψi, i = 1, 2, ..., k,

where the elements aij of the stiffness matrix are given by

aij = B(ψj, ψi) =

∫ b

a

[pψ′jψ
′
i + qψ

′
jψi + rψjψi]dx, i = 1, 2, ..., k.

Observe that, for the approximations, Céa’s Lemma 6.1 yields the estimate

‖u− uk‖1 ≤
‖p‖L∞ + CP ‖q‖L∞ +C2P ‖r‖L∞

α
inf

vk∈Vk
‖u− vk‖1 .

This inequality shows the relative influence of diffusion, transport and reaction
on the approximation. In principle, the Galerkin approximation works as long as
‖q‖L∞ + ‖r‖L∞ is not much greater than a0 and ‖p‖L∞ /α is not large. In the
opposite case, one needs suitably stabilized numerical methods (see Quarteroni-
Valli, 2000). Clearly, this remark extends to the other types of boundary conditions
as well.

8.3.3 Neumann, Robin and mixed conditions

We now derive the weak formulation of the Neumann problem
{
−(p(x)u′)′ + q (x)u′ + r(x)u = f (x) , in (a, b)

−p (a)u′ (a) = A, p (b)u′ (b) = B. (8.12)

The boundary conditions prescribe the outward flux at the end points. This way of
writing the Neumann conditions, with the presence of the factor p in front of the
derivative, is naturally associated with the divergence structure of the diffusion
term.
Again, assume first that p ∈ C1 ([a, b]), with p > 0, and q, r, f ∈ C0 ([a, b]).

A classical solution u has a continuous derivative up to the end points so that
u ∈ C2 (a, b) ∩ C1 ([a, b]).
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As space of test functions, we choose C1 ([a, b]). Multiplying the equation by
an arbitrary v ∈ C1 ([a, b]) and integrating over (a, b), we find again

−
∫ b

a

(pu′)′vdx+
∫ b

a

[qu′ + ru]vdx =
∫ b

a

fvdx. (8.13)

Integrating by parts the first term and using the Neumann conditions, we get

−
∫ b

a

(pu′)′vdx =
∫ b

a

pu′v′dx− [pu′v]ba =
∫ b

a

pu′v′dx− v (b)B − v (a)A.

Then (8.13) becomes

∫ b

a

[pu′v′ + qu′v + ruv]dx− v (b)B − v (a)A =
∫ b

a

fvdx, (8.14)

for every v ∈ C1 ([a, b]).
Thus, (8.12) implies (8.14). If the choice of the test functions is correct, we

should be able to recover the classical formulation from (8.14).
Indeed, let us start recovering the differential equation. Since

C10 (a, b) ⊂ C1 ([a, b]) ,

(8.14) clearly holds for every v ∈ C10 (a, b). Then, (8.14) reduces to (8.7) and we
deduce, as before,

−(pu′)′ + qu′ + ru− f = 0, in (a, b) . (8.15)

Let us now use the test functions which do not vanish at the end points. Integrating
by parts the first term in (8.14) we have:

∫ b

a

pu′v′dx = −
∫ b

a

(pu′)′v dx+ p (b) v (b)u′ (b) − p (a) v (a)u′ (a) .

Inserting this expression into (8.14) and taking into account (8.15) we find:

v (b) [p (b)u′ (b)− B]− v (a) [p (a)u′ (a) + A] = 0.

The arbitrariness of the values v (b) and v (a) forces

p (b)u′ (b) = B, −p (a)u′ (a) = A,

recovering the Neumann conditions as well.
Thus, for classical solutions, the two formulations (8.12) and (8.14) are

equivalent.
Enlarging the class of test functions to H1(a, b), which is the closure of

C1 ([a, b]) in H1−norm, we may state the weak or variational formulation of
problem (8.12) as follows:
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Determine u ∈ H1(a, b) such that, ∀v ∈ H1(a, b),
∫ b

a

{pu′v′ + qu′v + ruv} dx =
∫ b

a

fv dx+ v (b)B + v (b)A. (8.16)

We point out that the Neumann conditions are encoded in equation (8.16), rather
than forced by the choice of the test functions, as in the Dirichlet problem.
Introducing the bilinear form

B (u, v) =

∫ b

a

{pu′v′ + qu′v + ruv} dx

and the linear functional

Lv =

∫ b

a

fv dx+ v (b)B + v (a)A,

equation (8.16) can be recast in the abstract form

B (u, v) = Lv, ∀v ∈ H1(a, b).
Again, existence, uniqueness and stability of a weak solution follow from the Lax-
Milgram Theorem, under rather natural hypotheses on p, q, r, f .
Recall that if v ∈ H1(a, b), inequality (7.59) yields

v(x) ≤ C∗ ‖v‖
1,2

(8.17)

for every x ∈ [a, b], with C∗ =
√
2max

{
(b− a)−1/2, (b− a)1/2

}
.

Proposition 8.2. Assume that:

i) p, q, r ∈ L∞(a, b) and f ∈ L2(a, b)
ii) p (x) ≥ α0 > 0, r (x) ≥ c0 > 0 a.e. in (a, b) and

K0 ≡ min{α0, c0} −
1

2
‖q‖L∞ > 0.

Then, (8.8) has a unique solution u ∈ H1(a, b). Furthermore
‖u‖1,2 ≤ K−10 {‖f‖0 +C∗(|A|+ |B|)} . (8.18)

Proof. Let us check that the hypotheses of the Lax-Milgram Theorem hold,
with V = H1(a, b).

Continuity of the bilinear form B. We have:

|B (u, v)| ≤
∫ b

a

{‖p‖L∞ |u′v′|+ ‖q‖L∞ |u′v|+ ‖r‖L∞ |uv|}dx.

Using Schwarz’s inequality, we easily get

|B (u, v)| ≤ (‖p‖L∞ + ‖q‖L∞ + ‖r‖L∞) ‖u‖1,2 ‖v‖1,2
so that B is continuous in V .
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Coercivity of B. We have

B (u, u) =

∫ b

a

{
p(u′)2 + qu′u + ru2

}
dx.

The Schwarz inequality gives
∣∣∣∣∣
∫ b

a

qu′u dx

∣∣∣∣∣ ≤ ‖q‖L∞ ‖u
′‖0 ‖u‖0 ≤

1

2
‖q‖L∞

{
‖u′‖20 + ‖u‖

2
0

}
.

Then, by ii),

B (u, u) ≥ (α0 −
1

2
‖q‖L∞) ‖u′‖

2
0 + (c0 −

1

2
‖q‖L∞) ‖u‖

2
0 ≥ K0 ‖u‖

2
1,2

so that B is V −coercive.
Continuity of L in V . Schwarz’s inequality and (8.17) yield

|Lv| ≤ ‖f‖0 ‖v‖0 + |v (b)B + v (a)A| ≤
≤ {‖f‖0 + C∗ (|A|+ |B|)} ‖v‖1,2

whence ‖L‖V ∗ ≤ ‖f‖0 + C∗ (|A|+ |B|).
Then, the Lax-Milgram Theorem gives existence, uniqueness and the stability

estimate (8.18). �

Remark 8.5. Suppose, p = 1, q = r = 0. The problem reduces to

{
u′′ = f in (a, b)

−u′ (a) = A, u′ (b) = B.

Hypothesis ii) is not satisfied (since r = 0). If u is a solution of the problem and
k ∈ R, also u+ k is a solution of the same problem. We cannot expect uniqueness.
Not even we may prescribe f , A, B arbitrarily, if we want that a solution exists.
In fact, integrating the equation u′′ = f over (a, b), we deduce that the Neumann
data and f must satisfy the compatibility condition

B +A =

∫ b

a

f (x) dx. (8.19)

If (8.19) does not hold, the problem has no solution. Thus, to have existence and
uniqueness we must require that (8.19) holds and select a solution (e.g.) with
zero mean value in (a, b). We will return on this kind of solvability questions in
Chapter 9.

Robin conditions. Suppose that the boundary conditions in problem (8.12)
are:

−p (a)u′ (a) = A, p (b)u′ (b) + hu (b) = B (h > 0, constant)
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where, for simplicity, the Robin condition is imposed at x = b only. With small
adjustments, we may repeat the same computations made for the Neumann con-
ditions (see Problem 8.3 ). The weak formulation is:

Determine u ∈ H1 (a, b) such that, ∀v ∈ H1 (a, b) ,
∫ b

a

{pu′v′ + qu′v + ruv} dx+ hu (b) v (b) =
∫ b

a

fvdx + v (b)B + v (a)A. (8.20)

Introducing the bilinear form

B̃ (u, v) =

∫ b

a

{pu′v′ + qu′v + ruv} dx+ hu (b) v (b)

we may write our problem in the abstract form

B̃ (u, v) = Lv ∀v ∈ H1 (a, b) .
We have:

Proposition 8.3. Assume that i) and ii) of Proposition 8.2 hold and that h > 0.
Then (8.20) has a unique solution u ∈ H1(a, b). Furthermore

‖u‖1,2 ≤ K−10 {‖f‖0 +C∗(|A|+ |B|)} .

Proof. Let V = H1(a, b). Since

B̃ (u, u) = B (u, u) + hu2 (b) ≥ K0 ‖u‖21,2
and ∣∣∣B̃ (u, v)

∣∣∣ ≤ |B (u, v)|+ h |u (b) v (b)|
≤
(
‖p‖L∞ + ‖q‖L∞ + ‖r‖L∞ + h(C∗)2

)
‖u‖1,2 ‖v‖1,2 ,

B̃ is continuous and V−coercive. The conclusion follows easily. �
Mixed conditions. The weak formulation of mixed problems does not present

particular difficulties. Suppose, for instance, we assign at the end points the con-
ditions

u (a) = 0, p (b)u′ (b) = B.

Thus, we have a mixed Dirichlet-Neumann problem. The only relevant observation
is the choice of the functional setting. Since u (a) = 0, we have to choose V = H10,a,
the space of functions v ∈ H1 (a, b), vanishing at x = a. The Poincaré inequality
holds in H10,a (see Problem 7.21), so that we may choose ‖u′‖0 as the norm in
H10,a. Moreover, the following inequality

v(x) ≤ C∗∗ ‖v′‖0 (8.21)

holds2 for every x ∈ [a, b], with C∗∗ = (b− a)1/2.
2 Since v (a) = 0, we have v (x) =

∫ x
a
v′ so that |v (x)| ≤ √b− a ‖v′‖0.
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The weak formulation is: Determine u ∈ H10,a such that
∫ b

a

{pu′v′ + qu′v + ruv} dx =
∫ b

a

fvdx + v (b)B, ∀v ∈ H10,a. (8.22)

We have:

Proposition 8.4. Assume that i) and ii) of Proposition 8.2 hold. Then, (8.22)
has a unique solution u ∈ H10,a. Furthermore

‖u′‖0 ≤ K−10 {CP ‖f‖0 + C∗∗ |B|} .

We leave the proof as an exercise.

8.4 Variational Formulation of Poisson’s Problem

Guided by the one-dimensional case, we now analyze the variational formulation
of Poisson’s problem in dimension n > 1, starting with a Dirichlet condition.

8.4.1 Dirichlet problem

Let Ω ⊂ Rn be a bounded domain. We examine the following problem:
{
−αΔu+ a0 (x)u = f in Ω

u = 0 on ∂Ω
(8.23)

where α > 0, constant. To achieve a weak formulation, we first assume that a0
and f are smooth and that u ∈ C2 (Ω) ∩ C0

(
Ω
)
is a classical solution of (8.23).

We select C10 (Ω) as the space of test functions, having continuous first derivatives
and compact support in Ω. In particular, they vanish in a neighborhood of ∂Ω.
Let v ∈ C10 (Ω) and multiply the Poisson equation by v. We get

∫

Ω

{−αΔu+ a0u− f } v dx = 0. (8.24)

Integrating by parts and using the boundary condition, we obtain

∫

Ω

{α∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ C10 (Ω) . (8.25)

Thus (8.23) implies (8.25).
On the other hand, assume (8.25) is true. Integrating by parts in the reverse

order we return to (8.24), which entails −αΔu+ a0u −f = 0 in Ω.
Thus, for classical solutions, the two formulations (8.23) and (8.25) are

equivalent.
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Observe that (8.25) only involves first order derivatives of the solution and of
the test function. Then, enlarging the space of test functions to H10 (Ω), closure of
C10 (Ω) in the norm ‖u‖1 = ‖∇u‖0, we may state the weak formulation of problem
(8.5) as follows:

Determine u ∈ H10 (Ω) such that∫

Ω

{α∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ H10 (Ω) . (8.26)

Introducing the bilinear form

B (u, v) =

∫

Ω

{α∇u · ∇v + a0uv} dx

and the linear functional

Lv =

∫

Ω

fv dx,

equation (8.26) corresponds to the abstract variational problem

B (u, v) = Lv, ∀v ∈ H10 (Ω) .
Then, the well-posedness of this problem follows from the the Lax-Milgram The-
orem under the hypothesis a0 ≥ 0. Precisely:
Theorem 8.1. Assume that f ∈ L2 (Ω) and that 0 ≤ a0 (x) ≤ γ0 a.e. in Ω. Then,
problem (8.26) has a unique solution u ∈ H10 (Ω). Moreover

‖∇u‖0 ≤
CP
α
‖f‖0 .

Proof. We check that the hypotheses of the Lax-Milgram Theorem hold, with
V = H10 (Ω).

Continuity of the bilinear form B. The Schwarz and Poincaré inequalities yield:

|B (u, v)| ≤ α ‖∇u‖0 ‖∇v‖0 + γ0 ‖u‖0 ‖v‖0
≤
(
α+C2P γ0

)
‖∇u‖0 ‖∇v‖0

so that B is continuous in H10 (Ω).

Coercivity of B. It follows from

B (u, u) =

∫

Ω

α |∇u|2 dx+
∫

Ω

a0u
2dx ≥ α ‖∇u‖20

since a0 ≥ 0.
Continuity of L. The Schwarz and Poincaré inequalities give

|Lv| =
∣∣∣∣
∫

Ω

fv dx

∣∣∣∣ ≤ ‖f‖0 ‖v‖0 ≤ CP ‖f‖0 ‖∇v‖0 .

Hence L ∈ H−1 (Ω) and ‖L‖H−1(Ω) ≤ CP ‖f‖0. The conclusions follow from the
Lax-Milgram Theorem. �
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Remark 8.6. Suppose that c = 0 and that u represents the equilibrium position of
an elastic membrane. Then B (u, v) represents the work done by the elastic internal
forces, due to a virtual displacement v. On the other hand Lv expresses the work
done by the external forces. The weak formulation (8.26) states that these two
works balance, which constitutes a version of the principle of virtual work.
Furthermore, due to the symmetry of B, the solution u of the problem mini-

mizes in H10 (Ω) the Dirichlet functional

E (u) =

∫

Ω

α |∇u|2 dx
︸ ︷︷ ︸

internal elastic energy

−
∫

Ω

fu dx

︸ ︷︷ ︸
external potential energy

which represents the total potential energy. Equation (8.26) constitutes the
Euler equation for E.
Thus, in agreement with the principle of virtual work, u minimizes the potential

energy among all the admissible configurations.
Similar observations can be made for the other types of boundary conditions.

• Non homogeneous Dirichlet conditions. Suppose that the Dirichlet condition
is u = g on ∂Ω. If Ω is a Lipschitz domain and g ∈ H1/2 (∂Ω), then g is the trace
on ∂Ω of a (non unique) function g̃ ∈ H1(Ω), called extension of g to Ω. Then,
setting

w = u− g̃
we are reduced to homogeneous boundary conditions. In fact, w ∈ H10 (Ω) and is
a solution of the equation

∫

Ω

{α∇w · ∇v dx+ a0wv} dx =
∫

Ω

Fv dx, ∀v ∈ H10 (Ω)

where F = f − α∇g̃ − a0g̃ ∈ L2(Ω). The Lax-Milgram Theorem yields existence,
uniqueness and the stability estimate

‖∇w‖0 ≤
CP

α
{‖f‖0 + (α+ a0) ‖g̃‖1,2} (8.27)

for any extension g̃ of g. Since ‖u‖1,2 ≤ ‖w‖1,2 + ‖g̃‖1,2 and recalling that (sub-
section 7.9.3)

‖g‖H1/2(∂Ω) = inf
{
‖g̃‖1,2 : g̃ ∈ H1(Ω), g̃|∂Ω = g

}
,

taking the lowest upper bound with respect to g̃, from (8.27) we deduce, in terms
of u:

‖u‖1,2 ≤ C (α, γ0, n, Ω)
{
‖f‖0 + ‖g‖H1/2(∂Ω)

}
.
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8.4.2 Neumann, Robin and mixed problems

Let Ω ⊂ Rn be a bounded, Lipschitz domain. We examine the following problem:
{
−αΔu+ a0 (x)u = f in Ω

∂νu = g on ∂Ω
(8.28)

where α > 0 is constant and ν denotes the outward normal unit vector to ∂Ω. As
usual, to derive a weak formulation, we first assume that a0, f and g are smooth
and that u ∈ C2 (Ω) ∩ C1

(
Ω
)
is a classical solution of (8.28). We choose C1

(
Ω
)

as the space of test functions, having continuous first derivatives up to ∂Ω. Let
v ∈ C1

(
Ω
)
, arbitrary, and multiply the Poisson equation by v. Integrating over

Ω, we get ∫

Ω

{−αΔu+ a0u} v dx =
∫

Ω

fv dx. (8.29)

An integration by parts gives

−
∫

∂Ω

α∂νu vdσ +

∫

Ω

{α∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ C1
(
Ω
)
.

(8.30)
Using the Neumann condition we may write
∫

Ω

{α∇u · ∇v + a0uv} dx =
∫

Ω

fv dx+α

∫

∂Ω

gv dσ ∀v ∈ C1
(
Ω
)
. (8.31)

Thus (8.28) implies (8.31).
On the other hand, suppose that (8.31) is true. Integrating by parts in the

reverse order, we find
∫

Ω

{−αΔu+ a0u− f } v dx+
∫

∂Ω

α∂νu vdσ = α

∫

∂Ω

gv dσ, (8.32)

for every ∀v ∈ C1
(
Ω
)
. Since C10 (Ω) ⊂ C1

(
Ω
)
we may insert any v ∈ C10 (Ω) into

(8.32), to get ∫

Ω

{−αΔu+ a0u− f } v dx = 0.

The arbitrariness of v ∈ C10 (Ω) entails −αΔu+ a0u −f = 0 in Ω. Therefore (8.32)
becomes ∫

∂Ω

∂νu vdσ =

∫

∂Ω

gv dσ ∀v ∈ C1
(
Ω
)

and the arbitrariness of v ∈ C1
(
Ω
)
forces ∂νu = g, recovering the Neumann

condition as well.
Thus, for classical solutions, the two formulations (8.28) and (8.31) are

equivalent.
Recall now that, by Theorem 7.10, C1

(
Ω
)
is dense in H1 (Ω), which therefore

constitutes the natural Sobolev space for the Neumann problem. Then, enlarg-
ing the space of test functions to H1 (Ω), we may give the weak formulation of
problem (8.5) as follows:
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Determine u ∈ H1 (Ω) such that
∫

Ω

{α∇u · ∇v + a0uv} dx =
∫

Ω

fvdx+α

∫

∂Ω

gvdσ, ∀v ∈ H1 (Ω) . (8.33)

Again we point out that the Neumann condition is encoded in (8.33) and not
explicitly expressed as in the case of Dirichlet boundary conditions. Since we used
the density of C1

(
Ω
)
in H1 (Ω) and the trace of v on ∂Ω, some regularity of

the domain (Lipschitz is enough) is needed, even in the variational formulation.
Introducing the bilinear form

B (u, v) =

∫

Ω

{α∇u · ∇v + a0uv} dx (8.34)

and the linear functional

Lv =

∫

Ω

fv dx+α

∫

∂Ω

gvdσ, (8.35)

(8.33) may be formulated as the abstract variational problem

B (u, v) = Lv, ∀v ∈ H10 (Ω) .

The following theorem states the well-posedness of this problem under reasonable
hypotheses on the data. Recall from Theorem 7.11 the trace inequality

‖v‖L2(∂Ω) ≤ C (n,Ω) ‖v‖1,2 . (8.36)

Theorem 8.2. Let Ω ⊂ R
n be a bounded, Lipschitz domain, f ∈ L2 (Ω), g ∈

L2 (∂Ω) and 0 < c0 ≤ a0 (x) ≤ γ0 a.e. in Ω.
Then, problem (8.33) has a unique solution u ∈ H1 (Ω). Moreover,

‖u‖1,2 ≤
1

min{α, c0}
{
‖f‖0 +Cα ‖g‖L2(∂Ω)

}
.

Proof. We check that the hypotheses of the Lax-Milgram Theorem hold, with
V = H1(Ω).

Continuity of the bilinear form B. The Schwarz inequality yields:

|B (u, v)| ≤ α ‖∇u‖0 ‖∇v‖0 + γ0 ‖u‖0 ‖v‖0
≤ (α+ γ0) ‖u‖1,2 ‖v‖1,2

so that B is continuous in H1 (Ω).

Coercivity of B. It follows from

B (u, u) =

∫

Ω

α |∇u|2 dx+
∫

Ω

a0u
2dx ≥ min{α, c0} ‖u‖21,2

since a0 (x) ≥ c0 > 0 a.e. in Ω.
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Continuity of L. From Schwarz’s inequality and (8.36) we get:

|Lv| ≤
∣∣∣∣
∫

Ω

fv dx

∣∣∣∣+ α
∣∣∣∣
∫

∂Ω

gv dσ

∣∣∣∣ ≤ ‖f‖0 ‖v‖0 + α ‖g‖L2(∂Ω) ‖v‖L2(∂Ω)
≤
{
‖f‖0 +Cα ‖g‖L2(∂Ω)

}
‖v‖1,2 .

Therefore L is continuous in H1 (Ω) with

‖L‖H1(Ω)∗ ≤ ‖f‖L2(Ω) +Cα ‖g‖L2(∂Ω) .

The conclusion follows from the Lax-Milgram Theorem. �

Remark 8.7. As in the one-dimensional case, without the condition a0 (x) ≥ c0 >
0, neither the existence nor the uniqueness of a solution is guaranteed. Let, for
example, a0 = 0. Then two solutions of the same problem differ by a constant. A
way to restore uniqueness is to select a solution with, e.g., zero mean value, that
is ∫

Ω

u (x) dx =0.

The existence of a solution requires the following compatibility condition on the
data f and g: ∫

Ω

f dx+α

∫

∂Ω

g dσ = 0, (8.37)

obtained by substituting v = 1 into the equation

∫

Ω

α∇u · ∇v dx =
∫

Ω

fv dx+α

∫

∂Ω

gv dσ.

Note that, since Ω is bounded, the function v = 1 belongs to H1 (Ω).
If a0 = 0 and (8.37) does not hold, problem (8.28) has no solution. Viceversa,

we shall see later that, if this condition is fulfilled, a solution exists.
If g = 0, (8.37) has a simple interpretation. Indeed problem (8.28) is a model for

the equilibrium configuration of a membrane whose boundary is free to slide along
a vertical guide. The compatibility condition

∫
Ω
fdx = 0 expresses the obvious

fact that, at equilibrium, the resultant of the external loads must vanish.

Robin problem. The same arguments leading to the weak formulation of the
Neumann problem (8.28) may be used for the problem

{
−αΔu+ a0 (x)u = f in Ω

∂νu+ hu = g on ∂Ω.
(8.38)

The weak formulation comes from (8.30), observing that

∂νu = −hu + g on ∂Ω.
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We obtain the following variational formulation:

Determine u ∈ H1 (Ω) such that
∫

Ω

{α∇u · ∇v + a0uv} dx+α
∫

∂Ω

huv dσ =

∫

Ω

fv dx+α

∫

∂Ω

g dσ ∀v ∈ H1 (Ω) .

We have:

Theorem 8.3. Let Ω, f, g and a0 be as in Theorem 8.2 and 0 ≤ h (x) ≤ h0 a.e.
on ∂Ω. Then, problem (8.38) has a unique weak solution u ∈ H1 (Ω). Moreover

‖u‖1,2 ≤
1

min{α, c0}
{
‖f‖0 +Cα ‖g‖L2(∂Ω)

}
.

Proof. Introducing the bilinear form

B̃ (u, v) = B (u, v) + α

∫

∂Ω

huv dσ

the variational formulation becomes

B̃ (u, v) = Lv ∀v ∈ H1 (Ω)

where B and L are defined in (8.34) and (8.35), respectively.
From the Schwarz inequality and (8.36), we infer

∣∣∣∣
∫

∂Ω

huv dσ

∣∣∣∣ ≤ h0 ‖u‖L2(∂Ω) ‖v‖L2(∂Ω) ≤ C
2
h0 ‖u‖1,2 ‖v‖1,2 .

On the other hand, the positivity of α, a0 and h entails that

B̃ (u, u) ≥ B (u, u) ≥ min {α, c0} ‖u‖21,2 .

The conclusions follow easily. �

Mixed Dirichlet-Neumann problem. Let ΓD be a non empty relatively
open subset of ∂Ω. Set ΓN = ∂Ω\ΓD and consider the problem

⎧⎨
⎩
−αΔu+ a0 (x)u = f in Ω

u = 0 on ΓD
∂νu = g onΓN .

The correct functional setting is H10,ΓD (Ω), i.e. the set of functions in H
1 (Ω) with

zero trace on ΓD. From Theorem 7.16, the Poincaré inequality holds in H
1
0,ΓD
(Ω)

and therefore we may choose the norm

‖u‖H10,ΓD (Ω) = ‖∇u‖0 .
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From (8.29) and the Gauss formula, we obtain, since u = 0 on ΓD,

−
∫

ΓN

α∂νu vdσ +

∫

Ω

{α∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ C1
(
Ω
)
.

The Neumann condition on ΓN , yields the following variational formulation:

Determine u ∈ H10,ΓD (Ω) such that, ∀v ∈ H10,ΓD (Ω),
∫

Ω

α∇u · ∇v dx+
∫

Ω

a0uv dx =

∫

Ω

fv dx+α

∫

ΓN

gv dσ.

Using the trace inequality (Theorem 7.12)

‖v‖L2(ΓN ) ≤ C̃ ‖v‖1,2 , (8.39)

the proof of the next theorem follows the usual pattern.

Theorem 8.4. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume f ∈ L2 (Ω),
g ∈ L2 (ΓN) and 0 ≤ a0 (x) ≤ γ0 a.e. in Ω. Then the mixed problem has a unique
solution u ∈ H10,ΓD (Ω). Moreover:

‖∇u‖0 ≤
1

α
‖f‖0 + C̃ ‖g‖L2(ΓN ) .

8.4.3 Eigenvalues of the Laplace operator

In subsection 6.9.2 we have seen how the efficacy of the separation of variables
method for a given problem relies on the existence of a basis of eigenfunctions
associated with that problem. The abstract results in subsection 6.9.4, concern-
ing the spectrum of a weakly coercive bilinear form, constitute the appropriate
tools for analyzing the spectral properties of uniformly elliptic operators and in
particular of the Laplace operator. It is important to point out that the spectrum
of a differential operator must be associated with specific homogeneous
boundary conditions.
Thus, for instance, we may consider the Dirichlet eigenfunctions for the Laplace

operator in a domain Ω, i.e. the non trivial solutions of the problem

{
−Δu = λu in Ω
u = 0 on ∂Ω.

(8.40)

A weak solution of problem (8.40) is a function u ∈ H10 (Ω) such that

a (u, v) ≡ (∇u,∇v)0 = λ (u, v)0 ∀v ∈ H10 (Ω) .

If Ω is bounded, the bilinear form is H10 (Ω)−coercive so that Theorem 6.15 gives:
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Theorem 8.5. Let Ω be a bounded domain. Then, there exists in L2 (Ω) an or-
thonormal basis {uk}k≥1 consisting of Dirichlet eigenfunctions for the Laplace
operator. The corresponding eigenvalues {λk}k≥1 are all positive and may be ar-
ranged in an increasing sequence

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·
with λk → +∞.
The sequence

{
uk/

√
λk
}
k≥1 constitutes an orthonormal basis in H

1
0 (Ω), with

respect to the scalar product (u, v)1 = (∇u,∇v)0.

Remark 8.8. Let u ∈ L2 (Ω) and denote by ck = (u, uk)0 the Fourier coefficients
of u with respect to the orthonormal basis {uk}k≥1. Then we may write

u =

∞∑
k=1

ckuk and ‖u‖20 =
∞∑
k=1

c2k.

Note that
‖∇uk‖20 = (∇uk,∇uk)0 = λk (uk, uk)0 = λk.

Thus, u ∈ H10 (Ω) if and only if

‖∇u‖20 =
∞∑
k=1

λkc
2
k <∞. (8.41)

Moreover, (8.41) implies that, for every u ∈ H10 (Ω),

‖∇u‖20 ≥ λ1
∞∑
k=1

c2k = λ1 ‖u‖20 .

We deduce the following variational principle for the first Dirichlet eigen-
value:

λ1 = min

{∫
Ω
|∇u|2∫
Ω
u2

: u ∈ H10 (Ω) , u non identically zero.
}

(8.42)

The quotient in (8.42) is called Raiyeigh’s quotient.
If the domain Ω is smooth, it can be shown that λ1 is simple, i.e. the corre-

sponding eigenspace has dimension 1, and that the corresponding normalized
eigenvector u1 is either strictly positive or strictly negative in Ω.

Similar theorems hold for the other types of boundary value problems as well.
For instance, the Neumann eigenfunctions for the Laplace operator in Ω are the
non trivial solutions of the problem

{
−Δu = μu in Ω

∂νu = 0 on ∂Ω.

Applying Theorem 6.15 we find:
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Theorem 8.6. If Ω is a bounded Lipschitz domain, there exists in L2 (Ω) an
orthonormal basis {uk}k≥1 consisting of Neumann eigenfunctions for the Laplace
operator. The corresponding eigenvalues form a non decreasing sequence {μk}k≥1,
with μ1 = 0 and μk → +∞.
Moreover, the sequence {uk/

√
μk + 1}k≥1 constitutes an orthonormal basis in

H1 (Ω), with respect to the scalar product (u, v)1,2 = (u, v)0+ (∇u,∇v)0.

8.4.4 An asymptotic stability result

The results in the last subsection may be used sometimes to prove the asymptotic
stability of a steady state solution of an evolution equation as time t→ +∞.
As an example consider the following problem for the heat equation. Suppose

that u ∈ C2,1
(
Ω × [0,+∞)

)
is the (unique) solution of

⎧
⎪⎨
⎪⎩

ut −Δu = f (x) x ∈Ω, t > 0
u (x,0) = u0 (x) x ∈Ω
u (σ,t) = 0 σ ∈ ∂Ω, t > 0

where Ω is a smooth, bounded domain. Denote by u∞ = u∞ (x) the solution of
the stationary problem {

−Δu∞ = f in Ω

u∞ = 0 on ∂Ω.

Proposition 8.5. For t ≥ 0, we have

‖u (·, t)− u∞‖0 ≤ e−λ1t
{
C2P ‖f‖0 + ‖u0‖0

}
(8.43)

where λ1 is the first Dirichlet eigenvalue for the Laplace operator in Ω.

Proof. Set g (x) = u0 (x) − u∞ (x). The function w (x,t) = u (x,t) − u∞ (x)
solves the problem

⎧⎪⎨
⎪⎩

wt −Δw = 0 x ∈Ω, t > 0
w (x,0) = g (x) x ∈Ω
w (σ,t) = 0 σ ∈ ∂Ω, t > 0.

(8.44)

Let us use the method of separation of variables and look for solutions of the form
w (x,t) = v (x) z (t). We find

z′ (t)
z (t)

=
Δv (x)

v (x)
= −λ

with λ constant. Thus we are lead to the eigenvalue problem

{
−Δv = λv in Ω
v = 0 on ∂Ω.
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From Theorem 8.5, there exists in L2 (Ω) an orthonormal basis {uk}k≥1 consisting
of eigenvectors, corresponding to a sequence of non decreasing eigenvalues {λk},
with λ1 > 0 and λk → +∞. Then, if gk = (g, uk)0, we can write

g =
∞∑
1

gkuk and ‖g‖20 =
∞∑
k=1

g2k.

As a consequence, we find zk (t) = e
−λkt and finally

w (x,t) =

∞∑
1

e−λktgkuk (x) .

Thus,

‖u (·, t)− u∞‖20 = ‖w (·, t)‖
2
0

=

∞∑
k=1

e−2λktg2k

and since λk > λ1 for every k, we deduce that

‖u (·, t)− u∞‖20 ≤
∞∑
k=1

e−2λ1tg2k = e
−2λ1t ‖g‖20 .

Theorem 8.1 yields, in particular

‖u∞‖0 ≤ C2P ‖f‖0 ,
and hence

‖g‖0 ≤ ‖u0‖0 + ‖u∞‖0
≤ ‖u0‖0 +C2P ‖f‖0

giving (8.43). �
Proposition 8.5 implies that the steady state u∞ is asymptotically stable in

L2 (Ω)−norm as t → +∞. The speed of convergence is exponential3 and it is
determined by the first eigenvalue λ1.

8.5 General Equations in Divergence Form

8.5.1 Basic assumptions

In this section we consider boundary value problems for elliptic operators with
general diffusion and transport terms. Let Ω ⊂ R

n be a bounded domain and
set

Eu = −div (A (x)∇u− b (x) u) + c (x) ·∇u+ a0 (x)u (8.45)

where A =(aij)i,j=1,...,n, b = (b1, ..., bn), c = (c1, ..., cn) and a0 is a real function.

3 Compare with subsection 2.1.4.
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Throughout this section, we will assume that the following hypotheses hold.

1. The differential operator E is uniformly elliptic, i.e. there exist positive
numbers α and M such that:

α |ξ|2 ≤ A (x) ξ · ξ ≤ M |ξ|2 , ∀ξ ∈Rn, a.e. in Ω. (8.46)

2. The coefficients b, c and a0 are all bounded:

|b (x)| ≤ β, |c (x)| ≤ γ, |a0 (x)| ≤ γ0, a.e. in Ω. (8.47)

The uniform ellipticity condition (8.46) states that A is positive4 in Ω with
the minimum eigenvalue bounded from below by α, called ellipticity constant, and
the maximum eigenvalue bounded from above by M . We point out that at this
level of generality, we allow discontinuities also of the diffusion matrix A, of the
transport coefficients b and c, in addition to the reaction coefficient a0.

We want to extend to these type of operators the theory developed so far.
The uniform ellipticity is a necessary requirement. In this section, we first indicate
some sufficient conditions assuring the well-posedness of the usual boundary value
problems, based on the use of the Lax-Milgram Theorem.

On the other hand, these conditions may be sometimes considered rather re-
strictive. When they are not satisfied, precise information on solvability and well-
posedness can be obtained from Theorem 6.12.

As in the preceding sections, we start from the Dirichlet problem.

8.5.2 Dirichlet problem

Consider the problem {
Eu = f + div f in Ω

u = 0 on ∂Ω
(8.48)

where f ∈ L2 (Ω) e f ∈L2 (Ω;Rn).
A comment on the right hand side of (8.48) is in order. We have denoted by

H−1 (Ω) the dual of H10 (Ω). We know (Theorem 7.6) that every element F ∈
H−1 (Ω) can be identified with an element in D′ (Ω) of the form

F = f + div f .

Moreover

‖F ‖H−1(Ω) ≤ ‖f‖0 + ‖f‖0 . (8.49)

Thus, the right hand side of (8.48) represents a generic element of H−1 (Ω).

4 If A is only nonnegative, the equation is degenerate elliptic and things get too com-
plicated for this introductory book.
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As in Section 8.4, to derive a variational formulation of (8.48), we first assume
that all the coefficients and the data f , f are smooth. Then, we multiply the
equation by a test function v ∈ C10 (Ω) and integrate over Ω:

∫

Ω

[−div(A∇u− bu) v] dx+
∫

Ω

[c·∇u+ a0u] v dx =
∫

Ω

[f + divf ] vdx.

Integrating by parts, we find, since v = 0 on ∂Ω:
∫

Ω

[−div(A∇u− bu) v] dx =
∫

Ω

[A∇u · ∇v − bu · ∇v] dx

and ∫

Ω

v div f dx = −
∫

Ω

f ·∇v dx.

Thus, the resulting equation is:
∫

Ω

{A∇u · ∇v − bu · ∇v + cv·∇u + a0uv} dx =
∫

Ω

{fv − f ·∇v } dx (8.50)

for every v ∈ C10 (Ω).
It is not difficult to check that for classical solutions, the two formulations

(8.48) and (8.50) are equivalent.

We now enlarge the space of test functions toH10 (Ω) and introduce the bilinear
form

B (u, v) =

∫

Ω

{A∇u · ∇v − bu · ∇v + cv·∇u + a0uv} dx

and the linear functional

Fv =

∫

Ω

{fv − f ·∇v } dx.

Then, the weak formulation of problem (8.48) is the following:

Determine u ∈ H10 (Ω) such that

B (u, v) = Fv, ∀v ∈ H10 (Ω) . (8.51)

A set of hypotheses that ensure the well-posedness of the problem is indicated in
the following proposition.

Proposition 8.6. Assume that hypotheses (8.46) and (8.47) hold and that f ∈
L2 (Ω), f ∈ L2 (Ω;Rn). Then if b and c have Lipschitz components and

1

2
div (b− c) + a0 ≥ 0, a.e. in Ω, (8.52)

problem (8.51) has a unique solution. Moreover, the following stability estimate
holds:

‖u‖1 ≤
1

α
{‖f‖0 + ‖f‖0} . (8.53)
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Proof. We apply the Lax-Milgram Theorem with V = H10 (Ω). The continuity
of B in V follows easily. In fact, the Schwarz inequality and the bound in (8.46)
give:

∣∣∣∣
∫

Ω

A∇u · ∇v dx
∣∣∣∣ ≤

∫

Ω

n∑
i,j=1

∣∣aij∂xiu ∂xjv
∣∣ dx

≤ M
∫

Ω

|∇u| |∇v| dx ≤M ‖∇u‖0 ‖∇v‖0 .

Moreover, using (8.46) and Poincaré’s inequality as well, we get

∣∣∣∣
∫

Ω

[bu · ∇v − cv·∇u] dx
∣∣∣∣ ≤ (β + γ)CP ‖∇u‖0 ‖∇v‖0

and ∣∣∣∣
∫

Ω

a0uv dx

∣∣∣∣ ≤ γ0
∫

Ω

|u| |v| dx ≤ γ0C2P ‖∇u‖0 ‖∇v‖0 .

Thus, we can write

|B (u, v)| ≤
(
M + (β + γ)Cp + γC

2
p

)
‖∇u‖0 ‖∇v‖0

which shows the continuity of B. Let us analyze the coercivity of B. We have:

B (u, u) =

∫

Ω

{
A∇u · ∇u− (b− c)u·∇u+ a0u2

}
dx.

Observe that, since u = 0 on ∂Ω, integrating by parts we obtain

∫

Ω

(b− c)u·∇u dx = 1
2

∫

Ω

(b− c)·∇u2dx = −1
2

∫

Ω

div(b− c) u2dx.

Therefore, from (8.46) and (8.52), it follows that

B (u, u) ≥ α
∫

Ω

|∇u|2 dx+
∫

Ω

[
1

2
div(b− c)+a0

]
u2dx ≥α ‖∇u‖20

so that B is V −coercive. Since we already know that F ∈ H−1 (Ω), the Lax-
Milgram Theorem and (8.49) give existence, uniqueness and the stability estimate
(8.53). �

Remark 8.9. If A is symmetric and b = c = 0, the solution u is a minimizer in
H10 (Ω) for the “energy” functional

E (u) =

∫

Ω

{
A∇u · ∇u+ cu2 − fu

}
dx.

As in Remark 8.6, equation (8.51) constitutes the Euler equation for E.
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Remark 8.10. If the Dirichlet condition is nonhomogeneous, i.e.

u = g on ∂Ω,

with g ∈ H1/2 (∂Ω), we consider an extension g̃ of g in H1 (Ω) and set w = u− g̃.
In this case we require that Ω is at least a Lipschitz domain, to ensure the existence
of g̃. Then w ∈ H10 (Ω) and solves the equation

Ew = f + div (f+A∇g̃ − bg̃) − c ·∇g̃ − cg̃.

From (8.46) and (8.47) we have

c·∇ĝ + cĝ ∈ L2 (Ω) and A∇ĝ − bĝ ∈L2 (Ω;Rn) .

Therefore, the Lax-MilgramTheorem yields existence, uniqueness and the estimate

‖u‖1,2 ≤ C (α, n,M, β, γ, γ0, Ω)
{
‖f‖0 + ‖f‖0 + ‖g‖H1/2(∂Ω)

}
.

Fig. 8.1. The solution of problem (8.54)

Example 8.1. Figure 8.1 shows the solution of the following Dirichlet problem in
the upper half circle:

⎧
⎨
⎩
−uρρ − ρ−1uρ − ρuθ = 0 ρ < 1, 0 < θ < π
u(1, θ) = sin(θ/2) 0 ≤ θ ≤ π

u (ρ, 0) = 0, u (ρ, π) = ρ ρ ≤ 1
(8.54)

where (ρ, θ) denotes polar coordinates. Note that, in rectangular coordinates,

−ρuθ = yux − xuy (8.55)

so that it represents a transport term of the type c·∇u with c = (y,−x). Since
divb =0, Proposition 8.6 ensures the well posedness of the problem.
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Alternative for the Dirichlet problem. We will see later that problem
(8.48) is actually well posed under the condition

divb+a0 ≥ 0,

which does not involve the coefficient c.
In particular, this condition is fulfilled if a0 (x) ≥ 0 and b (x) = 0 a.e. in Ω. In

general however, we cannot prove that the bilinear form B is coercive. What we
may affirm is that B is weakly coercive, i.e. there exists λ0 ∈ R such that:

B̃ (u, v) = B (u, v) + λ0 (u, v)0 ≡ B (u, v) + λ0
∫

Ω

uv dx

is coercive. In fact, from the elementary inequality

|ab| ≤ εa2 + 1
4ε
b2, ∀ε > 0,

we get

∣∣∣∣
∫

Ω

(b− c)u·∇u dx
∣∣∣∣ ≤ (β + γ)

∫

Ω

|u·∇u|dx ≤ε ‖∇u‖20 +
(β + γ)2

4ε
‖u‖20 .

Therefore:

B̃ (u, u) ≥ α ‖∇u‖20+λ0 ‖u‖
2
0 − ε ‖∇u‖

2
0 −

(
(β + γ)

2

4ε
+ γ

)
‖u‖20 . (8.56)

If we choose ε = α/2 and λ0 = (β + γ)
2/4ε+ γ, we obtain

B̃ (u, u) ≥ α
2
‖∇u‖20

which shows the coercivity of B̃. Introduce now the Hilbert triplet

V = H10 (Ω) , H = L
2 (Ω) , V ∗ = H−1 (Ω)

and recall that, since Ω is a bounded, Lipschitz domain, H10 (Ω) is dense and
compactly embedded in L2 (Ω). Finally, define the adjoint bilinear form of B by

B∗ (u, v) ≡
∫

Ω

{
(A�∇u+ cu) · ∇v − bv · ∇u+ a0uv

}
dx =B (v, u) ,

associated with the formal adjoint of E

E∗u = −div
(
A�∇u+ cu

)
− b · ∇u+ a0u.

We are now in position to apply Theorem 6.12 to our variational problem. The
conclusions are:
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1) The subspaces NB and NB∗ of the solutions of the homogeneous problems

B (u, v) = 0, ∀v ∈ H10 (Ω)

and

B∗ (w, v) = 0, ∀v ∈ H10 (Ω)

share the same dimension d, 0 ≤ d <∞.
2) The problem

B (u, v) = Fv, ∀v ∈ H10 (Ω)

has a solution if and only if Fw = 0 for every w ∈ NB∗ .
Let us translate the statements 1) and 2) into a less abstract language:

Theorem 8.7. LetΩ be a bounded, Lipschitz domain, f ∈ L2 (Ω) and f ∈L2 (Ω;Rn).
Assume (8.46) and (8.47) hold. Then, we have the following alternative:

a) Either E is an isomorphism between H10 (Ω) and H−1 (Ω) and therefore
problem (8.48) has a unique weak solution, with

‖∇u‖0 ≤ C (n, a,K, β, γ) {‖f‖0 + ‖f‖0}

or the homogeneous and the adjoint homogeneous problems

{
Eu = 0 in Ω

u = 0 on ∂Ω,
and

{
E∗w = 0 in Ω

w = 0 on ∂Ω

have each d linearly independent solutions.

b) Moreover, problem (8.48) has a solution if and only if

∫

Ω

{fw − f ·∇w} dx =0 (8.57)

for every solution w of the adjoint homogeneous problem.

Theorem 8.7 implies that if we can show the uniqueness of the solution of
problem (8.48), then automatically we infer both the existence and the stability
estimate.

To show uniqueness, the weak maximum principles in subsection 8.5.5 are quite
useful. We will be back to this argument there.

The conditions (8.57) constitute d compatibility conditions that the data have
to satisfy in order for a solution to exists.
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8.5.3 Neumann problem

Let Ω be a bounded, Lipschitz domain. The Neumann condition for an operator
in the divergence form (8.45) assigns on ∂Ω the flux naturally associated with
the operator. This flux is composed by two terms: A∇u · ν, due to the diffusion
term −divA∇u, and −bu·ν, due to the convective term div(bu), where ν is the
outward unit normal on ∂Ω. We set

∂Eν u ≡ (A∇u− bu)·ν =
n∑

i,j=1

aij∂xju νi − u
∑
j

bjνj .

We call ∂Eν u conormal derivative of u. Thus, the correct Neumann problem is:{
Eu = f in Ω

∂Eν u = g on ∂Ω.
(8.58)

with f ∈ L2 (Ω) and g ∈ L2 (∂Ω). The variational formulation of problem (8.58)
may be obtained by the usual integration by parts technique. It is enough to note,
that, multiplying the differential equation Eu = f by a test function v ∈ H1 (Ω)
and using the Neumann condition, we get, formally:

∫

Ω

{(A∇u− bu)∇v + (c·∇u)v + a0uv} dx =
∫

Ω

fv dx+

∫

∂Ω

gv dσ.

Introducing the bilinear form

B (u, v) =

∫

Ω

{(A∇u− bu)∇v + (c·∇u)v + a0uv} dx (8.59)

and the linear functional

Fv =

∫

Ω

fv dx+

∫

∂Ω

gv dσ,

we are led to the following weak formulation, that can be easily checked to be
equivalent to the original problem, when all the data are smooth:

Determine u ∈ H1 (Ω) such that
B (u, v) = Fv, ∀v ∈ H1 (Ω) . (8.60)

If the size of b− c is small enough, problem (8.60) is well-posed, as the following
proposition shows.

Proposition 8.7. Assume that hypotheses (8.46) and (8.47) hold and that f ∈
L2 (Ω), g ∈ L2 (∂Ω). If a0 (x) ≥ c0 > 0 a.e. in Ω and

α0 ≡ min{α− (β + γ)/2, c0 − (β + γ)/2} > 0, (8.61)

then, problem (8.60) has a unique solution. Moreover, the following stability esti-
mate holds:

‖u‖1,2 ≤
1

α0

{
‖f‖0 +C (n,Ω)‖g‖L2(∂Ω)

}
.
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Proof (sketch). Since

|B (u, v)| ≤ (M + β + γ + γ0) ‖u‖1,2 ‖v‖1,2
B is continuous in H1 (Ω). Moreover, we may write

B (u, u) ≥ α
∫

Ω

|∇u|2 dx−
∣∣∣∣
∫

Ω

[(b− c)·∇u] u dx
∣∣∣∣+
∫

Ω

a0u
2dx.

From Schwarz’s inequality and the inequality 2ab ≤ a2 + b2, we obtain
∣∣∣∣
∫

Ω

[(b− c)·∇u] u dx
∣∣∣∣ ≤ (β + γ) ‖∇u‖0 ‖u‖0 ≤

(β + γ)

2
‖u‖21,2 .

Thus, if (8.61) holds, we get B (u, u) ≥ α0 ‖u‖21,2 and therefore B is coercive.
Finally, using (8.36), it is not difficult to check that F ∈ H1 (Ω)∗, with

‖F ‖H1(Ω)∗ ≤ ‖f‖0 + C (n,Ω)‖g‖L2(∂Ω) .

�
Alternative for the Neumann problem. The bilinear form B is coercive

also under the conditions

(b− c) · ν ≤0 a.e. on ∂Ω and
1

2
div(b− c)+a0 ≥ c0 > 0 a.e in Ω,

as it can be checked following the proof of Proposition 8.6.
However, in general the bilinear formB is only weakly coercive. In fact, choosing

in (8.56) ε = α/2 and λ0 = (β + γ)
2
/2ε+ 2γ + 2γ0, we easily get

B̃ (u, u) = B (u, u) + λ0 ‖u‖20 ≥
α

2
‖∇u‖20 +

(
(β + γ)

2

4ε
+ γ + γ0

)
‖u‖20

and therefore B̃ is coercive. Applying theorem 6.12, we obtain the following alter-
native:

Theorem 8.8. Let Ω be a bounded, Lipschitz domain. Assume that (8.46) and
(8.47) hold. Then, if f ∈ L2 (Ω) and g ∈ L2 (∂Ω):
a) Either problem (8.58) has a unique solution u ∈ H1 (Ω) and

‖u‖1,2 ≤ C (n, α,M, β, γ, γ0)
{
‖f‖0 + ‖g‖L2(∂Ω)

}

or the homogeneous and the adjoint homogeneous problems

{
Eu = 0 in Ω

(A∇u− bu) · ν = 0 on ∂Ω
and

{
E∗w = 0 in Ω

(A�∇w + cw) · ν = 0 on ∂Ω

have each d linearly independent solutions.
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b) Moreover, problem (8.60) has a solution if and only if

Fw =

∫

Ω

fw dx+

∫

∂Ω

gw dσ = 0 (8.62)

for every solution w of the adjoint homogeneous problem.

Remark 8.11. Again, uniqueness implies existence. Note that if b = c = 0 and
a0 = 0, then the solutions of the adjoint homogeneous problem are the constant
functions. Therefore d = 1 and the compatibility condition (8.62) reduces to the
well known equation ∫

Ω

f dx+

∫

∂Ω

g dσ = 0.

Remark 8.12. Note that in the right hand side of (8.58) there is no term of the
form div f , as was the case in the Dirichlet problem. Indeed, it is better to avoid
terms of that form for the following reason. Consider, for instance, the problem
−Δu =divf , ∂νu = 0. A weak formulation would be, after the usual integration
by parts,

∫

Ω

∇u · ∇v dx =
∫

∂Ω

(f · ν) vdσ−
∫

Ω

f ·∇v dx ∀v ∈ H1 (Ω) . (8.63)

However, even if f is smooth, (8.63) is equivalent to div(∇u+f ) =0 in the sense
of distributions, but with

(∇u+ f ) · ν =0 on ∂Ω,

giving rise to a different problem.

8.5.4 Robin and mixed problems

Robin problem. The variational formulation of the problem

{
Eu = f in Ω

∂Eν u+hu = g on ∂Ω.
(8.64)

is obtained by replacing the bilinear form B in problem (8.60), by

B̃ (u, v) = B (u, v) +

∫

∂Ω

huv dσ

If 0 ≤ h (x) ≤ h0 a.e. on ∂Ω, Proposition 8.7 still holds for problem (8.64).
As for the Neumann problem, in general the bilinear form B is only weakly

coercive and a theorem perfectly analogous to Theorem 8.8 holds. We leave the
details as an exercise.
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Mixed Dirichlet-Neumann problem. Let ΓD be a non empty relatively
open subset of ∂Ω and ΓN = ∂Ω\ΓD. Consider the mixed problem

⎧⎨
⎩
Eu = f in Ω
u = 0 on ΓD

∂Eν u = g on ΓN

As in subsection 8.4.2, the correct functional setting is H10,ΓD (Ω) with the norm
‖u‖H10,ΓD (Ω) = ‖∇u‖0. Introducing the linear functional

Fv =

∫

Ω

fv dx+

∫

ΓN

gv dσ,

the variational formulation is the following: Determine u ∈ H10,ΓD (Ω) such
that

B (u, v) = Fv, ∀v ∈ H10,ΓD (Ω) . (8.65)

Proceeding as in Proposition 8.6, we may prove the following result:

Proposition 8.8. Assume that hypotheses (8.46) and (8.47) hold and that f ∈
L2 (Ω), g ∈ L2 (ΓN). If b and c have Lipschitz components and

(b− c) · ν ≤ 0 a.e. on ΓN ,
1

2
div (b− c) + a0 ≥ 0, a.e. in Ω,

then problem (8.65) has a unique solution u ∈ H10,ΓD (Ω). Moreover, the following
stability estimate holds:

‖u‖1 ≤
1

α

{
‖f‖0 + C ‖g‖L2(ΓN )

}
.

Remark 8.13. If u = g0 on ΓD, i.e. if the Dirichlet data are nonhomogeneous, set
w = u − g̃0, where g̃0 ∈ H1(Ω) is an extension of g0. Then w ∈ H10,ΓD (Ω) and
solves

B (w, v) = B (g̃0, v) +

∫

Ω

fv dx+

∫

ΓN

gv dσ ∀v ∈ H10,ΓD (Ω) .

For the mixed problem as well, in general the bilinear form is only weakly
coercive and we may resort to the alternative theorem, achieving a result similar
to Theorems 8.7. Only note that the compatibility conditions (8.60) take the form

Fw =

∫

Ω

fw dx+

∫

ΓN

gw dσ = 0

for every solution w of the adjoint problem
⎧⎨
⎩

E∗w = 0 in Ω
w = 0 on ΓD(

A�∇w + cw
)
· ν = 0 onΓN .
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8.5.5 Weak Maximum Principles

In Chapter 2 we have given a version of the maximum principle for the Laplace
equation. This principle has an extension valid for general divergence form opera-
tors. First, some remarks.
Let Ω be a bounded, Lipschitz domain and u ∈ H1 (Ω). Since C1

(
Ω
)
is dense

in H1 (Ω), u ≥ 0 on ∂Ω if there exists a sequence {vk}k≥1 ⊂ C1
(
Ω
)
such that

vk → u in H1 (Ω) and vk ≥ 0. It is as if the trace of u on ∂Ω “inherits” the
nonnegativity from the sequence {vk}k≥1.
Since vk ≥ 0 on ∂Ω is equivalent to saying that5 the negative part v−k =

max{−vk, 0} has zero trace on ∂Ω, it then turns out that u ≥ 0 on ∂Ω if and only
if u− ∈ H10 (Ω). Similarly, u ≤ 0 on ∂Ω if and only if u+ ∈ H10 (Ω).
Other inequalities follow in a natural way. For instance, we have u ≤ v on ∂Ω

if u− v ≤ 0 on ∂Ω. Thus, we may define:

sup
∂Ω
u = inf {k ∈ R : u ≤ k on ∂Ω} , inf

∂Ω
u = sup {k ∈ R : u ≥ k on ∂Ω}

which coincide with the usual greatest lower bound and lowest upper bound when
u ∈ C(∂Ω).
Consider the equation

B (u, v) =

∫

Ω

{(A∇u− bu)∇v + cv·∇u+ a0uv} dx = 0, (8.66)

for every v ∈ H10 (Ω). We have:

Theorem 8.9. (Weak maximum principle). Assume that u ∈ H1 (Ω) satisfies
(8.66) and that (8.46) and (8.47) hold. Moreover, let b Lipschitz and

divb+ a0 ≥ 0 a.e. in Ω. (8.67)

Then
sup
Ω
u ≤ sup

∂Ω
u+ and inf

Ω
≥ inf

∂Ω
u−. (8.68)

Proof . For simplicity, we give the proof only for b = c = 0, and therefore a0 ≥ 0
a.e. in Ω. We have:

∫

Ω

A∇u · ∇v dx = −
∫

Ω

a0uv dx, ∀v ∈ H10 (Ω) .

Let
l = sup

∂Ω
u+

We may assume that l < ∞, otherwise there is nothing to be proved. Select as a
test function v = max{u− l, 0} ≥ 0, which belongs to H10 (Ω).
5 Recall from subsection 7.5.2 that, if u ∈ H1 (Ω) then its positive and negative part,
u+ = max {u, 0} and u− = max{−u, 0}, belong to H1 (Ω) as well.
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Now, observe that in the set {u > l}, where v > 0 a.e., we have ∇v = ∇u so
that, using the uniform ellipticity condition and (8.67), we obtain

α

∫

{u>l}
|∇v|2 dx ≤

∫

Ω

A∇u · ∇v dx = −
∫

{u>l}
a0u (u− l) dx ≤0.

Thus, either |{u > l}| = 0 or ∇v = 0. In any case, since v ∈ H10 (Ω), we infer
v = 0, whence u ≤ l.
The second inequality in (8.68) may be proved in similar way. �

Remark 8.14. Note that Theorem 8.9 implies that if u ≤ 0 or u ≥ 0 on ∂Ω, then
u ≤ 0 or u ≥ 0 in Ω. In particular, if u = 0 on ∂Ω then u = 0 in Ω.
Also, it is not possible to substitute sup∂Ω u

+ by sup∂Ω u or inf∂Ω u
− with

inf∂Ω u in (8.68). A counterexample in dimension one is shown in figure 8.2. The
solution of −u′′ + u = 0 in (0, 1), u (0) = u (1) = −1, has a negative maximum
which is greater than −1.

Fig. 8.2. The solution of −u′′ + u = 0 in (0, 1), u (0) = u (1) = −1

Using Theorem 6.12, we have:

Corollary 8.1. Under the hypotheses of Theorem 8.9, the Dirichlet problem
{
Eu = f + divf in Ω
u = 0 on ∂Ω

has a unique solution u ∈ H10 (Ω) and
‖∇u‖0 ≤ C (n, α,K, β, γ) {‖f‖0 + ‖f‖0} .

A similar maximum principle holds for Robin or mixed conditions, yielding
uniqueness and therefore well-posedness, for the corresponding problems.
Suppose for instance that u ∈ H1 (Ω) satisfies the equation

B (u, v)=0, ∀v ∈ H10,ΓD (Ω) . (8.69)

Then u is a solution of a mixed problem with f = g = 0. We may prove the
following result (compare with Example 8.18).
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Theorem 8.10. Let ΓD ⊂ ∂Ω, open, ΓD �= ∅. Assume that u ∈ H1 (Ω) satisfies
(8.69) and that (8.46) and (8.47) hold. Moreover, let b be Lipschitz and

b · ν ≤ 0 a.e. on ΓN , divb+ a0 ≥ 0 a.e. in Ω.

Then

sup
Ω
u ≤ sup

ΓD

u+ and inf
Ω
≥ inf

ΓD
u−.

8.6 Regularity

An important task, in general technically rather complicated, is to establish the
optimal regularity of a weak solution in relation to the degree of smoothness of
the data: the domain Ω, the boundary data, the coefficients of the operator and the
forcing term. To get a clue of what happens, consider for example the following
Poisson problem: {

−Δu+ u = F in Ω

u = 0 on ∂Ω

where F ∈ H−1 (Ω). Under this hypothesis, the Lax-Milgram Theorem yields a
solution u ∈ H10 (Ω) and we cannot get much more, in terms of smoothness. Indeed,
from Sobolev inequalities (see subsection. 7.10.4) it follows that u ∈ Lp(Ω) with
p = 2n

n−2 , if n ≥ 3, or u ∈ Lp (Ω), with 2 ≤ p <∞, if n = 2. However, this gain in
integrability does not seriously increase the smoothness of u.
Reversing our point of view, we may say that, starting from a function in

H10 (Ω) and applying to it a second order operator “two orders of differentiability
are lost”: the loss of one order drives from H10 (Ω) into L

2 (Ω) while a further loss
leads to H−1 (Ω). It is as if the upper index −1 indicates a “lack” of one order of
differentiability.

Nevertheless, consider the case in which u ∈ H1 (Rn) is a solution of the equa-
tion

−Δu+ u = f in Rn. (8.70)

We ask: if f ∈ L2 (Rn) what is the optimal regularity of u?
Following the above argument, our conclusions would be: it is true that we

start from u ∈ H1 (Rn), but applying the second order operator −Δ + I, where
I denotes the identity operator, we find f ∈ L2(R). Thus we conclude that the
starting function should actually be in H2 (Rn) rather than H1 (Rn). Indeed this
is true and can be easily proved using the Fourier transform. Since

∂̂xiu (ξ) = iξiû (ξ) , ∂̂xixju (ξ) = −ξiξj û (ξ)

we have

−Δ̂u (ξ) = |ξ|2 û (ξ)
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and equation (8.70) becomes

(1 + |ξ|2)û (ξ) = f̂ (ξ)

whence

û (ξ) =
f̂ (ξ)

1 + |ξ|2
. (8.71)

From (8.71) we easily draw the information we were looking for: every second
derivative of u belongs to L2 (Rn). This comes from the following facts:

• formula (7.27):

‖v̂‖2L2(Rn) = (2π)
n ‖v‖2L2(Rn) ,

• the elementary inequality

2
∣∣ξiξj

∣∣ < 1 + |ξ|2 , ∀i, j = 1, ..., n,

• the simple computation

∫

Rn

∣∣∂xixju (x)
∣∣2 dx =

∫

Rn

ξ2i ξ
2
j |û (ξ)|2 dξ =

∫

Rn

ξ2i ξ
2
j

(1 + |ξ|2)2
∣∣∣f̂ (ξ)

∣∣∣
2

dξ

<
1

4

∫

Rn

∣∣∣f̂ (ξ)
∣∣∣
2

dξ =
(2π)

n

4

∫

Rn

|f (x)|2 dx.

Thus, u ∈ H2 (Rn) and moreover, we have obtained the estimate

‖u‖H2(Rn) ≤ C ‖f‖L2(Rn) .

We may go further. If f ∈ H1 (Rn), i.e. if f has first partials in L2 (Rn), a
similar computation yields u ∈ H3 (Rn). Iterating this argument, we conclude
that for every m ≥ 0,

if f ∈ Hm (Rn) then u ∈ Hm+2 (Rn) .

Using the Sobolev embedding theorems of subsection 7.10.4, we infer that, if m is
sufficiently large, u is a classical solution. In fact, if u ∈ Hm+2 (Rn) then

u ∈ Ck (Rn) for k < m+ 2− n
2
,

and therefore it is enough thatm > n
2
to have u at least in C2 (Rn). An immediate

consequence is:

if f ∈ C∞ (Rn) then u ∈ C∞(Rn).

This kind of results can be extended to uniformly elliptic operators E in diver-
gence form and to the solutions of the Dirichlet, Neumann and Robin problems.
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The regularity for mixed problems is more delicate and requires compatibility con-
ditions along the border between ΓD and ΓN . We will not insist on this subject.
There are two kinds of regularity results, concerning interior regularity and

global regularity, respectively. Since the proofs are quite technical (see Evans,
1998), we only state the main results.
In all the theorems below u is a weak solution of

Eu = f in Ω.

We keep the hypotheses (8.46) and (8.47).

• Interior regularity. The next theorem is a H2−interior regularity result. Note
that the boundary of the domain does not play any role. We have:

Theorem 8.11. (H2 interior regularity). Let the coefficients aij be Lipschitz in
Ω. Then u ∈ H2loc (Ω) and if Ω′ ⊂⊂ Ω,

‖u‖H2(Ω′) ≤ C
{
‖f‖L2(Ω) + ‖u‖L2(Ω)

}
. (8.72)

Thus, u is a strong solution (see Section 8.2) in Ω. The constant C depends on
all the relevant parameters α, β, γ, γ0,M and also on the distance of Ω

′ from ∂Ω
and the Lipschitz constant of aij and bj, i, j = 1, ..., n.

Remark 8.15. The presence of the norm ‖u‖L2(Ω) in the right hand side of (8.72)
is necessary6 and due to the fact that the bilinear form B associated to E is only
weakly coercive.

If we increase the regularity of the coefficients, the smoothness of u increases
according to the following theorem:

Theorem 8.12. (Higher interior regularity). Let aij, bj ∈ Cm+1 (Ω) and cj, a0 ∈
Cm (Ω), m ≥ 1, i, j = 1, ..., n. Then u ∈ Hm+2

loc (Ω) and if Ω
′ ⊂⊂ Ω,

‖u‖Hm+2(Ω′) ≤ C
{
‖f‖Hm(Ω) + ‖u‖L2(Ω)

}
.

As a consequence, if aij, bj, cj, a0, f ∈ C∞ (Ω) , then u ∈ C∞ (Ω) as well.

• Global regularity.We focus on the optimal regularity of a solution (non neces-
sarily unique!) of the boundary value problems we have considered in the previous
sections.
Consider first H2−regularity. If u ∈ H2 (Ω), its trace on ∂Ω belongs to

H3/2 (∂Ω) so that a Dirichlet data gD has to be taken in this space. On the
other hand, the trace of the normal derivative belongs to H1/2 (∂Ω) and hence we
have to assign a Neumann or a Robin data gN in this space. Also, the domain has
to be smooth enough, say C2, in order to define the traces of u and ∂νu.

6 For instance, u (x) = sinx is a solution of the equation u′′ + u = 0. Clearly we cannot
control any norm of u with the norm of the right hand side alone!
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Thus, assume that u is a solution of Eu = f in Ω, with one of the following
boundary conditions:

u =gD ∈ H3/2 (∂Ω)
or

∂Eν+hu= gN ∈ H1/2 (∂Ω) ,
with

0 ≤ h (σ) ≤ h0 a.e. on ∂Ω.

We have:

Theorem 8.13. Let Ω be a bounded, C2−domain. Assume that aij, bj, i, j =
1, ..., n, are Lipschitz in Ω and f ∈ L2 (Ω). Then u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C
{
‖u‖0 + ‖f‖0 + ‖gD‖H3/2(∂Ω)

}
(Dirichlet),

‖u‖H2(Ω) ≤ C
{
‖u‖0 + ‖f‖0 + ‖gR‖H1/2(∂Ω)

}
(Neumann/Robin).

If we increase the regularity of the domain, the coefficients and the data, the
smoothness of u increases accordingly to the following theorem.

Theorem 8.14. Let Ω be a bounded Cm+2−domain. Assume that aij, bj ∈
Cm+1

(
Ω
)
, cj, a0 ∈ Cm

(
Ω
)
, i, j = 1, ..., n, f ∈ Hm (Ω). If gD ∈ Hm+3/2 (∂Ω)

or gN ∈ Hm+1/2 (∂Ω) and h ∈ Cm+1 (∂Ω), then u ∈ Hm+2(Ω) and moreover,

‖u‖Hm+2(Ω) ≤ C
{
‖u‖0 + ‖f‖Hm(Ω) + ‖gD‖Hm+3/2(∂Ω)

}
(Dirichlet),

‖u‖Hm+2(Ω) ≤ C
{
‖u‖0 + ‖f‖Hm(Ω) + ‖gR‖Hm+1/2(∂Ω)

}
(Neumann, Robin).

In particular, if Ω is a C∞−domain, all the coefficients are in C∞
(
Ω
)
and the

boundary data are in C∞ (∂Ω), then u ∈ C∞
(
Ω
)
.

• A particular case. Let Ω be a C2−domain and f ∈ L2 (Ω). The Lax-Milgram
Theorem and Theorem 8.11 imply that the solution of the Dirichlet problem

{
−Δu = f in Ω

u = 0 on ∂Ω

belongs to H2(Ω) ∩H10 (Ω) and that

‖u‖H2(Ω) ≤ C ‖f‖0 = C ‖Δu‖0 . (8.73)

Since clearly we have
‖Δu‖0 ≤ ‖u‖H2(Ω)

we draw the following important conclusion:
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Corollary 8.2. If u ∈ H2(Ω) ∩H10(Ω), then

‖Δu‖0 ≤ ‖u‖H2(Ω) ≤ Cb ‖Δu‖0 .

In other words, ‖Δu‖0 and ‖u‖H2(Ω) are equivalent norms in H2(Ω) ∩H10(Ω).

In the next section, we will see an application of Corollary 8.2 to an equilibrium
problem for a bent plate.

• Domains with corners. The above regularity results hold for smooth domains.
However, in several applied situations, Lipschitz domains are the relevant ones.
For these domains the regularity theory is not elementary and goes beyond the
purposes of the present book. Thus, we only give an idea of what happens by
means of two examples.

Fig. 8.3. The case α =
3

2
π in Example 8.17

Example 8.2. Consider the plane sector:

Sα = {(r, θ) : 0 < r < 1,− α/2 < θ < α/2} (0 < α < 2π).

The function
u (r, θ) = r

π
α cos

π

α
θ

is harmonic in Sα, since it is the real part of f (z) = z
π
α , which is holomorphic in

Sα. Furthermore,

u (r,−α/2) = u (r, α/2) = 0, 0 ≤ r ≤ 1 (8.74)

and
u (1, θ) = cos

π

α
θ, 0 ≤ θ ≤ α. (8.75)

We focus on a neighborhood of the origin. If α = π, Sα is a semicircle and

u (r, θ) = Rez = x ∈ C∞
(
Sα
)
.
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Suppose α �= π. Since

|∇u|2 = u2r +
1

r2
u2θ =

π2

α2
r2(

π
α−1),

we have ∫

Sα

|∇u|2 dx1dx2 =
π2

α

∫ 1
0

r2
π
α−1dr =

π

2

so that u ∈ H1 (Sα) and is the unique weak solution of Δu = 0 in Sα with the
boundary conditions (8.74), (8.75). It is easy to check that for every i, j = 1, 2,

∣∣∂xixju
∣∣ ∼ r πα−2 as r→ 0

whence ∫

Sα

∣∣∂xixju
∣∣2 dx1dx2 �

∫ 1
0

r2
π
α−3dr.

This integral is convergent only for

2
π

α
− 3 > −1.

The conclusion is that u ∈ H2 (Sα) if and only if α ≤ π, i.e. if the sector is convex.
If α > π, u /∈ H2 (Sα).
Conclusion: in a neighborhood of a non convex angle, we expect a low degree

of regularity of the solution (less than H2).

Fig. 8.4. The solution of the mixed problem in Example 8.18

Example 8.3. As a second example, the function u (r, θ) = r
1
2 sin θ2 is a weak solu-

tion in the half circle

Sπ = {(r, θ) : 0 < r < 1, 0 < θ < π}
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of the mixed problem
⎧⎨
⎩

Δu = 0 in Sπ
u (1, θ) = sin θ

2
0 < θ < π

u (r, 0) = 0 and ∂x2u (r, π) = 0 0 ≤ r < 1.

Namely,

|∇u|2 = 1
4r
,

so that ∫

Sπ

|∇u|2 dx1dx2 =
π

4

whence u ∈ H1 (Sπ). Moreover,

∂x2u = ur sin θ +
1

r
uθ cos θ =

1

2
√
r
cos
θ

2

hence
∂x2u (r, π) = 0.

However, along the half-line θ = π/2, for example, we have

∣∣∂xixju
∣∣ ∼ r− 32 r ∼ 0

so that ∫

Sα

∣∣∂xixju
∣∣2 dx1dx2 ∼

∫ 1
0

r−2dr =∞.

and therefore u /∈ H2 (Sπ) .
Thus, the solution has a low order of regularity near the origin, even though

the boundary of Sπ is flat there. Note that the origin separates the Dirichlet and
Neumann regions (see Fig. 8.4).

Conclusion: in general, the optimal regularity of the solution of a mixed prob-
lem is less than H2 near the boundary between the Dirichlet and Neumann regions.

8.7 Equilibrium of a plate

The range of application of the variational theory is not confined to second order
equations. In this section we consider the vertical deflection u = u (x, y) of a bent
plate of small thickness (compared with the other dimensions) under the action of
a normal load. If Ω ⊂ R2 represents the transversal section of the plate, it can be
shown that u is governed by the fourth order equation

ΔΔu = Δ2u =
q

D
≡ f in Ω,

where q is the density of loading and D encodes the elastic properties of the mate-
rial. The operator Δ2 is called biharmonic or bi-laplacian and the solutions of
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Δ2u = 0 are called biharmonic functions. In two dimensions, the explicit expres-
sion of Δ2 is given by7

Δ2 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+
∂4

∂y4
.

If the plate is rigidly fixed along its boundary (clamped plate), then u and its
normal derivative must vanish on ∂Ω. Thus, we are led to the following boundary
value problem: {

Δ2u = f in Ω
u = ∂νu = 0 on ∂Ω.

(8.76a)

We want to derive a variational formulation. To obtain it, choose C20 (Ω) as space of

test functions, i.e. the set of functions in C2 (Ω), compactly supported in Ω. This
choice takes into account the boundary conditions. Now, multiply the biharmonic
equation by a function v ∈ C20(Ω) and integrate over Ω:

∫

Ω

Δ2u v dx =

∫

Ω

f v dx. (8.77)

Integrating by parts twice and using the conditions v = ∂νv = 0 on ∂Ω, we get:
∫

Ω

Δ2u v dx =

∫

Ω

(div∇Δu)v dx =
∫

∂Ω

∂ν (Δu)v dσ−
∫

Ω

∇Δu · ∇v dx

= −
∫

∂Ω

Δu∂νv dσ+

∫

Ω

ΔuΔv dx =

∫

Ω

ΔuΔv dx.

Thus, (8.77) becomes ∫

Ω

ΔuΔv dx =

∫

Ω

fv dx. (8.78)

Now we enlarge the space of test functions by taking the closure of C20(Ω) in
H2 (Ω), which isH20 (Ω). Note that (see subsection 7.9.2) this is precisely the space
of functions u such that u and ∂νu have zero trace on ∂Ω.
Since H20 (Ω) ⊂ H10 (Ω)∩H2 (Ω), from Corollary 8.2 we know that in this space

we may choose ‖u‖2 = ‖Δu‖0 as a norm. We are led to the following variational
formulation:

7 It is possible to give the definition of ellipticity for an operator of order higher than
two (see Renardy-Rogers, 2004). For instance, consider the linear operator with con-
stant coefficients L =∑|α|=m aαD

α, m ≥ 2, where α = (α1, ..., αn) is a multi-index.
Associate with L its symbol, given by

SL (ξ) =
∑

|α|=m
aα (iξ)

α .

Then L is said to be elliptic if SL (ξ) �= 0 for every ξ ∈Rn, ξ �= 0. The symbol of
L = Δ2 in 2 dimensions is −ξ41− 2ξ21ξ22− ξ42, which is negative if (ξ1, ξ2) �= (0, 0). Thus
Δ2 is elliptic. Note that, for m = 2, we recover the usual definition of ellipticity.
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Determine u ∈ H20 (Ω) such that
∫

Ω

ΔuΔv dx =

∫

Ω

fv dx, ∀v ∈ H20 (Ω) . (8.79)

The following result holds:

Proposition 8.9. If f ∈ L2 (Ω), there exists a unique solution u ∈ H20 (Ω) of
(8.79). Moreover,

‖Δu‖0 ≤ Cb ‖f‖0 .

Proof. Note that the bilinear form

B (u, v) =

∫

Ω

Δu ·Δv dx

coincides with the inner product in H20 (Ω). On the other hand, setting,

Lv =

∫

Ω

fv dx,

from Corollary 8.2, we have:

|L (v)| =
∫

Ω

|fv| dx ≤‖f‖0 ‖v‖0 ≤ Cb ‖f‖0 ‖Δv‖0

so that L ∈ H20 (Ω)∗. We conclude the proof directly from the Riesz Representation
Theorem. �

Remark 8.16. Let u be the solution of problem (8.79). Setting w = Δu, we have
Δw = f with f ∈ L2 (Ω). Thus, Corollary 8.2 implies w ∈ H2 (Ω) which, in turn,
yields u ∈ H4 (Ω).

8.8 A Monotone Iteration Scheme for Semilinear Equations

The weak maximumprinciple can be used to construct iteration schemes for solving
nonlinear boundary value problems. We consider here the following problem:

{
−Δu = f (u) in Ω
u = g on ∂Ω.

(8.80)

We assume that Ω is a smooth domain and that f ∈ C1 (R), g ∈ H1/2 (∂Ω). A
weak solution of problem (8.80) is a function u ∈ H1 (Ω) such that u = g on ∂Ω
and ∫

Ω

∇u · ∇v dx =
∫

Ω

f (u) v dx ∀v ∈ H10 (Ω) . (8.81)
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We need to introduce weak sub and super solutions. We say that u∗ ∈ H1 (Ω) is a
weak subsolution of problem (8.80) if u∗ ≤ g on ∂Ω and

∫

Ω

∇u∗ · ∇v dx ≤
∫

Ω

f (u∗) v dx ∀v ∈ H10 (Ω) , v ≥ 0 a.e. in Ω.

Similarly, we say that u∗ ∈ H1 (Ω) is a weak supersolution of problem (8.80) if
u∗ ≥ g on ∂Ω and

∫

Ω

∇u∗ · ∇v dx ≥
∫

Ω

f (u∗) v dx ∀v ∈ H10 (Ω) , v ≥ 0 a.e. in Ω.

We want to prove the following theorem.

Theorem 8.15. Assume that g is bounded on ∂Ω and that there exist a weak
subsolution u∗ and a weak supersolution u∗ of problem (8.80) such that:

a ≤ u∗ ≤ g ≤ u∗ ≤ b a, b ∈ R.

Then, there exists a solution u of problem (8.80) such that

u∗ ≤ u ≤ u∗.

Proof. Let M = max[a,b] |f ′|. Then the function F (s) = f (s) +Ms is nonde-
creasing. Write Poisson’s equation in the form

−Δu+Mu = F (u) .

The idea is to exploit the linear theory to define recursively the following sequence
{uk}k≥1 of functions: let u1 be the solution of

{
−Δu1 +Mu1 = F (u∗) in Ω

u1 = g on ∂Ω.

Given uk, let uk+1 be the solution of

{
−Δuk+1 +Muk+1 = F (uk) in Ω

uk = g on ∂Ω.
(8.82)

We claim that uk is non decreasing and trapped between u∗ and u∗:

u∗ ≤ uk ≤ uk+1 ≤ u∗ a.e. in Ω.

Assuming the claim, we deduce that uk converges a.e in Ω to some bounded func-
tion u, as k → +∞. Since F (a) ≤ F (uk) ≤ F (b), by the Dominated Convergence
Theorem we infer that

∫

Ω

F (uk) vdx→
∫

Ω

F (u) vdx as k→∞,
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for every v ∈ H10 (Ω). Now it is enough to show that there is a subsequence {ukj}
which converges weakly inH1 (Ω) to u, in order to pass to the limit in the equation

∫

Ω

(∇ukj+1 · ∇v +Mukj+1v) dx =
∫

Ω

F (ukj)v dx ∀v ∈ H10 (Ω)

and obtain (8.81).
We now prove the claim. Let us check that u∗ ≤ u1 a.e in Ω. Set h0 = u∗−u1.

Then sup∂Ω h
+
0 = 0 and

∫

Ω

(∇h0 · ∇v +Mh0v)dx ≤0, ∀v ∈ H10 (Ω) , v ≥ 0 a.e. in Ω.

From the proof of Theorem 8.9 we deduce h0 ≤ 0. Similarly, we infer that u1 ≤ u∗.
Now assume inductively that

u∗ ≤ uk−1 ≤ uk ≤ u∗ a.e. in Ω.

We prove that u∗ ≤ uk ≤ uk+1 ≤ u∗ a.e. in Ω. Let wk = uk − uk+1. We have
wk = 0 on ∂Ω and
∫

Ω

(∇wk · ∇v +Mwkv) dx =
∫

Ω

[F (uk−1) − F (uk)]v dx ∀v ∈ H10 (Ω) .

Since F is nondecreasing, we deduce that F (uk−1)− F (uk) ≤ 0 a.e. in Ω so that
∫

Ω

(∇wk · ∇v +Mwkv) dx ≤0 ∀v ∈ H10 (Ω) , v ≥ 0 a.e. in Ω.

Again, the proof of Theorem 8.9 yields wk ≤ 0 a.e. in Ω. Similarly, we infer that
u∗ ≤ uk and uk+1 ≤ u∗.
To complete the proof we have to show that uk ⇀ u, weakly in H

1 (Ω). This
follows from the estimate for the nonhomogeneous Dirichlet problem (8.82):

‖uk‖1,2 ≤ C (n,M,Ω)
{
‖F (uk−1)‖0 + ‖g‖H1/2(∂Ω)

}

≤ C1 (n,M,Ω)
{
F (b) + ‖g‖H1/2(∂Ω)

}
.

Since {uk} is bounded in H1 (Ω), there exists a subsequence weakly convergent to
u. �
The functions u∗ and u∗ in the above theorem are called lower and upper

barrier, respectively. Thus, Theorem 8.17 reduces the solvability of problem (8.80)
to finding a lower and an upper barrier. In general we cannot assert that the
solution is unique. Here is an example of non uniqueness.

Example 8.4. Consider the following problem for the stationary Fisher equation:
{
−Δu = u (1− u) in Ω

u = 0 on ∂Ω.
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Clearly, u∗ ≡ 0 is a solution. If we assume that the domain Ω is smooth and that
the first Dirichlet eigenvalue for the Laplace operator is λ1 < 1, we can show that
there exists a solution which is positive in Ω. In fact, u∗ ≡ 1 is an upper barrier.
We now exhibit a positive lower barrier. Let w1 be the nonnegative normalized
eigenfunction corresponding to λ1. From Remark 8.8 we know that w1 > 0 inside
Ω and from elliptic regularity,w1 is smooth up to ∂Ω. Let u∗ = σw1. We claim that,
if σ is positive and small enough, u∗ is a lower barrier. Indeed, since −Δw1 = λ1w1,
we have,

−Δu∗ − u∗ (1− u∗) = σw1(λ1 − 1 + σw1). (8.83)

If m = maxΩ̄ w1 and σ < (1 − λ1)/m, then the right hand side of (8.83) is
negative and u∗ is a lower barrier.
From Theorem 8.17 we infer the existence of a solution u such that w1 ≤ u ≤ 1.

�

The uniqueness of the solution of problem (8.80) is guaranteed if, for instance,
f is nonincreasing:

f ′ (s) ≤ 0, s ∈ R.
Then, if u1 and u2 are two solutions of (8.80), we have w = u1− u2 ∈ H10 (Ω) and
we can write

−Δw = f (u1) − f (u2) = c (x)w
where c (x) = f ′ (ū (x)), for a suitable ū between u1 and u2. Since c ≤ 0 we
conclude from the maximum principle that w ≡ 0 or u1 = u2.

8.9 A Control Problem

Control problems are more and more important in modern technology. We give
here an application of the variational theory we have developed so far, to a fairly
simple temperature control problem.

8.9.1 Structure of the problem

Suppose that the temperature u of a homogeneous body, occupying a smooth
bounded domain Ω ⊂ R3, satisfies the following stationary conditions:

{
Eu ≡ −Δu+ div (bu) = z in Ω

u = 0 on ∂Ω.
(8.84)

where b ∈C1
(
Ω;R3

)
is given, with divb ≥0 in Ω.

In (8.84) we distinguish two types of dependent variables: the control variable
z, that we take in H = L2 (Ω), and the state variable u.
Coherently, (8.84) is called the state system. Given a control z, from Corollary

8.1, (8.84) has a unique weak solution

u [z] ∈ V = H10 (Ω) .
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Thus, setting

a (u, v) =

∫

Ω

(∇u · ∇v − ub·∇v) dx,

u [z] satisfies the state equation

a (u [z] , v) = (z, v)0 ∀v ∈ V (8.85)

and
‖u [z]‖1 ≤ ‖z‖0 . (8.86)

From elliptic regularity (Theorem 8.13) it follows that u ∈ H2 (Ω) ∩ H10 (Ω), so
that u is a strong solution of the state equation and satisfies it in the a.e. pointwise
sense as well.
Our problem is to choose the source term z in order to minimize the

“distance” of u from a given target state ud.
Of course there are many ways to measure the distance of u from ud. If we are

interested in a distance which involves u and ud over an open subset Ω0 ⊆ Ω, a
reasonable choice may be

J (u, z) =
1

2

∫

Ω0

(u− ud)2 dx+
β

2

∫

Ω

z2dx (8.87)

where β > 0.
J (u, z) is called cost functional or performance index. The second term

in (8.87) is called penalization term; its role is, on one hand, to avoid using “too
large” controls in the minimization of J , on the other hand, to assure coercivity
for J , as we shall see later on.
Summarizing, we may write our control problem in the following way:

Find (u∗, z∗) ∈ H × V , such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J (u∗, z∗) = min
(u,z)∈V ×H

J (u, z)

under the conditions

Eu = z in Ω, u = 0 on ∂Ω

(8.88)

If (u∗, z∗) is a minimizing pair, u∗ and z∗ are called optimal state and optimal
control, respectively.

Remark 8.17. When the control z is defined in an open subset Ω0 of Ω, we say
that it is a distributed control. In some cases, z may be defined only on ∂Ω and
then is called boundary control.
Similarly, when the cost functional (8.87) involves the observation of u in Ω0 ⊆

Ω, we say that the observation is distributed. On the other hand, one may observe u
or ∂νu on Γ ⊆ ∂Ω. These cases correspond to boundary observations and the cost
functional has to take an appropriate form. Some examples are given in Problems
8.20–8.22.
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The main questions to face in a control problem are:

• Establish existence and/or uniqueness of an optimal pair (u∗, z∗).
• Derive necessary and/or sufficient optimality conditions.

• Construct algorithms for the numerical approximation of (u∗, z∗).

8.9.2 Existence and uniqueness of an optimal pair

Given z ∈ H , we may substitute into J the unique solution u = u [z] of (8.85) to
get the functional

J̃ (z) = J (u [z] , z) =
1

2

∫

Ω0

(u [z]− ud)2 dx+
β

2

∫

Ω

z2dx,

depending only on z. Thus, our minimization problem (8.88) is reduced to find an
optimal control z∗ ∈ H such that

J̃ (z∗) = min
z∈H
J̃ (z) . (8.89)

Once z∗ is known, the optimal state is given by u∗ = u [z∗].
The strategy to prove existence and uniqueness of an optimal control is to use

the relationship between minimization of quadratic functionals and abstract vari-
ational problems corresponding to symmetric bilinear forms, expressed in Propo-
sition 6.4. The key point is to write J̃ (z) in the following way:

J̃ (z) =
1

2
b (z, z) + Lz + q (8.90)

where q ∈ R (irrelevant in the optimization) and:
• b (z, w) is a bilinear form in H , symmetric, continuous and H−coercive;
• L is a linear, continuous functional in H .

Then, by Proposition 6.4, there exists a unique minimizer z∗ ∈ H . Moreover z∗ is
the minimizer if and only if z∗ satisfies the Euler equation (see (6.40))

J̃ ′ (z∗)w = b (z∗, w)− Lw = 0 ∀w ∈ H. (8.91)

This procedure yields the following result.

Theorem 8.16. There exists a unique optimal control z∗ ∈ H . Moreover, z∗ is
optimal if and only if the following Euler equation holds (u∗ = u [z∗]):

J̃ ′ (z∗)w =
∫

Ω0

(u∗ − ud)u [w] dx+β
∫

Ω

z∗w = 0 ∀w ∈ H. (8.92)
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Proof. According to the above strategy, we write J̃ (z) in the form (8.90).
First note that the map z �→ u [z] is linear. In fact, if α1, α2 ∈ R, then

u [α1z1 + α2z2] is the solution of Eu [α1z1 + α2z2] = α1z1 + α2z2u1. Since E is
linear,

E (α1u [z1] + α2u [z2]) = α1Eu [z1] + α2Eu [z2] = α1z1 + α2z2

and therefore, by uniqueness, u [α1z1 + α2z2] = α1u [z1] + α2u [z2].
As a consequence,

b (z, w) =

∫

Ω0

u [z] u [w] dx+β

∫

Ω

zw (8.93)

is a bilinear form and

Lw =

∫

Ω0

u [w]ud dx (8.94)

is a linear functional in H .
Moreover, b is symmetric (obvious), continuous and H−coercive. In fact, from

(8.86) and the Schwarz and Poincaré inequalities, we have, since Ω0 ⊆ Ω,

|b (z, w)| ≤ ‖u [z]‖L2(Ω0) ‖u [w]‖L2(Ω0) + β ‖z‖0 ‖w‖0
≤ (C2P + β) ‖z‖0 ‖w‖0

which gives the continuity of b. The H−coercivity of b follows from

b (z, z) =

∫

Ω0

u2 [z]dx+β

∫

Ω

z2 ≥ β ‖z‖20 .

Finally, from (8.86) and Poincarè’s inequality,

|Lw| ≤ ‖ud‖L2(Ω0) ‖u [w]‖L2(Ω0) ≤ CP ‖ud‖0 ‖w‖0 ,

and we deduce that L is continuous in H .
Now, if we set: q =

∫
Ω0
u2d dx, it is easy to check that

J̃ (z) =
1

2
b (z, z)− Lz + q.

Then, Proposition 6.4 yields existence and uniqueness of the optimal control and
Euler equation (8.91) translates into (8.92) after simple computations. �

8.9.3 Lagrange multipliers and optimality conditions

The Euler equation (8.92) gives a characterization of the optimal control z∗ but it
is not suitable for its computation.
To obtain more manageable optimality conditions, let us change point of view

by regarding the state equation Eu [z] = −Δu+div(bu) = z, with u = 0 on ∂Ω,
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as a constraint for our minimization problem. Then, the key idea is to introduce a
multiplier p ∈ V , to be chosen suitably later on, and write J̃ (z) in the augmented
form

1

2

∫

Ω0

(u [z]− ud)2 dx+
β

2

∫

Ω

z2dx+

∫

Ω

p (z − Eu [z]) dx. (8.95)

In fact, we have just added zero. Since z �−→ u [z] is a linear map,

L̃z =

∫

Ω

p (z − Eu [z]) dx

is a linear functional in H and therefore Theorem 8.15 yields the Euler equation:

J̃ ′ (z∗)w =
∫

Ω0

(u∗ − ud)u [w] dx+
∫

Ω

(p+βz∗)w dx−
∫

Ω

p Eu [w]dx = 0 (8.96)

for every w ∈ H . Now we integrate twice by parts the last term, recalling that
u [w] = 0 on ∂Ω. We find:

∫

Ω

pEu [w]dx =
∫

∂Ω

p (−∂νu [w] + (b · ν)u [w]) dσ +
∫

Ω

(−Δp− b · ∇p)u [w] dx

= −
∫

∂Ω

p ∂νu [w] dσ +

∫

Ω

E∗p u [w] dx,

where the operator E∗ = −Δ− b · ∇ is the formal adjoint of E .
Now we choose the multiplier: let p∗ be the solution of the following adjoint

problem: {
E∗p = (u∗ − ud)χΩ0 in Ω

p = 0 on ∂Ω.
(8.97)

Using (8.97), the Euler equation (8.96) becomes

J̃ ′ (z∗)w =
∫

Ω

(p∗ + βz∗)w dx =0 ∀w ∈ H, (8.98)

equivalent to p∗ + βz∗ = 0.
Summarizing, we have proved the following result:

Theorem 8.17. The control z∗ and the state u∗ = u (z∗) are optimal if and only
if there exists a multiplier p∗ ∈ V such that z∗, u∗ and p∗ satisfy the following
optimality conditions:

⎧⎪⎨
⎪⎩

Eu∗ = −Δu∗ + div (bu∗) = z∗ in Ω, u∗ = 0 on ∂Ω
E∗p∗ = −Δp∗ − b · ∇p∗ = (u∗ − ud)χΩ0 in Ω, p∗ = 0 on ∂Ω
p∗ + βz∗ = 0. (Euler equation).

Remark 8.18. The optimal multiplier p∗ is also called adjoint state.
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Remark 8.19. We may generate the state and the adjoint equations in weak form,
introducing the Lagrangian L = L (u, z, p), given by

L (u, z, p) = J (u, z)− a (u, p) + (z, p)0.

Notice that L is linear in p, therefore8

L′p (u∗, z∗, p∗) v = −a (u∗, v) + (z∗, v)0 = 0

corresponds to the state equation. Moreover

L′u (u∗, z∗, p∗)ϕ = J ′u (u∗, z∗)ϕ− a(ϕ, p∗)
= (u∗ − ud, ϕ)L2(Ω0) − a

∗(p∗, ϕ) = 0

generates the adjoint equation, while

L′z (u∗, z∗, p∗)w = β (w, z∗)0 + (w, p∗)0 = 0

constitutes Euler equation.

Remark 8.20. It is interesting to examine the behavior of J̃ (z∗) as β → 0. In our
case it is possible to show that J̃ (z∗)→ 0 as β → 0.

8.9.4 An iterative algorithm

From Euler equation (8.98) and the Riesz Representation Theorem, we infer that

p∗ + βz∗ is the Riesz element associated with J̃ ′ (z∗) ,

called the gradient of J at z∗ and denoted by the usual symbol ∇J (z∗) or by
δz (z∗, p∗). Thus, we have

∇J (z∗) = p∗ + βz∗.
It turns out that −∇J (z∗) plays the role of the steepest descent direction for J ,
as in the finite-dimensional case. This suggests an iterative procedure to compute
a sequence of controls {zk}k≥0, convergent to the optimal one.
Select an initial control z0. If zk is known (k ≥ 0), then zk+1 is computed

according to the following scheme.

1. Solve the state equation a (uk, v) = (zk, v)0, ∀v ∈ V.
2. Knowing uk, solve the adjoint equation

a∗ (pk, ϕ) = (uk − ud, ϕ)L2(Ω0) ∀ϕ ∈ V.

3. Set
zk+1 = zk − τk∇J (zk) (8.99)

8 L′p, L′z and L′u denote the derivatives of the quadratic functional L with respect to
p, z,u, respectively.
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and select the relaxation parameter τk in order to assure that

J (zk+1) < J (zk) . (8.100)

Clearly, (8.100) implies the convergence of the sequence {J (zk)}, though in
general not to zero. Concerning the choice of the relaxation parameter, there are
several possibilities. For instance, if β � 1, we know that the optimal value J (z∗)
is close to zero (Remark 8.23) and then we may chose

τk = J (zk) |∇J (zk)|−2 .

With this choice, (8.99) is a Newton type method:

zk+1 = zk −
∇J (zk)
|∇J (zk)|2

J (zk) .

Also τk = τ , constant, may work, as in the following example, where τ = 10.

Example 8.20. Let Ω = (0, 4) × (0, 4) ⊂ R
2 and Ω0 = (2.5, 3.5)× (2.5, 3.5).

Consider problem (8.88), with ud = χΩ0 , β = 10
−4 and state system

−Δu+ 3.5ux + 1.5uy = z, in Ω and u = 0 on ∂Ω.

According to Theorem 8.16, there exists a unique optimal control z∗. The adjoint
system is

−Δp− 3.5px − 1.5py = (u− 1)χΩ0 , in Ω and p = 0 on ∂Ω.

Figures 8.5 and 8.6 show the optimal state and the optimal control, respectively,
with their isolines. Note the hole at the center of Ω0 in the graph of z

∗, in which
z∗ attains a negative minimum. This is due to the fact that, without control, the

Fig. 8.5. Optimal state u∗ in Example 8.20



Problems 485

Fig. 8.6. Optimal control z∗ in Example 8.20

solution of the state equation tends to be smooth and greater than one on Ω0 so
that the control has to counterbalance this effect.9

Problems

8.1. Consider the Dirichlet problem
{
−(a(x)u′)′ + b (x)u′ + a0(x)u = f (x) , a < x < b)

u (a) = A, u (b) = B.

State and prove an existence, uniqueness and stability theorem.

[Hint: use Remark 8.3].

8.2. Write the weak formulation of the following problem:
{
(x2 + 1)u′′ − xu′ = sin 2πx 0 < x < 1

u (0) = u (1) = 0.

Show that there exists a unique solution u ∈ H10 (0, 1) and that ‖u′‖L2(0,1) ≤ 1/
√
2.

8.3. Fill in the details of the weak formulations of the Robin and mixed prob-
lem, in subsection 8.3.3.

8.4. Write the weak formulation of the following problem:
{
cosx u′′ − sinx u′ − xu = 1 0 < x < 1

u′ (0) = −u (0) , u (π/4) = 0
Discuss existence and uniqueness and derive a stability estimates.

9 For more on control theory see e.g. A.K. Aziz, J.W. Wingate and M.J. Balas eds, Con-
trol Theory of Systems Governed by Partial Differential Equations, Academic Press,
1977.
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8.5. Legendre equation. Let

X =
{
v ∈ L2 (−1, 1) :

(
1− x2

)1/2 ∈ L2 (−1, 1)
}

with inner product

(u, v)X =

∫ 1
−1

[
uv +

(
1− x2

)
u′v′

]
dx.

a) Check that (u, v)X is indeed an inner product and that X is a Hilbert space.

b) Study the variational problem

(u, v)V =

∫ 1
−1
fv dx for every v ∈ X (8.101)

where f ∈ L2 (−1, 1).
c) Determine the boundary value problem whose variational formulation is

(8.101).

[a) Hint: Use Theorem 7.4, with V = L2 (−1, 1) and Z = L2w (−1, 1), w (x) =(
1− x2

)1/2
. Check that Z ↪→ D (−1, 1) .

b) Hint: Use the Lax-Milgram Theorem.

c) Answer: The boundary value problem is

{
−
[
(1 − x2)u′

]′
+ u = f − 1 < x < 1

(1− x2)u′ (x)→ 0 as x→ ±1.

This is a Legendre equation with the natural Neumann conditions at both end
points].

8.6. Let V = H1per (0, 2π) =
{
u ∈ H1 (0, 2π) : u (0) = u (2π)

}
and F be the

linear functional

F : v �−→
∫ 2π
0

tv (t) dt.

(a) Check that F ∈ V ∗.
(b) According to Riesz’s Theorem, there is a unique element u ∈ V such that

(u, v)1,2 = 〈F, v〉∗, for every v ∈ V . Determine explicitly u.
8.7. Transmission conditions (I). Consider the problem

{
(p (x)u′)′ = f in (a, b)
u (a) = u (b) = 0

(8.102)

where f ∈ L2 (a, b), p (x) = p1 > 0 in (a, c) and p (x) = p2 > 0 in (c, b).
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Show that problem (8.102) has a unique weak solution in H1 (a, b), satisfying
the conditions: ⎧⎨

⎩
p1u

′′ = f in (a, c)
p2u

′′ = f in (c, b)
p1u

′ (c−) = p2u′ (c+) .
Observe the jump of the derivative of u at x = c (Fig. 8.7).

Fig. 8.7. The solution of the transmission problem (p (x)u′)′ = −1, u (0) = u (3) = 0,

with p (x) = 3 in (0, 1) and p (x) = 1/2 in (1, 3)

8.8. Let Ω = (0, 1)× (0, 1) ⊂ R2. Prove that the functional

E (v) =
1

2

∫

Ω

{
|∇v|2 − xv

}
dxdy

has a unique minimizer u ∈ H10 (Ω). Write the Euler equation and find an explicit
formula for u.

8.9. Consider the following subspace of H1 (Ω):

V =

{
u ∈ H1 (Ω) : 1|Ω|

∫

Ω

u dx = 0

}
.

a) Show that V is a Hilbert space with inner product (·, ·)1 and find which boundary
value problem has the following weak formulation:∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx, ∀v ∈ V.

b) Show that if f ∈ L2(Ω) there exists a unique solution.
8.10. Consider the following subspace of H1 (Ω):

V =

{
u ∈ H1 (Ω) : 1|∂Ω|

∫

∂Ω

u dσ = 0

}
.

Show that V is a Hilbert space with inner product (·, ·)1,2 and find which boundary
value problem has the following weak formulation:∫

Ω

{∇u · ∇v + uv} dx =
∫

Ω

fv dx, ∀v ∈ V.

May we apply the Lax-Milgram Theorem?
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[Answer : −Δu+ u = f , ∂νu = constant; yes, we may apply it].
8.11. Let Ω ⊂ Rn and g ∈ H1/2 (∂Ω). Define

H1g (Ω) =
{
v ∈ H1 (Ω) : v = g on ∂Ω

}
.

Prove the following theorem, known as Dirichlet principle: Among all the func-
tions v ∈ Hg, the harmonic one minimizes the Dirichlet integral

D (v) =

∫

Ω

|∇v|2 dx.

[Hint: In H1 (Ω) use the inner product

(u, v)1,∂ =

∫

∂Ω

uv dσ+

∫

Ω

∇u · ∇v dx

and the norm (see Problem 7.24):

‖u‖1,∂ =
(∫

∂Ω

u2 dσ+

∫

Ω

|∇u|2 dx
)1/2

. (8.103)

Then, minimizing D (v) over H1g (Ω) amounts to minimizing ‖v‖21,∂. Let u ∈
H1g(Ω), be harmonic in Ω. If v ∈ H1g(Ω), write v = u + w, with w ∈ H10 (Ω).
Show that (u, w)1,∂ = 0 and conclude that ‖u‖

2
1,∂ ≤ ‖v‖

2
1,∂].

8.12. Let E = −div(A (x)∇), with A symmetric. State and prove the ana-
logues of Theorems 8.5 and 8.6.

8.13. A simple system. Consider the Neumann problem for the following sys-
tem: ⎧⎨

⎩
−Δu1 + u1 − u2 = f1 in Ω
−Δu2 + u1 + u2 = f1 in Ω
∂νu1 = ∂νu2 = 0 on ∂Ω.

Derive a variational formulation and establish a well-posedness theorem.

[Hint: Variational formulation:

∫

Ω

{∇u1 · ∇v1 +∇u2 · ∇v2 + u1v1 − u2v1 + u1v2 + u2v2} =
∫

Ω

(f1v1 + f2v2)

for every (v1, v2) ∈ H1 (Ω) ×H1 (Ω)].
8.14. Transmission conditions (II). Let Ω1 and Ω be bounded, Lipschitz do-

mains in Rn such that Ω1 ⊂⊂ Ω. Let Ω2 = Ω\Ω1. In Ω1 and Ω2 consider the
following bilinear forms

ak (u, v) =

∫

Ωk

Ak (x)∇u · ∇v dx (k = 1, 2)
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with Ak uniformly elliptic. Assume that the entries of Ak are continuous in Ωk,
but that the matrix

A (x) =

{
A1 (x) in Ω1
A2 (x) in Ω2

may have a jump across Γ = ∂Ω1. Let u ∈ H10 (Ω) be the weak solution of the
equation

a (u, v) = a1 (u, v) + a2 (u, v) = (f, v)0 ∀v ∈ H10 (Ω) ,

where f ∈ L2 (Ω).
a) Which boundary value problem does u satisfy?

b) Which conditions on Γ do express the coupling between u1 and u2?

[Hint: b) u1|Γ = u2|Γ and A
1∇u1 · ν = A2∇u2 · ν, where ν points outward

with respect to Ω1].

8.15. Find the mistake in the following argument. Consider the Neumann prob-
lem {

−Δu+ c·∇u = f in Ω

∂νu = 0 on ∂Ω
(8.104)

with Ω smooth, c ∈C1
(
Ω
)
and f ∈ L2 (Ω). Let V = H1 (Ω) and

B (u, v) =

∫

Ω

{∇u · ∇v + (c·∇u)v} .

If divc = 0, we may write

∫

Ω

(c · ∇u)u dx =1
2

∫

Ω

c · ∇(u2) dx =
∫

∂Ω

u2c · ν dσ.

Thus, if c · ν ≥c0 > 0 then, recalling Problem 8.11,

B(u, u) ≥ ‖∇u‖20 + c0‖u‖2L2(∂Ω) ≥ C ‖u‖21,2
so that B is V −coercive and problem (8.104) has a unique solution!!
8.16. Let Ω = (0, π)× (0, π). Study the solvability of the Dirichlet problem

{
Δu+ 2u = f in Q

u = 0 on ∂Q.

In particular, examine the cases f (x, y) = 1 and f (x, y) = x− π/2.
8.17. Let B+1 =

{
(x, y) ∈ R2: x2 + y2 < 1, y > 0

}
. Examine the solvability of

the Robin problem {
−Δu = f in B+1

∂νu+ yu = 0 on ∂B+1 .
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8.18. Let Ω = (0, 1) × (0, 1), a0 ∈ R. Examine the solvability of the mixed
problem ⎧

⎨
⎩
Δu+ a0u = 1 in Ω

u = 0 on ∂Ω\ {y = 0}
∂νu = x on {y = 0} .

8.19. Derive a variational formulation of the following problem

{
Δ2u = f in Ω

Δu+ ρ∂νu = 0 on ∂Ω

where ρ is a positive constant.
Show that the right functional setting is H2 (Ω) ∩ H10 (Ω), i.e. the space of

functions in H2 (Ω) with zero trace. Prove the well-posedness of the resulting
problem.

[Hint: The variational formulation is

∫

Ω

Δu ·Δv dx+
∫

∂Ω

ρ∂νu · ∂νv dσ=
∫

Ω

fv dx, ∀v ∈ H2 (Ω) ∩H10 (Ω) .

To show the well-posedness, use ‖∂νv‖L2(∂Ω) ≤ ‖Δv‖0, ∀v ∈ H2 (Ω) ∩H10 (Ω)].
8.20. Distributed observation and control, Neumann conditions. Let Ω ⊂ R

n

be a bounded, smooth domain and Ω0 an open (non empty) subset of Ω. Set
V = H1 (Ω) , H = L2 (Ω) and consider the following control problem:

Minimize the cost functional

J (u, z) =
1

2

∫

Ω0

(u− ud)2 dx+
β

2

∫

Ω

z2dx

over (u, z) ∈ H1 (Ω)× L2 (Ω), with state system
{
Eu = −Δu+ a0u = z in Ω

∂νu = g on ∂Ω
(8.106)

where a0 is a positive constant, g ∈ L2 (∂Ω) and z ∈ L2 (Ω).
a) Show that there exists a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.

[a) Hint: Follow the proof of Theorem 8.15, observing that, if u [z] is the solution
of (8.106) the map z �−→ u [z]− u [0] is linear. Then write

J̃ (z) = 1
2

∫

Ω0

(u [z]− u [0] + u[0]− ud)2 dx+ β
2

∫

Ω

z2dx

and adjust the bilinear form (8.93) accordingly.
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b) Answer: The adjoint problem is (E = E∗)
{
−Δp+ a0p = (u− zd)χΩ0 in Ω

∂νp = 0 on ∂Ω.

Where χΩ0 is the characteristic function of Ω0. The Euler equation is: p+ βz = 0
in L2 (Ω)].

8.21. Distributed observation and boundary control, Neumann conditions. Let
Ω ⊂ Rn be a bounded, smooth domain. Consider the following control problem:
Minimize the cost functional

J (u, z) =
1

2

∫

Ω

(u− ud)2 dx+
β

2

∫

∂Ω

z2dx

over (u, z) ∈ H1 (Ω)× L2 (∂Ω), with state system
{
−Δu+ a0u = f in Ω

∂νu = z on ∂Ω

where a0 is a positive constant, f ∈ L2 (Ω) and z ∈ L2 (∂Ω).
a) Show that there exists a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.

[a) Hint: See problem 8.20, a).

b) Answer: The adjoint problem is is

{
−Δp+ a0p = u− zd in Ω

∂νp = 0 on ∂Ω

The Euler equation is: p+ βz = 0 in L2 (∂Ω)].

8.22. Boundary observation and distributed control, Dirichlet conditions. Let
Ω ⊂ Rn be a bounded, smooth domain. Consider the following control problem:
Minimize the cost functional

J (u, z) =
1

2

∫

∂Ω

(∂νu− ud)2 dσ +
β

2

∫

Ω

z2dx

over (u, z) ∈ H10 (Ω)× L2 (Ω), with state system
{
−Δu+ c · ∇u = f + z, in Ω

u = 0 on ∂Ω

where c is a constant vector and f ∈ L2 (Ω).
a) Show that, by elliptic regularity, J (u, z) is well defined and that there exists

a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.
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Weak Formulation of Evolution Problems

Parabolic Equations – Diffusion Equation – General Equations – The Wave Equation

9.1 Parabolic Equations

In Chapter 2 we have considered the diffusion equation and some of its generaliza-
tions, as in the reaction-diffusion model (Section 2.5) or in the Black-Scholes model
(Section 2.9). This kind of equations belongs to the class of parabolic equations,
that we have already classified in spatial dimension 1, in subsection 2.4.1 and that
we are going to define in a more general setting.

Fig. 9.1. Space-time cylinder

Let Ω ⊂ Rn be a bounded domain, T > 0 and consider the space-time cylinder
QT = Ω × (0, T ). Let A = A (x,t) be a square matrix of order n, b = b(x,t),
c = c (x, t) vectors in Rn, a0 = a0(x,t) and f = f(x,t) real functions. Equations
in divergence form of the type

ut − div(A∇u− bu) + c · ∇u+ a0u = f (9.1)

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
c© Springer-Verlag 2008, Milan
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or in non divergence form of the type

ut −Tr
(
AD2u

)
+ b · ∇u+ a0u = f (9.2)

are called parabolic in QT if

A (x,t) ξ · ξ > 0 ∀(x,t)∈QT , ∀ξ ∈ Rn, ξ �= 0.

For parabolic equations we may repeat the arguments concerning elliptic equa-
tions in Sections 9.1 and 9.2. Also in this case, different notions of solutions may
be given, with the obvious corrections due to the evolutionary nature of (9.1) and
(9.2). For identical reasons, we develop the theory for divergence form equations.
Thus, let

Eu = −div(A∇u− bu) + c · ∇u+ a0u.
Given f in QT , we want to determine a solution u, of the parabolic equation

ut + Eu = f in QT

satisfying an initial (or Cauchy) condition

u (x,0) = u0 (x) in Ω

and one of the usual boundary conditions (Dirichlet, Neumann, mixed or Robin)
on the lateral boundary ST = ∂Ω × [0, T ].
The star among parabolic equations is clearly the heat equation. We use the

Cauchy-Dirichlet problem for this equation to introduce a possible weak formu-
lation. This approach requires the use of integrals for function with values in a
Hilbert space and of Sobolev spaces involving time. A brief account of these no-
tions is presented in Section 7.11.

9.2 Diffusion Equation

9.2.1 The Cauchy-Dirichlet problem

Suppose we are given the problem
⎧
⎪⎨
⎪⎩

ut − αΔu = f inQT

u (x,0) = g (x) inΩ

u (σ,t) = 0 onST

(9.3)

where α > 0.
We want to find a weak formulation. Let us proceed formally. As we did several

times in Chapter 1, we multiply the diffusion equation by a smooth function v =
v (x), vanishing at the boundary of Ω, and integrate over Ω. We find

∫

Ω

ut (x,t) v (x) dx−α
∫

Ω

Δu (x,t) v (x) dx =

∫

Ω

f (x,t) v (x) dx.
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Integrating by parts the second term, we get
∫

Ω

ut (x,t) v (x) dx+α

∫

Ω

∇u (x,t) · ∇v (x) dx =
∫

Ω

f (x,t) v (x) dx. (9.4)

This looks like what we did for elliptic equations, except for the presence of ut.
Moreover, here we will have somehow to take into account the initial condition.
Which could be a correct functional setting?
First of all, since we are dealing with evolution equations, it is convenient to

adopt the point of view of section 7.11, and consider u = u (x, t) as a function of
t with values into a suitable Hilbert space V :

u: [0, T ]→ V.
When we adopt this convention, we write u (t) instead of u (x, t) and u̇ instead
of ut. Accordingly, we write f (t) instead of f (x, t). With these notations, (9.4)
becomes ∫

Ω

u̇ (t) v dx+α

∫

Ω

∇u (t) · ∇v dx =
∫

Ω

f (t) v dx. (9.5)

The homogeneous Dirichlet condition, i.e. u (t) = 0 on ∂Ω for t ∈ [0, T ], suggests
that the natural space for u (t) is V = H10 (Ω), at least for a.e. t ∈ [0, T ]. As usual,
in H10 (Ω) we use the inner product

(w, v)1 = (∇w,∇v)0
with corresponding norm ‖·‖1. Thus, the second integral in (9.5) may be written
in the form

(∇u (t) ,∇v)0 .
Also, it would seem to be appropriate that u̇ (t) ∈ L2 (Ω), looking at the first
integral. This however is not coherent with the choice u (t)∈H10 (Ω), since we have
Δu (t) ∈ H−1 (Ω) and

u̇ (t) = αΔu (t) + f (t) (9.6)

from the diffusion equation. Thus, we deduce that H−1 (Ω) is the natural space
for u̇ as well. Consequently, the first integral in (9.5) has to be interpreted as

〈u̇ (t) , v〉∗
where 〈·, ·〉∗ denotes the pairing between H−1 (Ω) and H10 (Ω).
A reasonable hypothesis on f is f ∈ L2 (QT ), which in the new notations

becomes1

f ∈ L2
(
0, T ;L2 (Ω)

)
.

Coherently, from (9.6) we require u∈L2
(
0, T ;H10 (Ω)

)
and u̇∈L2

(
0, T ;H−1 (Ω)

)
.

Now, from Theorem 7.22 we know that

u∈ C
(
[0, T ] ;L2 (Ω)

)

so that the initial condition u (0) = g makes perfect sense if we choose g ∈ L2 (Ω).

1 Also f ∈ L2 (0, T ; V ∗) is fine.
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The above arguments motivate the following definition. Consider the Hilbert
triplet (V,H, V ∗), where V = H10 (Ω), H = L2 (Ω) and V ∗ = H−1 (Ω). Recall that
Poincaré’s inequality holds in V :

‖v‖0 ≤ CP ‖v‖1 .
Finally, let

a (w, v) = α(∇w,∇v)0
Definition 9.1. A function u∈L2 (0, T ; V ) is called weak solution of problem
(9.3) if u̇∈L2 (0, T ; V ∗) and:
1. for every v ∈ V ,

〈u̇ (t) , v〉∗+a (u (t) , v)= (f (t) , v)0 a.e. t ∈ [0, T ] . (9.7)

2. u (0) = g.

Remark 9.1. Equation (9.7) may be interpreted in the sense of distributions. To
see this, observe that, for every v ∈ V , the real function

w (t) = 〈u̇ (t) , v〉∗
is a distribution in D′ (0, T ) and

〈u̇ (t) , v〉∗ =
d

dt
(u (t) , v)0 in D′ (0, T ) . (9.8)

This means that, for every ϕ ∈ D (0, T ), we have
∫ T

0

〈u̇ (t) , v〉∗ ϕ (t) dt = −
∫ T

0

(u (t) , v) ϕ̇ (t) dt.

In fact, since u (t) ∈ V , by Bochner’s Theorem 7.20 and the definition of u̇, we
may write

∫ T

0

〈u̇ (t) , v〉∗ ϕ (t) dt = 〈
∫ T

0

u̇ (t)ϕ (t) dt, v〉∗ = 〈−
∫ T

0

u (t) ϕ̇ (t) dt, v〉∗.

On the other hand,
∫ T
0
u (t) ϕ̇ (t) dt ∈ V so that 2

〈−
∫ T

0

u (t) ϕ̇ (t) dt, v〉∗ = (−
∫ T

0

u (t) ϕ̇ (t) dt , v)0 = −
∫ T

0

(u (t) , v)0 ϕ̇ (t) dt.

Thus w ∈ L1loc(0, T ) ⊂ D′ (0, T ) and (9.8) is true. As a consequence, equation (9.7)
may be written in the form

d

dt
(u (t) , v)0 + a (u (t) ,v) = (f, v)0 (9.9)

in the sense of distributions in D′ (0, T ), for all v ∈ V .
Remark 9.2. We leave it to the reader to check that if a weak solution u is smooth,
i.e. u ∈ C2,1

(
QT
)
, then u is a classical solution.

2 Recall from Section 6.8 that if u ∈ H and v ∈ V , 〈u, v〉∗ = (u, v)0.
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9.2.2 Faedo-Galerkin method (I)

We want to show that problem (9.3) has exactly one weak solution, which depends
continuously on the data in a suitable norm.
Although there are variants of the Lax-Milgram Theorem perfectly adapted to

solve evolution problems, we shall use the so-called Faedo-Galerkin method, also
more convenient for numerical approximations. Let us describe the main strategy.

1. We select a sequence of smooth functions {wk}∞k=1 constituting3

an orthogonal basis in V = H10 (Ω)

and
an orthonormal basis in H = L2 (Ω) .

In particular, we can write

g =

∞∑
k=1

gkwk

where gk = (g, wk)0 and the series converges in H .

2. We construct the sequence of finite-dimensional subspaces

Vm = span {w1, w2, ..., wm} .
Clearly

Vm ⊂ Vm+1 and ∪Vm = V.
For m fixed, let

um (t) =

m∑
k=1

ck (t)wk, Gm =

m∑
k=1

gkwk. (9.10)

We solve the following approximate problem: Determine um ∈ H1 (0, T ; V ), satis-
fying, for every s = 1, ..., m,{

(u̇m (t) , ws)0 + a (um (t) , ws) = (f (t) ,ws)0 , a.e t ∈ [0, T ]
um (0) = Gm.

(9.11)

Note that the differential equation in (9.11) is true for each element of the basis
ws, s = 1, ..., m, if and only if it is true for every v ∈ Vm. Moreover, since u̇m ∈
L2 (0, T ; V ), we have

(u̇m (t) , v)0 = 〈u̇m (t) , v〉∗ .
We call um a Galerkin approximation of the solution u.

3. We show that {um} and {u̇m} are bounded in L2 (0, T ; V ) and L2 (0, T ; V ∗),
respectively (energy estimates). Then, the weak compactness Theorem 6.11 implies
that a subsequence {umk} converges weakly in L2 (0, T ; V ) to some element u, while
{u̇mk} converges weakly in L2 (0, T ; V ∗) to u̇.
4. We prove that u in step 3 is the unique weak solution of problem (9.3).

3 This is possible since V is a separable Hilbert space. In particular, here we can choose
as wk the Dirichlet eigenfunctions of the Laplace operator, normalized with respect to
the norm in H (see Theorem 8.5).
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9.2.3 Solution of the approximate problem

The following lemma holds:

Lemma 9.1. For all m, there exists a unique solution um of problem (9.11). In
particular, since um ∈ H1 (0, T ; Vm), we have um ∈ C ([0, T ]; Vm).

Proof. Since w1, ..., wm are mutually orthonormal in L
2 (Ω), we have

(u̇m (t) , ws)0 =

(
m∑
k=1

ċk (t)wk, ws

)

0

= ċs (t) .

Also, w1, ..., wm is an orthogonal system in Vm, hence

a

(
m∑
k=1

ck (t)wk, ws

)
= α (∇ws,∇ws)0 cs (t) = α ‖∇ws‖

2
0 cs (t) .

Let
Fs (t) = (f (t) , ws) , Fm (t) = (F1 (t) , ..., Fm (t))

and
Cm (t) = (c1 (t) , ..., cm (t)) , gm = (g1, ..., gm) .

If we introduce the diagonal matrix

W = diag
{
‖∇w1‖20 , ‖∇w2‖

2
0 , ..., ‖∇wm‖

2
0

}

of order m, problem (9.11) is equivalent to the following system of m uncoupled
linear ordinary differential equations, with constant coefficients:

Ċm (t) = −αWCm (t) + Fm (t) , a.e. t ∈ [0, T ] (9.12)

with initial condition
Cm (0) = gm.

Since F ∈ L2 (0, T ;Rm), there exists a unique solution Cm (t) ∈ H1(0, T ;Rm).
From

um (t) =
m∑
k=1

ck (t)wk,

we deduce that um ∈ H1 (0, T ; Vm). �

Remark 9.3. We have chosen a basis {wk} orthonormal in L2 and orthogonal in
H10 because with respect to this base, the Laplace operator becomes a diagonal
operator, as it is reflected by the approximate problem (9.12). However, the method
works using any countable basis for both spaces. Problem (9.11) becomes

Ċm (t) = −M−1WCm (t) +M−1Fm (t) a.e. t ∈ [0, T ]
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where4

M =(Msk) , Msk = (ws, wk)0 ,

W =(Wsk) , Wsk = α (∇ws,∇wk)0 .
This is particularly important in the numerical implementation of the method,
where, in general, the elements of the basis in Vm are not mutually orthogonal.

9.2.4 Energy estimates

Our purpose is to show that we can extract from the sequence of Galerkin approx-
imations {um} a subsequence converging in some sense to a solution of problem
(9.3). This is a typical compactness problem in Hilbert spaces. The key tool is
Theorem 6.11: let H be a Hilbert space and {xm} ⊂ H a bounded sequence. Then,
{xm} has a subsequence {xmk} weakly convergent to x ∈ H . Moreover

‖x‖ ≤ lim inf
k→∞

‖xmk‖ . (9.13)

Thus, what we need is to show that suitable Sobolev norms of um can be
estimated by suitable norms of the data, and the estimates are independent
of m. Moreover, these estimates must be powerful enough in order to pass to the
limit as m→ +∞ in the approximating equation

(u̇m, v)0 + α (∇um,∇v)0 = (f, v)0 .

In our case we will be able to control the norms of um in L
∞ (0, T ;H) and

L2 (0, T ; V ), and the norm of u̇m in L
2 (0, T ; V ∗), that is the norms

max
t∈[0,T ]

‖um (t)‖0 ,
∫

Ω

‖um (t)‖21 dt and
∫

Ω

‖u̇m (t)‖2∗ dt

Thus, let um =
∑m

k=1 ck (t)wk be the solution of problem (9.11).

Theorem 9.1. (Estimate of um). For every t ∈ [0, T ], the following estimate
holds:

‖um (t)‖20 + α
∫ t

0

‖um (s)‖21 ds ≤ ‖g‖
2
0 +
C2P
α

∫ t

0

‖f (s)‖20 ds. (9.14)

Note in particular how estimate (9.14) deteriorates as α approaches to zero.
An alternative estimate is given in Problem 9.3.

Proof. Multiplying equation (9.11) by ck (t) and summing for k = 1, ..., m, we
get

(u̇m (t) , um (t))0 + a (um (t) , um (t)) = (f (t) ,um (t))0 (9.15)

4 Since w1, ...,wm is a basis in Vm, the matrix M is positive, hence non singular.
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for a.e. t ∈ [0, T ]. Now, note that

(u̇m (t) , um (t))0 =
1

2

d

dt
‖um (t)‖20 , a.e. t ∈ (0, T )

and
a (um (t) , um (t)) = α ‖∇um (t)‖20 = α ‖um (t)‖

2
1 .

From the inequalities of Schwarz and Poincaré and the elementary inequality

|ab| ≤ a
2

2ε
+
ε

2
b2 ∀a, b ∈ R, ∀ε > 0 (9.16)

with ε = α, we deduce

(f (t) ,um (t))0 ≤ ‖f (t)‖0 ‖um (t)‖0 ≤ CP ‖f (t)‖0 ‖um (t)‖1
≤ C

2
P

2α
‖f (t)‖20 +

α

2
‖um (t)‖21 .

Thus, from (9.15) we obtain

d

dt
‖um (t)‖20 + α ‖um (t)‖

2
1 ≤
C2P
α
‖f (t)‖20 .

We now integrate over (0, t), using formula (7.70) in Remark 7.34. Since um (0) =
Gm and observing that

‖Gm‖20 ≤ ‖g‖
2
0

by the orthogonality of w1, ..., wm in L
2 (Ω), we may write:

‖um (t)‖20 + α
∫ t

0

‖um (s)‖21 ds ≤ ‖Gm‖
2
0 +
C2P
α

∫ t

0

‖f (s)‖20 ds (9.17)

≤ ‖g‖20 +
C2P
α

∫ t

0

‖f (s)‖20 ds

which is (9.14). �

We now give an estimate of the norm of u̇m in L
2 (0, T ; V ∗).

Theorem 9.2. (Estimate of u̇m). The following estimate holds:

∫ T

0

‖u̇m (t)‖2∗ dt ≤ 2α ‖g‖
2
0 + 4C

2
P

∫ T

0

‖f (t)‖20 dt (9.18)

Proof. Let v ∈ V and write
v = w + z

where w ∈ Vm and z ∈ V ⊥m . We have

‖w‖1 ≤ ‖v‖1 .
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Let v = w in problem (9.11); this yields

(u̇m (t) , v)0 = (u̇m (t) , w)0 = −a (um (t) , w) + (f (t) ,w)0 .
Since

|a (um (t) , w)| ≤ α ‖um (t)‖1 ‖w‖1
we infer, using the Schwarz and Poincaré inequalities,

|(u̇m (t) , v)0| ≤ α ‖um (t)‖1 ‖w‖1 + ‖f (t)‖0 ‖w‖0
≤ {α ‖um (t)‖1 +CP ‖f (t)‖0} ‖w‖1
≤ {α ‖um (t)‖1 +CP ‖f (t)‖0} ‖v‖1 .

Then, by the definition of norm in V ∗, we may write

‖u̇m (t)‖∗ ≤ α ‖um (t)‖1 + CP ‖f (t)‖0 .
Squaring both sides and integrating over (0, t) we get5

∫ t

0

‖u̇m (s)‖2∗ ds ≤ 2α2
∫ t

0

‖um (s)‖21 ds+ 2C2P
∫ t

0

‖f (s)‖20 ds.

Using (9.14) to estimate 2α2
∫ t
0
‖um (s)‖21 ds, we easily obtain (9.18). �

9.2.5 Existence, uniqueness and stability

Theorems 9.1 and 9.2. show that the sequence of Galerkin’s approximations
{um} is bounded in L∞ (0, T ; V ), hence in L2 (0, T ; V ), while {u̇m} is bounded
in L2 (0, T ; V ∗).
We now use the compactness Theorem 6.11 and deduce that there exists a

subsequence, which for simplicity we still denote by {um}, such that, as m→∞,
um ⇀ u weakly in L2 (0, T ; V )

and6

u̇m ⇀ u̇ weakly in L2 (0, T ; V ∗) .

This u is the unique solution of problem (9.3). Precisely:

Theorem 9.3. Let f∈L2
(
0, T ;L2 (Ω)

)
and g ∈ L2 (Ω). Then, u is the unique

solution of problem (9.3). Moreover

‖u (t)‖20 + α
∫ T

0

‖u (t)‖21 dt ≤ ‖g‖
2
0 +
2C2P
α

∫ T

0

‖f (t)‖20 dt (9.19)

for every t ∈ [0, T ], and
∫ T

0

‖u̇ (t)‖2∗ dt ≤ 2α ‖g‖
2
0 + 4C

2
P

∫ T

0

‖f (t)‖20 dt. (9.20)

5 (a+ b)2 ≤ 2a2 + 2b2
6 Rigorously: u̇m → v in L2 (0, T ;V ∗) and one checks that v=u̇.
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Proof. Existence. To say that um ⇀ u, weakly in L
2 (0, T ; V ) as m → ∞,

means that
∫ T

0

(∇um (t) ,∇v (t))0 dt→
∫ T

0

(∇u (t) ,∇v (t))0 dt

for all v∈L2 (0, T ; V ). Similarly, u̇m ⇀ u̇, weakly in L2 (0, T ; V ∗), means that
∫ T

0

(u̇m (t) , v (t))0 dt =

∫ T

0

〈u̇m (t) , v (t)〉∗ dt→
∫ T

0

〈u̇ (t) , v (t)〉∗ dt

for all v∈L2 (0, T ; V ).
We want to use these properties to pass to the limit as m → +∞ in problem

(9.11), keeping in mind that the test functions have to be chosen in Vm. Fix
v∈L2 (0, T ; V ); we may write

v (t) =

∞∑
k=1

bk (t)wk

with the series convergent in V , for a.e. t ∈ [0, T ]. Let

vN (t) =

N∑
k=1

bk (t)wk (9.21)

and keep N fixed, for the time being. If m ≥ N , then vN ∈ L2 (0, T ; Vm). Multi-
plying equation (9.11) by bk (t) and summing for k = 1, ..., N , we get

(u̇m (t) , vN (t))0 + α (∇um (t) ,∇vN (t))0 = (f (t) ,vN (t))0 .

An integration over (0, T ) yields

∫ T

0

{(u̇m, vN)0 + α (∇um,∇vN)0} dt =
∫ T

0

(f, vN)0 dt. (9.22)

Thanks to the weak convergence of um and u̇m in their respective spaces, we can
let m→ +∞. Since

∫ T

0

(u̇m, vN)0 dt =

∫ T

0

〈u̇m, vN〉∗ dt→
∫ T

0

〈u̇, vN 〉∗ dt,

we obtain ∫ T

0

{〈u̇, vN〉∗ + α (∇u,∇vN)0} dt =
∫ T

0

(f, vN )0 dt.

Now, let N → ∞ observing that vN → v in L2 (0, T ; V ) and in particular weakly
in this space as well. We obtain

∫ T

0

{〈u̇, v〉∗ + α (∇u,∇v)0} dt =
∫ T

0

(f, v)0 dt. (9.23)
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Then, (9.23) is valid for all v ∈ L2 (0, T ; V ). This entails7

〈u̇ (t) , v〉∗ + α (∇u (t) ,∇v)0 dt = (f (t) , v)0
for all v∈V and a.e. t ∈ [0, T ]. Therefore u satisfies (9.7). From Theorem 7.22, we
know that u∈C ([0, T ] ;H).
It remains to check that u (t) satisfies the initial condition u (0) = g. Let

v∈C1 ([0, T ] ;V ) with v (T ) = 0. Integrating by parts (see Theorem 7.22, b)), we
obtain ∫ T

0

(u̇m, vN)0 dt = (Gm, vN (0))0 −
∫ T

0

(um, v̇N )0 dt

so that, from (9.22) we find

−
∫ T

0

{(um, v̇N)0 + α (∇um,∇vN )0} dt = − (Gm, vN (0))0 +
∫ T

0

(f, vN)0 dt.

Let first m→ ∞ and then N →∞; we get

−
∫ T

0

{(u, v̇)0 + α (∇u,∇v)0} dt = − (g, v (0))0 +
∫ T

0

(f, v)0 dt. (9.25)

On the other hand, integrating by parts in formula (9.23) (see again Theorem 7.22,
b)) we find

−
∫ T

0

{(u, v̇)0 + α (∇u,∇v)0} dt = (u (0) , v (0))0 +
∫ T

0

(f (t) , v (t))0 dt. (9.26)

Subtracting (9.25) from (9.26), we deduce

(u (0) , v (0))0 = (g, v (0))0

and the arbitrariness of v (0) forces

u (0) = g.

Uniqueness. Let u1 and u2 be weak solutions of the same problem. Then,
w = u1 − u2 is a weak solution of

〈ẇ (t) , v〉∗ + α (∇w (t) ,∇v)0 = 0

for all v∈V and a.e. t ∈ [0, T ], with initial data w (0) = 0. Choosing v = w (t) we
have
7 Precisely: equation (9.23) is valid, in particular, for v (t) of the form wkϕ (t), with
ϕ ∈ L2 (0, T ). Therefore, for each k there is a set Ek of measure zero, such that

〈u̇ (t) , wk〉∗ + α (∇u (t) ,∇wk)0 dt = (f (t) , wk)0 (9.24)

for all t /∈ Ek.Then, (9.24) holds for every k, as long as t /∈ ∪k≥1Ek. Since |∪k≥1Ek| = 0
and {wk} is a basis in V , we conclude that (9.24) holds for all v ∈ V , a.e. t ∈ [0, T ].



9.2 Diffusion Equation 503

〈ẇ (t) , w (t)〉∗ + α (∇w (t) ,∇w (t))0 = 0
or, using Remark 7.34,

1

2

d

dt
‖w (t)‖20 = −α ‖w (t)‖

2
1

whence, since ‖w (0)‖20 = 0,

‖w (t)‖20 = −
∫ T

0

−α ‖w (t)‖21 dt < 0

which entails w (t) = 0 for all t ∈ [0, T ]. This gives uniqueness of the weak solution.
Stability estimates. Letting m → +∞ in (9.14) and (9.18) we get, using

(9.13) and Proposition 7.16,

‖u‖2L∞(0,T ;H) , ‖u‖
2
L2(0,T ;V ) ≤ ‖g‖

2
0 +
C2P
α

∫ T

0

‖f‖20 dt

and

‖u̇‖2L(0,T ;V ∗) ≤ 2α ‖g‖
2
0 + 4C

2
P

∫ T

0

‖f‖20 dt

which give (9.19) and (9.20). �

Remark 9.4. As a by-product of the above proof, we deduce that, if f=0, u satisfies
the equation

d

dt
‖u (t)‖20 = −2α ‖u (t)‖

2
1 ≤ 0

which shows the dissipative nature of the diffusion equation.

9.2.6 Regularity

As in the elliptic case, the regularity of the solution improves with the regularity
of the data. Precisely, we have:

Theorem 9.4. Let Ω be a C2−domain and u be the weak solution of problem
(9.3). If g ∈ V , then u ∈ L2(0, T ;H2 (Ω)) ∩ L∞ (0, T ; V ) and u̇ ∈ L2 (0, T ;H).
Moreover

‖u‖L2(0,T ;H2(Ω)) + ‖u‖L∞(0,T ;V ) + ‖u̇‖L2(0,T ;H) ≤ C (α)
{
‖g‖V + ‖f‖L2(0,T ;H)

}
.

(9.27)

Proof. Multiplying equation (9.11) by ċk (t) and summing for k = 1, ..., m, we
get

‖u̇m (t)‖20 + α (∇um (t) ,∇u̇m (t))0 = (f (t) ,u̇m (t))0 (9.28)
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for a.e. t ∈ [0, T ]. Now, note that

(∇um (t) ,∇u̇m (t))0 =
1

2

d

dt
‖∇um (t)‖20 , a.e. t ∈ (0, T )

and that, from Schwarz’s inequality

(f (t) ,um (t))0≤‖f (t)‖0 ‖um (t)‖0 ≤
1

2
‖f (t)‖20 +

1

2
‖u̇m (t)‖20 .

From this inequality and (9.28), we infer

α
d

dt
‖∇um (t)‖20 + ‖u̇m (t)‖

2
0 ≤ ‖f (t)‖

2
0 a.e. t ∈ (0, T ) .

An integration over (0, t) yields

α ‖∇um (t)‖20 +
∫ t

0

‖u̇m (s)‖20 ds ≤
∫ t

0

‖f (s)‖20 ds+ ‖gm‖
2
1 . (9.29)

Passing to the limit as m → ∞ along an appropriate subsequence, we deduce
that the same estimate holds for u and therefore, that u ∈ L∞ (0, T ; V ) and u̇ ∈
L2 (0, T ;H). In particular, we may write (9.7) in the form:

α (∇u (t) ,∇v)0 = (f (t)− u̇ (t) , v)0 a.e. t ∈ [0, T ]

for all v ∈ V .
Now, the regularity theory for elliptic equations (Theorem 8.13) implies that

u (t) ∈ H2(Ω) for a.e. t ∈ [0, T ] and that

‖u (t)‖2H2(Ω) ≤ C (α,Ω)
{
‖g‖21 + ‖f (t)‖

2
0 + ‖u̇ (t)‖

2
0

}
.

Integrating and using (9.29), we obtain

u ∈ L2(0, T ;H2 (Ω))

and the estimate (9.27). �
Further regularity requires compatibility conditions on f and g. We limit our-

selves to consider the following situation in the case f = 0. Suppose we have
u ∈ C∞

(
QT
)
. Since u = 0 on the lateral side, we have

u = ∂tu = · · · = ∂jt u = · · · = 0, ∀j ≥ 0, on ∂Ω × (0,∞)

which hold, by continuity, also for t = 0. On the other hand, the heat equation
gives

∂tu = αΔu, ∂2t u = αΔ(∂tu) = αΔ
2u

and, in general,
∂jt u = αΔ

ju, ∀j ≥ 0, in QT .
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Since u ∈ C∞
(
QT
)
, these equations still hold for t = 0. As a consequence, we

conclude that

g = Δg = · · · = Δjg = · · · = 0 ∀j ≥ 0, on ∂Ω. (9.30)

Thus, conditions (9.30) are necessary in order to have u ∈ C∞
(
QT
)
. It turns

out that they are sufficient as well, as stated by the following theorem8.

Theorem 9.5. Let u be the weak solution of problem (9.3). If g ∈ Hm (Ω), for
every m ≥ 1, and conditions (9.30) hold, then u ∈ C∞

(
QT
)
.

9.2.7 The Cauchy-Neuman problem

The Faedo-Galerkin method works with the other common boundary conditions,
with small adjustments. Let us examine the weak formulation of the diffusion
equation,

〈u̇ (t) , v〉∗+a (u (t) , v)= (f (t) , v)0 , (9.31)

which must be true for all v ∈ V and a.e. in [0, T ]. For the Cauchy-Dirichlet
problem, the bilinear form a is

a (w, v) = α (∇w,∇v)0
which is a multiple of the inner product in V = H10(Ω). Thus, a is continuous but
also V−coercive, which is crucial for the method, as in the elliptic case.
However, once the relevant Hilbert triplet (V,H, V ∗) has been selected, for

parabolic equation it is enough that a be weakly coercive i.e that there exists
α > 0, λ ≥ 0 such that

a (v, v) + λ ‖v‖2H ≥ α ‖v‖
2
V ∀v ∈ V. (9.32)

Indeed, if (9.32) holds, set
w (t)=e−λtu (t) .

Then,
ẇ (t)=e−λtu̇ (t)− λe−λtu (t) = e−λtu̇ (t) − λw (t)

so that, if u solves (9.31), w solves

〈ẇ (t) , v〉∗+a (w (t) , v) + λ (w (t) , v)H =
(
e−λtf (t) , v

)
H

which is an equation of the same type, with the coercive bilinear form

ã (w, v) = a (w, v) + λ (w, v)H

and forcing term e−λtf (t). In other words, if the bilinear form a is only weakly
coercive, by a simple change of variable we may reduce ourselves to an equivalent

8 For the proof, see Evans, 1998.
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equation, associated with a modified coercive bilinear form (see however Problem
9.4).
For instance, consider the following Cauchy-Neumann problem9:

⎧⎪⎨
⎪⎩

ut − αΔu = f inQT

u (x,0) = g (x) in Ω

∂νu (σ,t) = 0 on ST .

(9.33)

where f ∈ L2 (QT ) and g ∈ L2 (Ω). For the weak formulation choose H = L2 (Ω)
and V = H1 (Ω) , where, we recall, inner product and norm are given by

(u, v)1,2 = (∇u,∇v)0 + (u, v)0 , ‖u‖21,2 = ‖∇u‖
2
0 + ‖u‖

2
0 .

A weak formulation of the Cauchy-Neumann problem may be stated as follows:

Find u∈L2 (0, T ; V ) such that u̇∈L2 (0, T ; V ∗) and

1. for all v ∈ V and a.e. t ∈ [0, T ],

〈u̇ (t) , v〉∗+a (u (t) , v)= (f (t) , v)0 ,

2. u (0) = g.

The bilinear form

a (u, v) = α (∇u,∇v)0
is weakly coercive: any λ > 0 works.
For simplicity, let λ = α; then

ã (w, v) = α {(∇u,∇v)0 + (u, v)0} .

With the change of variable

w (t)= e−αtu (t)

we are reduced to the following equivalent formulation:

Find w∈L2 (0, T ; V ) such that

ẇ∈L2 (0, T ; V ∗)

and

1. for all v ∈ V and a.e. t ∈ [0, T ],

〈ẇ (t) , v〉∗+ã (w (t) , v) =
(
e−αtf (t) , v

)
0
,

2. w (0) = g.

9 For nonhomogeneous Neumann conditions, see Problem 9.2.
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With small adjustments, the technique used for Dirichlet boundary conditions
yields existence and uniqueness of a unique solution w of the above Cauchy-
Neumann problem and therefore of the original problem. The stability estimates
for w take the form

‖w (t)‖20 +
∫ t

0

‖w (s)‖21,2 ds ≤ c(α)
{
‖g‖20 +

∫ t

0

e−2αs ‖f (s)‖20 ds
}

and ∫ t

0

‖ẇ (s)‖2∗ ds ≤ c(α)
{
‖g‖20 +

∫ t

0

e−2αs ‖f (s)‖20 ds
}

for all t ∈ [0, T ]. Going back to u, we obtain the following theorem.

Theorem 9.6. There exists a unique weak solution u of (9.31) satisfying the initial
condition u (0) = g. Moreover

∫ T

0

{
‖u (s)‖21,2 + ‖u̇ (s)‖

2
∗
}
ds ≤ C

{
‖g‖20 +

∫ T

0

‖f (s)‖20 ds
}

(9.34)

where C = C (α, T ).

9.2.8 Cauchy-Robin and mixed problems

Consider the problem

⎧
⎪⎨
⎪⎩

ut − αΔu = f inQT

u (x,0) = g (x) inΩ

∂νu (σ,t) + h (σ)u (σ,t) = 0 onST

where h ∈ L∞ (∂Ω) and h ≥ 0. For the weak formulation we choose H = L2 (Ω)
and V = H1 (Ω). As in the elliptic case, we consider the bilinear form

a (u, v) = α (∇u,∇v)0 +
∫

∂Ω

huv dσ. (9.35)

A weak formulation is the following:

Determine u∈L2 (0, T ; V ) such that u̇∈L2 (0, T ; V ∗) and

1. for all v ∈ V and a.e. t ∈ [0, T ],

〈u̇ (t) , v〉∗+a (u (t) , v)= (f (t) , v) ,

2. u (0) = u0.

The following theorem holds.
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Theorem 9.7. There exists a unique weak solution u of the Cauchy-Robin prob-
lem. Moreover, the inequality (9.34) holds for u, with C = C(α,Ω, ‖h‖L∞(∂Ω)).

Proof. We may argue as in the case of Neumann conditions. The bilinear form
(9.35) is continuous and weakly coercive for any λ > 0, since10 h ≥ 0 on ∂Ω.
Choosing λ = α, we have

ã (u, v) = α {(∇u,∇v)0 + (u, v)0}+
∫

∂Ω

huv dσ ≥ α (u, v)1,2 .

Moreover, thanks to the trace inequality (see Theorem 7.11)

‖u‖L2(∂Ω) ≤ C∗ ‖u‖1,2 (9.36)

we may write

|ã (u, v)| ≤ α ‖u‖1,2 ‖v‖1,2 + ‖h‖L∞(∂Ω) ‖u‖L2(∂Ω) ‖v‖L2(∂Ω)
≤ (α+ C∗ ‖h‖L∞(∂Ω)) ‖u‖1,2 ‖v‖1,2

whence ã is continuous as well. Setting

w (t)=e−αtu (t) ,

we are led to determine w∈L2 (0, T ; V ) such that ẇ∈L2 (0, T ; V ∗) and

1. for all v ∈ V and a.e. t ∈ [0, T ],

〈ẇ (t) , v〉∗+ã (w (t) , v)=
(
e−αtf (t) , v

)
,

2. w (0) = u0.

Then, the energy inequalities follow as in the case of the Dirichlet problem.
For the existence and uniqueness of the weak solution, we need only to observe
that the trace inequality (9.36) gives, for the Galerkin approximations {um}, the
estimate

∫ T

0

‖um (t)‖2L2(∂Ω) dt ≤ C2∗
∫ T

0

‖um (t)‖21,2 dt ≤ C(α, T )
{
‖g‖20 +

∫ T

0

‖f (s)‖20 ds
}
.

Thus, {um} has a subsequence weakly convergent in L2 (∂Ω). Therefore we can
pass to the limit as m→ +∞ in the term

∫

∂Ω

hum (t) vdσ

as well. �
10 If |h| ≤M on ∂Ω, a is weakly coercive for λ large enough (check it).
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Finally, we consider the mixed problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − αΔu = f inQT

u (x,0) = g (x) in Ω

∂νu (σ,t) = 0
u (σ,t) = 0

on ΓN × [0, T ]
on ΓD × [0, T ].

where ΓD is a relatively open subset of ∂Ω and ΓN = ∂Ω\ΓD. For the weak
formulation we choose H = L2 (Ω) and V = H10,ΓD (Ω), with inner product

(u, v)1 = (∇u,∇v)0
and norm ‖·‖1. Recall that in H10,ΓD (Ω) Poincaré’s inequality holds:

‖v‖0 ≤ CP ‖v‖1 .

The bilinear form
a (w, v) = α (∇w,∇v)0

is continuous and V−coercive. Reasoning as in the case of the Dirichlet condition,
we conclude that:

Theorem 9.8. There exists a unique weak solution u of the initial-mixed problem.
Moreover, the inequalities (9.19) and (9.20) hold.

9.2.9 A control problem

Using the same techniques of Section 8.8, we may solve simple control problems
for the diffusion equation. Consider, for instance, the problem of minimizing the
cost functional

J (u, z) =
1

2

∫

Ω

|u (T )− ud|2 dx+
β

2

∫

QT

z2dxdt

under the condition (state system)

⎧
⎨
⎩
ut −Δu = z in QT
u = 0 onST
u (x,0) = g (x) in Ω.

(9.37)

Thus, we want to control the distributed heat flux in QT , given by z, in order to
minimize the distance from ud of the final observation of u, given by
u (T ).

If g ∈ L2 (Ω) and the class of admissible controls is L2 (QT ), we know from The-
orem 9.3 that problem (9.37) has a unique weak solution u = u [z] for every control
z. Moreover, we assume that Ω is a C2−domain and that g ∈ H10 (Ω), so that The-
orem 9.4 implies that, actually, u ∈ L2

(
0, T ;H2 (Ω)

)
and u̇ ∈ L2

(
0, T ;L2 (Ω)

)
.
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Substituting u [z] into J , we obtain the functional

J̃ (z) = J (u [z] , z) =
1

2

∫

Ω

(u [T ; z]− ud)2 dx+
β

2

∫

QT

z2dxdt, (9.38)

where we have set u [t; z] = u[z] (t).
Since the mapping z �→ u [z]− u [0] is linear (why?), we write

J̃ (z) =
1

2

∫

Ω

(u [T ; z]− u [T ; 0] + u [T ; 0]− ud)2 dx+
β

2

∫

QT

z2dxdt,

and then it is easy to check that J̃ has the form

J̃ (z) =
1

2
b (z, z) + Lz + q

where

b (z, w) =

∫

Ω

(u [T ; z]− u [T ; 0]) (u [T ;w]− u [T ; 0]) dx+β
∫

QT

zw dxdt

and

Lz =

∫

Ω

(u [T ; z]− u [T ; 0]) (u [T ; 0]− ud) dx

with q = 1
2

∫
Ω
(u [T ; 0]− ud)2 dx.

Following the proof of Theorem 8.15 we deduce that there exists a unique
optimal control z∗, with corresponding optimal state u∗ = u[z∗]. Moreover, the
optimal control is characterized by the following Euler equation:

J̃ ′ (z∗) [w] = b (z∗, w) + Lw = 0

which, after some adjustments becomes

J̃ ′ (z∗) [w] =
∫

Ω

(u∗ (T ) − ud) (u [T ;w]− u [T ; 0]) dx+ β
∫

QT

z∗w dxdt =0

for every w ∈ L2 (QT ).
Using the method of Lagrange multiplier as in subsection 8.8.3 we may obtain

a more manageable set of optimality conditions. In fact, let us write the cost
functional (9.38) in the following augmented form, highlighting the role of the
linear map z �→ u [z]− u [0]:

J̃ (z) =
1

2

∫

Ω

(u [T ; z]− ud)2 dx+
β

2

∫

QT

z2dxdt

+

∫

QT

p {z − (u̇ [z]− u̇ [0]) +Δ(u [z]− u [0])} dxdt

where p is a multiplier. Note that we have just added zero to J̃ .
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The Euler equation for the augmented functional becomes:

J̃ ′ (z∗) [w] =
∫

Ω

(u∗ (T )− ud) (u [T ;w]− u [T ; 0]) dx+
∫

QT

(βz∗ + p)w dxdt +

−
∫

QT

p {(u̇ [w]− u̇ [0]) −Δ(u [w]− u [0])} dxdt=0

for all w ∈ L2 (QT ). We now integrate by parts the last integral. We have, since
u [0;w]− u [0; 0] = g − g = 0:

∫

QT

p (u̇ [w]− u̇ [0])dxdt =
∫ T

0

∫

Ω

p (u̇ [w]− u̇ [0])dxdt

=

∫

Ω

p (T ) (u [T ;w]− u [T ; 0])dx−
∫

QT

ṗ (u [w]− u [0])dxdt.

Furthermore, since u [w]− u [0] = 0 on ST ,
∫

QT

p Δ(u [w]− u [0])dxdt =
∫

ST

p (uν [w]− uν [0]) dσdt−
∫

QT

∇p · ∇(u [w]− u [0])dxdt

=

∫

ST

p (uν [w]− uν [0]) dσdt+
∫

QT

Δp (u [w]− u [0])dxdt.

Let the multiplier p be the unique solution of the following adjoint problem:

⎧⎨
⎩
pt +Δp = 0 in QT
p = 0 onST
p (x,T ) = − (u∗ (T )− ud) in Ω.

(9.39)

Then the Euler equation reduces to

J̃ ′ (z∗) [w] =
∫

QT

(βz∗ + p)w dxdt = 0 ∀w ∈ L2 (QT )

whence

βz∗ + p = 0. (9.40)

Let us summarize the above results. The control z∗and the state u∗ [z∗] are
optimal if and only if there exist a multiplier p∗ ∈ L2

(
0, T ;H2 (Ω)

)
, with ṗ∗ ∈

L2
(
0, T ;L2 (Ω)

)
, such that z∗, u∗ and p∗ satisfy the state system (9.37), the

adjoint system (9.39) and the Euler equation (9.40).

Remark 9.5. Note that the adjoint system is a final value problem for the backward
heat equation, which is a well posed problem.
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9.3 General Equations

9.3.1 Weak formulation of initial value problems

We now consider divergence form operators11

Eu = −divA∇u+ c·∇u+ a0u.

The matrix A =(ai,j (x,t)), in general different from a multiple of the identity ma-
trix, encodes the anisotropy of the medium with respect to diffusion. For instance,
(see subsection 2.6.2) a matrix of the type

⎛
⎝
α 0 0
0 ε 0
0 0 ε

⎞
⎠

with α � ε > 0, denotes higher propensity of the medium towards diffusion
along the x1−axis, than along the other directions. As in the stationary case, for
the control of the stability of numerical algorithms, it is important to compare the
effects of the drift, reaction and diffusion terms. We make the following hypotheses:

(a) the coefficients c, a0 are bounded (i.e. all belong to L
∞(QT )), with

|c| ≤ γ, |a0| ≤ γ0, a.e. in QT .

(b) E is uniformly elliptic:

α |ξ|2 ≤ A (x,t) ξ · ξ ≤ K |ξ|2 for all ξ ∈Rn, ξ �= 0, a.e. (x,t) ∈ QT .

We consider initial value problems of the form:

⎧⎪⎨
⎪⎩

ut + Eu = f inQT

u (x,0) = g (x) x ∈ Ω
Bu (σ,t) = 0 (σ,t) ∈ ST

(9.41)

where Bu stands for one of the usual homogeneous boundary conditions. For in-
stance, Bu = ∂νu for the Neumann condition.
The weak formulation of problem (9.41) follows the pattern of the previous

sections. Let us briefly review the main ingredients.

Functional setting. The functional setting is constituted by a Hilbert triplet
(V,H, V ∗), where H = L2 (Ω) and H10 (Ω) ⊆ V ⊆ H1(Ω). The choice of V depends
on the type of boundary condition we are dealing with. The familiar choices are
V = H10 (Ω) for the homogeneous Dirichlet condition, V = H

1(Ω) for the Neumann
or Robin condition, V = H10,ΓD(Ω) in the case of mixed conditions.

11 For simplicity we consider b = 0, but the extension of the results to the case b �= 0 is
straightforward,
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The bilinear form. We set

a (u, v; t) =

∫

Ω

{A∇u · ∇v + (c·∇u) v + a0uv} dx

and, in the case of Robin condition,

a (u, v; t) =

∫

Ω

{A∇u · ∇v + (c·∇u)v + a0uv} dx+
∫

∂Ω

huv dσ

where we require h ∈ L∞ (∂Ω), h ≥ 0 an ∂Ω. Notice that a is time dependent, in
general.
Under the stated hypotheses, it is not difficult to show that

|a (u, v; t)| ≤M ‖u‖V ‖v‖V
so that a is continuous in V . The constant M depends on K, γ, γ0 that is, on
the size of the coefficients aij, cj , a0 (and on ‖h‖L∞(∂Ω) in the case of Robin
condition).
Also, a is weakly coercive. In fact from (9.16), we have, for every ε > 0:

∫

Ω

(c·∇u)u dx ≥ −γ ‖∇u‖
0
‖u‖0

≥ −γ
2

[
ε ‖∇u‖20 +

1

ε
‖u‖20

]

and ∫

Ω

a0u
2dx ≥ −γ0 ‖u‖20

whence, as h ≥ 0 a.e. on ∂Ω,

a (u, u; t) ≥
[
α− γ0ε

2

]
‖∇u‖2

0
−
[ γ
2ε
+ γ0

]
‖u‖20 . (9.42)

We distinguish three cases:

If γ = 0 and γ0 = 0 the bilinear form is V−coercive when V = H10 (Ω). If
H10(Ω) ⊆ V ⊆ H1(Ω),

ã (u, v; t) = a (u, v; t) + λ0 (u, v)0 (9.43)

is V −coercive for any λ0 > 0.
If γ = 0 and γ0 > 0, (9.43) is V −coercive for any λ0 > γ.
If γ > 0, choose in (9.42)

ε =
α

γ
and λ0 = 2

[ γ
2ε
+ γ0

]
= 2

[
γ2

2α
+ γ0

]
.

Then

ã (u, v; t) ≥ α
2
‖∇u‖20 +

λ0

2
‖u‖20 ≥ min

{
α

2
,
λ0

2

}
‖u‖21,2

so that a is weakly coercive.
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The data g and f . We assume g ∈ H and f∈L2 (0, T ; V ∗)
The solution. We look for u such that u (t) ∈ V , at least a.e. t ∈ [0, T ]. Since

v �−→ a (u,v;t)

and f (t) are elements of V ∗, a.e. t ∈ [0, T ], we ask u̇ (t) ∈ V ∗ a.e. in [0, T ] as well.
Moreover we require that ‖u (t)‖V and ‖u̇ (t)‖V ∗ belongs to L2 (0, T ).
The weak formulation. The above considerations lead to the following weak

formulation of the initial-boundary value problem:

Given f∈L2 (0, T ; V ∗) and g ∈ L2 (Ω), determine u∈L2 (0, T ; V ) such that
u̇∈L2 (0, T ; V ∗) and that:
1. for all v ∈ V and a.e. t ∈ [0, T ],

〈u̇ (t) , v〉∗ + a (u (t) ,v; t) = 〈f (t) , v〉∗ , (9.44)

2. u (0) = g.

Again, since u ∈ C ([0, T ] ;H), condition 2 means ‖u (t) − g‖0 → 0 when t →
0+. As for the heat equation, (9.44) may be written in the equivalent form

d

dt
(u (t) , v) + a (u (t) ,v; t) = 〈f (t) , v〉∗

for all v ∈ V and in the sense of distributions in D′ [0, T ].
If a is not coercive, we make the change of variable

w (t)=e−λ0tu (t)

and (9.44) becomes

〈u̇ (t) , v〉∗ + ã (u (t) ,v; t) = 〈e−λ0tf̃ (t) , v〉∗
with the coercive bilinear form

ã (u, v; t) = a (u, u; t)+ λ0 (u, v)0 .

Every stability estimate for w translates into a corresponding estimate for u, times
the factor eλ0t.

9.3.2 Faedo-Galerkin method (II)

We want to show that our initial value problem has a unique weak solution, which
continuously depends on the data, in the appropriate norms. The method of Faedo-
Galerkin may be used also in this case, as in the previous sections, with small
corrections only.
Choose an orthonormal basis {wk} in H , orthogonal in V , and let

Vm = span {w1, w2, ..., wm} .
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Look at the projected equation

〈u̇m, v〉∗ + a (um,v; t) = 〈f, v〉∗ ∀v ∈ Vm (9.45)

where um = um (t) =
∑m

k=1 ck (t)wk.

Galerkin approximations. Inserting v = ws, s = 1, ..., m, into (9.45) we are
led to the following linear system of ordinary differential equations:

{
C′m (t) = −W (t)Cm (t) +F (t) , a.e. t ∈ [0, T ] ,
Cm (0) = gm.

(9.46)

where Cm (t) = (c1 (t) , ..., cm (t)), the entries of the matrixW are

Wsk (t) = a (wk, ws, t)

and
Fs (t) = 〈f (t) , ws〉∗ , Fm (t) = (F1 (t) , ..., Fm (t)) ,

gs = (g, ws) , gm = (g1, ..., gm) .

Since F ∈L2 (0, T ;Rm) and Wsk∈L∞ (0, T ), for every m ≥ 1 there exists a unique
solution um ∈ H1 (0, T ; Vm) of Problem (9.46).
The energy estimates for um and their proofs, necessary to pass to the limit in

(9.45), are perfectly analogous to those indicated in Theorems 9.1 and 9.2.
If a is not coercive, we make the change of variable

w (t)=e−λ0tu (t)

and (9.44) becomes

〈u̇ (t) , v〉∗ + ã [(u (t) ,v; t)] = 〈e−λ0tf̃ (t) , v〉∗
with the coercive bilinear form

ã (u, v; t) = a (u, u; t)+ λ0 (u, v)0 .

Every stability estimate for w translates into a corresponding estimate for u, times
the factor eλ0t. Precisely, we have:

Estimates of um and u̇m. Let um be the solution of problem (9.46). Then

max
t∈[0,T ]

‖um (t)‖20 + α
∫ T

0

‖um‖2V dt ≤ C
{∫ T

0

‖f‖2∗ dt+ ‖g‖
2
0

}
(9.47)

and

∫ T

0

‖u̇m‖2∗ dt ≤ C
{∫ T

0

‖f‖2∗ dt+ ‖g‖
2
0

}
(9.48)

where C depends only on Ω, α,K, β, γ, T .



516 9 Weak Formulation of Evolution Problems

Existence and uniqueness. From (9.47), the sequence {um} of Galerkin
approximations is bounded in L2 (0, T ; V ), while, from (9.48), {u̇m} is bounded in
L2 (0, T ; V ∗). Thus, there exists a subsequence of {um}, which we still denote by
{um}, such that, for m→∞,

um ⇀ u weakly in L2 (0, T ; V )

and

u̇m ⇀ u̇ weakly in L2 (0, T ; V ∗) .

Then:

Theorem 9.9. If f∈L2
(
0, T ;L2 (Ω)

)
and g ∈ L2 (Ω), u is the unique weak solu-

tion of problem (9.41). Moreover

max
t∈[0,T ]

‖u (t)‖20 + α
∫ T

0

‖u‖2V dt ≤ C
{∫ T

0

‖f‖2∗ dt+ ‖g‖
2
0

}

∫ T

0

‖u (t)‖2∗ dt ≤ C
{∫ T

0

‖f‖2∗ dt+ ‖g‖
2
0

}

where C depends only on Ω, α,K, β, γ, T .

Fig. 9.2. The solution of problem (9.49) in Example 9.1

Remark 9.6. The method works with non homogeneous boundary conditions as
well. For instance, for the initial-Dirichlet problem, if the data is the trace of a
function ϕ ∈ L2

(
0, T ;H1 (Ω)

)
with ϕ̇ ∈ L2

(
0, T ;L2 (Ω)

)
, the change of variable

w = u− ϕ reduces the problem to homogeneous boundary conditions.
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Example 9.1. Figure 9.2 shows the graph of the solution of the Cauchy-Dirichlet
problem ⎧⎪⎨

⎪⎩

ut − uxx + 2ux = 0.2tx 0 < x < 5, t > 0

u (x,0) = max (2− 2x, 0) 0 < x < 5

u (0, t) = 2− t/6, u (5, t) = 0 t > 0

(9.49)

Note the tendency of the drift term 2ux, to “transport to the right” initial data
and the effect of the source term 0.2tx to increase the solution near x = 5, more
and more with time.

9.4 The Wave Equation

9.4.1 Hyperbolic Equations

The wave propagation in a nonhomogeneous and anisotropic medium leads to
second order hyperbolic equations. With the same notations of section 9.1, an
equation in divergence form of the type

utt − div(A (x,t)∇u) + b(x,t) · ∇u+ c (x,t)u = f (x,t) (9.50)

or in non-divergence form of the type

utt − tr(A (x,t)D2u) + b(x,t) · ∇u+ c (x,t)u = f (x,t) (9.51)

is called hyperbolic in QT = Ω × (0, T ) if

A (x,t) ξ · ξ > 0 a.e. (x,t)∈QT , ∀ξ ∈ Rn, ξ �= 0.

The typical problems for hyperbolic equations are those already considered for the
wave equation. Given f in QT , we want to determine a solution u of (9.50) or
(9.51) satisfying the initial conditions

u (x,0) = g (x) , ut (x,0) = h (x) in Ω

and one of the usual boundary conditions (Dirichlet, Neumann, mixed or Robin)
on the lateral boundary ST = ∂Ω × [0, T ].
Even if from the phenomenological point of view, the hyperbolic equations dis-

play substantial differences from the parabolic ones, for divergence form equations
it is possible to give a similar weak formulation,which can be analyzed by means of
Faedo-Galerkin method. We will limit ourselves to the Cauchy-Dirichlet problem
for the wave equation. For general equations, the theory is more complicated, un-
less we assume that the coefficients ajk, entries of the matrix A, are continuously
differentiable with respect to both x and t.



518 9 Weak Formulation of Evolution Problems

9.4.2 The Cauchy-Dirichlet problem

Consider the problem

⎧⎪⎨
⎪⎩

utt − c2Δu = f inQT

u (x,0) = g (x) , ut (x,0) = g
1 (x) x ∈Ω

u (σ,t) = 0 (σ,t) ∈ ST .
(9.52)

To find an appropriate weak formulation, multiply the wave equation by a function
v = v (x), vanishing at the boundary, and integrate over Ω. We find

∫

Ω

utt (x,t) v (x) dx−c2
∫

Ω

Δu (x,t) v (x) dx =

∫

Ω

f (x,t) v (x) dx.

Integrating by parts the second term, we get

∫

Ω

utt (x,t) v (x) dx+c
2

∫

Ω

∇u (x,t) · ∇v (x) dx =
∫

Ω

f (x,t) v (x) dx (9.53)

which becomes, in the notations of the previous sections,

∫

Ω

ü (t) v dx+α

∫

Ω

∇u (t) · ∇v dx =
∫

Ω

f (t) v dx

where ü stays for utt. Again the natural space for u is L
2
(
0, T ;H10 (Ω)

)
. Thus, a.e.

t > 0, u (t)∈V=H10 (Ω), and Δu (t) ∈ V ∗ = H−1 (Ω). On the other hand, from
the wave equation we have

utt = c
2Δu+ f.

If f∈L2 (0, T ;H), with H = L2 (Ω), it is natural to require ü∈L2 (0, T ; V ∗).
Accordingly, a reasonable assumption for u̇ is u̇ ∈ L2 (0, T ;H), an intermediate

space between L2 (0, T ; V ) and L2 (0, T ; V ∗). Thus, we look for solutions u such
that

u ∈ L2 (0, T ; V ) , u̇ ∈ L2 (0, T ;H) , ü∈L2 (0, T ; V ∗) . (9.54)

It can be shown12 that, if u satisfies (9.54), then,

u ∈ C ([0, T ]; V ) and u̇ ∈ C ([0, T ] ;H) .

Thus, it is reasonable to assume u (0) = g ∈ V , u̇ (0) = g1 ∈ H .
The above considerations lead to the following weak formulation.

Given f∈L2 (0, T ; V ∗) and g ∈ V , g1 ∈ H , determine u∈L2 (0, T ; V ) such that

u̇ ∈ L2 (0, T ;H) , ü∈L2 (0, T ; V ∗)

and that:

12 Lions-Magenes, Chapter 3, 1972.
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1. for all v ∈ V and a.e. t ∈ [0, T ],

〈ü (t) , v〉∗ + c2 (∇u (t) ,∇v)0 = (f (t) , v)0 , (9.55)

2. u (0) = g, u̇ (0) = g1

Remark 9.7. Equation (9.55) may be interpreted in the sense of distributions in
D′ (0, T ). First observe that, for every v ∈ V , the real function

w (t) = 〈ü (t) , v〉∗

is a distribution D′ (0, T ) and

w (t) =
d2

dt2
(u (t) , v)0 in D′ (0, T ) . (9.56)

This means that for every ϕ ∈ D (0, T ) we have
∫ T

0

w (t)ϕ (t) dt =

∫ T

0

(u (t) , v) ϕ̈ (t) dt.

In fact, since u (t) ∈ V ∗, we may write, thanks to Bochner’s Theorem,
∫ T

0

w (t)ϕ (t) dt =

∫ T

0

〈ü (t) , v〉∗ ϕ (t) dt =
〈∫ T

0

ü (t)ϕ (t) dt, v

〉

∗

=

(∫ T

0

u (t) ϕ̈ (t) dt , v

)

0

=

∫ T

0

(u (t) , v))0ϕ̈ (t) dt.

for all ϕ ∈ D (0, T ) . Since the last integral is well defined, w ∈ L1loc (0, T ) and
therefore w ∈ D′ (0, T ). Moreover, by definition,

∫ T

0

(u (t) , v) ϕ̈ (t) dt =

∫ T

0

d2

dt2
(u (t) , v) ϕ (t) dt

in D′ (0, T ), which is (9.56). As a consequence, (9.55) may be written in the form

d2

dt2
(u (t) , v)0 + c

2 (∇w (t) ,∇v)0 = (f (t) , v)0 (9.57)

for all v ∈ V and in the sense of distributions in [0, T ].

Remark 9.8. We leave it to the reader to check that if a weak solution u is smooth,
i.e. u ∈ C2

(
QT
)
, then u is a classical solution.
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9.4.3 Faedo-Galerkin method (III)

We want to show that problem (9.52) has a unique weak solution, which con-
tinuously depends on the data, in appropriate norms. Once more, we are going
to use the method of Faedo-Galerkin, so that we briefly review the main steps,
emphasizing the differences with the parabolic case.

1. We select a sequence of smooth functions {wk}∞k=1 constituting

an orthogonal basis in V

and

an orthonormal basis in H.

In particular, we can write

g =

∞∑
k=1

gkwk, g1 =

∞∑
k=1

g1kwk

where gk = (g, wk)0, g
1
k =

(
g1, wk

)
0
, with the series converging in H .

2. Let

Vm = span {w1, w2, ..., wm}
and

um (t) =

m∑
k=1

rk (t)wk, Gm =

m∑
k=1

gkwk, G1m =

m∑
k=1

g1kwk.

We construct the sequence of Galerkin approximations um by solving the following
projected problem:

Determine um ∈ H2 (0, T ; V ) such that, for all s = 1, ..., m,
{
(üm (t) , ws)0 + c

2 (∇um (t) ,∇ws)0 = (f (t) ,ws)0 , 0 ≤ t ≤ T
um (0) = Gm, u̇m (0) = G

1
m.

(9.58)

Note that the differential equation in (9.58) is true for each element of the
basis ws, s = 1, ..., m, if and only if it is true for every v ∈ Vm. Moreover, since
um ∈ H2 (0, T ; V ) we have üm ∈ L2 (0, T ; V ), so that

(üm (t) , v)0 = 〈üm (t) , v〉∗ .

3. We show that {um}, {u̇m} and {üm} are bounded inL2 (0, T ; V ),L2 (0, T ;H)
and L2 (0, T ; V ∗), respectively (energy estimates). Then, the weak compactness
Theorem 6.11 implies that a subsequence {umk} converges weakly in L2 (0, T ; V )
to u, while {u̇mk} and {ümk} converge weakly in L2 (0, T ;H) and L2 (0, T ; V ∗) to
u̇ and ü.

4. We prove that u in step 3 is the unique weak solution of problem (9.52).
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9.4.4 Solution of the approximate problem

The following lemma holds.

Lemma 9.2. For all m ≥ 1, there exists a unique solution to problem (9.58). In
particular, since um ∈ H2 (0, T ; V ) , we have um ∈ C1 ([0, T ]; V ).

Proof. Observe that, since w1, w2, ...,wm are orthonormal in H ,

(üm (t) , ws)0 =

(
m∑
k=1

r̈k (t)wk, ws

)

0

= r̈k (t)

and since they are orthogonal in V ,

c2

(
m∑
k=1

rk (t)∇wk,∇ws
)

0

= c2 (∇ws,∇ws)0 rs (t) = c2 ‖∇ws‖
2
0 rs (t) .

Set

Fs (t) = (f (t) , ws) , F (t) = (F1 (t) , ..., Fm (t))

and

Rm (t) = (r1 (t) , ..., rm (t)) , gm = (g1, ..., gm) , g
1
m =

(
g11 , ..., g

1
m

)
.

If we introduce the diagonal matrix

W = diag
{
‖∇w1‖20 , ‖∇w2‖

2
0 , ..., ‖∇wm‖

2
0

}

of order m, problem (9.58) is equivalent to the following system of m uncoupled
linear ordinary differential equations, with constant coefficients:

R̈m (t) = −c2WRm (t) +Fm (t) , a.e. t ∈ [0, T ] (9.59)

with initial conditions

Rm (0) = gm. Ṙm (0) = g
1
m.

Since Fs ∈ L2 (0, T ), for all s = 1, ..., m, system (9.59) has a unique solution
Rm (t) ∈ H2(0, T ;Rm). From

um (t) =

m∑
k=1

rk (t)wk,

we deduce um ∈ H2 (0, T ; V ). �
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9.4.5 Energy estimates

We want to show that from the sequence of Galerkin approximations {um} it is
possible to extract a subsequence converging to the weak solution of the original
problem. As in the parabolic case, we are going to prove that the relevant Sobolev
norms of um can be controlled by the norms of the data, in a way that does
not depend on m. Moreover, the estimates must be powerful enough in order to
pass to the limit as m→ +∞ in the approximating equation.

(üm (t) , v)0 + c
2 (∇um (t) ,∇v)0 = (f (t) , v)0 .

In this case we can give a bound of the norms of um in L
∞ (0, T ; V ), of u̇m in

L∞ (0, T ;H) and of ü in L2 (0, T ; V ∗), that is the norms

max
t∈[0,T ]

‖um‖1 , max
t∈[0,T ]

‖u̇m‖0 and

∫ T

0

‖üm (t)‖2∗ dt.

For the proof, we shall use the following elementary but very useful lemma.

Lemma 9.3. (Gronwall). Let Ψ , G be continuous in [0, T ], with G nondecreasing
and γ > 0. If

Ψ (t) ≤ G (t) + γ
∫ t

0

Ψ (s) ds, for all t ∈ [0, T ]

then

Ψ (t) ≤ G (t) eγt, for all t ∈ [0, T ] .

Proof. Let

R (s) = γ

∫ s

0

Ψ (r) dr.

Then, for all t ∈ [0, T ],

R′ (s) = γΨ (s) ≤ γ
[
G (s) + γ

∫ s

0

Ψ (r) dr

]
= γ [G (s) + R (s)] .

Multiplying both sides by exp (−γt), we can write the above inequality in the form

d

ds
[R (s) exp (−γt)] ≤ γG (s) exp (−γt) .

Integrating over (0, t) gives (R (0) = 0):

R (t) ≤ γ
∫ t

0

G (s) eγ(t−s)ds ≤ G (t) eγt, for all t ∈ [0, T ] .

�
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Theorem 9.10. (Estimate of um, u̇m). Let um be the solution of problem (9.58).
Then

max
t∈[0,T ]

{
‖u̇m (t)‖20 + 2c2 ‖um (t)‖

2
1

}
≤ eT

{
‖g‖21 +

∥∥g1∥∥2
0
+ ‖f‖2L2(0,T ;H)

}
. (9.60)

Proof. Since um ∈ H2 (0, T ; V ), we may choose v = u̇m (t) as a test function in
(9.58). We find

(üm (t) , u̇m (t))0 + c
2 (∇um (t) ,∇u̇m (t))0 = (f (t) , u̇m (t))0 (9.61)

for a.e. t ∈ [0, T ]. Observe that

(üm (t) , u̇m (t))0 =
1

2

d

dt
‖u̇m (t)‖20 , a.e. t ∈ (0, T )

and

(∇um (t) ,∇u̇m (t))0 = c2
d

dt
‖∇um (t)‖20 .

By Schwarz’s inequality,

(f (t) , u̇m (t))0≤‖f (t)‖0 ‖u̇m (t)‖0 ≤
1

2
‖f (t)‖20 +

1

2
‖u̇m (t)‖20

so that, from (9.61) we deduce

d

dt

{
‖u̇m (t)‖20 + 2c2 ‖um (t)‖

2
1

}
≤ ‖f (t)‖20 + ‖u̇m (t)‖

2
0 .

Integrating over (0, t) we get (Remark 7.34 applied to u̇m and ∇um)

‖u̇m (t)‖20 + 2c2 ‖um (t)‖
2
1

≤ ‖Gm‖21 +
∥∥G1m

∥∥2
0
+

∫ t

0

‖f (s)‖20 ds+
∫ t

0

‖u̇m (s)‖20 ds

≤ ‖g‖21 +
∥∥g1∥∥2

0
+

∫ t

0

‖f (s)‖20 ds+
∫ t

0

‖u̇m (s)‖20 ds,

since
‖Gm‖21 ≤ ‖g‖

2
1 ,

∥∥G1m
∥∥2
0
≤
∥∥g1∥∥2

0
.

Let

Ψ (t) = ‖u̇m (t)‖20 + 2c2 ‖um (t)‖
2
1 , G (t) = ‖g‖

2
1 +

∥∥g1∥∥2
0
+

∫ t

0

‖f (s)‖20 ds.

Note that both Ψ and G are continuous in [0, T ]. Then

Ψ (t) ≤ G (t) +
∫ t

0

Ψ (s) ds
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and Gronwall Lemma yields, for every t ∈ [0, T ],

‖u̇m (t)‖20 + 2c2 ‖um (t)‖
2
1 ≤ et

{
‖g‖21 + ‖h‖

2
0 +

∫ t

0

‖f‖20 ds
}

�

We now give a control of the norm of üm in L
2 (0, T ; V ∗).

Theorem 9.11. (Estimate of üm). Let um be the solution of problem (9.58).
Then

∫ T

0

‖üm (t)‖2∗ dt ≤ C(c, T )
{
‖g‖21 +

∥∥g1∥∥2
0
+

∫ T

0

‖f (s)‖20 ds.
}

(9.62)

Proof. Let v ∈ V and write
v = w + z

with w ∈ Vm = span{w1, w2, ..., wm} and z ∈ V ⊥m . Since w1, ..., wk are orthogonal
in V , we have

‖w‖1 ≤ ‖v‖1 .

Choosing w as a test function in problem (9.58), we obtain

(üm (t) , v)0 = (üm (t) , w)0 = −c2 (∇um (t) ,∇w)0 + (f (t) ,w)0 .

Since

|(∇um (t) ,∇w)0| ≤ ‖um (t)‖1 ‖w‖1
we may write

|(üm (t) , v)0| ≤
{
c2 ‖um (t)‖1 + ‖f (t)‖0

}
‖w‖1

≤
{
c2 ‖um (t)‖1 + ‖f (t)‖0

}
‖v‖1 .

Thus, by the definition of norm in V ∗, we infer

‖üm (t)‖∗ ≤ c2 ‖um (t)‖1 + ‖f (t)‖0 .

Squaring and integrating over (0, T ) we obtain

∫ T

0

‖üm (t)‖2∗ dt ≤ 2c4
∫ T

0

‖um (t)‖21 dt+ 2
∫ T

0

‖f (t)‖20 dt

and Theorem 9.10 gives (9.62). �
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9.4.6 Existence, uniqueness and stability

Theorem 9.10 shows that the sequence {um} of Galerkin approximations is
bounded in L∞ (0, T ; V ), hence, in particular, in L2 (0, T ; V ), while the sequence
{üm} is bounded in L2 (0, T ; V ∗).
Theorem 6.11 implies that there exists a subsequence, which for simplicity we

still denote by {um}, such that, as m→∞,

um ⇀ u weakly in L2 (0, T ; V )

u̇m ⇀ u̇ weakly in L2 (0, T ;H)

üm ⇀ ü weakly in L2 (0, T ; V ∗) .

The following theorem holds:

Theorem 9.12. Let f∈L2 (0, T ;H), g ∈ V , g1 ∈ H. Then u is the unique weak
solution of problem (9.52). Moreover,

‖u‖2L∞(0,T ;V ) + ‖u̇‖
2
L∞(0,T ;H) + ‖ü‖

2
L2(0,T ;V ∗) ≤ C

{
‖f‖2L2(0,T ;H) + ‖g‖

2
1 +

∥∥g1∥∥2
0

}

with C = C (c, T ).

Proof . Existence. We know that:

∫ T

0

(∇um (t) ,∇v (t))0 dt→
∫ T

0

(∇u (t) ,∇v (t))0 dt

for all v∈L2 (0, T ; V ),
∫ T

0

(u̇m (t) , w (t))0 dt→
∫ T

0

(u̇ (t) , w (t))0 dt

for all w∈L2 (0, T ;H), and
∫ T

0

(üm (t) , v (t))0 =

∫ T

0

〈üm (t) , v (t)〉∗ dt→
∫ T

0

〈ü (t) , v (t)〉∗ dt

for all v∈L2 (0, T ; V ),
We want to use these properties to pass to the limit as m → +∞ in problem

(9.58), keeping in mind that the test functions have to be chosen in Vm. Fix
v∈L2 (0, T ; V ); we may write

v (t) =

∞∑
k=1

bk (t)wk

where the series converges in V for a.e. t ∈ [0, T ]. Let

vN (t) =

N∑
k=1

bk (t)wk (9.63)
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and keep N fixed, for the time being. If m ≥ N , then vN ∈ L2 (0, T ; Vm) . Multi-
plying equation (9.58) by bk (t) and summing for k = 1, ..., N , we get

(üm (t) , vN (t))0 + c
2 (∇um,∇vN )0 = (f (t) ,vN (t))0 .

An integration over (0, T ) yields

∫ T

0

{
(üm, vN)0 + c

2 (∇um,∇vN)0
}
dt =

∫ T

0

(f, vN)0 dt. (9.64)

Thanks to the weak convergence of um and üm in their respective spaces, we can
let m→ +∞. Since

(üm (t) , vN (t))0 = 〈üm (t) , vN (t)〉∗ → 〈ü (t) , vN (t)〉∗ ,

we obtain ∫ T

0

{
〈ü, vN〉∗ + c2 (∇u,∇vN )0

}
dt =

∫ T

0

(f, vN)0 dt.

Now, let N →∞, observing that vN → v in L2 (0, T ; V ) and, in particular, weakly
in this space as well. We obtain

∫ T

0

{
〈ü (t) , v (t)〉∗ + c2 (∇u (t) ,∇v (t))0

}
dt =

∫ T

0

(f (t) , v (t))0 dt. (9.65)

Then, (9.65) is valid for all v ∈ L2 (0, T ; V ). This entails, in particular (see footnote
7),

〈ü (t) , v〉∗ + c2 (∇u (t) ,∇v)0 dt = (f (t) , v)0
for all v∈V and a.e. t ∈ [0, T ]. Therefore u satisfies (9.55) and we know that
u∈C ([0, T ] ;V ), u̇∈C ([0, T ] ;H).
To check the initial conditions, we proceed as in Theorem 9.3. We choose any

function v ∈ C2 ([0, T ]; V ), with v (T ) = v̇ (T ) = 0. Integrating by parts twice in
(9.65), we find

∫ T

0

{
〈u (t) , v̈ (t)〉∗ + c2 (∇u (t) ,∇v (t))0

}
dt (9.66)

=

∫ T

0

(f (t) , v (t))0 dt+ (u̇ (0) , v̇ (0))− (u (0) , v (0)) .

On the other hand, integrating by parts twice in (9.64), and letting first m→ +∞,
then N →∞, we deduce

∫ T

0

{
〈u (t) , v̈ (t)〉∗ + c2 (∇u (t) ,∇v (t))0

}
dt (9.67)

=

∫ T

0

(f (t) , v (t))0 dt+
(
g1, v̇ (0)

)
− (g, v (0)) .
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Comparing (9.66) and (9.67), we conclude

(u̇ (0) , v̇ (0))− (u (0) , v (0)) =
(
g1, v̇ (0)

)
− (g, v (0))

for every v ∈ C2 ([0, T ]; V ), with v (T ) = v̇ (T ) = 0. The arbitrariness of v̇ (0) and
v (0) gives

u̇ (0) = g1 and u (0) = g.

Uniqueness. Assume g = g1 ≡ 0 and f ≡ 0. We want to show that u ≡ 0. The
proof would be easy if we could choose u̇ as a test function in (9.55), but u̇ (t) does
not belong to V . Thus, for fixed s, set13

v (t) =

{∫ s
t u (r) dr if 0 ≤ t ≤ s
0 if s ≤ t ≤ T .

We have v (t) ∈ V for all t ∈ [0, T ], so that we may insert it into (9.55). After an
integration over (0, T ), we deduce

∫ s

0

{
〈ü (t) , v (t)〉∗ + c2 (∇u (t) ,∇v (t))0

}
dt = 0. (9.68)

An integration by parts yields

∫ s

0

〈ü (t) , v (t)〉∗ dt = −
∫ s

0

(u̇ (t) , v̇ (t))0 dt =

∫ s

0

(u̇ (t) , u (t))0 dt

=
1

2

∫ s

0

d

dt
‖u (t)‖20 dt

since v (s) = u̇ (0) = 0 and v̇ (t) = −u (t) if 0 < t < s. On the other hand,
∫ s

0

(∇u (t) ,∇v (t))0 dt = −
∫ s

0

(∇v̇ (t) ,∇v (t))0 dt = −
1

2

∫ s

0

d

dt
‖∇v (t)‖20 dt.

Hence, from (9.68),

∫ s

0

d

dt

{
‖u (t)‖20 − c2 ‖∇v (t)‖

2
0

}
dt = 0

or

‖u (s)‖20 + c2 ‖∇v (0)‖
2
0 = 0

which entails u (s) ≡ 0.
Stability. To prove the estimate in Theorem 9.12, use Proposition 7.16. to pass

to the limit asm→∞ in (9.60). This gives the estimates for u and u̇. The estimate
for ü follows from the weak lower semicontinuity of the norm in L2 (0, T ; V ∗). �
13 We follow Evans, 1998.
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Problems

9.1. Consider the problem
⎧
⎪⎨
⎪⎩

ut − (a (x)ux)x + b (x)ux + c(x)u = f (x, t) 0 < x < 1, 0 < t < T

u (x,0) = g (x) , 0 ≤ x ≤ 1
u (0, t) = 0, u (1, t) = k (t) . 0 ≤ t ≤ T .

1) Modifying u suitably, reduce the problem to homogeneous Dirichlet condi-
tions.

2) Write a weak formulation for the new problem.

3) Prove the well-posedness of the problem, under suitable hypotheses on the
coefficients a, b, c and the data f, g. Write a stability estimate for the original u.

9.2. Consider the Neumann problem (9.33) with non-homogeneous boundary
condition ∂νu = h, with h ∈ L2 (ST ).
a) Give a weak formulation of the problem and derive the main estimates for

the Galerkin approximations.
b) Deduce existence and uniqueness of the solution.

9.3. Prove a variant of the energy estimate in Theorem 9.1, by showing first
that

d

dt
‖um (t)‖20 + 2α ‖um (t)‖

2
1 ≤ ‖f (t)‖

2
0 + ‖um (t)‖

2
0

and then using Gronwall’s Lemma.

9.4. Derive the energy estimate for the Galerkin approximations um of the
solution of the Cauchy-Neumann problem, whithout using the change of variable
w (t) = e−λtu (t).
[Hint. Add and subtract λ ‖um (t)‖2H ; use the weak coercivity of a and Gron-

wall’s Lemma.]

9.5. H2−regularity. State and prove a H2−regularity result for the heat equa-
tion with homogeneous Neumann boundary conditions.

9.6. Consider the problem
⎧⎪⎨
⎪⎩

utt − c2Δu = f in Ω × (0, T )
u (x,0) = g (x) , ut (x, 0) = h (x) in Ω

uν (0, t) = 0. on ∂Ω × [0, T ] .
Write a weak formulation of the problem and prove the analogues of Theorems
9.10, 9.11 and 9.12.

9.7. Concentrated reaction. Consider the problem
⎧⎪⎨
⎪⎩

utt − uxx + u (x, t) δ (x) = 0 − 1 < x < 1, 0 < t < T
u (x,0) = g (x) , ut (x, 0) = h (x) − 1 ≤ x ≤ 1
u (−1, t) = u (1, t) = 0. 0 ≤ t ≤ T .
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where δ (x) denotes the Dirac δ at the origin.

a) Write a weak formulation for the problem.

b) Prove the well-posedness of the problem, under suitable hypotheses on g and
h.

[Hint. a) Let V = H10 (−1, 1) and H = L2 (−1, 1). The weak formulation is: find
u ∈ C ([−1, 1] , V ), with u̇ ∈ C ([−1, 1] , H) and ü ∈ C ([−1, 1] , V ∗), such that, for
every v ∈ V ,

〈ü (t) , v〉∗ + (ux (t) , vx) + u (0, t)v (0) = 0 for a.e. t ∈ (0, T )

and ‖u (t)− g‖V → 0, ‖u̇ (t) − h‖H → 0 as t→ 0 ].
9.8. Consider the minimization of the cost functional

J (u, z) =
1

2

∫

Ω

|u (T )− ud|2 +
β

2

∫

QT

z2dxdt

under the condition (state system)

⎧⎪⎨
⎪⎩

utt −Δu = f + z in QT

u = 0 onST

u (x,0) = ut (x,0) = 0 in Ω

where Ω is a C2−domain and f ∈ L2 (QT ). Show that there exists a unique optimal
control z∗ ∈ L2 (QT ) and determine the optimality conditions (adjoint equation
and Euler equation).



Appendix A

Fourier Series

Fourier coefficients – Expansion in Fourier series

A.1 Fourier coefficients

Let u be a 2T -periodic function in R and assume that u can be expanded in a
trigonometric series as follows:

u (x) = U +
∞∑
k=1

{ak cos kωx+ bk sin kωx} (A.1)

where ω = π/T .
First question: how u and the coefficients U , ak and bk are related to each

other? To answer, we use the following so called orthogonality relations, whose
proof is elementary:

∫ T

−T
cos kωx cosmωx dx =

∫ T

−T
sin kωx sinmωx dx = 0 if k �= m

∫ T

−T
cos kωx sinmωx dx = 0 for all k,m ≥ 0.

Moreover ∫ T

−T
cos2 kωx dx =

∫ T

−T
sin2 kωx dx = T. (A.2)

Now, suppose that the series (A.1) converges uniformly in R. Multiplying (A.1)
by cos nωx and integrating term by term over (−T, T ), the orhogonality relations
and (A.2) yield, for n ≥ 1,

∫ T

−T
u (x) cosnωx dx = Tan

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
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or

an =
1

T

∫ T

−T
u (x) cosnωx dx. (A.3)

For n = 0 we get ∫ T

−T
u (x) dx = 2UT

or, setting U = a0/2,

a0 =
1

T

∫ T

−T
u (x) dx (A.4)

which is coherent with (A.3) as n = 0.

Similarly, we find

bn =
1

T

∫ T

−T
u (x) sinnωx dx. (A.5)

Thus, if u has the uniformly convergent expansion (A.1), the coefficients an, bn
(with a0 = 2U) must be given by the formulas (A.3) and (A.5). In this case we
say that the trigonometric series

a0
2
+
∞∑
k=1

{ak cos kωx+ bk sin kωx} (A.6)

is the Fourier series of u and the coefficients (A.3), (A.4) and (A.5) are called the
Fourier coefficients of u.

• Odd and even functions. If u is an odd function, i.e. u (−x) = −u (x), we
have ak = 0 for every k ≥ 0, while

bk =
2

T

∫ T

0

u (x) sin kωx dx.

Thus, if u is odd, its Fourier series is a sine Fouries series:

u (x) =
∞∑
k=1

bk sin kωx.

Similarly, if u is even, i.e. u (−x) = u (x), we have bk = 0 for every k ≥ 1, while

ak =
2

T

∫ T

0

u (x) cos kωx dx.

Thus, if u is even, its Fourier series is a cosine Fouries series:

u (x) =
a0
2
+
∞∑
k=1

ak cos kωx.
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• Fourier coefficients of a derivative. Let u ∈ C1 (R) be 2T−periodic. Then
we may compute the Fourier coefficients a′k and b

′
k of u

′. We have, integrating by
parts, for k ≥ 1:

a′k =
1

T

∫ T

−T
u′ (x) cos kωx dx

=
1

T
[u (x) cos kωx]

T
−T +

kω

T

∫ T

−T
u (x) sin kωx dx

=
kω

T

∫ T

−T
u (x) sin kωx dx

= kωbk

and

b′k =
1

T

∫ T

−T
u′ (x) sin kωx dx

=
1

T
[u (x) sin kωx]T−T −

kω

T

∫ T

−T
u (x) cos kωx dx

= −kω
T

∫ T

−T
u (x) cos kωx dx

= −kωak.

Thus, the Fourier coefficients a′k and b
′
k are related to ak and bk by the following

formulas:
a′k = kωbk, b

′
k = −kωak. (A.7)

• Complex form of a Fourier series. Using the Euler identities

e±ikωx = cos kωx± i sin kωx

the Fourier series (A.6) can be expressed in the complex form

∞∑
k=−∞

cke
ikωx,

where the complex Fourier coefficients ck are given by

ck =
1

2T

∫ T

−T
u (z) e−ikωzdz.

The relations among the real and the complex Fourier coefficients are:

c0 =
1

2
a0

and

ck =
1

2
(ak − bk) , c−k = c̄k for k > 0.
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A.2 Expansion in Fourier series

In the above computations we started from a function u admitting a uniform
convergent expansion in Fourier series. Adopting a different point of view, let u be
a 2T−periodic function and assume we can compute its Fourier coefficients, given
by formulas (A.3) and (A.5). Thus, we can associate with u its Fourier series and
write

u ∼ a0
2
+
∞∑
k=1

{ak cos kωx+ bk sin kωx} .

The main questions are now the following:

1. Which conditions on u do assure “the convergence” of its Fourier series?
Of course there are several notions of convergence (e.g pointwise, uniform, least
squares).

2. If the Fourier series is convergent in some sense, does it always have sum u?

A complete answer to the above questions is not elementary. The convergence
of a Fourier series is a rather delicate matter. We indicate some basic results (for
the proofs, see e.g. Rudin, 1964 and 1974,Royden, 1988, or Zygmund and Wheeden,
1977.

• Least squares or L2 convergence. This is perhaps the most natural type of
convergence for Fourier series (see subsection 6.4.2). Let

SN (x) =
a0
2
+

N∑
k=1

{ak cos kωx+ bk sin kωx}

be the N−partial sum of the Fourier series of u. We have
Theorem A.1 Let u be a square integrable function1 on (−T, T ). Then

lim
N→+∞

∫ T

−T
[SN (x)− u (x)]2 dx = 0.

Moreover, the following Parseval relation holds:

1

T

∫ T

−T
u2 =

a20
2
+
∞∑
k=1

(
a2k + b

2
k

)
. (A.8)

Since the numerical series in the right hand side of (A.8) is convergent, we deduce
the following important consequence:

Corollary A.1 (Riemann-Lebesgue).

lim
k→+∞

ak = lim
k→+∞

bk = 0

• Pointwise convergence. We say that u satisfies the Dirichlet conditions in
[−T, T ] if it is continuous in [−T, T ] except possibly at a finite number of points
1 That is

∫ T
−T u

2 <∞.
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of jump discontinuity and moreover if the interval [−T, T ] can be partitioned in a
finite numbers of subintervals such that u is monotone in each one of them.
The following theorem holds.

Theorem A.2. If u satisfies the Dirichlet conditions in [−T, T ] then the
Fourier series of u converges at each point of [−T, T ]. Moreover2:

a0
2
+
∞∑
k=1

{ak cos kωx+ bk sin kωx} =

⎧⎪⎪⎨
⎪⎪⎩

u (x+) + u (x−)
2

x ∈ (−T, T )

u (T−) + u (−T+)
2

x = ±T

In particular, under the hypotheses of Theorem A.2, at every point x of continuity
of u the Fourier series converges to u (x).

• Uniform convergence. A simple criterion of uniform convergence is provided
by the Weierstrass test (see Section 1.4). Since

|ak cos kωx+ bk sin kωx| ≤ |ak|+ |bk|

we deduce: If the numerical series

∞∑
k=1

|ak| and
∞∑
k=1

|bk|

are convergent, then the Fourier series of u is uniformly convergent in R, with sum
u.

This is the case, for instance, if u ∈ C1 (R) and is 2T periodic. In fact, from
(A.7) we have for every k ≥ 1,

ak = −
1

ωk
b′k and bk =

1

ωk
a′k.

Therefore

|ak| ≤
1

ωk2
+ (b′k)

2

and

|bk| ≤
1

ωk2
+ (a′k)

2.

Now, the series
∑

1
k2 is convergent. On the other hand, also the series

∞∑
k=1

(a′k)
2 and

∞∑
k=1

(b′k)
2

are convergent, by Parseval’s relation (A.8) applied to u′ in place of u. The conclu-
sion is that if u ∈ C1 (R) and 2T periodic, its Fourier series is uniformly convergent
in R with sum u.

2 We set f (x±) = limy→±x f (y).



536 Appendix A Fourier Series

Another useful result is a refinement of Theorem A.2.

Theorem A.3 Assume u satisfies the Dirichlet conditions in [−T, T ]. Then:
a) If u is continuous in [a, b] ⊂ (−T, T ), then its Fourier series converges

uniformly in [a, b] .

b) If u is continuous in [−T, T ] and u (−T ) = u (T ), then its Fourier series
converges uniformly in [−T, T ] (and therefore in R).



Appendix B

Measures and Integrals

Lebesgue Measure and Integral

B.1 Lebesgue Measure and Integral

B.1.1 A counting problem

Two persons, that we denote by R and L, must compute the total value of M
coins, ranging from 1 to 50 cents. R decides to group the coins arbitrarily in piles
of, say, 10 coins each, then to compute the value of each pile and finally to sum
all these values. L, instead, decides to partition the coins according to their value,
forming piles of 1-cent coins, of 5-cents coins and so on. Then he computes the
value of each pile and finally sums all their values.
In more analytical terms, let

V :M → N

a value function that associates to each element of M (i.e. each coin) its value.
R partitions the domain of V in disjoint subsets, sums the values of V in such
subsets and then sums everything. L considers each point p in the image of V
(the value of a single coin), considers the inverse image V −1 (p) (the pile of coins
with the same value p), computes the corresponding value and finally sums over
every p.
These two ways of counting correspond to the strategy behind the definitions

of the integrals of Riemann and Lebesgue, respectively. Since V is defined on a
discrete set and is integer valued, in both cases there is no problem in summing its
values and the choice is determined by an efficiency criterion. Usually, the method
of L is more efficient.
In the case of a real (or complex) function f , the“sums of its values”corresponds

to an integration of f . While the construction of R remains rather elementary, the
one of L requires new tools.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
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Let us examine the particular case of a bounded and positive function, defined
on an interval [a, b] ⊂ R. Thus, let

f : [a, b]→ [inf f, sup f ] .

To construct the Riemann integral, we partition [a, b] in subintervals I1, ..., IN
(the piles of R), then we choose in each interval Ik a point ξk and we compute
f (ξk) l (Ik), where l(Ik) is the length of Ik, (i.e. the value of the k− th pile). Now
we sum the values f (ξk) l(Ik) and set

(R)
∫ b

a

f = lim
δ→0

N∑
k=1

f (ξk) l(Ik),

where δ = max{l (I1) , ..., l (IN)}. If the limit is finite and moreover is independent
of the choice of the points ξk, then this limit defines the Riemann integral of f in
[a, b].
Now, let us examine the Lebesgue strategy. This time we partition the interval

[inf f, sup f ] in subintervals [yk−1, yk] (the values of each coin for L) with

inf f = y0 < y1 < ... < yN−1 < yN = sup f.

Then we consider the inverse images Ek = f
−1 ([yk−1, yk]) (the piles of homoge-

neous coins) and we would like to compute their .... length. However, in general
Ek is not an interval or a union of intervals and, in principle, it could be a very
irregular set so that it is not clear what is the “length” of Ek.
Thus, the need arises to associate with every Ek a measure, which replaces the

length when Ek is an irregular set. This leads to the introduction of the Lebesgue
measure of (practically every) set E ⊆ R, denoted by |E| .
Once we know how to measure Ek (the number of coins in the k− th pile), we

choose an arbitrary point αk ∈ [yk−1, yk] and we compute αk |Ek| (the value of
the k − th pile). Then, we sum all the values αk |Ek| and set

(L)

∫ b

a

f = lim
ρ→0

N∑
k=1

αk |Ek| .

where ρ is the maximum among the lengths of the intervals [yk−1, yk]. It can be
seen that under our hypotheses, the limit exists, is finite and is independent of the
choice of αk. Thus, we may always choose αk = yk−1. This remark leads to the
definition of the Lebesgue integral in subsection B.3: the number

∑N
k=1 yk−1 |Ek|

is nothing else that the integral of a simple function, which approximates f from
below and whose range is the finite set y0 < ... < yN−1 . The integral of f is the
supremum of these numbers.

The resulting theory has several advantages with respect to that of Riemann.
For instance, the class of integrable functions is much wider and there is no need
to distinguish among bounded or unbounded functions or integration domains.
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Especially important are the convergence theorems presented in subsection
B.1.4, which allow the possibility of interchanging the operation of limit and inte-
gration, under rather mild conditions.
Finally, the construction of the Lebesgue measure and integral can be greatly

generalized as we will mention in subsection B.1.5.
For the proofs of the theorems stated in this Appendix, the interested reader

can consult Rudin, 1964 and 1974, Royden, 1988, or Zygmund and Wheeden, 1977.

B.1.2 Measures and measurable functions

A measure in a set Ω is a set function, defined on a particular class of subsets of
Ω called measurable set which “behaves well” with respect to union, intersection
and complementation. Precisely:

Definition B.1 A collection F of subsets of Ω is called σ−algebra if:
(i) ∅, Ω ∈ F ;
(ii) A ∈ F implies Ω\A ∈ F ;
(iii) if {Ak}k∈N ⊂ F then also ∪Ak and ∩Ak belong to F .

Example B.1. If Ω = Rn, we can define the smallest σ−algebra containing all the
open subsets of Rn, called the Borel σ−algebra. Its elements are called Borel sets,
typically obtained by countable unions and/or intersections of open sets.

Definition B.2 Given a σ−algebra F in a set Ω, a measure on F is a function

μ : F → R

such that:

(i) μ (A) ≥ 0 for every A ∈ F ;
(ii) if A1, A2, ...are pairwise disjoint sets in F , then

μ (∪k≥1Ak) =
∑
k≥1
μ (Ak) (σ − additivity).

The elements of F are called measurable sets.
The Lebesgue measure in Rn is defined on a σ−algebraM containing the Borel

σ−algebra, through the following theorem.
Theorem B.1 There exists in Rn a σ−algebraM and a measure

|·|n :M→ [0,+∞]

with the following properties:

1. Each open and closed set belongs to M.
2. If A ∈ M and A has measure zero, every subset of A belongs to M and has
measure zero.
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3. If
A = {x ∈Rn : aj < xj < bj; j = 1, ..., n}

then |A| =∏n
j=1 (bj − aj) .

The elements ofM are called Lebesgue measurable sets and |·|n (or simply |·| if
no confusion arises) is called the n−dimensional Lebesgue measure. Unless explic-
itly said, from now on, measurable means Lebesgue measurable and the measure is
the Lebesgue measure.
Not every subset of Rn is measurable. However, the nonmeasurable ones are

quite ... pathological1 !
The sets of measure zero are quite important. Here are some examples: all

countable sets, e.g. the set Q of rational numbers; straight lines or smooth curves
in R2; straight lines, hyperplanes, smooth curves and surfaces in R3.
Notice that a straight line segment has measure zero in R2 but, of course not

in R.
We say that a property holds almost everywhere in A ∈ M (in short, a.e. in A)

if it holds at every point of A except that in a subset of measure zero.
For instance, the sequence fk (x) = exp

(
−n sin2 x

)
converges to zero a.e. in

R, a Lipschitz function is differentiable a.e. in its domain (Rademacher’s Theorem
1.1).

The Lebesgue integral is defined for measurable functions, characterized by the
fact that the inverse image of every closed set is measurable.

Definition B.3 Let A ⊆ Rn be measurable, and f : A→ R. We say that f is
measurable if

f−1 (C) ∈ F
for any closed set C ⊆ R.
If f is continuous, is measurable. The sum and the product of a finite num-

ber of measurable functions is measurable. The pointwise limit of a sequence of
measurable functions is measurable.
If f : A → R, is measurable, we define its essential supremum or least upper

bound by the formula:

ess sup f = inf {K : f ≤ K a.e. in A} .
Note that, if f = χ

Q
, the characteristic functions of the rational numbers, we have

sup f = 1, but esssup f = 0, since |Q| = 0.
Every measurable function may be approximated by simple functions.A func-

tion s : A ⊆ R
n → R is said to be simple if its range is constituted by a finite

number of values s1, ..., sN , attained respectively on measurable sets A1, ..., AN ,
contained in A. Introducing the characteristic functions χAj , we may write

s =

N∑
j=1

sjχAj .

1 See e.g. Rudin, 1974.
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We have:

Theorem B.2. Let f : A → R, be measurable. There exists a sequence {sk}
of simple functions converging pointwise to f in A. Moreover, if f ≥ 0, we may
choose {sk} increasing.

B.1.3 The Lebesgue integral

We define the Lebesgue integral of a measurable function on a measurable set A.

For a simple function s =
∑N

j=1 sjχAj we set:

∫

A

s =

N∑
j=1

sj |Aj|

with the convenction that, if sj = 0 and |Aj| = +∞, then sj |Aj | = 0.
If f ≥ 0 is measurable, we define

∫

A

f = sup

∫

A

s

where the supremum is computed over the set of all simple functions s such that
s ≤ f in A.
In general, if f is measurable, we write f = f+ − f−, where f+ = max{f, 0}

and f− = max{−f, 0} are the positive and negative parts of f , respectively. Then
we set: ∫

A

f =

∫

A

f+ −
∫

A

f−

under the condition that at least one of the two integrals in the right
hand side is finite.
If both these integrals are finite, the function f is said to be integrable or

summable in A. From the definition, it follows immediately that a measurable
functions f is integrable if and only if |f | is integrable.
All the functions Riemann integrable in a set A are Lebesgue integrable as

well. An interesting example of non integrable function in (0,+∞) is given by
h (x) = sinx/x. In fact2 ∫ +∞

0

|sinx|
x
dx = +∞.

On the contrary, it may be proved that

lim
N→+∞

∫ N

0

sinx

x
dx =

π

2
.

and therefore the improper Riemann integral of h is finite.

2 We may write
∫ +∞

0

|sin x|
x

dx =

∞∑

k=1

∫ kπ

(k−1)π

|sinx|
x

dx ≥
∞∑

k=1

1

kπ

∫ kπ

(k−1)π
|sinx| dx =

∞∑

k=1

2

kπ
= +∞.
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The set of the integrable functions in A is denoted by L1 (A). If we identify
two functions when they agree a.e. in A, L1 (A) becomes a Banach space with the
norm3

‖f‖L1(A) =
∫

A

|f | .

We denote by L1loc (A) the set of locally summable functions, i.e. of the functions
which are summable in every compact subset of A.

B.1.4 Some fundamental theorems

The following theorems are among the most important and useful in the theory of
integration.

Theorem B.3 (Dominated Convergence Theorem). Let {fk} be a sequence
of summable functions in A such that fk → f a.e.in A. If there exists g ≥ 0,
summable in A and such that |fk| ≤ g a.e. in A, then f is summable and

‖fk − f‖L1(A) → 0 as k→ +∞.

In particular

lim
k→∞

∫

A

fk =

∫

A

f.

Theorem B.4 Let {fk} be a sequence of summable functions in A such that
‖fk − f‖L1(A) → 0 as k → +∞. Then there exists a subsequence

{
fkj
}
such that

fkj → f a.e. as j → +∞.
Theorem B.5 (Monotone Convergence Theorem). Let {fk} be a sequence of

nonnegative, measurable functions in A such that

f1 ≤ f2 ≤ ... ≤ fk ≤ fk+1 ≤ ... .

Then

lim
k→∞

∫

A

fk =

∫

A

lim
k→∞

fk.

Example B.2. A typical situation we often encounter in this book is the following.
Let f ∈ L1 (A) and, for ε > 0, set Aε = {|f | > ε}. Then, we have

∫

Aε

f →
∫

A

f as ε→ 0.

This follows from Theorem B.4 since, for every sequence εj → 0, we have |f | χAεj ≤
|f | and therefore ∫

Aεj

f =

∫

A

fχAεj
→
∫

A

f as ε→ 0.

3 See Chapter 6.
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Let C0 (A) be the set of continuous functions in A, compactly supported in
A. An important fact is that any summable function may be approximated by a
function in C0 (A).

Theorem B.6. Let f ∈ L1 (A). Then, for every δ > 0, there exists a continuous
function g ∈ C0 (A) such that

‖f − g‖L1(A) < δ.

The fundamental theorem of calculus extends to the Lebesgue integral in the
following form:

Theorem B.7. (Differentiation). Let f ∈ L1loc (R). Then
d

dx

∫ x

a

f (t) dt = f (x) a.e. x ∈ R.

Finally, the integral of a summable function can be computed via iterated
integrals in any order. Precisely, let

I1 = {x ∈Rn : −∞ ≤ ai < xi < bi ≤ ∞; i = 1, ..., n}

and
I2 = {y ∈Rm : −∞ ≤ aj < yj < bj ≤ ∞; j = 1, ..., m} .

Theorem B.8 (Fubini). Let f be summable in I = I1 × I2 ⊂ Rn ×Rm. Then
1. f (x, ·) ∈ L1 (I2) for a.e. x ∈I1, and f (·,y) ∈ L1 (I1) for a.e. y ∈I2,
2.
∫
I2
f (·,y) dy ∈ L1 (I1) and

∫
I1
f (x, ·) dx ∈ L1 (I2),

3. the following formulas hold:
∫

I

f (x,y) dxdy =

∫

I1

dx

∫

I2

f (x,y) dy =

∫

I2

dx

∫

I1

f(x,y)dy.

B.1.5 Probability spaces, random variables and their integrals

Let F be a σ−algebra in a set Ω. A probability measure P on F is a measure in
the sense of definition B.2, such that P (Ω) = 1 and

P : F → [0, 1] .

The triplet (Ω,F , P ) is called a probability space. In this setting, the elements ω
of Ω are sample points, while a set A ∈ F has to be interpreted as an event . P (A)
is the probability of (occurrence of) A.
A typical example is given by the triplet

Ω = [0, 1] , F =M∩ [0, 1] , P (A) = |A|

which models a uniform random choice of a point in [0, 1].
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A 1−dimensional random variable in (Ω,F , P ) is a function

X : Ω → R

such that X is F−measurable, that is

X−1 (C) ∈ F

for each closed set C ⊆ R.

Example B.3. The number k of steps to the right after N steps in the random walk
of Section 2.4 is a random variable. Here Ω is the set of walks of N steps.

By the same procedure used to define the Lebesgue integral we can define the
integral of a random variable with respect to a probability measure. We sketch the
main steps.
If X is simple, i.e. X =

∑N
j=1 sjχAj , we define

∫

Ω

X dP =

N∑
j=1

sjP (Aj).

If X ≥ 0 we set
∫

Ω

X dP = sup

{∫

Ω

Y dP : Y ≤ X, Y simple
}
.

Finally, if X = X+ −X− we define
∫

Ω

X dP =

∫

Ω

X+ dP −
∫

Ω

X− dP

provided at least one of the integral on the right hand side is finite.
In particular, if ∫

Ω

|X| dP <∞,

then

E (X) = 〈X〉 =
∫

Ω

X dP

is called the expected value (or mean value or expectation) of X, while

Var (X) =

∫

Ω

(X −E (X))2 dP

is called the variance of X.
Analogous definitions can be given componentwise for n−dimensional random

variables
X : Ω → R

n.
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Identities and Formulas

Gradient, Divergence, Curl, Laplacian – Formulas

C.1 Gradient, Divergence, Curl, Laplacian

Let F be a smooth vector field and f a smooth real function, in R3.

Orthogonal cartesian coordinates

1. gradient :

∇f = ∂f
∂x
i+
∂f

∂y
j+
∂f

∂z
k

2. divergence (F =F1i + F1j+ F3k):

div F =
∂

∂x
F1 +

∂

∂y
F2 +

∂

∂z
F3

3. laplacian:

Δf =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

4. curl :

curl F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
F1 F2 F3

∣∣∣∣∣∣

Cylindrical coordinates

x = r cos θ, y = r sin θ, z = z (r > 0, 0 ≤ θ ≤ 2π)
er = cos θi+ sin θj, eθ = − sin θi+ cos θj, ez = k.
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1. gradient :

∇f = ∂f
∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez

2. divergence (F =Frer + Fθeθ + Fzk):

div F =
1

r

∂

∂r
(rFr) +

1

r

∂

∂θ
Fθ +

∂

∂z
Fz

3. laplacian:

Δf =
1

r

∂

∂r

(
r
∂f

∂r

)
+
1

r2
∂2f

∂θ2
+
∂2f

∂z2
=
∂2f

∂r2
+
1

r

∂f

∂r
+
1

r2
∂2f

∂θ2
+
∂2f

∂z2

4. curl :

curl F =
1

r

∣∣∣∣∣∣
er reθ ez
∂r ∂θ ∂z
Fr rFθ Fz

∣∣∣∣∣∣

Spherical coordinates

x = r cos θ sinψ, y = r sin θ sinψ, z = r cosψ (r > 0, 0 ≤ θ ≤ 2π, 0 ≤ ψ ≤ π)

er = cos θ sinψi+sin θ sinψj+cosψk

eθ = − sin θi+ cos θj
eψ = cos θ cosψi+ sin θ cosψj− sinψk.

1. gradient :

∇f = ∂f
∂r
er +

1

r sinψ

∂f

∂θ
eθ +

1

r

∂f

∂ψ
eψ

2. divergence (F =Frer + Fθeθ + Fψeψ):

div F =
∂

∂r
Fr +

2

r
Fr

︸ ︷︷ ︸
radial part

+
1

r

[
1

sinψ

∂

∂θ
Fθ +

∂

∂ψ
Fψ + cotψFψ

]

︸ ︷︷ ︸
spherical part

3. laplacian:

Δf =
∂2f

∂r2
+
2

r

∂f

∂r︸ ︷︷ ︸
radial part

+
1

r2

{
1

(sinψ)2
∂2f

∂θ2
+
∂2f

∂ψ2
+ cotψ

∂f

∂ψ

}

︸ ︷︷ ︸
spherical part (Laplace-Beltrami operator)

4. curl :

rot F =
1

r2 sinψ

∣∣∣∣∣∣∣

er reψ r sinψeθ

∂r ∂ψ ∂θ

Fr rFψ r sinψFz

∣∣∣∣∣∣∣
.
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C.2 Formulas

Gauss’ formulas

In Rn, n ≥ 2, let:

• Ω be a bounded smooth domain and and ν the outward unit normal on ∂Ω;
• u,v be vector fields of class C1

(
Ω
)
;

• ϕ, ψ be real functions of class C1
(
Ω
)
;

• dσ be the area element on ∂Ω.

1.
∫
Ω
div u dx =

∫
∂Ω
u · ν dσ (Divergence Theorem)

2.
∫
Ω ∇ϕ dx =

∫
∂Ω ϕν dσ

3.
∫
Ω
Δϕ dx =

∫
∂Ω
∇ϕ · ν dσ =

∫
∂Ω
∂νϕ dσ

4.
∫
Ω
ψ divF dx =

∫
∂Ω
ψF · ν dσ −

∫
Ω
∇ψ ·F dx (Integration by parts)

5.
∫
Ω ψΔϕ dx =

∫
∂Ω ψ∂νϕ dσ −

∫
Ω ∇ϕ · ∇ψ dx (Green’s identity I)

6.
∫
Ω
(ψΔϕ− ϕΔψ) dx =

∫
∂Ω
(ψ∂νϕ −ϕ∂νψ) dσ (Green’s identity II)

7.
∫
Ω
curl u dx = −

∫
∂Ω
u× ν dσ

8.
∫
Ω
u· curl v dx =

∫
Ω
v· curl u dx−

∫
∂Ω
(u× v) · ν dσ.

Identities

1. div curl u =0

2. curl ∇ϕ = 0
3. div (ϕu) = ϕ div u+∇ϕ · u
4. curl (ϕu) = ϕ curl u+∇ϕ× u
5. curl (u× v) = (v·∇)u− (u·∇)v+(div v)u− (div u)v
6. div (u× v) = curlu · v−curlv · u
7. ∇ (u · v) = u× curl v + v× curl u+ (u·∇)v+(v·∇)u
8. (u·∇)u = curlu× u+12∇ |u|

2

9. curl curl u = ∇(div u)−Δu.
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Absorbing barriers 98
Adjoint problem 482
Advection 157
Arbitrage 80

Barenblatt solutions 91
Bernoulli’s equation 284
Bond number 287
Boundary conditions 17
Dirichlet 17, 28
Mixed 28
mixed 18
Neumann 17, 28
Robin 18, 28

Breaking time 175
Brownian
motion 49
path 49

Canonical form 254, 256
Canonical isometry 331
Capillarity waves 291
Cauchy sequence 308
Characteristic 158, 194, 258
parallelogram 238
strip 209
system 209

Chebyshev polynomials 323
Classical solution 433
Closure 7
Compact
operator 348
set 8

Condition

compatibility 105
Conjugate exponent 9
Conormal derivative 461
Convection 56
Convergence
least squares 24
uniform 9
weak 344

Convolution 370, 386
Cost functional 479
Critical mass 67
Cylindrical waves 261

d’Alembert formula 237
Darcy’s law 90
Diffusion 14
coefficient 48

Direct sum 317
Dirichlet eigenfunctions 451
Dispersion relation 224, 249, 289
Distributional
derivative 378
solution 434

Domain 7
Domain of dependence 239, 279
Domains
Lipschitz 11
smooth 10

Drift 54, 78

Eigenfunction 322, 358, 359
Eigenvalues 322, 358, 359
Elliptic equation 431
Entropy condition 183
Equal area rule 177



554 Index

Equation
backward heat 34
Bessel 65
Bessel (of order p) 324
Black-Scholes 3, 82
Bukley-Leverett 207
Burger 4
diffusion 2, 13
Eiconal 4
eikonal 212
elliptic 250
Euler 340
Fisher 4
fully non linear 2
hyperbolic 250
Klein-Gordon 249
Laplace 3
linear elasticity 5
linear, nonlinear 2
Maxwell 5
minimal surface 4
Navier Stokes 5, 130
parabolic 250
partial differential 2
Poisson 3, 102
porous media 91
porous medium 4
quasilinear 2
reduced wave 155
Schrödinger 3
semilinear 2
stochastic differential 78
Sturm-Liouville 322
transport 2
vibrating plate 3
wave 3

Escape probability 120
Essential
support 369
supremum 311

European options 77
Expectation 52, 61
Expiry date 77
Extension operator 409
Exterior
Dirichlet problem 139
domain 139
Robin problem 141, 154

Fick’s law 56

Final payoff 82
First
exit time 119
integral 201, 203
variation 340

Flux function 156
Forward cone 276
Fourier
coefficients 321
law 16
series 24
transform 388, 405

Fourier-Bessel series 66, 325
Froude number 287
Function
Bessel (of order p) 324
characteristic 8
compactly supported 8
continuous 8
d-harmonic 106
Green’s 133
harmonic 14, 102
Heaviside 40
test 43, 369

Fundamental solution 39, 43, 125, 244,
275

Gaussian law 51, 60
Global Cauchy problem 19, 29, 68
non homogeneous 72

Gram-Schmidt process 321
Gravity waves 290
Green’s identity 12
Gronwall Lemma 522
Group velocity 224

Harmonic
measure 122
oscillator 363
waves 222

Helmholtz decomposition formula 128
Hermite polynomials 324
Hilbert triplet 351
Hopf’s maximum principle 152
Hopf-Cole transformation 191

Incoming/outgoing wave 263
Infimum 8
Inflow/outflow
boundary 201
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characteristics 162
Inner product space 312
Integral
norm (of order p) 311
surface 193

integration by parts 12
Inward heat flux 28
Ito’s formula 78

Kernel 326
Kinematic condition 285
Kinetic energy 228

Lattice 58, 105
Least squares 24
Legendre polynomials 323
Light cone 213
Linear waves 282
little o of 9
Local
chart 10
wave speed 167

Logarithmic potential 128
Logistic growth 93
Lognormal density 80

Mach number 272
Markov properties 51, 61
Mass conservation 55
Maximum principle 31, 74, 107
Mean value property 110
Method 19
Duhamel 72
electrostatic images 134
characteristics 165
descent 279
Faedo-Galerkin 496, 514, 520
Galerkin 340
stationary phase 226
separation of variables 19, 22, 231, 268,
357, 453

vanishing viscosity 186
Metric space 308
Mollifier 371
Multidimensional symmetric random walk

58

Neumann
eigenfunctions 452
function 138

Normal probability density 38

Normed space 308

Open covering 409
Operator
adjoint 332
discrete Laplace 106
linear, bounded 326
mean value 105

Optimal
control 479
state 479

Parabolic
dilations 35
equation 492

Parallelogram law 312
Partition of unity 410
Phase speed 222
Plane waves 223, 261
Poincaré’s inequality 399, 419
Point 7
boundary 7
interior 7
limit 7

Poisson formula 116
Potential 102
double layer 142
Newtonian 126
single layer 146

Potential energy 229
Pre-compact set 343
Problem
eigenvalue 23
well posed 6, 16

Projected characteristics 201
Put-call parity 85

Random
variable 49
walk 43
walk with drift 52

Range 326
of influence 239, 276

Rankine-Hugoniot condition 173, 181
Rarefaction/simple waves 170
Reaction 58
Reflecting barriers 98
Reflection method 409
Resolvent 357, 358
Retarded potential 282
Retrograde cone 265
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Riemann problem 185
Rodrigues’ formula 323, 324

Schwarz
inequality 312
reflection principle 151

Self-financing portfolio 80, 88
Selfadjoint operator 333
Sets 7
Shock
curve 172
speed 173
wave 173

Similarity, self-similar solutions 36
Sobolev exponent 421
Solution 21
self-similar 91
steady state 21
unit source 41

Sommerfeld condition 155
Spectrum 357, 358
Spherical waves 223
Standing wave 223, 232
Steepest descent 483
Stiffness matrix 341
Stochastic process 49, 60
Stopping time 52, 119
Strike price 77
Strong Huygens’ principle 276, 279
Strong Parseval identity 393
Strong solution 434
Superposition principle 13, 69, 230
Support 8
of a distribution 377

Tempered distribution 389
Term by term
differentiation 9
integration 9

Topology 7
Trace 411
inequality 417

Traffic in a tunnel 216
Transition
function 61
layer 188
probability 51

Travelling wave 158, 167, 187, 221
Tychonov class 74

Uniform ellipticity 455
Unit impulse 40

Value function 77
Variational formulation
Biharmonic equation 474
Dirichlet problem 436, 445, 456
Mixed problem 444, 451, 464
Neumann problem 440, 447, 461
Robin problem 443, 450
solution 434

Volatility 78

Wave
number 222
packet 224

Weak coerciveness 459
Weak formulation
Cauchy-Dirichlet problem 495
Cauchy-Neumann problem 506
Cauchy-Robin problem 507
General initial-boundary problem 514
Initial-Dirichlet problem (wave eq.)
518

Weak Parseval identity 391
Weakly coercive (bilinear form) 505, 513
Weierstrass test 9, 25
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