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Preface

This book is designed as an advanced undergraduate or a first-year graduate course
for students from various disciplines like applied mathematics, physics, engineering.
It has evolved while teaching courses on partial differential equations (PDE) during
the last few years at the Politecnico of Milan.

The main purpose of these courses was twofold: on the one hand, to train
the students to appreciate the interplay between theory and modelling in prob-
lems arising in the applied sciences, and on the other hand to give them a solid
theoretical background for numerical methods, such as finite elements.

Accordingly, this textbook is divided into two parts.

The first one, chapters 2 to 5, has a rather elementary character with the goal
of developing and studying basic problems from the macro-areas of diffusion, prop-
agation and transport, waves and vibrations. I have tried to emphasize, whenever
possible, ideas and connections with concrete aspects, in order to provide intuition
and feeling for the subject.

For this part, a knowledge of advanced calculus and ordinary differential equa-
tions is required. Also, the repeated use of the method of separation of variables
assumes some basic results from the theory of Fourier series, which are summarized
in appendix A.

Chapter 2 starts with the heat equation and some of its variants in which
transport and reaction terms are incorporated. In addition to the classical top-
ics, I emphasized the connections with simple stochastic processes, such as ran-
dom walks and Brownian motion. This requires the knowledge of some elementary
probability. It is my belief that it is worthwhile presenting this topic as early as
possible, even at the price of giving up to a little bit of rigor in the presentation. An
application to financial mathematics shows the interaction between probabilistic
and deterministic modelling. The last two sections are devoted to two simple non
linear models from flow in porous medium and population dynamics.

Chapter 3 mainly treats the Laplace/Poisson equation. The main properties
of harmonic functions are presented once more emphasizing the probabilistic mo-
tivations. The second part of this chapter deals with representation formulas in
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terms of potentials. In particular, the basic properties of the single and double
layer potentials are presented.

Chapter 4 is devoted to first order equations and in particular to first order
scalar conservation laws. The methods of characteristics and the notion of integral
solution are developed through a simple model from traffic dynamics. In the last
part, the method of characteristics is extended to quasilinear and fully nonlinear
equations in two variables.

In chapter 5 the fundamental aspects of waves propagation are examined, lead-
ing to the classical formulas of d’Alembert, Kirchhoff and Poisson. In the final sec-
tion, the classical model for surface waves in deep water illustrates the phenomenon
of dispersion, with the help of the method of stationary phase.

The main topic of the second part, from chapter 6 to 9, is the development of
Hilbert spaces methods for the variational formulation and the analysis of linear
boundary and initial-boundary value problems. Given the abstract nature of these
chapters, I have made an effort to provide intuition and motivation about the
various concepts and results, running the risk of appearing a bit wordy sometimes.

The understanding of these topics requires some basic knowledge of Lebesgue
measure and integration, summarized in appendix B.

Chapter 6 contains the tools from functional analysis in Hilbert spaces, nec-
essary for a correct variational formulation of the most common boundary value
problems. The main theme is the solvability of abstract variational problems, lead-
ing to the Lax-Milgram theorem and Fredholm’s alternative. Emphasis is given to
the issues of compactness and weak convergence.

Chapter 7 is divided into two parts. The first one is a brief introduction to the
theory of distributions of L. Schwartz. In the second one, the most used Sobolev
spaces and their basic properties are discussed.

Chapter 8 is devoted to the variational formulation of elliptic boundary value
problems and their solvability. The development starts with one-dimensional prob-
lems, continues with Poisson’s equation and ends with general second order equa-
tions in divergence form. The last section contains an application to a simple
control problem, with both distributed observation and control.

The issue in chapter 9 is the variational formulation of evolution problems, in
particular of initial-boundary value problems for second order parabolic operators
in divergence form and for the wave equation. Also, an application to a simple
control problem with final observation and distributed control is discussed.

At the end of each chapter, a number of exercises is included. Some of them
can be solved by a routine application of the theory or of the methods developed
in the text. Other problems are intended as a completion of some arguments or
proofs in the text. Also, there are problems in which the student is required to be
more autonomous. The most demanding problems are supplied with answers or
hints.

The order of presentation of the material is clearly a consequence of my ...
prejudices. However, the exposition if flexible enough to allow substantial changes
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without compromising the comprehension and to facilitate a selection of topics for
a one or two semester course.

In the first part, the chapters are in practice mutually independent, with the ex-
ception of subsections 3.3.6 and 3.3.7, which presume the knowledge of section 2.6.

In the second part, which, in principle, may be presented independently of
the first one, more attention has to be paid to the order of the arguments. In
particular, the material in chapter 6 and in sections 7.1-7.4 and 7.7-7.10 is neces-
sary for understanding chapter 8, while chapter 9 uses concepts and results from
section 7.11.
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1

Introduction

Mathematical Modelling — Partial Differential Equations — Well Posed Problems — Basic
Notations and Facts — Smooth and Lipschitz Domains — Integration by Parts Formulas

1.1 Mathematical Modelling

Mathematical modelling plays a big role in the description of a large part of phe-
nomena in the applied sciences and in several aspects of technical and industrial
activity.

By a “mathematical model” we mean a set of equations and/or other mathe-
matical relations capable of capturing the essential features of a complex natural
or artificial system, in order to describe, forecast and control its evolution. The
applied sciences are not confined to the classical ones; in addition to physics and
chemistry, the practice of mathematical modelling heavily affects disciplines like
finance, biology, ecology, medicine, sociology.

In the industrial activity (e.g. for aerospace or naval projects, nuclear reactors,
combustion problems, production and distribution of electricity, traffic control,
etc.) the mathematical modelling, involving first the analysis and the numerical
simulation and followed by experimental tests, has become a common procedure,
necessary for innovation, and also motivated by economic factors. It is clear that
all of this is made possible by the enormous computational power now available.

In general, the construction of a mathematical model is based on two main
ingredients: general laws and constitutive relations. In this book we shall deal with
general laws coming from continuum mechanics and appearing as conservation or
balance laws (e.g. of mass, energy, linear momentum, etc.).

The constitutive relations are of an experimental nature and strongly depend
on the features of the phenomena under examination. Examples are the Fourier
law of heat conduction, the Fick law for the diffusion of a substance or the way
the speed of a driver depends on the density of cars ahead.

The outcome of the combination of the two ingredients is usually a partial
differential equation or a system of them.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan



2 1 Introduction
1.2 Partial Differential Equations
A partial differential equation is a relation of the following type:

F (xlv vy Ty Uy Ugyy ooy Uy Uy Uzi ooy Uz pzy ) Uzizimrs ) =0 (11)

where the unknown u = u (1, ...z,) is a function of n variables and g ..., Uz,z; .-
are its partial derivatives. The highest order of differentiation occurring in the
equation is the order of the equation.
A first important distinction is between linear and nonlinear equations.
Equation (1.1) is linear if F is linear with respect to u and all its derivatives,
otherwise it is nonlinear.
A second distinction concerns the types of nonlinearity. We distinguish:
— Semilinear equations where F' is nonlinear only with respect to w but is linear
with respect to all its derivatives;
—  Quasi-linear equations where F' is linear with respect to the highest order
derivatives of u;
—  Fully nonlinear equations where F' is nonlinear with respect to the highest order
derivatives of u.

The theory of linear equations can be considered sufficiently well developed and
consolidated, at least for what concerns the most important questions. On the
contrary, the non linearities present such a rich variety of aspects and complications
that a general theory does not appear to be conceivable. The existing results and
the new investigations focus on more or less specific cases, especially interesting in
the applied sciences.

To give the reader an idea of the wide range of applications we present a
series of examples, suggesting one of the possible interpretations. Most of them are
considered at various level of deepness in this book. In the examples, x represents
a space variable (usually in dimension n = 1,2,3) and ¢ is a time variable.

We start with linear equations. In particular, equations (1.2)—(1.5) are fun-
damental and their theory constitutes a starting point for many other equations.

1. Transport equation (first order):
u+v-Vu=0 (1.2)

It describes for instance the transport of a solid polluting substance along a chan-
nel; here u is the concentration of the substance and v is the stream speed. We
consider the one-dimensional version of (1.2) in Section 4.2

2. Diffusion or heat equation (second order):
uy — DAu = 0, (1.3)

where A = 03,4, +O0zya, + ... + Oz, z,, 1S the Laplace operator. It describes the con-
duction of heat through a homogeneous and isotropic medium; u is the temperature
and D encodes the thermal properties of the material. Chapter 2 is devoted to the
heat equation and its variants.
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3. Wawve equation (second order):
ug — 2 Au = 0. (1.4)

It describes for instance the propagation of transversal waves of small amplitude
in a perfectly elastic chord (e.g. of a violin) if n = 1, or membrane (e.g. of a drum)
if n = 2. If n = 3 it governs the propagation of electromagnetic waves in vacuum
or of small amplitude sound waves (Section 5.8). Here u may represent the wave
amplitude and c is the propagation speed.

4. Laplace’s or potential equation (second order):
Au =0, (1.5)

where u = u (x). The diffusion and the wave equations model evolution phenom-
ena. The Laplace equation describes the corresponding steady state, in which the
solution does not depend on time anymore. Together with its nonhomogeneous
version

Au=f,

called Poisson’s equation, it plays an important role in electrostatics as well. Chap-
ter 3 is devoted to these equations.

5. Black-Scholes equation (second order):

2y + rougy — ru = 0.

1,
ur + 50 x
Here u = u (z,t), z > 0, ¢t > 0. Fundamental in mathematical finance, this equation
governs the evolution of the price u of a so called derivative (e.g. an FEuropean
option), based on an underlying asset (a stock, a currency, etc.) whose price is .
We meet the Black-Scholes equation in Section 2.9.

6. Vibrating plate (fourth order):

Ut — A2u = 0,
where x €R? and
0*u 0*u J*u
APy =A(Au) = — +2——— + ——
w=AAu) =51 T 25203 * o

is the biharmonic operator. In the theory of linear elasticity, it models the transver-
sal waves of small amplitude of a homogeneous isotropic plate (see Section 8.7).

7. Schrédinger equation (second order):
—iuy = Au+V (x)u

where i is the complex unit. This equation is fundamental in quantum mechanics
and governs the evolution of a particle subject to a potential V. The function |u|2
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represents a probability density. We will briefly encounter the Schrodinger equation
in Problem 6.6.

Let us list now some examples of nonlinear equations

8. Burger’s equation (quasilinear, first order):
ut + cutiy =0 (x €R).

It governs a one dimensional flux of a non viscous fluid but it is used to model
traffic dynamics as well. Its viscous variant

U + CUUp = EUgy (e>0)

constitutes a basic example of competition between dissipation (due to the term
EUzy) and steepening (shock formation due to the term cuu,). We will discuss
these topics in Section 4.4.

9. Fisher’s equation (semilinear, second order):
uy — DAu=ru (M —u)

It governs the evolution of a population of density u, subject to diffusion and logis-
tic growth (represented by the right hand side). We examine the one-dimensional
version of Fisher’s equation in Section 2.10.

10. Porous medium equation (quasilinear, second order):
uy = k div (v Vu)

where £ > 0, v > 1 are constant. This equation appears in the description of
filtration phenomena, e.g. of the motion of water through the ground. We briefly
meet the one-dimensional version of the porous medium equation in Section 2.10.

11. Minimal surface equation (quasilinear, second order):,

div [ —% )20 (xeRr?

1+ |[Vul?

The graph of a solution u minimizes the area among all surfaces z = v (z1, z2)
whose boundary is a given curve. For instance, soap balls are minimal surfaces.
We will not examine this equation (see e.g. R. Mc Owen, 1996).

12. FEikonal equation (fully nonlinear, first order):

[Vu| = ¢(x)

It appears in geometrical optics: if u is a solution, its level surfaces u(x) = ¢
describe the position of a light wave front at time ¢. A bidimensional version is
examined in Chapter 4.
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Let us now give some examples of systems.

13. Navier’s equation of linear elasticity: (three scalar equations of second
order):
ouy = pAu+ (p+ Ngrad div u

where u = (uj (x,t),uz2 (x,t),us (x,t)), x €ER3. The vector u represents the dis-
placement from equilibrium of a deformable continuum body of (constant) density
0. We will not examine this system (see e.g. R. Dautray and J. L. Lions, Vol. 1,6,
1985).

14. Mazwell’s equations in vacuum (six scalar linear equations of first order):
E;, — curl B=0, B,+curl E=0 (Ampere and Faraday laws)

div E =0 div B =0 (Gauss’ law)

where E is the electric field and B is the magnetic induction field. The unit mea-
sures are the "natural” ones, i.e. the light speed is ¢ = 1 and the magnetic perme-
ability is py = 1. We will not examine this system (see e.g. R. Dautray and J. L.
Lions, Vol. 1, 1985).

15. Navier-Stokes equations (three quasilinear scalar equations of second order
and one linear equation of first order):

u + (uV)u= f%Vp +vAu
divu =0

where u = (uy (x,t),u2 (x,t),u3 (x,t)), p = p(x,t), x €R3. This equation governs
the motion of a viscous, homogeneous and incompressible fluid. Here u is the fluid
speed, p its pressure, p its density (constant) and v is the kinematic viscosity,
given by the ratio between the fluid viscosity and its density. The term (u-V)u
represents the inertial acceleration due to fluid transport. We will briefly meet the
Navier-Stokes equations in Section 3.4.

1.3 Well Posed Problems

Usually, in the construction of a mathematical model, only some of the general
laws of continuum mechanics are relevant, while the others are eliminated through
the constitutive laws or suitably simplified according to the current situation. In
general, additional information is necessary to select or to predict the existence
of a unique solution. This information is commonly supplied in the form of initial
and/or boundary data, although other forms are possible. For instance, typical
boundary conditions prescribe the value of the solution or of its normal derivative,
or a combination of the two. A main goal of a theory is to establish suitable
conditions on the data in order to have a problem with the following features:
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a) there exists at least one solution;
b) there exists at most one solution;
¢) the solution depends continuously on the data.

This last condition requires some explanations. Roughly speaking, property c)
states that the correspondence

data — solution (1.6)

is continuous or, in other words, that a small error on the data entails a small
error on the solution.

This property is extremely important and may be expressed as a local sta-
bility of the solution with respect to the data. Think for instance of using
a computer to find an approximate solution: the insertion of the data and the
computation algorithms entail approximation errors of various type. A significant
sensitivity of the solution on small variations of the data would produce an unac-
ceptable result.

The notion of continuity and the error measurements, both in the data and
in the solution, are made precise by introducing a suitable notion of distance. In
dealing with a numerical or a finite dimensional set of data, an appropriate distance
may be the usual euclidean distance: if x = (21,2, ..., 2n), ¥y = (Y1, Y2, ..., Yn) then

dist (x,y) = |x —y[ =

When dealing for instance with real functions, defined on a set A, common dis-
tances are:

ﬁ%%nggﬁﬁ%wﬁﬂ

which measures the maximum difference between f and g over A, or

dist (,9) = /A (f - 9)?

which is the so called least square distance between f and g.

Once the notion of distance has been chosen, the continuity of the correspon-
dence (1.6) is easy to understand: if the distance of the data tends to zero then
the distance of the corresponding solutions tends to zero.

When a problem possesses the properties a), b) ¢) above it is said to be well
posed. When using a mathematical model, it is extremely useful, sometimes es-
sential, to deal with well posed problems: existence of the solution indicates that
the model is coherent, uniqueness and stability increase the possibility of providing
accurate numerical approximations.

As one can imagine, complex models lead to complicated problems which re-
quire rather sophisticated techniques of theoretical analysis. Often, these problems



1.4 Basic Notations and Facts 7

become well posed and efficiently treatable by numerical methods if suitably re-
formulated in the abstract framework of Functional Analysis, as we will see in
Chapter 6.

On the other hand, not only well posed problems are interesting for the ap-
plications. There are problems that are intrinsically ill posed because of the lack
of uniqueness or of stability, but still of great interest for the modern technology.
We only mention an important class of ill posed problems, given by the so called
inverse problems, closely related to control theory, of which we provide simple
examples in Sections 8.8 and 9.2.

1.4 Basic Notations and Facts

We specify some of the symbols we will constantly use throughout the book and
recall some basic notions about sets, topology and functions.

Sets and Topology. We denote by: N, Z, Q, R, C the sets of natural numbers,
integers, rational, real and complex numbers, respectively. R™ is the n—dimensional
vector space of the n—uples of real numbers. We denote by el,..., e" the unit vectors
in the canonical base in R™. In R? and R? we may denote them by i, j and k.

The symbol B, (x) denotes the open ball in R™, with radius r and center at x,
that is

B, (x) ={y €R"; [x —y| <r}.

If there is no need to specify the radius, we write simply B (x). The volume of
B, (x) and the area of 0B, (x) are given by

|B,.| = %r" and |0B,.| = wpr™ L

where w,, is the surface area of the unit sphere! 0B; in R"; in particular wy = 27
and w3z = 4m.

Let A CR™. A point x €A is:

e an interior point if there exists a ball B, (x) C A;

e a boundary point if any ball B, (x) contains points of A and of its complement
R™\ A. The set of boundary points of A, the boundary of A, is denoted by 9A;

o a limit point of A if there exists a sequence {xx},~; C A such that x; — x.

A is open if every point in A is an interior point; the set A = AUJA is the closure
of A; Ais closed if A= A. A set is closed if and only if it contains all of its limit
points.

An open set A is connected if for every couple of points X,y €A there exists a
regular curve joining them entirely contained in A. By a domain we mean an open

connected set. Domains are usually denoted by the letter (2.

! In general, w,= nm"/?/T" (4n + 1) where I (s) = f0+°° t*"te~'dt is the Buler gamma

function.
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If U C A, we say that U is dense in A if U = A. This means that any point
x € A is a limit point of U. For instance, Q is dense in R.

A is bounded if it is contained in some ball B, (0); it is compact if it is closed
and bounded. If Ay is compact and contained in A, we write A9 CC A and we say
that Ag is compactly contained in A.

Infimum and supremum of a set of real numbers. A set A C R is bounded
from below if there exists a number K such that

K <z for every z€A. (1.7)

The greatest among the numbers K with the property (1.7) is called the infimum
or the greatest lower bound of A and denoted by inf A.

More precisely, we say that A = inf A if A < z for every = € A and if, for every
€ > 0, we can find £ € A such that Z < A+ ¢. If inf A € A, then inf A is actually
called the minimum of A, and may be denoted by min A.

Similarly, A C R is bounded from above if there exists a number K such that

z < K for every z€A. (1.8)

The smallest among the numbers K with the property (1.8) is called the supremum
or the lowest upper bound of A and denoted by sup A.

Precisely, we say that A = sup A if A > z for every x € A and if, for every
€ >0, we can find Z € A such that £ > A —¢. If sup A € A, then sup A is actually
called the mazimum of A, and may be denoted by max A.

Functions. Let A CR and u: A — R be a real valued function defined in A.
We say that u is continuous at x €A if u (y) — u (x) as y — x. If u is continuous
at any point of A we say that u is continuous in A. The set of such functions is
denoted by C (A).

The support of a continuous function is the closure of the set where it is
different from zero. A continuous function is compactly supported in A if it vanishes
outside a compact set contained in A.

We say that u is bounded from below (resp. above) in A if the image

u(A)={y € R, y=u(x) for some x €A}

is bounded from below (resp. above). The infimum (supremum) of u (A) is called
the infimum (supremum) of w and is denoted by

inf u(x) (resp. supu(x)).
x€A x€A

We will denote by x4 the characteristic function of A: x4 = 1 on A and
X4 =0 in R™\ A.

0
We use one of the symbols u;, 9;;u, a—u for the first partial derivatives of u,
Ty
and Vu or grad u for the gradient of u. Accordingly, for the higher order derivatives
0%u

we use the notations ;s , Oz and so on.

e Uy T
JER 8xj8xk
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We say that u is of class C* (£2), k > 1, or that it is a C*—function, if u has
continuous partials up to the order k (included) in the domain {2. The class of
continuously differentiable functions of any order in 2, is denoted by C'* (£2).

If u € C'(£2) then u is differentiable in {2 and we can write, for x € and
h €R” small:

u(x +h) —u(x) = Vu(x) - h+o(h)
where the symbol o (h), “little o of h”, denotes a quantity such that o (h)/|h| — 0
as [h| — 0.

The symbol C* (£2) will denote the set of functions in C* (£2) whose derivatives

up to the order &k included can be extended continuously up to 92.

Integrals. Up to Chapter 5 included, the integrals can be considered in the
Riemann sense (proper or improper). A brief introduction to Lebesgue measure
and integral is provided in Appendix B. Let 1 < p < oo and ¢ = p/(p — 1), the
conjugate exponent of p. The following Holder’s inequality holds

o< (L) (f o)™ ",

The case p = ¢ = 2 is known as the Schwarz inequality.

Uniform convergence. A series Y ~_| Um, where u,, : 2 C R" — R, is said

to be uniformly convergent in {2, with sum u if, setting Sy = Zzzl Uy, We have

sup |Sy (x) —u (x)] = 0 as N — oc.
x€en

Weierstrass test: Let |um, (X)| < am, for every m > 1 and x € 2. If the
numerical series > ~_, a, is convergent, then Y °_ u,, converges absolutely and
uniformly in (2.

Limit and series. Let >~ uy,, be uniformly convergent in 2. If u,, is contin-
uous at xg for every m > 1, then v is continuous at xg and

(oo} [eo]

lim > up (xX) = D um (X0).
X=X0 ;=1 m=1
Term by term integration. Let Y ~_, Uy, be uniformly convergent in 2. If £2 is
bounded and u,, is integrable in {2 for every m > 1, then:

o0 o0
Sum =Y, U -
2 m=1 m=1J

Term by term differentiation. Let {2 be bounded and u,, € C* (ﬁ) for every
m > 0. If the series > -, um, (Xo) is convergent at some xo € A and the series
> 1 O, U, are uniformly convergent in {2 for every j = 1,...,n, then Y o | up,
converges uniformly in {2, with sum in C* (ﬁ) and
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1.5 Smooth and Lipschitz Domains

We will need, especially in Chapters 7, 8 and 9, to distinguish the domains {2 in
R™ according to the degree of smoothness of their boundary (Fig. 1.2).

Definition 1.1. We say that 2 is a C'—domain if for every point x € 942, there
exist a system of coordinates (Y1, Y2, ..., Yn—1,Yn) = (¥', yn) with origin at x, a ball
B (x) and a function ¢ defined in a neighborhood N' C R"~! of y’ = 0', such that

peC (N), p(0)=0

and
1.02NBx) ={(y y) i yn =0 (¥),y €N},
2.0NB(x)={,yn) tyn >0 ),y € N}.

The first condition expresses the fact that 02 locally coincides with the graph
of a C'—function. The second one requires that £2 be locally placed on one side of
its boundary.

The boundary of a C'—domain does not have corners or edges and for every
point p € 9f2, a tangent straight line (n = 2) or plane (n = 3) or hyperplane
(n > 3) is well defined, together with the outward and inward normal unit vectors.
Moreover these vectors vary continuously on 0f2.

The couples (¢, N) appearing in the above definition are called local charts. If
they are all C*—functions, for some k > 1, {2 is said to be a C*¥—domain. If 12
is a C¥—domain for every k > 1, it is said to be a C*°—domain. These are the
domains we consider smooth domains.

Observe that the one-to-one transformation (diffeomorfism) z = ® (y) given

by
Z/ — y/
1.10
{Zn—yn<»0(y/) ( )

maps 02 N B (x) into a subset of the hyperplane z, = 0, so that 92 N B (x)
straightens, as shown in figure 1.1.

s i
—— ot - T T
- - .- g m.\____\\
/ QBN g, %
~ ,//\_ P / \ &
0Q z, =0

Fig. 1.1. Straightening the boundary 942 by a diffeomorphism

In a great number of applications the relevant domains are rectangles, prisms,
cones, cylinders or unions of them. Very important are polygonal domains obtained
by triangulation procedures of smooth domains, for numerical approximations.
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//.'

S / |

\‘“H,H / \/ L— _;”

q\‘::__ Q Z

‘/_/_/_ - T\ —~
F O R
VN y=p(n)
Ny

Fig. 1.2. A C' domain and a Lipschitz domain

These types of domains belong to the class of Lipschitz domains, whose boundary
is locally described by the graph of a Lipschitz function.

Definition 1.2. We say that u : {2 — R"™ is Lipschitz if there exists L such that
lu(x) —uly)| < L|x -y
for every x,y € (2. The number L is called the Lipschitz constant of u.

Roughly speaking, a function is Lipschitz in (2 if the increment quotients in
every direction are bounded. In fact, Lipschitz functions are differentiable at all
points of their domain with the exception of a negligible set of points. Precisely,
we have (see e.g. Fvans and Gariepy, 1997):

Theorem 1.1. (Rademacher). Let u be a Lipschiz function in A C R™. Then u is
differentiable at every point of A, except at a set points of Lebesgue measure zero.

Typical real Lipschitz functions in R™ are f (x) = |x| or, more generally, the
distance function from a closed set, C, defined by

f (%) = dist (x, C) = inf [x —y].

We say that a domain is Lipschitz if in Definition 1.1 the functions ¢ are
Lipschitz or, equivalently, if the map (1.10) is a bi-Lipschitz transformation, that
is, both @ and ®~! are Lipschitz.

1.6 Integration by Parts Formulas

Let 2 C R™, be a C!— domain. For vector fields

F :(Fl,FQ,...,Fn) 2 —- R”
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with F €C! (ﬁ), the Gauss divergence formula holds:

/divF dx:/ F-vdo (1.11)
2 o9

where divF = Z?:l Oz, Fj, v denotes the outward normal unit vector to 02, and
do is the “surface” measure on 92, locally given in terms of local charts by

do = /1+|Ve(y)| dy'.

A number of useful identities can be derived from (1.11). Applying (1.11) to vF,
with v € C? (.Q), and recalling the identity

div(vF) = v divF + Vv - F

we obtain the following integration by parts formula:

/vdidex:/vFoudaf/VvoFdx. (1.12)
2 2 2

Choosing F = Vu, u € C%(2)NC* (£2), since divVu = Au and Vu-v = d,u, the
following Green’s identity follows:

/ vAu dx :/ vo,u do —/ Vv - Vu dx. (1.13)
Q o0 Q

In particular, the choice v = 1 yields

/ Au dx = Oypu do. (1.14)
2 o9

If also v € C?(£2) N C* (R2), interchanging the roles of u and v in (1.13) and
subtracting, we derive a second Green’s identity:

/9 (vAu — uAv) dx = / (001 — udyv) do. (1.15)

o8

Remark 1.1. All the above formulas hold for Lipschitz domains as well. In fact, the
Rademacher theorem implies that at every point of the boundary of a Lipschitz
domain, with the exception of a set of points of surface measure zero, there is a
well defined tangent plane. This is enough for extending the formulas (1.12), (1.13)
and (1.15) to Lipchitz domains.
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Diffusion

The Diffusion Equation — Uniqueness — The Fundamental Solution — Symmetric Ran-
dom Walk (n = 1) — Diffusion, Drift and Reaction — Multidimensional Random Walk —
An Example of Reaction—Diffusion (n = 3) — The Global Cauchy Problem (n = 1) —
An Application to Finance — Some Nonlinear Aspects

2.1 The Diffusion Equation

2.1.1 Introduction

The one-dimensional diffusion equation is the linear second order partial differ-
ential equation

Uy — Dug, = f
where u = u (z,t), = is a real space variable, ¢ a time variable and D a positive
constant, called diffusion coefficient. In space dimension n > 1, that is when
x € R™, the diffusion equation reads

us — DAu = f (2.1)
where A denotes the Laplace operator:
n 82
A= —
Pt ox?

When f = 0 the equation is said to be homogeneous and in this case the su-
perposition principle holds: if u and v are solutions of (2.1) and a, b are real (or
complex) numbers, au + bv also is a solution of (2.1). More generally, if uy (x,t) is
a family of solutions depending on the parameter k (integer or real) and g = g (k)
is a function rapidly vanishing at infinity, then

—+oo

> uk(x,t)g (k) and / u (x,t) g (k) dk
k=1

— 00

are still solutions.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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A common example of diffusion is given by heat conduction in a solid body. Con-
duction comes from molecular collision, transferring heat by kinetic energy, without
macroscopic material movement. If the medium is homogeneous and isotropic with
respect to the heat propagation, the evolution of the temperature is described by
equation (2.1); f represents the intensity of an external distributed source. For
this reason equation (2.1) is also known as the heat equation.

On the other hand equation (2.1) constitutes a much more general diffusion
model, where by diffusion we mean, for instance, the transport of a substance due
to the molecular motion of the surrounding medium. In this case, u could represent
the concentration of a polluting material or of a solute in a liquid or a gas (dye in
a liquid, smoke in the atmosphere) or even a probability density. We may say that
the diffusion equation unifies at a macroscopic scale a variety of phenomena, that
look quite different when observed at a microscopic scale.

Through equation (2.1) and some of its variants we will explore the deep con-
nection between probabilistic and deterministic models, according (roughly) to the
scheme

diffusion processes <> probability density <> differential equations.

The star in this field is Brownian motion, derived from the name of the botanist
Brown, who observed in the middle of the 19th century, the apparently chaotic
behavior of certain particles on a water surface, due to the molecular motion. This
irregular motion is now modeled as a stochastic process under the terminology of
Wiener process or Brownian motion. The operator

1
§A

is strictly related to Brownian motion! and indeed it captures and synthesizes the
microscopic features of that process.

Under equilibrium conditions, that is when there is no time evolution, the
solution u depends only on the space variable and satisfies the stationary version
of the diffusion equation (letting D = 1)

—Au=f (2.2)

(—tge = f, in dimension n = 1). Equation (2.2) is known as the Poisson equation.
When f =0, it is called Laplace’s equation and its solutions are so important in
so many fields that they have deserved the special name of harmonic functions.
This equation will be considered in the next chapter.

2.1.2 The conduction of heat

Heat is a form of energy which it is frequently convenient to consider as separated
from other forms. For historical reasons, calories instead of Joules are used as units
of measurement, each calorie corresponding to 4.182 Joules.

! In the theory of stochastic processes, %A represents the infinitesimal generator of the
Brownian motion.
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We want to derive a mathematical model for the heat conduction in a solid
body. We assume that the body is homogeneous and isotropic, with constant mass
density p, and that it can receive energy from an external source (for instance, from
an electrical current or a chemical reaction or from external absorption/radiation).
Denote by r the time rate per unit mass at which heat is supplied® by the external
source.

Since heat is a form of energy, it is natural to use the law of conservation of
energy, that we can formulate in the following way:

Let V' be an arbitrary control volume inside the body. The time rate of change
of thermal energy in V' equals the net flux of heat through the boundary 0V of V,
due to the conduction, plus the time rate at which heat is supplied by the external
sources.

If we denote by e=e(x,t) the thermal energy per unit mass, the total quantity
of thermal energy inside V' is given by

/ep dx
v
d

T Vepdx:/vetpdx.

so that its time rate of change is?

Denote by q the heat fluz vector*, which specifies the heat flow direction and the
magnitude of the rate of flow across a unit area. More precisely, if do is an area
element contained in V' with outer unit normal v, then q - vdo is the energy flow
rate through do and therefore the total inner heat fluz through OV is given by

f/ q-vdo = f/diqux.
9V (divergence theorem) v

Finally, the contribution due to the external source is given by

/ rp dx.
v

Thus, conservation of energy requires:

/ erp dx = f/ divq der/ rp dx. (2.3)
v v v

The arbitrariness of V' allows us to convert the integral equation (2.3) into the
pointwise relation
erp = — divg+rp (2.4)

2 Dimensions of r: [r] = [cal] X [time] ™' x [mass]™*.
3 Assuming that the time derivative can be carried inside the integral.
4 [q] = [cal] x [lenght] 2 x [time] .
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that constitutes a basic law of heat conduction. However, e and q are unknown and
we need additional information through constitutive relations for these quantities.
We assume the following:

e Fourier law of heat conduction. Under “normal” conditions, for many solid
materials, the heat flux is a linear function of the temperature gradient, that is:

q=—kVu (2.5)

where u is the absolute temperature and x > 0, the thermal conductivity®, depends
on the properties of the material. In general, x may depend on u, x and ¢, but
often varies so little in cases of interest that it is reasonable to neglect its variation.
Here we consider k constant so that

divqg = —kAu. (2.6)

The minus sign in the law (2.5) reflects the tendency of heat to flow from hotter
to cooler regions.

e The thermal energy is a linear function of the absolute temperature:
e=cyu (2.7)

where ¢, denotes the specific heat® (at constant volume) of the material. In many
cases of interest ¢, can be considered constant. The relation (2.7) is reasonably
true over not too wide ranges of temperature.

Using (2.6) and (2.7), equation (2.4) becomes

1
up = L Aut —r (2.8)
CyQ Cy
which is the diffusion equation with D = k/ (¢,0) and f = r/c,. As we will see,
the coefficient D, called thermal diffusivity, encodes the thermal response time of
the material.

2.1.3 Well posed problems (n = 1)

As we have mentioned at the end of chapter one, the governing equations in a
mathematical model have to be supplemented by additional information in order to
obtain a well posed problem, i.e. a problem that has exactly one solution, depending
continuously on the data.

On physical grounds, it is not difficult to outline some typical well posed prob-
lems for the heat equation. Consider the evolution of the temperature u inside
a cylindrical bar, whose lateral surface is perfectly insulated and whose length is
much larger than its cross-sectional area A. Although the bar is three dimensional,

% [k] = [cal] x [deg] " x [time] ! x [length] ™' (deg stays for degree, Celsius or Kelvin).
6 [¢,] = [cal] x [deg] " x [mass] .
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we may assume that heat moves only down the length of the bar and that the heat
transfer intensity is uniformly distributed in each section of the bar. Thus we may
assume that e = e (z,t), r = r (z,t), with 0 < z < L. Accordingly, the constitutive
relations (2.5) and (2.7) read

e(z,t) =cyu(z,t), q=—Ku.l

By choosing V' = A x [z, z + Az] as the control volume in (2.3), the cross-sectional
area A cancels out, and we obtain

x+Ax x+Ax x+Ax
/ Cypus dxr = / KlUgg dach/ rp dz
xT xT xT

that yields for u the one-dimensional heat equation
U — Dy, = f.

We want to study the temperature evolution during an interval of time, say, from
t = 0 until t = T'. It is then reasonable to prescribe its initial distribution inside
the bar: different initial configurations will correspond to different evolutions of
the temperature along the bar. Thus we need to prescribe the initial condition

u(z,0) =g (z)

where g models the initial temperature profile.

This is not enough to determine a unique evolution; it is necessary to know
how the bar interacts with the surroundings. Indeed, starting with a given initial
temperature distribution, we can change the evolution of u by controlling the
temperature or the heat flux at the two ends of the bar”; for instance, we could keep
the temperature at a certain fixed level or let it vary in a certain way, depending
on time. This amounts to prescribing

u(0,t) = hy (t), w(L,t) = hs(t) (2.9)

at any time t € (0,7]. The (2.9) are called Dirichlet boundary conditions .

We could also prescribe the heat flux at the end points. Since from Fourier law
we have
inward heat flow at z = 0 : —ku (0, ?)

inward heat flow at z = L : ku, (L, t)

the heat flux is assigned through the Neumann boundary conditions
—ug (0,t) = hy (t), ug (L, t) = ha (t)
at any time t € (0, 7.

" Remember that the bar has perfect lateral thermal insulation.
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Another type of boundary condition is the Robin or radiation condition.
Let the surroundings be kept at temperature U and assume that the inward heat
flux from one end of the bar, say = L, depends linearly on the difference U — u,
that is®

Kugy =y(U —u) (v >0). (2.10)

Letting « =v/k > 0 e h = yU/k, the Robin condition at z = L reads
Uy + au = h.

Clearly, it is possible to assign mixed conditions: for instance, at one end a
Dirichlet condition and at the other one a Neumann condition.

The problems associated with the above boundary conditions have a corre-
sponding nomenclature. Summarizing, we can state the most common problems
for the one dimensional heat equation as follows: given f = f(x,t) (external
source) and g = g (x) (initial or Cauchy data), determine u = u (x,t) such that:

U — Dy, = f O<zx<L0<t<T

u(z,0) =g () 0<z<L
+ boundary conditions 0<t<T

where the boundary conditions may be:

e Dirichlet:
U(O,t) =h (t)v u(Lvt) = hs (t)v

e Neumann:

—Ug (Oa t) =hy (t) y Ug (Lv t) = ho (t) )
e Robin or radiation:
—Ug (Oa t) +au (Oa t) =h (t) y Ug (Lv t) +au (Lv t) = hs (t) (a > O)v

or mixed conditions. Accordingly, we have the initial-Dirichlet problem, the initial-
Neumann problem and so on. When h; = hg = 0, we say that the boundary
conditions are homogeneous.

Remark 2.1. Observe that only a special part of the boundary of the rectangle
QT = (OaL) X (OaT)a
called the parabolic boundary of Qr, carries the data (see Fig. 2.1). No final con-

dition (for t =T,0 < & < L) is required.

8 Formula (2.10) is based on Newton’s law of cooling: the heat loss from the surface of
a body is a linear function of the temperature drop U — u from the surroudings to the
surface. It represents a good approximation to the radiative loss from a body when
U —u| Ju< 1.
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0 L

Fig. 2.1. The parabolic boundary of Qr

In important applications, for instance in financial mathematics, x varies over
unbounded intervals, typically (0, 00) or R. In these cases one has to require that
the solution do not grow too much at infinity. We will later consider the global
Cauchy problem:

U — Duge = f reR0O<t<T
u(z,0) =g (z) zeR

+ conditions as x — +o0.

2.1.4 A solution by separation of variables

We will prove that under reasonable hypotheses the initial Dirichlet, Neumann or
Robin problems are well posed. Sometimes this can be shown using elementary
techniques like the separation of variables method that we describe below through
a simple example of heat conduction. We will come back to this method from a
more general point of view in Section 6.9.

As in the previous section, consider a bar (that we can consider one-dimensional)
of length L, initially (at time ¢ = 0) at constant temperature ug. Thereafter, the
end point z = 0 is kept at the same temperature while the other end x = L is
kept at a constant temperature u; > ug. We want to know how the temperature
evolves inside the bar.

Before making any computations, let us try to conjecture what could happen.
Given that u; > wg, heat starts flowing from the hotter end, raising the temper-
ature inside the bar and causing a heat outflow into the cold boundary. On the
other hand, the interior increase of temperature causes the hot inflow to decrease
in time, while the ouflow increases. We expect that sooner or later the two fluxes
balance each other and that the temperature eventually reaches a steady state
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distribution. It would also be interesting to know how fast the steady state is
reached.

We show that this is exactly the behavior predicted by our mathematical model,
given by the heat equation

U — Duge, =0 t>0,0<z <L

with the initial-Dirichlet conditions

u(z,0) =g () 0<z<L
u(0,t) = ug, u (L, t) = uy t>0.

Since we are interested in the long term behavior of our solution, we leave ¢ un-
limited. Notice the jump discontinuity between the initial and the boundary data
at x = L; we will take care of this little difficulty later.

e Dimensionless variables. First of all we introduce dimensionless variables,
that is variables independent of the units of measurement. To do that we rescale
space, time and temperature with respect to quantities that are characteristic of
our problem. For the space variable we can use the length L of the bar as rescaling
factor, setting

y:L

which is clearly dimensionless, being a ratio of lengths. Notice that
0<y<1l

How can we rescale time? Observe that the dimensions of the diffusion coefficient
D are
[length]® x [time] .

Thus the constant 7 = L?/D gives a characteristic time scale for our diffusion
problem. Therefore we introduce the dimensionless time

(2.11)

S = —.
T

Finally, we rescale the temperature by setting

u(Ly, T8) — ug

Z(yvs) = w1 — o

For the dimensionless temperature z we have:

u (Lyv 0) — Uo
U1 — Ug
u (0,78) — uo

u (L, Ts) — ug

z(0,s) = =0, z(l,s)= =1

U1 — Ug U1 — Ug
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Moreover

ot L?
(U1 —ug)zs = —Up = TU = — Uy

Os D

or\?
(U1 — wo)zyy = <@> Upe = LPUpy.

Hence, since uy = Dugy,

L? L?

(u1 — wo)(2s — 2yy) = Ut~ Luy, = EDUM — L%uy, = 0.
In conclusion, we find
Zs — Zyy =0 (2.12)
with the initial condition
2 (y,0) = (2.13)
and the boundary conditions
z(0,s) =0, =z(1,s)=1. (2.14)

We see that in the dimensionless formulation the parameters L and D have disap-
peared, emphasizing the mathematical essence of the problem. On the other hand,
we will show later the relevance of the dimensionless variables in test modelling.

o The steady state solution . We start solving problem (2.12), (2.13), (2.14) by
first determining the steady state solution z5¢, that satisfies the equation Zyy =0
and the boundary conditions (2.14). An elementary computation gives

2 (y) =y.

In terms of the original variables the steady state solution is

x
ut () = uo + (u1 — uo) I

corresponding to a uniform heat flux along the bar given by the Fourier law:

(u1 - ’LLO) )
L

o The transient regime. Knowing the steady state solution, it is convenient to
introduce the function

heat flux = —ku, = —k

U(yas) :zSt(y,s)—z(y7s):y—z(y,s).

Since we expect our solution to eventually reach the steady state, U represents a
transient regime that should converge to zero as s — oo. Furthermore, the rate of
convergence to zero of U gives information on how fast the temperature reaches
its equilibrium distribution. U satisfies (2.12) with initial condition

Ul(y,0) =y (2.15)
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and homogeneous boundary conditions
U(,s)=0 and U(1,s)=0. (2.16)

e The method of separation of variables. We are now in a position to find
an explicit formula for U using the method of separation of variables. The main
idea is to exploit the linear nature of the problem constructing the solution by
superposition of simpler solutions of the form w (s) v (y) in which the variables s
and y appear in separated form.

Step 1. We look for non-trivial solutions of (2.12) of the form
Ul(y,s) =w(s)v(y)
with v (0) = v (1) = 0. By substitution in (2.12) we find
0="Us = Uy =w'(s)v(y) —w(s)v" (y)

from which, separating the variables,

w(s) () o.17)

Now, the left hand side in (2.17) is a function of s only, while the right hand
side is a function of y only and the equality must hold for every s > 0 and every
y € (0,L). This is possible only when both sides are equal to a common constant
A, say. Hence we have

v (y) — M (y) =0 (2.18)

with
v(0)=v(1)=0 (2.19)

and
w' (s) — Aw (s) = 0. (2.20)

Step 2. We first solve problem (2.18), (2.19). There are three different possi-
bilities for the general solution of (2.18):

a) If A =0,
v(y) = A+ By (A, B arbitrary constants)

and the conditions (2.19) imply A = B = 0.
b) If X is a positive real number, say A = u? > 0, then

v(y) = Ae™ " + BeMY

and again it is easy to check that the conditions (2.19) imply A = B = 0.
c) Finally, if A = —u? < 0, then

v (y) = Asin puy + B cos uy.
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From (2.19) we get
v(0)=B=0
v(l) = Asinp+ Bcosp =0
from which
A arbitrary, B =0, u,, =mm, m=1,2,....

Thus, only in case ¢) we find non-trivial solutions
vm (y) = Asinmmy. (2.21)

In this context, (2.18), (2.19) is called an eigenvalue problem; the special values
L., are the eigenvalues and the solutions vy, are the corresponding eigenfunctions.
With A = —p2, = —m?7?, the general solution of (2.20) is

2_2

W, (8) =Ce™™™? (C arbitrary constant). (2.22)

From (2.21) and (2.22) we obtain damped sinusoidal waves of the form
2_2
Un (y,8) = Ame™™ ™ sinmmy.

Step 3. Although the solutions U,, satisfy the homogeneous Dirichlet condi-
tions, they do not match, in general, the initial condition U (y,0) = y. As we
already mentioned, we try to construct the correct solution superposing the U,
by setting

U(y,s) = Z Ape™™ ™% gin mny. (2.23)
m=1

Some questions arise:

Q1. The initial condition requires
U (y,0) = Z Ap sinmny =y for 0 <y <1. (2.24)
m=1

Is it possible to choose the coefficients A,, in order to satisfy (2.24)? In which
sense does U attain the initial data? For instance, is it true that

U(z,8) =y if (z,8) — (y,0)?

Q2. Any finite linear combination of the U, is a solution of the heat equation;
can we make sure that the same is true for U? The answer is positive if we could
differentiate term by term the infinite sum and get

(05— 02,)U (4,5) = 3 (0 — 0y)Unn (4, 5) = 0. (2.25)

m=1
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What about the boundary conditions?

Q3. Even if we have a positive answer to questions 1 and 2, are we confident
that U is the unique solution of our problem and therefore that it describes the
correct evolution of the temperature?

Q1. Question 1 is rather general and concerns the Fourier series expansion® of
a function, in particular of the initial data f (y) = y, in the interval (0,1). Due
to the homogeneous Dirichlet conditions it is convenient to expand f (y) =y in a
sine Fourier series, whose coefficients are given by the formulas

1 1
2 2
A = 2/ ysinmry dy = ——— [y cos mmy]p + —/ cosmmy dy =
0 mm mm Jy
_ 72cosm7r _ (71)m+1 2 '
mm mm

The sine Fourier expansion of f (y) = y is therefore

> m—+1 2 .
y = TnZ:l (-1) ——sinmmy. (2.26)
Where is the expansion (2.26) valid? It cannot be true at y = 1 since sinmmr = 0
for every m and we would obtain 1 = 0. This clearly reflects the jump discontinuity
of the data at y = 1.
The theory of Fourier series implies that (2.26) is true at every point y € [0, 1)
and that the series converges uniformly in every interval [0, a], a < 1. Moreover,
equality (2.26) holds in the leat square sense (or L? (0, 1) sense), that is

1 N
m+1 2 .
/ [y — Z (=)™ sinmmy]?dy — 0 as N — oo.
0 el mm

From (2.23) and the expression of A,,, we obtain the formal solution

o0

2 2_2
U = —1)H e 2.27
(09 = 3 0™ e iy .27)
that attains the initial data in the least squares sense, i.e.1?.
1
lim [ [U(y,s)—y]*dy = 0. (2.28)
s—0t 0
In fact, from Parseval’s equality'!, we can write
2
Uly,s)—glPdy=—S ~ 2.29
[ s -t a= 53— (2.29)

9 Appendix A.

101t is also true that U (z,s) — ¥ in the pointwise sense, when y # 1 and (z,s) — (y, 0).
We omit the proof.

11 Appendix A.
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2
(efmzrrzs _ 1) 1
= = 7 S R

m? m?

Since for s > 0

and the series Y 1/m? converges, then the series (2.29) converges uniformly by
the Weierstrass test (see Section 1.4) in [0,00) and we can take the limit under
the sum, obtaining (2.28).

Q2. The analytical expression of U is rather reassuring: it is a superposition
of sinusoids of increasing frequency m and of strongly damped amplitude because
of the negative exponential, at least when s > 0. Indeed, for s > 0, the rapid
convergence to zero of each term and its derivatives in the series (2.27) allows us
to differentiate term by term. Precisely, we have

v, 02U,
8m = (—-1)™*? Imme ™ ™5 sin mmy, 8—2m = (—-1)™*? 2e~™ ™5 gin mmy
§ Y
so that, if s > s¢ > 0,
2
’aaUm < Qmﬂefmzﬂ'zs“, ’88U2m < Imme ™ S0,
& Y

Since the numerical series
o0
2_2
E mefm T8
m=1

is convergent, we conclude by the Weierstrass test that the series

= U, = 2*Up,
3 O
m=1 m=1
converge uniformly in [0, 1] X [sg,00) so that (2.25) is true and therefore U is a
solution of (2.12).

It remains to check the Dirichlet conditions: if sy > 0,

U(z,s) >0 as (z,8) = (0,s0) or (z,8) = (L, so) .

This is true because we can take the two limits under the sum, due to the uniform
convergence of the series (2.27) in any region [0, L] x (b, +00) with b > 0. For the
same reason, U has continuous derivatives of any order, up to the lateral boundary
of the strip [0, L] x (b, +00).

Note, in particular, that U immediately forgets the initial discontinuity and
becomes smooth at any positive time.

Q3. To show that U is indeed the unique solution, we use the so-called energy
method, that we will develop later in greater generality. Suppose W is another
solution of problem (2.12), (2.15), (2.16). Then, by linearity,

v=U-W
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satisfies
Vs — Vyy =0 (2.30)

and has zero initial-boundary data. Multiplying (2.30) by v, integrating in y over
the interval [0, 1] and keeping s > 0, fixed, we get

1 1
/ vus dy —/ VUyy dy = 0. (2.31)
0 0

! 1 /! 1d [*
sdy== 1 98s(v¥)dy==>— 2dy. 2.32
/Ovvy2/0 (v)deS/Ovy (2.32)

Moreover, integrating by parts we can write

Observe that

/ vuyy dy = [v (L, 5) vy (1,5) = v (0,5) v, (0,8)]*/ (v,)*dy  (233)
0 0

—A%%f@

since v (1,s) = v (0,s) = 0. From (2.31), (2.32) and (2.33) we get
1d (!

1
-4 24 :7/ 2dy < 2.34
575, vtdv=— | @y <o (234)

and therefore, the nonnegative function

1
E(s) = / v (y,s) dy
0
is non-increasing. On the other hand, using (2.28) for v instead of U, we get

E(s)—0 as s —0

which forces E (s) = 0, for every s > 0. But v2 (y, s) is nonnegative and continuous
in [0,1] if s > 0, so that it must be v (y,s) = 0 for every s > 0 or, equivalently,
U=W.

e Back to the original variables. In terms of the original variables, our solution

is expressed as

2.2p

> 2 mm
1 —m2n .
— E (- T2 fsin—au.
— mm L

u(x,t) = ug + (u1 — uo)

I8

This formula confirms our initial guess about the evolution of the temperature
towards the steady state. Indeed, each term of the series converges to zero expo-
nentially as ¢t — +oo and it is not difficult to show!? that

x
u(x,t)%qur(ul—uo)z as t — +oo.

12 The Weierstrass test works here for ¢ > to > 0.
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Moreover, among the various terms of the series, the first one (m = 1) decays much
more slowly than the others and very soon it determines the main deviation of u
from the equilibrium, independently of the initial condition. This leading term is
the damped sinusoid

2 fﬂth .

—e L2 "sln —x.

T
In this mode there is a concentration of heat at x = L/2 where the temperature
reaches its maximum amplitude 2 exp(—7w2Dt/L?)/7. At time t = L?/D the am-
plitude decays to 2 exp(—m2)/m ~ 3.3 x 1075, about 0.005 per cent of its initial
value. This simple calculation shows that to reach the steady state a time of order
L?/D is required, a fundamental fact in heat diffusion.

Not surprisingly, the scaling factor in (2.11) was exactly 7 = L?/D. The di-
mensionless formulation is extremely useful in experimental modelling tests. To
achieve reliable results, these models must reproduce the same characteristics at
different scales. For instance, if our bar were an experimental model of a much
bigger beam of length Ly and diffusion coefficient Dy, to reproduce the same heat
diffusion effects, we must choose material (D) and length (L) for our model bar
such that

2 I3

D Dy
Figure 2.2 shows the solution of the dimensionless problem (2.12), (2.15), (2.16)
for0 <t <1.

Fig. 2.2. The solution to the dimensionless problem (2.12), (2.13), ( 2.14)

2.1.5 Problems in dimension n > 1

The formulation of the well posed problems in subsection 2.1.3 can be easily gen-
eralized to any spatial dimension n > 1, in particular to n = 2 or n = 3. Suppose
we want to determine the evolution of the temperature in a heat conducting body
that occupies a bounded domain'3 2 C R™, during an interval of time [0, T]. Un-
der the hypotheses of subsection 2.1.2, the temperature is a function u = u (x,t)

13 Recall that by domain we mean an open connected set in R™.
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that satisfies the heat equation u; — DAwu = f, in the space-time cylinder
Qr =02x(0,T).

To select a unique solution we have to prescribe first of all the initial distribution

u(x,0)=g(x) x€0,

where 2 = £2U 012 denotes the closure of 2.
The control of the interaction of the body with the surroundings is modeled
through suitable conditions on 0f2. The most common ones are:

Dirichlet condition: the temperature is kept at a prescribed level on 02; this
amounts to assigning

u(o,t) =h(o,t) o €9 and te (0,7T).

Neumann condition: the heat flux through 042 is assigned. To model this
condition, we assume that the boundary 0f2 is a smooth curve or surface, having
a tangent line or plane at every point'* with outward unit vector v. From Fourier
law we have

q = heat flux = —xkVu

so that the inward heat flux is
—q v =kVu-v =kdyu.
Thus the Neumann condition reads
du (o, t) = h(o,t) o €9 and te (0,T).

Radiation or Robin condition: the inward (say) heat flux through 9012
depends linearly on the difference!® U — u:

—qv=yU-u) (vy>0)
where U is the ambient temperature. From the Fourier law we obtain
Ou+au=nh on 042 x (0,T]

with @ = v/k > 0, h = yU/k.

Mixed conditions: the boundary of {2 is decomposed into various parts where
different boundary conditions are prescribed. For instance, a formulation of a mixed
Dirichlet-Neumann problem is obtained by writing

02 =0pRUINS with OpR2NoNN2 =0

14 We can also allow boundaries with corner points, like squares, cones, or edges, like
cubes. It is enough that the set of points where the tangent plane does not exist has
zero surface measure (zero length in two dimensions). Lipschitz domains have this
property (see Section 1.4).

15 Linear Newton law of cooling.
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where Op {2 and Oy {2 “reasonable” subsets of 9f2. Typically Oy 2 = 02N A, where
A is open in R™. In this case we say that Oy {2 is a relatively open set in 92. Then
we assign

u =hy on dpf2 x (0,7
Oyu = hy on Oy 12 x (0,T].

Summarizing, we have the following typical problems: given f = f (x,t) and
g = g (x), determine u = u (x,t) such that:

uy — DAu = f in Qr
u(x,0) =g (x) in 2
+ boundary conditions on 92 x (0, T

where the boundary conditions are:
e Dirichlet:

e Neumann:

e radiation or Robin:
Out+aou=nh (a>0),

e mixed:

u=hy on dpf2, O,u= hy on N2

Fig. 2.3. The space-time cylinder Q7

Also in dimension n > 1, the global Cauchy problem is important:
u — DAu=f x€eR*"0<t<T
u(x,0) =g (x) x €R"

+ condition as |x| — oo.
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Remark 2.2. We again emphasize that no final condition (for ¢t = T,x €12) is re-
quired. The data is assigned on the parabolic boundary 0,Qr of Qr, given by the

union of the bottom points 2 x {t = 0} and the side points 952 x (0, T7:

9pQr = (2 x {t =0}) U (892 x (0,T)).

2.2 Uniqueness

2.2.1 Integral method

Generalizing the energy method used in subsection 2.1.4, it is easy to show that all
the problems we have formulated in the previous section have at most one solution
under reasonable conditions on the data. Suppose u and v are solutions of one
of those problems, sharing the same boundary conditions, and let w = u — v; we
want to show that w = 0. For the time being we do not worry about the precise
hypotheses on u e v; we assume they are sufficiently smooth in Q7 up to 0,Qr

and observe that w satisfies the homogeneous equation
wy — DAw =0
in Qr = 2 x (0,7, with initial condition
w(x,0) =0
in 2, and one of the following conditions on 82 x (0, T):

w=0 (Dirichlet)

or
O,w=0 (Neumann)
or
Oyw + aw =0 a>0, (Robin)
or

w=0o0ndpf2, O,w=0ondy{2 (mixed).

Multiply equation (2.35) by w and integrate on §2; we find

/wwt dx:D/wAw dx.
19 9]

1d
/ ww dxX = = — wdx

and from Green’s identity (1.13) with u = v = w,

/wAw dx:/ wd,w da—/ |Vw|? dx.
2 o9 2

Now,

(2.35)

(2.36)

(2.37)
(2.38)

(2.39)

(2.40)

(2.41)
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Then, letting

(2.40) and (2.41) give
1
—E'(t)=D wd,w dU—D/ |Vwl|® dx.
2 00 Q

If Robin condition (2.38) holds,

/ wo,w do = —a/ w?dx < 0.
on 19

If one of the (2.36), (2.37), (2.39) holds, then

/ wd,w do = 0.
o0

E'(t) <0

In any case it follows that

and therefore E is a nonincreasing function. Since

E(0) = /Q w? (x,0) dx =0,

we must have E (t) = 0 for every ¢t > 0 and this implies w (x,t) = 0 in {2 for every
t > 0. Thus u = .

The above calculations are completely justified if (2 is a sufficiently smooth
domain'® and, for instance, we require that uand v are continuous in Qp = £2 x
[0, T, together with their first and second spatial derivatives and their first order
time derivatives. We denote the set of these functions by the symbol (not too
appealing...)

021 (@T)

and synthesize everything in the following statement.

Theorem 2.1. The initial Dirichlet, Neumann, Robin and mixed problems have
at most one solution belonging to C** (Qr).

2.2.2 Maximum principles

The fact that heat flows from higher to lower temperature regions implies that
a solution of the homogeneous heat equation attains its maximum and minimum
values on 0,Q7. This result is known as the maximum principle. Moreover the
equation reflects the time irreversibility of the phenomena that it describes, in the

16 C1 or even Lipschitz domains, for instance (see Section 1.4).
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sense that the future cannot have an influence on the past (causality principle).
In other words, the value of a solution w at time ¢ is independent of any change of
the data after ¢.

The following simple theorem translates these principles and holds for functions
in the class C%* (Q7)NC (Qr). These functions are continuous up to the boundary
of Qr, with derivatives continuous in the interior of Q.

Theorem 2.2. Let w € C*' (Qr) N C (Qr) such that
wy — DAw =¢ <0 m Qr. (2.42)
Then w attains its maximum on O,Qr:

maxw = max w. (2.43)
Qr 9pQr

In particular, if w is negative on 0,Qr, then is negative in all Qr.

Proof. We split the proof into two steps.
1. Let € > 0 such that T'— ¢ > 0. We prove that

max w < max w + 7. (2.44)
aT—a OpQr

Let u = w — et. Then
us — DAu=q—¢ <0. (2.45)

We claim that the maximum of u on @T% occurs on 9,Q7—.. Suppose not. Let
Xo,%0), X0 € 2, 0 < tg < T — ¢ be a maximum point for v on Qp_.. From
( ) ) ) p T—e¢
elementary calculus, we have

Au (Xo, to) < 0
and either
ut(Xo,to):O ifto<T —¢

or
ut (x0, T —€) >0

In both cases
Ut (Xo, to) — Au (Xo, to) Z 0,

contradicting (2.45). Thus

max v < max u < maxw (2.46)
Qr_. 0p Q1< 0, QT

since u < w. On the other hand, w < u + €T, and therefore, from (2.46) we get

maxw < maxu + €1 < maxw + €T
Qr_. Qr_. 0pQr

which is (2.44).
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Step 2. Since w is continuous in Q, we deduce that (why?)

max w — maxw as e — 0.
Qr_. Qr

Hence, letting ¢ — 0 in (2.44) we find maxg w < maxg,Q, w which concludes the
proof. 1

As an immediate consequence of Theorem 2.2 (see Problem 2.4) we have that
if
wy — DAw =0 in Qr
then w attains its maximum and its minimum on 0,Q7. In particular

min w < w (x,t) < max w for every (x,t) € Qr.
9, QT »QT

Moreover:
Corollary 2.1. (Comparison and stability). Let v and w satisfy
v —DAv = fi and wy — DAw = fo.

Then:
a)Ifv>won 0,Qr and fi1 > fo in Qr then v > w in all Q.
b) The following stability estimate holds

max |v — w| < max |v — w| + T max|f; — fa|. (2.47)
Qr 0pQr Qr

In particular the initial-Dirichlet problem has at most one solution that, moreover,
depends continuously on the data.

For the proof see Problem 2.5.

Remark 2.3. Corollary 2.1 gives uniqueness for the initial-Dirichlet problem under
much less restrictive hypotheses than Theorem 2.1: indeed it does not require the
continuity of any derivatives of the solution up to 0,Q7.

Inequality (2.47) is a uniform pointwise stability estimate, extremely useful in
several applications. In fact if v = g1, w = g2 on 9,Qr and

max |g1 —¢2| <& and max|fi — fo| <e,
0pQr Qr

we deduce
max|v—w| <e(1+4+7T).
T

Thus, in finite time, a small uniform distance between the data implies small
uniform distance between the corresponding solutions.
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Remark 2.4. Strong mazimum principle. Theorem 2.2 is a version of the so called
weak maximum principle, weak because this result says nothing about the possi-
bility that a solution achieves its maximum or minimum at an interior point as
well. Actually a more precise result is known as strong mazimum principle and
states'” that if a solution of u; — DAu = 0 achieves its maximum M (minimum)
at a point (x1,t1) withxy € V,0<t; <T, thenu= M in V x [0,#].

u(x.t)=M= max u
T

Fig. 2.4. The strong maximum principle

2.3 The Fundamental Solution

There are privileged solutions of the diffusion equation that can be used to con-
struct many other solutions. In this section we are going to discover one of these
special building blocks, the most important one.

2.3.1 Invariant transformations

The homogeneous diffusion equation has simple but important properties. Let
u = u(x,t) be a solution of
uy — DAu = 0. (2.48)

e Time reversal. The function
U(X,t) =u (Xv *t) s

obtained by the change of variable ¢ —— —t, is a solution of the adjoint or
backward equation.
vy + DAv = 0.

17 We omit the rather long proof.
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Coherently, the (2.48) is sometimes called the forward equation. The non-
invariance of (2.48) with respect to a change of sign in time is another aspect
of time irreversibility.

e Space and time translations invariance. For y,s fixed, the function
U(X?t) = u(xf}’atf S)v

is still a solution of (2.48). Clearly, for x,¢ fixed the function u (x —y,t—s) is a
solution of the backward equation with respect to y and s.

e Parabolic dilations The transformation
X +— ax, t+—— bt, U — cu (a,b,¢>0)

represents a dilation (or contraction) of the graph of u. Let us check for which
values of a, b, ¢ the function

u* (x,t) = cu (ax,bt)
is still a solution of (2.48). We have:
ul (x,t) — DAu* (x,t) = cbuy (ax,bt) — ca®D Au (ax,bt)

and so u* is a solution of (2.48) if

b=ad% (2.49)
The relation (2.49) suggests the name of parabolic dilation for the transformation

X — ax t— a’t (a,b>0).

Under this transformation the expressions

|x/” X

or
Dt VDt

are left unchanged. Moreover, we already observed that they are dimensionless
groups. Thus it is not surprising that these combinations of the independent vari-
ables occur frequently in the study of diffusion phenomena.

e Dilations and conservation of mass (or energy). Let u = u (x, t) be a solution
of (2.48) in the half-space R™ x (0, +00). Then we just checked that the function

u* (x,t) = cu (ax,at) (a>0)

is also a solution in the same set. Suppose u satisfies the condition

/ u (x,t) dx =q for every t > 0. (2.50)
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If, for instance, u represents the concentration of a substance (density of mass),
equation (2.50) states that the total mass is ¢ at every time ¢. If u is a temperature,
(2.50) says that the total internal energy is constant (= gpc,). We ask for which
a, ¢ the solution u* still satisfies (2.50). We have

/ u* (x,t)dx :c/ u (ax, a’t) dx.

Letting y =ax, so that dy =a"dx, we find

/ u* (x,t) dx :ca*”/ U (y, a2t) dy =ca™"
and for (2.50) to be satisfied we must have:
c=qa".

In conclusion, if u = u (x,t) is a solution of (2.48) in the half-space R™ x (0, +00)
satisfying (2.50), the same is true for

u* (x,t) = qa"u (ax,a’t) . (2.51)

2.3.2 Fundamental solution (n = 1)

We are now in position to construct our special solution, starting with dimension
n = 1. To help intuition, think for instance of our solution as the concentration of
a substance of total mass ¢ and suppose we want to keep the total mass equal to
q at any time.

We have seen that the combination of variables x/ /Dt is not only invariant
with respect to parabolic dilations but also dimensionless. It is then natural to
check if there are solutions of (2.48) involving such dimensionless group. Since
VDt has the dimension of a length, the quantity q/ VDt is a typical order of
magnitude for the concentration, so that it makes sense to look for solutions of the

o u* (z,t) = %U <\/%> (2.52)

where U is a (dimensionless) function of a single variable.
Here is the main question: is it possible to determine U = U (§) such that u* is
a solution of (2.48)? Solutions of the form (2.52) are called similarity solutions'®.
18 A solution of a particular evolution problem is a similarity or self-similar solution if its
spatial configuration (graph) remains similar to itself at all times during the evolution.
In one space dimension, self-similar solutions have the general form

u(x,t) = a(t) F(z/b(t))

where, preferably, u/a and z/b are dimensionless quantity.
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Moreover, since we are interpreting u* as a concentration, we require U > 0
and the total mass condition yields

= 7 0 () L 0

so that we require that
/ U (€)de =1. (2.53)
R
Let us check if u* is a solution to (2.48). We have

3

* L fl -2 — 1 xT -2y
it = [y - et @)
- Wqﬁ U (&) + €U’ (€)]
% q "
Tr (Dt)3/2 (ﬁ)a
hence
wi - D, = - {v 4 g © + 30 |

We see that for u* to be a solution of (2.48), U must be a solution in R of the
ordinary differential equation

U (€) + 5EU"(€) + 5T (6) =0. (250
Since U > 0, (2.53) implies®:
U (—o0) =U (400) = 0.
On the other hand, (2.54) is invariant with respect to the change of variables

£ —¢

and therefore we look for even solutions: U (—§) = U (&). Then we can restrict
ourselves to £ > 0, asking

U’ (0) =0 and U (+00) = 0. (2.55)
19 Rigorously, the precise conditions are:

liminfU (z) = 0.

r—+oo
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To solve (2.54) observe that it can be written in the form

d , l B
Flro+zeol-o
that yields
U () + %éU € =cC (C eR). (2.56)

Letting £ = 0 in (2.56) and recalling (2.55) we deduce that C = 0 and therefore
1
U' &)+ §§U(§) =0. (2.57)

The general integral of (2.57) is

_é
U (&) =coe T (co € R).
This function is even, positive, integrable and vanishes at infinity. It only remains
to choose ¢ in order to ensure (2.53). Since?°

2
/e’%dﬁ - 2/efzzdz:2\/7?
R &=2z  Jp

the choice is ¢ = (4#)71/2.

Going back to the original variables, we have found the following solution of
(2.48)

* q _ a2
u” (x,t) = e 1Dt reR, t>0
(@9) van Dt
positive, even in x, and such that
/ u* (z,t)dr =q for every ¢ > 0. (2.58)
R

The choice ¢ = 1 gives a family of Gaussians, parametrized with time, and it is
natural to think of a normal probability density.

Definition 2.1. The function
1 a2

I'p (z,t) = \/mef DT, reER, t>0 (2.59)

is called the fundamental solution of equation (2.48).

N

20 Recall that
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0.4,
03]

0.21

g T S _'__Oé"d.et
-2 -4»1 i

Fig. 2.5. The fundamental solution I for -4 <x <4,0<t< 1

2.3.3 The Dirac distribution

It is worthwhile to examine the behavior of the fundamental solution. For every
fixed = # 0,

1 2
lim I" t) = lim ———e Dt =0 2.60
Jm Ip (z,8) = lim —2e=e (2:60)

while

1
lim I'p (0,¢) = li
L 00 =1 Uiy
If we interpret I'p as a probability density, equations (2.60), (2.61) and (2.58)
imply that when ¢ — 0% the fundamental solution tends to concentrate mass

around the origin; eventually, the whole probability mass is concentrated at x = 0
(see Fig. 2.5).

The limiting density distribution can be mathematically modeled by the so
called Dirac distribution (or measure) at the origin, denoted by the symbol §g or
simply by d. The Dirac distribution is not a function in the usual sense of Analysis;
if it were, it should have the following properties:

= to0. (2.61)

e §(0)=o00,0(z)=0forxz#0
Jpd(x)dz =1,

clearly incompatible with any concept of classical function or integral. A rigorous
definition of the Dirac measure requires the theory of generalized functions or
distributions of L. Schwartz, that we will consider in Chapter 7. Here we restrict
ourselves to some heuristic considerations.

Let
1 ifxz>0
H = -
() {0 ifz <0,
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Unit impulse &

1/2¢ £—0

v
Y

=E £

Fig. 2.6. Approximation of the Dirac measure

be the characteristic function of the interval [0, c0), known as the Heaviside func-
tion. Observe that

(2.62)

2e

H(z+e)—H(r—¢e) [ if —e<az<e
“]o otherwise.

Denote by I. (z) the quotient (2.62); the following properties hold:
i) For every € > 0,

1
‘/RIE(:v)dac:%xZE:l.

We can interpret I. as a unit impulse of extent 2e (Fig. 2.6).
i)
. _Jo ifzx#0
161&1]5(:8)_{00 if x =0.

iii) If ¢ = ¢ (z) is a smooth function, vanishing outside a bounded interval, (a
test function), we have

1 £
/Rux)so(x)dx: 5 | e@dr =, 00).

e—0

Properties i) e ii) say that I. tends to a mathematical object that has precisely the
formal features of the Dirac distribution at the origin. In particular iii) suggests
how to identify this object, that is through its action on test functions.

Definition 2.2. We call Dirac measure at the origin the generalized function,
denoted by 4, that acts on a test function ¢ as follows:

d ¢l = (0). (2.63)

Equation (2.63) is often written in the form (d, ¢) = ¢ (0) or even
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where the integral symbol is purely formal. Observe that property ii) shows that
H =96

whose meaning is given in the following computations, where an integration by
parts is used and ¢ is a test function:

‘4MH—AH¢—AMW—¢®% (2.64)

since ¢ vanishes for large?! z .
With the notion of Dirac measure at hand, we can say that I'p satisfies the
initial conditions

I'p (z,0) = 6.

If the unit mass is concentrated at a point y # 0, we denote by J, or d (x — y) the
Dirac measure at y, defined through the formula

/5@fw¢@Mx:¢@w

Then, by translation invariance, the fundamental solution I'p (x — y, t) is a solution
of the diffusion equation, that satisfies the initial condition

I'p(z—y,0)=d(z—y).

Indeed it is the unique solution satisfying the total mass condition (2.58) with
q=1.

As any solution u of (2.48) has several interpretations (concentration of a sub-
stance, probability density, temperature in a bar) so the fundamental solution can
have several meanings.

We can think of it as a unit source solution: I'p (x,t) gives the concentration
at the point z at time ¢, generated by the diffusion of a unit mass initially (¢ = 0)
concentrated at the origin. From another point of view, if we imagine a unit
mass composed of a large number N of particles, I'p (z,t) dx gives the probability
that a single particle is placed between = and x + dx at time ¢ or equivalently, the
percentage of particles inside the interval (z, z + dx) at time ¢.

Initially I'p is zero outside the origin. As soon as t > 0, I'p becomes positive
everywhere: this amounts to saying that the unit mass diffuses instantaneously all
over the z—axis and therefore with infinite speed of propagation. This could be a
problem in using (2.48) as a realistic model, although (see Fig. 2.5) for ¢ > 0, small,
I'p is practically zero outside an interval centered at the origin of length 4D.

21 The first integral in (2.64) is a Riemann-Stieltjes integral, that formally can be written
as

/ o (x)H (x)dx

and interpreted as the action of the generalized function H' on the test function ¢.
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2.3.4 Fundamental solution (n > 1)

In space dimension greater than 1, we can more or less repeat the same arguments.
We look for positive, radial, self-similar solutions u* to (2.48), with total mass equal
to ¢ at every time, that is

/ u* (x,t)dx =gq for every t > 0. (2.65)

Since ¢/ (Dt)"/ % is a concentration per unit volume, we set

w(xt) = —L U (),  &=[x|/VDL
(D)

We have, recalling the expression of the Laplace operator for radial functions (see
Appendix C),

x 1 n /
i = oo U (€ + €U (€)
* 1 " n—1 /
Au _7(Dt)l+"/2 {U &+ £ U (é)}

Therefore, for u* to be a solution of (2.48), U must be a nonnegative solution in
(0, 400) of the ordinary differential equation

62

§U"(&) + (= 1)U () + U (€) + 56U (&) =0. (2.66)

Multiplying by £"2, we can write (2.66) in the form
n—1lyr/y/ 1 n !
€0 + S(EV) =0
that gives
1
U + 'V =C (C €R). (2.67)

Assuming that limg_,o+ of U and U’ are finite, letting £ — 07 into (2.67), we
deduce C' = 0 and therefore

1
U'+ 56U =0.

Thus we obtain the family of solutions

2

U = coe” T

The total mass condition requires

1 x| co / x|*
(Dt)" /R (wt) *T D0 Jp TP\ Tant )
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= co/ ei|y|2dy = ¢y (/ ez2dz> = ¢y (47r)n/2
y=x/vDt R R

and therefore ¢y = (47) ~"/2 Thus, we have obtained solutions of the form

2
. q x|
u (x,t) = ———exp| —— |, t>0).
( ) (47TDt)n/2 ( 4Dt> ( )

Once more, the choice ¢ = 1 is special.

Definition 2.3. The function

1 x|
FD (x,t):mexp (%) (t>0)

is called the fundamental solution of the diffusion equation (2.48).

The remarks after Definition 2.2 can be easily generalized to the multidimen-
sional case. In particular, it is possible to define the n— dimensional Dirac measure
at a point y through the formula??

/ 5(x —y)p (%) dz = p (y) (2.68)

that expresses the action on the test function ¢, smooth in R™ and vanishing
outside a compact set. For fixed y, the fundamental solution I'p (x — y,t) is the
unique solution of the global Cauchy problem

up — DAu =10 x €R™, ¢t >0
u(x,0)=0(x—y) =x€eR"

that satisfies (2.65) with ¢ = 1.

2.4 Symmetric Random Walk (n = 1)

In this section we start exploring the connection between probabilistic and deter-
ministic models, in dimension n = 1. The main purpose is to construct a Brownian
motion, which is a continuous model (in both space and time), as a limit of a
simple stochastic process, called random walk, which is instead a discrete model
(in both space and time). During the realization of the limiting procedure we
shall see how the diffusion equation can be approximated by a difference equa-
tion. Moreover, this new perspective will better clarify the nature of the diffusion
coefficient.

22 As in dimension n = 1, in (2.68) the integral has a symbolic meaning only.
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2.4.1 Preliminary computations

Consider a unit mass particle?® that moves randomly along the z axis, according
to the following rules: fix

- h > 0, space step

-7 >0, time step.

1. During an interval of time 7, the particle takes one step of h unit length,
starting from x = 0.

2. The particle moves to the left or to the right with probability p = %, indepen-
dently of the previous step (Fig. 2.7).

At time t = N7, after N steps, the particle will be at a point £ = mh, where
N > 0 and m are integers, —N < m < N.

Our task is: Compute the probability p(x,t) of finding the particle at x at
time t.

t+7

b | -
=

+-— —P
Ay >

& G
l,‘/".’C x+h

Fig. 2.7. Symmetric random walk

Random walks can be found in a wide variety of situations. To give an example,
think of a gambling game in which a fair coin is thrown. If heads comes out, the
particle moves to the right and the player gains 1 dollar; if tails comes out it moves
to the left and the player loses 1 dollar: p (z,t) is the probability to gain m dollars
after N throws.

o Computation of p(x,t).

Let x = mh be the position of the particle after N steps. To reach z, the
particle takes some number of steps to the right, say k, and N — k steps to the
left. Clearly, 0 < k < N and

m=k—(N—k)=2k—N (2.69)

so that N and m are both even or both odd integers and

k:%(Ner).

Thus, p (z,t) = pr where

_ number of walks with k steps to the right after IV steps (2.70)
Pk = number of possible walks after N steps ' ’

23 One can also think of a large number of particles of total mass one.
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Now, the number of possible walks with k steps to the right and N — k to the left
is given by the binomial coefficient?*

N N!
O = <k> T RN k)

On the other hand, the number of possible walks after N steps is 2 (why?); hence,
from (2.70):

~ Cnp
Pr = oN

1
x:mh,t:NT,kzi(Ner). (2.71)

o Mean displacement and standard deviation of x.

Our ultimate goal is to let h and 7 go to zero in order to get a continuous
walk, which incorporates the main features of the discrete random walk. This is a
delicate point, since, if we want to obtain eventually a continuous faithful copy of
the random walk, we need to isolate some quantitative parameters able to capture
the essential features of the walk and maintain them unchanged. In our case there
are two key parameters?®:

(a) the mean displacement of z after N steps = (x) = (m) h

(b) the second moment of z after N steps = (2%) = (m?) h?%.

The quantity /(z2) = 1/(m?2)h is essentially the average distance from the origin
after IV steps.
First observe that, from (2.69), we have

(m) =2 (k) — N (2.72)

and
(m?) = 4(k*) —4 (k) N + N2. (2.73)

24 The set of walks with k steps to the right and N — k to the left is in one to one
correspondence with the set of sequences of N binary digits, containing k “1” and
N — k “0”, where 1 means right and 0 means left. There are exactly Cn, of these
sequences.

25 If a random variable x takes N possible outcomes x1,..., zx with probability p1, ..., pv,
its moments of (integer) order q > 1 are given by

B(a) = (@) = 3 alp;.

The first moment (¢ = 1) is the mean or expected value of x, while
var (z) = <x2> — (z)?

is the variance of x. The square root of the variance is called standard deviation.
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Thus, to compute (m) and (m?) it is enough to compute (k) and (k*). We have,
by definition and from (2.71),

N 1 N N 1 N
(k) = kpi = N > kCg, (k) =Y Kpi = N > KCnk. (2.74)
k=1 k=1 k=1 k=1

Although it is possible to make the calculations directly from (2.74), it is easier to
use the probability generating function, defined by

N | &
G(s) = Zpksk =~ ZC’N’ksk.
k=0 k=0

The function G contains in compact form all the information on the moments of &
and works for all the discrete random variables taking integer values. In particular,
we have

N N
1 1
G'(s) = oN Y kCngs*l, G" (s) = ot Y k(k—1)Cnpst2 (2.75)
k=1 k=2

Letting s = 1 and using (2.74), we get

N
G (1) = 2iN S kCx = (k) (2.76)
k=1

and
1 N
G" (1) = N > k(k—1)Cnp = (k(k—1)) = (k) — (k). (2.77)
k=2
On the other hand, letting a = 1 and b = s in the elementary formula

(a+b)" = iv: Cna™*o",
k=0
we deduce 1
G(s) = 2—N(1+5)N
and therefore
G (1) = g and G"(1)= W (2.78)
From (2.78), (2.76) and (2.77) we easily find

W)=" e )= TEED

Finally, since m = 2k — N, we have

(m) =2 (k) — N =22 _ N =
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and also (x) = (m) h = 0, which is not surprising, given the symmetry of the walk.
Furthermore

(m*) =4(k*) —4N (k) + N>=N*+ N —-2N’+ N’ =N

from which
V{(z?) = VNh (2.79)

which is the standard deviation of x, since (z) = 0. Formula (2.79) contains a key
information: at time N7, the distance from the origin is of order v/Nh, that is the
order of the time scale is the square of the space scale. In other words,
if we want to leave the standard deviation unchanged in the limit process, we
must rescale the time as the square of the space, that is we must use a space-time
parabolic dilation!

But let us proceed step by step. The next one is to deduce a difference equation
for the transition probability p = p (z,t). It is on this equation that we will carry
out the limit procedure.

2.4.2 The limit transition probability

The particle motion has no memory since each move is independent from the
previous one. If the particle location at time ¢ + 7 is x, this means that at time ¢
its location was at x — h or at = + h, with equal probability. The total probability
formula then gives

1 1
p(xvt+7):ip(x*hat)‘i’ip(x‘i’hat) (280)
with the initial conditions
p(0,0)=1 and  p(z,0)=0 ifz#D0.

Keeping fixed x and ¢, let us examine what happens when h — 0,7 — 0. It
is convenient to think of p as a smooth function, defined in the whole half plane
Rx (0, 400) and not only at the discrete set of points (mh, N7). In addition, by
passing to the limit, we will find a continuous probability distribution so that
p (z,t), being the probability to find the particle at (x,t), should be zero. If we
interpret p as a probability density, this inconvenience disappears. Using Taylor’s
formula we can write?®

p(x,t+7’) :p(xvt)+pt (:E,t)T+O(T),
p (e ht) = p (e, 1) £ pe (2,0 + 3poe (2,027 40 (7).

26 The symbol o (z), (“little o of 2”) denotes a quantity of lower order with respect to z;
precisely
o(2)

z

—0 when z — 0.




48 2 Diffusion

Substituting into (2.80), after some simplifications, we find

pT+o(r) = %pmh2 +o0 (h2) .

Dividing by T,

1 h? h?
1)==-— — . 2.81
pe+o(l) QTPMJFO(T) (28
This is the crucial point; in the last equation we meet again the combination };—2!!
If we want to obtain something non trivial when h,7 — 0, we must require
that h?/7 has a finite and positive limit; the simplest choice is to keep
h2
— =2D (2.82)
-

for some number D > 0 (the number 2 is there for aesthetic reasons only).
Passing to the limit in (2.81), we get for p the equation

while the initial condition becomes
li t)=34. 2.84
Jm p (z, 1) (2.84)

We have already seen that the unique solution of (2.83), (2.84) is

p(xvt):FD (:E,t)

/Rp(x,t)dx: 1.

Thus, the constant D in (2.82) is precisely the diffusion coefficient. Recalling that

since

2
27<$>
Bt =2t

_t

TN

we have ) )
PG op
T t

that means: in unit time, the particle diffuses an average distance of v/2D. It is
worthwhile to recall that the dimensions of D are

[D] = [length)® x [time] !

and that the combination 22/ Dt is dimensionless, not only invariant by parabolic
dilations. Also, from (2.82) we deduce
h 2D

= . 2.
. h%Jroo (2.85)

This shows that the average speed h/7 of the particle at each step becomes un-
bounded. Therefore, the fact that the particle diffuses in unit time to a finite
average distance is purely due to the rapid fluctuations of its motion.
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2.4.3 From random walk to Brownian motion

What happened in the limit to the random walk? What kind of motion did it
become? We can answer using some more tools from probability theory. Let z; =
z (j7) the position of our particle after j steps and let, for j > 1,

hﬁj =Tj; —Tj-1-

The §; are independent, identically distributed random variables: each one takes
on value 1 or —1 with probability % They have expectation <§ j> = 0 and variance
<§?> = 1. The displacement of the particle after N steps is

N
oy =h &
j=1

2Dt
h=4 =2
N?

that is hT—z = 2D, and let N — oo, the Central Limit Theorem assures that z
converges in law?” to a random variable X = X (t), normally distributed with
mean 0 and variance 2Dt, whose density is I'p (z,t).

The random walk has become a continuous walk; if D = 1/2, it is called (1-
dimensional) Brownian motion or Wiener process, that we will characterize
later through its essential features.

Usually the symbol B = B (t) is used to indicate the random position of a
Brownian particle. The family of random variables B (t) (where ¢ plays the role
of a parameter) is defined on a common probability space ({2, f,P), where {2
is the set of elementary events, f a o—algebra in {2 of measurable events, and
P a suitable probability measure®® in f ; therefore the right notation should be
B (t,w), with w € 2, but the dependence on w is usually omitted and understood
(for simplicity or laziness).

If we choose

The family of random variables B (¢, w), with time ¢ as a real parameter, is a
continuous stochastic process. Keeping w € {2 fixed, we get the real function

t— B(t,w)
whose graph describes a Brownian path (see Fig. 2.8).

2T That is, if N — +o0,

b
Prob{a<xN<b}—>/ I'p (z,t) de.

28 See Appendix B.
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Fig. 2.8. A Brownian path

Keeping t fixed, we get the random variable
wr— B(t,w).

Without caring too much of what really is {2, it is important to be able to compute
the probability
P{B(t) eI}

where I C R is a reasonable subset of R, (a so called Borel set?°). Figure 2.8 shows
the meaning of this computation: fixing ¢ amounts to fixing a vertical straight line,
say t = t. Let I be a subset of this line; in the picture I is an interval. P {B (t) € I}
is the probability that the particle hits I at time ¢.

The main properties of Brownian motion are listed below. To be minimalistic
we could synthesize everything in the formula3°

dB ~ VdtN (0,1) = N (0, dt) (2.86)

where N (0, 1) is a normal random variable, with zero mean and variance equal to
one.

e Path continuity. With probability 1, the possible paths of a Brownian particle
are continuous functions
t— B(t), t>0.

Since from (2.85) the instantaneous speed of the particle is infinite, their graphs
are nowhere differentiable!

29 An interval or a set obtained by countable unions and intersections of intervals, for
instance. See Appendix B.
30 If X is a random variable, we write X ~ N (,u, 02) if X has normal distribution with

mean y and variance o2,
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o Gaussian law for increments. We can allow the particle to start from a point
x # 0, by considering the process

B¥(t)y=x+ B(t).

With every point = is associated a probability P*, with the following properties
(ifr =0, P°=P).

a) PP{B*(0) =z} =P{B(0) =0} =1.

b) For every s > 0,t > 0, the increment

B¥(t+s)— B*(s)=B(t+s) — B(s)
has normal law with zero mean and variance ¢, whose density is
1 22

I'(z,t) =Ty (z,t) = \/ﬁefﬁ.

Moreover it is independent of any event occurred at a time < s. For instance, the
two events

{B* (t2) — B* (t1) € 12} {B* (t1) — B" (to) € I}

to < t1 < to, are independent.
e Transition probability. For each Borel set I C R, a transition function

P (z,t,I) = P*{B" (t) € I}

is defined, assigning the probability that the particle, initially at x, belongs to I
at time . We can write:

Pat)=PBOcl-o)= [ Twody=[ru-ovd

e Invariance. The motion is invariant with respect to translations.

o Markov and strong Markov properties. Let u be a probability measure®! on

R. If the initial position of the particle is random with a probability distribution
u, we can consider a Brownian motion with initial distribution p, and for it we use
the symbol B*. With this motion is associated a probability distribution P* such
that, for every Borel set F' C R,

PH{B* (0) € F} = p(F).

The probability that the particle belongs to I at time ¢ can be computed through
the formula

Pr{B () € T} — /R P*{B* (1) € I} du ()
R

31 See Appendix B for the definition of a probability measure u and of the integral with
respect to the measure u.



52 2 Diffusion

The Markov property can be stated as follows: given any condition H, related to
the behavior of the particle before time s > 0, the process Y (t) = B* (t+ s) is a
Brownian motion with initial distribution3?

p(I)=P*{B®(s) e I|H}.

This property establishes the independence of the future process B® (t + s) from
the past (absence of memory) when the present B* (s) is known and reflects the
absence of memory of the random walk.

In the strong Markov property, s is substituted by a random time 7, depending
only on the behavior of the particle in the interval [0, 7]. In other words, to decide
whether or not the event {7 < ¢} is true, it is enough to know the behavior of the
particle up to time ¢t. These kinds of random times are called stopping times. An
important example is the first exit time from a domain, that we will consider in
the next chapter. Instead, the random time 7 defined by

T=inf{t: B(t) > 10 and B (t+1) < 10}

is not a stopping time. Indeed (measuring time in seconds), 7 is “the smallest”
among the times ¢ such that the Brownian path is above level 10 at time ¢, and
after one second is below 10. Clearly, to decide whether 7 < 3, say, it is not enough
to know the path up to time ¢ = 3, since 7 involves the behavior of the path up to
the future time t = 4.

e Expectation. Given a sufficiently smooth function g = g (y), y € R, we can
define the random variable

Z(t) = (9o B*)(t) = g (B (1))

Its expected value is given by the formula

E® [Z(t)]:/Rg<y>P<x,t,dy>:/g<y>r<y—x,t>dy.

R

We will meet this formula in a completely different situation later on.

2.5 Diffusion, Drift and Reaction

2.5.1 Random walk with drift

The hypothesis of symmetry of our random walk can be removed. Suppose our unit
mass particle moves along the x axis with space step h > 0, every time interval of
duration 7 > 0, according to the following rules (Fig. 2.9).

1. The particle starts from = = 0.
2. It moves to the right with probability py # % and to the left with probability
go = 1 — pp, independently of the previous step.
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Fig. 2.9. Random walk with drift

Rule 2 breaks the symmetry of the walk and models a particle tendency to
move to the right or to the left, according to the sign of py — qog being positive
or negative, respectively. Again we denote by p = p (z,t) the probability that the
particle location is x = mh at time ¢ = N7. From the total probability formula we
have:

p(@,t+7) =pop(z — h,t) + qop (z + h, 1) (2.87)

with the usual initial conditions
p(0,0)=1 and p(z,0)=0 ifz=+#0.

As in the symmetric case, keeping x and ¢ fixed, we want to examine what happens
when we pass to the limit for h — 0,7 — 0. From Taylor formula, we have

p(x,t+7’) :p(xvt)+pt (:E,t)T+O(T),

p (e ht) = p (@, 1) & pe (2,0 + 3poe (2,02 40 (7).

Substituting into (2.87), we get

1
7 +0(7) = 5Pach® + (g0 = po) hpz + 0 (h%) . (2.88)

A new term appears: (¢o — po) hp.. Dividing by 7, we obtain

1A% — h h?
Pt + 0(1) = i?pmm + Mpm +o <?> . (289)

Again, here is the crucial point. If we let h, 7 — 0, we realize that the assumption

h2
~ —9p (2.90)
-

alone is not sufficient anymore to get something non trivial from (2.89): indeed, if
we keep po and ¢o constant, we have

(g0 — po) h
T

— 0

32 P(A|H) denotes the conditional probability of A, given H.
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and from (2.89) we get a contradiction. What else we have to require? Writing

(90 —po)h _ (g0 —po) I*

T h T

we see we must require, in addition to (2.90), that

D, 3 (2.91)
h
with [ finite. Notice that, since g + po = 1, (2.91) is equivalent to
1 1
p0:§—§h+o(h) and q0:§+§h+o(h), (2.92)

that could be interpreted as a symmetry of the motion at a microscopic scale.
With (2.91) at hand, we have

_ h2
(g0 hPO)—HQDﬂEb
S —

and (2.89) becomes in the limit,

We already know that Dp,, models a diffusion phenomenon. Let us unmask the
term bp,, by first examining the dimensions of b. Since gy — pg is dimensionless,
being a difference of probabilities, the dimensions of b are those of h/7, namely of
a velocity.

Thus the coefficient b codifies the tendency of the limiting continuous motion,
to move towards a privileged direction with speed |b|: to the right if b < 0, to
the left if b > 0. In other words, there exists a current of intensity |b| driving the
particle. The random walk has become a diffusion process with drift.

The last point of view calls for an analogy with the diffusion of a substance
transported along a channel.

2.5.2 Pollution in a channel

In this section we examine a simple convection-diffusion model of a pollutant on
the surface of a narrow channel. A water stream of constant speed v transports the
pollutant along the positive direction of the x axis. We can neglect the depth of
the water (thinking to a floating pollutant) and the transverse dimension (thinking
of a very narrow channel).

Our purpose is to derive a mathematical model capable of describing the evo-
lution of the concentration®® ¢ = ¢ (x,t) of the pollutant. Accordingly, the integral

x+Ax
/ ¢ (y, 1) dy (2.94)

3 [¢] = [mass] x [length] ™.
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gives the mass inside the interval [z, + Az] at time ¢ (Fig. 2.10). In the present
case there are neither sources nor sinks of pollutant, therefore to construct a model
we use the law of mass conservation: the growth rate of the mass contained in
an interval [z, + Az] equals the net mass flux into [x,x + Ax] through the end
points.

e
time 0 =2 gpeed v X
Z = i '

time t X X+ dx

Fig. 2.10. Pollution in a narrow channel

From (2.94), the growth rate of the mass contained in an interval [z, z + Ax]
is given by 34
d

x+Ax rx+Ax
pn c(y,t)dy = / ct (y,t) dy. (2.95)

Denote by q = q(z,t) the mass flux3® entering the interval [z, + Az], through
the point z at time ¢. The net mass flux into [z, z + Azx] through the end points is

q(z,t) —q(z+ Az, t). (2.96)

Equating (2.95) and (2.96), the law of mass conservation reads

x+Ax
/ ce(y, t) dy = q(x,t) — q(z + Az, t).
Dividing by Az and letting Az — 0, we find the basic law

Ct = —qq- (2.97)

At this point we have to decide which kind of mass flux we are dealing with. In
other words, we need a constitutive relation for q. There are several possibilities,
for instance:

34 Assuming we can take the derivative inside the integral.
35 -1
[q] = [mass] x [time]
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a) Convection. The flux is determined by the water stream only. This case cor-
responds to a bulk of pollutant that is driven by the stream, without deformation
or expansion. Translating into mathematical terms we find

q (:E,t) =ve (:E,t)

where, we recall, v denotes the stream speed.

b) Diffusion. The pollutant expands from higher concentration regions to lower
ones. We have seen something like that in heat conduction, where, according to
the Fourier law, the heat flux is proportional and opposite to the temperature
gradient. Here we can adopt a similar law, that in this setting is known as the
Fick’s law and reads

q(z,t) = —Dc, (z,t)

where the constant D depends on the polluting and has the usual dimensions
(ID] = [length)® x [time] ™).

In our case, convection and diffusion are both present and therefore we super-
pose the two effects, by writing

q(z,t) =vc(x,t) — Deg (z,t).

From (2.97) we deduce
¢t = Dcgg — veg (2.98)
which constitutes our mathematical model and turns out to be identical to (2.93).

Since D and v are constant, it is easy to determine the evolution of a mass @
of pollutant, initially located at the origin (say). Its concentration is the solution
of (2.98) with initial condition

c(z,0) = Qb (z)

where § is the Dirac measure at the origin. To find an explicit formula, we can get
rid of the drift term —wvc, by setting

w(z,t) = c(z,t) e th
with h, k to be chosen suitably. We have:

wy = [cp + kc]e® TR
Wy = [cz + hc]e}””kt, Wy = [Coa + 2hCy + hQC]ehx+kt.

Using the equation ¢; = Dug, — vc,, we can write

wy — Dwg, = e}””kt[ct — Dcgy — 2Dhe, + (k — Dh?)c] =
= eh®t*[(—y — 2Dh)c, + (k — Dh?)c].

Thus if we choose

h:*ﬁ and k:E,
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w is a solution of the diffusion equation w; — Dw,, = 0, with the initial condition
w(z,0) = c(z,0)e 20" = Qb (x)e 20",

In chapter 7 we show that d (z) e~ 5% = § (z), so that w (z,t) = QI'p (z,t) and
finally
c(z,t) = Qexp (=3 p (2, 1). (2.99)

The concentration c is thus given by the fundamental solution I'p, “carried” by
the travelling wave exp {% (:c — %t) }, in motion to the right with speed v/2.

In realistic situations, the pollutant undergoes some sort of decay, for instance
by biological decomposition. The resulting equation for the concentration becomes

¢t = Dcgy —vey — ye

where 7 is a rate of decay3¢. We deal with this case in the next section via a
suitable variant of our random walk.

2.5.3 Random walk with drift and reaction

We go back to our 1— dimensional random walk, assuming that the particle loses
mass at the constant rate v > 0. This means that in an interval of time from ¢ to
t + 7 a percentage of mass

Q (IE, t) =TPp (IE, t)
disappears. The difference equation (2.87) for p becomes
p(x,t+7’) :po[p("t*h,t) *Q(IE* hat)] +q0[p($+h,t) - Q(:E+h,t)]

Since3”

pOQ (:E - hv t) =+ qOQ (:E + hv t) = Q (:E,t) + (qO - po)th(IE,t) + ..
= TP (:E,t) +0 (Th) )

equation (2.88) modifies into

1
pT +o(7) = §meh2 + (g0 — po)hps — Typ + O (Th) + 0 (K?) .

Dividing by 7, letting A, 7 — 0 and assuming
h? 90 — Po
— =2D

T ’ h

- B,

we get
Pt = Dpao + bps — p (b=2Dp). (2.100)

36 [y] = [time] " .
37 The symbol "0 (k)” (big O of k”) denotes a quantity of order k.
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The term —vp appears in (2.100) as a decaying term. On the other hand, in im-
portant situations, v could be negative, meaning that this time we have a creation
of mass at the rate |y|. For this reason the last term is called generically a reaction
term and (2.100) is a diffusion equation with drift and reaction.

Going back to equation (2.100), it is useful to look separately at the effect of
the three terms in its right hand side.

e p; = Dp,, models pure diffusion. The typical effects are spreading and smooth-
ing, as shown by the typical behavior of the fundamental solution I'p.

e p; = bp; is a pure transport equation, that we will consider in detail in chapter
3. The solutions are travelling waves of the form g (x + bt).

e p; = —yp models pure reaction. The solutions are multiples of e~7%, exponen-

tially decaying (increasing) if v > 0 (y < 0).

So far we have given a probabilistic interpretation for a motion in all R, where
no boundary condition is present. The problems 7 and 8 give a probabilistic in-
terpretation of the Dirichlet and Neumann condition in terms of absorbing and
reflecting boundaries, respectively.

2.6 Multidimensional Random Walk

2.6.1 The symmetric case

What we have done in dimension n = 1 can be extended without much effort to
dimension n > 1, in particular n = 2, 3. To define a symmetric random walk, we
introduce the lattice Z™ given by the set of points x €R™, whose coordinates are
signed integers. Given the space step h > 0, the symbol hZ™ denotes the lattice of
points whose coordinates are signed integers multiplied by h.

Every point x €hZ", has a “discrete neighborhood” of 2n points at distance h,
given by

x+he; and x—he; (j=1,..,n),

where ey, ..., e, is the canonical basis in R™. Our particle moves in hZ™ according
to the following rules (Fig. 2.11).

1. It starts from x = 0.
2. If it is located in x at time ¢, at time ¢ 4+ 7 the particle location is at one of
the 2n points x & he;, with probability p = L

2n°
3. Each step is independent of the previous one.

As in the 1—dimensional case, our task is to compute the probability p (x,t) of
finding the particle at x at time t.
Clearly the initial conditions for p are

p(0,0)=1 and p(x,0)=0 ifx#0.
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(h.0) The lattice hZxZ
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J(U,—h)

Fig. 2.11. Bidimensional random walk
The total probability formula gives
1 n
p(x,t+71)= %Z{p (x+hej,t) + p(x—hej;,t)}. (2.101)
j=1

Indeed, to reach the point x at time ¢ + 7, at time ¢ the particle must have been
located at one of the points in the discrete neighborhood of x and moved from
there towards x with probability 1/2n. For fixed x and ¢, we want to examine
what happens when we let h — 0,7 — 0. Assuming p defined and smooth in all of
R™ x (0, 400), we use Taylor’s formula to write

p(X,t+T) :p(xvt)+pt (th)7—+0(7—)

1
p(x*hej,t) =p(x,t) £pg, (x,1) h + Pz (x,t) h* + 0 (h?).
Substituting into (2.101), after some simplifications, we get

h2
pT+o(1) = %Aero(hQ) .

Dividing by 7 we obtain the equation

1 h?
pr+o(l)= ——Ap+0<—) . (2.102)
2n T T
The situation is quite similar to the 1— dimensional case: still, to obtain eventually
something non trivial, we must require that the ratio h?/7 has a finite and positive

limit. The simplest choice is
2

L (2.103)
.
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with D > 0. From (2.103), we deduce that in unit time, the particle diffuses at
an average distance of v/2nD. The physical dimensions of D have not changed.
Letting h — 0,7 — 0 in (2.102), we find for p the diffusion equation

pt = DAp (2.104)
with the initial condition
lim p(x,t) =4. (2.105)
t—0+

Since [p. p (x,t) dx =1 for every ¢, the unique solution is given by

1 Ix|2
p(x,t) =Ip (x,t) = ———e~ 1D¢ t>0.
(47 Dt)"/?

The n—dimensional random walk has become a continuous walk; when D = %, it
is called n—dimensional Brownian motion. Denote by B (¢) = B (¢,w) the random
position of a Brownian particle, defined for every t > 0 on a probability space
(£2,F,P)3.

The family of random variables B (¢,w), with time ¢ as a real parameter, is
a vector valued continuous stochastic process. For w € (2 fixed, the vector
function

t— B(t,w)

describes an n—dimensional Brownian path, whose main features are listed below.

e Path continuity. With probability 1, the Brownian paths are continuous for
t>0.

o Gaussian law for increments. The process B* (t) = x + B (¢) defines a Brow-
nian motion with start at x. With every point x is associated a probability P*,
with the following properties (if x = 0, P® = P).

a) P*{B*(0)=x}=P{B(0)=0} =1.

b) For every s > 0,t > 0, the increment

B*(t+s)—B*(s) =B (t+s) — B(s) (2.106)

follows a normal law with zero mean value and covariance matriz equal to tl,,
whose density is

1 _ =2
2t

I(x,t) =Ty (x,t) = WE

Moreover, (2.106) is independent of any event occurred at any time less than s.
For instance, the two events

{B(t2) —B(t1) € A1} {B(t1) — B (to) € A2}

are independent if ty < t; < ts.

38 See Appendix B.
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e Transition function. For each Borel set A C R"™ a transition function
P(x,t,A) = P*{B*(t) € A}

is defined, representing the probability that the particle, initially located at x,
belongs to A at time t. We have:

Pt A)=P{BWcA-x = [ Tdy=[ Iy-xbiy.

e Invariance. The motion is invariant with respect to rotations and translations.

e Markov and strong Markov properties. Let pu be a probability measure®® on

R™. If the particle has a random initial position with probability distribution u,
we can consider a Brownian motion with initial distribution p, and for it we use
the symbol B#. To B* is associated a probability distribution P* such that

PE{B*(0) e A} = pn(A).
The probability that the particle belongs to A at time ¢ can be computed through

the formula

Pr{Br(t) e Ay = [ P(xt,A)p(dx). (2.107)

R

The Markov property can be stated as follows: given any condition H, related to
the behavior of the particle before time s > 0, the process Y (t) = B*(t + s), is a
Brownian motion with initial distribution

(A) = PX{B*(s) € A|H}.

Again, this property establishes the independence of the future process B* (¢t + s)
from the past when the present B* (s) is known and encodes the absence of memory
of the process. In the strong Markov property, a stopping time 7 takes the place
of s.

e Ezpectation. Given any sufficiently smooth real function g = g (y), y € R",
we can define the real random variable

Z(t) = (9o B¥) (1) = g(B* (1))
Its expectation is given by the formula

EZ0)= [ g0 Pxtdy)= [ s0)0 - xt)dy.

39 See Appendix B for the definition of a probability measure u and of the integral with
respect to the measure p .
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2.6.2 Walks with drift and reaction

As in the 1—dimensional case, we can construct several variants of the symmetric
random walk. For instance, we can allow a different behavior along each direction,
by choosing the space step h; depending on e;. As a consequence the limit process
models an anisotropic motion, codified in the matrix

D0 -0
0 D, 0

D=|. Lo
0 0 ---D,

where D; = h? /2nT is the diffusion coefficient in the direction e;. The resulting
equation for the transition probability p (x,t) is

Pe=3 DjiPujx;- (2.108)
j=1

We may also break the symmetry by asking that along the direction e; the prob-
ability to go to the left (right) is g; (resp. p;). If

4; — Py

VA 5 hj J — ﬂj and bj = 2Djﬂj’
the vector b = (by,...,b,) plays a role of a drift vector, reflecting the tendency of
motion to move asymmetrically along each coordinate axis. Adding a reaction term
of the form cp, the resulting drift-diffusion-reaction equation is

Pe=3 DiPsw, + Y bjua, +cp. (2.109)
j=1 j=1

In problem 2.17 we ask the reader to fill in all the details in the argument leading
to equations (2.108) and (2.109). We will deal with general equations of these type
in Chapter 9.

2.7 An Example of Reaction—Diffusion (n = 3)

In this section we examine a model of reaction-diffusion in a fissionable material.
Although we deal with a greatly simplified model, some interesting implications
can be drawn.

By shooting neutrons into an uranium nucleus it may happen that the nucleus
breaks into two parts, releasing other neutrons already present in the nucleus and
causing a chain reaction. Some macroscopic aspects of this phenomenon can be
described by means of an elementary model.
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Suppose a cylinder with height h and radius R is made of a fissionable material
of constant density p, with total mass

M = noR?h.

At a macroscopic level, the free neutrons diffuse like a chemical in a porous medium,
with a flux proportional and opposite to the density gradient. In other terms, if
N = N (z,y, z,t) is the neutron density and no fission occurs, the fluz of neutrons
is equal to —kV N, where k is a positive constant depending on the material. The
mass conservation then gives

Ny = EAN.

When fission occurs at a constant rate v > 0, we get the equation
Ny = DAN + yN, (2.110)

where reaction and diffusion are competing: diffusion tends to slow down N, while,
clearly, the reaction term tends to exponentially increase N. A crucial question is
to examine the behavior of N in the long run (i.e. as t — +00).

We look for bounded solutions satisfying a homogeneous Dirichlet condition on
the boundary of the cylinder, with the idea that the density is higher at the center
of the cylinder and very low near the boundary. Then it is reasonable to assume
that N has a radial distribution with respect to the axis of the cylinder. More
precisely, using the cylindrical coordinates (r, 6, z) with

x=rcosf, y=rsinb,

we can write N = N (r, z,t) and the homogeneous Dirichlet condition on the
boundary of the cylinder translates into

N(R,zt)=0 0O<z<h (2.111)
N (r,0,t) = N (r,h,t) =0 0<r<R

for every t > 0. Accordingly we prescribe an initial condition
N (r,2,0) = No (1, 2) (2.112)
such that
No(R,z)=0for 0 < z < h, and Ny (r,0) = Ny (r,h) = 0. (2.113)

To solve problem (2.110), (2.111), (2.112), let us first get rid of the reaction
term by setting
N (r,z,t) = N (r, z,t) e, (2.114)

Then, writing the Laplace operator in cylindrical coordinates*®, A solves

Ne =k |Npr + %NT + N, (2.115)

40 Appendix C.
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with the same initial and boundary conditions of N. By maximum principle, we
know that there exists only one solution, continuous up to the boundary of the
cylinder. To find an explicit formula for the solution, we use the method of sepa-
ration of variables, first searching for bounded solutions of the form

N zt)=ulr)v(z)w(t), (2.116)

satisfying the homogeneous Dirichlet conditions u (R) = 0 and v (0) = v (h) = 0.
Substituting (2.116) into (2.115), we find

u(r)v(2)w' () = k[u" (r)v(2)w (t) + %U’ (Mo () w () +u(r)v” (2)w?)).

Dividing by A and rearranging the terms, we get,

w () [u(r) +%1;’ ((:)) U;'((ZZ)). (2.117)

kw (t) u (r)
The two sides of (2.117) depend on different variables so that they must be equal
to a common constant b. Then for v we have the eigenvalue problem

vV (z) —bv(z) =0

v(0)=v(h)=0.
The eigenvalues are b,, = —v2, = fm;;'z, m > 1 integer, with corresponding

eigenfunctions
Vm (2) = sinvy, 2.

The equation for w and u can be written in the form:

W (1)
kw (t)

u” (1) lu’ (r
u (r) + r u(r)

~—

2 _
+ v, =

(2.118)

where the variables r and ¢ are again separated. This forces the two sides of (2.118)
to be equal to a common constant u. Therefore, for w we have the equation

W' (t) = k(- V2w (t)

that gives
w(t) = cexp [k (p—v2)t] ce R (2.119)

Then the equation for u is

' (r) + %u/ (r)—pu(r)=0 (2.120)

with
u(R)=0 and wu bounded in [0, R]. (2.121)
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The (2.120) is a Bessel equation of order zero with parameter —p; conditions
(2.121) force*! ;1 = —A* < 0. Then the only bounded solution of (2.120), (2.121)

is Jo (Ar), where
)" oy
Jo@) =2, (k)> (5)

k=0

is the Bessel function of first kind and order zero. To match the boundary condition
u (R) = 0 we require Jy (AR) = 0. Now, Jy has an infinite number of positive simple
zeros*2 \,, n > 1:

D<A << <A <.

Thus, if AR = \,,, we find infinitely many solutions of (2.120), given by

i =502,

Thus

To summarize, we have determined so far a countable number of solutions

Nmn (’ra Z, t) = Un (’I") Um (Z) Wm,n (t) =

2
=Jy (ALRT) sinv;,z exp [k <1/$n + %) t]

satisfying the homogeneous Dirichlet conditions. It remains to satisfy the initial
condition. Due to the linearity of the problem, we look for a solution obtained by
superposition of the Ny, ,, that is

o0

N(T,Z,t) = Z CmnNmn (’I",Z,t).

n,m=1
41 In fact, write Bessel’s equation (2.120) in the form
(ru/)/ — pru = 0.

Multiplying by u and integrating over (0, R), we have

R ) R
/ (ru") udr = p/ u?dr. (2.122)
0 0

Integrating by parts and using (2.121), we get

/OR (ru) udr = [(ru') ULI; - /OR(u’)zdr = —/OR(u’)zdr <0

and from (2.122) we get u < 0.
42 The zeros of the Bessel functions are known with a considerable degree of accuracy.
The first five zeros of Jy are: 2.4048..., 5.5201..., 8.6537..., 11.7915..., 14.9309....
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Then, we choose the coefficients ¢, in order to have

AT

oo oo Comr
Z CmnNmn (1,2,0) = Z CmnJo <?> sin e No (r, 2). (2.123)

n,m=1 n,m=1

The second of (2.113) and (2.123) suggest an expansion of Ny in sine Fourier series
with respect to z. Let

2 h
_E~/0 N(r,z)sin%z, m>1,

and

3

Then (2.123) shows that, for fixed m > 1, the ¢, are the coefficients of the
expansion of ¢, (r) in the Fourier-Bessel series

oo )\n
;cmnjo (%) =cm(r).

We are not really interested in the exact formula for the c¢,,, however we will
come back to this point in Remark 2.5 below.

In conclusion, recalling (2.114), the analytic expression of the solution of our
original problem is the following:

~ AnT A :
N (r,z,t) = Z CmnJdo (f) exp { (’y — k3 — kR2> }sm vmz. (2.124)

n,m=1

Of course, (2.124) is only a formal solution, since we should check in which sense the
boundary and initial condition are attained and that term by term differentiation
can be performed. This can be done under reasonable smoothness properties of
Ny and we do not pursue the calculations here.

Rather, we notice that from (2.124) we can draw an interesting conclusion on
the long range behavior of N. Consider for instance the value of N at the center
of the cylinder, that is at the point » = 0 and z = h/2; we have, since Jy (0) =1

and v2, = m;;’z,
h > m2m? )\2 . omm
N<0,§,t> = E Cmn exp{(y k———— B kR2> }s1n7.

n,m=1

The exponential factor is maximized for m = n = 1, so the leading term in the

sum is
2 )\2
cllexp{<’y kﬁk]#)}
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w2 >\2
’yk‘<h2+ﬁ> < 0,

each term in the series goes to zero as ¢ — 400 and the reaction dies out. On the

opposite, if
2 >\2
’yk‘<h2 +ﬁ> >0,

67
If now

that is ) )
A
% > % + 2 (2.125)

the leading term increases exponentially with time. To be true, (2.125) requires
that the following relations be both satisfied:

2
R2s P and R2s B (2.126)

The (2.126) gives a lower bound for the height and the radius of the cylinder. Thus

)
we deduce that there exists a critical mass of material, below which the reaction
cannot be sustained.

|'I'| A\
RV AWAWAWAWLW,
L1|I I| '. lzq \/25\/ \"'IJKS\ \/50

Fig. 2.12. The Bessel function Jy

Remark 2.5. A sufficiently smooth function f, for instance of class C 1([0 R]), can
be expanded in a Fourier-Bessel series, where the Bessel functions Jy ( ) n>1,

play the same role of the trigonometric functions. More precisely, the functlons
Jo(Anr) satisfy the following orthogonality relations:

R
0
/ 2JoAm)Jo(Anz)dz = { m#n
; -
where

B [e%s} (71)](} )\n 2k+1
C"_kz:%k!(kﬂ)! < ) '

2R
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Then .
F@)=> fado(Anz) (2.127)
n=0

with the coefficients f, assigned by the formula

9 R

The series (2.127) converges in the following least square sense: if

N
Sn () =Y fado (Anz)
n=0

then
R

lim [f (x) — S (2)]) zdz = 0. (2.128)
N——+oo 0
In Chapter 6, we will interpret (2.128) from the point of view of Hilbert space
theory.

2.8 The Global Cauchy Problem (n = 1)

2.8.1 The homogeneous case

In this section we consider the global Cauchy problem

u(z,0)=g(x) inR (2.129)

{utDum =0 in Rx (0, 00)
where g, the initial data, is given. We will limit ourselves to the one dimensional
case; techniques, ideas and formulas can be extended without too much effort to
the n—dimensional case.

The problem (2.129) models the evolution of the temperature or of the con-
centration of a substance along a very long (infinite) bar or channel, respectively,
given the initial (¢ = 0) distribution.

By heuristic considerations, we can guess what could be a candidate solution.
Consider a unit mass composed of a large number M >> 1 of particles and interpret
the solution u as their concentration (or percentage). Then, u (z,t) dx gives the
mass inside the interval (z,z + dz) at time t.

We want to determine the concentration u (x, y), due to the diffusion of a mass
whose initial concentration is given by g.

Thus, the quantity g (y) dy represents the mass concentrated in the interval
(y,y + dy) at time ¢t = 0. As we have seen, I' (z — y,t) is a unit source solution,
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representing the concentration at x at time ¢, due to the diffusion of a unit mass,
initially concentrated in the same interval. Accordingly,

I'p(z—y,t)g(y)dy

gives the concentration at z at time ¢, due to the diffusion of the mass g (y) dy.

Thanks to the linearity of the diffusion equation, we can use the superposition
principle and compute the solution as the sum of all contributions. In this way,
we get the formula

(z—1)2

w@t) = [ oI a=—ntdy = —— [ g Fa (2130

Clearly, one has to check rigorously that, under reasonable hypotheses on the initial
data g, formula (2.130) really gives the unique solution of the Cauchy problem.
This is not a negligible question. First of all, if g grows too much at infinity, more
than an exponential of the type e‘””2,a > 0, in spite of the rapid convergence
to zero of the Gaussian, the integral in (2.130) could be divergent and formula
(2.130) loses any meaning. Even more delicate is the question of the uniqueness of
the solution, as we will see later.

Remark 2.6. Formula (2.130) has a probabilistic interpretation. Let D = $ and let
B (t) be the position of a Brownian particle, started at x. Let g (y) be the gain
obtained when the particle crosses y. Then, we can write:

u(z,t) = E* [g (B* (1))]

where E® denotes the expected value with respect to the probability P*, with
density I' (z — y,t)*3.

In other words: to compute u at the point (z,t), consider a Brownian parti-
cle starting at x, compute its position B* (t) at time t, and finally compute the
expected value of g (B¥ (t)).

2.8.2 Existence of a solution

The following theorem states that (2.130) is indeed a solution of the global Cauchy
problem under rather general hypotheses on g, satisfied in most of the interesting

applications®4.

Theorem 2.3. Assume that g is a function with a finite number of jump discon-
tinuities in R and there exist positive numbers a and c such that

g(z)] < ce®™  VzeR. (2.131)

43 Appendix B.
41 We omit the long and technical proof.
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Let u be given by formula (2.130). Then:
1) uweC®Rx(0,7)) forT < ﬁ, and in the strip Rx (0,T)
U — Dugy = 0.
1) If xo is a continuity point of g, then
u(y,t) = g(xo) if (y,t) = (x0,0),t > 0.
1ii) There are positive numbers ¢; and A such that
lu(z,t)| < Ce*™ ¥ (z,t) € Rx (0,00).

Remark 2.7. The theorem says that, if we allow an initial data with a controlled
exponential growth at infinity expressed by (2.131), then (2.130) is a solution in the
strip Rx (0,7"). We will see that, under the stated conditions, (2.130) is actually
the unique solution.

In some applications (e.g. to Finance), the initial data grows at infinity no more
than c¢ie® /|, In this case (2.131) is satisfied by choosing any positive number a
and a suitable c. This means that there is really no limitation on 7 since

1

T« —_
<4Da

and a can be chosen as small as we like.

Remark 2.8. The property i) shows a typical and important phenomenon con-
nected with the diffusion equation: even if the initial data is discontinuous at
some point, immediately after the solution is smooth. The diffusion is therefore a
smoothing process. In figure 2.13, this phenomenon is shown for the initial data
9(z) = X(2,0) (¥) + X(1,4) (z), Where X(, ;) denotes the characteristic function of
the interval (a,b). By ii), if the initial data g is continuous in all of R, then the
solution is continuous up to ¢ = 0, that is in Rx[0,T").

Fig. 2.13. Smoothing effect of the diffusion equation
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2.8.3 The non homogeneous case. Duhamel’s method

The difference equation (or the total probability formula)

1 1
p(x,t+7’) = ip(x*hat)‘i’ip(x‘i’hat)

that we found in subsection 2.4.2 during the analysis of the symmetric random walk
could be considered a probabilistic version of the mass conservation principle: the
density of the mass located at = at time t + 7 is the sum of the densities diffused
from x + h and x — h at time t; no mass has been lost or added over the time
interval [t,t + 7]. Accordingly, the expression

p(e,64+7) ~ [3p (2 — 1)+ 2p (o + ) (2132)

could be considered as a measure of the lost/added mass density over the time
interval from ¢ to ¢t + 7. Expanding with Taylor’s formula as we did in Section 4.2,
keeping h?/7 = 2D, dividing by 7 and letting h, 7 — 0 in (2.132), we find

bt — mex

Thus the differential operator 9; — DJ,, measures the instantaneous density
production rate.

Suppose now that from time ¢ = 0 until a certain time ¢t = s > 0 no mass is
present and that at time s a unit mass at the point y (infinite density) appears.
We know we can model this kind of source by means of a Dirac measure at y, that
has to be time dependent since the mass appears only at time s. We can write it
in the form

d(x—y,t—s).

Thus, we are lead to the non homogeneous equation
Dt 7mex = 5(55*9,15*5)

with p(x,0) = 0 as initial condition. What could be the solution? Until ¢ = s
nothing happens and after s we have 6 (x —y,t —s) = 0. Therefore it is like
starting from time ¢ = s and solving the problem

Pt — Dpre =0, zeR t>s

with initial condition

p(x,s)=0(x—y,t—s).
We have solved this problem when s = 0; the solution is I'p (z — y, t). By the time
translation invariance of the diffusion equation, we deduce that the solution for
any s > 0 is given by

p(z,t)=Ip(x—y,t—3s). (2.133)
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Consider now a distributed source on the half-plane ¢t > 0, capable to produce
mass density at the time rate f (z,t). Precisely, f (x,t) dzdt is the mass produced®®
between = and z+dx, over the time interval (¢, t+dt). If initially no mass is present,
we are lead to the non homogeneous Cauchy problem

{vt — Dvugy = f(x,t) inRx(0,7T)

2.134
v(z,0)=0 in R. ( )

As in subsection 2.8.1, we motivate the form of the solution at the point (z,t)
using heuristic considerations. Let us compute the contribution dv to v (z,t) of a
mass f (y, s) dyds. It is like having a source term of the form

fr (:E,t) = f(:v,t)é(:cfy,tf 5)
and therefore, recalling (2.133), we have
dv(z,t) =I'p (z —y,t —s) f (y, s) dyds. (2.135)

We obtain the solution v (z,t) by superposition, summing all the contributions
(2.135). We split it into the following two steps:

e we sum over y the contributions for fixed s, to get the total density at (z,t),
due to the diffusion of mass produced at time s. The result is w («, ¢, s) ds, where

w (@t 5) = / Ip(z—y,t—s) f (y5) dy. (2.136)

e we sum the above contributions for s ranging from 0 to ¢:

vt = [ [ Tot@=y.t=27 ) dyas.

The above construction is an example of application of the Duhamel method,
that we state below:

Duhamel’s method. The procedure to solve problem (2.134) consists in the
following two steps:

1. Construct a family of solutions of homogeneous Cauchy problems, with vari-
able initial time s > 0, and initial data f (z, s).

2. Integrate the above family with respect to s, over (0,t).

Indeed, let us examine the two steps.

1. Consider the homogeneous Cauchy problems

wi — Dwyr =0 reR, t>s
(2.137)

w(z,s,8)=f(x,s) z€R
where the initial time s plays the role of a parameter.

45 Negative production (f < 0) means removal.
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The function I'Y® (z,t) = I'p (x — y,t — s) is the fundamental solution of the
diffusion equation that satisfies for t = s, the initial condition

IS (z,s)=d(x—vy).

Hence, the solution of (2.137) is given by the function (2.136):

w(xvtvs):‘/RFD(xiyvt*S)f(yvs)dy'

Thus, w (z, t, s) is the required family.

2. Integrating w over (0,t) with respect to s, we find

v(:c,t):/) w(x,t,s)ds:‘/o ‘/RFD(:v—y,t—s)f(y,s)dyds. (2.138)

Using (2.137) we have

vy — Dvgy = w (z,t, 1) +/) [we (z,t,8) — Dwgy (2,8, 8)] = f (z,t).

Moreover, v (z,0) = 0 and therefore v is a solution to (2.134).

Everything works under rather mild hypotheses on f. More precisely:

Theorem 2.4. If f and its derivatives fi, fz, fzz are continuous and bounded
in Rx[0,T), then (2.138) gives a solution v of problem (2.184) in R x (0,T),

continuous up to t = 0, with derivatives v¢,v;, Uz continuous in Rx (0,T).

The formula for the general Cauchy problem

{Ut — Dugy = f(z,t)  in Rx(0,T) (2.139)

u(z,0)=g(x) inR

is obtained by superposition of (2.130) and (2.134):

w@t) = [ To@-po@dy+ [ [ Te—nt=sfms)dms (2140)

Under the hypotheses on f and g stated in Theorems 2.3 and 2.4, (2.140) is a
solution of (2.139) in R x (0,7,

1

T -
< 1Da’

continuous with its derivatives us, Uy, Ugy.
The initial condition means that u (z,t) — g(zo) as (z,t) — (x0,0) at any
point z of continuity of g. In particular, if g is continuous in R then w is continuous

in Rx[0,T).
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2.8.4 Maximum principles and uniqueness

The uniqueness of the solution to the global Cauchy problem is still to be discussed.
This is not a trivial question since the following counterexample of Tychonov shows
that there could be several solutions of the homogeneous problem. Let

—t* fort >0
h(t) — e ort >
®) {0 for t <0.

It can be checked*® that the function

e 2k dk

z
Z (2k) 'dtk

k:O

is a solution of
Ut — Uz =0 in Rx (0, 4+00)
with
u(z,0)=0 inR.
Since also u (z,t) = 0 is a solution of the same problem, we conclude that, in
general, the Cauchy problem is not well posed.

What is wrong with 7 7 It grows too much at infinity for small times. Indeed
the best estimate available for T is the following;:

IT(x,t)lgcexp{;f—j} (6 >0)

that quickly deteriorates when t — 0T, due to the factor 1/6t.

If instead of 1/0t we had a constant A, as in condition i) of Theorem 2.3,
then we can assure uniqueness.

In other words, among the class of functions with growth at infinity controlled
by an exponential of the type CeA™” for any t > 0 (the so called Tychonov class),
the solution to the homogeneous Cauchy problem is unique.

This is a consequence of the following maximum principle.

Theorem 2.5 (Global maximum principle). Let z be continuous in R x [0, T,
with derivatives z;, Zz., z¢ continuous in R x (0,T'), such that, in R x (0,T) :

2zt — Dzge <0 (resp. >0)
and , ,
2 (x,t) < Cel™ (resp. > —Ce® ) (2.141)
where C' > 0. Then
sup z(z,t) <supz(z,0 (resp. inf z(z,t) > infz :c,O).
N (z,t) u (z,0) ot (z,1) > inf 2 (z,0)

6 Not an easy task! See John’s book in the references.
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The proof is rather difficult, but if we assume that z is bounded from above or
below (A = 0 in (2.141)), then the proof relies on a simple application of the weak
maximum principle, Theorem 2.2.

In Problem 2.13 we ask the reader to fill in the details of the proof.

We now are in position to prove the following uniqueness result.
Corollary 2.2. Uniqueness I. Suppose u is a solution of
ut — Dugy =0 in Rx (0,T)
u(z,00=0 inR,

continuous in R x [0, T'], with derivatives uy, Uz, Ut continuous in R x (0, 7). If u|
satisfies (2.141) then u = 0.

Proof. From Theorem 2.5 we have

0=infu(x,0) < inf w(z,t) < sup u(z,t) <supu(z,0)=0
20 (@0) < it u(@ )< s w(e) < swpu(e,0)

so that v = 0. O
Notice that if

lg(x)| < ce®™  for every z € R (¢c,a positive), (2.142)

we know from Theorem 2.3 that
w@t) = [ To (=000 dy
satisfies the estimate
lu(z,t)] < Ce™  inRx (0,T) (2.143)

and therefore it belongs to the Tychonov class in R x (0,7, for T' < 1/4Da.
Moreover, if f is as in Theorem 2.4 and

t
v )= [ [ o= y.t—5)5 ) dyds
o Jr
we easily get the estimate
tiﬁff <w(z,t) <tsupf, (2.144)
R
forevery z € R, 0 <t < T. In fact:
t
v (x,t) Ssupf/ /FD(x—y,t—s)dyds:tsupf
R 0o Jr R

since
/FD(x—y,t—s)dyzl
R

for every z,t, s, t > s. In the same way it can be shown that v (z,t) > tinfg f. As
a consequence, we have:
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Corollary 2.3. Uniqueness II. Let g be continuous in R, satisfying (2.148), and
let f be as in Theorem 2.). Then the Cauchy problem (2.139) has a unique solution
win R x (0,T) for T < 1/4Da, belonging to the Tychonov class. This solution is
given by (2.140) and moreover

inf g+ tinf f <wu(z,t) <supg+tsupf. (2.145)
R R R R

Proof. If u and v are solutions of the same Cauchy problem (2.139), then w = u—v
is a solution of (2.139) with f = g = 0 and satisfies the hypotheses of Corollary
2.2. Tt follows that w (z,t) =0. O

o Stability and comparison. As in Corollary 2.1, inequality (2.145) is a stability
estimate for the correspondence

data — solution.

Indeed, let u; and us be solutions of (2.139) with data g1, f1 and ga, f2, respectively.
Under the hypotheses of Corollary 2.2, from (2.145) we can write

sup |up —uz| <suplgr —go| +T sup |[fi — faf.
Rx[0,T] R Rx[0,T

Therefore if

sup |f1 — fa| <&, suplgr —go| <€
Rx [0,T] R

also
sup |u; —uz| <e(1+47)
Rx[0,T]
that means uniform pointwise stability.

This is not the only consequence of (2.145). We can use it to compare two
solutions. For instance, from the left inequality we immediately deduce that if
f>0and g >0, also u > 0.

Similarly, if f; > f2 and g1 > g2, then

ul Z ug.

e Backward equations arise in several applied contexts, from control theory and
dynamic programming to probability and finance. An example is the celebrated
Black-Scholes equation we will present in the next section.

Due to the time irreversibility, to have a well posed problem for the backward
equation in the time interval [0,7] we must prescribe a final condition, that is
for t = T, rather than an initial one. On the other hand, the change of variable
t — T — t transforms the backward into the forward equation, so that, from
the mathematical point of view, the two equations are equivalent. Except for this
remark the theory we have developed so far remains valid.
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2.9 An Application to Finance

2.9.1 European options

In this section we apply the above theory to determine the price of some financial
products, in particular of some derivative products, called Furopean options.

A financial product is a derivative if its payoff depends on the price behavior of
an asset, in jargon the underlying, for instance a stock, a currency or a commodity.

Among the simplest derivatives are the European call and put options, that
are contracts on a prescribed asset between a holder and a subscriber, with the
following rules.

At the drawing up time of the contract (say at time ¢ = 0) an exercise or
strike price F is fixed.

At an expiry date T, fixed in the future,

e the holder of a call option can (but is not obliged to) exercise the option
by purchasing the asset at the price . If the holder decides to buy the asset,
the subscriber must sell it;

e the holder of a put option can (but is not obliged to) exercise the option
by selling at the price E. If the holder decides to sell the asset, the subscriber
must buy it.

Since an option gives to the holder a right without any obligation, the option
has a price and the basic question is: what is the “right” price that must be
paid at t =07

This price certainly depends on the evolution of the price S of the underlying,
on the strike price E, on the expiring time 7" and on the current riskless interest
rate r > 0.

For instance, for a call, to a lower E corresponds a greater price; the opposite
holds for a put. The price fluctuations of the underlying affect in crucial way the
value of an option, since they incorporate the amount of risk.

To answer our basic question, we introduce the value function V =V (S, t),
giving the proper price of the option if at time ¢ the price of the underlying is S.
What we need to know is V (5 (0),0). When we like to distinguish between call
and put, we use the notations C (S,t) and P (S, t), respectively.

The problem is then to determine V in agreement with the financial market,
where both the underlying and the option are exchanged. We shall use the Black-
Scholes method, based on the assumption of a reasonable evolution model for S
and on the fundamental principle of no arbitrage possibilities.

2.9.2 An evolution model for the price S

Since S depends on more or less foreseeable factors, it is clear that we cannot
expect a deterministic model for the evolution of S. To construct it we assume a
market efficiency in the following sense:
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a) The market responds instantaneously to new information on the asset.

b) The price has no memory: its past history is fully stored in the present price,
without further information.

Condition a) implies the adoption of a continuous model. Condition b) basically
requires that a change dS of the underlying price has the Markov property, like
Brownian motion.

Consider now a time interval from ¢ to ¢ + dt, during which S undergoes a
change from S to S + dS. One of the most common models assumes that the
return dS/S is given by the sum of two terms.

One is a deterministic term, which gives a contribution pdt due to a constant
drift i, representing the average growth rate of S. With this term alone, we would
have

R
S H

and therefore dlog S = udt, that gives the exponential growth S (t) = S (0) e#*.

The other term is stochastic and takes into account the random aspects of the
evolution. It gives the contribution

odB

where dB is an increment of a Brownian motion and has zero mean and variance
dt. The coefficient o, that we assume to be constant, is called the volatility and
measures the standard deviation of the return.

Summing the contributions we have

% = pdt + odB. (2.146)

[N

Note the physical dimensions of . and o: [p] = [time] ", [o] = [time]~
The (2.146) is a stochastic differential equation (s.d.e.). To solve it one is

tempted to write
dlogS = udt + odB,

to integrate between 0 e t, and to obtain
S(t)
5(0)

since B (0) = 0. However, this is not correct. The diffusion term odB requires the
use of the It6 formula, a stochastic version of the chain rule. Let us make a few
intuitive remarks on this important formula.

log =pt+o(B(t)—B(0))=pt+ oB(t)

Digression on Ité’s formula. Let B = B (t) the usual Brownian motion. An Itd
process X = X (t) is a solution of a s.d.e. of the type

dX =a(X,t)dt + o (X,t)dB (2.147)

where a is the drift term and o is the volatility coefficient.



2.9 An Application to Finance 79

When o = 0, the equation is deterministic and the trajectories can be computed
with the usual analytic methods. Moreover, given a smooth function F' = F'(z, t),
we can easily compute the variation of F' along those trajectories. It is enough to
compute

dF = Fydt + F,dX = {F; + aF,} dt.

Let now be ¢ non zero; the preceding computation would give
dF = Fydt + Fp,dX = {Fy + oF,}dt + oF,dB

but this formula does not give the complete differential of F'. Indeed, using
Taylor’s formula, one has, letting X (0) = Xo:

1
F (X, t) = F (Xo,0)+ Fydt + FydX + 3 {Fm (dX)? + 2FpdXdt + Fy (dt)2} .

The differential of F' along the trajectories of (2.147) is obtained by selecting in the
right hand side of the preceding formula the terms which are linear with respect
to dt or dX. We first find the terms

Fidt+ F,dX ={F;+ aF,}dt + oF,dB.

The terms 2F,,dXdt and Fy, (dt)2 are non linear with respect to dt and dX and
therefore they are not in the differential. Let us now check the term (dX)>. We
have

(dX)* = [adt + 0dB)* = o (dt)* + 2a0dBdt +|o? (dB)*|.

While a2 (dt)* and 2acdBdt are non linear with respect to dt and dX, the framed
term turns out to be exactly
o?dt.

Formally, this is a consequence of the basic formula*’ dB ~ +/dtN (0,1) that
assigns V/dt for the standard deviation of dB.

Thus the differential of F along the trajectories of (2.147) is given by the
following It6 formula:
1
dF = {Ft +aF, + §U2Fm} dt + o F,dB. (2.148)
We are now ready to solve (2.146), that we write in the form

dS = pSdt 4+ o SdB.

Let F (S) = logS. Since

47 See (2.86), subsection 2.4.3.
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Itd’s formula gives, with X = S, a (S,t) = uS, o (S,t) = oS,
L o
dlogS=p— 37 dt+ odB.
We can now integrate between 0 and ¢, obtaining
1
log S (t) =log So + <u - 502> t+oB(t). (2.149)

The (2.149) shows that the random variable Y = log S has a normal distribution,
with mean log So+ (1 — 302) t and variance ot. Its probability density is therefore

Fly) = 1 p{(ylogSo(u§02)t) }

— ex
V2mo?t 202t

and the density of S is given by

p(s) = f (log s) =

1 7(logsflog5’07(uf% 2)t)2
sV 2mo2t 202t

which is called a lognormal density.

2.9.3 The Black-Scholes equation

We now construct a differential equation able to describe the evolution of V' (S, ¢).
We work under the following hypotheses:

S follows a lognormal law.

The volatility o is constant and known.

There are no transaction costs or dividends.

It is possible to buy or sell any number of the underlying asset.

There is an interest rate r > 0, for a riskless investment. This means that 1
dollar in a bank at time ¢t = 0 becomes e’ dollars at time 7.

e The market is arbitrage free.

The last hypothesis is crucial in the construction of the model and means that
there is no opportunity for instantaneous risk-free profit. It could be considered as
a sort of conservation law for money!

The translation of this principle into mathematical terms is linked with the
notion of hedging and the existence of self-financing portfolios*®. The basic idea
is first to compute the return of V through It6 formula and then to construct a
riskless portfolio II, consisting of shares of S and the option. By the arbitrage free
hypothesis, II must grow at the current interest rate r, i.e. dII = rIldt, which
turns out to coincide with the fundamental Black-Scholes equation.

48 A portfolio is a collection of securities (e.g. stocks) holdings.
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Let us then use the It6 formula to compute the differential of V. Since
dS = pSdt + 0SdB,

we find )
dv = {Vt + pSVs + 502821/55} dt + 0SVsdB. (2.150)

Now we try to get rid of the risk term 0SVgdB by constructing a portfolio II,
consisting of the option and a quantity*® —A of underlying:

1=V -SA.

This is an important financial operation called hedging. Consider now the interval
of time (¢, t + dt) during which IT undergoes a variation dII. If we manage to keep
A equal to its value at t during the interval (¢,¢ + dt), the variation of IT is given
by

dIl = dV — AdS.

This is a key point in the whole construction, that needs to be carefully justified®°.
Although we content ourselves with an intuitive level, we will come back to this
question in the last section of this chapter.

Using (2.150) we find

dIl = dV — AdS = (2.151)
1
= {Vt + uSVy + 50282\/55 - ,uSA} dt+oS(Vg — A)dB.

Thus, if we choose
A=Vg, (2.152)

meaning that A is the value of Vg at ¢, we eliminate the stochastic component
in (2.151). The evolution of the portfolio IT is now entirely deterministic and its
dynamics is given by the following equation:

1
dIl = {Vt + 502821/55} dt. (2.153)

The choice (2.152) appears almost .... miraculous, but it is partly justified by the
fact that V and S are dependent and the random component in their dynamics
is proportional to S. Thus, in a suitable linear combination of V' and S such
component should disappear.

It is the moment to use the no-arbitrage principle. Investing II at the riskless
rate r, after a time dt we have an increment rIldt. Compare rIIdt with dII given
by (2.153).

49 We borrow from finance the use of the greek letter A in this context. Clearly here it
has nothing to do with the Laplace operator.

%0 In fact, saying that we keep A constant for an infinitesimal time interval so that we
can cancel SdA from the differential dIT requires a certain amount of impudence....
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- If dII > rlldt, we borrow an amount II to invest in the portfolio. The return
dIl would be greater of the cost rIldt, so that we make an instantaneous riskless
profit

dIl — rildt.

- If dII < rIldt, we sell the portfolio II investing it in a bank at the rate r.
This time we would make an instantaneous risk free profit

rlldt — dII.

Therefore, the arbitrage free hypothesis forces
1
dIl = {Vt + 502521/55} dt = rIldt. (2.154)

Substituting
II=V-8SA=V —-VsS

into (2.154), we obtain the celebrated Black-Scholes equation:
1
LV =V, + 502521/55 +7rSVs —rV = 0. (2.155)

Note that the coefficient p, the drift of S, does not appear in (2.155). This fact
is apparently counter-intuitive and shows an interesting aspect of the model. The
financial meaning of the Black-Scholes equation is emphasized from the following
decomposition of its right hand side:

1
LV =V, + 502521/55 —r(V —SVs).
N N————

. bank i t t
portfolio return ank mvestmen

The Black-Scholes equation is a little more general than the equations we have
seen so far. Indeed, the diffusion and the drift coefficients are both depending on
S. However, as we shall see below, we can transform it into the diffusion equation
Ut = Ugy-

Observe that the coefficient of Vgg is positive, so that (2.155) is a backward
equation. To get a well posed problem, we need a final condition (at t =1T), a
side condition at S = 0 and one condition for § — +oo.

e Final conditions. We examine what conditions we have to impose at t = T'.

Call. If at time T" we have S > FE then we exercise the option, with a profit
S—E.If S < E, we do not exercise the option with no profit. The final payoff of
the option is therefore

C(8,T) =max{S - E,0}=(S—E)", S > 0.

Put. If at time T we have S > E, we do not exercise the option, while we
exercise the option if S < E. The final payoff of the option is therefore

P(S,T) =max{E - S,0=(E-S)", S§>0.
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e Boundary conditions. We now examine the conditions to be imposed at S = 0
and for S — +4o0.

Call. If S = 0 at a time ¢, (2.146) implies S = 0 thereafter, and the option has
no value; therefore
C(0,t)=0 t>0.

As S — 400, at time ¢, the option will be exercised and its value becomes practi-
cally equal to S minus the discounted exercise price, that is

C(St)—(S—e ™I VE) 50  as S — 0.

Put. If at a certain time is S = 0, so that S = 0 thereafter, the final profit
is E. Thus, to determine P (0,t) we need to determine the present value of E at
time 7', that is

P(0,t) = Be "(T7Y),

If S — 400, we do not exercise the option, hence

P(S,t)=0 as § — +o0.

2.9.4 The solutions

Let us summarize our model in the two cases.

Black-Scholes equation

1
Vi + 502521/55 +rSVs —rV =0. (2.156)
Final payoffs
C(5,T)=(S—E)" (call)
P(S,T)=(E~5)" (put).

Boundary conditions

C0,t)=0, C(St)—(S—e"TYE) -0 asS— o0 (call)
P(0,t) = Ee "(T—1), P(S,T)=0 asS— o0 (put).

It turns out that the above problems can be reduced to a global Cauchy problem
for the heat equation. In this way it is possible to find explicit formulas for the
solutions. First of all we make a change of variables to reduce the Black-Scholes
equation to constant coefficients and to pass from backward to forward in time.
Also note that 1/02 can be considered an intrinsic reference time while the exercise
price E gives a characteristic order of magnitude for S and V. Thus, 1/0%and E
can be used as rescaling factors to introduce dimensionless variables.

Let us set

1 1 2
x:logE, 7':502(T—t), w(x,T)—EV<Eem,T—72->.
o
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When S goes from 0 to +o0, x varies from —oo to +00. When t = T we have
7 = 0. Moreover:

1
Vi, = —§U2Ew7.
E E E
VS = gwma VSS = 7§wm + ?wmx
Substituting into (2.156), after some simplifications, we get
1,

1
——c“w, + 502 (—wgz + Wae) + 1wy —rw =0

2

or
Wy = Wy + (k— 1) wy — kw

where k = 2 is a dimensionless parameter. By further setting®!

— (k+1)2
w(z,7) = e~ e =7 v (z,T)

we find that v satisfies
Vr — VUge = 0, —xo<r<+4oo, 0<T7<T.

The final condition for V becomes an initial condition for v. Precisely, after some
manipulations, we have

%(kJrl)m o %(kfl)x >0
o0 =9 ()= {¢ ‘ o >0

for the call option, and
e%(kfl)x _ e%(qul)m <0

00 =g = {¢ sl

for the put option.
Now we can use the preceding theory and in particular Theorem 2.3 and Corol-
lary 2.3. The solution is unique and it is given by formula

1 _ (=2
v(w,T)—\/E/Rg(y)e T dy.

To have a more significant formula, let y = v/27z 4 x; then, focusing on the call
option:

1 22
v(x,T):E/Rg( ZTer:c)e*Tdy:

=N [T g [ ()
2r |\ J—e/v2r —z/V2T

51 See Problem 2.14.



2.9 An Application to Finance
After some manipulations in the two integrals®?, we obtain
v(z,7) = o3 (k1243 (k+1)%T pr (ds) — o3 (k=Da+3(k—1)°7 5 (d_)
where

1 z
N (2) = E/ ef%lfdy

is the distribution of a standard normal random variable and
T

V2r

Going back to the original variables we have, for the call:

1
d+ = +§(k:|:1)v2T.

C(S,t) = SN (dy) — Ee " T=ON (d_)

with

_ log (S/E) + (r+io?) (T - t)'

= ovVT —t

The formula for the put is

P(S,t)=Ee " TUN (=d_) — SN (—d.).

It can be shown that®?

A=Csg=N(dy)>0 for the call
A=Ps=N(dy)—1<0 for the put.

85

Note that C's e Pg are strictly increasing with respect to S, since N is a strictly
increasing function and d; is strictly increasing with S. The functions C, P are
therefore strictly convex functions of S, for every ¢, namely Css > 0 and P, > 0.

o Put-call parity. Put and call options with the same exercise price and expiry

time can be connected by forming the following portfolio:

nIm=S+prP-C

52 For instance, to evaluate the first integral, complete the square at the exponent, writing

2

%(k+1)(\/§z+x)—lzzzé(k+1)x+i(k+1)2r—%[z—%(k+1)\/§

Then, setting y = % (k+1)v2T,

2

1
/ eh ) (VaTate) =422 e%(k+1>z+z<k+1>2f/ e~V 1y

o/ VE V(A VT/VE

53 The calculations are rather ... painful.



86 2 Diffusion

where the minus in front of C' shows a so called short position (negative holding).
For this portfolio the final payoff is

I(S,T)=S+(E-S8)"—(S—E)".
If £ > S, we have
ns,rn=S+FE-S)-0=FE
while if £ < S|
II(s,1y=S+0-(S—E)=E.
Thus at expiry the payoff is always equal to E and it constitutes a riskless profit,

whose value at ¢ must be equal to the discounted value of E, because of the no
arbitrage condition. Hence we find the following relation (put—call parity)

S+P—C=EeTT™, (2.157)

Formula (2.157) also shows that, given the value of C' (or P), we can find the value
of P (or C).
From (2.157), since Ee "T~Y) < E and P > 0, we get

C(S,t)=S+P—Ee TV >5_F
and therefore, since C' > 0,
C(S,t)>(S—E)".

It follows that the value of C s always greater than the final payoff. It is not so
for a put. In fact
P0,t)=Ee T <FE

so that the value of P is below the final payoff when S is near 0, while it is above
just before expiring. The figures 2.14 and 2.15 show the behavior of C and P versus
S, for some values of T'— ¢ up to expiry.

T—r=1.5 —/"/" ,
T—t=1.0 —
T—1=0.5 /

Fig. 2.14. The value function for an European call option
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E Ry

Fig. 2.15. The value function of an European put option

o Different volatilities. The maximum principle arguments in subsection 2.8.3
can be used to compare the value of two options with different volatilities o; and
09, having the same exercise price E and the same strike time 7. Assume that
o1 > o3 and denote by CM), C?) the value of the corresponding call options.
Diminishing the amount of risk the value of the option should decrease and indeed
we want to confirm that

c® > c® §$>0,0<t<T.

Let W =C® — C®), Then
1 1
Wi+ 5035* Wss +rSWs —rW = 2 (05 o2)s2c) (2.158)

with W (S,T) =0, W (0,t) =0 and W — 0 as S — +o0.

The (2.158) is a nonhomogeneous equation, whose right hand side is negative
for S > 0, because C’éls) > 0. Since W is continuous in the half strip [0, +00) x [0, T]
and vanishes at infinity, it attains its global minimum at a point (Sp, to).

We claim that the minimum is zero and cannot be attained at a point in

(0,400) x [0,T). Since the equation is backward, tg = 0 is excluded. Suppose
w (S(),to) < 0 with Sy > 0 and 0 < tg < T. We have

Wt (SOvtO) =0

and
Ws (So,t0) =0, Wss (So,t0) > 0.

Substituting S = Sy, ¢ = to into (2.158) we get a contradiction. Therefore W =
CH —Cc®>0for§>0,0<t<T.
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2.9.5 Hedging and self-financing strategy

The mathematical translation of the no arbitrage principle can be made more
rigorously than we did in subsection 2.9.2, by introducing the concept of self-
financing portfolio. The idea is to “duplicate” V' by means of a portfolio consisting
of a number of shares of S and a bond Z, a free risk investment growing at the
rate r, e.g. Z (t) = e"t.
To this purpose let us try to determine two processes ¢ = ¢ (t) e v = ¥ (t)
such that
V=¢S+yZ (0<t<T) (2.159)

in order to eliminate any risk factor. In fact, playing the part of the subscriber (that
has to sell), the risk is that at time T the price S (T') is greater than E, so that the
holder will exercise the option. If in the meantime the subscriber has constructed
the portfolio (2.159), the profit from it exactly meets the funds necessary to pay
the holder. On the other hand, if the option has zero value at time 7', the portfolio
has no value as well.

For the operation to make sense, it is necessary that the subscriber does not put
extra money in this strategy (hedging). This can be assured by requiring that the
portfolio (2.159) be self-financing that is, its changes in value be dependent
from variations of S and Z alone.

In formulas, this amount to requiring

dV = ¢dS +vdZ  (0<t<T). (2.160)

Actually, we have already met something like (2.160), when we have constructed
the portfolio IT =V — SA or

V =1I+ SA,

asking that dV = dII + AdS. This construction is nothing else that a duplication of
V' by means of a self-financing portfolio, with II playing the role of Z and choosing

P =1
But, what is the real meaning of (2.160)? We see it better in a discrete setting.
Consider a sequence of times

to<t1 <..<iIn

and suppose that the intervals (t; — ¢;_1) are very small. Denote by S; e Z; the
values at t; of S and Z. Consequently, look for two sequences

¢; and 1,

corresponding to the quantity of S and Z to be used in the construction of the
portfolio (2.159) from ¢;_1 to t;. Notice that ¢; and 1); are chosen at time ¢;_;.
Thus, given the interval (¢;_1,t;),

Vi=0;5 +v;Z;
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represents the closing value of the portfolio while

¢j+1Sj + 1/’j+1Zj

is the opening value, the amount of money necessary to buy the new one. The
self-financing condition means that the value V; of the portfolio at time t;,
determined by the couple (qu, wj), exactly meets the purchasing cost of the port-

folio in the interval (t;,¢;11), determined by (¢;1,%;,;). This means

or that the financial gap
Dj=j1Si + 112 = V;
must be zero, otherwise an amount of cash D; has to be injected to substain the

strategy (D; > 0) or the same amount of money can be drawn from it (D; < 0).
From (2.161) we deduce that

Vier = Vi = (9418541 + ¥j11Z5+1) — (8,55 + ¥, Z5)
= (®j01841 + ¥ Zin) = (6415 +¥;1175)
= @i (Sj+1 = 85) + ¥ 11 (Zj1 — Zj)

or

AVy = ¢; 11 AS; + 91,47

whose continuous version is exactly (2.160).

Going back to the continuous case, by combining formulas (2.150) and (2.160)
for dV, we get

{Vt + puSVs + %(725’21/55} dt +o0SVsdB = ¢ (uSdt + 0SdB) + yrZdt.
Choosing ¢ = Vg, we rediscover the Black and Scholes equation
VQ+%¥§V%+¢$@fTV:O. (2.162)
On the other hand, if V satisfies (2.162) and

p=Vs, V=21V —-VsS)=e "V —Vs9),

it can be proved that the self financing condition (2.160) is satisfied for the portfolio
¢S +yYZ.
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2.10 Some Nonlinear Aspects

All the mathematical models we have examined so far are linear. On the other
hand, the nature of most real problems is nonlinear. For example, nonlinear diffu-
sion has to be taken into account in filtration problems, non linear drift terms are
quite important in fluid dynamics while nonlinear reaction terms occur frequently
in population dynamics and kinetics chemistry.

The presence of a nonlinearity in a mathematical model gives rise to many
interesting phenomena that cannot occur in the linear case; typical instances are
finite speed of diffusion, finite time blow-up or existence of travelling wave solutions
of certain special profiles, each one with its own characteristic velocity.

In this section we try to convey some intuition of what could happen in two
typical and important examples from filtration through a porous medium and
population dynamics. In Chapter 4, we shall deal with nonlinear transport models.

2.10.1 Nonlinear diffusion. The porous medium equation

Consider a gas of density p = p (x,t) flowing through a porous medium. Denote
by v = v (x,t) the velocity of the gas and by  the porosity of the medium, rep-
resenting the volume fraction filled with gas. Conservation of mass reads, in this
case:

kp, +div (pv) = 0. (2.163)
Besides (2.163), the flow is governed by the two following constitutive (empirical)
laws.

e Darcy’s law:
v = J:vp (2.164)

where p = p (x,t) is the pressure, u is the permeability of the medium and v is the
viscosity of the gas. We assume p and v are positive constants.

e Equation of state:
p = pop” po > 0,a > 0. (2.165)

From (2.164) and (2.165) we have, since p*/*Vp = (1 + 1/a) Lt A(p*+1/®),

H A(lerl/a) — _ (m — 1) HPOA (pm)

div(pv) = ————2
(14 1/a)vpy/® mv

where m =1+ a > 1. From (2.163) we obtain

(m—1) HPOA(pm)'

Pt =
Kmv
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-1
m=1) 1o,
rmv

Rescaling time (¢t — we finally get the porous medium equation

pr = A>p™). (2.166)

Since
A(p™) = div (mp™ 'V p)

we see that the diffusion coefficient is D (p) = mp™~!, showing that the diffusive
effect increases with the density.
The porous medium equation can be written in terms of the pressure variable

u=p/po=p"""

It is not difficult to check that the equation for w is given by
u = uhu+ —— |Vuf? (2.167)
m—1

showing once more the dependence on u of the diffusion coefficient.

One of the basic questions related to the equation (2.166) or (2.167) is to
understand how an initial data p,, confined in a small region {2, evolves with
time. The key object to examine is therefore the unknown boundary 92, or free
boundary of the gas, whose speed of expansion we expect to be proportional to
|[Vu| (from (2.164)). This means that we expect a finite speed of propagation, in
contrast with the classical case m = 1.

The porous media equation cannot be treated by elementary means, since at
very low density the diffusion has a very low effect and the equation degenerates.
However we can get some clue of what happens by examining a sort of fundamental
solutions, the so called Barenblatt solutions, in spatial dimension 1.

The equation is

pr= (") (2.168)

We look for nonnegative self-similar solutions of the form

p(2,t) =t7°U (at™7) = 7°U ()

—+oo
/ p(z,t)dx =1.

— 00

satisfying

This condition requires

1= /M t=U (2t ™F) doe =t~ /+OO U (§) d¢

— 00 — 00

so that we must have a = 8 and fj:j U (€) d¢ = 1. Substituting into (2.168), we
find
atfafl(iU o ﬁU/) _ tfma72a(Um)//'
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Thus, if we choose a =1/ (m + 1), we get for U the differential equation
(m+1)(U™)"+&U0'+U =0

that can be written in the form

d et B
3 [(m+1)(U™) +¢U] =0.
Thus, we have

(m+ 1) (U™)" + €U = constant.

Choosing the constant equal to zero, we get
(m+1) (U™ =(m+1)mUm™ U = —¢U

or

(m+1)mU™ U’ = —¢.
This in turn is equivalent to

(m+1)m
m—1

() ==

whose solution is
1/(m—1)
U (6) = [A - Bmg2]
where A is an arbitrary constant and B, = (m — 1) /2m (m + 1) . Clearly, to have
a physical meaning, we must have A > 0 and A — B,,£? > 0.
In conclusion we have found solutions of the porous medium equation of the
form

. 2 /=)
= i (A Beg| < ae,
p\T, 1) =

0 if 22 > At2*/B,,.

(a=1/(m+1)).

known as Barenblatt solutions. The points

x = ++\/A/Bnt® = £r(t)

represent the gas interface between the part filled by gas and the empty part. Its
speed of propagation is therefore

() = ay/A/ Bt L.
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X

v

Fig. 2.16. The Barenblatt solution
p(z,t) =t"/° [1 — :cztfz/s]

for t =1,4,10,30

1/3

+

2.10.2 Nonlinear reaction. Fischer’s equation

In 1937 Fisher®* introduced a model for the spatial spread of a so called favoured®®
(or advantageous) gene in a population, over an infinitely long one dimensional
habitat. Denoting by v the gene concentration, Fisher’s equation reads

vr = Dugy +10 (1~ %) 7>0,y€cR, (2.169)

where D, r, and M are positive parameters. An important question is to determine
whether the gene has a typical speed of propagation.

Accordingly to the terminology in the introduction, (2.169) is a semilinear
equation where diffusion is coupled with logistic growth through the reaction term

f(v):rv(l—%).

The parameter r represents a biological potential (net birth-death rate, with di-
mension [time] 1), while M is the carrying capacity of the habitat. If we rescale
time, space and concentration in the following way

t=rr, xz=+/r/Dy, u=v/M,
(2.169) takes the dimensionless form
Ut = Ugg +u(l—u), ¢>0. (2.170)

Note the two equilibria u = 0 and u = 1. In absence of diffusion, 0 is unstable,
and 1 is asymptotically stable. A trajectory with initial data u (0) = up between
0 and 1 has the typical behavior shown in figure 2.17:

5 Fisher, R. A. (1937), The wave of advance of advantageous gene. Ann. Eugenics, 7,
355-69.
55 That is a gene that has an advantage in the struggle for life.
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v

Fig. 2.17. Logistic curve (r = 0.1,uo = 1/3)

Therefore, if
u(z,0) =ug (x), z € R, (2.171)

is an initial data for the equation (2.169), with 0 < wg(z) < 1, we expect a
competitive action between diffusion and reaction, with diffusion trying to spread
and lower uy against the reaction tendency to increase u towards the equilibrium
solution 1.

What we intend to show here is the existence of permanent travelling waves
solutions connecting the two equilibrium states, that is solutions of the form

u(z,t) =U(2), z =z —ct,

with ¢ denoting the propagation speed, satisfying the conditions

O<u<l, t>0,zeR
and
EEEHOO u(z,t)=1 and mgrfoo u(z,t) =0. (2.172)

The first condition in (2.172), states that the gene concentration is saturated at
the far left end while the second condition denotes zero concentration at the far
right end. Clearly, this kind of solutions realize a balance between diffusion and
reaction.

Since the equation (2.169) is invariant under the transformation z — —z, it
suffices to consider ¢ > 0, that is right-moving waves only.

Since

Uy = *CU,, Uy = U,, Ugy = U"y (, = d/dZ)

substituting v (z,t) = U (z) into (2.170), we find for U the ordinary differential
equation

U'+cU +U-U*=0 (2.173)
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with
zEIPoo U(z)=1 and zginoo U(z)=0. (2.174)

Letting U’ = V, the equation (2.173) is equivalent to the system
dU dv
=V -r

P — — 2
=V, =V -U+U (2.175)

in the phase plane (U, V). This system has two equilibrium points (0, 0) and (1, 0)
corresponding to two steady states. Our travelling wave solution corresponds to
an orbit connecting (1,0) to (0,0), with 0 < U < 1.

We first examine the local behavior of the orbits near the equilibrium points.
The coefficients matrices of the linearized systems at (0,0) and (1,0) are, respec-

tively,
7(0,0) = <°1 1C> and  J(1,0) = <‘1)10>.

The eigenvalues of J (0,0) are

1
Ar = 3 [—c:l: V2 —4} ,
with corresponding eigenvectors

)

If ¢ > 2 the eigenvalues are both negative while if ¢ < 2 they are complex. Therefore

(0,0) i stable node if ¢ > 2
V) 182 9 stable focus if ¢ < 2.

The eigenvalues of J (1,0) are

1
B =3 [—c:l: c2+4},

of opposite sign, hence (1, 0) is a saddle point. The unstable and stable separatrices
leave (1,0) along the directions of the two eigenvectors

2 _ 2
o= (O e = (),

respectively.

Now, the constraint 0 < U < 1 rules out the case ¢ < 2, since in this case
U changes sign along the orbit approaching (0,0). For ¢ > 2, all orbits®® in a
neighborhood of the origin approach (0, 0) for z — +o00 asymptotically with slope

56 Except for two orbits on the stable manifold tangent to h_ at (0,0), in the case ¢ > 2.



96 2 Diffusion

0.2 +

03+

04 F
-0.5

0 0.2 0.4 0.6 0.8 1
u

Fig. 2.18. Orbits of the system (2.175)

A4. On the other hand, the only orbit going to (1,0) as z — —oo and remaining
in the region 0 < U < 1 is the unstable separatrix  of the saddle point.

Figure 2.18 shows the orbits configuration in the region of interest (see Problem
2.23). The conclusion is that for each ¢ > 2 there exists a unique travelling wave
solution of equation (2.169) with speed c. Moreover U is strictly decreasing.

In terms of original variables, there is a unique travelling wave solution for
every speed ¢ satisfying the inequality ¢ > ¢min = 2v/7D.

Thus, we have a continuous “spectrum” of possible speeds of propagation. It
turns out that the minimum speed ¢ = ¢y, is particularly important.

Indeed, having found a travelling solution is only the beginning of the story.
There is a number of questions that arise naturally. Among them, the study of the
stability of the travelling waves or of the asymptotic behavior (as t — 400) of a
solution with an initial data ug of transitional type, that is

1 r<a
(@) =< 0<u<1l a<z<bd (2.176)
0 x > b.

Should we expect that the travelling wave is insensitive to small perturbations?
Does the solution with initial condition (2.176) evolve towards one of the travelling
waves we have just found?

The interested reader can find the answers in the many specialized texts or
papers on the subject®”. Here we only mention that among the travelling wave
solutions we have found, only the minimum speed one can be the asymptotic rep-
resentation of solutions with transitional type initial condition. The biological im-
plication of this result is that cpi, determines the required speed of propagation of
an advantageous gene.

5T See for instance, the books by Murray, vol I, 2001, or Grindrod, 1991.
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Problems

2.1. Use the method of separation of variables to solve the following initial-
Neumann problem:

Up — Uz = 0 O<z<Lit>0
u(z,0)==z 0<z<L
ug (0,t) =uy (L,t) =0 ¢t>0.

2.2. Use the method of separation of variables to solve the following non ho-
mogeneous initial-Neumann problem:

Up — Ugy = T O<x<mt>0
u(zx,0)=1 0<z<nm
ug (0,t) = uy (L) =0 ¢t >0.

[Hint: Write the candidate solution as u (x,t) = Y, <qck (t) vk (x) where vy
are the eigenfunctions of the eigenvalue problem associated with the homogeneous
equation].

2.3. Use the method of separation of variables to solve (at least formally) the
following mixed problem:

U — Dy =0 O<x<mt>0
u(z,0) =g () 0<z<m
uz (0,¢) = 0 t>0.

ug (Lyt) +u(L,t) =U

[Answer: u (z,t) = ;<o Ck e~DHit cos 1z, where the numbers y,;, are the positive
solutions of the equation ptan u = 1].

2.4. Prove that, if w, — DAw =01in Qr and w € C (@T), then

min w < w (x,t) < max w for every (x,t) € Qr.
apQT 6pQT

2.5. Prove Corollary 2.1.

[Hint: b). Let u = v —w, M = maxg_ |f1 — f2| and apply Theorem 2.2 to
zy = tu — Mt].

2.6. Let g(t) =M for 0<t<landg(t)=M—(1—¢t)*for1<t<2 Letu
be the solution of u; — Uz, = 0in Q2 = (0,2) x (0,2), u =g on 9,Q2. Compute
u (1,1) and check that it is the maximum of u. Is this in contrast with the strong
maximum principle of Remark 2.47

2.7. Suppose u = u (z,t) is a solution of the heat equation in a plane domain
Dr =Qr\ (Q1 U Qg) where Q1 and Q2 are the rectangles in figure 2.19. Assume
that u attains its maximum M at the interior point (z1,t1). Where else v = M?
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ul(x.t)=M= max i

S
o

o,
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0 L

Fig. 2.19. At which points (z,t), u(z,t) = M?

2.8. Find the similarity solutions of the equation u; — uz, = 0 of the form
u(z,t) = U (z/+/t) and express the result in term of the error function

erf (z) = %/) e dz.

Find the solution of the problem w; — uz, = 0 in > 0,¢t > 0 satisfying the
conditions u (0,t) = 1 and u (x,0) =0, > 0.

2.9. Determine for which o and (8 there exist similarity solutions to u; —ugz,; =
f (z) of the form t*U (z/t®) in each one of the following cases:

@ F@=0, ®)f@)=1, (o) fx)=x
[Answer: (a) a arbitrary, 3=1/2. (b)a=1,=1/2. (¢)a=3/2,8=1/2].

2.10. (Reflecting barriers and Neumann condition). Consider the symmetric
random walk of Section 2.4. Suppose that a perfectly reflecting barrier is located
at the point L = mh + % > (. By this we mean that if the particle hits the point
L— % at time ¢t and moves to the right, then it is reflected and it comes back to
L — % at time ¢ + 7. Show that when h,7 — 0 and h?/7 = 2D, p = p(z,t) is a
solution of the problem

pt*mec:O $<L,t>0
p(x,0)=9¢ x <L
s (L, t) =0 t>0

and moreover [ foo p (z,t)dx = 1. Compute explicitly the solution.
[Answer: p (z,t) = I'p (z,t) + I'p (x — 2L, t)].
2.11. (Absorbing barrires and Dirichlet condition). Consider the symmetric

random walk of Section 2.4. Suppose that a perfectly absorbing barrier is located
at the point L = mh > 0. By this we mean that if the particle hits the point L —h
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at time ¢ and moves to the right then it is absorbed and stops at L. Show that
when h,7 — 0 and h?/7 = 2D, p = p(z,t) is a solution of the problem

pt*mec:O $<L,t>0
p(x,0)=9¢ x <L
p(L,t) =0 t>0
Compute explicitly the solution.
[Answer: p (z,t) = I'p (z,t) — I'p (x — 2L, t).]
2.12. Use the partial Fourier transform @ (&,t) = [ e "*u(z,t) dz to solve
the global Cauchy problem (2.129) and rediscover formula (2.130).

2.13. Prove Theorem 2.5 under the condition
z2(x,t) <C, zeR,0<t<T,

using the following steps.
a) Let supy z (z,0) = My and define

2C  x2
t) = —(—= + Dt) + Mp.
w (e, t) = 2 (T4 D) + Mo
Check that w; — Dwg; = 0 and use the maximum principle to show that w > z in
the rectangle Ry = [-L, L] x [0,T].
b) Fix an arbitrary point (zo, tg) and choose L large enough to have (zg,t9) €
Ry,. Using a) deduce that z (zg, to) < M.

2.14. Find an explicit formula for the solution of the global Cauchy problem

U = Dugy +buy, +cu x€RE>0
u(z,0)=g(x) z € R.

where D, b, c are constant coeflicients. Show that, if ¢ < 0 and g is bounded,
u(x,t) = 0ast— +oo

[Hint: Choose h, k such that v (z,t) = u (z,t) e"***! is a solution of v; = Dv,,].

2.15. Find an explicit formula for the solution of the Cauchy problem

Up = Ugy z>0,t>0
uw(@,0)=g(z) >0
u(0,t) =0 t>0.

with g continuous and ¢ (0) = 0.
[Hint: Extend g to < 0 by odd reflection: g (—x) = —g (). Solve the correspond-
ing global Cauchy problem and write the result as an integral on (0, +00)].

2.16. Let Q7 = 2% (0,T), with {2 bounded domain in R™. Let u € C?*L(Qr)N
C (QT) satisfy the equation

us = DAu+b (x,t) - Vu + ¢ (x,t) u in Qr



100 2 Diffusion

where b and ¢ are continuous in Qp. Show that if u > 0 (resp. u < 0) on 8,Qr
then u > 0 (resp. u < 0) in Q7.
[Hint: Assume first that c(x,t) < a < 0. Then reduce to this case by setting
u = veFt with a suitable k > 0].

2.17. Fill in the details in the arguments of Section 6.2, leading to formulas
(2.108) and (2.109).

2.18. Solve the following initial-Dirichlet problem in B; = {x eR3: x| < 1}:

u = Au x €B1,t >0
u(X,O):O XEBl
u(o,t)=1 o €0B,t> 0.

Compute limy_, 4 o u.
[Hint: The solution is radial so that v = u(r,t), r = |x|. Observe that Au =

Upr + —Ur = — (ru),.. . Let v = ru, reduce to homogeneous Dirichlet condition and
r r

use separation of variables].
2.19. Solve the following initial-Dirichlet problem

uy = Au x €K, t>0
u(x,0)=0 x€eK
u(o,t)=1 o €IK,t>0.

where K is the rectangular box
K={(z,y,2)ER*: 0<2<a,0<y<b0<z<c}.
Compute limy_, 4 o u.
2.20. Solve the following initial-Neumann problem in B; = {x eR3: x| < 1}:

u = Au x €B1,t >0
u(x,0) = |x| x eB;
uy, (o,t) =1 o €0B;,t> 0.
2.21. Solve the following non homogeneous initial-Dirichlet problem in the unit

sphere By (u=u(rt),r = |x|):

2
utf(um«Jr;uT):qe*t 0<r<1,t>0
u(r,0)=U 0<r<1
u(l,t)=0 t>0.

[Answer: The solution is

) 71n
21<AH>

3N

. q . 42 \2
u(r,t) = sin(A,7) {W (e t_e Ant) _Ue )\nt}

n

where A, = nn].
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2.22. Using the maximum principle, compare the values of two call options
C® and C® in the following cases:
(a) Same exercise price and 77 > T5. (b) Same expiry time and E; > Es.

2.23. Justify carefully the orbit configuration of figure 2.18 and in particular
that the unstable orbit v connects the two equilibrium points of system (2.175),
by filling in the details in the following steps:

1. Let F = Vi+ (—cV + U? —U) j and n be the interior normal to the bound-
ary of the triangle {2 in figure 2.20. Show that, if 3 is large enough, F - n > 0 along
o9.

2. Deduce that all the orbits of system (2.175) starting at a point in {2 cannot
leave 2 (i.e. £2 is a positively invariant region) and converge to the origin as
z — +00.

3. Finally, deduce that the unstable separatrix v of the saddle point (1,0)
approaches (0,0) as z — +oo.

Fig. 2.20. Trapping region for the orbits of the vector field F =Vi + (—cV +U? - U)j
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The Laplace Equation

Introduction — Well Posed Problems. Uniqueness — Harmonic Functions — Fundamental
Solution and Newtonian Potential — The Green Function — Uniqueness in Unbounded
Domains — Surface Potentials

3.1 Introduction

The Laplace equation Au = 0 occurs frequently in applied sciences, in particular
in the study of the steady state phenomena. Its solutions are called harmonic
functions. For instance, the equilibrium position of a perfectly elastic membrane
is a harmonic function as it is the velocity potential of a homogeneous fluid. Also,
the steady state temperature of a homogeneous and isotropic body is a harmonic
function and in this case Laplace equation constitutes the stationary counterpart
(time independent) of the diffusion equation.

Slightly more generally, Poisson’s equation Au = f plays an important role in
the theory of conservative fields (electrical, magnetic, gravitational,...) where the
vector field is derived from the gradient of a potential.

For example, let E be a force field due to a distribution of electric charges in
a domain 2 C R3. Then, in standard units, div E =4mp, where p represents the
density of the charge distribution. When a potential u exists such that Vu = —E,
then Au = divVu = —4xp, which is Poisson’s equation. If the electric field is
created by charges located outside (2, then p = 0 in {2 and w is harmonic therein.
Analogously, the potential of a gravitational field due to a mass distribution is a
harmonic function in a region free from mass.

In dimension two, the theories of harmonic and holomorphic functions are
strictly connected®. Indeed, the real and the imaginary part of a holomorphic

L A complex function f = f (2) is holomorphic in an open subset {2 of the complex plane
if for every zo € {2, the limit

o F(2) = 1 (20)

z—2z0 zZ— 20

= f'(20)

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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function are harmonic. For instance, since the functions

m

2™ = 71" (cosmb + isinmb) , m €N,
(r, 0 polar coordinates) are holomorphic in the whole plane C, the functions
u(r,0) =r"™cosmf and wv(r,0)=r"sinmfd m €N,

are harmonic in R? (called elementary harmonics). In Cartesian coordinates, they
are harmonic polynomials; for m = 1,2, 3 we find

z, y, zy, 2 —y?, x> — 3zy?, 32y — o5
Other examples are
u(z,y) =e*cosay, v(z,y)=e*sinay (e € R),
the real and imaginary parts of f (z) = €*®?, both harmonic in R?, and
u(r,0) =logr, v(r,0) =20,
the real and imaginary parts of f (z) = log, 2 = logr + if, harmonic in R?\ (0, 0)

and R?\ {§ = 0}, respectively.

In this chapter we present the formulation of the most important well posed
problems and the classical properties of harmonic functions, focusing mainly on
dimensions two and three. As in Chapter 2, we emphasize some probabilistic as-
pects, exploiting the connection among random walks, Brownian motion and the
Laplace operator. A central notion is the concept of fundamental solution, that
we develop in conjunction with the very basic elements of the so called potential
theory.

3.2 Well Posed Problems. Uniqueness

Consider the Poisson equation
Au=f in 2 (3.1)

where {2 C R” is a bounded domain. The well posed problems associated with

equation (3.1) are the stationary counterparts of the corresponding problems for

the diffusion equation. Clearly here there is no initial condition. On the boundary
0f2 we may assign:
e Dirichlet data

u =g, (3.2)

exists and it is finite.
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e Neumann data
Oyu = h, (3.3)
where v is the outward normal unit vector to 92,

e a Robin (radiation) condition
hu+au=nh (a > 0), (3.4)
e a mized condition; for instance,

=g onlp (3.5)
Opu=nh on I'y,

where I'pUI'y =002, I'pN Iy =@, and I'y is a relatively open subset of 0f2.
When g = h = 0 we say that the above boundary conditions are homogeneous.

We give some interpretations. If u is the position of a perfectly flexible mem-
brane and f is an external distributed load (vertical force per unit surface), then
(3.1) models a steady state.

The Dirichlet condition corresponds to fixing the position of the membrane at
its boundary. Robin condition describes an elastic attachment at the boundary
while a homogeneous Neumann condition corresponds to a free vertical motion of
the boundary.

If u is the steady state concentration of a substance, the Dirichlet condition
prescribes the level of u at the boundary, while the Neumann condition assigns
the flux of u through the boundary.

Using Green’s identity (1.13) we can prove the following uniqueness result.

Theorem 3.1. Let {2 C R™ be a smooth, bounded domain. Then there exists
at most one solution u € C?(2) N C* (2) of (3.1), satisfying on 012 one of the
conditions (3.2), (3.4) or (8.5).

In the case of the Neumann condition, that is when

Opu=nh on 012,

two solutions differ by a constant.

Proof. Let u and v be solutions of the same problem, sharing the same boundary
data, and let w = u —v. Then w is harmonic and satisfies homogeneous boundary
conditions (one among (3.2)-(3.5)). Substituting v = v = w into (1.13) we find

/|Vw|2dx:/ wo,w do.
[0} o0

If Dirichlet or mixed conditions hold, we have

/ wd,w do = 0.
o0
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When a Robin condition holds

/ wo,w do = —/ aw?do < 0.
o9 092

In any case we obtain that
/ |Vw|? dx <0. (3.6)
o

From (3.6) we infer Vw = 0 and therefore w = u — v = constant. This concludes
the proof in the case of Neumann condition. In the other cases, the constant must
be zero (why?), hence v =v. O

Remark 8.1. Consider the Neumann problem Au = f in {2, d,u = h on 9f2.
Integrating the equation on {2 and using Gauss’ formula we find

/Qf dx:/anhda. (3.7)

The relation (3.7) appears as a compatibility condition on the data f and h, that
has necessarily to be satisfied in order for the Neumann problem to admit a so-
lution. Thus, when having to solve a Neumann problem, the first thing to do is
to check the validity of (3.7). If it does not hold, the problem does not have any
solution. We will examine later the physical meaning of (3.7).

3.3 Harmonic Functions

3.3.1 Discrete harmonic functions

In Chapter 2 we have examined the connection between Brownian motion and
diffusion equation. We go back now to the multidimensional symmetric random
walk considered in Section 2.6, analyzing its relation with the Laplace operator A.
For simplicity we will work in dimension n = 2 but both arguments and conclusions
may be easily extended to any dimension n > 2. We fix a time step 7 > 0, a space
step h > 0 and denote by hZ? the lattice of points x = (1, x2) whose coordinates
are integer multiples of h. Let p (x,t) = p (1, z2,t) be the transition probability
function, giving the probability to find our random particle at x at time ¢. From
the total probability formula we found a difference equation for p, that we rewrite
in dimension two:

1
p(x,t+7)= 1 {p (x+hei,t) +p(x—hei,t) + p(x+hes,t) + p(x—hes,t)}.
(3.8)

We can write this formula in a more significant way by introducing the mean value
operator Mj,, whose action on a function u = wu(x) is defined by the following



106 3 The Laplace Equation
formula:

My f (x) = = {u(x+he1) + u(x—he;1) + u (x+hes) + u (x—hes)}

> uly).

|x—y|=h

[l N

Note that Mjyu (x) gives the average of u over the points of the lattice hZ? at
distance h from x. We say that these points constitute the discrete neighborhood
of x of radius h.

It is clear that (3.8) can be written in the form

p (Xv i+ T) = Mpp (th) . (39)

In (3.9) the probability p at time ¢ + 7 is determined by the action of M}, at the
previous time, and then it is natural to interpret the mean value operator as the
generator of the random walk.

Now we come to the Laplacian. If w is twice continuously differentiable, it is
not difficult to show that?

Mpu (x) — u (x) 1

lim — ZAU (x). (3.10)

h—0 h?
The formula (3.10) induces to define, for any fixed h > 0, a discrete Laplace
operator through the formula

AL =M, — 1T

where I denotes the identity operator (i.e. Ju = wu). The operator A} acts on
functions u defined in the whole lattice hZ? and, coherently, we say that u is
d-harmonic (d for discrete) if Aju=0.

Thus, the value of a d-harmonic function at any point x is given by the average
of the values at the points in the discrete neighborhood of x of radius h.

We can proceed further and define a discrete Dirichlet problem. Let A be a
subset of hZ>2.

We say that A is connected if, given any couple of points xg, x; in A, it is
possible to connect them by a walk® on hZ? entirely contained in A.

Moreover, we say that x €A is an interior point of A if its h—neighborhood
is contained in A. The points of A that are not interior are called boundary points
(Fig. 3.1). The set of the boundary points of A, the boundary of A, is denoted by
0A.

2 Using a second order Taylor’s polynomial, after some simplifications, we get:
h’ 5
Mpu (X) =u (X) + I {uzlzl (X) + Uzyzy (X)} +o (h )

from which formula (3.10) comes easily.
3 Recall that consecutive points in a walk have distance h.
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O PUEELEE @ Boundary points

Fig. 3.1. A domain for the discrete Dirichlet problem

Discrete Dirichlet problem. Let A be a bounded connected subset of hZ?

and g be a function defined on the boundary 0A of A. We want to determine u,
defined on A, such that

(3.11)

Aju =0 at the interior points of A
u=g¢g on JA.

We deduce immediately three important properties of a solution u:

1. Maximum principle: If w attains its maximum or its minimum at an interior
point then u is constant. Indeed, suppose x €A is an interior point and u (x) =
M > wu(y) for every y €A. Since u (x) is the average of the four values of u at
the points at distance h from x, at all these points u must be equal to M. Let
X1 # X be one of these neighboring points. By the same argument, u (y) = M
for every y in the h—neighborhood of x;. Since A is connected, proceeding in
this way we prove that u (y) = M at every point of A.

2. u attains its maximum and its minimum on 0A. This is an immediate conse-
quence of 1.

3. The solution of the discrete Dirichlet problem is unique (exercise).

The discrete Dirichlet problem (3.11) has a remarkable probabilistic interpre-
tation that can be used to construct its solution. Let us go back to our random
particle. First of all, we want to show that whatever its starting point x €A is, the
particle hits the boundary 0A with probability one.

For every I' C 0A, we denote by

P(x,I)

the probability that the particle starting from x €A hits OA for the first time at a
point y €I'. We have to prove that P(x,0A) =1 for every x €A.
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Clearly, if x €I" we have P (x,I") = 1, while if x €9A\I", P (x,I") = 0. It turns
out that, for fixed I', the function

wp (x) = P(x,I)
is d-harmonic in the interior of A, that is A*wp = 0. To see this, denote by

p(1,x,y)

the one step transition probability, i.e. the probability to go from x to y in one
step. Given the symmetry of the walk, we have p (1,x,y) =1/4if |x —y| =1 and
p(1,x,y) = 0 otherwise.

Now, to hit I" starting from x, the particle first hits a point y in its h—neigh-
borhood and from there it reaches I', independently of the first step. Then, by the
total probability formula we can write

wr (x) = P(x,I) = Y p(L,x,y) P(y,]') = MyP (x,I") = Mywr (),
y€EhZ?

which entails
(IA—A4ﬁ)qu::432uq1::0

Thus, wr is d — harmonic in A. In particular wga (x) = P (x,04) is d — harmonic
in A and wpa = 1 on JA. On the other hand, the function z (x) = 1 satisfies the
same discrete Dirichlet problem, so that, by the uniqueness property 3 above,

woa (x) = P (x,04) =1 in A. (3.12)

This means that the particle hits the boundary 0A with probability one. As a
consequence, observe that the set function

I'e—P(xT)

defines a probability measure on 0A, for any fixed x € A.

We construct now the solution v to (3.11). Interpret the boundary data g as a
payoff : if the particle starts from x and hits the boundary for the first time at y,
it wins g (y). We have:

Theorem 3.2. The value u (x) is given by the expected value of the winnings g (-)
with respect to the probability P (x,-). That is

ux)= Y g(¥)Px{y}). (3.13)

yEeoA

Proof. Each term

9 ()P (x{y}) =9 (y) wiyy (%)
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is d—harmonic in A and therefore v is d—harmonic in A as well. Moreover, if
x €0A then u (x) = g (x) since each term in the sum is equal to ¢ (x) if y = x or
to zero if y # x.

As h — 0, formula (3.10) shows that, formally, d—harmonic functions “become”
harmonic. Thus, it seems reasonable that appropriate versions of the above prop-
erties and results should hold in the continuous case. We start with the mean value
properties.

3.3.2 Mean value properties

Guided by their discrete characterization, we want to establish some fundamen-
tal properties of harmonic functions. To be precise, we say that a function u is
harmonic in a domain 2 C R™ if u € C? (£2) and Au = 0 in (2.

Since d—harmonic functions are defined through a mean value property, we
expect that harmonic functions inherit a mean value property of the following
kind: the value at the center of any ball B CC {2, i.e. compactly contained in {2,
equals the average of the values on the boundary 0B. Actually, something more is
true.

Theorem 3.3. Let u be harmonic in 2 C R™. Then, for any ball B (x) CC 2
the following mean value formulas hold:

w60 = [,y (3.14)
1
u(x) = o Rl ‘/BBR(X) u(o)do (3.15)

where w,, is the measure of OB.

Proof (for n = 2). Let us start from the second formula. For r < R define

1
g(r)=— u(o)do.
(r)=5— - (o)

Perform the change of variables o = x+ro’. Then ¢’ € 9B; (0), do = rdo’ and

1

L 8B1(0)

g(r) u (x+ra’)do’.

Let v(y) = u (x+ry) and observe that

Vo (y) = rVu (x+ry)
Av (y) = 2 Au (x+ry).
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Then we have

1 d 1
/ !/ !/ !/ !/ !/
g (r) = o= —u(x+ro’)do’ = — Vu (x+ro') - o'do
27 8B, (0) dr 27 8B, (0)
1
= _— Vv (o') - o'de’ = (divergence theorem)
27r 8B1(0)
1
- Av(y)dy = — Au(x+ry)dy = 0.
27'(")" B (0) 27‘(‘ B (0)

Thus, g is constant and since g (r) — u (x) for » — 0, we get (3.15).
To obtain (3.14), let R = r in (3.15), multiply by r and integrate both sides
between 0 and R. We find

2 1 (B 1
R—u (x) = —/ dr/ u(o)do=— u(y)dy
2 27 Jo OB, (x) 27 JBr(x)

from which (3.14) follows. O

Even more significant is a converse of Theorem 3.2. We say that a continuous
function u satisfies the mean value property in (2, if (3.14) or (3.15) holds for
any ball Br (x) CC 2. It turns out that if w is continuous and possesses the
mean value property in a domain {2, then u is harmonic in (2. Thus we obtain a
characterization of harmonic functions through a mean value property, as in the
discrete case. As a by product we deduce that every harmonic function in a domain
{2 is continuously differentiable of any order in {2, that is, it belongs to C* (£2).
Notice that this is not a trivial fact since it involves derivatives not appearing
in the expression of the Laplace operator. For instance, u (z,y) = = + y|y| is a
solution of ugzz + Uzy = 0 in all R? but it is not twice differentiable with respect
to y at (0,0).

Theorem 3.4. Let uw € C(£2). If u satisfies the mean value property, then u €
C* (£2) and it is harmonic in {2.

We postpone the proof to the end of the Section 3.4.

3.3.3 Maximum principles

As in the discrete case, a function satisfying the mean value property in a domain*
{2 cannot attain its maximum or minimum at an interior point of {2, unless it
is constant. In case {2 is bounded and u (non constant) is continuous up to the
boundary of (2, it follows that w attains both its maximum and minimum only
on 0f2. This result expresses a maximum principle that we state precisely in the
following theorem.

4 Recall that a domain is an open connected set.
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Theorem 3.5. Let uw € C (£2), 2 C R™. If u has the mean value property and
attains its maximum or minimum at p € {2, then u is constant. In particular, if §2
is bounded and u € C({2) is not constant, then, for every x €{2,

u(x) < maxu and  u(x) > rg})nu (from strong maximum principle).

Proof. (n = 2). Let p be a minimum point® for u:
m=u(p) <uly), Vy€esR

We want to show that w = m in (2. Let q be another arbitrary point in 2. Since
2 is connected, it is possible to find a finite sequence of circles B (x;) CC 2,
j=0,..., N, such that (Fig. 3.2):

® X eB (Xjfl) 5 ] = 1,...,N
¢ Iy=PpP,TN=Qq.

Fig. 3.2. A sequence of overlapping circles connecting the points p and q

The mean value property gives
SR
= u(y)dy.
|B(P)| JB(p)

Suppose there exists z € B (p) such that u (z) > m. Then, given a circle B, (z) C
B (p), we can write:

m = u(p)

m = ! /B u(y)dy (3.16)

1

® The argument for the maximum is the same.
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Since u (y) > m for every y and, by the mean value again,
[,y =u@ 1B @) > mIB, 2],
continuing from (3.16) we obtain

1
> W{mIB(p) \Br (z)| + m|B, (2)|} = m

and therefore the contradiction m > m.

Thus it must be that w = m in B (p) and in particular u(x;) = m. We repeat
now the same argument with x; in place of p to show that u = m in B (x3)
and in particular u(x2) = m. Iterating the procedure we eventually deduce that
u(xn) = u(q) = m. Since q is an arbitrary point of {2, we conclude that u = m in
N0

An important consequence of the maximum principle is the following corollary.
Corollary 3.1. Let £2 C R™ be a bounded domain and g € C (0f2). The problem

{Au—OinQ

u=g on 02 (3.17)

has at most a solution u,€C? (£2) N C (£2). Moreover, let uy, and ug, be the
solutions corresponding to the data g1, g2 € C (912). Then:

(a) (Comparison). If g1 > g2 on 912 and g1 # g2, then
Ug, > Ug, in §. (3.18)
(b) (Stability).
g, (0) g, (0| <miclgs ol foreveryx €2, (319)
Proof. We first show (a) and (b). Let w = ug4, — ug,. Then w is harmonic and
w = g1 — g2 > 0 on 0f2. Since g1 # g2, w is not constant and from Theorem 3.5
w(x) > rg})n(gl —g2) >0 for every x €f2.
This is (3.18). To prove (b), apply Theorem 3.5 to w and —w to find
+w (x) < max lg1 — g2| for every x €12

which is equivalent to (3.19).
Now if g1 = g2, (3.19) implies w = ug, —ug, = 0, so that the Dirichlet problem
(3.17) has at most one solution. [J

Remark 3.2. Inequality (3.19) is a stability estimate. Indeed, suppose g is known
within an absolute error less than €, or, in other words, suppose g; is an approxi-
mation of g and maxgn |g — g1| < €; then (3.19) gives

max (Ug, — Ug| < €
ax [1tg, — |

so that the approximate solution is known within the same absolute error.
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3.3.4 The Dirichlet problem in a circle. Poisson’s formula

To prove the existence of a solution to one of the boundary value problems we
considered in Section 3.2 is not an elementary task. In Chapter 8, we solve this
question in a general context, using the more advanced tools of Functional Analysis.
However, in special cases, elementary methods, like separation of variables, work.
We use it to compute the solution of the Dirichlet problem in a circle. Precisely, let
Br = Bpr (p) be the circle of radius R centered at p = (p1,p2) and g € C (0BR).
We want to prove the following theorem.

Theorem 3.6. The unique solution u € C? (Bg) N C (Bg) of the problem

{Au—OinBR (3.20)

u=g¢g on 0Bg.

is given by Poisson’s formula

u(x) = M/ L)ng. (3.21)
2R oBr(p) [x — 0

In particular, u € C* (BR).

Proof. The symmetry of the domain suggests the use of polar coordinates
r1 =p1 +rcosb Tog = po + rsinb.
Accordingly, let
U(r,0) =u(ps +rcosb,ps +rsind), G(0) =g (p1 + Rcosl,ps + Rsinb).

The Laplace equation becomes®

1 1
UTT+—UT+—2U99:0, 0<r<R,0<60<2m, (3.22)
r r
with the Dirichlet condition
U(R,0)=G(0), 0<60<2m.

Since we ask that u be continuous in Bg, then U and G have to be continuous
in [0, R] x [0, 27] and [0, 27, respectively; moreover both have to be 2w —periodic
with respect to 6.
We use now the method of separation of variables, by looking first for solutions
of the form
U(r,0) =v(r)w(0)

6 Appendix B.
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with v, w bounded and w 27 —periodic. Substitution in (3.22) gives
1
v () w () + =0 (r)w (0) + Sv(r)w” () =0
r r
or, separating the variables,

v (r) Cw ()

This identity is possible only when the two quotients have a common constant
value A. Thus we are lead to the ordinary differential equation

77"21/’ (r)+rv (r)  w"(6)

2" (r) + 1 (r) = M (r) =0 (3.23)
and to the eigenvalue problem

{w” 0) — \w (0) =0 (3.24)

We leave to the reader to check that problem (3.24) has only the zero solution
for A > 0. If A\ = —u?, u > 0, the differential equation in (3.24) has the general
integral

w (0) = acos ud + bsin ub (a,b e R).

The 2w —periodicity forces 4 = m, a nonnegative integer.
The equation (3.23), with A = m, has the general solution”

v(r) =dir™™ + dor™ (dy,ds € R).

Since v has to be bounded we exclude r~™, m > 0 and hence d; = 0.
We have found a countable number of 2r—periodic harmonic functions

r™ {am, cosmb + b, sinmb} m=20,1,2,.... (3.25)
We superpose now the (3.25) by writing
U(r,0) =ag+ Z r"™ {am, cosmb + by, sinmb} (3.26)
m=1

with the coefficients a,, and b,, still to be chosen in order to satisfy the boundary
condition
lim U(r,0)=G vée [0, 27 . 3.27
Llm U0 =G el (327)
" It is an Euler equation. The change of variables s = logr reduces it to the equation

v” (s) — m’v (s) = 0.
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Case G € C! ([0,27]). In this case G can be expanded in a uniformly con-
vergent Fourier series

G(¢) = % + Z {am cosm& + 3, sinmé&}
m=1

where
1 27 1 27

O = — G (p) cosmp dp, B = — G (p) sinmyp dep.
T Jo T Jo

Then, the boundary condition (3.27) is satisfied if we choose

Qo —m —m
ap = -, Am = R Ay, bm =R ﬂm

2
Substitution of these values of ag, @, by, into (3.26) gives, for r < R,

1 S m 2m
U (r,0) 204 - Z (1) G () {cos myp cosmb + sin mp sinmb} do
0

-4 (%)m {cos mep cos mé + sin mep sin m@}] de

m=1

Il
=
Ss—
(]
3
)
S

== G (¥)

™ Jo

% +n:i:1 (%)mcosm(cp — 0)] de.

Note that in the second equality above, the exchange of sum and integration is
possible because of the uniform convergence of the series. Moreover, for r < R, we
can differentiate under the integral sign and then term by term as many times as
we want (why?). Therefore, since for every m > 1 the functions

r

(E)m cosm(p — 0)

are smooth and harmonic, also U € C* (Bg) and is harmonic for r < R.
To obtain a better formula, observe that

i (%)mcosm(cp —6)=Re

m=1

5 (g

Since

= (il m 1 R?* —rRcos (¢ —0)
R (l(w 9)£) =R : 1=
emZ:l ¢ R ‘1- elle=0) & R?2 4712 —2rRcos (¢ — 0)
_ rRcos(p —0) —r?
"~ R2 472 —2rRcos (¢ —0)

-1
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we find

I o /r\™ 1 R? —r?
it — —0) == . 2
2+Z(R) cosm(¢ =0) = 3 B2~ 27 Reos (p— ) (3:28)

Inserting (3.28) into the formula for U, we get Poisson’s formula in polar coor-

dinates: )
i G (p)
U(r,0)= - /) ) de. (3.29)

R2 + 712 —2Rrcos (6 —¢

Going back to Cartesian coordinates® we obtain Poisson’s formula (3.21). Corollary
3.1 assures that (3.29) is indeed the unique solution of the Dirichlet problem (3.20).

Case G € C ([0, 27]). We drop now the additional hypothesis that G (6) is
continuously differentiable. Even with G only continuous, formula (3.29) makes
perfect sense and defines a harmonic function in Br and it can be shown that®

lim U(r,0)=G(¢), Vée [0, 27 .
Lm UEe=GE, el

Therefore (3.29) is the unique (by Corollary 3.1) solution to (3.20). O

e Poisson’s formula in dimension n > 2. Theorem 3.6 has an appropriate
extension in any number of dimensions. When Br = Bpg (p) is an n— dimensional
ball, the solution of the Dirichlet problem (3.20) is given by (see subsection 3.5.3,
for the case n = 3)

u(x) = B —x—pl’ /6 909 4o (3.30)

wnR BR(D) |X*0’|

An important consequence of Poisson’s formula is the possibility to control the
derivatives of any order of a harmonic function u at a point p by the maximum of
u in a small ball centered at p. We show it for first and second derivatives in the
following corollary.

Corollary 3.2. Let u be a harmonic function in a domain 2 and Bg (p) CC 2.

Then n)
c(n
72 Br;a()( lul . (3.31)

’um] ’ ) maX |u|; ’u’mjmk (p)’ <

R dBr
8 With o = R(cos ¢, sin ¢), do = Rdyp and

|x — o]* = (rcosf — Rcosp)® + (rsinf — Rsing)?
= R?> 4+ r° — 2Rr (cos ¢ cos 0 + sin g sin §)
= R*4+7° —2Rrcos (6 — ).

9 See Problem 3.20.
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Proof. From (3.30) we have

2 - 2
u(x) = M/ L')ndg.
wnR dBr(p) |X* 0'|

Since we want to compute the derivatives at p, we can differentiate under the
integral obtaining:

e, (%) = M/B _ulo) .-

wnR BR(D) |X*0’|n

R? —2|x —p| xj— 0
W 9Br(p) X — o]

Now, at x = p we have

P — o, “n1
——— < R"
p—o""
Therefore, since |0Bg (p)| = w, R™ 1,
nR lp; — oyl n
@) < 20 [ ] o) do < s Jul.
Wn JoBr(p) [P — o] 9Br(p)

Similarly we get the estimates for the second derivatives; we leave the details to
the reader.

We are now in position to prove Theorem 3.4, the converse of the mean value
property (m.v.p.).

e Proof of Theorem 3.4. First observe that if two functions satisfy the m.v.p. in
a domain (2, their difference satisfies this property as well. Let u € C (£2) satisfying
the m.v.p. and consider a circle B CC (2. We want to show that v is harmonic and
infinitely differentiable in {2. Denote by v the solution of the Dirichlet problem

Av=0in B
v=u on0B.

From Theorem 3.6 we know that v € C*(B)NC (F) and, being harmonic, it
satisfies the m.v.p. in B. Then, also w = v — u satisfies the m.v.p. in B and
therefore (Theorem 3.4) it attains its maximum and minimum on dB. Since w = 0
on 0B, we conclude that v = v in B. Since B is arbitrary, v € C* (£2) and is
harmonic in 2. O

3.3.5 Harnack’s inequality and Liouville’s theorem

From the mean value and Poisson’s formulas we deduce another maximum princi-
ple, known as Harnack’s inequality:
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Theorem 3.7. Let u be harmonic and nonnegative in the ball Bg = Bg (0) C R".
Then for any x €Bg,

R"% (R — |x]|)

_ R 2(R[x)
(R+ x|

w0 S u() < T

u (0). (3.32)
Proof (n = 3). From Poisson’s formula:

u(x) = M/B Mdg.

47TR Br |g'7x|3

Observe that R —|x| < |o — x| < R+ |x| and R? — |x|* = (R —|x|)(R+ |x|). Then,
by the mean value property,

Rl 1 [ o R(R)
u(X)S(R|X|)24ﬂR/aBR o = ().

Analogously,

u(x) > R(R—[x]) 1 AB u(o da*wu(m.

(R +[x])? 4mR? (R4 X))
O

Harnack’s inequality has an important consequence: the only harmonic func-
tions in R™ bounded from below or above are the constant functions.

Corollary 3.3. (Liouville’s Theorem). If u is harmonic in R"® and u(x) > M,
then u is constant.

Proof (n = 3). The function w = u — M is harmonic in R?® and nonnegative.
Fix x €R3 and choose R > |x|; Harnack’s inequality gives

R(R - |x])
(R +[x|)*

R(R + [x])

w (0 w (x
0) S wi) < =

w (0). (3.33)

Letting R — oo in (3.33) we get

w(0) <w(x) <w(0)

whence w (0) = w (x). Since x is arbitrary we conclude that w, and therefore also
u, is constant. [

3.3.6 A probabilistic solution of the Dirichlet problem

In Section 3.1 we solved the discrete Dirichlet problem via a probabilistic method.
The key ingredients in the construction of the solution, leading to formula (3.13),
were the mean value property and the absence of memory of the random walk (each



3.3 Harmonic Functions 119

step is independent of the preceding ones). In the continuous case the appropriate
version of those tools are available, with the Markov property encoding the absence
of memory of Brownian motion'®. Thus it is reasonable that a suitable continuous
version of formula (3.13) should give the solution of the Dirichlet problem for
the Laplace operator. As before, we work in dimension n = 2, but methods and
conclusions can be extended without much effort to any number of dimensions.
Let 2 C R? be a bounded domain and g € C (9£2). We want to derive a
representation formula for the unique solution u € C? (£2) N C (£2) of the problem

{Au—OinQ

u=g¢g on 0f2 (3.34)

Let X (t) be the position of a Brownian particle started at x € 2 and define the
first exit time from §2, T = 7 (x), as follows (Fig. 3.3):

7 (x) = {ggt (X (1) € RQ\Q}.

Fig. 3.3. First exit point from {2

The time 7 is a stopping time: to decide whether the event {7 <t} occurs or
not, it suffices to observe the process until time t. In fact, for fixed ¢ > 0, to decide
whether or not 7 <t is true, it is enough to consider the event

E ={X(s) € £, for all times s from Ountil ¢, ¢ included} .

If this event occurs, then it must be that 7 > t. If E does not occur, it means
that there are points X (s) outside {2 for some s < ¢t and therefore it must be that
T < t.

The first thing we have to check is that the particle leaves {2 in finite time,
almost surely. Precisely:

10 Section 2.6.
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Lemma 3.1. For every x € {2, 7 (x) is finite with probability 1, that is:
P{r(x) <oo}=1.

Proof. 1t is enough to show that our particle remains inside any circle B, =
B, (x) C 2 with zero probability. If we denote by 7, the first exit time from B,.,
we have to prove that P {r, = o0} = 0.
Suppose X (t) € B, until ¢t = k (k integer). Then, for j = 1,2, ..., k, it must be
that
X ()= X (j— 1) <2r.

Thus (the occurrence of) the event {7, > k} implies (the occurrence of) all the
events

E ={X({-X@-D[<2r} j=12,..k
and therefore also of their intersection. As a consequence
P{r. >k} < P{n}_,E;}. (3.35)

On the other hand, the increments X (j) — X (j — 1) are mutually independent
and equidistributed according to a standard normal law, hence we can write

1 2
P{E;} = — Bl )dz=y <1
{E;} 2ﬂ/{|z|<2r}exp< 2) z=7 <

and
k
P{f_ B} = [[ P{E;} =" (3.36)
j=1

Since {7, = oo} implies {7, > k}, from (3.35) and (3.36) we have
P{r, =00} < P{r, >k} <+"

Letting k — 400 we get P{r, =00} =0.0

Lemma 3.1 implies that X (7) hits the boundary {2 in finite time, with prob-
ability 1. We can therefore introduce on 92 a probability distribution associated
with the random variable X(7) by setting

P(x,r,F)=P{X(r) € F} (r=7x)),

for every “reasonable” subset F' C 02!, P(x,r, F) is called the escape probability
from §2 through F'. For fixed x in {2, the set function

F+— P(x,7(x),F)

defines a probability measure on 92, since P(x,7(x),0f2) = 1, according to
Lemma 3.1.

1 Precisely, for every Borel set (Appendix B).
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By analogy with formula (3.13), we can now guess the type of formula we expect
for the solution u of problem (3.34). To get the value u (x), let a Brownian particle
start from x, and let X (7) € 942 its first exit point from (2. Then, compute the
random “gain” g (X (7)) and take its expected value with respect to the distribution
P (x,7,-). This is u (x). Everything works if 9{2 is not too bad. Precisely, we have:

Theorem 3.8. Let {2 be a bounded Lipschitz domain and g € C (012). The unique
solution u € C*(£2) N C (2) of problem (3.84) is given by

u(x) = E*[g (X (7))] :/ g9 (@) P(x,7(x),do). (3.37)
o8
Proof (sketch). For fixed F' C 942, consider the function
up: X —P(x, 7 (%), F)).

We claim that uz is harmonic in 2. Assuming that ur is continuous'? in £2, from
Theorem 3.4, it is enough to show that up satisfies the mean value property. Let
Br = Br (x) CC £2.If Tp = TR (%) is the first exit time from Bg, then X (7r) has
a uniform distribution on 0Bp, due to the invariance by rotation of the Brownian
motion.

This means that, starting from the center, the escape probability from Bpr
through any arc K C 0Bp is given by

length of K
2R ’

Now, before reaching F', the particle must hit 0Bg. Since Ty is a stopping time,
we may use the strong Markov property. Thus, after 7z, X (¢) can be considered
as a Brownian motion with uniform initial distribution on 0Bg, expressed by the
formula (Fig. 3.4)
ds
1% (dS) - 27TR,

where ds is the length element on dBpg. Therefore, the particle escapes 0Bgr
through some arc of length ds centered at a point s and from there it reaches
F with probability P(s, 7 (s), F))u (ds). By integrating this probability on 0B we
obtain P(x,7 (x),F), namely:

1

— P(s,7(s), F)ds.
7R Sy (s,7(s), F)

Pler(0.F) = | L PEm() P =

which is the mean value property for up.
Observe now that if €S2 then 7 (o) = 0 and hence

lifo €F
P(o,7(0),F)= {();fo' €HN\F.

12 Which should be at least intuitively clear.
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Fig. 3.4. Strong Markov property of a Brownian particle

Therefore, on 912, ur coincides with the characteristic function of F'. Thus if do
is an arc element on 92 centered in o, intuitively, the function

x+— g (o) P (x,7(x),do) (3.38)

is harmonic in {2, it attains the value g (o) on do and it is zero on 02\do. To
obtain the harmonic function equal to g on 0f2, we integrate over 0f2 all the
contributions from (3.38). This gives the representation (3.37).

Rigorously, to assert that (3.37) is indeed the required solution, we should check
that u (x) — g (o) when x — o. It can be proved!? that this is true if 2 is, for
instance, a Lipschitz domain. [

Remark 3.3. The measure
F+— P(x,7(x),F)

is called the harmonic measure at x of the domain {2 and in general it can not
be expressed by an explicit formula. In the particular case {2 = Bg (p), Poisson’s
formula (3.21) indicates that the harmonic measure for the circle By (p) is given
by

1 R?—|x—p|’

Pl () de) = 5 g3

do.

Remark 3.4. Formula (3.37) shows that the value of the solution at a point x
depends on the boundary data on all 012 (except for sets of length zero). In the
case of figure 3.5, a change of the data g on the arc AB affects the value of the
solution at x, even if this point is far from AB and near 0f2.

3.3.7 Recurrence and Brownian motion

We have seen that the solution of a Dirichlet problem can be constructed by using
the general properties of a Brownian motion. On the other hand, the deterministic

13 The proof is rather delicate (see Pksendal, 1995).
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Fig. 3.5. A modification of the Dirichlet data on the arc AB, affects the value of the
solution at x

solution of some Dirichlet problems can be used to deduce interesting properties
of Brownian motion. We examine two simple examples. Recall from Section 3.1
that In |x| is harmonic in the plane except x = 0.

Let a, R be real numbers, R > a > 0. It is easy to check that the function

(%) In|R| — In|x|
u =
R InR—1Ina

is harmonic in the ring Ba, r = {x €R?%;a < |x| < R} and moreover
ug (x) =1 on 0B, (0), ur (x) =0 on 0Bg (0).

Thus u (x) represents the escape probability from the ring through 0B, (0), start-
ing at x:

ug (x) = Pgr (x,7 (x),0B,(0)).
Letting R — +o00, we get

Pg (x,7 (x),0B,(0)) = % — 1= Py (x,7(x),0B,(0)).

This means that, starting at x, the probability we (sooner or later) enter the
circle B, (0), is 1. Due to the invariance by translations of the Brownian motion,
the origin can be replaced by any other point without changing the conclusions.
Moreover, since we have proved in Lemma 3.1 that the exit probability from any
circle is also 1, we can state the following result: given any point x and any circle
in the plane, a Brownian particle started at x enters the circle and exit from it an
infinite number of times, with probability 1. We say that a bidimensional Brownian
motion is recurrent.

In three dimensions a Brownian motion is not recurrent. In fact (see the next
section), the function

|~

SRl i

u(x) =

|

is harmonic in the spherical shell B, g = {x €R?*;a < |x| < R} and

u(x) =1 on 0B, (0), u(x) =0on 0Br (0).
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Then u (x) represents the escape probability from the shell through 0B, (0), start-
ing at x:

ug (x) = Pr (x,7 (x),0B,(0)).
This time, letting R — 400, we find

1 _
a

] = Feo (67 (%), 0Ba (0)).

Pg (x,7 (x),0B,(0)) =

2= o]

X
1
a

Thus, the probability to enter, sooner or later, the sphere B, (0) is not 1 and it
becomes smaller and smaller as the distance of x from the origin increases.

3.4 Fundamental Solution and Newtonian Potential

3.4.1 The fundamental solution

The (3.37) is not the only representation formula for the solution of the Dirichlet
problem. We shall derive deterministic formulas involving various types of poten-
tials, constructed using a special function, called the fundamental solution of the
Laplace operator.

As we did for the diffusion equation, let us look at the invariance properties
characterizing the operator A: the invariances by translations and by rotations.

Let u = u (x) be harmonic in R™. Invariance by translations means that the
function v (x) = u (x — y), for each fixed y, is also harmonic, as it is immediate to
check.

Invariance by rotations means that, given a rotation in R", represented by an
orthogonal matrix M (i.e. M7 = M~1), also v (x) = u (Mx) is harmonic in R™.
To check it, observe that, if we denote by D?u the Hessian of u, we have

Au = TrD?u = trace of the Hessian of u.

Since
D2y (x) = MTD?u (Mx) M

and M is orthogonal, we have
Av (x) = Tr[MT D%y (Mx) M] = TrD?*u (Mx) = Au (Mx) = 0

and therefore v is harmonic.

Now, a typical rotation invariant quantity is the distance function from a point,
for instance from the origin, that is » = |x|. Thus, let us look for radially symmetric
harmonic functions u = u (r).

Consider first n = 2; using polar coordinates and recalling (3.22), we find

o 1ou_,
or2 " ror
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so that
u(r) = Clogr + Cj.

In dimension n = 3, using spherical coordinates (r,v,0), r > 0, 0 < ¢ < ,

0 < 6 < 2, the operator A has the following expression'*:
2 20 1 1 02 0? 0
/A S S A AR
or2 " ror 2 {(sinw)Q o a9 %w}

radial part spherical part (Laplace-Beltrami operator)

The Laplace equation for u = u (r) becomes
Pu  20u 0
or2  ror
whose general integral is
u(r)=—+C C, C1 arbitrary constants.
T

Choose C; =0 and C = ﬁ ifn=3,C= f% if n = 2. The function

—5=log|x| n=2

P (x) = 1 S (3.39)

4 |x|

is called the fundamental solution for the Laplace operator A. As we shall prove
in Chapter 7, the above choice of the constant C' is made in order to have

AP (x) = =6 (x)

where d (x) denotes the Dirac measure at x = 0.

The physical meaning of @ is remarkable: if n = 3, in standard units, 47®
represents the electrostatic potential due to a unitary charge located at the origin
and vanishing at infinity!°.

Clearly, if the origin is replaced by a point y, the corresponding potential is
é(x —y) and

AP (x—y)=—-0(x—Yy).

By symmetry, we also have Ay® (x —y) = -0 (x —y).
Remark 3.5. In dimension n > 3, the fundamental solution of the Laplace operator
is @ (x) = w;t|x|* "

14 Appendix D.
15 In dimension 2,

27® (z1,x2) = —log+/x? + 232

represents the potential due to a charge of density 1, distributed along the z3 axis.



126 3 The Laplace Equation

3.4.2 The Newtonian potential

Suppose that f (x) is the density of a charge located inside a compact set in R3.
Then @ (x —y) f (y) dy represents the potential at x due to the charge f (y)dy
inside a small region of volume dy around y. The full potential is given by the
sum of all the contributions; we get

w) = [ -y may = [ LOay (3.40)

Tan rs [X — Y|

which is the convolution between f and @ and it is called the Newtonian poten-
tial of f. Formally, we have

Au(x)= | AP (x-y)fly)dy=— | d(x-y)f(y)dy=~-f(x). (341)
R R

Under suitable hypotheses on f, (3.41) is indeed true (see Theorem 3.9 below).

Clearly, u is not the only solution of Av = —f, since u+ ¢, ¢ constant, is a solution

as well. However, the Newtonian potential is the only solution vanishing at infinity.

All this is stated precisely in the theorem below, where, for simplicity, we assume
f € C* (R3) with compact support!S. We have:

Theorem 3.9. Let f € C? (R®) with compact support. Let u be the Newtonian
potential of f, defined by (3.40). Then, u is the only solution in R of

Au=—f (3.42)

belonging to C? (R?®) and vanishing at infinity.

Proof. The uniqueness part follows from Liouville’s Theorem. Let v € C? (R3)
another solution to (3.42), vanishing at infinity. Then v — v is a bounded harmonic
function in all R® and therefore is constant. Since it vanishes at infinity it must be
zero; thus u = v.

To show that (3.40) belongs to C? (R?) and satisfies (3.42), observe that we
can write (3.40) in the alternative form

“(X):/Rf(Y)f(X*Y)dy:% 5 %dy

Since 1/ |y| is integrable near the origin and f is zero outside a compact set, we
can take first and second order derivatives under the integral sign to get

ey 0 = [ ) o (x-¥) dy. (3.43)

16 Recall that the support of a continuous function f is the closure of the set where f is
not zero.
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Since fi,4, € C(R®), formula (3.43) shows that also ug,q, is continuous and
therefore u € C? (R?).

It remains to prove (3.42). Since Axf (x —y) = Ay f (x —y), from (3.43), we
have

A = [ ) At (x=y)dy = [ B3 Af (x—y)dn

We want to integrate by parts using formula (1.13) but since @ has a singularity
at y = 0, we have first to isolate the origin, by choosing a small ball B, = B, (0)
and writing

Au(x) = / e der/ oo dy =147, (3.44)
B..(0) R\ B, (0)

We have, using spherical coordinates,

max |Af| 1

max |Af| ,
r
ar B,(0) |yl

I| <
Tl < ]

dy:maXIAfl/ pdp=
0

so that
I.—0 if r — 0.

Keeping in mind that f vanishes outside a compact set, we can integrate J, by
parts (twice), obtaining

1
J,.=— Vaf(xfa)ouadaf/ V& (y) Vyf(x—y) dy
4rr Jap, R3\ B, (0)
1
=—-— Vof (x—0) ve do— (x—0o)VP (o) vy do
arr Jop, OB,

since A® = 0 in R3\ B, (0). We have:

1

4rr

Vof (x—0) v do
0B,

<rmax|Vf| -0 asr—0.

On the other hand, V@ (y) = —y |y|73 and the outward pointing!” unit normal
on 0B, is v, = —a /1, so that

(x— o) VP (0) vy do=—

Xx—o)do — f(x asr — 0.
o, 7 fop ( ) (%)

Thus, J, — —f(x) as 7 — 0. Passing to the limit as » — 0 in (3.44) we get
Au(x) = —f(x). O

Remark 3.6. Theorem 3.9 actually holds under much less restrictive hypotheses on
f. For instance, it is enough that f € C* (R?) and |f (x)| < C |x|™*"%, e > 0.

17 With respect to R3\Br.
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Remark 8.7. An appropriate version of Theorem 3.9 holds in dimension n = 2,
with the Newtonian potential replaced by the logarithmic potential

w) = [ Blc-y) f @y =3 [ loglx -yl f)dy.  (349)

The logarithmic potential does not vanish at infinity; its asymptotic behavior is
(see Problem 3.11)

M 1
u(x) = ~5- log [x| + O <m> as [x| — 400 (3.46)
where
M= [ f(y)dy.
R2

Indeed, the logarithmic potential is the only solution of Au = —f in R? satisfying
(3.46).

3.4.3 A divergence-curl system. Helmholtz decomposition formula

Using the properties of the Newtonian potential we can solve the following two
problems, that appear in several applications e.g. to linear elasticity, fluid dynamics
or electrostatics.

(1) Reconstruction of a vector field in R from the knowledge of its curl and
divergence. Precisely, given a scalar f and a vector field w, we want to find a
vector field u such that )

{ divu =f in R3.

curl u = w

We assume that u has continuous second derivatives and vanishes at infinity, as it
is required in most applications.

(2) Decomposition of a vector field u €R? into the sum of a divergence free
vector field and a curl free vector field. Precisely, given u, we want to find ¢ and
a vector field w such that the following Helmholtz decomposition formula holds

u =V + curl w. (3.47)

Consider problem (1). First of all observe that, since div curl u =0, a necessary
condition for the existence of a solution is div w =0.

Let us check uniqueness. If u; and us are solutions sharing the same data f
and w, their difference w = u;— us vanishes at infinity and satisfies

divw =0 and curl w=20 in R3.
From curl w = 0 we infer the existence of a scalar function U such that

VU =w.
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From div w =0 we deduce
divVU = AU = 0.

Thus U is harmonic. Hence its derivatives, i.e. the components w; of w, are
bounded harmonic functions in R®. Liouville’s theorem implies that each w; is
constant and therefore identically zero since it vanishes at infinity. We conclude
that, under the stated assumptions, the solution of problem (1) is unique.

To find u, split it into u = v 4+ z and look for v and z such that

divz =0 curl z = w

divv=f curl v =0.

As before, from curl v = 0 we infer the existence of a scalar function ¢ such that
Ve = v, while div v =f implies Ay = f. We have seen that, under suitable
hypotheses on f, ¢ is given by the Newtonian potential of f, that is:

p(x) = 1/;1‘(3')653'

dm e [x =yl
and v =Vp. To find z, recall the identity

curl curl z =V(div z)—Az.

Since div z =0, we get
Az = —curl curl z =curl w

so that ) )
= — ———curl dy.
z (x) 47r/Rs |X7y|cur w(y)dy

Let us summarize the conclusions in the next theorem, also specifying the hypothe-
ses'® on f and w.

Theorem 3.10. Let f € C* (R?), w € C? (R?) such that div w =0 and, for |x|
large,
M M

|curlw (X)| < |X|T+E (5 > 0) .

Then, the unique solution vanishing at infinity of the system

{ div u :f in RB

curl u = w

is given by vector field

1

- m]c (y)dy. (3.48)

1
= ——curl dy —V
u (x) /RS 47T|X7y|cu1r w(y)dy

18 See Remark 3.6.
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Consider now problem (2). If u, div u and curl u satisfy the hypotheses of
theorem 3.10, we can write

1
= —— curl curl dy —V —— di dy.
u(x) /}R3 T y|cur curl u(y) dy r— ivu(y)dy
Since u is rapidly vanishing at infinity, we have!?
1 1
———curl curl u(y) dy = curl ——curl u(y)dy. (3.49)
s [x =yl R X =Yl

We conclude that
u=Vy+curl w

where

1
- | ——  di d
¢ (x) 4thiy|wu@)y

and

1
pu— 1 d .
wix) = [ monl u(y)dy

o An application to fluid dynamics. Consider the three dimensional flow of an
incompressible fluid of constant density p and viscosity u, subject to a conservative
external force? F = V£. If u = u(x,t) denotes the velocity field and p = p (x,t) is
the hydrostatic pressure, the laws of conservation of mass and linear momentum
give for u and p the celebrated Navier-Stokes equations:

divu=0 (3.50)

and

Du 1 1

We look for solution of (3.50), (3.51) subject to a given initial condition
u(x,0) = g (x) x €R3, (3.52)

where g is also divergence free:
div g =0.

19 In fact, if |g (x)| < ‘x‘%, one can show that

0 1 1 Og
— y dy:/ —— —dy.
327 Jus ey 1? VY = | vl s

20 Gravity, for instance.
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The quantity % is called the material derivative of u, given by the sum of u,,

the fluid acceleration due to the non-stationary character of the motion, and of
(u-V) u, the inertial acceleration due to fluid transport?.

In general, the system (3.50), (3.51) is extremely difficult to solve. In the case
of slow flow, for instance due to high viscosity, the inertial term becomes negligible,
compared for instance to vAu, and (3.51) simplifies to the linearized equation

1
It is possible to find an explicit formula for the solution of (3.50), (3.52), (3.53)
by writing everything in terms of w =curl u. In fact, taking the curl of (3.53) and
(3.52), we obtain, since curl(Vp + vAu+Vf) = vAw,

w; = vAw x€R3,t>0
w(x,0) =curl g (x) x €R3.

This is a global Cauchy problem for the heat equation. If g €C? (IR3) and curl g
is bounded, we have

1 ly|”
w(x,t) = W /}R3 exp (m curl g (x —y) dy. (3.54)

Moreover, for t > 0, we can take the divergence operator under the integral in
(3.54) and deduce that div w =0. Therefore, if curl g (x) vanishes rapidly at infin-
ity?2, we can recover u by solving the system

curl u =w, divu=0,

according to formula (3.48) with f = 0.
Finally to find the pressure, from (3.53) we have

Vp = —puy + pAu—-Vf. (3.55)

Since w; = vAw, the right hand side has zero curl; hence (3.55) can be solved and
determines p up to an additive constant (as it should be).

In conclusion: Let, f € C! (RB), g eC? (]R3), with div g = 0 and curl g rapidly
vanishing at infinity. There exist a unique u €C? (R®), with curl u vanishing at

infinity, and p €C* (R®) unique up to an additive constant, satisfying the system
(3.50), (3.52), (3.53).

2! The i—component of (v-V) v is given by 23:1 v g;’; . Let us compute £¥, for example,
for a plane fluid uniformly rotating with angular speed w. Then v (z,y) = —wyitwzj.
Since vy = 0, the motion is stationary and

Dv

D = (v-V)v= <—wy(%—|—wx%) (—wyitwzj) = —w? (—zityj)

which is centrifugal acceleration.
2 Jeurl g (x)| < M/ |x|*", e > 0, it is enough.
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3.5 The Green Function

3.5.1 An integral identity

Formula (3.40) gives a representation of the solution to Poisson’s equation in all
R3. In bounded domains, any representation formula has to take into account the
boundary values, as indicated in the following theorem.

Theorem 3.11. Let £2 C R™ be a smooth, bounded domain and u € C? (ﬁ)
Then, for every x €12,

u() == [ lx—y) duy)dy+
+/BQ¢(xfU)ayau(a)daf/a[?u(a)a,,a@(xfa)da

The last two terms in the right hand side of (3.56) are called single and double
layer potentials, respectively. We are going to examine these surface potentials
later. The first one is the Newtonian potential of —Auwu in 2.

(3.56)

Proof. We give it for n = 3. Fix x €2, and consider the fundamental solution

1
Plx-y)= 47y
xy

Txy = |X7Y|

as a function of y: we write @ (x — -).
We would like to apply Green’s identity (1.15)

/ (vAu — uAv)dx :/ (vVOpu —udyv)do (3.57)
2 BYe;

to u and @ (x — -). However, @ (x — -) has a singularity in x, so that it cannot be
inserted directly into (3.57). Let us isolate the singularity inside a ball B, (x), with
¢ small. In the domain §2. = 2\ B. (x), ¢ (x — -) is smooth and harmonic.

Thus, replacing {2 with (2., we can apply (3.57) to u and @ (x — -). Since

002, = 0N U OB, (x),
and Ay® (x —y) =0, we find:

/ LAudy:/ (La_uu 9 L)dg
0. Txy 02. \Txo vy Vs Txo

(3.58)
1 1
:/ ("')d0'+/ 1o da—/ u 9 — do.
00 0B.(x) Txo o 9B.(x) Vo Txo
We let now € — 0 in (3.58). We have:
1 1
/ —Audy - | —Audy ase— 0 (3.59)
2. Txo 0 Txo

since Au € C (ﬁ) and rg! is positive and integrable in (2.
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On 90B; (x), we have rxo = ¢ and |0pu| < M, since |Vu] is bounded; then
1

/ L ou

dB.(x) Txo ove
The most delicate term is
1

/ u i— do.

OB.(x) o Txo

On 9B (x), the outward pointing (with respect to (2.) unit normal at o is
vo=%_7%, so that

<d4reM — 0 ase —0. (3.60)

o 1 1 X—0X—0O 1
_— = _— l/o.: = —
W Tyo Y ro 3 £ €2
As a consequence,
o 1 1
/ U ——do=— u do — 4mu (x) (3.61)
9B.(x) o Txa € JaB. (x)

as € — 0, by the continuity of w.
Letting ¢ — 0 in (3.58), from (3.59), (3.60), (3.61) we obtain (3.56). OJ

3.5.2 The Green function

The function @ defined in (3.39) is the fundamental solution for the Laplace op-
erator A in all R” (n = 2,3). We can also define a fundamental solution for the
Laplace operator in any open set and in particular in any bounded domain 2 C R”,
representing the potential due to a unit charge placed at a point x € {2 and equal
to zero on 0f2.

This function, that we denote by G (x,y), is called the Green function in (2,
for the operator A; for fixed x €2, G satisfies

AyG (x,y) = —0x in £2

and
G(x,0) =0, o € 012

More explicitly, the Green’s function can be written in the form
G(va) = ¢(X7Y) - <P(X,Y)

where ¢, for fixed x €2, solves the Dirichlet problem

Ay =0 in 2 (3.62)
p(x,0)=P(x—0o) ondf. ’
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Two important properties of the Green function are the following (see Prob-
lem 3.14):
(a) Positivity: G (x,y) > 0 for every x,y € 2, with G (x,y) — -+oo when
x—y—0;
(b) Symmetry: G (x,y) = G (y,x).

The existence of the Green function for a particular domain depends on the
solvability of the Dirichlet problem (3.62). From Theorem 3.8, we know that this
is the case if {2 is a Lipschitz domain, for instance.

Even if we know that the Green function exists, explicit formulas are available
only for special domains. Sometimes a technique known as method of electrostatic
images works. In this method ¢ (x,-) is considered as the potential due to an
imaginary charge g placed at a suitable point x*, the image of x, in the complement
of 2. The charge ¢ and the point x* have to be chosen so that ¢ (x,-) on 012 is
equal to the potential created by the unit charge in x.

The simplest way to illustrate the method is to find the Green function for the
upper half-space, although this is an unbounded domain. Clearly, we require that
G vanishes at infinity.

o Green’s function for the upper half space in R3. Let Ri be the upper half
space :

R3 = {(z1,22,73) : 23 > 0}.
Fix x = (21, x2, x3) and observe that if we choose x*= (z1, 2, —x3) then, on y3 = 0
we have
X" —yl=x-yl.

Thus, if x €R3, x* belongs to the complement of R3 , the function
(x,y) =2 (x"-y) = 1
X X
vy Y= 4 |x* —y|

is harmonic in R? and ¢ (x,y) = & (x —y) on the plane y3 = 0. In conclusion,

1 1
drlx —y| dr|x* —y|

G(x,y) = (3.63)

is the Green function for the upper half space.

e Green function for sphere. Let 2 = Br = Br (0) C R3. To find the Green
function for Bp, set

QO(Xv Y) = #a
4 |x* —y|

x fixed in Bg, and try to determine x*, outside Bg, and g, so that

q - 1
Arfx* —y|  Arlx -yl

when |y| = R. The (3.64) gives

(3.64)

X~y = x -yl (3.65)
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or
x*[* - 2x" -y + R? = ¢*(|x* — 2x -y + R?).

Rearranging the terms we have
Ix*? 4+ R? — (R? + |x|°) =2y - (x* — ¢*x). (3.66)
Since the left hand side does not depend on y, it must be that x* = ¢?x and
¢* X" — ¢ (R* + [x)) + R* =0

from which ¢ = R/ |x|. This works for x # 0 and gives

1 1 R R?
Gx,y)=— [ — ], x*=—5x,x#0. 3.67
Co¥) = 2 (=31~ B =] cEO XA (36
Since
. —1 ( pa 2 2\ /2
"yl =[x~ (R = 2Ry +y X))
when x — 0 we have
oy LR
PV T X% —y|  4nR
and therefore we can define
1 1 1
GOo,y)=—|— ——=]|.
09 =% 51 %
R2

Fig. 3.6. The image x* of x in the construction of the Green’s function for the sphere

3.5.3 Green’s representation formula

From Theorem 3.11 we know that every smooth function u can be written as the
sum of a volume (Newtonian) potential with density —Au, a single layer potential
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of density J,u and a double layer potential of moment u. Suppose u solves the
Dirichlet problem

Au=f in 2
{ u=g¢g on 0f2. (3.68)
Then (3.56) gives, for x €42,
u() =~ [ Blx-y) 1) dy+
Q (3.69)

Jr/anfﬁ(xfo‘)8,,Uu(0')daf/699(0')8,,0¢(x7U)da.

This representation formula for u is not satisfactory, since it involves the data f
and g but also the normal derivative 0, _u, which is unknown. To get rid of 9, _u,
let G(x,y) = (x—y) — ¢(x,y) be the Green function in 2. Since ¢ (x,-) is
harmonic in 2, we can apply (3.57) to u and ¢ (x, -); we find

o:/gwx,y)f(y)dw

(3.70)
- / o (%,0) By, u (0 do + / 9(0) By, ¢ (x,0) do.
o on

Adding (3.69), (3.70) and recalling that ¢ (x,0) = @ (x — o) on 012, we obtain:

Theorem 3.12. Let {2 be a smooth domain and u be a smooth solution of (3.68).
Then:

u(x) = /Q (%) G (x,y) dy— /B 9(0)0,,C(x,0)do.  (3.70)

(o}

Thus the solution of the Dirichlet problem (3.68) can be written as the sum of
the two Green potentials in the right hand side of (3.71) and it is known as soon
as the Green function in (2 is known. In particular, if w is harmonic, then

u(x) = f/ 9(0) 0y, G (x,0)do. (3.72)
o8
Comparing with (3.37), we deduce that
—0,,G (x,0)do
represents the harmonic measure in §2. The function
P(x,0) = -0, G (x,0)

is called Poisson’s kernel. Since G (-,0) > 0 inside {2 and vanishes on {2, P is
nonnegative (actually positive).
On the other hand, the formula

u(x)z—/nﬂy)c:(x,y)dy
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gives the solution of the Poisson equation Au = f in {2, vanishing on 9f2. From
the positivity of G we have that:

f >0 in 2 implies u <0 in {2,
which is another form of the maximum principle.

e Poisson’s kernel and Poisson’s formula. From (3.67) we can compute Pois-
son’s kernel for the sphere By (0). We have, recalling that x*=R2 [x| > x, if x # 0,

[ 1 R ] X—y R x*—y
lkk—yl o Ixlxr -yl

Cx—yP o X -y

If o €dBg (0), from (3.65) we have |x* — 0| = R|x| " |x — o, therefore

1| x—-0o x* x*—o —o x|?
vyG(X’U)_E[mﬁb{o’P :47r|x—0'|3 -~ R?
Since on 0Bg (0) the exterior unit normal is vo= o /R, we have
R2—|x* 1

P(x,0)=-0,,G(x,0) = -V,G(x,0) Vs =

47TR |X — o'|3 '
As a consequence, we obtain Poisson’s formula
R? — |x|?
R Ll / &)Bda (3.73)
drk - Jopn(o) [x - o
for the unique solution of the Dirichlet problem Au = 0 in Br (0) and u = g on
0Br (0).

3.5.4 The Neumann function

We can find a representation formula for the solution of a Neumann problem as
well. Let u be a smooth solution of the problem
{ Au=f in 2

.74
Oyu=nh on 0f? (3.74)

where f and h have to satisfy the solvability condition

/B () do /g f (v)dy, (3.75)

keeping in mind that u is uniquely determined up to an additive constant. From

Theorem 3.11 we can write
u(x)=— [ ¢(x—y)f(y)dy+

Q (3.76)

+/ h(a)@(xfa)daf/ u(o)0y,P(x—0o)do.

o0 o0
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and this time we should get rid of the second integral, containing the unknown
data u on 02. Mimicking what we have done for the Dirichlet problem, we try to
find an analog of the Green function, that is a function N = N (x,y) given by

N(XaY) :¢(X7Y) 7#)(va‘)
where, for x fixed, 1 is a solution of
Ayp =0 in {2
O ¥ (x,0)=0,,P(x—0) ondf

in order to have d,_ N (x,0) = 0 on 0. But this Neumann problem has no
solution because the compatibility condition

O, P(x—0)do=0
o8
is not satisfied. In fact, letting u =1 in (3.56), we get
Oy, P (x—0o)do=—1. (3.77)
o8
Thus, taking into account (3.77), we require ¢ to satisfy

Ayp =0 in 2
) (3.78)
O Y (x,0)=0,,P(x—0)+ BT on 0f2.
In this way,
1
O, P(x—0 +—> do =0
fo (et g
and (3.78) is solvable. Note that, with this choice of ¢, we have
O N (x,0) = f@ on 0f2. (3.79)
Apply now (3.57) to u and ¥ (x, -); we find:
0= wixa),ule)der [ hio)o,u(@)do+ [ viv) 1) dy.
o9 o9 2

(3.80)
Adding (3.80) to (3.76) and using (3.79) we obtain:

Theorem 3.13. Let {2 be a smooth domain and u be a smooth solution of (3.74).
Then:

1
wl) muw)do—/mh(a)zv(x,a)da/Qf<y>N<x,y>dy.

Thus, the solution of the Neumann problem (3.74) can also be written as the
sum of two potentials, up to the additive constant ¢ = ﬁ /. 50 (o) do, the mean
value of u.

The function N is called Neumann’s function (also Green’s function for the
Neumann problem) and it is defined up to an additive constant.
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3.6 Uniqueness in Unbounded Domains

3.6.1 Exterior problems

Boundary value problems in unbounded domains occur in important applications,
for instance in the motion of fluids past an obstacle, capacity problems or scattering
of acoustic or electromagnetic waves.

As in the case of Poisson’s equation in all R™, a problem in an unbounded
domain requires suitable conditions at infinity to be well posed.

Consider for example the Dirichlet problem

(3.81)

Au=0 in |x|>1
u=0 on |x|=1

For every real number a,
u(x) =alog|x| and u(x)=a(l-1/]x]|)

are solutions to (3.81) in dimension two and three, respectively. Thus there is no
uniqueness.

To restore uniqueness, a typical requirement in two dimensions is that u be
bounded, while in three dimensions that w (x) has a limit, say ue, as x| — oo:
under these conditions, in both cases we select a unique solution.

Problem (3.81) is an exterior Dirichlet problem. Given a bounded domain (2,
we call exterior of {2 the set

2, =R™"\ Q.
Without loss of generality we will assume that 0 €2 and for simplicity, we will
consider only connected exterior sets, i.e. exterior domains. Note that 92, = 0{2.

As we have seen in several occasions, maximum principles are very useful to

prove uniqueness. In exterior three dimensional domains we have (for n = 2 see

Problem 3.16):

Theorem 3.14. Let 2. C R? be an exterior domain and u € C? (£2.) N C(£2.),
be harmonic in {2, and vanishing as |x| — oo. If u > 0 (resp. u < 0) on 0f2, then
u >0 (resp. u <0) in (2.

Proof. Let u > 0 on 9f2.. Fix € > 0 and choose ¢ so large that 2 C {|x| <r}
and u > —e on {|x| = r}, for every r > ry. In the bounded set

Rer =02 N{lx| <7}

we can apply Theorem 3.5 and we get v > —e¢ in this set. Since ¢ is arbitrary and
r may be taken as large as we like, we deduce that u > 0 in (2..

The argument for the case u < 0 on 9f2, is similar and we leave the details to
the reader.

An immediate consequence is the following uniqueness result in dimension n =

3 (for n = 2 see Problem 3.16):
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Theorem 3.15. (Exterior Dirichlet problem). Let £2. C R® be an exterior domain.
Then there exists at most one solutionu € C? (£2,)NC(£2.) of the Dirichlet problem

Au=f mn §2,
u=g on 012, (3.82)

U (X) = Uoo |X| = 00.

Proof. Apply Theorem 3.14 to the difference of two solutions. O

We point out another interesting consequence of Theorem 3.14 and Corollary
3.2: a harmonic function vanishing at infinity, for |x| large is controlled by the
fundamental solution.

Actually, more is true:

Corollary 3.4. Let u be harmonic in 2. C R® and u (x) — 0 as |x| — oo. There
exists ro such that, if |x| > 7o,

M M
|u (X)| < m; ’umj (X)’ < | |2a ’u’mjmk (X)’ < T3 (383)

where M depends on 1.

Proof. Choose ro such that |u(x)| < 1if |x|] > ro. Let w (x) = u(x)—ro/ x|
Then w is harmonic for |x| > rg, w(x) < 0 on |x| = ¢ and vanishes at infinity.
Then, by Theorem 3.14,

w(x) <0 in 2N {|x| > ro}. (3.84)

Setting v (x) = ro/ |x| —u(x), a similar argument gives v (x) > 0in 2.N{|x| > ro}.
This and (3.84) imply |u (x)| < 7o/ x| in 2. N {|x] > 70}.

The gradient bound follows from (3.31) and (3.83). In fact, choose m > 2 such
that (m — 1)rg < |x| < (m+1)ro. Then 0B(,—1)r, (x) C {|x] >0} and from
(3.31)

3

Uy, (X)| < ———— max
’ ]( )’ (mfl)ro OBmrg (%)

(P
But we know that maxpp,,, (x) |ul < 7o/ |x| and 7o > [x]/ (m + 1) so that we get

m+1 3rg %

(m=1) |x* = |x|*

|z, (%)] <

since (m + 1) < 2(m — 1).
Similarly we can prove
CTo

’umﬂk (X)’ <3
|x|
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The estimates (3.83) assure the validity of the Green identity

/ Vu - Vv dx :/ vOpu do (3.85)
2. 89,

for any pair u,v € C? (£2.) N C*(£2.), harmonic in {2, and vanishing at infinity. To
see this, apply the identity (3.85) in the bounded domain 2., = 2. N {|x| < r}.
Then let r — oo to get (3.85) in 2.

In turn, via the Green identity (3.85), we can prove an appropriate version of
Theorem 3.15 for the exterior problem

Au=f in (2,
u+ku=g ondf2, (k>0) (3.86)
U= Uoo as |x| — oo.

Observe that k& # 0 corresponds to the Robin problem while k = 0 corresponds to
the Neumann problem.

Theorem 3.16. (Exterior Neumann and Robin problems). Let 2. C R® be an
exterior domain. Then there exists at most one solution u € C? (£2.) N C*(£2.) of
problem (3.86).

Proof. Suppose u, v are solutions of (3.86) and let w = u—v. Then w is harmonic
0°, Opw+ kw =0 on 912, and w — 0 as |x| — oo.
Apply the identity (3.85) with u = v = w. Since d,w = —kw on 92, we have:

/ |Vw|? dx :/ wow do = —/ kw?do < 0.
2. 892, 892,

Thus Vw = 0 and w is constant, because (2. is connected. But w vanishes at
infinity so that w = 0. O

3.7 Surface Potentials

In this section we go back to examine the meaning and the main properties of the
surface potentials appearing in the identity (3.56). A remarkable consequence is
the possibility to convert a boundary value problem into a boundary integral
equation. This kind of formulation can be obtained for more general operators
and more general problems as soon as a fundamental solution is known. Thus it
constitutes a flexible method with important implications. In particular, it consti-
tutes the theoretical basis for the so called boundary element method, which may
offer several advantages from the point of view of the computational cost in numer-
ical approximations, due to a dimension reduction. Here we present the integral
formulations of the main boundary value problems and state some basic results.
The reader can find complete proofs and the integral formulation of more general
or different problems in the literature at the end of the book (e.g. Dautrait-Lions,
vol 3, 1985).
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3.7.1 The double and single layer potentials

The last integral in (3.56) is of the form

D (x;p) = /BQ u(e)0y, ®(x —o)do (3.87)

and it is called the double layer potential of p. In three dimensions it represents
the electrostatic potential generated by a dipole distribution?? of moment p on 942.

To get a clue of the main features of D (x;u), it is useful to look at the particular
case u (o) =1, that is

D(x;1) = o Oy, @ (x—0o)do. (3.88)

Inserting u = 1 into (3.56) we get
D(x;1)=—-1  for every x €2. (3.89)

On the other hand, if x €R™\{? is fixed, @ (x — ) is harmonic in 2 and can be
inserted into (3.57) with u = 1; the result is

D(x;1) =0 for every x €R™\ (2. (3.90)

What happens for x € 9127 First of all we have to check that D (x;1) is well defined
(i.e. finite) on Of2. Indeed the singularity of 0, & (x — o) becomes critical when
x € 9f2 since as o — x the order of infinity equals the topological dimension of
0{2. For instance, in the two dimensional case we have

1 1 (x—0) v

D(X§1):——W‘/Bnayalogb(foﬂdo':f% o ﬁdo’

The order of infinity of the integrand is one and the boundary 02 is a curve, a
one dimensional object. In the three dimensional case we have

1 0 1 1 (x—0o) v

2 do.

Dxl)=— | 2~ do=—
( ) 47 an 81/0 |X*O’| 47 a0 |X*O’|3

2 For every o € 012, let —q (o), ¢(o) two charges placed at the points o, o+hv,,
respectively. If h > 0 is very small, the pair of charges constitutes a dipole of azis vo.
The induced potential at x is given by

P (x— (o+hv)) — P (x — o)
5 .

u(x,0) = g (o) [ (x— (o+hw)) — B (x — 0)] = g (o) h [

Since h is very small, setting q () h = p (o), we can write, at first order of approxi-
mation,

up (X) = p(0) 0y, @ (x— o).
Integrating on 92 we obtain D (x;u).
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The order of infinity of the integrand is two and 042 is a bidimensional surface.
However, if we assume that {2 is a C? domain, then it can be proved that
D (x;1) is well defined on 0f2.
To compute the value of D (x;1) on 02 we first observe that formulas (3.89)
and (3.90) follow immediately from the geometric interpretation of the integrand in
D (x;1). Precisely, set r«o = |x — o| and, in dimension two, consider the quantity

dot = X Ve gy (T g

’rxa' ’rxa'
We have (see Fig. 3.7),

(o0 —x

Vg = COS
'rxa'
and therefore
do’' = mcla = cos do
'rxa'

is the projection of the length element do on the circle 9B, (x), up to an error
of lower order. Then
., do’
do* =

'rxa'

is the projection of do on 0B (x).

Integrating on 942, the contributions to do* sum up to 27 if x € 2 (case a)
of figure 3.8) and to 0 if x €R™\ (2, due to the sign compensations induced by the
orientation of v, (case c) of figure 3.8). Thus

do* — 2w if x €12
oo T 0 ifx €RA\D

Fig. 3.7. Geometrical interpretation of the integrand in D (x,1) (n = 2)
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which are equivalent to (3.89) and (3.90), since

1
D(xl)=—— do*.
27 an

The case b) in figure 3.8 corresponds to x € 9f2. It should be now intuitively clear
that the point x “ sees” a total angle of only 7 radiants and D (x;1) = —1/2.

The same kind of considerations hold in dimension three; this time, the quantity
(see Fig. 3.9)
% dg — (O'*X)'Va_do_

3 3
Txo Txo

dg*:7(xfo')ou

is the projection on 0B (x) (solid angle) of the surface element do. Integrating
over 942, the contributions to do* sum up to 47 if x €62 and to 0 if x €R3\ (2.
If x € 912, it “ sees” a total solid angle of measure 27. Since
D (x;1) L do*
x;l) = —— 0",
4 a0

we find again the values —1,0, —1/2 in the three cases, respectively.
e g
/5 b
7 D L (o
G T
a) 2w b) )0

Fig. 3.8. Values of [, do* for n =2

We gather the above results in the following Lemma.

Lemma 3.2 (Gauss). Let 2 C R™ be a bounded, C*-domain. Then

-1 xefn
1
D (x;1) = O, P(x—0)do =< —= x€dn
20 2
0 xeR"\f.

Thus, when p = 1, the double layer potential is constant outside 0f2 and has
a jump discontinuity across 0f2. Observe that if x €012,

1
li D(z;1) =D (x;1)+ =
Z—X, lzrgR"\Q ( ) ( ) 2
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Fig. 3.9. The solid angle do™, projected from do

and L
li D(z;1) =D (x;1) — -.
il o P @) =D x5l = 3
These formulas are the key for understanding the general properties of D (x;u),
that we state in the following theorem.

Theorem 3.17. Let 2 C R™ be a bounded, C? domain and p a continuous func-
tion on 2. Then, D (x;u) is harmonic in R™\0S2 and the following jump relations
hold for every x € 912 :

1
lim D (zp) =D (x5p) + S0 (x) (3.91)
z—x, zER"\ 2 2
and L
ol D (z:p) = D (x1) — 5p (%) (3.92)

Proof (Sketch). If x ¢ Of2 there is no problem in differentiating under the
integral sign and, for o fixed on 02, the function

O, ®(x—0)=VsP(x—0) Vs

is harmonic. Thus D (x;u) is harmonic in R™\942.

Consider (3.91). This is not an elementary formula and we cannot take the
limit under the integral sign, once more because of the critical singularity of
Op, P (x — o) when x € 912.

Let z €R™\ 2. From Gauss Lemma 3.2

w(x) Oy, P(z—0)do=0
o9
and we can write

D (z3p) = o Oy, ® (2 — o) (o) — p(x)]do. (3.93)
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Now, when o is near x, the smoothness of 02 and the continuity of p mitigate
the singularity of 0, ® (x — o) and allow to take the limit under the integral sign.
Thus

lim [ 8,8z 0) (o) ~p()do= | 8,8 (x—0)[u(e) ()] do.
27X Jon o9
Exploiting once more Gauss lemma, we have

= O, @ (x—0o)pu(o)do — p(x) Oy, P (x—0o)do
Yo, o9

1
=D (xu) + 5n(x).
The proof of (3.92) is similar. [J
The second integral in (3.56) is of the form

St = [ #x=0)v(o)do

and it is called the single layer potential of .

In three dimensions it represents the electrostatic potential generated by a
charge distribution of density 1 on 92. If 2 is a C2—domain and % is continuous
on 0f2, then S is continuous across 92 and

AS=0  inR™AR,

because there is no problem in differentiating under the integral sign.

Since the flux of an electrostatic potential undergoes a jump discontinuity
across a charged surface, we expect a jump discontinuity of the normal deriva-
tive of S across 0f2. Precisely

Theorem 3.18. Let {2 C R™ be a bounded, C?-domain and 1 a continuous func-
tion on 0f2. Then, S (x;)) is harmonic in R™\0f2, continuous across 0f2 and the
following jump relations hold for every x € 0f2 :

lim _9,,S8(zw) = O, P (x—0)y (o) do — 11/) (x) (3.94)
z—x, ZzER\ 2 o0 2
and
Cdim_0,8@0) = [ 0.0x—0)vlo)dr+ 30 (x). (3.95)

o8

3.7.2 The integral equations of potential theory

By means of the jump relations (3.92)-(3.95) of the double and single layer poten-
tials we can reduce the main boundary value problems of potential theory into inte-
gral equations of a special form. Let {2 C R” be a smooth domain and g € C (912).
We first show the reduction procedure for the interior Dirichlet problem

{Au—O in 2

3.96
u=g¢g on 0f2. ( )
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The starting point is once more the identity (3.56), which gives for the solution
u of (3.96) the representation

u(x) = /90¢(x0) Oy u(o)do— /Bng(a) 0y, P (x — o) do.

In subsection 3.5.3 we used the Green function to get rid of the single layer potential
containing the unknown 0, _u. Here we adopt a different strategy: we forget the
single layer potential and try to represent u in the form of a double layer potential,
by choosing an appropriate density. In other words, we seek a continuous function
w on 02, such that the solution u of (3.96) is given by

u(x) = /Bn,u(a) O, @ (x—0o)do =D (x;u). (3.97)

The function u given by (3.97) is harmonic in {2 so that we have only to check
the boundary condition

i, v = (0.

Letting x — z € 92 and taking into account the jump relation (3.91), we obtain
for p the integral equation

/ w(e)0y, P (z —0o)do — %u (z) =g (2) z € 012 (3.98)
o8

If 4 € C (012) solves (3.98), then (3.97) is a solution of (3.96) in C? (£2) N C (£2).
The following theorem holds.

Theorem 3.19. Let 2 C R™ be a bounded, C? domain and g a continuous func-
tion on 0f2. Then, the integral equation (3.98) has a unique solution y € C (912)
and the solution u € C?(£2) N C (£2) of the Dirichlet problem (3.96) can be rep-
resented as the double layer potential of p.

We consider now the interior Neumann problem

Au=0 in {2 (3.99)
Opu=g¢g ondf? ’
where g € C(0BR) satisfies the solvability condition
/ g do =0. (3.100)
OBrRr

This time we seek a continuous function ¥ on 02, such that the solution u of
(3.99) is given in the form

u(x) = Y(o)P(x —0o)do =8 (x,0). (3.101)
o8
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The function u given by (3.101) is harmonic in {2, so that we have only to check
the boundary condition

i, 0 = 9(0).

Letting x — z € 92 and taking into account the jump relation (3.95), we obtain
for v the integral equation

()0, (z — o) do + %1/) (z) =g (2) z € 012. (3.102)
o8

If ¢ € C (912) solves (3.102), then (3.101) is a solution of (3.99) in C2 (2)NC* (£2).
It turns out that the general solution of (3.102) has the form

Y =1+ Cotp, Co €R,

where 1) is a particular solution of (3.102) and 1, is a solution of the homogeneous
equation

Yo (0) 0y, P (z — o) do + 11/)0 (z) =0 z € 012 (3.103)
092 2

As expected, we have infinitely many solutions to the Neumann problem. Observe
that

s<x,wo>—/mwo (0)®(x - 0)do

is harmonic in {2 with vanishing normal derivative on 02, because of (3.95) and
(3.103). Consequently, S (x,,) is constant and the following theorem holds.

Theorem 3.20. Let 2 C R™ be a bounded, C?-domain and g a continuous func-
tion on OS2 satistying (3.100). Then, the Neumann problem (8.99) has infinitely
many solutions u € C? (£2) N C* (2) of the form

u(x) =8 (x) +C,
where v is a particular solution of (3.102) and C is an arbitrary constant.

Another advantage of the method is that, in principle, exterior problems can
be treated as the interior problems, with the same level of difficulty. It is enough
to use the exterior jump conditions (3.91), (3.94) and proceed in the same way
(see Problem 3.16).

As an example of an elementary application of the method we solve the interior
Neumann problem for the circle.

e The Neumann problem for the circle. Let Br = Bg (0) C R? and consider
the Neumann problem
{ Au=0 in Bg

Oyu=g¢g ondBg
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where g € C(0BpR) satisfies the solvability condition (3.100). We know that w is
unique up to an additive constant. We want to express the solution as a single
layer potential:

u(x) = 1 (o)log|x — o] do. (3.104)
2w OBr

The Neumann condition d,u = g on 0Bg translates into the following integral
equation for the density v:

L 229V (o)do+ 2p (@) =g(z)  (z€0Bp).  (3.105)
T Jopn |z — o] 2

On 0Bg we have
v.=z/R and (z—0) z=R*-z-0

and
|z70'|2:2(R27sz)
so that (3.105) becomes

7% 8Br () do + %1/’ (z) = g(z) (z € OBR). (3.106)

The solutions of the homogeneous equation (g = 0) are constant functions 9 (z) =
C (why?). A particular solution ¢ with

/BBRwa)da—o

W (2) =29 (2).
Thus, the general solution of (3.106) is

is given by

Y (z)=2g(z)+C CeR
and up to an additive constant, the solution of the Neumann problem is given by

u(x):fl/ g(o)log|x — o|do.
OBrRr

s

Remark 3.8. The integral equations (3.98) and (4.114) are of the form

K (5,0) plo)do + () = 9 () (3.107)
on
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and are called Fredholm integral equations of the first kind. Their solution is based
on the following so called Fredholm alternative: either equation (3.107) has
exactly one solution for every g € C(952), or the homogeneous equation

1
K (2,0) ¢(c)do £ = () = 0
00 2
has a finite number ¢, ..., ¢y of non trivial, linearly independent solutions.

In this last case equation (3.107) is not always solvable and we have:

(a) the adjoint homogeneous equation
* 1 *
K (0,2) ¢"(0)do + 2" (2) =0
092 2

has N non trivial linearly independent solutions ¢7, ..., ¢n;

(b) equation (3.107) has a solution if and only if g satisfies the following N
compatibility conditions:

¢;(a)g(o)do =0, j=1,...,N (3.108)
o9

(c) if g satisfies (3.108), the general solution of (3.107) is given by

p=p+Ci¢, +..Cnox
where p is a particular solution of equation (3.107) and C4, ..., Cx are arbitrary
real constants.

The analogy with the solution of a system of linear algebraic equations should
be evident. We will come back to Fredholm’s alternative in Chapter 6.

Problems
3.1. Show that if w is harmonic in a domain {2, also the derivatives of u of any
order are harmonic in (2.

3.2. We say that a function u € C%(£2), 2 C R" is subharmonic (resp. super-
harmonic) in 2 if Au>0 (Au <0) in £2. Show that:

a) If u is subharmonic, then, for every Br (x) CC 2,

and
1

< —— u(y)dy.
Wanil ~/BBR(x) ( )

If w is superharmonic, the reverse inequalities hold.

u (%)
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b) If uw € C (£2) is subharmonic, (superharmonic), the maximum (minimum)
of u is attained on 0f2.

2 is subharmonic.

d) Let u be subharmonic in 2 and F' : R — R, smooth. Under which conditions
on F' is F' o u subharmonic?

3.3. Let £2 C R? be a bounded domain and v € C? (2) N C* (£2) be a solution
of (torsion problem)

¢) If w is harmonic in {2 then u

Vgg + Uyy = —2 in 2
v=0 ondf2.
Show that u = |Vo|® attains its maximum on 42.
3.4. Let Bpr be the unit circle centered at (0,0). Use the method of separation
of variables to solve the problem

Au=f in Bgr
u=1 on 0BpR.

Find an explicit formula when f (z,y) = .
[Hint: Use polar coordinates; expand f = f(r,-) in sine Fourier series in [0, 27]
and derive a set of ordinary differential equations for the Fourier coeflicients of
u (r, )]

3.5. Let Bis = {(r,0) € R*;1 <r < 2}. Examine the solvability of the Neu-
mann problem

Au= -1 in BLQ
U, = cosf onr=1 (AeR)
Uy = A(cos0)?  onr=2

and write an explicit formula for the solution, when it exists.

3.6 (Schwarz’s reflection principle). Let

Bf ={(z,y) e R*: 2 +y* <1,y >0}

and u € C? (B) N C(By), harmonic By, u (z,0) = 0. Show that the function
U (2.y) = u(z,y)  y=0
’ —u(z,—y) y<O0

obtained from u by odd reflection with respect to y, is harmonic in all B;.
[Hint: Let v be the solution of Av =0 in By, v = U on dB;. Define

w(z,y) =v(z,y) +v(z, -y
and show that w =0 ...].
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Fig. 3.10. Interior circle condition at xg

3.7. State and prove the Schwarz reflection principle in dimension three.

3.8. Let u be harmonic in R3 such that
/ lu (x)|* dx < co.
RS

Show that u = 0.
[Hint. Write the mean formula in a ball Bg (0) for u. Use the Schwarz inequality
and let R — +00].

3.9. Let u be harmonic in R™ and M an orthogonal matrix of order n. Using
the mean value property, show that v (x) = u (Mx) is harmonic in R™.

3.10. (Hopf’s mazimum principle). Let 2 be a domain in R? and u € C1(12),
harmonic and positive in {2. Assume that u (x¢) = 0 at a point xo€ 92 and that
at xo the following interior circle condition holds (see Fig. 3.10): there exists a
circle Cr (p) C 2 such that

Cr(p)NON2 ={xo}.

(a) Show that the exterior normal derivative of u at x¢ is (strictly) negative:
Uy (Xo) < 0.
(b) Generalize to any number of dimensions.

[Hint. (a) Use the maximum principle to compare v with the function

w(x) = In|R| —In|x — p| min
InR— IH(R/Q) 0CRry2(P)

u

in the ring
A =Cr(P)\Cry2(P)-

Then, compare the normal derivatives at xg).
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3.11. Let f € C? (R?) with compact support K and

1
u() = —5- [ Tolx—y| (v)dy.

Show that M
u(x) = ——loglx| +O(x|™"),  as|x| = +oo
where
M= [ f(y)dy.
R2
[Hint: Write

log[x —y| =log (Jx —y|/[x]) +log x|
and show that, if y €K,

log (|x —y|/ x| < C/ [x]].
3.12. Prove the representation formula (3.56) in dimension two.

3.13. Compute the Green function for the circle of radius R.

[Answer:
1 x|\ .
G (x,y) = —o—[logx —y| —log(—" [x"~¥l)],
T R

where x* = R%x |x|°, x # 0].

3.14. Let 2 C R™ be a bounded smooth domain and G be the Green function
in (2. Prove that, for every x,y €2, x £ y:

(a) G (x,y) > 0;

(b) G(x,y) =G (y,x).
[Hint. (a) Let B, (x) C £2 and let w be the harmonic function in £\B, (x) such
that w = 0 on 942 and w = 1 on dB, (x). Show that, for every r small enough,

G (%) >w()

in 2\ B, (x).
(b) For fixed x €12, define w;y (y) = G (x,y) and wz(y) = G (y,x). Apply
Green’s identity (3.57) in 2\B, (x) to wy and ws. Let 7 — 0].

3.15. Compute the Green function for the half plane R2 = {(z,y);y > 0} and
(formally) derive the Poisson formula

Ly [ w0
wwy) =2 [

for a bounded harmonic function in Ri.
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3.16. Prove that the exterior Dirichlet problem in the plane has a unique
bounded solution u € C? (£2.) N C (£2.), through the following steps. Let w be
the difference of two solutions. Then w is harmonic 2., vanishes on 92, and is
bounded, say |w| < M.

1) Assume that the 0 € £2. Let B, (0) and Bg (0) such that
B, (0) C 2 C Br(0)

and define
(x) = In |x| — In]a|
unr - InR—1na °

Use the maximum principle to conclude that w < ug, in the ring
Bar = {x €R*a < |x| < R}.
2) Let R — oo and deduce that w < 0 in (2.
3) Proceed similarly to show that w > 0 in (2.

3.17. Find the Poisson formula for the circle Bg, by representing the solution
of Au=0in Bgr, u =g on dBpg, as a double layer potential.

3.18. Consider the exterior Neumann-Robin problem in R?

Au=0 in {2,
u+ku=g ondf, (k>0) (3.109)
u—0 as |x| — oo.

(a) Show that the condition

/ gdo =0
o8

is necessary for the solvability of (3.109) if k£ = 0.

(b) Represent the solution as a single layer potential and derive the integral
equations for the unknown density.
[Hint. (a) Show that, for R large,

/ g do = / Oyu do.
o0 {Ix|=R}

Then let R — oo and use Corollary 3.2].

3.19. Solve (formally) the Neumann problem in the half space R?, using a
single layer potential.

3.20. Let B = B (0) C R% To complete the proof of Theorem 3.6 we must
show that, if g € C'(0B) and w is given by formula (3.21) with R =1 and p = 0,
then

limu(x) =g(€)  for every & € OB.

x—&
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Fill in the details in the following steps and conclude the proof.

1. First show that:
1-—|x|? 1
] / 5 do=1
27'(' 5B |X — 0-|
and that therefore

wi) = g() = ok [ HD=8 g,

2 |x — o|

2. For § > 0, write

g6 1|x|2/ . +1|x|2/ d

u -9 [ S S coodo coodo
21 JoBn{|o—g|<o} 21 JoBn{|o—¢|>6}
=1+11.

Fix € > 0, and use the continuity of g to show that, if § is small enough, then
1] <e.
3. Show that, if |x — £| < d/2 and | — £| > 4, then |x — o| > §/2 and therefore
lim IT = 0.

x—&

3.21. Counsider the equation
uw=Au+ku=0 in R3

called Helmoltz or reduced wave equation.

(a) Show that the radial solutions u = w (r), r = |x|, satisfying the outgoing
Sommerfeld condition

1
ur+iku—0<—2> as r — oo,
T

are of the form
e*ikr

p(r;k)=c ceC.

(b) For f smooth and compactly supported in R? define the potential

ekl
_CO/ Iy |X*Y|

Select the constant ¢y such that

[Answer (b): co = (47) ']
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Scalar Conservation Laws and First Order
Equations

Introduction — Linear Transport Equation — Traffic Dynamics — Integral (or Weak) Solu-
tions — The Method of Characteristics For Quasilinear Equations — General First Order
Equations

4.1 Introduction

In the first part of this chapter we consider equations of the form
ur +q(u), =0, zeR, t>0. (4.1)

In general, u = u (x,t) represents the density or the concentration of a physical
quantity Q and q (u) is its flur function'. Equation (4.1) constitutes a link between
density and flux and expresses a (scalar) conservation law for the following
reason. If we consider a control interval [z1, z2], the integral

@
/ u(z,t)de
@1

gives the amount of () between x; and x5 at time t. A conservation law states
that, without sources or sinks, the rate of change of @ in the interior of [z1, z2)
is determined by the net flux through the end points of the interval. If the flux is
modelled by a function ¢ = ¢ (u), the law translates into the equation

d [*2

dat . u(x,t)dac: 7q(u(l‘2,t))+q(u($1,t)), (42)

where we assume that ¢ > 0 (¢ < 0) for a flux along the positive (negative)
direction of the z axes. If u and ¢ are smooth functions, equation (4.2) can be
rewritten in the form

/ " ur (1) + g (u ()] de = 0

1

which implies (4.1), due to the arbitrariness of the interval [z, z2].

! The dimensions of ¢ are [mass] x [time] ™ .

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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At this point we have to decide which type of flux function we are dealing with,
or, in other words, we have to establish a constitutive relation for q.
In the next section we go back to the model of pollution in a channel, considered
in section 2.5.3, neglecting the diffusion and choosing for ¢ a linear function of w,
namely:
q (u) = vu,

where v is constant. The result is a pure transport model, in which the vector vi
is the advection?® speed. In the sequel, to introduce and motivate some important
concepts and results, we shall use a nonlinear model from traffic dynamics, with
speed v depending on u.

The conservation law (4.1) occurs, for instance, in 1—dimensional fluid dynam-
ics where it often describes the formation and propagation of the so called shock
waves. Along a shock curve a solution undergoes a jump discontinuity and an im-
portant question is how to reinterpret the differential equation (4.1) in order to
admit discontinuous solutions.

A typical problem associated with equation (4.1) is the initial value problem:

{utJrq(u)m—O
)

w(@,0) = g (e (4.3)

where x € R. Sometimes x varies in a half-line or in a finite interval; in these cases
some other conditions have to be added to obtain a well posed problem.

4.2 Linear Transport Equation
4.2.1 Pollution in a channel

We go back to the simple model for the evolution of a pollutant in a narrow channel,
considered in section 2.5.3. When diffusion and transport are both relevant we have
derived the equation

¢t = Dcyy — veg,

where c¢ is the concentration of the pollutant and vi is the stream speed (v > 0,
constant). We want to discuss here the case of the pure transport equation

ct+veg =0 (4.4)
i.e. when D = 0. Introducing the vector
v =vi+]j
equation (4.4) can be written in the form
veg + ¢ = Ve v =0,

2 Advection is usually synonymous of linear convection.
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pointing out the orthogonality of Vc and v. But Vc is orthogonal to the level lines
of ¢, along which c is constant. Therefore the level lines of ¢ are the straight lines
parallel to v, of equation

r = vt + xp.

These straight lines are called characteristics. Let us compute ¢ along the char-
acteristic x = vt + zg letting

w (t) = c(zo + vit,t).
Since?
w (t) = VCy (‘TO + Ut, t) +c (‘TO + vt? t)v
equation (4.4) becomes the ordinary differential equation w (t) = 0 which implies
that c is constant along the characteristic.

We want to determine the evolution of the concentration ¢, by knowing its
initial profile

c(z,0)=g (). (4.5)
A
8 (%.1)
xX=Xx,+vt
u(xra'o) x

Fig. 4.1. Characteristic line for the linear transport problem

The method to compute the solution at a point (Z,t), t > 0, is very simple.
Let z = vt + 2o be the equation of the characteristic passing through (z, ).

Go back in time along this characteristic from (Z,t) until the point (zg,0), of
intersection with the x— axes (see Fig. 4.1).

Since c is constant along the characteristic and ¢ (zg,0) = g (xo), it must be

c(z,1) = g(x0) = g(z —vt).

Thus, if g € C! (R), the solution of the initial value problem (4.4), (4.5) is given
by
c(z,t) =g(x—vt). (4.6)
The solution (4.6) represents a travelling wave, moving with speed v in the
positive z—direction. In figure 4.2, an initial profile g (z) = sin(7z)x(g 1) (2) is
transported in the plane z,t along the straight-lines x — ¢ = constant, i.e. with
speed v = 1.

3 The dot denotes derivative with respect to time.
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Fig. 4.2. Travelling wave solution of the linear transport equation

4.2.2 Distributed source

The equation
et +vey = f(x,t), (4.7)
with the initial condition
C(I’O) :g(x)’ (48)
describes the effect of an external distributed source along the channel. The func-
tion f represents the intensity of the source, measured in concentration per unit
time.

Again, to compute the value of the solution u at a point (Z,?) is not difficult.
Let = zg + vt be the characteristic passing through (Z,?) and compute u along
this characteristic, setting w (t) = ¢ (z¢ + vt, t). From (4.7), w satisfies the ordinary
differential equation

w (t) = VCy (IO + Ut, t) + ct(‘TO + vt’ t) = f (IO + vt’ t)

with the initial condition
w (0) = g (zo) -
Thus

w(t) = g (xo) Jr/o f(zo + vs,s) ds.

Letting ¢ = ¢ and recalling that zg = T — vt, we get

¢
c@D=w®=g@—D)+ | [@—oi-s).5)ds (4.9)

0
Since (z,t) is arbitrary, if g and f are reasonably smooth functions, (4.9) is our

solution.

Proposition 4.1. Let g € C'(R) and f, f» € C (R x Ry). The solution of the
initial value problem

et +veg = f(x,t) zeR, t>0
c(z,0) =g (x) zeR
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is given by the formula

c(x,t)-g(xvt)+/) fxz—v(t—2s),s)ds. (4.10)

Remark 4.1. Formula (4.10) can be derived using the Duhamel method, as in sec-
tion 2.2.8 (see Problem 4.1.)

4.2.3 Decay and localized source
Suppose that, due to biological decomposition, the pollutant decays at the rate
r(z,t) = —yc(x,t) v > 0.

Without external sources and diffusion, the mathematical model is

ct + veg = —c,
with the initial condition
c(z,0)=g(z).
Setting
w(z,t) =c(z,t)ex?, (4.11)
we have

Uy = (cm + zc) ev® and wu; = cev®
v
and therefore the equation for u is
U + v, =0

with the initial condition
u(z,0) = g (z)e®.
From Proposition 4.1, we get

u(z,t) =gz —vt)es@
and from (4.11)
c(x,t)=g(x —vt)e "

which is a damped travelling wave.

We now examine the effect of a source of pollutant placed at a certain point
of the channel, e.g. at * = 0. Typically, one can think of waste material from
industrial machineries. Before the machines start working, for instance before time
t = 0, we assume that the channel is clean. We want to determine the pollutant
concentration, supposing that at x = 0 it is kept at a constant level g8 > 0, for
t>0.
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To model this source we introduce the Heaviside function

1 t>0
H(t)_{o t <0,

with the boundary condition

c(0,t) = BH (1) (4.12)
and the initial condition
¢(z,0)=0 for z > 0. (4.13)
As before, let u (z,t) = ¢ (z,t) ev*, which is a solution of u; + vu, = 0. Then:
w(z,0) = c(z,0)ev® =0 x>0
u(0,t) = c(0,t) = BH ().
Since u is constant along the characteristics it must be of the form
u(z,t) = ug (x — vt) (4.14)

where ugis to be determined from the boundary condition (4.12) and the initial
condition (4.13).

To compute u for z < vt, observe that a characteristic leaving the t—axis from
a point (0,t) carries the data S (t). Therefore, we must have

up (—vt) = BH(2).

Letting s = —vt we get
S
ug (8) = BH (f—)

v
and from (4.14),

x
u(z,t) = 0H (t— —) .
v
This formula gives the solution also in the sector
x>vt, t>0,

since the characteristics leaving the x—axis carry zero data and hence we deduce
u = ¢ = 0 there. This means that the pollutant has not yet reached the point z at
time t, if z > ot.

Finally, recalling (4.11), we find

c(z,t) =PH (t - %) e V2,

Observe that in (0, 0) there is a jump discontinuity which is transported along the
characteristic x = vt. Figure 4.3 shows the solution for 3 =3, v = 0.7, v = 2.
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Fig. 4.3. Propagation of a discontinuity

4.2.4 Inflow and outflow characteristics. A stability estimate

The domain in the localized source problem is the quadrant z > 0,¢t > 0. To
uniquely determine the solution we have used the initial data on the z—axis, z > 0,
and the boundary data on the t—axis, ¢ > 0. The problem is therefore well posed.
This is due to the fact that, since v > 0, when time increases, all the characteristics
carry the information (the data) towards the interior of the quadrant > 0,¢ > 0.
In other words the characteristics are inflow characteristics.

More generally, consider the equation

us + au, = f (z,t)

in the domain z > 0, t > 0, where a is a constant (a # 0). The characteristics are
the lines

x — at = constant

as shown in figure 4.4. If @ > 0, we are in the case of the pollutant model: all the
characteristics are inflow and the data must be assigned on both semi-axes.

If a < 0, the characteristics leaving the x— axis are inflow, while those leaving
the t— axis are outflow. In this case the initial data alone are sufficient to uniquely
determine the solution, while no data has to be assigned on the semi-axis
z=0,%t>0.

Coherently, a problem in the half-strip 0 < = < R, t > 0, besides the initial
data, requires a data assignment on the inflow boundary, namely (Fig. 4.4):

u (0,t) = ho (¢) ifa>0
u(R,t) = hg (t) ifa <0.
The resulting initial-boundary value problem is well posed, since the solution is

uniquely determined at every point in the strip by its values along the characteris-
tics. Moreover, a stability estimate can be proved as follows. Consider, for instance,
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Fy r

t 1

7 20

a<0

\\\ T,
T
Fig. 4.4. The arrows indicate where the data should be assigned

the case a > 0 and the problem*

Uy + au, =0 O<z<R,t>0
u(0,t) = h(t) t>0 (4.15)
u(z,0) =g () 0<z<R.

Multiply the differential equation by w and write

1d

U + aUU, = §EUQ +

ad ,
Integrating in = over (0, R) we get:
d R
pn v’ (z,t)dz + a [u® (R, t) — v’ (0,t)] = 0.
0

Now use the data u (0,t) = h () and the positivity of a to obtain

d R

a u? (z,t)dz < ah®(t).

Integrating in ¢ we have, using the initial condition u (z,0) = g (z),

/ORu2 (x,t)de/0R92 (I)d$+a/0th2 (s)ds. (4.16)

Now, let u; and wus be solutions of problem (4.15) with initial data g1, go and
boundary data hy, he on x = 0. Then, by linearity, w = u; — us is a solution

4 For the case us + aug = f # 0, see Problem 4.2.
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of problem (4.15) with initial data g;— g2 and boundary data hy— hy on z = 0.
Applying the inequality (4.16) to w we have

R R t
| s )= @) < [ (@) = g (P [ (5) = o o),

Thus, a least-squares approximation of the data controls a least-squares approxi-
mation of the corresponding solutions. In this sense, the solution of problem (4.15)
depends continuously on the initial data and on the boundary data on x = 0. We
point out that the values of u on x = R do not appear in (4.16).

4.3 Traffic Dynamics

4.3.1 A macroscopic model

From far away, an intense traffic on a highway can be considered as a fluid flow
and described by means of macroscopic variables such as the density of cars® p,
their average speed v and their fluz® q. The three (more or less regular) functions
p, u and ¢ are linked by the simple convection relation

q = vp.

To construct a model for the evolution of p we assume the following hypotheses.

1. There is only one lane and overtaking is not allowed. This is realistic for
instance for traffic in a tunnel (see Problem 4.7). Multi-lanes models with overtak-
ing are beyond the scope of this introduction. However the model we will present
is often in agreement with observations also in this case.

2. No car “sources” or “sinks”. We consider a road section without exit/entrance
gates.

3. The average speed is not constant and depends on the density alone, that is

v="0(p).

This rather controversial assumption means that at a certain density the speed is
uniquely determined and that a density change causes an immediate speed varia-

tion. Clearly
dv
v (p)=—<0
(p) =7 5

since we expect the speed to decrease as the density increases.

As in Section 4.1, from hypotheses 2 and 3 we derive the conservation law:

petalp)e =0 (4.17)

® Number of cars per unit length.
6 Cars per unit time.
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where
a(p) = v (p) p.
We need a constitutive relation for v = v (p). When p is small, it is reasonable
to assume that the average speed v is more or less equal to the maximal velocity
Um, given by the speed limit. When p increases, traffic slows down and stops at the

maximum density p,, (bumper-to-bumper traffic). We adopt the simplest model
consistent with the above considerations’, namely

v@»winﬂ,

q(p) = vmp <1 - L) - (4.18)

so that

Since

2
Py + U <1 - —p>pm =0. (4.19)

According to the terminology in Section 1.1, this is a quasilinear equation. We

also point out that
20,

d (o) = —=2 <0
Pm

so that ¢ is strictly concave. We couple the equation (4.19) with the initial condition

p(z,0) =g (z). (4.20)

4.3.2 The method of characteristics

We want to solve the initial value problem (4.19), (4.20). To compute the density p
at a point (z,t) we follow the idea we used in the linear transport case: to connect
the point (x,t) with a point (xg,0) on the x—axis, through a curve along which p
is constant (Fig. 4.5).

Clearly, if we manage to find such a curve, that we call characteristic based
at (z,0), the value of p at (x,t) is given by p (z9,0) = g (x0). Moreover, if this
procedure can be repeated for every point (z,t), x € R, ¢ > 0, then we can
compute p at every point and the problem is completely solved. This is the method
of characteristics.

7 And in good agreement with experimental data.
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A
{ ;
J():,I)

-—
£ = constant

| g .

(x,,0) X

Fig. 4.5. Characteristic curve

Adopting a slightly different point of view, we can implement the above idea
as follows: assume that = x (t) is the equation of the characteristic based at the
point (zg, 0); along z = z (t) we observe always the same initial density g (zo) . In
other words

p(z(t),t) = g (o) (4.21)
for every t > 0. If we differentiate identity (4.21), we get

L@, 0= @(0), 02 ) +p@@),0=0 (>0,  (422)

On the other hand, (4.19) yields

pi (x (t) 1) + ¢ (g (x0)) p (2 (t),1) =0

so that, subtracting (4.23) from (4.22), we obtain

Py ((£),1) [ () — ¢’ (9 (z0))] = 0. (4.23)

Assuming p,, (z (t),t) # 0, we deduce

Since z (0) = xo we find
z (t) = ¢ (9 (z0)) t + zo. (4.24)

Thus, the characteristics are straight lines with slope ¢’ (g (z¢)). Different values
of xg give, in general, different values of the slope.

We can now derive a formula for p. To compute p (z,t), t > 0, go back in time
along the characteristic through (z,t) until its base point (xg,0). Then p(z,t) =
g (z0). From (4.24) we have, since z (t) = z,

zo =z —q (g(x0))t

and finally
p(z,t)=g(x—q (g9(x0))t). (4.25)
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¥=q'(2)+x,

»
L

(_\‘“‘0) X

Fig. 4.6. Characteristic straight line (go = g (z0))

Formula (4.25) represents a travelling wave propagating with speed ¢’ (g (o))
along the positive z—direction.

We emphasize that ¢’ (g (o)) is the local wave speed and it must not be confused
with the traffic velocity. In fact, in general,

dg d d
dg _dlpv) _ L,
dp dp dp

since p > 0 and j—z <0.

The different nature of the two speeds becomes more evident if we observe
that the wave speed may be negative as well. This means that, while the traffic
advances along the positive z—direction, the disturbance given by the travelling
wave may propagate in the opposite direction. Indeed, in our model (4.18), Z—g <0
when p > £z

Formula (4.25) seems to be rather satisfactory, since, apparently, it gives the
solution of the initial value problem (4.19), (4.20) at every point. Actually, a more
accurate analysis shows that, even if the initial data g are smooth, the solution
may develop a singularity in finite time (e.g. a jump discontinuity). When this
occurs, the method of characteristics does not work anymore and formula (4.25) is
not effective. A typical case is described in figure 4.7: two characteristics based at
different points (z1,0) e (x2,0) intersect at the point (x,t) and the value u (z,t)
is not uniquely determined as soon as g (1) # g (z2).

P u(x,t)="2

Jx0)
u=g(x,)

e
(-"1 «0) (-"2 ‘0) 2

Fig. 4.7. Intersection of characteristics



168 4 Scalar Conservation Laws and First Order Equations

In this case we have to weaken the concept of solution and the computation
technique. We will come back on these questions later. For the moment, we analyze
the method of characteristics in some particularly significant cases.

4.3.3 The green light problem

Suppose that bumper-to-bumper traffic is standing at a red light, placed at x = 0,
while the road ahead is empty. Accordingly, the initial density profile is

(z) = P, forx <0
=Y 0 forz>o.

At time ¢ = 0 the traffic light turns green and we want to describe the car flow
evolution for ¢t > 0. At the beginning, only the cars nearer to the light start moving
while most remain standing.

Since ¢’ (p) = vim ( — i’; ), the local wave speed is given by
' ) —um for o <0
¢ (9(z0)) = { U for g >0
and the characteristics are the straight lines
T = —vnt+ xo if zg <0
T = vyt + T if zg > 0.

The lines x = vt and x = —v,,t partition the upper half-plane in the three regions
R, S and T, shown in figure 4.8.

1 A

=
!
I
-2
l--..]

XxX=-v,1 X =V, X

m

Fig. 4.8. Characteristics for the green light problem

Inside R we have p (z,t) = p,,, while inside T' we have p (z,t) = 0. Consider
the points on the horizontal line ¢t = . At the points (:v, f) € T the density is zero:
the traffic has not yet arrived in x at time ¢ = ¢. The front car is located at the
point

T = vmf

which moves at the maximum speed, since ahead the road is empty.
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The cars placed at the points (:c,f) € R are still standing. The first car that
starts moving at time ¢ = ¢ is at the point

T = —Upt.

In particular, it follows that the green light signal propagates back through the
traffic at the speed v, .

What is the value of the density inside the sector S? No characteristic extends
into S due to the discontinuity of the initial data at the origin, and the method as
it stands does not give any information on the value of p inside S.

A strategy that may give a reasonable answer is the following:

a) approximate the initial data by a continuous function g., which converges
to g as € — 0 at every point x, except 0;

b) construct the solution p, of the e—problem by the method of characteristics;

c) let ¢ — 0 and check that the limit of p, is a solution of the original problem.

Clearly we run the risk of constructing many solutions, each one depending on
the way we regularize the initial data, but for the moment we are satisfied if we
construct at least one solution.

a) Let us choose as g. the function (Fig. 4.9)

Prm, r<0
g: (@) ={ pn(1-2)  O<w<e
0 T > €.

When € — 0, g. (z) — g () for every z # 0.

gf = g“

0 xX=€

Fig. 4.9. Smoothing of the initial data in the green light problem

b) The characteristics for the e—problem are:
T = —vnt+ xo if zg <0
x:fvm(lf2%)t+x0 f0<zp<e
T = vyt + xo ifzg >e¢

since, for 0 < zg < ¢,

¢ (9 (20)) = v (1 - 29—(9”0)) — o (1-272).

Prm €
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The characteristics in the region —v,t < =z < vt + € form a rarefaction fan
(Fig. 4.10).

x=-v.t x=v t+€

pr = pm .II".I -II p{ =0

X
Fig. 4.10. Fanlike characteristics
Clearly, p, (z,t) = 0 for © > v,,t +¢ and p, (z,t) = p,, for £ < —v,,t. Let now
(z,t) belong to the region

—Upt < T <vnt+e.

Solving for z in the equation of the characteristic x = —v,, (1 - 2@) t+ o, we
€
find
T+ vt
Tg=e—.
0 2umt + €
Then
To T + vt
P00 =g a0) = pnl1 = ) =g (1 ) ae)
c) Letting € — 0 in (4.26) we obtain
P for z < —v,,t
(z,t)={ Pm (12 fo t << vt (4.27)
zt)=¢ 21— — r — gt < < vyt . .
PREs 2 VUt
0 for x > vt

It is easy to check that p is a solution of the equation (4.19) in the regions R, S, T'.
For fixed ¢, the function p decreases linearly from p,,, to 0 as x varies from —v,,t
to v, t. Moreover, p is constant on the fan of straight lines

z = ht — v < h <vny,.

These type of solutions are called rarefaction or simple waves (centered at the
origin).

The formula for p (x, t) in the sector S can be obtained, a posteriori, by a formal
procedure that emphasizes its structure. The equation of the characteristics can
be written in the form

2 2 t
. <1M>Hx0_vm <1M>t+x0,
Pm Pm



4.3 Traffic Dynamics 171

p = p m

X=-v1

m

Fig. 4.11. Characteristics in a rarefaction wave

P,= pm

x=—v x=v I

" m

Fig. 4.12. Profile of a rarefaction wave at time ¢

because p (z,t) = g (x0). Inserting xg = 0 we obtain

x_vm<1M)t.

Pm

Solving for p we find exactly

x

p(z,t) = '%m <1 - —) (t > 0). (4.28)

Umt

Since vy, (1 - p2_p) = ¢’ (p), we see that (4.28) is equivalent to

plat)=r ()

t

where 7 = (¢/) " is the inverse function of ¢’. Indeed this is the general form of a
rarefaction wave (centered at the origin) for a conservation law.

We have constructed a continuous solution p of the green light problem, con-
necting the two constant states p,, and 0 by a rarefaction wave. However, it is
not clear in which sense p is a solution across the lines z = +wv,,t, since, there,
its derivatives undergo a jump discontinuity. Also, it is not clear whether or not
(4.27) is the only solution. We will return on these important points.



172 4 Scalar Conservation Laws and First Order Equations

4.3.4 Traffic jam ahead

Suppose that the initial density profile is

1

Py forz <0
M@—{g

P, for x > 0.

For x > 0, the density is maximal and therefore the traffic is bumper-to-bumper.
The cars on the left move with speed v = %vm so that we expect congestion
propagating back into the traffic. We have

%vm ifzg <0

—Um, if zg >0

q' (g (x0)) = {

and therefore the characteristics are

3
x:ivmtJr:vo ifzg <0

T = —vnt+ xo if zp > 0.

The characteristics configuration (Fig. 4.13 ) shows that the latter intersect some-
where in finite time and the theory predicts that p becomes a "multivalued" func-
tion of position. In other words, p should assume two different values at the same
point, which clearly makes no sense in our situation. Therefore we have to admit
solutions with jump discontinuities (shocks), but then we have to reexamine the
derivation of the conservation law, because the smoothness assumption for p does
not hold anymore.
Thus, let us go back to the conservation of cars in integral form (see (4.2)):

% m2p(-’17,t) dx = —q (p(.’EQ,t)) +q(p (;pl,t)), (429)

valid in any control interval [z1,z2]. Suppose now that p is a smooth function
except along a curve
:E:S(t) tE[tl,tQ],

that we call shock curve, on which p undergoes a jump discontinuity.
For fixed t, let [x1, 23] be an interval containing the discontinuity point

xz=s(t).
From(4.29) we have

d s(t) T2
- { [ rwoay+ [ P dy} +qlp (2 t)] — qlp (e8] = 0. (4.30)
Ty S
The fundamental theorem of calculus gives
d ®

@l

s(t) ds

pmﬂ@:/ m%ﬂ@+f@@iﬁ;
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p(x.0)=p,

A 4

Fig. 4.13. Expecting a shock

and

T2

p(y,t)dy:/m pe (y, ) dy — p* (S(t),t)%,

dt sz s(t)

where

P~ (s(t),8) = lim p(y,8),  p* (s(t),8) = lim p(y,t).
yTs(t) yls(t)

Hence, equation (4.30) becomes

/mm@JMy+M’@@%ﬂ*ﬂWdﬂJﬂﬂﬂ:qmwhm*qmw%m-

1

Letting x2 | s(t) and x1 T s (t) we obtain

[P~ (s(t), ) =p" (s(t), )] 5(t) = q[p™ (s(t), )] —q[p" (s(t),1)]

that is: N
t)| — “(s,t
s alp +(S, )] q[p (s, )] (4.31)
p (Svt) -p (Svt)

The relation (4.31) is an ordinary differential equation for s and it is known as
Rankine-Hugoniot condition. The discontinuity propagating along the shock
curve is called shock wave. The Rankine-Hugoniot condition gives the shock speed
5 (t) as the quotient of the flux jump over the density jump. To determine the shock
curve we need to know its initial point and the values of p from both sides of the
curve.

Let us apply the above considerations to our traffic problem®. We have

- _ Pm

Pt =pms P <

8 In the present case the following simple formula holds:

1) 0) (1o wts).

w—z Pm
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while

and (4.31) gives

+1—qp~ 1
§(1) = alp]—alp7] _ 1
pt—p- 8
Since clearly s (0) = 0, the shock curve is the straight line
L t
T = —=vpt.
8

Note that the slope is negative: the shock propagates back with speed —%vm, as it
is revealed by the braking of the cars, slowing down because of a traffic jam ahead.

As a consequence, the solution of our problem is given by the following formula

(Fig. 4.14)
1 1
5Pm T < —zUnt
p(z,t) = { : :

Pm T > —%vmt.

This time the two constant states % P and p,, are connected by a shock wave.

p(x.t)=p,

A J

Fig. 4.14. Shock wave

4.4 Integral (or Weak) Solutions

4.4.1 The method of characteristics revisited

The method of characteristics applied to the problem

u+q(u), =0
u(z,0) = g(z)

gives the travelling wave (see (4.25) with zg = &)

(4.32)

u(e.t) = gle ¢ (9(€) (¢ - %) (4.33)
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with local speed ¢’ (g (§)), in the positive z—direction. Since u (z,t) = g (§) along
the characteristic based at (¢, 0), from (4.33) we obtain that « is implicitly defined
by the equation

G(z,t,u)=u—glzr—q (u)t] =0. (4.34)

If g and ¢’ are smooth, the Implicit Function Theorem, implies that equation (4.34)
defines u as a function of (z,t), as long as the condition

G (@, t,u) = 1+ tq"(w)g' [ — g/ (u) ] # 0 (4.35)

holds. An immediate consequence is that if ¢” and ¢’ have the same sign, the
solution given by the method of characteristics is defined and smooth for all times
t > 0. Precisely, we have:

Proposition 4.2. Suppose that ¢ € C? (R), g € C* (R) and ¢’q"” > 0 in R. Then
formula (4.34) defines the unique solution u of problem (4.32) in the half-plane
t > 0. Moreover, u (z,t) € C*' (R x [0,00)).

Thus, if ¢ and ¢’ have the same sign, the characteristics do not intersect. Note
that in the e—approximation of the green light problem, ¢ is concave and g. is
decreasing. Although g, is not smooth, the characteristics do not intersect and p,
is well defined for all times ¢ > 0. In the limit as ¢ — 0, the discontinuity of g
reappears and the fan of characteristics produces a rarefaction wave.

What happeuns if ¢” and ¢’ have a different sign in an interval [a, b]? Proposition
4.2 still holds for small times, since G,, ~ 1 if t ~ 0, but when time goes on we
expect the formation of a shock. Indeed, suppose, for instance, that ¢ is concave
and g is increasing. The family of characteristics based on a point in the interval
[a, b] is

z=q(g(&)t+¢ § € [a,0]. (4.36)
When ¢ increases, g increases as well, while ¢’ (g (£)) decreases so that we expect
intersection of characteristics along a shock curve. The main question is to find
the positive time ts (breaking time) and the location x4 of first appearance of
the shock.

According to the above discussion, the breaking time must coincide with the
first time t at which the expression

G (z,t,u) =1+ tq"(u)g [z — ¢ (u)t]

becomes zero. Computing G,, along the characteristic (4.36), we have u = g (§)
and

Gu(z,t,u) =1+ tq" (g (€))g'(€).

Assume that the nonnegative function

2(€) = —4"(9(€))g'(§)
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attains its maximum only at the point &, € [a, b]. Then z (£,,) > 0 and

11
R N I (4.37)

Since x5 belongs to the characteristics x = ¢’ (g (€,,)) t + &y, We find

q' (9 (€m))
Ty = ———= + &y (4.38)
’ z (&) M
The point (x4, ts) has an interesting geometrical meaning. In fact, it turns out that
if ¢"g' < 0, the family of characteristics (4.36) admits an envelope® and (s, ts) is
the point on the envelope with minimum time coordinate (see Problem 4.8).

_ t=1/4 u k
—_— =12
T t=1
x
Fig. 4.15. Breaking time for problem (4.39)
Ezample 4.1. Consider the initial value problem
ug + (1 — 2u)uy, =0
(4.39)
u(x,0) = arctan z.
We have q(u) = u —u? ¢ (u) = 1 —2u, ¢"(u) = =2, and g(£) = arctané,
g =1/(1+ 52). Therefore, the function
£(6) = ~"(9()g'(6) = o~
(1+¢%)

% Recall that the envelope of a family of curves ¢ (z,t,€) = 0, depending on the pa-
rameter &, is a curve ¢ (z,t) = 0 tangent at each one of its points to a curve of the
family. If the family of curves ¢ (z,t,£) = 0 has an envelope, its parametric equations
are obtained by solving the system

{as(x,t,i)zo
¢§ (x7t7£) =0

with respect to x and t.
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has a maximum at £,; = 0 and z(0) = 2. The breaking-time is tg = 1/2 and
zg = 1/2. Thus, the shock curve starts from (1/2,1/2). For 0 < t < 1/2 the
solution u is smooth and implicitly defined by the equation

u — arctan [ — (1 —2u)t] = 0. (4.40)

After t = 1/2, equation (4.40) defines u as a multivalued function of (z,t) and
does not define a solution anymore. Figure 4.15 shows what happens for ¢t = 1/4,
1/2 and 1. Note that the common point of intersection is (1/2,tan1/2) which is
not the first shock point.

How does the solution evolve after ¢ = 1/2? We have to insert a shock wave into
the multivalued graph in figure 4.15 in such a way the conservation law is preserved.
We will see that the correct insertion point is prescribed by the Rankine-Hugoniot
condition. It turns out that this corresponds to cutting off from the multivalued
profile two equal area lobesA and B as described in figure 4.16 (G. B. Whitham
equal area rule'®).

\J

o s(t) X

Fig. 4.16. Inserting a shock wave by the Whitham equal-area rule

4.4.2 Definition of integral solution

We have seen that the method of characteristics is not sufficient, in general, to
determine the solution of an initial value problem for all times ¢ > 0. In the green
light problem a rarefaction wave was used to construct the solution in a region not
covered by characteristics. In the traffic jam case the solution undergoes a shock,
propagating according to the Rankine-Hugoniot condition.

9 The equal-area rule holds for a general conservation law (see Whitham, 1974).
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Some questions arise naturally.

Q1. In which sense is the differential equation satisfied across a shock or, more
generally, across a separation curve where the constructed solution is not differen-
tiable?

One way to solve the problem is simply to not care about those points. However,
in this case it would be possible to construct solutions that do not have anything
to do with the physical meaning of the conservation law.

Q2. Is the solution unique?

Q3. If there is no uniqueness, is there a criterion to select the “physically
correct” solution?

To answer, we need first of all to introduce a more flexible notion of solution,
in which the derivatives of the solution are not directly involved. Let us go back
to the problem

(4.41)

u+q(u), =0 zeR, t>0
u(z,0) =g () zeR

and assume for the moment that u is a smooth solution, at least of class C' in
Rx[0,00). We say that u is a classical solution.

Let v be a smooth function in Rx[0, c0), with compact support. We call v a
test function. Multiply the differential equation by v and integrate on Rx (0, c0).
We get

/ / ut + q (u)_ v dedt = 0. (4.42)

The idea is to carry the derivatives onto the test function v via an integration by
parts. If we integrate by parts the first term with respect to ¢ we obtain!!

/ /utv dxdt = —/ /uvt d:cdt—/u(:v,O)v(:c,O) dz
o Jr 0o Jr R
—/ /uvt d:cdt—/g(:c)v(:c,O)d:c.
o Jr R

Integrating by parts the second term in (4.42) with respect to z, we have:

/0 N [ atw), v dodt = - /0 N | atwye. dod.

Then, equation (4.42) becomes

/ / uvy + q(u)vy] dedt + / (x)v(z,0)dx = 0. (4.43)
We have obtained an integral equation, valid for every test function v. Observe
that no derivative of u appears in (4.43).

1 Since v is compactly supported and u, v are smooth, there is no problem in exchanging
the order of integration.
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On the other hand, suppose that a smooth function u satisfies (4.43) for every
test function v. Integrating by parts in the reverse order, we arrive to the equation

/00 / [ur + g (u),]v dedt + / [g(z) —u(z,0)]v(z,0)dz =0, (4.44)
o JR R

still true for every test function v. Choose v vanishing for ¢ = 0; then the second
integral is zero and the arbitrariness of v implies

ur+q(u), =0 in Rx (0, +00) . (4.45)

Choosing now v non vanishing for ¢ = 0, from (4.44) and (4.45), we get

[ 9@~ u@0o(@.0)ds=0.
R
Once more, the arbitrariness of v implies

u(z,0) =g () in R.

Therefore u is a solution of problem (4.41).

Conclusion: a function u € C! (R x [0 x 00)) is a solution of problem (4.41) if
and only if the equation (4.43) holds for every test function v.

But (4.43) makes perfect sense for u merely bounded, so that it constitutes an
alternative integral or weak formulation of problem (4.41). This motivates the
following definition.

Definition 4.1. A function u, bounded in Rx|[0, 00), is called integral (or weak)
solution of problem (4.41) if equation (4.43) holds for every test function v in
Rx[0, 00), with compact support.

We point out that an integral solution may be discontinuous, since the definition
requires only boundedness.

4.4.3 The Rankine-Hugoniot condition

Definition 4.1 looks rather satisfactory, because of its flexibility. However we have to
understand which information about the weak solutions behavior at a singularity,
e.g. across a shock curve, is hidden in the integral formulation.

Consider an open set V, contained in the half-plane ¢ > 0, partitioned into two
disjoint domains V*tand V= by a smooth (shock) curve I' of equation z = s (t)
(Fig. 4.17).

Suppose u is a weak solution in V, of class C' in both V+ and V —, separately2.
We have seen that u is a classical solution of u; + ¢ (u), =0in V* and V.

12 That is, u and its the first derivatives extend continuously up to I', from both sides,
separately.
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I &

“;.-_

Fig. 4.17. A shock curve dividing a domain V

Choose now a test function v, supported in a compact set K C V, such that
K N is non empty. Since v (z,0) = 0, we can write:

0= /0 h /R [uve + q(uw)v,] dzdt
. /V v+ gl dede+ / v+ qu)v] dadt

Integrating by parts and observing that v = 0 on OV T\I", we have:

/ [uvy + q(u)v,] daxdt =
v+

= —/ [us + q(u)z] v dmdtJr/ [us no + q(ug)ni]v dl
v+ r

:/ [ut n2 + q(uy)ni]v dl
r

where u denotes the value of u on I from the V' side, n = (n1, n2) is the outward
unit normal vector on OV T and dl denotes the arc length on I'. Similarly, since n
is inward with respect to V:

/ [uvy + q(u)v,] daxdt = —/ [u— ng + g(u_)ni]v dl
- r
where u_ denotes the value of © on I" from the V'~ side. Therefore we deduce that
[ Alatw) — atws)m + [y — sy o di =0,
r

The arbitrariness of v yields

[g(ut) = q(u)]n1 + [uy —uJng =0 (4.46)
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on I'. If u is continuous across I', (4.46) is automatically satisfied. If uy # u_ we
write the relation (4.46) more explicitly. Since z = s(t) on I', we have

n = (m1,m2) = ——— (~1,5(1)).
1+ (5 (1)

Hence (4.46) becomes, after simple calculations,

_glus (5,0~ gfu (1)
U (Sv t) - U (Sv t)

which is the Rankine-Hugoniot condition for the shock curve I'.

(4.47)

In general, functions constructed by connecting classical solutions and rarefac-
tion waves in a continuous way are weak solutions. The same is true for shock
waves satisfying the Rankine-Hugoniot condition. Then, the solutions of the green
light and of the traffic jam problems are precisely integral solutions.

Thus, Definition 4.1 gives a satisfactory answer to question Q1. The other two
questions require a deeper analysis as the following example shows.

u(x,t)=0

Fig. 4.18. The rarefaction wave of example 4.3

Ezample 4.2. (Non uniqueness). Imagine a flux of particles along the x—axis, each
one moving with constant speed. Suppose that u = u (z,t) represents the velocity
field, which gives the speed of the particle located at x at time t. If z = x (¢) is the
path of a particle, its velocity at time ¢ is given by

z (t) = u (z (t), t) = constant.
Thus, we have
0= %u(x(t),t) =u (z(t),t) +ug (z(t),t)x(t)
=ue (z(t),t) +uz (z(t),t) u(z(t),t).

Therefore u = u (x, t) satisfies Burger’s equation

u2
up + Uy = Uup + <7> =0 (4.48)
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which is a conservation law with q (u) = u?/2. Note that ¢ is strictly convex:
¢ (u) = w and ¢” (u) = 1. We couple (4.48) with the initial condition u (z,0) =

g (x), where
0 <0
g(x)—{l z > 0.

The characteristics are the straight lines
x =g (xg)t+ xo. (4.49)

Therefore, u = 0 if z < 0 and v = 1 if z > ¢. The region S = {0 < = < t} is not
covered by characteristics. As in the green light problem, we connect the states 0
and 1 through a rarefaction wave. Since ¢’ (u) = u, we have r (s) = (¢) " (s) = s,
so that we construct the weak solution.

0 <0
u(z,t) = % 0O<z<t (4.50)
1 x>t

However, u is not the unique weak solution! There exists also a shock wave
solution. In fact, since

1
u_ =0, Uy = 1, q(u*) =0, q(u+) = 5?
the Rankine-Hugoniot condition yields

q(us) —qu-) _ 1

() —
5 () Up — U 2

Given the discontinuity at = 0 of the initial data, the shock curve starts at
$(0) =0 and it is the straight line

Hence, the function

1 xr >

w(x,t)_{o T <

N[+ N[+

is another weak solution (Fig. 4.19). As we shall see, this shock wave has to be
considered not physically acceptable.

The example shows that the answer to question Q2 is negative and question
Q3 becomes relevant. We need a criterion to establish which one is the physically
correct solution.
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4 x=t/2

u(x,t)=0

Fig. 4.19. A non physical shock

4.4.4 The entropy condition
From Proposition 4.2 we have seen that the equation
Gx,t,u)=u—glr—q¢ (u)t] =0

defines the unique classical solution u of problem (4.41), at least for small times.
The Implicit Function Theorem gives

G. g
G, 14tgq"

If we assume ¢’ > 0, ¢” > C > 0, we get

=~ | &

Uy <

where!® E = £. Using the mean value theorem we deduce the following condition,
called entropy condition: there exists E > 0 such that'*, for every z,z € R,
z >0, and every t > 0,

u(z+2,t) —u(z,t) <

= | &3

. (4.51)

The denomination comes from an analogy with gas dynamics, where a condi-
tion like (4.51) implies that entropy increases across a shock. The entropy condition
does not involve any derivative of u and makes perfect sense for discontinuous solu-
tions as well. A weak solution satisfying (4.51) is said to be an entropy solution.
A number of consequences follows directly from (4.51).

13 In the case ¢’ < 0 and ¢”" < C < 0 we already have u, < 0.
14

u(z+2z,t) —u(z,t) =ug (x+2%) 2

with a suitable z* between 0 e z.
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e The function

E
xr—>u(x,t)—?x

is decreasing. In fact, let * + z = x5, * = 1 and z > 0. Then z2 > z; and
(4.51) is equivalent to

E E
u (za,t) — S22 <wu(zy,t) — st (4.52)

e If x is a discontinuity point for u (-, t), then
ug (x,t) <wu_ (x,t) (4.53)

where uy (z,t) = lim,_,,+ u (y,t). In fact, choose x; < x < x3 and let x; and
x2 both go to z in (4.52).

If g is strictly convex, (4.53) yields

q(uy) — qu-)

q (uy) < w —u <q (u7).

Then, the Rankine-Hugoniot implies that, if z = s (¢) is a shock curve,

¢ (us (2,8)) < $(t) < ¢ (u_ (2,1)) (4.54)

that is called entropy inequality. The geometrical meaning of (4.54) is remark-
able: the slope of a shock curve is less than the slope of the left-characteristics and
greater than the slope of the right-characteristics. Roughly, the characteristics hit
forward in time the shock line, so that it is not possible to go back in time along
characteristics and hit a shock line, expressing a sort of irreversibility after a shock.

The above considerations lead us to select the entropy solutions as the only
physically meaningful ones. On the other hand, if the characteristics hit a shock
curve backward in time, the shock wave is to be considered non-physical.

Thus, in the non-uniqueness Example 4.3, the solution w represents a non-
physical shock since it does not satisfy the entropy condition. The correct solution
is therefore the simple wave (4.50). The following important result holds (see e.g.
Smoller, 1983).

Theorem 4.1. If ¢ € C? (R) is convex (or concave) and g is bounded, there exists
a unique entropy solution of the problem

{uﬂrq(u)m_()) zeR, t>0 (4.55)

u(z,0)=g(x) xR
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4.4.5 The Riemann problem

We apply Theorem 4.1 to solve explicitly problem (4.55) with initial data

U x>0
= 4.56
e {u e (4.56)

where ujand u_ are constants, u; # u_. This problem is known as Riemann
problem, and it is particularly important for the numerical approximation of more
complex problems.

Theorem 4.2. Let ¢ € C? (R) be strictly convex and q"" > h > 0.

a) If uy < u_, the unique entropy solution is the shock wave

w(a,t) = {u+ > () (4.57)

u_ <8 (t)
where (1) (u_)
. qluy ) — qlu—
5 (t) o Uy —U—

b) If uy > u_, the unique entropy solution is the rarefaction wave

v f<q(u)
u(z,t) =9 r (%) ¢ (u)<¥%<q (uy)
W E>q ()

where r = (q’)fl, is the inverse function of ¢'.

Proof. a) The shock wave (4.57) satisfies the Rankine Hugoniot condition and
therefore it is clearly a weak solution. Moreover, since u4 < u_ the entropy con-
dition holds as well, and u is the unique entropy solution of problem (4.56) by
Theorem 4.1.

b) Since

r(¢ (ug)) =u- and  r(¢ (u-)) =u-,
u is continuous in the half-plane ¢t > 0 and we have only to check that u satisfies
the equation u¢ 4+ ¢ (u), = 0 in the region

S = {(x,t) g (uo) < % <q (u+)}

Let u (z,t) =r (%) .We have:

st = () o007 ()= ()

Thus, u is a weak solution in the upper half-plane.
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Let us check the entropy condition. We consider only the case
d(u)t<z<z+z<qg (us)t

leaving the others to the reader. Since ¢’ > h > 0, we have

’ o 1 o
r (S)_ //(’l") SE (S_q (’l"))

which is the entropy condition with £ =1/h. O

4.4.6 Vanishing viscosity method

There is another instructive and perhaps more natural way to construct discon-
tinuous solutions of the conservation law

ur+q(u), =0, (4.58)

the so called vanishing viscosity method. This method consists in viewing equation
(4.58) as the limit for e — 0" of the equation

ug + q (u), = gy, (4.59)

that corresponds to choosing the flux function

q(u) = q(u) — eug, (4.60)

where ¢ is a small positive number. Although we recognize eu,,, as a diffusion term,
this kind of model arises mostly in fluid dynamics where v is the fluid velocity and
€ its wiscosity, from which comes the name of the method.

There are several good reasons in favor of this approach. First of all, a small
amount of diffusion or viscosity makes the mathematical model more realistic in
most applications. Note that eu,, becomes relevant only when w,, is large, that
is in a region where wu, changes rapidly and a shock occurs. For instance in our
model of traffic dynamics, it is natural to assume that drivers would slow down
when they see increased (relative) density ahead. Thus, an appropriate model for
their velocity is

which corresponds to ¢ (p) = pv (p) — ep,, for the flow-rate of cars.
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Another reason comes from the fact that shocks constructed by the vanishing
viscosity method are physical shocks, since they satisfy the entropy inequality.

As for the heat equation, in principle we expect to obtain smooth solutions
even with discontinuous initial data. On the other hand, the nonlinear term may
force the evolution towards a shock wave.

Here we are interested in solutions of (4.59) connecting two constant states ur,
and up, that is, satisfying the conditions

mEIPoo u(x,t) =ur, mgrfoo u(z,t) = ug. (4.61)
Since we are looking for shock waves, it is reasonable to seek a solution depending
only on a coordinate £ = z — vt moving with the (unknown) shock speed v. Thus,
let us look for bounded travelling waves solution of (4.59) of the form

u(z,t) =U (z —vt) = U (§)

with
U(—o0)=wur and U(+o0)=up (4.62)
and uy, # ur. We have
du du d*U
Ut = —V—5-, e = —7, Upy = —5
! dé d¢ de?

so that we obtain for U the ordinary differential equation

au d*U
"U)—v) = =e—

which can be integrated to yield
au

du
where A is an arbitrary constant. Assuming that % — 0 as £ — oo and using

(4.62) we get
q(ur)—vur +A=0 and q(ug)—vur+A=0. (4.63)

Subtracting these two equations we find

v =

a(ur) —q(ue) _ (4.64)
UrR —uy,

and then A = —q(ur)ur +q(ur) ur = A.
UurR —uyg,

Thus, if there exists a travelling wave solution satisfying conditions (4.61), it
moves with a speed v predicted by the Rankine-Hugoniot formula. Still it is not
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clear whether such travelling wave solution exists. To verifies this, examine the

equation
au

e £
From (4.63), equation (4.65) has the two equilibria U = ur and U = up. A
bounded travelling wave connecting ur and uy, corresponds to a solution of (4.65)
starting from a point £, between ur and ur. On the other hand, conditions (4.62)
require ug to be asymptotically stable and uy unstable. At this point, we need to
have information on the shape of q.

Assume ¢” < 0. Then the phase diagram for equation (4.65) is described in
Fig. 4.20 for the two cases ur, > ug and ur, < ug.

Between uy and ug, ¢ (U) —9U + A > 0 and, as the arrows indicate, U is
increasing. We see that only the case u; < wupr is compatible with conditions
(4.62) and this corresponds precisely to a shock formation for the non diffusive
conservation law. Thus,

q(U) —oU + A, (4.65)

¢ (u)—v>0 and ¢ (ug)—v<0

q (ur) < v < ¢ (ur) (4.66)

which is the entropy inequality.
Similarly, if ¢” > 0, a travelling wave solution connecting the two states ug
and uy, exists only if ur, > upr and (4.66) holds.

z=q(U)-"U+A

el TR b)

a) /\
/ u, =~ 7 ”"\>U Tu, 77 HR\)U

Fig. 4.20. Case b) only is compatible with conditions (4.61)

Let us see what happens when € — 0. Assume ¢’ < 0. For € small, we expect
that our travelling wave increases abruptly from a value U (§;) close to uy, to a
value U (&) close to ur within a narrow region called the transition layer. For
instance we may choose &; and £, such that

U(&) —U () =z (1 - P)(ur —uL)

with a positive 3, very close to 0. We call the number » = &, — £, thickness of the
transition layer. To compute it, we separate the variables U and ¢ in (4.65) and
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integrate over (£;,&,); this yields

Thus, the thickness of the transition layer is proportional to €. As ¢ — 0, the
transition region becomes more and more narrow and eventually a shock wave
that satisfies the entropy inequality is obtained.

This phenomenon is clearly seen in the important case of viscous Burger’s
equation that we examine in more details in the next subsection.

Example 4.3. Burger’s shock solution. Let us determine a travelling wave solution
of the viscous Burger equation

Up + Uy = EUgy (4.67)

connecting the states ur, = 1 and ugr = 0. Note that g (u) = u?/2 is convex. Then
7 =1/2 and A = 0. Equation (4.65) becomes

aw o,
2€d_§_U -U

that can be easily integrated to give

U(f)—@-

Thus the travelling wave is given by

u(:c,t)—U<:v%> . E%th). (4.68)
15

When € — 0,

u(x,t)%w(x,t)—{(l) izgg

which is the entropy shock solution for the non viscous Burger equation with initial
data 1if x <0 and 0 if z > 0.

4.4.7 The viscous Burger equation

The viscous Burger equation is one of the most celebrated examples of nonlinear
diffusion equation. It arose (Burger, 1948) as a simplified form of the Navier-Stokes
equation, in an attempt to study some aspects of turbulence. It appears also in
gas dynamics, in the theory of sound waves and in traffic flow modelling and
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"N
S
LIS

x

Fig. 4.21. The travelling wave in Example 4.3

it counstitutes a basic example of competition between dissipation (due to linear
diffusion) and steepening (shock formation due to the nonlinear transport term

The success of Burger’s equation is in large part due to the rather surprising fact
that the initial value problem can be solved analytically. In fact, via the so called
Hopf-Cole transformation, Burger’s equation is converted into the heat equation.
Let us see how this can be done. Write the equation in the form

ou 0 (1 4 B
nga—x(iu {:‘um)—o.

1
Then, the planar vector field (u, §u2 - eum> is curl-free and therefore there
exists a potential ¢ = 1 (z,t) such that

1
Y, =—u and Y, = §u2 — EUg.
Thus, 1 solves the equation

1

Yo = 5¥z + Vs (4.69)

Now we try to get rid of the quadratic term letting ¢ = g (¢), with g to be chosen.
We have

V=9 @)y, Ye=9 @) s, Vur=9" () () +7 () Pra-
Substituting into (4.69) we find
9 (@) [or — €0s] = [%(g' (©)? +eg" (9)(p,)*

Hence, if we choose g (s) = 2¢log s, then the right hand side vanishes and we are
left with
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Thus
Y =2¢elogyp
and from u = —, we obtain
u=—2%2 (4.71)
¥

which is the Hopf-Cole transformation. An initial data
u(z,0) = ug (x) (4.72)

transforms into an initial data of the form!®

0 () = exp { /m “‘;—(E'Z)dz} (a €R). (4.73)

If (see Theorem 2.4)

1 x
P/a ug (2)dz — 0 as |z| = oo,

the initial value problem (4.70), (4.73) has a unique smooth solution in the half-
plane t > 0, given by formula (2.137):

1 (z—y)°
p (z,t) = \/4—7T—€t/oo %o (y) exp (Tt) dy.

This solution is continuous with its x—derivativel® up to ¢t = 0 at any continuity
point of ug. Consequently, from (4.71), problem (4.67) has a unique smooth solu-
tion in the half-plane ¢ > 0, continuous up to ¢ = 0 at any continuity point of ug,

given by
or—y (z —y)*
/oo ;%o (y) exp T 4et dy

+o0 T — 2
1 ¢o () exp (%) dy

We use formula (4.74) to solve an initial pulse problem.

u(z,t) = (4.74)

Ezample 4.4. Initial pulse. Consider problem (4.67), (4.67) with the initial condi-
tion

uo () = Mo (x)

where ¢ denotes the Dirac density at the origin. We have, choosing a = 1,

% uo (y) 1 z>0
- _f %Y\ M
o () exp{ /1 9e dy} exp <E> < 0.

15 The choice of a is arbitrary and does not affect the value of u.
1% Check it.
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Formula (4.74), gives, after some routine calculations,

= s expgﬁ‘ﬁ)eﬁ(m)}

op (M/2e)—1 1 2

where

erf(x):/ e % dz
0

is the error function.

5 A g
a.r_.,{.\}—uluga[.}

SR
AR
NN

TR
A

Fig. 4.22. Evolution of an initial pulse for the viscous Burger’s equation (M = 1,e =
0.04)

4.5 The Method of Characteristics for Quasilinear
Equations

In this section we apply the characteristics method to general quasilinear equations.
We consider mainly the case of two independent variables, where the intuition is
supported by the geometric interpretation. However, the generalization to any
number of dimensions should not be too difficult for the reader.

4.5.1 Characteristics
We consider equations of the form

a(ﬂﬁ,y,u)uerb(I,yau) Uy = c(x,y,u) (475)
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where
u=u(z,y)

and a, b, c are continuously differentiable functions.
The solutions of (4.75) can be constructed via geometric arguments. The tan-
gent plane to the graph of a solution u at a point (xg, yo, z0) has equation

Uy (-TOvyO) (I - IO) + Uy (:vo,yo) (y - yO) - (Z - ZO) =0
and the vector
ng = (uz (To,%o0) ) Uy (z0,%0),—1)
is normal to the plane. Introducing the vector
vo = (a (o, Y0, 20) , b (0, Y0, 20) , ¢ (0, Yo, 20)) ,

equation (4.75) implies that
g Vvgo = 0.

Thus, v is tangent to the graph of u (Fig. 4.23). In other words, (4.75) says that,
at every point (z,y, z), the graph of any solution is tangent to the vector field

V(I,y,z):(a(x,y,z)»b(x,y»z)»c(x»y»z))-

In this case we say that the graph of a solution is an integral surface of the
vector field v.

u=u(x,y)

(%05 0) ’

Fig. 4.23. Integral surface

Now, we may construct integral surfaces of v as union of integral curves of
v, that is curves tangent to v at every point. These curves are solutions of the
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system
dxr dy dz
A g
o —e@ye), o =blzyz),  —

and are called characteristics. Note that

c(z,y,2) (4.76)

z=2z(t)
gives the values u along a characteristic, that is

z(t) =u(z @),y (). (4.77)
In fact, differentiating (4.77) and using (4.76) and (4.75), we have

%: o ( (t),y(t))(Z+uy( (),y())ﬁ
(

=a(z(t),y(t),z () us (z @),y () +0((z(t),y (1), 2{1) uy (z(t),y(t))
c(z(t),y(t),z().

Thus, along a characteristic the partial differential equation (4.75) degenerates
into an ordinary differential equation.
In the case of a conservation law (with ¢ = y)

uy + () =0 (¢ = 51).

we have introduced the notion of characteristic in a slightly different way, but we
shall see later that there is no contradiction.

The following proposition is a consequence of the above geometric reasoning
and of the existence and uniqueness theorem for system of ordinary differential
equations'?.

Proposition 4.3. a) Let the surface S be the graph of a C* function u = u (z,y).
If S is union of characteristics then u is a solution of the equation (4.75).

b) Every integral surface S of the vector field v is union of characteristics.
Namely: every point of S belongs exactly to one characteristic, entirely contained
in S.

¢) Two integral surfaces intersecting at one point intersect along the whole
characteristic passing through that point.

4.5.2 The Cauchy problem

Proposition 4.3 gives a characterization of the integral surfaces as a union of char-
acteristics. The problem is how to construct such unions to get a smooth surface.
One way to proceed is to look for solutions u whose values are prescribed on a
curve v, contained in the x,y plane.

17 We leave the details of the proof to the reader.
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In other words, suppose that

z(s)=f(s), yls)=gls) sclCR

is a parametrization of v,. We look for a solution u of (4.75) such that

u(f(s),9(s)) =h(s), sel, (4.78)

where h = h (s) is a given function. We assume that I is a neighborhood of s = 0,
and that f, g, h are continuously differentiable in I.

The system (4.75), (4.78) is called Cauchy problem. If we consider the three-
dimensional curve I given by the parametrization

‘T(S):f(s)v y(S):g(S), Z(S):h(s)’

then, solving the Cauchy problem (4.75), (4.78) amounts to determining an integral
surface containing Iy (Fig. 4.24).
The data are often assigned in the form of initial values

u(x,O):h(x),

with y playing the role of "time". In this case, 7, is the axis y = 0 and = plays the
role of the parameter s. Then a parametrization of Iy is given by

By analogy, we often refer to Iy as to the initial curve. The strategy to solve a
Cauchy problem comes from its geometric meaning: since the graph of a solution

characteristics

v

Fig. 4.24. Characteristics flowing out of Ip
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u=u(x,y) is a union of characteristics, we determine those flowing out from I7,
by solving the system

dzr dx dzr

E:a’(xayaz)v _:b(xvyvz)v E:C(xayv‘z)v (479)

with the family of initial conditions
z(0)=f(s), w(0)=g(s), 2(0)=nh(s), (4.80)

parametrized by s € I. The union of the characteristics of this family should give'®
u. Why only should? We will come back to this question.

Under our hypotheses, the Cauchy problem (4.79), (4.80) has exactly one so-
lution

r=X(s,t), y=Y(s,t), z=2Z(s,t). (4.81)

in a neighborhood of ¢t = 0, for every s € I.
A couple of questions arise:

a) Do the three equations (4.81) define a function z = u (x,y)?

b) Even if the answer to question a) is positive, is z = u (z,y) the unique
solution of the Cauchy problem?

Let us reason in a neighborhood of s =t = 0, setting
X (0,0) = f(0) =z, Y (0,0)=9(0) =0, Z(0,0)=n(0)=2z.
The answer to question a) is positive if we can solve for s and ¢ the first two equa-

tions in (4.81), and find s = S (z,y) e t = T'(z,y) of class C! in a neighborhood
of (zg, o), such that

S (20, y0) = 0, T (x0,y0) = 0.

Then, from the third equation z = Z (s, t), we get

z2=7Z(S(z,y),T (z,y) = u(z,y). (4.82)

From the Inverse Function Theorem, the system

defines
in a neighborhood of (g, yo) if
X5 (0 0
J(0,0) = 0. 4.83
0,0 |X ) | + (1.83)

18 Tdentifying v with its graph.
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From (4.79) and (4.80) we have
X, (0,0) = f(0), Y5(0,0)=4g(0)
and
Xt (0’0) = a’(IOvyOvZO)v Y;(an) = b(IOvyOvZO)v
so that (4.83) becomes
f(0) g'(0)
J(0,0) = #0 (4.84)
a (o, Yo, 20) b (0, Yo, 20)

or

b(IOvyOvZO) f/ (0) # a’(xOvyOvZO) g/ (0) (485)
Condition (4.85) means that the vectors

(a (z0,Y0, 20) , b (z0, Y0, 20)) and (f/ (0), g (0))

are not parallel.

In conclusion: if condition (4.84) holds, then (4.82) is a well defined C'* —function.

Now consider question b). The above construction of u implies that the surface
z = u(z,y) contains Iy and all the characteristics flowing out from I, so that
u is a solution of the Cauchy problem. Moreover, by Proposition 4.5 ¢), two in-
tegral surfaces containing Iy must contain the same characteristics and therefore
coincide.

We summarize everything in the following theorem, recalling that

(%0, Y0, 20) = (£ (0),9(0),h (0)).

Theorem 4.3. Let a,b,c be C'—functions in a neighborhood of (¢, Yo, z0) and
f,9,h be C*—functions in I. If J (0,0) # 0, then, in a neighborhood of (zo,vo),
there exists a unique C*—solution u = u (x,y) of the Cauchy problem

{a(x,y,u)uerb(I,yau) uy = c(z,y,u) (4.86)

u(f(s),9(s)) =h(s).

Moreover, u is defined by the parametric equations (4.81).

Remark 4.2. If a,b, c and f, g, h are C¥—functions, k > 2, then u is a C* —function
as well.

It remains to examine what happens when J (0, 0) = 0, that is when the vectors

(a (0, Y0, 20) , b (x0, o, 20)) and (f' (0), ¢’ (0)) are parallel.
Suppose that there exists a C!—solution u of the Cauchy problem (4.86). Dif-
ferentiating the second equation in (4.86) we get

W (s) = ua (£ (5),9(5) f' () +uy (f(5),9(s) g (s)- (4.87)
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Computing at £ = z¢, y = Yo, 2 = 29 and s = 0, we obtain

{ a (o, Yo, 20) Uz (o, Yo) + b (Z0, Yo, 20) Uy (Z0, Yo) = ¢ (To, Yo, 20) (4.88)

F(0) uz (20, 90) + 9" (0) uy (z0,30) = 1’ (0).

Since w is a solution of the Cauchy problem, the vector (us (zo,%0) , uy (o, Y0)) is
a solution of the algebraic system (4.88). But then, from Linear Algebra, we know
that the condition

ax?y?‘z bx?y?‘z CI?y?‘Z
mmk<(000)(000)(000)>1 (4.89)

f"(0) g'(0) h"(0)

must hold and therefore the two vectors

(a' (xOvyOvZO)b(x07y07Z0)?C(x()vyOvZO)) and (f/ (0)79/ (0)’}7’/ (0)) (490)

are parallel. This is equivalent to saying that I is parallel to the characteristic
curve at (xo, Yo, z0). When this occurs, we say that I is characteristic at the

point (xo, Yo, Zo).

Conclusion: If J(0,0) = 0, a necessary condition for the existence of a
C'—solution u = u (z,y) of the Cauchy problem in a neighborhood of (zo,yo)
is that Iy be characteristic at (o, Yo, 20)-

Now, assume I itself is a characteristic and let Py = (zo, Yo, 20) € Io. If we
choose a curve I'* transversal'® to Iy at Py, by Theorem 4.3 there exists a unique
integral surface containing I'* and, by Proposition 4.3 ¢), this surface contains Ip.
In this way we can construct infinitely many smooth solutions.

We point out that the condition (4.89) is compatible with the existence of a
C!—solution only if I is characteristic at Py. On the other hand, it may occur
that J(0,0) = 0, that Iy is non characteristic at Py and that solutions of the
Cauchy problem exist anyway; clearly, these solutions cannot be of class C*.

Let us summarize the steps to solve the Cauchy problem (4.86):

Step 1. Determine the solution
xr=X(s,t), y=Y(s,t), z=2Z(st) (4.91)
of the characteristic system

dx dy dz

E:a(xayaz)v _:b(xayvz)v _:C(xayvz) (492)

with initial conditions
X(S,O)Zf(s), Y(S,O):g(s), Z(S70):h’(s)a sel

19 Not tangent.
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Step 2. Compute J (s,t) on the initial curve Iy i.e.

f'(s) g (s)
X, (s,0) Yy (s,0)

J(S,O)—|

The following cases may occur:

2a. J (s,0) # 0, for every s € I. This means that Iy does not have char-
acteristic points. Then, in a neighborhood of Iy, there exists a unique solution
u=u(x,y) of the Cauchy problem, defined by the parametric equations (4.91).

2b. J (s9,0) = 0 for some sy € I and Ig is characteristic at the point
Py = (f(s0),9(s0),h(s0)). A C'—solution may exist in a neighborhood of Py
only if the rank condition (4.89) holds at Pp.

2c. J(s9,0) = 0 for some sy € I and I is not characteristic at Py.
There are no C'!—solutions in a neighborhood of Py. There may exist less regular
solutions.

2d. I is a characteristic. Then there exist infinitely many C!—solutions
in a neighborhood of I.

FEzample 4.5. Consider the non-homogeneous Burger equation
Uy + Uy = 1. (4.93)

As in Example 4.2, if y is the time variable y, u = u (x, y) represents a velocity field
of a flux of particles along the z—axis. Equation (4.93) states that the acceleration
of each particle is equal to 1. Assume

u(z,0) =h(x), z € R.

The characteristics are solutions of the system

at =~ O At dt

dzx dy 1 dz

and the initial curve I'y has the parametrization
r=f(s)=s, y=g(s)=0, z=h(s) seR.

The characteristics flowing out from Iy are

X(s,t):erngth(s), Y(s,t)=t, Z(s,t)=t+h(s).

Since
1+th'(s)0

s 1) = t+h(s) 1

=1+th'(s),
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we have J (s,0) = 1 and we are in the case 2a: in a neighborhood of Iy there exists
a unique C'—solution. If, for instance, h (s) = s, we find the solution

22 — y?

U=Vt oy

(IGR»yZ—l)

Now consider the same equation with initial condition

u(L o)=Y
4’ 2’

equivalent to assigning the values of v on the parabola x = 1—2. A parametrization
of I is given by

r=2s2, y=2s, z=s, s eR.

Solving the characteristic system with these initial conditions, we find

t2
X(s,t):sQtherE, Y (s,t) =25+ t, Z (s,t) = s +t. (4.94)
Observe that Iy does not have any characteristic point, since its tangent vector
(2s,2,1) is never parallel to the characteristic direction (s, 1, 1). However

25+t 2

J(s,1) = s+t 1

‘t

which vanishes for t = 0, i.e. exactly on I'j. We are in the case 2c. Solving for s
and t, t # 0, in the first two equations (4.94), and substituting into the third one,

we find
2

Y )
=+ -,
u(z,y) =35 £z -7
We have found two solutions of the Cauchy problem, satisfying the differential

2
equation in the region x > %-. However, these solutions are not smooth in a

neighborhood of I, since on Iy they are not differentiable.

e Conservation laws. According to the new definition, the characteristics of the
equation

y () =0 (¢ = 51).

with initial conditions

u(z,0)=g(z),
are the three-dimensional solution curves of the system
dz dy dz
E—q(z), = b 7 =0

with initial conditions

JS(S,O)ZS, y(S,O)ZO, z(s,O):g(s), seR.
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Integrating, we find
z=g(s), x=q(g(s)t+s, y=t
The projections of these straight-lines on the x,y plane are
z=q(g9(s)y+s.

which are the “old characteristics”, called projected characteristics in the general
quasilinear context.

e Linear equations. Consider a linear equation
a(z,y)us +b(x,y)u, =0. (4.95)
Introducing the vector w = (a,b), we may write the equation (4.95) in the form
Dyu=Vu-w =0.

Thus, every solution of the (4.95) is constant along the integral lines of the vector
w, i.e. along the projected characteristics, solutions of the reduced characteristic

system
dx (2,1) dy
— =a(z — =
dt Y dt

locally equivalent to the ordinary differential equation

b(z,y), (4.96)

b(x,y)dxfa(x,y)dyzo

If a first integral®® ¢ = 1 (x,y) of the system (4.96) is known, then the family of
the projected characteristics is given in implicit form by

¥ (z,y) =k, keR
and the general solution of (4.95) is given by the formula

u(z,y) =G @ (z,9),

where G = G (r) is an arbitrary C!'—function, that can be determined by the
Cauchy data.

Ezample 4.6. Let us solve the problem

Yz + TUy = 0
u(z,0) = a2
20 We recall that a first integral (also called constant of motion) for a system of o.d.e.

— =f(x), is a C*—function ¢ = ¢ (x) which is constant along the trajectories of the

system, i.e. such that V- f =0.
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Here w = (y, z) and the reduced characteristic system is

dzx dy

a at

x

locally equivalent to
zdzr — ydy = 0.

Integrating we find that the projected characteristics are the hyperbolas

Y(zy) =2 -y’ =k

and therefore 9 (z,y) = 22 — y? is a first integral. Then, the general solution of
the equation is

u(z,y) = G(z* — ).

Imposing the Cauchy condition, we have
G(2?) = 2*
from which G (r) = r2. The solution of the Cauchy problem is
u(z,y) = (2* —y*)%

Ezxample 4.7. An interesting situation occurs when we want to find a solution of
the equation (4.95) in a smooth domain 2 C R?, that assumes prescribed values
on a subset of the boundary v = 0f2. Figure 4.25 shows a possible situation. In
analogy with the problems in subsection 4.2.4, for the solvability of the problem
we have to assign the Cauchy data only on the so called inflow boundary v,
defined by

vi={oc€ey:w- v <0}

where v is the outward unit normal to . If a smooth Cauchy data is prescribed on
v;, & smooth solution is obtained by defining u to be constant along the projected
characteristics like I; and piecewise constant on those like l5. Observe that the
points at which w is tangent to « are characteristic.

4.5.3 Lagrange method of first integrals

We have seen that, in the linear case, we can construct a general solution, depend-
ing on an arbitrary function from the knowledge of a first integral for the reduced
characteristic system. The method can be extended to equations of the form

a(xvy»u) um+b(xvyau)uy :c(x,y,u). (497)

We say that two first integrals ¢ = ¢ (z,y,u) are independent if Vi and Vi are
nowhere colinear. Then:
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- projected characteristics

——— inflow boundary

Fig. 4.25. Cauchy problem in a domain

Theorem 4.4. Let ¢ = ¢ (x,y,u), ¥ = ¢ (z,y,u) be two independent first inte-
grals of the characteristic system and F = F (h, k) be a C'—function. If

Fno, + Frtp, #0,

the equation
F(p(z,y,u),¢ (z,y,u) =0
defines the general solution of (4.97) in implicit form.

Proof. 1t is based on the following two observations. First, the function

w = F(‘)O (I,y,u),#)(%y,u)) (498)

is a first integral. In fact,
Vw = Vo + F, Vi

so that
Vw- (a,b,¢) = FyVp- (a,b,¢) + FxVy - (a,b,c) =0

since ¢ and 1 are first integrals. Moreover, by hypothesis,
wy, = Fpep, + Fip, #0.
Second, if w is a first integral and w,, # 0, then equation
w(z,y,u) =0 (4.99)

defines implicitly an integral surface u = u (z, y) of (4.97). In fact, since w is a first
integral it satisfies the equation

a(z,y,u)wy +b(z,y,u)wy +c(x,y,u) w, =0. (4.100)
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Moreover, from the Implicit Function Theorem, we have

Wy Wy
Uy = ——, Uy = ——
Wy Wy

and from (4.100) we get easily (4.97). O

Remark 4.3. As a by-product of the proof, we have that the general solution of the
three-dimensional homogeneous equation (4.100) is given by (4.98).

Remark 4.4. The search for first integrals is sometimes simplified by writing the
characteristic system in the form

dzx dy du
a’(x7 y? u) b(x’ y? u) C(x’ y? u)'

Example 4.8. Consider again the nonhomogeneous Burger equation

Uy + Uy = 1

1 2
() -

A parametrization of the initial curve I is

with initial condition

and therefore I is a characteristic. We are in the case 2d.
Let us use the Lagrange method. To find two independent first integrals, we
write the characteristic system in the form

dz

z

=dy =dz

or

dr = zdz, dy = dz.

Integrating the two equations, we get

1,
x—iz = ¢, y—z=c
so that )
ooy ) =a- 372 Gy =y- >

are two first integral. Since
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and
Vi/’ (I, Y, Z) = (07 1, *1)

we see that they are also independent.
Thus, the general solution of Burger equation is given by

1
F<x§z2,yz> =0

where F is an arbitrary C'!—function.

Finally, to satisfy the Cauchy condition, it is enough to choose F' such that
F(0,0) = 0. As expected, there exist infinitely many solutions of the Cauchy
problem.

4.5.4 Underground flow

Consider the underground flow of a fluid (like water). In the wet region, only a
fraction of any control volume is filled with fluid. This fraction, denoted by ¢, is
called porosity and, in general, it depends on position, temperature and pressure.
Here, we assume ¢ depends on position only: ¢ = ¢ (z, y, 2).

If p is the fluid density and q =(q1, g2, ¢3) is the flux vector (the volumetric
flow rate of the fluid), the conservation of mass yields, in this case,

¢py +div(pq) = 0.

For q the following modified Darcy law is commonly adopted:

k
q:*;(vp+pg)

where p is the pressure and g is the gravity acceleration; k& > 0 is the permeability
of the medium and p is the fluid viscosity?!. Thus, we have:

op, — div [,OH_]C (Vp+ pg)] =0. (4.101)

Now, suppose that two immiscible fluids, of density p; and p,, flow under-
ground. Immiscible means that the two fluids cannot dissolve one into the other or
chemically interact. In particular, the conservation law holds for the mass of each
fluid. Thus, if we denote by S; and S the fractions (saturations) of the available
space filled by the two fluids, respectively, we can write

6 (Sipy), +divipyar) = 0 (4.102)

6 (S2p5), + div(pyan) = 0. (4.103)

2! For water: u=1.14-10° Kg x m x s~ '
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We assume that S; + 52 = 1, i.e. that the medium is completely saturated and
that capillarity effects are negligible. We set S; = S and So = 1 — S. The Darcy
law for the two fluids becomes

k
ai=—k— (Vp+ p,g)
M1

k
Q= —k—2 (Vp + p,8)
Mo

where k1, ko are the relative permeability coefficients, in general depending on S.
We make now some other simplifying assumptions:

— gravitational effects are negligible,

- k? ¢7 P15 P2y K15 o are constant,
- kl = kl (S) ,kQ = kQ (S) are known.
Equations (4.103) and (4.102) become:

$Si+divgr =0, —¢S, +divgs =0 (4.104)

while the Darcy laws take the form

k k
a=—k—Vp,  q=-k—Vp. (4.105)
H1 Ha

Letting g = q; + g2 and adding the two equations in (4.104) we have
div q =0.

Adding the two equations in (4.105) yields
1 (ki ko)
(k)
kE\py o po

1 by ka7
diva—Ap—kq’V<H—l+H—2> .
1 2

From the first equations in (4.104) and (4.105) we get

from which

k k
¢S, = — divq; = kV <—1> -Vp+ k—lAp
H1 H1

ky ko) * k k ky o ko \ *
_ <_1 + _2> @V <_1> kv <_1 + _2>
M1 M2 M1 M1 M1 M2
= qVH(S) = H (S)q-VS

where

w52 ()
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When q is known, the resulting quasilinear equation for the saturation S is
$S: = H'(5)qV5,

known as the Bukley-Leverett equation.
In particular, if q can be considered one-dimensional and constant, i.e. q =qi,
we have

gH' (S) Sy + ¢Sy =0

which is of the form (4.97), with v = S and y = ¢. The characteristic system is

(see Remark 4.10)
dx dt dS

gH'(S) ¢ 0

Two first integrals are
wy = ¢z —qH’ (S)t

and wy = S. Thus, the general solution is given by
F(¢z —qH' (9)t,S) = 0.

The choice
F (w1, w2) = w2 — f(w1),
yields
S =f(¢x—qH (5)t)
that satisfies the initial condition S (z,0) = f (¢z) .

4.6 General First Order Equations

4.6.1 Characteristic strips
We extend the characteristic method to nonlinear equations of the form
F(z,y,u,uz,uy) =0 (4.106)

We assume that F' = F (z,y,u, p, q) is a smooth function of its arguments and, to
avoid trivial cases, that F, + F? # 0. In the quasilinear case,

F(x»y»U»Pa‘I):a(x,yau)erb(x,y,u)q*C(%y,u)

and
Fp:a’(xvyvu)v Fq:b(xvyvu) (4.107)

so that F? + F? # 0 says that a and b do not vanish simultaneously.

Equation (4.106) has a geometrical interpretation as well. Let u = u (z,y) be
a smooth solution and consider a point (xq, yo, z0) on its graph. Equation (4.106)
constitutes a link between the components u, and u, of the normal vector

ng = (*um (-TOa yO) s Uy (an yO) ) 1)
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but it is a little more complicated than in the quasilinear case?? and it is not a
priori clear what a characteristic system for equation (4.106) should be. Reasoning
by analogy, from (4.107) we are lead to the choice

dzr
E F (‘T Y, z2,0,4 )
(4.108)
W By @,y 20).
dt y? 7p7

where z (t) = u (z (¢t),y(t)) and
p:p(t) = Ug (:E (t)vy(t))v q= q(t) = Uy (‘T (t)vy(t))' (4109)
Thus, taking account of (4.108), the equation for z is:

dz B dzr

Y
— = Up— — =pkF, F, 4.11
ikl dt+uydt pF, + qF, ( 0)

Equations (4.110) and (4.108) correspond to the characteristic system (4.76), but
with two more unknown functions: p (t) e ¢ (t).
We need two more equations. Proceeding formally, from (4.108) we can write

B e @00 0) Sy 1),y () 2

= U (T (t),y (1)) Fy 4 gy (2 (1), y (t)) F.

We have to get rid of the second order derivatives. Since u is a solution of (4.106),
the identity
F(z,y,u(z,y), ua (€, 9) , uy (z,y)) = 0.

holds. Partial differentiation with respect to x yields, since gy = Uyz:
Fy + Fyug + Fpugy + Fyugy = 0.
Computing along x = z (t), y = y (t), we get

Uaa (2 (), y () By +uay (2 () ,y (6)) Fy = —Fo — p (1) F. (4.111)

22 If, for instance F, # 0, by the Implicit Function Theorem, the equation
F' (20, Yo, 20, P, ¢) = 0 defines ¢ = ¢ (p) so that

F (0,0, 20,p,q (p)) = 0.

Therefore, the possible tangent planes to u at (zo, yo, 20) form a one parameter family
of planes, given by

p(x —z0) +q(p) (Y —yo) — (2 — 20) = 0.

This family, in general, envelopes a cone with vertex at (xo, yo, 20) , called Monge cone.
Each possible tangent plane touches the Monge cone along a generatrix.
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Thus, we deduce for p the following differential equation:

dp o

ﬁ_i m(x,y,z,p,q)—pFu(x,y,Z,p,q)-
Similarly, we find

dgq r

dat y (,9,2,p,9) — qFu (2, 9,2,p,9) -

In conclusion, we are lead to the following characteristic system of five au-
tonomous equations

dzx dy dz
ar _ 5 W _ g 9% _ JF, +qF 4.112
dt P dt q» dt b ;D+q q ( )
and
dp dgq
L _p_pr,  YM__p _4F, 4.11
dt P dt v (4.113)
Observe that F' = F (z,y,u,p, q) is a first integral of (4.112), (4.113). In fact
d
EF(‘T (t) vy(t) y 2 (t) vp(t) vq(t))
dx dy dz dp dq
==+ F~2+F=+FLp
ar P TTa T T
= FuFy+ FyFq+ Fy (pFp + qFy) + Fp (—Fp — pFy) + Fy (—=F, — qFy)
=0
and therefore, if F' (x (to),y (o), 2 (to),p (to), ¢ (to)) = 0 at some tg, then
F(z(t),y(t),z(t),p(t),q(t)) = 0. (4.114)

Thus, the curve,
‘T:‘T(t)v y:y(t)v z:z(t)’
still called a characteristic curve, is contained in an integral surface, while
p=p(t), a=q(t)

give the normal vector at each point, and can be associated with a piece of the
tangent plane, as shown in figure 4.26.

For this reason, a solution (z (t),y(t),z(t),p(t),q(t)) of (4.112), (4.113) is
called characteristic strip (Fig. 4.26).

Bl

Fig. 4.26. Characteristic strip
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4.6.2 The Cauchy Problem

As usual, the Cauchy problem consists in looking for a solution u of (4.106), as-
suming prescribed values on a given curve vy, in the z,y plane. If v, has the

parametrization
r=f(s), wy=g(s) selCR

we want that
u(f(s),g(s)):h(s), sel,

where h = h(s) is a given function. We assume that 0 € I and that f, g, h are
smooth functions in I.
Let Iy be the initial curve, given by the parametrization

r=f(s), y=g(s), z=h(s). (4.115)

Equations (4.115) only specify the “initial” points for z,y and z. To solve the
characteristic system, we have first to complete I into a strip

(f(s),9(s),h(s),p(s), ¥ (s))

where
¢ (s) =us(f(s),9(s)) and P (s)=uy(f(s),9(s)).

The two functions ¢ (s) and ¢ (s) represent the initial values for p and ¢ and cannot
be chosen arbitrarily. In fact, a first condition that ¢ (s) and v (s) have to satisfy
is (recall (4.114)):

F(f (S),g(S),h(S),(p(S)ﬂ/}(S)) =0. (4116)

A second condition comes from differentiating h (s) = u (f (s),g(s)). The result
is the so called strip condition

Wi (s) = (s) f'(s) + ¥ (s) g (). (4.117)

Now we are in position to give a (formal) procedure to construct a solution of
our Cauchy problem: Determine a solution u = u (z,y) of

F (95,9, U, umvuy) = 0?

containing the initial curve (f (s),g(s),h(s)):
1. Solve for ¢ (s) and ¢ (s) the (nonlinear) system

F(f(s)ag(s)ah(s)a<ﬁ(5)a¢(5) =0
@ () f'(s)+v(s)g (s)=h'(s).

2. Solve the characteristic system (4.112), (4.113) with initial conditions

z(0) = f(5),y(0) =g(s),2(0)=h(s),p(0) =¥ (s),q(0) =9 (s).

(4.118)
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Suppose we find the solution
x:X(s,t),y:Y(s,t),z:Z(s,t),p:P(s,t),q:Q(s,t).

3.Solvex = X (s,t),y =Y (s,t) for s,t in terms of z, y. Substitute s = S (z, y)
and t = T (z,y) into z = Z (¢, s) to yield a solution z = u (z, y).

Ezample 4.9. We want to solve the equation
u = ui — 3u§

with initial condition u (x,0) = z?. We have F (p,q) = p? — 3¢*> — u and the
characteristic system is

dzx dy dz

—9 - _ 92 g2 =2 4.11
priak S 6g, — =2p” —6q z (4.119)
dp dq
@ _ “a_ . 4.120
o =P ik ( )

A parametrization of the initial line I is

f(s)=s5,g(s)=0, h(s) =5

To complete the initial strip we solve the system (4.118):

p? =3y = s*
p = 2s.

There are two solutions:
v (s) =2s, Y (s) = *s.
The choice of ¢ (s) = s yields, integrating equations (4.120),
P (s,t) = 2se’, Q (s,t) = set
whence, from (4.119),
X (s,t) = 4s(e’ — 1) + s, Y (s,t) = —6s(e’ — 1), Z (s,t) = s*e?.

Solving the first two equations for s,¢ and substituting into the third one, we get
2
u(z,y) = (:er g) .
2
The choice of ¥ (s) = —s yields

u(z,y) = (:v— %)2

As the example shows, in general there is no uniqueness, unless system (4.118)
has a unique solution. On the other hand, if this system has no (real) solution,
then the Cauchy problem has no solution as well.
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Furthermore, observe that if (2o, yo, 20) = (f (0),¢(0),h (0)) and (po, go) is a
solution of the system

F (‘TO?yOv 20, Po, qO) =0
pof' (0) + qog’ (0) = 1’ (0),

by the Implicit Function Theorem, the condition

17(0) Fy(zo, %0, 20, o, 90) 40 (4.121)

q (0) Fq(ﬂﬁo,yo,zo,po,%)

assures the existence of a solution ¢ (s) and 1 (s) of (4.118), in a neighborhood of
s = 0. Condition (4.121) corresponds to (4.84) in the quasilinear case.
The following theorem summarizes the above discussion on the Cauchy problem

F (x,y,u, Uz, uy) =0 (4.122)
with initial curve Iy given by

z=1f(s), y=g(s), z=h(s). (4.123)

Theorem 4.5. Assume that:
i) F is twice continuously differentiable in a domain D C R® and F? + F} # 0;
ii) f, g, h are twice continuously differentiable in a neighborhood of s = 0.
iii) (po, qo) Is a solution of the system (5.30) and condition (4.121) holds.

Then, in a neighborhood of (zg, yo), there exists a C? solution z = u (z,y) of
the Cauchy problem (4.122), (4.123).

e Geometrical optics. The equation
A (ul+uy) =1 (c>0) (4.124)

is called eikonal equation and arises in (two dimensional) geometrical optics. The
level lines 7, of equation
u(z,y) =1t (4.125)

represent the “wave fronts” of a wave perturbation (i.e. light) moving with time ¢
and ¢ denotes the propagation speed, that we assume to be constant. An orthogonal
trajectory to the wave fronts coincides with a light ray. A point (x (t),y (t)) on a
ray satisfies the identity

u(z(t),y(t) =t (4.126)

and its velocity vector v = (&, ¥) is parallel to Vu. Therefore

Vu-v =|Vul||v|]=c|Vu].
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On the other hand, differentiating (4.126) we get
Vu - v =u;x + uyy =1
from which
A |Vul’ = 1.
Geometrically, if we fix a point (2o, ¥o, 20), equation c¢?(p? + ¢?) = 1 states that
the family of planes
z—z20=p(x—z0)+q(y—vo),

tangent to an integral surface at (zo, Yo, z0), all make a fixed angle § = arctan |Vu| ™' =
arctan ¢ with the z—axis. This family envelopes the circular cone (exercise)

(x = x0)* + (y —y0)? = *(2 — 20)°
called the light cone, with opening angle 26.
The eikonal equation is of the form (4.106) with??

1
F(xvyvu7pv q) = 5 [02(272 +q2) - 1] .

The characteristic system is?*:

dz 2 dy 2 dz 2 2 2 2
— A -~ — =1 4.12
dr ©p dr 4 dr Pt ( 7)
and J p
p q
—_— 0 —_— 0' 3
dr ’ dr (c3)

An initial curve Iy

:E:f(S), y:g(S), Z:h(s)v

can be completed into an initial strip by solving for ¢ and 1 the system

b (s) 2+ (s)? =c2
{ b (s) f (s) +(s)g (s) =h'(s). (4.128)

This system has two real distinct solutions if

()44 () > Ah (s)° (4.129)
while it has no real solutions if?°

F ()% 44 (s)* < h (s)°. (4.130)

23 The factor % is there for esthetic reasons.

24 Using T as a parameter along the characteristics.

25 System (4.128) is equivalent to finding the intersection between the circle €2 +n? = ¢ =2
and the straight line f'¢ + g'n = h’. The distance of the center (0,0) from the line is
given by

|

2
(/)2 +(g)
so that there are 2 real intersections if d < ¢!, while there is no real intersection if
d>c L.

d=
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If (4.129) holds, I'y forms an angle greater than ¢ with the z—axis and therefore
it is exterior to the light cone (Fig. 4.22). In this case we say that I is space-like
and we can find two different solutions of the Cauchy problem. If (4.130) holds,
Iy is contained in the light cone and we say it is time-like. The Cauchy problem
does not have any solution.

Given a space-like curve Iy and ¢, ¢ solutions of the system (4.128), the cor-
responding characteristic strip is, for s fixed,

z(t)=Ff(s)+c(s)t,  yt)=g(s)+c*(s)t,  z(t)=h(s)+t

pt)=0(s), q(t)=1(s).
Observe that the point (z (t), y (t)) moves along the characteristic with speed

@2 (1) + 92 (1) = \/¢* (s) + 97 (s5) = ¢

with direction (¢ (s),% (s)) = (p(t),q(t)). Therefore, the characteristic lines are
coincident with the light rays. Moreover, we see that the fronts v, can be con-
structed from 7, by shifting any point on v, along a ray at a distance ct. Thus,
the wave fronts constitute a family of “parallel” curves.

- I timelike’\ -
I" spacelike (___.) =
\

.
7

b o

Fig. 4.27. Space-like and time-like initial curves

Problems

4.1. Using Duhamel’s method (see subsection 2.8.3) solve the problem

et +veg = f(x,t) zeR, t>0
c(z,0)=0 z € R.

Find an explicit formula when f (z,t) = e ‘sinz.
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[Hint. For fixed s > 0 and ¢ > s, solve

wg +vw,; =0
w(z,s;s) = f(z,s).

Then, integrate w with respect to s over (0,t)].

4.2. Consider the following problem (a > 0):

us + au, = f(x,t) 0<z<R,t>0
u(0,t) =0 t>0
u(z,0)=0 0<z<R.

Prove the stability estimate

R t rR
/ u? (z,t) de < et/ / f? (z,s) dzds, t>0.
0 o Jo

[Hint. Multiply by u the equation. Use a > 0 and the inequality 2fu < f2 + u? to

obtain
R

R R
— u? (z,t) dx < / 2 (x,t)dz + / u? (z,t) dz.
dt Jo 0 0
Prove that if E (t) satisfies
Et) <Gt +E({t), E0)=0

then E () < e [, G (s) ds].

4.3. Solve Burger’s equation u; + uu, = 0 with initial data

1 <0
gl@)y=<1—-z 0<z<1
0 x> 1.

[Answer: See figure 4.28].

4.4. In the Green light problem (subsection 4.3.3) compute:
a) the car density at the light for ¢ > 0.

b) The time that a car located at the point g = —v,,,to at time to takes to
reach the light.

[Hint. b) If z =  (t) is the position of the car at time ¢, show that 2 = m 4 %]
4.5. Consider equation (4.19) in section 4.3.1, with initial density

() P1 x <0
xr) =
Po P, z > 0.
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t 1 shock , x=s(r) Lt

/

u=1

v

Fig. 4.28. The solution of problem 4.3

Assuming 0 < p; < p,,, determine the characteristics and construct a solution in
the whole half-plane ¢ > 0. Give an interpretation of your result.

4.6. Solve the problem

U + utty, =0 zeR, t>0
u(z,0) =g () zeR

where.
0 <0
glx)y=<1 0<z<1
0 x> 1.

4.7. Traffic in a tunnel. A rather realistic model for the car speed in a very
long tunnel is the following:

Um 0<p<p
vle) = Mog(%’") Pe <P = Py

where
Um

A= log (P /pe)

Observe that v is continuous also at p, = p,,e”*"/*, which represents a critical

density: if p < p, the drivers are free to reach the speed limit. Typical values are:
p. =7 car/Km, v, = 90 Km/h, p,, = 110 car/Km, v, /A = 2.75.

Assume the entrance is placed at = 0 and that cars are waiting (with max-
imum density) the tunnel to open to the traffic at time ¢ = 0. Thus, the initial

density is.
) Pmz<0
o z>o0
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a) Determine density and car speed; draw their graphs as a function of time.
b) Determine and draw in the x,t plane the trajectory of a car initially at
x = x9 < 0, and compute the time it takes to enter the tunnel.

4.8. Counsider the equation
u+q (u)ug =0
with initial condition u (z,0) = g (x). Assume that g,q' € C* ([a,b]) and ¢’q"" < 0
in [a,b]. Show that the family of characteristics
x=q (u)t+&, € € a,b] (4.131)

admits an envelope and that the point (z, t5) of shock formation, given by formulas

(4.37) and (4.38), is the point on this envelope with minimum time coordinate
(Fig. 4.29).

>
X

Fig. 4.29. Envelope of characteristics and point of shock formation

4.9. Find the solutions of the problems
u T uu, =0 t>0,zeR
u(z,0) == z € R.

4.10. Draw the characteristics and describe the evolution for ¢ — +oco of the
solution of the problem

U + uty =0 t>0,xreR
_ [sinz O<z<m
“(I’O)_{o r<0orx>m

4.11. Show that, for every a > 1, the function

-1 < (1—a)t

—« l-a)t<2x<0

o 0<2z<(a—1)t
(a—1t <2z
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is a weak solution of the problem

Uy + uty =0 t>0,zeR
-1 <0
u(x,O)—{ 1 z > 0.

Is it also an entropy solution, at least for some a?

4.12. Using the Hopf-Cole transformation, solve the following problem for the
viscous Burger equation

U + ULy = EUgy t>0,zeR
u(0,2) =H (z) z € R.
where H is the Heaviside function.

Show that, as t — 400, u (x,t) converges to a travelling wave similar to (4.68).

[Answer. The solution is
1
erfc (—z//4et) <xt/2>
ex
erfc ((z — t)/V/4et) P 2e

u(x,t) =

where
—+oo
erfc (s) = / exp (—2%) dz
S
is the complementary error function].

4.13. Find the solution of the linear equation
Uy + TUYy =Y
satisfying the initial condition u (0,y) = g (y), y € R, with
(a) g(y) =cosy and (b) g(y) =y
[Answer of (a):
x3 N x? ]
=zy— — +cos|y——]]
“= 3 L
4.14. Consider the linear equation
auy +buy = c(z,y),

where a, b are constants (b # 0), and the initial condition u (z,0) = h ().
1) Show that

y/b
u(x,y>:h<x7vy>+/ clar+z—wbrydr vy =afb.
0
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2) Deduce that a jump discontinuity at g of h, propagates into a jump of the
same size for u along the characteristic of equation = — vy = zg.

4.15. Let D = {(z,y) : y > 2} and a = a(z,y) be a continuous function in
D.

1) Check the solvability of the problem
{a(x,y)umuy—u (x,y) € D
u (z,2?) = g (x) z € R
2) Examine the case
a(z,y)=y/2 and g(z)=exp(—y2?),
where <y is a real parameter.
4.16. Solve the Cauchy problem
TUy — YUy =U— Y z>0,y>0
{u(y2,y)—y y > 0.

May a solution exist in a neighborhood of the origin?

[Answer.
u(ey) = (y+22y 1) /2
In no neighborhood of (0, 0) a solution can exist].

4.17. Consider a cylindrical pipe with axis along the x—axis, filled with a
fluid moving along the positive direction. Let p = p(z,t) and ¢ = 3p* be the
fluid density and the flux function. Assume the walls of the pipe are composed by
porous material, from which the fluid leaks at the rate H = kp?.

a) Following the derivation of the conservation law given in the introduction,
show that p satisfies the equation.

py+ ppy = —kp®

b) Solve the Cauchy problem with p (x,0) = 1.
[Answer. b) p(z,t) =1/ (1 + kt)].

4.18. Solve the Cauchy problem

up = —(uy)?  >0,yeR
u(0,y) =3y yeR

)

4.19. Solve the Cauchy problem

u926+u12/:4u
u(r,—1) =22 z € R.

[Answer: u (z,y) = 2 + (y + 1)2]
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4.20. Solve the Cauchy problem
c? (u?C + ui) =1
u (cos s,sins) = 0 seR.

[Answer: There are two solutions

v (o) = = {1 Vo

c

whose wave fronts are shown in figure 4.30].

Fig. 4.30. Solutions of problem 4.20
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5.1 General Concepts

5.1.1 Types of waves

Our dayly experience deals with sound waves, electromagnetic waves (as radio or
light waves), deep or surface water waves, elastic waves in solid materials. Oscil-
latory phenomena manifest themselves also in contexts and ways less macroscopic
and known. This is the case, for instance, of rarefaction and shock waves in traffic
dynamics or of electrochemical waves in human nervous system and in the regula-
tion of the heart beat. In quantum physics, everything can be described in terms
of wave functions, at a sufficiently small scale.

Although the above phenomena share many similarities, they show several dif-
ferences as well. For example, progressive water waves propagate a disturbance,
while standing waves do not. Sound waves need a supporting medium, while elec-
tromagnetic waves do not. Electrochemical waves interact with the supporting
medium, in general modifying it, while water waves do not.

Thus, it seems too hard to give a general definition of wave, capable of covering
all the above cases, so that we limit ourselves to introducing some terminology and
general concepts, related to specific types of waves. We start with one-dimensional
waves.

a. Progressive or travelling waves are disturbances described by a function
of the following form:
u(x,t) =g (x —ct).
For t = 0, we have u (x,0) = g (z), which is the “initial” profile of the perturbation.
This profile propagates without change of shape with speed |c|, in the positive

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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(negative) x—direction if ¢ > 0 (¢ < 0). We have already met this kind of waves in
Chapters 2 and 4.

b. Harmonic waves are particular progressive waves of the form
u(x,t) = Aexp {i (kz — wt)}, Ak,weR. (5.1)
It is understood that only the real part (or the imaginary part)
Acos (kx — wt)

is of interest, but the complex notation may often simplify the computations. In
(5.1) we distinguish, considering for simplicity w and k positive:

e The wave amplitude |Al;
e The wave number k, which is the number of complete oscillations in the space

interval [0, 27], and the wavelength

A=

which is the distance between successive maxima (crest) or minima (troughs)
of the waveform;

e The angular frequency w, and the frequency

which is the number of complete oscillations in one second (Hertz) at a fixed
space position;

e The wave or phase speed

w
cp = —
Pk
which is the crests (or troughs) speed;
]
A=2rlk '

Fig. 5.1. Sinusoidal wave
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c. Standing waves are of the form
u (z,t) = B cos kx coswt.

In these disturbances, the basic sinusoidal wave, cos kz, is modulated by the time
dependent oscillation B coswt. A standing wave may be generated, for instance, by
superposing two harmonic waves with the same amplitude, propagating in opposite
directions:

Acos(kz — wt) + Acos(kz + wt) = 2A cos kz cos wt. (5.2)

Consider now waves in dimension n > 1.

d. Plane waves. Scalar plane waves are of the form
u(x,t) = f (k- x—wt).

The disturbance propagates in the direction of k with speed ¢, = w/ |k|. The
planes of equation
0 (x,t) = k - x—wt = constant

constitute the wave-fronts.
Harmonic or monochromatic plane waves have the form

u(x,t) = Aexp {i(k -x—wt)}.

Here k is the wave number vector and w is the angular frequency. The vector k
is orthogonal to the wave front and |k| /27 gives the number of waves per unit
length. The scalar w/27 still gives the number of complete oscillations in one
second (Hertz) at a fixed space position.

e. Spherical waves are of the form
u (th) =v (’I", t)

where r = |x — xo| and xo € R" is a fixed point. In particular u (x,t) = e™%v (r)
represents a stationary spherical wave, while u (x,t) = v (r — ct) is a progressive
wave whose wavefronts are the spheres r — ¢t = constant, moving with speed |¢|
(outgoing if ¢ > 0, incoming if ¢ < 0).

5.1.2 Group velocity and dispersion relation

Many oscillatory phenomena can be modelled by linear equations whose solutions
are superpositions of harmonic waves with angular frequency depending on the
wave number:

w=w/(k). (5.3)

A typical example is the wave system produced by dropping a stone in a pond.
If w is linear, e.g. w (k) = ck, ¢ > 0, the crests move with speed ¢, independent
of the wave number. However, if w (k) is not proportional to k, the crests move with
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speed ¢, = w (k) /k, that depends on the wave number. In other words, the crests
move at different speeds for different wavelengths. As a consequence, the various
components in a wave packet given by the superposition of harmonic waves of
different wavelengths will eventually separate or disperse. For this reason, (5.3) is
called dispersion relation.

In the theory of dispersive waves, the group velocity, given by

cg = w (k)

is a central notion, mainly for the following three reasons.

1. It is the speed at which an isolated wave packet moves as a whole. A wave
packet may be obtained by the superposition of dispersive harmonic waves, for
instance through a Fourier integral of the form

+oo
w(z,t) = / a (k) et ®t g (5.4)

where the real part only has a physical meaning. Consider a localized wave packet,
with wave number k = kg, almost constant, and with amplitude slowly varying
with . Then, the packet contains a large number of crests and the amplitudes
|a (k)| of the various Fourier components are negligible except that in a small
neighborhood of ko, (ko — 9, ko + 0), say.

Figure 5.2 shows the initial profile of a Gaussian packet,

3 x2
Rew (z,0) = E exp {3—2} cos 14z,

slowly varying with z, with kg = 14, and its Fourier transform:
a (k) = 6exp{—8 (k —14)*}.

As we can see, the amplitudes |a (k)| of the various Fourier components are negli-
gible except when k is near k.

Fig. 5.2. Wave packet and its Fourier transform

Then we may write

w (k) = w (ko) + ' (ko) (k — ko) = w (ko) + ¢4 (k — ko)
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and
ko+6
u (z,t) ~ et lkor—w(ko)t} / a (k) elF=ko)@=cst) gp.. (5.5)
ko—$6

Thus, u turns out to be well approximated by the product of two waves. The first
one is a pure harmonic wave with relatively short wavelength 27/ky and phase
speed w (ko) /ko. The second one depends on z, t through the combination x — ¢,t,
and is a superposition of waves of very small wavenumbers k— kg, which correspond
to very large wavelengths. We may interpret the second factor as a sort of envelope
of the short waves of the packet, that is the packet as a whole, which therefore
moves with the group speed.

2. An observer that travels at the group velocity sees constantly waves of the
same wavelength 27 /k, after the transitory effects due to a localized initial per-
turbation (e.g. a stone thrown into a pond). In other words, ¢, is the propagation
speed of the wave numbers.

Imagine dropping a stone into a pond. At the beginning, the water pertur-
bation looks complicated, but after a sufficiently long time, the various Fourier
components will be quite dispersed and the perturbation will appear as a slowly
modulated wave train, almost sinusoidal near every point, with a local wave num-
ber k (z,t) and a local frequency w (z,t). If the water is deep enough, we expect
that, at each fixed time ¢, the wavelength increases with the distance from the
stone (longer waves move faster, see subsection 5.10.4) and that, at each fixed
point z, the wavelength tends to decrease with time.

Thus, the essential features of the wave system can be observed at a relatively
long distance from the location of the initial disturbance and after some time has
elapsed.

Let us assume that the free surface displacement w is given by a Fourier integral
of the form (5.4). We are interested on the behavior of w for ¢ > 1. An impor-
tant tool comes from the method of stationary phase! which gives an asymptotic
formula for integrals of the form

—+oo
I(t)= / f (k) e ®dk (5.6)

as t — +o00. We can put u into the form (5.6) by writing

+oo I

u(x,t) = / a (k) etlFs—w®l g,
then by moving from the origin at a fixed speed V' (thus z = V't) and defining
ok)=kV —-w(k).

Assume for simplicity that ¢ has only one stationary point kg, that is

w/ (ko) = V,

! See subsection 5.10.6
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and that w” (ko) # 0. Then, according to the method of stationary phase, we can

write
7 a(ko)

w” (ko) v/t

Thus, if we allow errors of order t~!, moving with speed V = ' (ko) = ¢, the
same wave number ko always appears at the position z = c4t. Note that the
amplitude decreases like /2 as t — +oo. This is an important attenuation effect
of dispersion.

u(Vt,t) =

exp {it [koV —w (ko)]} + O (t 7). (5.7)

3. Energy is transported at the group velocity by waves of wavelength 2m/k.
In a wave packet like (5.5), the energy is proportional to?

ko+4d
[l i = 25]a (ko)
kg*(s
so that it moves at the same speed of ko, that is c,.

Since the energy travels at the group velocity, there are significant differences
in the wave system according to the sign of ¢, — ¢,, as we will see in Section 10.

5.2 Transversal Waves in a String

5.2.1 The model

We derive a classical model for the small transversal vibrations of a tightly
stretched horizontal string (e.g. a string of a guitar). We assume the following
hypotheses:

1. Vibrations of the string have small amplitude. This entails that the changes in
the slope of the string from the horizontal equilibrium position are very small.

2. FEach point of the string undergoes vertical displacements only. Horizontal dis-
placements can be neglected, according to 1.

3. The vertical displacement of a point depends on time and on its position on
the string. If we denote by u the vertical displacement of a point located at
2 when the string is at rest, then we have u = u(z,¢) and, according to 1,
s (2,8)] < 1.

4. The string is perfectly flexible. This means that it offers no resistance to bend-
ing. In particular, the stress at any point on the string can be modelled by
a tangential® force T of magnitude 7, called tension. Figure 5.3 shows how
the forces due to the tension acts at the end points of a small segment of the
string.

5. Friction is negligible.

Under the above assumptions, the equation of motion of the string can be
derived from conservation of mass and Newton law.

2 See A. Segel, 1987.
3 Consequence of absence of distributed moments along the string.
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5 (,\' + Ax, .")
As m.\"i"zl\',f)
§ a(x,t)
_T { 'r’r ) o'..
’o
X x+Ax

Fig. 5.3. Tension at the end points of a small segment of a string

Let pg = py (z) be the linear density of the string at rest and p = p (x, t) be its
density at time ¢. Consider an arbitrary part of the string between = and x + Az
and denote by As the corresponding length element at time ¢. Then, conservation
of mass yields

po () Az = p (z,t) As. (5.8)

To write Newton law of motion we have to determine the forces acting on our small
piece of string. Since the motion is vertical, the horizontal forces have to balance.
On the other hand they come from the tension only, so that if 7 (z,t) denotes the
magnitude of the tension at x at time ¢, we can write (Fig. 5.3):

T (x + Az, t)cosa (z + Az, t) — 7 (x,t) cosa (z,t) = 0.

Dividing by Az and letting Az — 0, we obtain

0
— [r (z,t) cosa (z,t)] =0
ox
from which
T (x,t)cosa (z,t) = 70 (t) (5.9)
where 7 (t) is positive*.
The vertical forces are given by the vertical component of the tension and by
body forces such as gravity and external loads.

Using (5.9), the scalar vertical component of the tension at x, at time ¢, is given
by:

Tyert (Z,1) = 7 (x,t)sina (z,t) = 7o () tana(x, t) = 70 (t) uy (x,t).

4 1t is the magnitude of a force.
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Therefore, the (scalar) vertical component of the force acting on our small piece
of string, due to the tension, is

Toert (X + Az, t) — Tyert (T,1) = 70 (t) [ug (x + Az, t) — uy (x,t)].

Denote by f (z,t) the magnitude of the (vertical) body forces per unit mass. Then,
using (5.8), the magnitude of the body forces acting on the string segment is given
by:

x+Ax x+Azx
/ p(y,t) f(y,t)ds = / po (y) f (y,t) dy.

x

Thus, using (5.8) again and observing that uy, is the (scalar) vertical acceleration,
Newton law gives:

r+Ax z+Az
/ Po (y) uet (y, 1) dy = 7o () [uz (z + Az, t)—uy (2, )]+ / o (y) f (y,t) dy.

x

Dividing by Az and letting Az — 0, we obtain the equation
e — & (2,8) Uy = f (2,1) (5.10)

where ¢? (z,t) = 70 (t) /po (7).

If the string is homogeneous then p, is constant. If moreover it is perfectly
elastic® then 7 is constant as well, since the horizontal tension is nearly the same
as for the string at rest, in the horizontal position. We shall come back to equation
(5.10) shortly.

5.2.2 Energy

Suppose that a perfectly flexible and elastic string has length L at rest, in the
horizontal position. We may identify its initial position with the segment [0, L] on
the = axis. Since u;(x,t) is the vertical velocity of the point at x, the expression

1

L
Eein (t) = 3 /0 pou dx (5.11)

represents the total kinetic energy during the vibrations. The string stores

potential energy too, due to the work of elastic forces. These forces stretch an
element of string of length Ax at rest by®

x+Ax x+Ax

As — Ax = \/1+u%d:c—A:c:/ (\/lJru%—l)dac%%uiAx

x

® For instance, guitar and violin strings are nearly homogeneous, perfectly flexible and
elastic.
6 Recall that, at first order, ife < 1, v1+e —1 €/2.
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since |u;| < 1. Thus, the work done by the elastic forces on that string element is
L
dwW = §T0umAI.

Summing all the contributions, the total potential energy is given by:

1 L
Epot (t) = = / Tou2 dz. (5.12)
2.Jo
From (5.11) and (5.12) we find, for the total energy:

1

L
E(t) = 5/0 [pou? + Tou?] de. (5.13)

Let us compute the variation of E. Taking the time derivative under the integral,
we find (remember that p, = p, (z) and 7 is constant),

L
E(t) = / [PoUtUss + ToUzUg:) d.
0

By an integration by parts we get

L L
/ ToUgUgt AT = To[ty (L, ) us (L, t) — uy (0,1) ug (0,8)] — 70 / Utz dT
0 0

whence
] L
E(t) = / [poutt — ToUzg|urdr + To[uy (L, ) ue (L, t) — uy (0,¢) ug (0,8)].
0

Using (5.10), we find:

L
E(t) = /) pofur dr + To[ug (L, t) ug (L, t) — ug (0,8) ue (0,8)]. (5.14)

In particular, if f = 0 and u is constant at the end points 0 and L (therefore
ug (L, t) = ug (0,¢) = 0) we deduce E (t) = 0. This implies

E(t) = E(0)

which expresses the conservation of energy.

5.3 The One-dimensional Wave Equation

5.3.1 Initial and boundary conditions

Equation (5.10) is called the one-dimensional wave equation. The coefficient ¢ has
the dimensions of a speed and in fact, we will shortly see that it represents the wave
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propagation speed along the string. When f = 0, the equation is homogeneous and
the superposition principle holds: if u; and us are solutions of

Ut — CUgy = 0 (5.15)

and a,b are (real or complex) scalars, then au; + bug is a solution as well. More
generally, if uy, (x,t) is a family of solutions depending on the parameter k (integer
or real) and g = g (k) is a function rapidly vanishing at infinity, then

) —+oo

ug (x,t) g (k) and / ug (x,t) g (k) dk
k=1 -
are still solutions of (5.15).

Suppose we are considering the space-time region 0 < x < L, 0 <t < T. In
a well posed problem for the (one-dimensional) heat equation it is appropriate to
assign the initial profile of the temperature, because of the presence of a first order
time derivative, and a boundary condition at both ends z = 0 and = = L, because
of the second order space derivative.

By analogy with the Cauchy problem for second order ordinary differential
equations, the second order time derivative in (5.10) suggests that not only the
initial profile of the string but the initial velocity has to be assigned as well.

Thus, our initial (or Cauchy) data are

U(IE,O):Q(:E), ut(x,O):h(x), :EE[O,L].
The boundary data are formally similar to those for the heat equation. Typi-

cally:
Dirichlet data describe the displacement of the end points of the string:

u(0,t) =al(t), u(L,t) =0b(t), t>0.
If a(t) = b(t) = 0 (homogeneous data), both ends are fixed, with zero displace-

ment.

Neumann data describe the applied (scalar) vertical tension at the end points.
As in the derivation of the wave equation, we may model this tension by Tgu, so
that the Neumann conditions take the form

Touz (0,t) = a(t), Tous (L,t) = b(t), t>0.

In the special case of homogeneous data, a (t) = b (t) = 0, both ends of the string
are attached to a frictionless sleeve and are free to move vertically.

Robin data describe a linear elastic attachment at the end points. One way to
realize this type of boundary condition is to attach an end point to a linear spring”
whose other end is fixed. This translates into assigning

Toug (0,8) = ku (0,t), Toug (L, t) = —ku (L, 1), t>0,
where k (positive) is the elastic constant of the spring.

" Which obeys Hooke’s law: the strain is a linear function of the stress.
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In several concrete situations, mized conditions have to be assigned. For in-
stance, Robin data at x = 0 and Dirichlet data at z = L.

Global Cauchy problem. We may think of a string of infinite length and assign
only the initial data

u(z,0)=g(z), u (z,0) = h(z), z € R

Although physically unrealistic, it turns out that the solution of the global Cauchy
problem is of fundamental importance. We shall solve it in Section 5.4.

Under reasonable assumptions on the data, the above problems are well posed.
In the next section we use separation of variables to show it for a Cauchy-Dirichlet
problem.

Remark 5.1. Other kinds of problems for the wave equation are the so called Gour-
sat problem and the characteristic Cauchy problem. Some examples are given in

Problems 5.9, 5.10.

5.3.2 Separation of variables

Suppose that the vibration of a violin chord is modelled by the following Cauchy-
Dirichlet problem

Ut — CPUyy =0 O<ax<L,t>0
w(0,t) =u(L,t) =0 t>0 (5.16)
u(z,0)=g(x),ut(z,0)=h(x) 0<z<L

where ¢ = 70/p, is constant.

We want to check whether this problem is well posed, that is, whether a solution
exists, is unique and it is stable (i.e. it depends “continuously” on the data g and
h). For the time being we proceed formally, without worrying too much about the
correct hypotheses on g and h and the regularity of u.

e Ezistence. Since the boundary conditions are homogeneous®

struct a solution using separation of variables.
Step 1. We start looking for solutions of the form

, we try to con-

U (1) = w () v (2)
with v (0) = v (L) = 0. Inserting U into the wave equation we find

0=Up — Upe = 0" (t)v (x) — Pw (t) v ()
or, separating the variables,

lw// (t) B v// (x)
2 w(t) vz’ (5.17)

8 Remember that this is essential for using separation of variables.
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We have reached a familiar situation: (5.17) is an identity between two functions,
one depending on t only and the other one depending on z only. Therefore the two
sides of (5.17) must be both equal to the same constant, say A\. Thus, we are lead
to the equation

w” (t) — A*w (t) = 0 (5.18)

and to the eigenvalue problem
v (z) — M (xz) =0 (5.19)

v(0)=wv(L)=0. (5.20)
Step 2. Solution of the eigenvalue problem. There are three possibilities for the
general integral of (5.19).
a) If A =0, then v (z) = A+ Bz and (5.20) imply A = B = 0.
b) If A\ = p? > 0, then v (z) = Ae™*+ Be!® and again (5.20) imply A = B = 0.
¢) If A\ = —u? <0, then v (x) = Asin ux + B cos pz. From (5.20) we get

v(0)=B=0
v(l) =AsinpuL + BcospuL =0

whence
A arbitrary, B=0, uL =mmr, m=1,2,....

Thus, in case c) only we find non trivial solutions, of the form

Um (2) = Ay sinp,, @, Moy = % (5.21)
Step 3. Insert A = —p2 = —m?n?/L? into (5.18). Then, the general solution

is
Wy, (t) = Cpy, 08 (fy ct) + Doy sin (p,,ct) . (5.22)

From (5.21) and (5.22) we construct the family of solutions
U (z,1) = [am c0S (b, ct) + b, sin(p,,,ct)] sin p,, x, m=1,2,..

where a,, and b, are arbitrary constants.

U,, is called the m!"—normal mode of vibration or m
is a standing wave with frequency m/2L. The first harmonic and its frequency
1/2L, the lowest possible, are said to be fundamental. All the other frequencies
are integral multiples of the fundamental one. Because of this reason it seems that
a violin chord produces good quality tones, pleasant to the ear (this is not so, for
instance, for a vibrating membrane like a drum, as we will see shortly).

th _ harmonic, and

Step 4. If the initial conditions are

u(x,0) = am sinp,, ug (x,0) = chpfh,, sin p,,
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then the solution of our problem is exactly U, and the string vibrates at its
mt"—mode. In general, the solution is constructed by superposing the harmonics
U, through the formula

Z A, €08 (fh,, ct) + by, sin(p,, ct)] sin p,, = (5.23)
m=1

where the coefficients a,,, and b,,, have to be chosen such that the initial conditions

u(z,0) = Z am sin p,,x = g (z) (5.24)
m=1
and -
u (x,0) = Z Clhyy, b, SN 1, @ = h () (5.25)
m=1

are satisfied, for 0 <z < L.
Looking at (5.24) and (5.25), it is natural to assume that both g and h have
an expansion in Fourier sine series in the interval [0, L]. Let

I L
- 2
Gm = —/ g(x)sinp,,x de  and h,, = —/ h(z)sinp,,x dz
L/ L Jo

be the Fourier sine coefficients of g and h. If we choose

him
Am = Jm, b = ——, (526)
fm €
then (5.23) becomes
) il '
Z Jm cos(u,,ct) + e sin(p,,ct) | sin p,, (5.27)
m=1 m

and satisfies (5.24) and (5.25).

Although every U, is a smooth solution of the wave equation, in principle
(5.27) is only a formal solution, unless we may differentiate term by term twice
with respect to both x and ¢, obtaining

(04 — 202 )u (x,t) = 3 (04t — 202, Upy (z,1) = 0. (5.28)

m=1
This is possible if §,, and R, vanish sufficiently fast as m — 4o0. In fact, differ-
entiating term by term twice, we have

o0 7

. h
Ugg (2,1) = — Z L Gom OS (1 t) + Fon Hn

m=1

sin(u,,ct) | sin p,, = (5.29)
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and

o0
g ( Z [,umgmc 08y ) + iy hmesin(p,,ct) | sin p,,, . (5.30)

m=1

Thus, if, for instance,

. c - c
gl <~ and Jh| < - (5.31)
then
C’7r2 cC
’,umgm cos(p,,ct) ’ < 733 and ’,um hmesin(u,,ct)| < T

so that, by the Weierstrass test, the series in (5.29), (5.30) converge uniformly
in [0, L] x [0, +00). Since also the series (5.27) is clearly uniformly convergent in
[0, L] x [0, +00), differentiation term by term is allowed and u is a C? solution of
the wave equation.

Under which assumptions on g and h do the (5.31) hold?

Let g € C*([0,L]), h € C3([0,L]) and assume the following compatibility
conditions:

Then (5.31) hold®.
Moreover, under the same assumptions, it is not difficult to check that

u(y,t) = g (), ui(y,t) = h(z),  as (y1) = (2,0) (5.32)

for every z € [0, L] and we conclude that u is a smooth solution of (5.16).

e Uniqueness. To show that (5.27) is the unique solution of problem (5.16), we
use conservation of energy. Let u and v be solutions of (5.16). Then w = u — v is
a solution of the same problem with zero initial and boundary data. We want to
show that w = 0.

Formula (5.13) gives, for the total mechanical energy,

1 L
B (1) = Eun (1) + By () = 5 [ loout +7ou2) da

9 It is an exercise on integration by parts. For instance, if f € C*([0,L]) and f(0) =
F(L)= f"(0) = f" (L) =0, then, integrating by parts four times, we have

fmf/ f(z s1n d = / f(4) s1n )da:

; | L
[ o] < max| s 0] 2

and
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and in our case we have )
E({#)=0

since f =0 and w; (L, t) = w; (0,t) = 0, whence

E(t)=E(0)
for every t > 0. Since, in particular, w; (z,0) = w, (z,0) = 0, we have

Et)=E0)=0
for every ¢ > 0. On the other hand, Ec;y (t) > 0, Epo (t) > 0, so that we deduce
Eein(t) =0, Epot (1) =0

which force w; = w, = 0. Therefore w is constant and since w (z,0) = 0, we
conclude that w (z,t) = 0 for every ¢t > 0.

o Stability. We want to show that if the data are slightly perturbed, the cor-
responding solutions change only a little. Clearly, we need to establish how we
intend to measure the distance for the data and for the corresponding solutions.
For the initial data, we use the least square distance, given by!®

L
g1 — g2llp = (/0 lg1 (%) — g2 (x)|2dx>

For functions depending also on time, we define

L 1/2
[u—"2llp00 = sup (/ u(z,t) v(x,t)lzdw>
’ t>0 0

which measures the maximum in time of the least squares distance in space.

Now, let u; and ug be solutions of problem (5.16) corresponding to the data
g1, h1 and g, hs, respectively. Their difference w = u;— us is a solution of the
same problem with Cauchy data ¢ = g1— g2 and h = hy— he. From (5.27) we
know that

1/2

m

o .
hm .
Z lgm cos(p,,ct) + — s1n(umct)] sin p,, .

m=1

From Parseval’s identity!! and the elementary inequality (a +b)® < 2(a% + b?),
a,b e R, we can write

L L& h ’
/) lw (x,t)* de = 5 Z |:ém cos(p,,ct) + ,u—mc sin(,umct)]

m=1 m
- P\’
me1 HmC

9 The symbol ||g|| denotes a norm of g. See Chapter 6.
11 Appendix A.
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Since u,,, > 7/L, using Parseval’s equality again, we obtain

/OL w (z,8)? dz < Lmax{l, <%>2} i [gf’n +i}$n}

m=1
L\* 2 2
—9 L[ = [ h }
max{ (%) } lol3 -+ 1212
whence the stability estimate
2 L 2 2 2
s = wsll§ oo < 2max$ 1, () b (g = galls + b — halls] . (5.33)

Thus, “close” data produce “close” solutions.

Remark 5.2. From (5.27), the chord vibration is given by the superposition of har-
monics corresponding to the non-zero Fourier coefficients of the initial data. The
complex of such harmonics determines a particular feature of the emitted sound,
known as the timbre, a sort of signature of the musical instrument!

Remark 5.3. The hypotheses we have made on g and h are unnaturally restrictive.
For example, if we pluck a violin chord at a point, the initial profile is continuous
but has a corner at that point and cannot be even C!. A physically realistic
assumption for the initial profile g is continuity.

Similarly, if we are willing to model the vibration of a chord set into motion
by a strike of a little hammer, we should allow discontinuity in the initial velocity.
Thus it is realistic to assume h bounded.

Under these weak hypotheses the separation of variables method does not work.
On the other hand, we have already faced a similar situation in Chapter 4, where
the necessity to admit discontinuous solutions of a conservation law has lead to a
more general and flexible formulation of the initial value problem. Also for the wave
equation it is possible to introduce suitable weak formulations of the various initial-
boundary value problems, in order to include realistic initial data and solutions
with a low degree of regularity. A first attempt is shown in subsection 5.4.2. A
weak formulation more suitable for numerical methods is treated in Chapter 9.

5.4 The d’Alembert Formula

5.4.1 The homogeneous equation

In this section we establish the celebrated formula of d’Alembert for the solution
of the following global Cauchy problem:

(5.34)

Upg — CUgy =0 zeR, t>0
w(@,0)=g(2), w(@0)=h(z) zck.
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To find the solution, we first factorize the wave equation in the following way:
(O — cOg) (Or + cOy) u = 0. (5.35)

Now, let
vV = U + Cuyg. (5.36)

Then v solves the linear transport equation
vy —cvy =0

whence
v (@,t) = ¥ (@ + ct)

where v is a differentiable arbitrary function. From (5.36) we have
ug + cugy = ¥ (x + ct)

and formula (4.10) in subsection 4.2.2 yields

u(x,t)-/) Y(@—c(t—s)+cs) ds+ p(x—ct),

where ¢ is another arbitrary differentiable function.
Letting z — ct + 2¢s = y, we find

x+ct
w(z,t) = 1/ V() dy + o (z — ct). (5.37)

2¢c —ct

To determine ¢ and ¢ we impose the initial conditions:

w(2,0) = ¢ (z) = g (2) (5.38)
and
ue (2,0) =1 (z) — e’ (z) = h (x)
whence
Y (z) =h(z)+cqd (z). (5.39)
Inserting (5.39) and (5.38) into (5.37) we get:
x+ct
u@t) =5 [ ) e () dy+gle—a)
1 x+ct 1
=20 ) hWdyrslg@tet) —g@—ct)+g(@—ct)

and finally the d’Alembert formula

x+ct
u(z,t) = - [g(x +ct) +g(x—ct)] + % / h (y) dy. (5.40)

—ct

NN
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If g € C%(R) and h € C' (R), formula (5.40) defines a C*—solution in the half-
plane Rx [0, +00). On the other hand, a C?—solution u in Rx[0,4+00) has to be
given by (5.40), just because of the procedure we have used to solve the Cauchy
problem. Thus the solution is unique. Observe however, that no reqularizing effect
takes place here: the solution « remains no more than C? for any ¢ > 0. Thus, there
is a striking difference with diffusion phenomena, governed by the heat equation.

Furthermore, let u; and uy be the solutions corresponding to the data g1, hy
and g, ha, respectively. Then, the d’Alembert formula for u; —us yields, for every
z€Randtel0,T],

s (2,8) = ug (2, 8)] < llg1 = g2ll oo + T[22 = hal

where
llgr — g2llo =sup g1 (z) — g2 (z)[,  [[h1 — k2|, =sup |h1 (x) — ha (x)].
xeR x€R

Therefore, we have stability in pointwise uniform sense, at least for finite time.

Rearranging the terms in (5.40), we may write u in the form!?

u(z,t)=F(z+ct)+ G (z —ct) (5.41)

which gives u as a superposition of two progressive waves moving at constant speed
c in the negative and positive x — direction, respectively. Thus, these waves are not
dispersive.

The two terms in (5.41) are respectively constant along the two families of
straight lines v+ and v~ given by

x + ct = constant, x — ct = constant.

These lines are called characteristics'® and carry important information, as we
will see in the next subsection.

An interesting consequence of (5.41) comes from looking at figure 5.4. Consider
the characteristic parallelogram with vertices at the point A, B, C, D. From (5.41)
we have

F(C),
F(B), G(D) = G(O).
12 For instance:

1 1 x+ct
F(:c—|—ct):§g(a:—|—ct)—|—%/ h(y)dy
0

and

1 10
G(:c—ct):gg(a:—ct)—kg/ h(y) dy.
r—ct

13 In fact they are the characteristics for the two first order factors in the factorization
(5.35).
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>

&s X

B

S 5>

Fig. 5.4. Characteristic parallelogram

Summing these relations we get
[F(A) +G (A +[F (D) +G(D)] = [F(C)+G(C) +[F(B) + G (B)]
which is equivalent to
u(A)+u(D)=u(C)+u(B). (5.42)

Thus, knowing u at three points of a characteristic parallelogram, we can compute
u at the fourth one.

From d’Alembert formula it follows that the value of u at the point (z,t)
depends on the values of g at the points z — ¢t e x 4 ¢t and on the values of h over
the whole interval [z — ct, z + ct]. This interval is called domain of dependence
of (z,t) (Fig. 5.5).

From a different perspective, the values of g and h at a point z affect the value
of u at the points (x,t) in the sector

z—ct<x < z+ct,

which is called range of influence of z (Fig. 5.5). This entails that a disturbance
initially localized at z is not felt at a point z until time
- 2]

t= .
c

Remark 5.4. Differentiating the last term in (5.40) with respect to time we get:

x+ct
Soe | by = o [eh(e-tet) — (~oh ()

= %[h(erct)Jrh(x—ct)]
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Range of influence of z

(x,1)

xX—ct % A x+ct

Domain of dependence of (x,1)

Fig. 5.5. Domain of dependence and range of influence

which has the form of the first term with g replaced by h. It follows that if wy
denotes the solution of the problem

Wit — Wy =0 zeR, t>0
(5.43)
w(z,0)=0,w;(z,0)=h(z). z€R
then, d’Alembert formula can be written in the form
0
u(z,t) = —wy (z,t) +wp (2,1). (5.44)

ot

Actually, (5.44), can be established without reference to d’Alembert formula, as
we will see later.

5.4.2 Generalized solutions and propagation of singularities

In Remark 5.3 we have emphasized the necessity of a weak formulation to include
physically realistic data. On the other hand, observe that d’Alembert formula
makes perfect sense even for g continuous and h bounded. The question is in
which sense the resulting function satisfies the wave equation, since, in principle,
it is not even differentiable, only continuous. There are several ways to weaken the
notion of solution to include this case; here, for instance, we mimic what we did
for conservation laws.

Assuming for the moment that u is a smooth solution of the global Cauchy
problem, we multiply the wave equation by a C2?—test function v, defined in
R x [0,4+00) and compactly supported. Integrating over R x [0, +00) we obtain

/ /[utt — gy dadt = 0.
o Jr
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)

Fig. 5.6. Chord plucked at the origin (¢ = 1)

Now we integrate by parts both terms twice, to transfer all the derivatives from u
to v. This yields, being v zero outside a compact subset of R x [0, 4-00),

/ /CQUMU d:vdt:/ /CQUUM dxdt

o Jr o JRr

and

/ / ugv dadt = —/ ug (x,0)v (x,0)dz — / / usvy dxdt
o JRr R o Jr

_ /R e (2, 0) v (2, 0) — u (2, 0) ve (x, 0)] dz + /0 b /R wondadt.

Using the Cauchy data u(z,0) = g(x) and wu; (z,0) = h(z), we arrive to the
integral equation

/°° / ufvg — gy drdt — / [h(x)v(x,0)—g(x)v: (x,0)]de =0. (5.45)
0o Jr R

Note that (5.45) makes perfect sense for u continuous, g continuous and h bounded,
only. Conversely, if u is a C? function that satisfies (5.45) for every test function
v, then it turns out** that u is a solution of problem (5.34).

Thus we may adopt the following definition.

Definition 5.1. Let ¢ € C(R) and h be bounded in R. We say that u €
C (R x [0, +00)) is a generalized solution of problem (5.84) if (5.45) holds for

every test function v.

If ¢ is continuous and h is bounded, it can be shown that formula (5.41) con-
stitutes precisely a generalized solution.

4 Check it.



242 5 Waves and Vibrations

Figure 5.6 shows the wave propagation along a chord of infinite length, plucked
at the origin and originally at rest, modelled by the solution of the problem
uttfumzo $€R,t>0
u(z,0)=g(x), u (z,0)=0 zeR
where g has a triangular profile. As we see, this generalized solution displays lines
of discontinuities of the first derivatives, while outside these lines it is smooth.
We want to show that these lines are characteristics. More generally, consider

aregion G C Rx (0, +00), divided into two domains G™") e G®) by a smooth curve
I' of equation z = s (¢), as in figure 5.7. Let

S 1 ()
v = v1itvsj VA GOe (-i+s5@®))) (5.46)

be the unit normal to I', pointing inward to G(1).
Given any function f defined in G, we denote by

™ and f?
its restriction to the closure of G(!) and G(?), respectively, and we use the symbol

[ (s(), )] = D (s (1), 8) = FP (s (1) ).

for the jump of f across I, or simply [f] when there is no risk of confusion.

Now, let u be a generalized solution of our Cauchy problem, of class C? both in
the closure!® of G and G®, whose first derivatives undergo a jump discontinuity
on I'. We want to prove that:

Proposition 5.1. I is a characteristic.

Proof. First of all observe that, from our hypotheses, we have [u] = 0 and
[uz], [ut] # 0. Moreover, the jumps [u;] and [u:] are continuous along I'.

By analogy with conservation laws, we expect that the integral formulation
(5.45) should imply a sort of Rankine-Hugoniot condition, relating the jumps of
the derivatives with the slope of I" and expressing the balance of linear momentum
across I

In fact, let v be a test function with compact support in G. Inserting v into
(5.45), we can write

0:/ (CPuvgs — uvy) d:cdt:/ (...) d:cdtJr/ (...) dzdt. (5.47)
G G(2) G

15 That is, the first and second derivatives of v extend continuously up to I", from both
sides, separately.
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| B x=s(t)

'H

Fig. 5.7. Line of discontinuity of first derivatives

Integrating by parts, since v = 0 on G (dl denotes arc length on I"),

/( : <c2u(2)vm — u(2)vtt) dxdt
G 2

= / (r1uP v, — veu@v,) di — / (EuPv, — uEQ)vt) dzdt
r G2

= / (1/1021)90 - l/gvt) u® dl — / (1/102u;2) — l/guEQ))v dl,
r r

because [, (2 — uP]v dzdt = 0. Similarly,
/ (02u(1)vm - u(l)vtt) dxdt
am

= 7/ (1/1021)90 - l/gvt) u dl + / (1/102u§cl) - l/2u§1))v dl,
r r

because [, [uly — ulPv dzdt = 0 as well.

Thus, since [u] = 0 on I", or more explicitly [u (s (t),t)] =0, (5.47) yields

/ (¢ [ug) v1 — [ug] va) v dl = 0.

r

Due to the arbitrariness of v and the continuity of [u,] and [u;] on I", we deduce
02[’“1']1/17[”15]7/2:0? OHF,

or, recalling (5.46),
2 [Us]
[ue]

which is the analogue of the Rankine-Hugoniot condition for conservation laws.

$=—c

on I, (5.48)



244 5 Waves and Vibrations

On the other hand, differentiating [u (s (t),t)] = 0 we obtain

% [ (s (), )] = [ua (s (2), )18 (1) + [ua (s (£) ,8)] = O
- [[Zt]] on I (5.49)
Equations (5.48) and (5.49) entail
5(t) = xc

which yields
s (t) = %ct + constant

showing that I is a characteristic. [

5.4.3 The fundamental solution

It is rather instructive to solve the global Cauchy problem with g = 0 and a special
h: the Dirac delta at a point &, that is h (z) = §(x — &). For instance, this models
the vibrations of a violin string generated by a unit impulse localized at £ (a strike
of a sharp hammer). The corresponding solution is called fundamental solution
and plays the same role of the fundamental solution for the diffusion equation.
Certainly, the Dirac delta is a quite unusual data, out of reach of the theory
we have developed so far. Therefore, we proceed formally.
Thus, let K = K (x, &, t) denote our fundamental solution and apply d’Alembert
formula; we find
1 x+ct
K& =5 [ ooy (5.50)
CJz—ct
which at first glance looks like a mathematical UFO.
To get a more explicit formula, we first compute ffoo d (y) dy. To do it, recall
that (subsection 2.3.3), if H is the Heaviside function and

I (y) =

H(y+e)H(y€)_{21_s Tesyse (5.51)

2 0 everywhere else
is the unit impulse of extent ¢, then lim, ¢ I, (y) = 6 (y). Then it seems appropriate
T

to compute [~_ 4 (y) dy by means of the formula

/ 5(y)dy:15ifg/ I (y) dy.

Now, we have:
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Letting ¢ — 0 we deduce that (the value at zero is irrelevant)

/ §(y)dy =H (z), (5.52)

which actually is not surprising, if we remember that H’' = §. Everything works
nicely.
Let us go back to our mathematical UFO, by now ... identified; we write

/;m (y- gdy—hm/m (y- sdyfhm/ (y—€)dy

—ct

Then, using (5.50), (5.51) and (5.52), we conclude:

K(x,g,t):%{H(xfﬁJrct)fH(x—g—ct)}. (5.53)

Figure 5.8 shows the graph of K (z,&,t), with c=1

E+1

X

Fig. 5.8. The fundamental solution K (z,&,t)

Note how the initial discontinuity at x = £ propagates along the characteristics
r=£&+t.

We have found the fundamental solution (5.53) through d’Alembert formula.
Conversely, using the fundamental solution we may derive d’Alembert formula.
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Namely, consider the solution wy, of the Cauchy problem (5.43), that is with data
(see Remark 5.4)

w(z,0) =0, w(x,0)=h(z), z € R.

We may write

+oo
h(x)z/ 5(a — €)h(€) de

— 00

looking at h () as a superposition of impulses ¢ (z — &) h (§), concentrated at &.
Then, we may construct wy, by superposing the solutions of the same problem with
data d (x — &) h (§) instead of h. But these solutions are given by

K (z,&,t) h (£)

and therefore we obtain
—+oo

Wh (:E,t) = K(x,ﬁ,t)h(ﬁ) dg.

— 00

More explicitly, from (5.53):

+oo
wnle )= o [ {H (=€ et~ H (o= €~ )b h(€) de
x+ct xr—ct
S G BRIGL:
1 x+ct
~ 9% . h(y) dy.

At this point, (5.44) yields d’Alembert formula.
We shall use this method to construct the solution of the global Cauchy problem
in dimension 3.

5.4.4 Non homogeneous equation. Duhamel’s method

To solve the nonhomogeneous problem

{utt — gy = f(z,1) reR, t>0 (5.54)

u(z,0)=0,u (z,00=0 xR

we use the Duhamel’s method (see subsection 2.2.8). For s > 0 fixed, let w =
w (z,t; s) be the solution of problem

{ Wit — CPWyy = 0 reR, t>s (5.55)

w(x,s;8) =0, w (x,s;8) = f(z,s) z € R.
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Since the wave equation is invariant under (time) translations, from (5.40) we get
1 z+e(t—s)
W(w,t;S):%/i - Ty dy.
z—c(t—s)
Then, the solution of (5.54) is given by
£ z+e(t— s)
u(x,t):/ w(z,t;8) ds ds/ Y, 8) dy.
0 z—c(t—s)

In fact, u (x,0) = 0 and

¢ ¢
ug (x,t) = w (x, t; t) Jr/ wy (z,t;8) ds = / wy (z,t;8) ds
0 0

since w (z, t;t) = 0. Thus u, (z,0) = 0. Moreover,

t t
ug (2, 1) = wy (z, ;) + / wy (z,t;8) ds = f (z,t) Jr/ wyt (z,t;8) ds
0 0

and .
Ugy (2,1) = / Wey (2, ¢ 8) ds.
0

Therefore, since wg — Wy = 0,

U (T, — Uy z,t) = f(x, twtt z,t;s ds — 2 twm x,t;8) ds
(2,1) @) =@+ [ unlets) ds—¢ [ w i)
:f(ft,t).

Everything works and gives the unigue solution in C*(R x [0, +0)), under rather
natural hypotheses on f: we require f and f, be continuous in R X [0, +00).

Finally note that the value of u at the point (z,t) depends on the values of the
forcing term f in all the triangular sector S; . in figure 5.5.

5.4.5 Dissipation and dispersion

Dissipation and dispersion effects are quite important in wave propagation phe-
nomena. Let us go back to our model for the vibrating string, assuming that its
weight is negligible and that there are no external loads.

o FExternal damping. External factors of dissipation like friction due to the
medium may be included into the model through some empirical constitutive law.
We may assume, for instance, a linear law of friction expressing a force proportional
to the speed of vibration. Then, a force given by —kpyu;Axj, where k > 0 is a
damping constant, acts on the segment of string between = and x + Az. The final
equation takes the form

PoUtt — ToUzz + kpout = 0. (5.56)
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For a string with fixed end points, the same calculations in subsection 5.2.2 yield
) L
B() = [ hpu? do = kB () <0 (5.57)
0

which shows a rate of energy dissipation proportional to the kinetic energy.

For equation (5.56), the usual initial-boundary value problems are still well
posed under reasonable assumptions on the data. In particular, the uniqueness of
the solution follows from (5.57), since E (0) = 0 implies E (¢) = 0 for all ¢ > 0.

o Internal damping. The derivation of the wave equation in subsection 5.2.1
leads to

PolUtt = (Tvert)m

where T,er¢ 18 the (scalar) vertical component of the tension. The hypothesis of
vibrations of small amplitude corresponds to taking

Tvert = ToUg, (558)

where 7¢ is the (scalar) horizontal component of the tension. In other words, we
assume that the vertical forces due to the tension at two end points of a string
element are proportional to the relative displacement of these points. On the other
hand, the string vibrations convert kinetic energy into heat, because of the friction
among the particles. The amount of heat increases with the speed of vibration
while, at the same time, the vertical tension decreases. Thus, the vertical tension
depends not only on the relative displacements u,, but also on how fast these
displacements change with time'. Hence, we modify (5.58) by inserting a term
proportional to t:

Toert = Tlgz + YUzt (5.59)

where y is a positive constant. The positivity of v follows from the fact that energy
dissipation lowers the vertical tension, so that the slope u, decreases if u, > 0 and
increases if u,; < 0. Using the law (5.59) we derive the third order equation

PoUtt — TUzz — YUzt = 0. (5.60)

In spite of the presence of the term u,,¢, the usual initial-boundary value prob-
lems are again well posed under reasonable assumptions on the data. In particular,
uniqueness of the solution follows once again from dissipation of energy, since, in

this case'”,

L
B0~ [ o <0,
0

e Dispersion. When the string is under the action of a vertical elastic restoring
force proportional to u, the equation of motion becomes

Ut — gy + A =0 (A>0) (5.61)

16 In the movie The Legend of 1900 there is a spectacular demo of this phenomenon.
' Check it.



5.5 Second Order Linear Equations 249

known as the linearized Klein-Gordon equation. To emphasize the effect of the
zero order term Au, let us seek for harmonic waves solutions of the form

u(z,t) = Aethz=«t),

Inserting w into (5.61) we find the dispersion relation

w? — 2k* =\ = w(k) = £V k2 + A

Thus, this waves are dispersive with phase and group velocities given respectively

by
k) VeRk? + A dw c? k|
C = ——: Cr—m — = —,
: Kl 7 dk VERZ A
Observe that ¢4 < cp.

A wave packet solution can be obtained by an integration over all possible wave

numbers k :
—+oo

u(z,t) = A (k) ettke =Rt g (5.62)

— 00
where A (k) is the Fourier transform of the initial condition:

—+oo

A(k) = / u(x,0)e”*dz.

— 00

This entails that, even if the initial condition is localized inside a small interval, all
the wavelength contribute to the value of u. Although we have seen in subsection
5.1.2 that we observe a decaying in amplitude of order t~'/2 (see formula (5.7)),
these dispersive waves do not dissipate energy. For example, if the ends of the
string are fixed, the total mechanical energy is given by

L
E(t) = '%0/0 (uf + uZ + M?) d

and one may check that E (t) =0, t > 0.

5.5 Second Order Linear Equations

5.5.1 Classification

To derive formula (5.41) we may use the characteristics in the following way. We
change variables by setting

E=1z+ct, n=x—ct (5.63)
or

§+n
2

x = R t=
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and define ¢ ¢
nes—n
U = e .
(%) U<2 ,%>
Then L
Ug = §um + 5 Uy

and since uy = gy

1 1 1 1

Uen = g lew T o Uat + Tolat T et = 0.
The equation
Uey =0 (5.64)

is called the canonical form of the wave equation; its solution is immediate:

Un) =FE+GM0n)

and going back to the original variables (5.41) follows.
Consider now a general equation of the form:

augs + 2bugy + Cugy + dug + euy + hu = f (5.65)

with x,t varying, in general, in a domain {2. We assume that the coeflicients
a,b,c,d, e, h, f are smooth functions'® in 2. The sum of second order terms

a(z,t)upe + 20 (2, t) gt + ¢ (2, ) Ugy (5.66)

is called principal part of equation (5.65) and determines the type of equation
according to the following classification. Consider the algebraic equation

H (p,q) = ap* + 2bpg + c¢* = 1 (a>0). (5.67)

in the plane p, q. If b> —ac < 0, (5.67) defines a hyperbola, if b> —ac = 0 a parabola
and if b2 — ac < 0 an ellipse. Accordingly, equation (5.65) is called:

a) hyperbolic when b — ac < 0,
b) parabolic when b* — ac =0,
c) elliptic when b? — ac > 0.

Note that the quadratic form H (p, ¢) is, in the three cases, indefinite, nonnegative,
positive, respectively. In this form, the above classification extends to equations in
any number of variables, as we shall see later on.

It may happen that a single equation is of different type in different subdomains.
For instance, the Tricomi equation xuy — ug, = 0 is hyperbolic in the half plane
x > 0, parabolic on x = 0 and elliptic in the half plane = < 0.

Basically all the equations in two variables we have met so far are particular
cases of (5.65). Specifically,

18 E.g. C? functions.
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e the wave equation
Ut — CUgy =0

is hyperbolic: a(x,t) =1, c¢(x,t) = —c?, and the other coefficients are zero;
e the diffusion equation
U — Dugz =0

is parabolic: ¢ (z,t) = —D, d (x,t) = 1, and the other coeflicients are zero;
e Laplace equation (using y instead of t)

Ugg + Uyy = 0

is elliptic: a (z,y) =1, c(z,y) = 1, and the other coeflicients are zero.

May we reduce to a canonical form, similar to (5.64), the diffusion and the
Laplace equation? Let us briefly examine why the change of variables (5.63) works
for the wave equation. Decompose the wave operator as follows

8tt — 028m = (8t + Cam) (8t — Cam) (568)

If we introduce the vectors v =(c, 1) and w = (—c¢, 1), then (5.68) can be written
in the form

8tt — 028m = 8v8w.
On the other hand, the characteristics
z+ct=0, z—ct=0

of the two first order equations

¢ —cp, =0 and ¢, +cp, =0,

corresponding to the two factors in (5.68), are straight lines in the direction of w
and v, respectively. The change of variables

E=d(x,t)=z+ct n=1v(zt)=x—ct
maps these straight lines into £ = 0 and n = 0 and

1 1 1 1
85 = % (at + Cam) = %8‘,, 877 = % (at — Cam) = %8“,

Thus, the wave operator is converted into a multiple of its canonical form:
8tt — 028m = 8v8w = 4028&7.

Once the characteristics are known, the change of variables (5.63) reduces the wave
equation to the form (5.64).
Proceeding in the same way, for the diffusion operator we would have

Opa = 0105.
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Therefore we find only one family of characteristics, given by
t = constant.

Thus, no change of variables is necessary and the diffusion equation is already in
its canonical form.
For the Laplace operator we find

Oz + Oyy = (Oy + 10;) (Oy —i0y)
and there are two families of complex characteristics given by
¢ (z,y) = x + iy = constant, ¥ (z,y) = x — iy = constant.

The change of variables

vl
I

z =+ 1y, T — 1y

leads to the equation
0,zU =0

whose general solution is
U(2,Z2)=F(2)+G(Z).

This formula may be considered as a characterization of the harmonic function in
the complex plane.

It should be clear, however, that the characteristics for the diffusion and the
Laplace equations do not play the same relevant role as they do for the wave
equation.

5.5.2 Characteristics and canonical form

Let us go back to the equation in general form (5.65). Can we reduce to a canonical
form its principal part? There are at least two substantial reasons to answer the
question.

The first one is tied to the type of well posed problems associated with (5.65):
which kind of data have to be assigned and where, in order to find a unique
and stable solution? It turns out that hyperbolic, parabolic and elliptic equations
share their well posed problems with their main prototypes: the wave, diffusion
and Laplace equations, respectively. Also the choice of numerical methods depends
very much on the type of problem to be solved.

The second reason comes from the different features the three types of equation
exhibit. Hyperbolic equations model oscillatory phenomena with finite speed of
propagation of the disturbances, while for parabolic equation, “information” travels
with infinite speed. Finally, elliptic equations model stationary situations, with no
evolution in time.
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To obtain the canonical form of the principal part we try to apply the ideas
at the end of the previous subsection. First of all, note that, if a = ¢ = 0, the
principal part is already in the form (5.64), so that we assume a > 0 (say). Now
we decompose the differential operator in (5.66) into the product of two first order
factors, as follows!?:

a,att + 2b8mt + c@m =a (8t — A+am) (8t — AiaLE) (569)
where
A = b+ Vb% —ac

a

Case 1: b?> — ac > 0, the equation is hyperbolic. The two factors in (5.69)
represent derivatives along the direction fields

v(z,t) = (AT (z,1),1) and w(z,t)= (-4 (z,1),1)
respectively, so that we may write
a0t + 20041 + cOpy = a0y Oy .
The vector fields v and w are tangent at any point to the characteristics
¢ (z,t) =k and ¢ (x,t) = ke (5.70)
of the following quasilinear first-order equations
¢, —Atp, =0 and Y, — A", =0. (5.71)
Note that we may write the two equations (5.71) in the compact form
avi + 2bvgv; + cv? = 0. (5.72)

By analogy with the case of the wave equation, we expect that the change of
variables
§:¢(xvt)v 7721/)(95,75) (573)

should straighten the characteristics, at least locally, converting 050y into a mul-
tiple of O¢y.

First of all, however, we have to make sure that the transformation (5.73)
is mon-degenerate, at least locally, or, in other words, that the Jacobian of the
transformation does not vanish:

19 Remember that
az’® + 2bzy 4+ cy® = a (z — z1) (z — z2)

T1,2 = [—bi Vb2 — ac] /a.

where
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On the other hand, this follows from the fact that the vectors V¢ and Vi are
orthogonal to v and w, respectively, and that v, w are nowhere colinear (since
b? —ac > 0).

Thus, at least locally, the inverse transformation

90:95(5,77), t:W(f,T])

exists. Let

U =u(@(En),¥(En).

Then
Uy = U§¢m + Un%, Ut = U§¢t + Unwt

and moreover
Uy = ¢t2U§§ + 20Uy + 1/’t2Um7 + ¢ Ue + ¢, Uy

Uzt = ¢t¢mU§§ + ((bmwt + (btwm)Ufn + d)td)mUnn + ¢th§ + d)th’?'

Then
auyt + 2bugy + gy = AUge + 2BUey + CUyy + DU + EU,,

where20

A= ad} + 2646, + s, O =adi+ 2000, + eyl
B= a'(btd)t + b((bmd)t + ¢twm) + C¢mwm
D= a’¢tt + 2b¢mt + C¢mm7 E = a’wtt + 2b¢mt + Cd)mm'

Now, A = C = 0, since ¢ and ¢ both satisfy (5.72), so that
ats + 2bUyy + CUgy = 2BUg,, + DUe + EU,,.
We claim that B # 0; indeed, recalling that A*A~ = ¢/a, AT + AT = —2b/a and
¢y = ATy, Py = AT,

after elementary computations we find

B = 2 (ac — b2) G-

a

From (5.71) and (5.74) we deduce that B # 0. Thus, (5.65) assumes the form

Uen = F (&n, U, Ug, Uy)

which is its canonical form.

20 1t is understood that all the functions are evaluated at & = & (£,7n) and t = W (£,7) .
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The curves (5.70) are called characteristics for (5.65) and are the solution
curves of the ordinary differential equations

dzr dzr
—_— = = + _— = 7/17 .
g7 I ; (5.75)

respectively. Note that the two equations (5.75) can be put into the compact form

dz\ 2 dx

Ezample 5.1. Consider the equation
TUpy — (1 + :c2) Uz = 0. (5.77)

Since b —ac = (14 2?) /4 > 0, (5.77) is hyperbolic. Equation (5.76) is

dz\? dx
- 1 2) 22
T <dt> + ( + ) 7 0
which yields, for = # 0,

dzr 1+ 22 dzr
— = d —=0.
dt ;- amd =0

Thus, the characteristics curves are:
¢(z,t)=e (1+2°) =k and ¢ (2,t) =2z =ko.

We set
£=e? (1+x2) and n=u=z.

After routine calculations, we find D = E = 0 so that the canonical form is
Uen = 0.
The general solution of (5.77) is therefore
u(z,t) =F (¥ (1+2°)) + G (2)
with F' and G arbitrary C? functions.
Case 2: b? —ac = 0, the equation is parabolic. There exists only one family
of characteristics, given by ¢ (x,t) = k, where ¢ is a solution of the first order

equation

a’¢t + b¢m = 0?

since AT = A~ = —b/a. If ¢ is known, choose any smooth function 1) such that
V¢ and V) are linearly independent and

ayi + 20y, + ey = C # 0.
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Set
§:¢(xvt)v 7721/)(95,75)

and

Un)=u(@(En),¥(n).

For the derivatives of U we can use the computations done in case 1. However,
observe that, since b2 — ac = 0 and a¢, + bp, = 0, we have

B = a’(btwt + b((btwm + (bmwt) + C(bmd)m = wt(a’(bt + b¢m) + wm(b(bt + C¢m)
b b
Thus, the equation for U becomes
CUm? =F (6? m, U’ Uf? Un)

which is the canonical form.

FEzample 5.2. The equation

U — OUZe + Qg = U
is parabolic. The family of characteristics is

¢(x,t)=3t+x=k.
Choose 9 (z,t) = = and set

£ =3t +x, n==c.

Since V¢ = (3,1) and Vi = (1,0), the gradients are independent and we set

U&n) =u (677777) :
We have, D = E = 0, so that the equation for U is
Upm—-U=0
whose general solution is
UEn)=F@Ee"+G(E)e"
with F' and G arbitrary C? functions. Finally, we find

u(z,t)=F 3t+x)e ® +G (3t +z)e”.
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Case 3: b2 — ac < 0, the equation is elliptic. In this case there are no real
characteristics. If the coefficients a, b, ¢ are analytic functions?! we can proceed as
in case 1, with two families of complex characteristics. This yields the canonical
form

Uzw = g(z,w, U, Uz,Uw) Z,W € C.

Letting
z=¢+m,w=§—1in

and U (&,n) = U (€ + in, € — in) we can eliminate the complex variables arriving
at the real canonical form

ﬁéf + ﬁnn = C; (5,77, ﬁv ﬁfa ﬁn) .

5.6 Hyperbolic Systems with Constant Coefficients

In principle, it is always possible and often convenient, to reduce second order
equations to first order systems. For instance, the change of variables

Uy = wy and U = wa
transforms the wave equation uy; — c?ug, = f into the system
w, + Aw, =1, (5.78)

where?? w = (wy,wz) ", £ = (0, f) and

0 -1
a=(%3).

Note that the matrix A has the two real distinct eigenvalues A\ = Zc, with
eigenvectors
T T
vy =(1,—¢) and v_ =(1,¢)

normal to the characteristics, reflecting the hyperbolic nature of the wave equation.
More generally, consider the linear system

u; + Au, + Bu=f(z,t) xR, t >0,

where u and f are column vectors in R™ and A, B are constant m x m matrices,
with the initial condition

u(z,0)=g(x) x €R.

We say that the system is hyperbolic if A has m real distinct eigenvalues A1,
A2y ceey Ay

21 T.e. they can be locally expanded in Taylor series.
22 The symbol T denotes transposition.
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In this case, we can solve our initial value problem, extending the method of
characteristics. Namely, there exists in R™ a base of m (column) eigenvectors

Vi v vm
If we introduce the non singular matrix
I‘:(V1 |V2|...|Vm)
then
T AT = A = diag (A1, A2y .0y Am) -

Now, letting v = I'"*u, we discover that v solves the system

vi+ Av, = B*v + f* zeR, t>0 (5.79)
where B* = I 'BT and f*= I'"!f, with initial condition

v(z,0)=g* (2) =T 'g(z) z € R.

The left hand side of system (5.79) is uncoupled and the equation for the component
v of v takes the form:

(0k)e + Ak(vr)e = > bijvs + fi k=1,..,m.

j=1

Note that if by; = 0 for j # k, then the right hand side is uncoupled as well. Thus
the above equation becomes

(i)t + Ak (Vk)e = bor + fr. k=1,...m (5.80)

and can be solved by the method of characteristic, as described in Chapter 4.
Coherently, we call characteristics the straight lines ~,

z— Mt =k, k=1,...,m.
In the particular case of homogeneous systems, that is
u;+Au, =0 zeR, t>0, (5.81)

equation (5.80) is (vg): + Ak(vk)z = 0 and its general solution is the travelling
wave vy, (z,t) = wi(x — Agt), with wy arbitrary and differentiable. Then, since
u = I'v, the general solution of (5.81) is given by the following linear combination

of travelling waves:
m

u(z,t) =Y wi(z — \et)VE. (5.82)
k=1

Choosing wy = g; we find the unique solution satisfying u (z,0) = g ().
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o The telegrapher’s system. Systems of first order equations arise in many areas
of applied sciences. A classical example is

LI + Vi, + RI =0, (5.83)
CVi+I,+GV =0 (5.84)

which describes the flow of electricity in a line, such as a coaxial cable. The variable
x is a coordinate along the cable. I = I (z,t) and V (x,t) represent the current
in the inner wire and the voltage across the cable, respectively. The electrical
properties of the line are encoded by the constants C, capacitance to ground, R,
resistance and G, conductance to ground, all per unit length.

We assign initial conditions

Introducing the column vector u = (V, I)" and the matrices

() ()

we may write the system in the form
u; + Au, = Mu. (5.85)

Also in this case the matrix A has real distinct eigenvalues A1 2 = £1/v LC, with
corresponding eigenvectors

T T
vy = (\/5, \/f) vy = (\/5,—\/3) :
Thus, system (5.85) is hyperbolic. Let

(Ve Ve
r (ﬁ ﬁ)
and
wertusg (Hve ) ()
Then w solves Wi+ Au, — Dw (5.86)

where

A <1/\/ﬁ 0
0 —1/VLC

The left hand side of (5.86) is uncoupled. In the special case RC = GL (see
Problem 5.13), the full system is uncoupled and reduces to the equations

>, D-T-'MF=__L <RC+GLRCGL>.

2LC \ RC - GL RC+GL

1
wi + —wt = B (5.87)
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with initial conditions

wE (x,O):% [10(95) iVO(x)] _

Wiei Vi =wp (x).

Applying to both equations (5.87) the method of characteristics, we find (Section
4.2.3))
1 .
wE (z,t) = wi <:c + —t) e Tt

VLC

Finally, formula (5.82) gives

u(z,t) = {waL(:v +t/VLO) <§> +wy (z — t/VLC) <\%> } e Tt

Thus, the solution is given by the superposition of two damped travelling waves. If
RC # GL there is no explicit formulas and one has to resort to numerical methods.

Remark 5.5. When the relevant domain is a quadrant, say x > 0, t > 0, or a half-
strip (a,b) x (0 + 00), some caution is necessary to get a well posed problem. For
instance, consider the problem

w +Au, =0 z€[0,R],t>0 (5.88)
with the initial condition
u(z,0) =g (z) z € [0,R].

Which kind of data and where should they be assigned to uniquely determine u?
Look at the k—th equation of the uncoupled problem

(vk)e + Ak (vk)z = 0.

Suppose Ar > 0, so that the characteristic v, is inflow on x = 0 and outflow on
x = R. Guided by the scalar case (subsection 4.2.4), we must assign the value of
vk only on & = 0. On the contrary, if Ay < 0, the value of vy has to be assigned
onz = R.

The conclusion is: suppose that r eigenvalues (say A1, A2, ..., A.) are positive
and the other m — r eigenvalues are negative. Then the values of wvi, ..., v, have
to be assigned on x = 0 and the values of vry1,...,0m on * = R. In terms of
the original unknown u, this amounts to assign, on x = 0, r independent linear
combinations of the u components:

m

(Filu)k:chkuj k=1,2,...,r,

j=1

while other m — r have to be assigned on z = R.
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5.7 The Multi-dimensional Wave Equation (n > 1)

5.7.1 Special solutions

The wave equation
Uy — Au = f, (5.89)

constitutes a basic model for describing a remarkable number of oscillatory phe-
nomena in dimension n > 1. Here u = u (x,t), x €R™ and, as in the one-dimensional
case, c is the speed of propagation. If f = 0, the equation is said homogeneous and
the superposition principle holds. Let us examine some relevant solutions of (5.89).

e Plane waves. If k €R™ and w? = ¢2 |k|?, the function
u(x,t) = w (x - k—wt)
is a solution of the homogeneous (5.89). Indeed,
wy (x,t) — 2 Au (x,t) = w?w” (x - n—wt) — & |k[* w” (x - n—wt) = 0.
We have already seen in subsection 5.1.1 that the planes
x - k—wt = constant

constitute the wave fronts, moving at speed ¢, = w/ |k| in the k direction. The
scalar A = 27/ |k| is the wavelength. If w (2) = Ae'*, the wave is said monochro-
matic or harmonic.

o Cylindrical waves (n = 3) are of the form
u(x,t) =w(r,t)

where x = (z1,22,23), 7 = /2% + z3. In particular, solutions like u(x,t) =
e™tw (r) represent stationary cylindrical waves, that can be found solving the ho-
mogeneous version of equation (5.89) using the separation of variables, in axially
symmetric domains.

If the axis of symmetry is the x3 axis, it is appropriate to use the cylindrical
coordinates &1 = rcosf, zo = rsinf, x3. Then, the wave equation becomes?3

) 1 1
Ut — € | Upp + —Up + —UgH + Ugyay | = 0.
r r
Looking for standing waves of the form u (r,t) = e*“tw (r), A > 0, we find, after
dividing by c?e? et
1
w” (1) + =w' 4+ Nw = 0.
r

This is a Bessel equation of zero order. We know that the only solutions bounded
at r =0 are
w(r)=aJ(Ar), acR

23 Appendix C.
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where, we recall,
= (D) a2
Jo(z) = — (=
kZ:O (k)? (2)

is the Bessel function of first kind of zero order. In this way we obtain waves of
the form
u(r,t) = aJy (Ar) e

o Spherical waves (n = 3) are of the form
u (th) =w (’I", t)
where x = (21, 2, 23), 7 = |x| = \/2% + 23 + z3. In particular u (x,t) = e™*w (r)
represent standing spherical waves and can be determined by solving the homoge-

neous version of equation (5.89) using separation of variables in spherically sym-
metric domains. In this case, spherical coordinates

x1 =rcosfsiny, xo = rsinfsiny, x3cos,

are appropriate and the wave equation becomes?*
1 2 1 1 cos Y
Ut — Upp — —Up — —5 § —————=Ugg + Uy + Uy ¢ = 0. 5.90
2 { (sin)? o0 T T sin w} (590)

Let us look for solutions of the form w (r,t) = e*“w (r), A > 0. We find, after
simplifying out c?e’<t,

2
w” (r) + Zw' + Nw =0
r
which can be written?®
(rw)” 4+ Mrw = 0.

Thus, v = rw is solution of
v+ A% =0

which gives v (1) = a cos (Ar) +bsin (Ar) and hence the attenuated spherical waves

ei)\ct Cos (>"r) , w (,r’ t) _ bei)\ct sin (>"r) )
T T

(5.91)

w(r,t) =a

Let us now determine the general form of a spherical wave in R3. Inserting
u (x,t) = w(r,t) into (5.90) we obtain

2
wy — 2 {ww (r) + —wr} =0
r

24 Appendix C.
25 Thanks to the miraculous presence of the factor 2 in the coefficient of w'!
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which can be written in the form
(rw)y — ¢ (rw),, = 0. (5.92)

Then, formula (5.41) gives

F (r+ct) JrG(r—ct)
r r

w (’I", t) =

which represents the superposition of two attenuated progressive spherical waves.
The wave fronts of u, are the spheres r —ct = k, expanding as time goes on. Hence,
w, represents an outgoing wave. On the contrary, the wave w; is incoming, since
its wave fronts are the contracting spheres r + ct = k.

w; (1, t) + w, (1, t) (5.93)

5.7.2 Well posed problems. Uniqueness

The well posed problems in dimension one, are still well posed in any number of
dimensions. Let

QT:QX (O,T)

a space-time cylinder, where (2 is a bounded C!'—domain?® in R™. A solution
u (x,t) is uniquely determined by assigning initial data and appropriate boundary
conditions on the boundary 0f2 of 2.

More specifically, we may pose the following problems: Determine v = u (x,t)
such that:

Uy — CC AU = f in Qr
u(x,0) =g (x), u (x,0) = h(x) in 2 (5.94)
+ boundary conditions on 002 x [0,T)

where the boundary conditions are:
(a) u = h (Dirichlet),

(b) Opu = h (Neumann),

(¢) Opu+ au =h (a > 0, Robin),

(d) u = hy on Opf2 and d,u = hy on In{2 (mixed problem) with Oy {2 a
relatively open subset of 92 and dp 2 = 92\On 2.

The global Cauchy problem

— Ay = eR™,t>0
{u“ cAu=f x (5.95)

u (Xv 0) =g (X) y Ut (X,O) =h (X) x €R"
is quite important also in dimension n > 1. We will examine it with some details

later on. Particularly relevant are the different features that the solutions exhibit
forn =2 and n = 3.

26 As usual we can afford corner points (e.g. a triangle or a cone) and also some edges
(e.g. a cube or a hemisphere).
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Under rather natural hypotheses on the data, problem (5.94) has at most one
solution. To see it, we may use once again the conservation of energy, which is

proportional to:
1
E(t) = _/ {2+ vul} ax.
2 Ja

The growth rate is:
Et) = / {ututt + AV - Vu} dx.
[0}

Integrating by parts, we have

/ AV - Vu dx :c2/ Uy Uy do —/ AuAu dx
2 092 2

whence, since uy; — c2Au = f,

E(t) :/ {utt — c2Au}ut dx+02/ U U do :/ fuy dx+02/ Uy U do.
2 o9 2 o9

Now it is easy to prove the following result, where we use the symbol C"* (D)
to denote the set of functions h times continuously differentiable with respect to
space and k times with respect to time in D.

Theorem 5.1. Problem (5.94), coupled with one of the boundary conditions (a)—
(d) above, has at most one solution in C*? (Qr) N C* (Qr).

Proof. Let uy and ug be solutions of the same problem, sharing the same data.
Their difference w = u; — us is a solution of the homogeneous equation, with zero
data. We show that w (x,t) = 0.

In the case of Dirichlet, Neumann and mixed conditions, since either w, = 0
or wy = 0 on &2 x [0,T), we have E (t) = 0. Thus, since E (0) = 0, we infer:

1
E(t) = 5/ {wf + 2 |Vw|2} dx =0,  Vt>0.
2
Therefore, for each t > 0, both w; and |Vw (x,t)| vanish so that w (x,t) is constant.
Then w (x,t) = 0, since w (x,0) = 0.
For the Robin problem

. 9 2 d 9
E(t)=—c oww do = ——— aw® do
00 2.dt Joq
that is p )
c
—E({t)+— >do s =0.
dt{ ()+2/69aw 0’}
Hence,

E(t)+ —/ aw’do = constant
o8
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clty=r) (XO)

Fig. 5.9. Retrograde cone

and, being zero initially, it is zero for all ¢ > 0. Since a > 0, we again conclude
that w = 0. O

Uniqueness for the global Cauchy problem follows from another energy inequal-
ity, with more interesting consequences.

First a remark. For sake of clarity, let n = 2. Suppose that a disturbance
governed by the homogeneous wave equation (f = 0) is felt at xo at time ¢g. Since
the disturbances travel with speed ¢, u (xq, to) is, in principle, only affected by the
values of the initial data in the circle B, (x¢). More generally, at time tg — ¢,
u (X, to) is determined by those values in the circle B.,—s) (Xo). As t varies from
0 to o, the union of the circles B.(,—) (Xo) in the x,t space coincides with the so
called backward or retrograde cone with vertex at (xo,to) and opening # = tan~1 ¢,
given by (see Fig. 5.9):

Cxo,to = {(th): |X - X0| < C(tO - t)’ 0<t< tO}-

Thus, given a point X, it is natural to introduce an energy associated with its
backward cone by the formula

1
e(t) = —/ (u? + & |Vul*)dx.
2 Bc(tg—t)(xo)
It turns out that e (t) is a decreasing function. Namely:

Lemma 5.1. Let u be a C?—solution of the homogeneous wave equation in R™ x
[0,4+00). Then
é(t) <O0.

Proof. We may write

1 C(to*t) 9
e(t) = 5/ dr/ (u? + ¢ |Vu|”)do
0 8By (x0)
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so that

et) = 7% / (w2 + & |Vul*)do + / (wiuse + Vu - Vuy) dx.
0B ¢y —t)(®0) Be(tg—t)(20)

An integration by parts yields

/ Vu - Vug dx :/ Uy, do — / us Au dx
Be(tg—t) (z0) OB (tq—t)(%0) Be(tg—t) (z0)

whence

et) = / ug(uge — 2 Au)dx + < / (2cusuy, — u? — | Vul|*)do
Be(tg—t)(z0) 0B ¢y —t)(®0)

S / (2cuuy, — u? — 2| Vu|?)do
2 BBc(tU—t)(IU)
Now
|uptn| < Jug] [Vl
so that
2eusu, —u? — | Vul® < 2cluy] [Vu| —u? — 2 [Vul> = — (ug — ¢|Vu|)* <0

and therefore é (t) < 0. O

Two almost immediate consequences are stated in the following theorem:

Theorem 5.2. Let u € C? (R™ x [0, +00)) be a solution of the Cauchy problem
(5.95). Then:

(a) If g = h =0 in Bet, (%x0) and f =0 in Cx,t, then u =0 in Cx, 1,

(b) Problem (5.95) has at most one solution in C? (R™ x [0, +00)).

5.8 Two Classical Models

5.8.1 Small vibrations of an elastic membrane

In subsection 5.2.3 we have derived a model for the small transversal vibrations of
a string. Similarly, we may derive the governing equation of the small transversal
vibrations of a highly stretched membrane (think e.g. of a drum), at rest in the
horizontal position. We briefly sketch the derivation leaving it to the reader to fill
in the details. Assume the following hypotheses.

1. The vibrations of the membrane are small and vertical. This means that the
changes from the plane horizontal shape are very small and horizontal dis-
placements are negligible.
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2. The vertical displacement of a point of the membrane depends on time and
on its position at rest. Thus, if u denotes the vertical displacement of a point
located at rest at (x,y), we have u = u (z,y, t).

3. The membrane is perfectly flexible and elastic. There is no resistance to bend-
ing. In particular, the stress in the membrane can be modelled by a tangential
force T of magnitude 7, called tension®”. Perfect elasticity means that 7 is a
constant.

4. Friction is negligible.

Under the above assumptions, the equation of motion of the membrane can be
derived from conservation of mass and Newton’s law.

Let py = po (z,y) be the surface mass density of the membrane at rest and
consider a small “rectangular” piece of membrane, with vertices at the points
A, B,C, D of coordinates (z,y), (x + Az,y), (x,y+ Ay) and (x + Az,y+ Ay),
respectively. Denote by AS the corresponding area at time ¢. Then, conservation
of mass yields

po (z,y) Azdy = p(z,y,t) AS. (5.96)

To write Newton’s law of motion we have to determine the forces acting on our
small piece of membrane. Since the motion is vertical, the horizontal forces have
to balance.

The vertical forces are given by body forces (e.g. gravity and external loads)
and the vertical component of the tension.

Denote by f (z,y,t) k the resultant of the body forces per unit mass. Then, us-
ing (5.96), the body forces acting on the membrane element are well approximated
by:

p(z,y,t) f(z,y,t) AS k = Po (z,y) f (z,y,t) AzAy k.

Along the edges AB and CD, the tension is perpendicular to the x—axis and
almost parallel to the y—axis. Its (scalar) vertical components are respectively
given by

Tovert (%, Y, t) = Tuy (z,y,t) Az, Tvert (€, Y + Ay, t) >~ Tuy (x,y + Ay, t) Az.

Similarly, along the edge AC, the tension is perpendicular to the y—axis and almost
parallel to the x—axis. Its (scalar) vertical components are respectively given by

Toert (T,Y,t) = Tu, (z,y,t) Ay, Toert (T + Az, y,t) ~ Tu, (x + Az, y,t) Ay.

27 The tension T has the following meaning. Consider a small region on the membrane,
delimited by a closed curve . The material on one side of 7y exerts on the material on
the other side a force per unit length T (pulling) along . A constitutive law for T is

T (:l?, yvt) =T (:l?, yvt) N (:l?, yvt) (:l?, y) Shet

where N is the outward unit normal vector to v, tangent to the membrane.
Again, the tangentiality of the tension force is due to the absence of distributed
moments over the membrane.
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Thus, using (5.96) again and observing that uy, is the (scalar) vertical acceleration,
Newton’s law gives:

po (z,y) Az Ay ugy =

= T[uy (IE, Yy + Ayv t) — Uy (IE, Y, t)]AI + T[ur (‘T + AI? Y, t) — Uz (IE, Y, t)]Ay +
+po (z,9) f (2, y,1) AzAy.

Dividing for Az Ay and letting Az, Ay — 0, we obtain the equation
Upp — 02(uyy + Upe) = [ (2,9,1t) (5.97)

where C2 (.’1?, Y, t) = 7-/pO (.’1?, y)

o Square M embrane. Consider a membrane occupying at rest a square of side
a, pinned at the boundary. We want to study its vibrations when the membrane
is initially horizontal, with speed h = h (z,y). If there is no external load and the
weight of the membrane is negligible, the vibrations are governed by the following
initial-boundary value problem:

Upe — P AU =0 0<z<a,0<y<a,t>0
u(z,y,0) =0, us (z,y,0) = h(z,y) 0<z<a,0<y<a

)
u(O,y,t)zu(a,y,t):O 0<y<a,t>0
u(z,0,t) =u(x,a,t) =0 0<z<a,t>0.

The square shape of the membrane and the homogeneous boundary conditions
suggest the use of separation of variables. Let us look for solution of the form

u(z,y,t) =v(z,y)q(t)
with v = 0 at the boundary. Substituting into the wave equation we find
q" (t)v (z,y) — q(t) Av(z,y) =0
and, separating the variables,

¢ (1) _ Mo (zy)

—
q(t)  v(z,y)
whence?® the equation
q" (t) + AN (t) = 0. (5.98)
and the eigenvalue problem
Av+Nv =0 (5.99)

v(O,y):v(a,y):v(x,O):v(x,a)zo, 0<z,y<a.

28 The two ratios must be equal to the same constant. The choice of —\? is guided by
our former experience....
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We first solve the eigenvalue problem, using once more separation of variables and
setting v (z,y) = X (z) Y (y), with the conditions

X (0)=X(a) =0, Y(0)=Y(a)=0.
Substituting into (5.99), we obtain

YW s X'
Yo VT X @

where p is a new constant.
Letting v = A? — 42, we have to solve the following two one-dimensional
eigenvalue problems, in 0 < < a and 0 < y < a, respectively:

X" (z) +p*X (z) =0 Y (y) +v*Y (y) =0
X(0)=X(a)=0 Y (0) =Y (a) = 0.

The solutions are:

X (2) = Apsing,, @, p, =
a
Y (y) = By sinv,y, vy = nr
a
where m,n = 1,2, ... . Since A\* = v 4 2, we have
2
A =— (M +n%), mn=12,.. (5.100)
a

corresponding to the eigenfunctions
Umn (2,Y) = Cp sinp,, z sin v, y.
For A = Apmn, the general integral of (5.98) is
Gmn (£) = Gmn €OS cApnt + by, Sin et

Thus we have found infinitely many special solutions to the wave equations, of the
form,
Umn = (Qmn €OS CAmnt + bmp Sin CAppt) sin p,, x sin vy, y.

which, moreover, vanish on the boundary.

Every u,,, is a standing wave and corresponds to a particular mode of vi-
bration of the membrane. The fundamental frequency is fi1 = cv/2/2a, while the
other frequencies are f,, = cv/m? + n?/2a, which are not integer multiple of the
fundamental one (as they do for the vibrating string).

Going back to our problem, to find a solution which satisfies the initial condi-
tions, we superpose the modes u,,, defining

o0

u(z,y,t) = Z (ammn €08 CAmnt + bmp Sin cAppt) sin p,, x sin v, y.

m,n=1
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Since u (z,y,0) = 0 we choose G, = 0 for every m,n > 1. From w; (z,y,0) =
h (z,y) we find the condition

o0

Z Cbrmn Amn sin p,, x sinvy,x = h (z,y) . (5.101)

m,n=1

Therefore, we assume that h can be expanded in a double Fourier sine series as
follows:

o0
h(z,y) = Z B sin g,z sin v, y,
m,n=1

where the coefficients h,,, are given by

4

— [ h(z,y)sin M7 o sin Ey dzdy.
a a a

hmn =

Then, if we choose bmm = hmm/cAmn, (5.101) is satisfied. Thus, we have con-
structed the formal solution

> hmn
u(z,y,t) = Z =Y sin At sin g,z sin vy, y. (5.102)
m,n=1 mn

If the coefficients A /cAmyn vanish fast enough as m,n — +o00, it can be shown
that (5.102) gives the unique solution?’.

5.8.2 Small amplitude sound waves

Sound waves are small disturbances in the density and pressure of a compressible
gas. In an isotropic gas, their propagation can be described in terms of a single
scalar quantity. Moreover, due to the small amplitudes involved, it is possible to
linearize the equations of motion, within a reasonable range of validity. Three are
the relevant equations: two of them are conservation of mass and balance of linear
momentum, the other one is a constitutive relation between density and pressure.

Conservation of mass expresses the relation between the gas density p = p (x,t)
and its velocity v = v (x,t):

p; + div (pv) = 0. (5.103)

The balance of linear momentum describes how the volume of gas occupying a
region V reacts to the pressure exerted by the rest of the gas. Assuming that the
viscosity of the gas is negligible, this force is given by the normal pressure —pv on
the boundary of V' (v is the exterior normal to 9V).

29 We leave it the reader to find appropriate smoothness hypotheses on h, in order to
assure that (5.102) is the unique solution.
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Thus, if there are no significant external forces, the linear momentum equation
is
D 1
Y v+ (W) v = —-Vp. (5.104)
Dt p

The last equation is an empirical relation between p and p. Since the pressure
fluctuations are very rapid, the compressions/expansions of the gas are adiabatic,
without any loss of heat .

In these conditions, if v = ¢p/c, is the ratio of the specific heats of the gas
(v &~ 1.4 in air) then p/p? is constant, so that we may write

p=1f(p)=Cp (5.105)

with C constant.

The system of equations (5.103), (5.104), (5.105) is quite complicated and it
would be extremely difficult to solve it in its general form. Here, the fact that
sound waves are only small perturbation of normal atmospheric conditions allows
a major simplification. Consider a static atmosphere, where p, and py are constant
density and pressure, with zero velocity field. We may write

p=(1+35)py~ po

where s is a small dimensionless quantity, called condensation and representing
the fractional variation of the density from equilibrium. Then, from (5.105), we
have

P—Dbo~ f/ (Po) (p— Po) = Spof/ (Po) (5.106)
and
Vp ~ pof’ (o) Vs.

Now, if v is also small, we may keep only first order terms in s and v. Thus,
we may neglect the convective acceleration (v-V)v and approximate (5.104) and
(5.103) by the linear equations

vi= —ciVs (5.107)

and
st +divv =0 (5.108)

where we have set ¢Z = f' (py) = Cypy "

Let us pause for a moment to examine which implications the above lineariza-
tion has. Suppose that V and S are average values of |v| and s, respectively.
Moreover, let L and T typical order of magnitude for space and time in the wave
propagation, such as wavelength and period. Rescale v, s, x and ¢ as follows:

x t v (LE,TT) s(LE,TT)

E :Zv T = f? U(EvT) = Vv 3 U(EvT) = T (5109)

Substituting (5.109) into (5.107) and (5.108) we obtain

v gSo S |
?UT —+ TVU =0 and TO'T —+ ZleU —0
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In this equations the coefficients must be of the same order of magnitude, therefore

T L T L

which implies

As we see, ¢y is a typical propagation speed, namely it is the sound speed. Now,
the convective acceleration is negligible with respect to (say) vy, if

Vv? V
—UVU «<=U,
7 VU <« T

or V < ¢.
Thus if the gas speed is much smaller than the sound speed, our linearization
makes sense. The ratio M = V/c¢g is called Mach number.

We want to derive from (5.107) and (5.108) the following theorem in which we
assume that both s and v are smooth functions.

Theorem 5.3. a) The condensation s is a solution of the wave equation

sip—caAs =0 (5.110)

where co = /f' (py) = \/7Po/py is the speed of sound.
b) If v (x,0) = 0, there exists an acoustic potential ¢ such that v =V ¢. More-
over ¢ satisfies (5.110) as well.

Proof. a) Taking the divergence on both sides of (5.107) and the t—derivative
on both sides of (5.108) we get, respectively:

div v;= —chs
and
Stt= *(le V)t.

Since (div v); = div v, equation (5.110) follows.

b) From (5.107) we have
vi= —c3Vs.

Let .
o (x,t) = fcg/ s(x,2)dz.
0
Then
¢y = —cgs
and we may write (5.107) in the form

0
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Hence, since ¢ (x,0) =0, v (x,0) = 0, we infer
v (x,t) —=Vo (x,t) = v (x,0) =V (x,0) = 0.
Thus v =V ¢. Finally, from (5.108),
by = —cosy = cadiv v =ci A¢

which is (5.110). O

Once the potential ¢ is known, the velocity field v, the condensation s and the
pressure fluctuation p — py can be computed from the following formulas:

1
v =Vo, 5= *C—Qaﬁt, P —Po = —PoP;-
0

Consider, for instance, a plane wave represented by the following potential:
o (x,t) = w(x-k—wt).

We know that if ¢2 [k|* = w?, ¢ is a solution of (5.110). In this case, we have:

w
v =uw'k, s = —suw, P —po = poww’.

4
Example 5.3. Motion of a gas in a tube. Consider a straight cylindrical tube with
axis along the x;—axis, filled with gas in the region x; > 0. A flat piston, whose
face moves according to 1 = h (t), sets the gas into motion. We assume that
|h(t)] < 1 and |h'(t)] < ¢o. Under these conditions, the motion of the piston
generates sound waves of small amplitude and the acoustic potential ¢ is a solution
of the homogeneous wave equation. To compute ¢ we need boundary conditions.
The continuity of the normal velocity of the gas at the contact surface with the
piston gives
¢m1 (h (t) » L2, T3, t) =N (t) .

Since h (t) ~ 0, we may approximate this condition by
¢m1 (Ov X2, T3, t) =h (t) . (5111)

At the tube walls the normal velocity of the gas is zero, so that, if v denotes the
outward unit normal vector at the tube wall, we have

Vé - v =0. (5.112)

Finally since the waves are generated by the piston movement, we may look for
outgoing plane waves®® solution of the form:

@ (x,t) = w (x-n—ct)

30 We do not expect incoming waves, which should be generated by sources placed far
from the piston.
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where n is a unit vctor. From (5.112) we have
Vé-v=w(x-n—ct)n-v=0

whence n - v =0 for every v orthogonal to the wall tube. Thus, we infer n = (1,0, 0)
and, as a conseguence,
o (x,t) = w (x1—ct).

From (5.111) we get
w' (—ct) = h' (t)

so that (assuming h (0) = 0),
w(s) = —ch (—f) .

c
Hence, the acoustic potential is given by

1

6(xt) = —ch (t-2)

c
which represents a progressive wave propagating along the tube. In this case:

1
v =ci, s=-h (t—ﬁ), p:cpoh/(t—ﬁ)ero.
c c c

5.9 The Cauchy Problem

5.9.1 Fundamental solution (n = 3) and strong Huygens’ principle

In this section we consider the global Cauchy problem for the three-dimensional
homogeneous wave equation:

Upe — P AU =0 x €R3,t>0
{ " (5.113)

u(x,0) =g (x), ut(x,0)=h(x) x €R3.

We know from Theorem 5.2 that problem (5.113) has at most one solution u €
C? (IR3 X [0,+oo)). Our purpose here is to show that the solution u exists and
to find an explicit formula for it, in terms of the data g and h. Our derivation is
rather heuristic so that, for the time being, we do not worry too much about the
correct hypotheses on h and g, which we assume as smooth as we need to carry
out the calculations.

First we need a lemma that reduces the problem to the case g = 0 (and which
actually holds in any dimension). Denote by wj, the solution of the problem

wy — CAw =0 x €R3,t>0
(5.114)

w(x,0) =0, w(x,0)=h(x) x €R3.



5.9 The Cauchy Problem 275

Lemma 5.2. If w, has continuous third-order partials, then v = Oyw, solves the
problem

wy — CAw =0 x€R3,t>0
(5.115)
w(x,0)=g(x), w(x,0)=0 x €R3.
Therefore the solution of (5.118) is given by
u = Owy + Wh. (5.116)

Proof. Let v = 0;wg. Differentiating the wave equation with respect to ¢ we
have

0= 0¢(Opwg — C2Awg) = (O — C2A)8twg = vy — 2 Av.

Moreover,
v (x,0) = Bewy (x,0) = g (x), i (x.0) = Buvw, (x,0) = ¢ Aw, (x,0) = 0.

Thus, v is a solution of (5.115) and w = v 4 wy, is the solution of (5.113). O

The lemma shows that, once the solution of (5.114) is determined, the solution
of the complete problem (5.113) is given by (5.116).

Therefore, we focus on the solution of (5.114), first with a special h, given by the
three-dimensional Dirac measure at y, 6 (x — y). For example, in the case of sound
waves, this initial data models a sudden change of the air density, concentrated at
a point y. If w represents the density variation with respect to a static atmosphere,
then w solves the problem
Wy — AW =0 x €R3,t>0
(5.117)
{w (x,0) =0, w(x,0)=0(x—y) x €R3.

The solution of (5.117), which we denote by K (x,y,t), is called fundamental
solution of the three-dimensional wave equation. To solve (5.117) we use ... the
heat equation (!), approximating the Dirac measure with the fundamental solution
of the three-dimensional diffusion equation. Indeed, from section 2.3.4, (choosing
t=¢, D=1,n=3) we know that

1 x—yl?
F(XYﬁ)—WeXP{%}HNXY)

as € — 0. Denote by w, the solution of (5.117) with § (x —y) replaced by
I'(x—y,). Since I' (x —y,e) is radially symmetric with pole at y, we expect
that w. shares the same type of symmetry and is a spherical wave of the form
we = we (r,t), 7 = |x —y|. Thus, from (5.93) we may write

w. (ryt) = L Eet)  Glr=ct) (5.118)

T T




276 5 Waves and Vibrations

The initial conditions require
F(r)y+G((r)=0 and c(F'(r) =G (r))=rI(re)

or

F=-G and  G'(r)=—rI(re)/2c.

Integrating the second relation yields

G (r) _ !t /T e a d 1 1 e r 1
r)=— sexpi —— pds = — Xp< —— p —
2c(4me)3/2 J, Pl % dme ame \ P\ e

and finally

1 1 (r —ct)? 1 (r + ct)?
)= —{ — - - _rre)m L
we (r,1) 4mer { 4me P { 4e } 4me P { 4e

Now observe that the function

Fre) = i—en {1}
rE) = expq ——
Vdme P 4e
is the fundamental solution of the one-dimensional diffusion equation with x = r
and t = €. Letting ¢ — 0 we find3!

w. (rt) = ﬁ {(6(r — ct) — 5(r + ct)}.

Since r + ct > 0 for every ¢t > 0, we deduce that d(r + ct) = 0 and therefore we

conclude that

d(r —ct)
4dmer

Thus, the fundamental solution is an outgoing travelling wave, initially concen-

trated at y and thereafter on

OBct (y) = {x:[x —y[ = ct}.

The union of the surfaces 0B, (y) is called the support of K and coincides with
the boundary of the forward space-time cone, with vertex at (y,0) and opening
6 = tan~!c, given by

K (x,yt) = r=x-yl. (5.119)

Cyo={(x1t):[x—y|<ct,t>0}.

In the terminology of Section 4, dC5 , constitutes the range of influence of the
point y.

The fact that the range of influence of the point y is only the boundary of
the forward cone and not the full cone has important consequences on the nature
of the disturbances governed by the three-dimensional wave equation. The most
striking phenomenon is that a perturbation generated at time ¢ = 0 by a point
source placed at y is felt at the point xo only at time ¢y = |xo—y| /c (Fig. 5.10).
This is known as strong Huygens’ principle and explains why sharp signals are
propagated from a point source.

We will shortly see that this is not the case in two dimensions.

31 Here ¢ is one-dimensional.
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- e S

a)ct< |_r{, - '\.-l b) ct = ‘*"u e _\-“ c)ct> ‘-"b = \‘

Xo

Fig. 5.10. Huygens principle

5.9.2 The Kirchhoff formula

Using the fundamental solution as in subsection 5.4.3, we may derive a formula
for the solution of (5.114) with a general h. Since

h(x) = RS(S(X*Y)h(Y)d.V,

we may see h as a superposition of impulses ¢ (x —y)h (y) localized at y, of
strength h (y). Accordingly, the solution of (5.114) is given by the superposition
of the corresponding solutions K (x,y,t) h(y), that is

wn(x0) = [ Kxyonyay = [ =yl ct) () ay =

R3 rs  4mc|x —y]

o —ct 1
:/ Mdr/ h(o)do = —2/ h(o)do.
0 4dmer 9B, (x) 4rc?t 9B.s(x)

where we have used the formula
/ d(r—ct) f(r)dr=f(ct).
0

Lemma 5.2 and the above intuitive argument lead to the following theorem:

Theorem 5.4. (Kirchhoff’s formula). Let g € C* (R?) and h € C* (R?). Then,
0 1

1
)= — | —= d — h d 12
u(xt) ot |fl7cht ‘/cht(x) 9(o)do ) + 4mc2t ‘/cht(X) () do (5:120)

is the unique solution u € C* (R3 x [0, +00)) of problem (5.113)

Proof. Letting o = x+ctw, where w € 9B; (0), we have do = c*t?dw and we
may write

1

wy (00) = gy

/ g(o)do=— g (x+ctw) dw.
OBt (x)
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Since g € C* (R?), this formula shows that w, satisfies the hypotheses of Lemma
5.2. Therefore it is enough to check that

1 t
wp, (X,t) = —— / h(o)do = h (x+ctw) dw
47TC2t OBt (x)

solves problem (5.114). We have:
1 ct
Oywp, (x,t) = —/ h (x+ctw) dw + — Vh (x+ctw) - w dw. (5.121)
T JoB,(0) T JoB1(0)

Thus,
wp, (x,0)=0 and Jwy (x,0) = h(x).

Moreover, by Gauss’ formula, we may write

t 1
- Vh (x+ctw) - w dw = / d,h (o) do
47TCt 9Bt (x)

4T JaB,(0)
1

= Ah d
47‘('Ct Lct(x) (Y) y

1 ct
= / dr/ Ah (o) do
4drcet 0 9B, (x)

whence, from (5.121),

1
Opwy, (x,t) = i/ Vh (x+ctw) - w dw — —2/ Ah(y) dy
47'(' 331(0) 47‘('Ct Bct(x)
1

— Ah (o) do
47Tt BBCt(x)
1

47Tt BBCt(x)

On the other hand,
t 1
Awy, (x,t) = —/ Ah (x+ctw) dw = —2/ Ah (o) do

7 JoB,(0) aret Jop., (x)

and therefore
Appwp—c2 Awp, = 0.

O

Using the calculations in the proof of the above theorem, we may write the
Kirchhoff formula in the following form:

1

uxt) = 4mct?

/ {g(c)+ Vg (o) (6 —x)+th(o)}do. (5.122)
OBt (x)
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The presence of the gradient of g in (5.122) suggests that, unlike the one-
dimensional case, the solution u may be more irreqular than the data. Indeed,
if g € C¥(R?) and h € C*~1 (R3), k > 2, then we can only guarantee that u is
C*=1 and u, is C*~2 at a later time.

Formula (5.122) makes perfect sense also for g € C' (R®) and h bounded.
Clearly, under these weaker hypotheses, (5.122) satisfies the wave equation in an
appropriate generalized sense, as in subsection 5.4.2, for instance.

In this case, scattered singularities in the initial data h may concentrate at
later time on smaller sets, giving rise to stronger singularities (focussing effect, see

problem 5.17).

According to (5.122), u (x,t) depends upon the data g and h only on the surface
OBt (x), which therefore coincides with the domain of dependence for (x,t).

Assume that the support of g and h is the compact set D. Then u (x,t) is
different from zero only for ¢ty < t < tmax where tyin and tpax are the first and
the last time ¢ such that D NdB; (x) # 0. In other words, a disturbance, initially
localized inside D, starts affecting the point x at time ¢,,;, and ceases to affect it
after time ty,ax. This is another way to express the strong Huygens’ principle.

Fix t and consider the union of all the spheres 0B, (§) as € varies on 0D. The
envelope of these surfaces constitutes the wave front and bounds the support of
u, which spreads at speed ¢ (see Problem 5.16).

5.9.3 Cauchy problem in dimension 2

The solution of the Cauchy problem in two dimensions can be obtained from
Kirchhoft’s formula, using the so called Hadamard’s method of descent. Consider
first the problem

wy — CAw =0 x€RZ t>0
(5.123)

w(x,0) =0, w(x,0)=nh(x) x €RZ

The key idea is to “immerse” the two-dimensional problem (5.123) in a three-
dimensional setting. More precisely, write points in R? as (x,z3) and set h (x,73) =
h (x). The solution U of the three-dimensional problem is given by Kirchhoff for-
mula:

1
U (x,z3,t) = —/ h do. (5.124)
47TC2t cht(x’ms)

We claim that, since h does not depend on z3, U is independent of z3 as well, and
therefore the solution of (5.123) is given by (5.124) with, say, z3 = 0.

To prove the claim, note that the spherical surface 0B, (x,z3) is a union of
the two hemispheres whose equation are

ys = Fy (y1,42) = 3 =V 22 — r2,
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2 = (y; —x1)* 4 (y2 — 22)°. On both hemispheres we have:

do = \/1+ |VF|* dyidy,

2

r
= 1 + 702152 — ’)"2 dyldyQ =

where r

c2t2 — r2 dy1dy2

so that we may write (dy = dy1dys)

1 h
b= _/ (v) dy
27‘(’0 Bct(x) /C2t2 - |X - y|2

and U is independent of x3 as claimed. From the above calculations and recalling
Lemma 5.2 we deduce the following theorem.

U(Xa Z3,

Theorem 5.5. (Poisson’s formula). Let g € C® (R?) and h € C? (R?). Then,

wxt) = —— ﬁ/ 9(y)dy +/ hy)dy
’ 2me | Ot Bet(x) \/m Bet(x) \/m

is the unique solution u € C* (R? x [0, +00)) of the problem

ug — c2Au =0 x €RZ,t>0
W0 =g(x), wE)=h(x) xcR.

Also Poisson’s formula can be written in a somewhat more explicit form. In-
deed, letting y — x = ctz, we have

dy =*t?dz, |x —y|* = 2 |z|

whence
x+ ctz

9(y) /
dy = ct
/Bct(x) /22 — |x — y|? B1(0) 4 /1 |z

Then

9 9(y)
5y et
Bet(x) 4 /242 — |x — y|2
_ c/ g (x+ctz) d +C2t/ Vg (x+ctz).zdz
Bi1(0) , /1 |z B1(0) /11— |z|2

and, going back to the original variables, we obtain

1 g(y)+Vg(y) (y —x)+th(y)
ﬁ/B - : dy. (5.125)

u(x,t) =
’ A2 —|x—y
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Poisson’s formula displays an important difference with respect to its three-
dimensional analogue, Kirkhhoff’s formula. In fact the domain of dependence for
the point (x,t) is given by the full circle B.; (x) = {y: |x — y| < ct}. This entails
that a disturbance, initially localized at &, starts affecting the point x at time
tmin = |x — &| /c. However, this effect does not vanish for ¢t > t,,, since & still
belongs to the circle B.; (x) after tmin.

It is the phenomenon one may observe by placing a cork on still water and
dropping a stone not too far away. The cork remains undisturbed until it is reached
by the wave front but its oscillations persist thereafter.

Thus, sharp signals do not exist in dimension two and the strong Huygens
principle does not hold.

Remark 5.6. An examination of Poisson’s formula reveals that the fundamental
solution for the two dimensional wave equation is given by

1 H(ct—r)
2me v/ 242 — 2
where r? = |x — y| and H is the Heaviside function. For y fixed, its support is the

full forward space-time cone, with vertex at (y,0) and opening § = tan™! ¢, given
by

K (x,yt)=

Cyo={(x1t):[x—y|<ct,t>0}.

5.9.4 Non homogeneous equation. Retarded potentials

The solution of the non-homogeneous Cauchy problem can be obtained via
Duhamel’s method. We give the details for n = 3 only (for n = 2 see Problem
5.18). By linearity it is enough to derive a formula for the solution of the problem
with zero initial data:

—c2Au = N7 €R3,t >0
{utt Ay = f(x,t) x (5.126)

u(x,0) =0, u(x,00=0 x €R3.

Assume that f € C? (R? x [0,+00)). For s > 0 fixed, let w = w (x,;s) be the
solution of the problem

{wttCQAw—O xeR3 t>s

w(x,88) =0, w(x,898) =f(x,5) xR

Since the wave equation is invariant under time translations, w is given by
Kirkhhoff’s formula with ¢ replaced by t — s:

1
t;s) = ——— do.
Wt = gy [, e
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Then,

t t
u(x,t):/ w (%, t; ) ds:%/ i/ flo,s)do  (5.127)
0 dmc? Jo (t =) JoB. . x)

is the unique solution u € C? (R3 x [0, +00)) of (5.126)32.
Formula (5.126) shows that u (x,t) depends on the values of f in the full back-
ward cone
Cxit={(z,9): |z —x| <c(t—s),0<s<t}.

Note that (5.126) may be written in the form

w(x,t) = /B L f<y,t |XCY|>dy (5.128)

4 /B, x) X =¥

which is a so called retarded potential. Indeed, u (x,t) depends on the values of the
source f at the earlier times

Ix —y|
—=

t=t—

5.10 Linear Water Waves

A great variety of interesting phenomena occurs in the analysis of water waves.
Here we briefly analyze surface water waves, that is disturbances of the free surface
of an incompressible fluid, resulting from the balance between a restoring force,
due to gravity and/or surface tension, and fluid inertia due to an external action
(such as wind, passage of a ship, sub-sea earthquakes). We will focus on the special
case of linear waves, whose amplitude is small compared to wavelength, analyzing
the dispersive relations in the approximation of deep water.

5.10.1 A model for surface waves

We start deriving a basic model for surface water waves, assuming the following
hypotheses:

1. The fluid has constant density p and negligible viscosity. In particular, the force
exerted on a control fluid volume V' by the rest of the fluid is given by the
normal pressure? —pv on OV.

2. The motion is laminar (no breaking waves or turbulence) and two dimensional.
This means that in a suitable coordinate system x, z, where the coordinate x
measures horizontal distance and z is a vertical coordinate, we can describe
the free surface by a function z = h(z,t), while the velocity vector has the
form w =u (z, z,t) i+v (z, 2, t) k.

32 Check it, mimicking the proof in dimension one (subsection 5.4.4).
33 1 is the exterior normal unit vector to dV.



5.10 Linear Water Waves 283

3. The motion is irrotational, so that there exists a (smooth) scalar potential
¢ = ¢ (x,2,t) such that:

w =V = ,itd.k.

We need equations for the unknowns i and ¢, together with initial conditions and

Fig. 5.11. Vertical section of the fluid region

suitable conditions at the boundary of our relevant domain, composed by the free
surface, the lower boundary and the lateral sides.

We assume that the side boundaries are so far apart that their influence can
be neglected. Therefore x varies all along the real axis.

Furthermore, we assume, for simplicity, that the lower boundary is flat, at the
level z = —H.

Two equations for h and ¢ come from conservation of mass and balance of
linear momentum, taking into account hypotheses 2 and 3 above.

Mass conservation gives:
divw =A¢ =0 zre€R, —H<z<h(z,t). (5.129)

Thus, ¢ is a harmonic function.
Balance of linear momentum yields:

1
w + (w-V)w = g—;Vp (5.130)

where g is the gravitational acceleration.
Let us rewrite (5.130) in terms of the potential ¢. From the identity

1
wx curl w :§V(|w|2) — (w-V)w
we get, being curl w = 0,

(wV)w = V(o).
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Moreover, writing g =V(—gz), (5.130) becomes

o 1 a1
5 (Vo) +5V(Vel) = f;Vp+ V(—gz)

or
1
V{¢t+—|v¢|2+£+gz} =0.
2 p
As a consequence
1
+§|V¢|2+§+gz:0(t)

with C = C (t) is an arbitrary function. Since ¢ is uniquely defined up to an
additive function of time, we can choose C (t) = 0 by adding to ¢ the function

fot C (s)ds.

In this case, we obtain Bernoulli’'s equation
1
+51Vol + % + gz =0. (5.131)

We consider now the boundary conditions. On the bottom, we impose the so called
bed condition, according to which the normal component of the velocity vanishes
there; therefore

¢, (x,—H,t) =0, z eR. (5.132)

More delicate is the condition on the free surface z = h(x,t); in fact, since this
surface is itself an unknown of the problem, we actually need two conditions on it.

The first one comes from Bernoulli’s equation. Namely, the total pressure on
the free surface is given by

—3/2

P =DPat — Ohae {1+ h2} (5.133)

In (5.133) the term p,; is the atmospheric pressure, that we can take equal to zero,
while the second term is due to the surface tension, as we will shortly see below.

Thus, inserting z = h(x,t) and (5.133) into (5.131), we obtain the following
dynamic condition at the free surface:

hmx

e

gh =0, z€R, z="h(x,t). (5.134)

A second condition follows imposing that fluid particles on the free surface always
remain there. If the particle path is described by the equations z = z (t), z = z (t),
this amounts to requiring that

Differentiating yields

2(t) = ha (z (t), 1) & (t) = he (2 (t) 1) = 0
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that is, since & (t) = ¢, (z (t),2 (¢),t) and 2 = ¢, (z (t), 2 (), 1),
¢, — ht — P hy =0, z€R, z="h(x,t). (5.135)

which is known as the kinematic condition at the free surface.

Finally, we require a reasonable behavior of ¢ and h as x — Foc0, for instance
/|¢|<oo, /|h|<oo and ¢, h— 0 asx — Foo. (5.136)
R R

Equation (5.129) and the boundary conditions (5.132), (5.134), (5.135) con-
stitute our model for water waves. After a brief justification of formula (5.133),
in the next subsection we go back to the above model, deriving a dimensionless
formulation and a linearized version of it.

o Effect of surface tension. In a water molecule the two hydrogen atoms take an
asymmetric position with respect to the oxygen atom. This asymmetric structure
generates an electric dipole moment. Inside a bulk of water these moments balance,
but on the surface they tend to be parallel and create a macroscopic inter-molecular
force per unit length, confined to the surface, called surface tension.

The way this force manifests itself is similar to the action exerted on a small
portion of an elastic material by the surrounding material and described by a stress
vector, which is a force per unit area, on the boundary of the portion. Analogously,
consider a small region on the water surface, delimited by a closed curve . The
surface water on one side of v exerts on the water on the other side a force per
unit length £ (pulling) along ~.

Let n be a unit vector normal to the water surface and 7 a unit tangent vector
to v (Fig. 5.12a) so chosen that N = 7 X n points outwards the region bounded
by 7. A simple constitutive law for f is

f(x,t)=0(xt)N(x,t) x€7.

Thus, f acts in the direction of N; its magnitude o, independent of N, is called
surface tension.

Formula (5.133) is obtained by balancing the net vertical component of the
force produced by surface tension with the difference of the pressure force across
the surface.

Consider the section ds of a small surface element shown in figure 5.12b. A
surface tension of magnitude o acts tangentially at both ends. Up to higher order
terms, the downward vertical component is given by 20 sin (a/2). On the other
hand, this force is equal to (ps: — p)ds where p is the fluid pressure beneath the
surface. Thus,

(pat — p)ds = 20 sin (/2).

Since for small « we have ds &~ Rda and 2sin («/2) ~ «, we may write

Pat — D= —= = 0K (5.137)

™l Q
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ds

Fig. 5.12. Surface tension cIN

where k = R™! is the curvature of the surface. If the atmospheric pressure
prevails, the curvature is positive and the surface is convex, otherwise the curvature
is negative and the surface is concave, as in figure 5.12b. If the surface is described
by z = h(z,t), we have

hII

K= ——
{1+ h2)/?

which inserted into (5.137) gives (5.133).

5.10.2 Dimensionless formulation and linearization

The nonlinearities in (5.134), (5.135) and the fact that the free surface is an un-
known make the above model quite difficult to analyze by elementary means. How-
ever, if we restrict our considerations to waves whose amplitude is much smaller
than their wavelength, then both difficulties disappear. In spite of this simplifica-
tion, the resulting theory has a rather wide range of applications, since it is not
rare to observe waves with amplitude from 1 to 2 meters and a wavelength of up
to a kilometer or more.

To perform a correct linearization procedure, we first introduce dimensionless
variables. Denote by L, A and T, an average wavelength, amplitude and period>*,
respectively. Set

T =

Since the dimensions of k and ¢ are, respectively [length] and [length]® x [time] ",
we may rescale ¢ and h by setting:

¢(§v7]’7) = % (Lg’LThTT)v F(ﬁv T) = %h(Lg’LTh TT)'

34 The time a crest takes to travel a distance of order L.
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In terms of these dimensionless variables, our model becomes, after elementary
calculations:

A@ZO, *H0<TI<5F(§,T),§€R

3/2
@, + 5|V +]—'{FBF§§ {1+e2rg} } =0, n=cl(7),E€R

<15,7—FT—5¢§F§:0, nZEF(é,T),§ER
¢77 (gv 7H0v7-) = 0? § €R
where we have emphasized the four dimensionless combinations3®
A H gT? o
T o= L ogL? (5.138)

The parameter B, called Bond number, measures the importance of surface
tension while F, the Froude number, measures the importance of gravity.
At this point, the assumption of small amplitude compared to the wavelength,
translates simply into A
€= T <1
and the linearization of the above system is achieved by letting € =0 :

AP =0, —Hy<n<0, £€R
S, +F{I' —Blee} =0, n=0&€eR
&, —I.=0, n=0,&cR
b, (§,—Ho,7) =0, £eR
Going back to the original variables, we finally obtain the linearized system
A¢p =0, -H<2z<0,zeR (Laplace)
¢r + gh — Zhae =0, z=0,z€R (Bernoulli) (5.139)
¢, —ht =0, z=0,zeR (kinematic)
¢, (x,—H,t) =0, zeR (bed condition)

It is possible to obtain an equation for ¢ only. Differentiate twice with respect to

x the kinematic equation and use ¢,, = —¢,,; this yields

htoe = Grae = =@z (5.140)

Differentiate Bernoulli’s equation with respect to ¢ , then use hy = ¢, and (5.140).
The result is: o
¢tt + g¢z + _¢zzz = 07 zZ = 0, x € R. (5141)
p

35 Note the reduction of the number of relevant parameters from seven (A,L,T,H,g,0,p)
to four.
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5.10.3 Deep water waves
We solve now system (5.139) with the following initial conditions:
¢(x,2,00=0, h(zx,0)=ho(z), hi(z,0)=0. (5.142)

Thus, initially (¢ = 0) the fluid velocity is zero and the free surface has been per-
turbed into a non horizontal profile hg, that we assume (for simplicity) smooth,
even (i.e. hg (—x) = ho (x)) and compactly supported. In addition we consider the
case of deep water (H >> 1) so that the bed condition can be replaced by3®

¢, (x,2,t) >0 asz— —o0. (5.143)

The resulting initial-boundary value problem is not of the type we considered so
far, but we are reasonably confident that it is well posed. Since x varies over all
the real axis, we may use the Fourier transform with respect to z, setting

o~ ~

k = [ etk d h(k,t)= [ e k=p de.
o (k,z,t) ‘/Re o (x,z,t)dz, (k,t) ‘/Re (z,t)dx

Note that, the assumptions on hy implies that ﬁo (k) = ﬁo (k, 0) rapidly vanishes as
|k| — oo and hg (—k) = ho (k). Moreover, since ¢,, = —k?@, the Laplace equation
transforms into the ordinary differential equation

6. —K$=0

whose general solution is

& (k,z,t) = A(k,t) e** + B (k,t) e ¥,
From (5.143) we deduce B (k,t) = 0, so that

& (k,2,t) = A(k,t) eI, (5.144)

Trasforming (5.141) we get

$tt+g$z+%$z2z:0, z=0,keR
and (5.144) yields for A the equation

Ap + <g k| + % |k|3> A=0.

Thus, we obtain
Ak, t) =a (k) e +b(k)e ™!

36 For the case of finite depth see Problem 5.19.
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where (dispersion relation)

g
w (k) = \/gllir;IkIB,

bk, 2, t) = {a (k) <) 1 b (k) e*iw(k)f} elklz

and

To determine a (k) e b (k), observe that the Bernoulli condition gives
P (k,o,t)+{g+%k2}ﬁ(k,t)_o, keR (5.145)
from which
. iw(k)t —iw(k)t 9.2\7 _
zw(k){a(k)e b(k)e }+<g+ k)h(k,t)_o, keR
p
and for t =0
iw (k) {a (k) —b(k)} + (g + %k2> ho (k) = 0. (5.146)
Similarly, the kinematic condition gives
b, (k,0,t) + hy (k, t) =0, ke R. (5.147)

We have
¢z (kv 0, t) = |]€| {a (k) eiw(k)t +b (k) e*iw(k)t}

and since hy (k,0) = 0, we get, from (5.147) for t = 0 and k # 0,
a(k)+b(k) = 0. (5.148)

From (5.146) and (5.148) we have (k # 0)

i (g + %kQ) -
a(k)=—b(k) = T(k)ho (k)

and therefore

R i(9+ 2k?)

_ iw(k)t  —iw(k)t k|27
O kg t) = =55 {e e L elFi=Tg (1),

From (5.145) we deduce:

~

-1
B0 = (o4 20) 3 (h00) = g {60 e} T i)

N =
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and finally, transforming back3”

1 , | -
h(z,t) = — / {e“’“*w(k)t) + e“k“w(k)t)} ho (k) dk. (5.149)
R

4

5.10.4 Interpretation of the solution

The surface displacement appears in wave packet form. The dispersion relation

g
W(k):\/gllir;IkIB

shows that each Fourier component of the initial free surface propagates both
in the positive and negative xz—directions. The phase and group velocities are
(considering only k > 0, for simplicity)

ok
p

Cp =

+

ENS]

w
k

and
g+ 30k?/p

T gkt ok
gk + ok3/p

Thus, we see that the speed of a wave of wavelength A = 27 /k depends on its
wavelength. The fundamental parameter is
ok?

B* = 4r’B=—"
pg

where B is the Bond number. For water, under “normal” conditions,
p=1gr/em®, o =72 gr/sec’, g = 980 cm/sec? (5.150)

so that B* = 1 for wavelengths A ~ 1.7 cm. When A > 1.7 cm, then B* < 1,
k= QT" < 1 and surface tension becomes negligible. This is the case of gravity
waves (generated e.g. by dropping a stone into a pond) whose phase speed is well

approximated by
Cpr = g = @
P k V 2m
1 /g 1
Cg = 5 E = §Cp.

37 Note that, since also w (k) is even, we may write

while their group velocity is

h(z,t) = - /Rcos (ke — w () 8] ho () dk.

Y
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Thus, longer waves move faster and energy is slower than the crests.

On the other hand, if A < 1.7 cm, then B* > 1, k = QT" > 1 and this time
surface tension prevails over gravity. In fact, short wavelengths are associated with
relative high curvature of the free surface and high curvature is concomitant with
large surface tension effects. This is the case of capillarity waves (generated e.g.
by raindrops in a pond) and their speed is well approximated by

ok 2mo
Cro= 4| — = /]~
? p Vo

while the group velocity is

Thus shorter waves move faster and energy is faster than the crests.
When both gravity and surface tension are relevant, figure 5.13 shows the graph
of ¢ versus ), for water, with the values (5.150):

452.39
2 _
¢ = 156.97 A+ — .

The main feature of this graph is the presence of the minimum

Cmin = 23 cm/sec

corresponding just to the value A = 1.7 cm. The consequence is curious: linear
gravity and capillarity deep water waves can appear simultaneously only when the
speed is greater than 23 cm/sec. A typical situation occurs when a small obstacle
(e.g. a twig) moves at speed v in still water. The motion of the twig results in the
formation of a wave system that moves along with it, with gravity waves behind
and capillarity waves ahead. In fact, the result above shows that this wave system
can actually appear only if v > 23 cm/sec.

800 |
800

700 1

a0 e 2 3, 4 5 6

Fig. 5.13. cf, versus A
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5.10.5 Asymptotic behavior

As we have already observed, the behavior of a wave packet is dominated for short
times by the initial conditions and only after a relatively long time it is possible
to observe the intrinsic features of the perturbation. For this reason, information
about the asymptotic behavior of the packet as ¢ — +o0o are important. Thus, we
need a good asymptotic formula for the integral in (5.149) when ¢ > 1.

For simplicity, consider gravity waves only, for which

w (k) =gkl

Let us follow a particle x = x () moving along the positive z—direction with
constant speed v > 0, so that « = vt. Inserting z = vt into (5.149) we find

1 , ~ 1 , ~
h (vt t) = — / ettbv=wEDpo (k) dk + — / ettkorw®)ho (k) dk
4 R 4 R
= hi (vt, t) + ho (vt, 1) .
According to Theorem 5.6 in the next subsection (see also Remark 5.10), with
¢ (k) = kv —w(k),
if there exists exactly one stationary point for ¢, i.e. only one point kg such that

w' (ko) =v and " (ko) = —w" (ko) # 0,

we may estimate hy for ¢ > 1 by the following formula:

A (k
hy (vt, t) = (t o) exp {it[kov — w (ko)]} + O (t71) (5.151)
where
A (ko) = ho (ko) ;expi{isign W (k )}
O O 8w (o) 1 s
We have L
W (k) = 5\/§|k|’1/2 sign (k)
and

W (K = YT 2

Since v > 0, equation w’ (ko) = v gives the unique point of stationary phase

t2
ko = g g
40?2 4z2
Moreover,
t
k()?)*(,«.)(k()):fi 79—
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and 5 5
2v 2z
" k‘ = - = —— 0
w" (ko) P e <

so that from (5.151) we find

1~ t
hi (vt t) = Zho (ﬁ) J expi{i} +%}+O(tl)

o3

Similarly, since R R
ho (ko) = ho (—ko) ,
we find

Finally,

h (vt,t) = hy (vt, t) + ha (vt, t)

>~ (g g gt = m ~1
o (2) ot T,
0\ 4e2 4mvdt €08 { v 4 } + ( )

This formula shows that, for large  and ¢, with x/t = v, constant, the wave packet
is locally sinusoidal with wave number

gt _ gt?
k(z,t)=— = >—.
(2,%) dvr 4z
In other words, an observer moving at the constant speed v = z/t sees a domi-
nant wavelength 27/kg, where kg is the solution of w’ (ko) = x/t. The amplitude
decreases as t~1/2. This is due to the dispersion of the various Fourier components
of the initial configuration, after a sufficiently long time.

5.10.6 The method of stationary phase

The method of stationary phase, essentially due to Laplace, gives an asymptotic
formula for integrals of the form

b
I(t)= / fk)e*®dr  (—co<a<b< o)

as t — —+oo. Actually, only the real part of I (), in which the factor cos[ty (k)]
appears, is of interest. Now, as ¢ increases and ¢ (k) varies, cos[ty (k)] oscillates
more and more and eventually much more than f. For this reason, the contributions
of the intervals where cos[te (k)] > 0 will balance those in which cos[ty (k)] < 0,
so that we expect that I (t) — 0 as t — +o00, just as the Fourier coefficients of an
integrable function tend to zero as the frequency goes to infinity.
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To obtain information on the vanishing speed, assume ¢ is constant on a certain
interval J. On this interval cos[ty (k)] is constant as well and hence there are neither
oscillations nor cancellations. Thus, it is reasonable that, for ¢ > 1, the relevant
contributions to I () come from intervals where ¢ is constant or at least almost
constant. The same argument suggests that eventually, a however small interval,
containing a stationary point kg for ¢, will contribute to the integral much more
than any other interval without stationary points.

The method of stationary phase makes the above argument precise through
the following theorem.

Theorem 5.6. Let f and ¢ belong to C? ([a,b]). Assume that

¢ (ko) = 0,¢" (ko) #0  and ¢’ (k) # 0 for k # ko.

Then, as t — 400

b
/ f (k) ete®) dp = |<P"2(7;€0)| fi];g) exp {z [tcp(ko) + %signcp"(ko)} } +0(t7)

First a lemma.

Lemma 5.3. Let f,¢ as in Theorem 5.6. Let [c,d] C [a,b] and assume that
|’ (k)| > C >0 in (c,d). Then

d
/ f(k)e*®dk =0 (t71) t — 4o0. (5.152)

Proof. Integrating by parts we get (multiplying and dividing by ¢'):

d itp(d itp(c d pr,.1 "
i /eitcpdk_ — l f (d) € e(d) o f (C) € ele) o f Y - fCP eitcpdk_
/c 7 it { ¢ (d) ' (0) / ()’ '

Thus, from ’e“‘f’(k)’ < 1 and our hypotheses, we have

d .
/ f etedk

1
<

d
: {If(d)|+|f(c)l+é/c If’w’fw”ldk}

~= Q|

<

which gives (5.152). O
Proof of Theorem 5.6. Without loss of generality, we may assume ko = 0, so
that ¢’ (0) = 0, ¢’ (0) # 0. From Lemma 5.3, it is enough to consider the integral
153
f (k) et*®) gy
—&

where € > 0 is as small as we wish. We distinguish two cases.
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Case 1: ¢ is a quadratic polynomial, that is

PR =9 (0)+ AR, A=_14"(0).

Then, write
F) =)+ LB r0) 4 gy n,

and observe that, since f € C? ([—¢,¢]), ¢ (k) is bounded in [—¢, €]. Then, we have:

1> € €
£ (k) e#® gk = 2£(0)e™#(©) / AR 4k 4 ¢ite(®) / q (k) ke’ A% d.
—€ 0

—€

Now, an integration by parts shows that the second integral is O (1/t) as t — oo
(the reader should check the details).

In the first integral, if A > 0, let

tAK? =42,
Then
/E itAk2dk 1 /Em iy2d
e = e .
0 VtA Jo Y
Since3? o
eVtA
, - 1
/ e“’zdy = ﬁelZ +0| ——|,
0 2 eVtA
we get

/ f (k) e*®dk = o ( ] f\(ﬁ) {Z [‘p(o)ﬂr ﬂ } +0 <%> ’

which proves the theorem when A > 0. The proof is similar if A < 0.
Case 2. General ¢. By a suitable change of variable we reduce case 2 to case 1
First we write

¢ (k) =¢(0)+ %a (k) k? (5.153)
where

a(k) = 2/) (1—7r)¢" (rk)dr.

38 Recall that ¢'™/* = (\/_ NG ) /2. Moreover, the following formulas hold:

N S .
ST [ eosty )dy‘ < VT
VTP VT
Vol sin(y )dy' < ~
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Equation (5.153) follows by applying to ¥ (s) = ¢ (sk) the following Taylor for-
mula:

V) =60+ s+ [ @=nve)dn

Note that a (0) = ¢” (0). Consider the function

p (k) = kva (k) /¢" (0).

We have p (0) = 0 and p’ (0) = 1. Therefore, p is invertible near zero. Let

Then, since

we have,

and

€ , p(e) o

[ rwet i [T ety

—& p~1(-¢)
where
)
P (' (y)
Since F (0) = f(0) and @ is a quadratic polynomial with @ (0) = ¢ (0), " (0) =
" (0), case 2 follows from case 1. O

F(y) =

Remark 5.7 Theorem 5.6 holds for integrals extended over the whole real axis as
well (actually this is the most interesting case) as long as, in addition, f is bounded,
@' (£00)| > C >0, and [, [f'¢’ — fo"] (¢') " dk < co. Indeed, it is easy to check
that Lemma 5.3 is true under these hypotheses and then the proof of Theorem 5.6
is exactly the same.

Problems

5.1. The chord of a guitar of length L is plucked at its middle point and then
released. Write the mathematical model which governs the vibrations and solve it.
Compute the energy F (t).
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5.2. Solve the problem

Ut — Ugg = 0 O<z<1l,t>0
u(z,0) =u (£,0) =0 0<z<1
ug (0,8) =1, u(1,t) =0 t>0.

5.3. Forced vibrations. Solve the problem.

Utt — Uge = g (1) sinzx O<z<mt>0
u(z,0) =u (x,0) =0 0<z<mw
w(0,t) =u(m,t)=0 t>0

[Answer. u (z,t) =sinz fot g (t —7)sinT dr].

5.4. FEquipartition of energy. Let u = w(x,t) be the solution of the global
Cauchy problem for the equation uy — cug,, = 0, with initial data u (x,0) = g (z),
ut (z,0) = h (x). Assume that g and h are smooth functions with compact support
contained in the interval (a,b). Show that there exists T" such that, for t > T,

Ecin (t) = Epot (%) .

5.5. Solve the global Cauchy problem for the equation uy — cuy, = 0, with the
following initial data:

a) u(z,0)=1if |z| < a, u(x,0)=0if |z| > a; u (x,0) =0

b) u(x,0) = 0; ut (x,0) = 1if |z| < a, ut (x,0) =0 if |z| > a.

5.6. Check that formula (5.42) may be written in the following form:
u(xJFCﬁ*CTI,tJrﬁJFTI) 7u(x+C§’t+§) *u(xfcn,erTl)Jru(%f) =0.

(5.154)
Show that if u is a C? function and satisfies (5.154), then

Ut — CPUgy = 0.

Thus, (5.154) can be considered as a weak formulation of the wave equation.

5.7. The small longitudinal free vibrations of an elastic bar are governed by
the following equation

p(x)o(x) % = % [E (z)o (x) g—z] (5.155)

where u is the longitudinal displacement, p is the linear density of the material, o
is the cross section of the bar and E is its Young’s modulus3®.

39 F is the proportionality factor in the strain-stress relation given by Hooke’s law: T
(strain) = F € (stress). Here € ~ u,. For steel, E = 2 x 10'" dine/cm?, for alluminium,
E =7 x 10*? dine/cm?.
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Assume the bar has constant cross section but it is constructed by welding
together two bars, of different (constant) Young’s modulus Fi, E2 and density
p1, Pa, respectively.

Since the two bars are welded together, the displacement u is continuous across
the junction, which we locate at z = 0. In this case:

(a) Give a weak formulation of the global initial value problem for equation
(5.155).

(b) Deduce that the following jump condition must hold at x = 0:
E1u(0—,t) = Eau(0+,1t) t>0. (5.156)

(c) Let ¢; = Ej/p;, j = 1,2. A left incoming wave uin. (z,t) = exp [i (z — c1t)]
produces at the junction a reflected wave uycs (z,t) = aexp[i(z + c1t)] and a
transmitted wave ug- (z,t) = bexp [i (x — cat)]. Determine a, b and interpret the
result.

[Hint. (¢) Look for a solution of the form
U = Ujnc + Uref

for x < 0 and u = uy, for > 0. Use the continuity of v and the jump condition
(5.156)].

5.8. Determine the characteristics of Tricomi equation

Ut — tum =0.

[Answer: 3z + 2t3/2 = k, for t > 0].
5.9. Classify the equation

Uy + 2ty + Ugy — Uy = 0

and find the characteristics. After a reduction to canonical form, find the general
solution.
[Answer:
u(z,t)=F (te) + G (te™*) e”,
with F', G arbitrary].

5.10. Consider the following characteristic Cauchy problem*® for the wave
equation in the half-plane z > t:

uttfumzo x>t
u(z,z) = f(x) zeR
uy (z,z)=g(z) =x€R

where v = (1, —1) /+/2. Establish whether or not this problem is well posed.

40 Note that the data are the values of u and of the normal derivative on the characteristic
y=zx.
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5.11. Consider the following so called Goursat problem*! for the wave equation
in the sector —t < z < t:

uttfumzo —t<x<t
u(xvx):f(x)vu(xv*x):g(x) z>0
f(0)=g(0).

Establish whether or not this problem is well posed.
5.12. Ill posed non-characteristic Cauchy problem for the heat equation. Check
that for every integer k, the function

1
ug (z,t) = Z [cosh kz cos kx cos 2kt — sinh kx sin kz sin 2k%¢]

solves uy = ug, and the (non characteristic) initial conditions:
1
u(0,t) = = cos 2k?t, ug (0,t) = 0.
Deduce that the corresponding Cauchy problem in the half-plane x > 0 is ill

posed.

5.13. Consider the telegrapher’s system (5.83), (5.84).
(a) By elementary manipulations derive the following second order equation
for the inner current I:

1 RC +GL RG
Iy — — 1oy + ——1 —1=0.
wo ottt e e
(b) Let
I =e "

and choose k in order for v to satisfy an equation of the form

1
Vit — mvm + hv =0.
Check that the condition RC' = GL is necessary to have non dispersive waves
(distorsionless transmission line).

5.14. Circular membrane. A perfectly flexible and elastic membrane at rest
has the shape of the circle B; = {(x,y) cx?+y? < 1}. If the boundary is fixed
and there are no external loads, the vibrations of the membrane are governed by
the following system:

uttfc2(uw+%ur+r%ueg):0 0<r<1,0<0<2m,t>0
u(r,0,0) =g (r,0), us (r,0) = h(r,0) 0<r<1,0<60<2rm
u(1,0,t) =0 0<0<2m,t>0.

4l Note that the data are the values of u on the characteristics y =  and y = —, for

z > 0.
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In the case h =0e¢ g = g (r), use the method of separation of variables to find the
solution

u(r,t) = Z anJo (A1) cos Apt

n=1

where Jj is the Bessel function of order zero, A1, Ag, ... are the zeros of Jy and the
coefficients a,, are given by

2 1

— [ s59(s) Jo(Ans)ds
Ch Jo

ayp =

where
k

= (-1 An
C"j;m(?

) 2k+1

(see Remark 2.2.5).

5.15. Circular waveguide. Consider the equation us; —c? Au = 0 in the cylinder
Cr={(r0,2):0<r<R,0<0<2m, —00<2z<+0c0}.
Determine the axially symmetric solutions of the form
u(r,z,t) = v (r)w(z) h(t)

satisfying the Neumann condition v, = 0 on r = R.

[Answer.
U (1, 2,t) = exp {—i (wt — k2)} Jo (u,,7/R) , n e N.

where Jy is the Bessel function, y,, are its stationary points (J} (,,) = 0) and

2 2
w 1.2 :u’n
z =Kl

5.16. Let u be the solution of uy — c2Au = 0 in R? x (0, +00) with data
u(x,0)=g(x) and 1w (x,0)=h(x),

both supported in the sphere B, (0). Describe the support of u for ¢t > 0.

[Answer: The spherical shell By (0)\ By—ct (0), of width 2p, which expands at
speed c|.

5.17. Focussing effect. Solve the problem

wy — EAw =0 x€R3,t>0
w0 =0, w(x0)=h(x|) xeR?
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where (r = |x])

1 0<r<1
h(r) =
0 r > 1.
Check that w (r,t) displays a discontinuity at the origin at time ¢t = 1/c.

5.18. Show that the solution of the two-dimensional non-homogeneous Cauchy
problem with zero initial data is given by

1t 1
uxt)= o [ f (y5) dyds.
TC Jo JB.(s—s(x) \/02 (t _ 5)2 + |X o y|2
5.19. For linear gravity waves (o = 0), examine the case of uniform finite

depth, replacing condition (5.143) by
¢z (IE, *Hat) =0

under the initial conditions (5.142).
(a) Write the dispersion relation.
Deduce that:
(b) The phase and group velocity have a finite upper bound.

(¢) The square of the phase velocity in deep water (H > X) is proportional to
the wavelength.

(d) Linear shallow water waves (H < \) are not dispersive.
[Answer: (a) w? = gktanh (kH),
(b) Cpmax = \/ﬁ»
(c) i ~ gA/2m,
(d) c; ~ gH].
5.20. Determine the travelling wave solutions of the linearized system (5.139)

of the form
¢ (r,2,t) = F (x — ct) G(2).

Rediscover the dispersion relation found in Problem 5.19 (a).
[Answer:

¢ (x,z,t) =coshk (z+ H){Acosk (z —ct) + Bsink (z —ct)},

A, B arbitrary constants and ¢? = gtanh (kH) /k].
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Elements of Functional Analysis

Motivations — Norms and Banach Spaces — Hilbert Spaces — Projections and Bases — Lin-
ear Operators and Duality — Abstract Variational Problems — Compactness and Weak
Convergence — The Fredholm Alternative — Spectral Theory for Symmetric Bilinear
Forms

6.1 Motivations

The main purpose in the previous chapters has been to introduce part of the basic
and classical theory of some important equations of mathematical physics. The
emphasis on phenomenological aspects and the connection with a probabilistic
point of view should have conveyed to the reader some intuition and feeling about
the interpretation and the limits of those models.

The few rigorous theorems and proofs we have presented had the role of bring-
ing to light the main results on the qualitative properties of the solutions and
justifying, partially at least, the well-posedness of the relevant boundary and ini-
tial/boundary value problems we have considered.

However, these purposes are somehow in competition with one of the most
important role of modern mathematics, which is to reach a unifying vision of large
classes of problems under a common structure, capable not only of increasing
theoretical understanding, but also of providing the necessary flexibility to guide
the numerical methods which will be used to compute approximate solutions.

This conceptual jump requires a change of perspective, based on the introduc-
tion of abstract methods, historically originating from the vain attempts to solve
basic problems (e.g. in electrostatics) at the end of the 19th century. It turns out
that the new level of knowledge opens the door to the solution of complex problems
in modern technology.

These abstract methods, in which analytical and geometrical aspects fuse, are
the core of the branch of Mathematics, called Functional Analysis.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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It could be useful for understanding the subsequent development of the theory,
to examine in an informal way how the main ideas come out, working on a couple
of specific examples.

Let us go back to the derivation of the diffusion equation, in subsection 2.1.2. If
the body is heterogeneous or anisotropic, may be with discontinuities in its thermal
parameters (e.g. due to the mixture of two different materials), the Fourier law of
heat conduction gives for the flux function q the form

q=—- (X) vua
where the matrix A satisfies the condition
qgVu=—-A)Vu-Vu<0 (ellipticity condition),

reflecting the tendency of heat to flow from hotter to cooler regions. If p = p (x)
and ¢, = ¢, (x) are the density and the specific heat of the material, and f = f (x)
is the rate of external heat supply per unit volume, we are led to the diffusion
equation

peyuy — div (A (x) Vu) = f.

In stationary conditions, u (x,t) = u (x), and we are reduced to
—div (A (x) Vu) = f. (6.1)

Since the matrix A encodes the conductivity properties of the medium, we expect
a low degree of regularity of A, but then a natural question arises: what is the
meaning of equation (6.1) if we cannot compute the divergence of A?

We have already faced similar situations in subsections 4.4.2, where we have
introduced discontinuous solutions of a conservation law, and in subsection 5.4.2,
where we have considered solutions of the wave equation with irregular initial data.
Let us follow the same ideas.

Suppose we want to solve equation (6.1) in a bounded domain {2, with zero
boundary data (Dirichlet problem). Formally, we multiply the differential equation
by a smooth test function vanishing on 02, and we integrate over {2:

/Q —div (A (x) Vu) v dx = /Q fu dx.

Since v = 0 on 042, using Gauss’ formula we obtain

/Q A (x)Vu-Vudx = /Q fv dx (6.2)

which is called weak or variational formulation of our Dirichlet problem.
Equation (6.2) makes perfect sense for A and f bounded (possibly discontinu-
ous) and u,v € C* (.Q), the set of of functions in C! (.Q), vanishing on 9f2. Then,

we may say that u € C* (£2) is a weak solution of our Dirichlet problem if (6.2)
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holds for every v € ot (ﬁ) Fine, but now we have to prove the well-posedness of
the problem so formulated!

Things are not so straightforward, as we have experienced in section 4.4.3 and,
actually, it turns out that o (ﬁ) is not the proper choice, although it seems to
be the natural one. To see why, let us consider another example, somewhat more
revealing.

Consider the equilibrium position of a stretched membrane having the shape
of a square {2, subject to an external load f (force per unit mass) and kept at level
zero on 0f2.

Since there is no time evolution, the position of the membrane may be described
by a function u = u (x), solution of the Dirichlet problem

—Au=f in 2
{ u=20 on 012. (6.3)

For problem (6.3), equation (6.2) becomes

/vu.vv dx:/fv dx Yvel'(0). (6.4)
n n

Now, this equation has an interesting physical interpretation. The integral in the
left hand side represents the work done by the internal elastic forces, due to a
virtual displacement v. On the other hand [ o Jv expresses the work done by the
external forces.

Thus, the weak formulation (6.4) states that these two works balance, which
constitutes a version of the principle of virtual work.

There is more, if we bring into play the energy. In fact, the total potential energy
is proportional to

E(v) = /Q|Vv|2dx - /va dx . (6.5)
— ~—

internal elastic energy external potential energy

Since nature likes to save energy, the equilibrium position u corresponds to the
minimizer of (6.5) among all the admissible configurations v. This fact is closely
connected with the principle of virtual work and, actually, it is equivalent to it
(see subsection 8.4.1).

Thus, changing point of view, instead of looking for a weak solution of (6.4)
we may, equivalently, look for a minimizer of (6.5).

However there is a drawback. It turns out that the minimum problem does not
have a solution, except for some trivial cases. The reason is that we are looking in
the wrong set of admissible functions.

Why ct (ﬁ) is a wrong choice? To be minimalist, it is like looking for the
minimizer of the function

among the rational numbers!
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Anyway, the answer is simple: ct (ﬁ) is not naturally tied to the physical
meaning of E (v), which is an energy and only requires the gradient of u to be
square integrable, that is [Vu| € L? (£2). There is no need of a priori continuity
of the derivatives, actually neither of u. The space ! (ﬁ) is too narrow to have
any hope of finding the minimizer there. Thus, we are forced to enlarge the set of
admissible functions and the correct one turns out to be the so called Sobolev space
H} (£2), whose elements are exactly the functions belonging to L? (£2), together
with their first derivatives, vanishing on 0f2. We could call them functions of finite
energy!

Although we feel we are on the right track, there is a price to pay, to put
everything in a rigorous perspective and avoid risks of contradiction or non-senses.
In fact many questions arise immediately.

For instance, what do we mean by the gradient of a function which is only
in L%(£2), maybe with a lot of discontinuities? More: a function in L?({2) is, in
principle, well defined except on sets of measure zero. But, then, what does it mean
“vanishing on 02”7, which is precisely a set of measure zero?

We shall answer these questions in Chapter 7. We may anticipate that, for the
first one, the idea is the same we used to define the Dirac delta as a derivative
of the Heaviside function, resorting to a weaker notion of derivative (we shall say
in the sense of distributions), based on the miraculous formula of Gauss and the
introduction of a suitable set of test function.

For the second question, there is a way to introduce in a suitable coherent way
a so called trace operator which associates to a function u € L? (£2), with gradient
in L? (£2), a function u|p, representing its values on 82 (see subsection 6.6.1).
The elements of H} (2) vanish on 82 in the sense that they have zero trace.

Another question is what makes the space H} (£2) so special. Here the con-
junction between geometrical and analytical aspects comes into play. First of all,
although it is an infinite-dimensional vector space, we may endow H} (£2) with a
structure which reflects as much as possible the structure of a finite dimensional
vector space like R™, where life is obviously easier.

Indeed, in this vector space (thinking of R as the scalar field) we may introduce
an inner product given by

(u,v), :/ Vu- Vv
[0}

with the same properties of an inner product in R™. Then, it makes sense to talk
about orthogonality between two functions uw and v in H} (£2), expressed by the
vanishing of their inner product:

(u,v); = 0.

Having defined the inner product (-,-);, we may define the size (norm) of u by

||u||1 =4/ (u, u)1
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and the distance between u and v by
dist (u, v) = |lu —v||; .
Thus, we may say that a sequence {u,} C H§ (§2) converges to u in H} (£2) if
dist (up,u) = 0 asn — oo.

It may be observed that all of this can be done, even more comfortably, in the
space C'! (.Q) This is true, but with a key difference.
Let us use an analogy with an elementary fact. The minimizer of the function

f @) = (@~ m)?

does not exist among the rational numbers Q, although it can be approximated as
much as one likes by these numbers. If from a very practical point of view, rational
numbers could be considered satisfactory enough, certainly it is not so from the
point of view of the development of science and technology, since, for instance,
no one could even conceive the achievements of Calculus without the real number
system.

As R is the completion of Q, in the sense that R contains all the limits of
sequences in Q that converge somewhere, the same is true for Hj (§2) with respect
to C1 (£2). This makes H{ (£2) aso called Hilbert space and gives it a big advantage
with respect to ct (ﬁ), which we illustrate going back to our membrane problem
and precisely to equation (6.4). This time we use a geometrical interpretation.

In fact, (6.4) means that we are searching for an element u, whose inner product
with any element v of H} (£2) reproduces “the action of f on v”, given by the linear

map
vr—>/ fo.
[0}

This is a familiar situation in Linear Algebra. Any function F' : R® — R, which is
linear, that is such that

F (ax +by) = aF (x) + bF (y) Va,b € R, Vx,y €R",

can be expressed as the inner product with a unique representative vector zrp €R™
(Representation Theorem). This amounts to saying that there is exactly one solu-
tion zp of the equation

z-y=F(y) forevery y eR". (6.6)

The structure of the two equations (6.4), (6.6) is the same: on the left hand side
there is an inner product and on the other one a linear map.

Another natural question arises: is there any analogue of the Representation
Theorem in H{ (£2)?

The answer is yes (see Riesz’s Theorem 6.3), with a little effort due to the
infinite dimension of Hy (£2). The Hilbert space structure of Hj (£2) plays a key
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role. This requires the study of linear functionals and the related concept of dual
space. Then, an abstract result of geometric nature, implies the well-posedness of
a concrete boundary value problem.

What about equation (6.2)? Well, if the matrix A is symmetric and strictly
positive, the left hand side of (6.2) still defines an inner product in H} (£2) and
again Riesz’s Theorem yields the well-posedness of the Dirichlet problem.

If A is not symmetric, things change only a little. Various generalizations of
Riesz’s Theorem (e.g. the Lax-Milgram Theorem 6.4) allow the unified treatment
of more general problems, through their weak or variational formulation. Actually,
as we have experienced with equation (6.2), the variational formulation is often the
only way of formulating and solving a problem, without losing its original features.

The above arguments should have convinced the reader of the existence of a
general Hilbert space structure underlying a large class of problems, arising in the
applications. In this chapter we develop the tools of Functional Analysis, essential
for a correct variational formulation of a wide variety of boundary value problems.
The results we present constitute the theoretical basis for numerical methods such
as finite elements or more generally, Galerkin’s methods, and this makes the theory
even more attractive and important.

More advanced results, related to general solvability questions and the spectral
properties of elliptic operators are included at the end of this chapter.

A final comment is in order. Look again at the minimization problem above. We
have enlarged the class of admissible configurations from a class of quite smooth
functions to a rather wide class of functions. What kind of solutions are we find-
ing with these abstract methods? If the data (e.g. 2 and f, for the membrane)
are regular, could the corresponding solutions be irregular? If yes, this does not
sound too good! In fact, although we are working in a setting of possibly irregular
configurations, it turns out that the solution actually possesses its natural degree
of regularity, once more confirming the intrinsic coherence of the method.

It also turns out that the knowledge of the optimal regularity of the solution
plays an important role in the error control for numerical methods. However, this
part of the theory is rather technical and we do not have much space to treat it
in detail. We shall only state some of the most common results.

The power of abstract methods is not restricted to stationary problems. As we
shall see, Sobolev spaces depending on time can be introduced for the treatment
of evolution problems, both of diffusive or wave propagation type (see Chapter 7).

Also, in this introductory book, the emphasis is mainly to linear problems.

6.2 Norms and Banach Spaces

It may be useful for future developments, to introduce norm and distance inde-
pendently of an inner product, to emphasize better their axiomatic properties.

Let X be a linear space over the scalar field R or C. A norm in X, is a real
function

[-: X =R (6.7)
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such that, for each scalar A and every z,y € X, the following properties hold:
1. |lz|| = 0; |||l = 0 if and only if z =0 (positivity)
2. || Az|| = A ||zl (homogeneity)
3. lz+yll <zl + |yl (triangular inequality).

A norm is introduced to measure the size (or the “length”) of each vector x € X,
so that properties 1, 2, 3 should appear as natural requirements.

A normed space is a linear space X endowed with a norm ||-||. With a norm is
associated the distance between two vectors given by

d(z,y) = [lz -yl

which makes X a metric space and allows to define a topology in X and a notion
of convergence in a very simple way.
We say that a sequence {z,} C X converges to z in X, and we write x,, —
in X, if
d(Tm,z) = ||Tm —z|| = 0 as m — 0.

An important distinction is between convergent and Cauchy sequences. A sequence
{rm} C X is a Cauchy sequence if

d (Tm, k) = ||Tm — k|| = 0 as m, k — 00.
If ,, —  in X, from the triangular inequality, we may write
|Zm — zm| < |2m — || + [z — || = 0  as m,k — o
and therefore
{zm} convergent implies that {z,,} is a Cauchy sequence. (6.8)

The converse in not true, in general. Take X = Q, with the usual norm given by
|z| . The sequence of rational numbers

1 m
Ty = <1+—>
m

is a Cauchy sequence but it is not convergent in Q, since its limit is the irrational
number e.

A normed space in which every Cauchy sequence converges is called complete
and deserves a special name.

Definition 6.1. A complete, normed linear space is called Banach space.

The notion of convergence (or of limit) can be extended to functions from a
normed space into another, always reducing it to the convergence of distances,
that are real functions.
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Let X, Y linear spaces, endowed with the norms ||-||x and ||-||y-, respectively,
and let F': X — Y. We say that F' is continuous at x € X if

IF(y) ~ F(@)lly >0  when y—ally —0
or, equivalently, if, for every sequence {z,,} C X,
|zm — z||x — 0 implies | F(zm)— F(z)|ly — 0.
F' is continuous in X if it is continuous at every x € X. In particular:
Proposition 6.1. Every norm in a linear space X is continuous in X.
Proof. Let ||| be a norm in X. From the triangular inequality, we may write

Iyl < lly =zl + llz|| and [lz]| <ly — 2] + [yl

whence

Nyl = ll=lll < lly — |-
Thus, if ||y — z|| — 0 then ||ly|| — ||=||| — 0, which is the continuity of the norm.
O

Some examples are in order.

Spaces of continuous functions. Let X = C(A) be the set of (real or
complex) continuous functions on A, where A is a compact subset of R™, endowed
with the norm (called mazimum norm)

1Flleay = max| 1.
A sequence {fn,} converges to f in C (A) if
mjtx|fm —fl—0,

that is, if f,, converges uniformly to f in A. Since a uniform limit of continuous
functions is continuous, C (A) is a Banach space.
Note that other norms may be introduced in C(A), for instance the least

squares or L2 (A) norm
1/2
2
e = ([ 1)
A

Equipped with this norm C (A) is not complete. Let, for example A = [-1,1] C R.
The sequence

0 t<0
fm (@) =< mt 0<t<
1 t> L

(m=>1),

1
m
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contained in C ([—1, 1]), is a Cauchy sequence with respect to the L? norm. In fact
(letting m > k),

1 1/m 1/k
o= Fllioiny = [ V)= fe0P e = m—1? [ 2are [ -

0
~kK> 1 1/1 1
:M <—+—>%0 as m, k — oo.

3m3 3k 3 %

However, f,, converges in L? (—1,1) —norm (and pointwise) to the Heaviside func-

tion
H(E) = 1 ¢t>0
1o t<o,

which is discontinuous at ¢ = 0 and therefore does not belong to C ([—1, 1]).

More generally, let X = C* (A), k > 0 integer, the set of functions continuously
differentiable in A up to order k, included.

To denote a derivative of order m, it is convenient to introduce an n — uple of
nonnegative integers, a = (ay, ..., ), called multi-indez, of length

o) = a1 + ... + @, =m,
and set

o o

Ozt Orpm

(a3

We endow C* (A) with the norm (mazimum norm of order k)

k
[fllcreay = Ifllceay + Z D% fll o ay -

lo]=1

If {f,} is a Cauchy sequence in C* (A), all the sequences {Df, } with 0 < |a| < k
are Cauchy sequences in C (A4). From the theorems on term by term differentiation
of sequences, it follows that the resulting space is a Banach space.

Remark 6.1. With the introduction of function spaces we are actually making a
step towards abstraction, regarding a function from a different perspective. In
calculus we see it as a point map while here we have to consider it as a single
element (or a point or a vector) of a vector space.

Summable and bounded functions. Let {2 be an open set in R™ and p > 1
a real number. Let X = LP ({2) be the set of functions f such that | f|” is Lebesgue
integrable in {2. Identifying two functions f and ¢ when they are equal a.e.! in (2,

L A property is valid almost everywhere in a set §2, a.e. in short, if it is true at all points
in £2, but for a subset of measure zero (Appendix B).
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LP (£2) becomes a Banach space? when equipped with the norm (integral norm of

order p)
1/p
e = ([ 157)

The identification of two functions equal a.e. amounts to saying that an element
of L (£2) is not a single function but, actually, an equivalence class of functions,
different from one another only on subsets of measure zero. At first glance, this
fact could be annoying, but after all, the situation is perfectly analogous to con-
sidering a rational number as an equivalent class of fractions (2/3, 4/6, 8/12 ....
represent the same number). For practical purposes one may always refer to the
more convenient representative of the class.

Let X = L (£2) the set of essentially bounded functions in 2. Recall® that
f: 92— R (or C) is essentially bounded if there exists M such that

If(@)| <M  ae inf (6.9)

The infimum of all numbers M with the property (6.9) is called essential supremum
of f, and denoted by

||f||L°°(Q) = ess s1!12p |fl-

If we identify two functions when they are equal a.e., | f]| Leo(r) 1S @ norm in
L*> (£2), and L (£2) becomes a Banach space.

Holder inequality (1.9) mentioned in chapter 1, may be now rewritten in terms
of norms as follows:

/Q fg] <1l 190 ey (6.10)

where ¢ = p/(p — 1) is the conjugate exponent of p, allowing also the case p = 1,
q = 00.

Note that, if 2 has finite measure and 1 < p; < pa < 0o, from (6.10) we have,
choosing g =1, p = pa/p1 and ¢ = p2/(p2 — p1):

] N

and therefore LP2 (£2) C LP* ({2). If the measure of {2 is infinite, this inclusion is
not true, in general; for instance, f = 1 belongs to L (R) but is not in L? (R) for
1<p<oo.

< 21| £117s 0

6.3 Hilbert Spaces

Let X be a linear space over R. An inner or scalar product in X is a function
(): XxX >R

2 See e.g. Yoshida, 1965.
3 Appendix B.
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with the following three properties. For every z, y, z € X and scalars A\, p € R:
1. (z,2) > 0and (z,z) =0if and only if x = 0 (positivity)
2. (z,9) = (y,2) (symmetry)
3. (pr+ My, 2) = p(z,2) + Ay, 2) (bilinearity).

A linear space endowed with an inner product is called an inner product space.
Property 3 shows that the inner product is linear with respect to its first argument.
From 2, the same is true for the second argument as well. Then, we say that (-,-)
constitutes a symmetric bilinear form in X. When different inner product spaces
are involved it may be necessary the use of notations like (-, ) i, to avoid confusion.

Remark 6.2. If the scalar field is C, then
(,): XxX—=C

and property 2 has to be replaced by

2pis- (z,y) = (y, ) where the bar denotes complex conjugation. As a consequence,

we have _
(2, i+ Ny) =T (2,2) + X (2,)

and we say that (-,-) is antilinear with respect to its second argument or that it
is a sesquilinear form in X.

An inner product induces a norm, given by
[zl =/ (2, ) (6.11)

In fact, properties 1 and 2 in the definition of norm are immediate, while the
triangular inequality is a consequence of the following quite important theorem.

Theorem 6.1. Let z,y € X. Then:

(1) Schwarz’s inequality:

(@, y) < [l [lyll - (6.12)

Moreover equality holds in (6.12) if and only if x and y are linearly dependent.

(2) Parallelogram law:

2 2 2 2
2 +ylI” +llz = ylI” = 2 [l=]” + 2 [yl

The parallelogram law generalizes an elementary result in euclidean plane ge-
ometry: in a parallelogram, the sum of the squares of the sides length equals the
sum of the squares of the diagonals length. The Schwarz inequality implies that
the inner product is continuous; in fact, writing

(w,2) = (2,9) = (w — 2, 2) + (2,2 —y)
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we have
[(w, 2) — (2, y)| < lw— =z |z]| + l|lz][ |z — vl

so that, if w — x and z — y, then (w, z) — (z,y).

Proof. (1) We mimic the finite dimensional proof. Let t € R and z, y € X.
Using the properties of the inner product and (6.11), we may write:

0< (te+y,te+y) = ||z]” + 2t (z,9) + ly|* = P (1)
Thus, the second degree polynomial P(t) is always nonnegative, whence
2 2112
(@,9)" = =" [lyl” <0

which is the Schwarz inequality. Equality is possible only if tz +y = 0, i.e. if z and
y are linearly dependent.
(2) Just observe that

lz £ y|* = (z £y, y £ 9) = l|l=]* £ 2 (@, ) + Iy (6.13)
O

Definition 6.2. Let H be an inner product space. We say that H is a Hilbert
space if it is complete with respect to the norm (6.11), induced by the inner
product.

Two Hilbert spaces Hy and Hy are isomorphic if there exists a linear map
L : Hy — Hs which preserves the inner product, i.e.:

(x,9)g, = (Lx,Ly)y,  Vo,y € Hi.

In particular
I/l g, = L2l 1,

Ezample 6.1. R™ is a Hilbert space with respect to the usual inner product
n
(Xv Y)R" =X'y= ijyj? X = (1'1, >$n) Y :(ylv ,yn)
j=1

The induced norm is
n
x| =vx-x= Zx?
j=1

More generally, if A = (a;;), ._
positive,

» 18 a square matrix of order n, symmetric and

(X,¥y)p =x-Ay=Ax-y = Z @i TiY; (6.14)

=1
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defines another scalar product in R™. Actually, every inner product in R™ may be
written in the form (6.14), with a suitable matrix A.

C™ is a Hilbert space with respect to the inner product
n
X‘y:ZIEjyj X:(951,---,3%),Y:(yl,---,yn)-
j=1

It is easy to show that every real (resp. complex) linear space of dimension n
is isomorphic to R™ (resp. C™).

Ezample 6.2. L?>(£2) is a Hilbert space (perhaps the most important one) with
respect to the inner product

(U, V) 20 :/ uv.
[0}

If (2 is fixed, we will simply use the notations (u,v), instead of (u,v)r2n)
and ||ully instead of [lu|[12(g)-

Ezample 6.3. Let 12 be the set of complex sequences x = {z,,} such that

o0
Z | |® < c0.
i=1

For x ={x,,} and y ={ym}, define
(XvY)l% :inij X:{xn}vy:{yn}
i=1

Then (x, y)l% is an inner product which makes (2 a Hilbert space over C (see

Problem 6.3). This space constitutes the discrete analogue of L?(0,2m). Indeed,
each u € L? (0, 2n) has an expansion in Fourier series (Appendix A)

where

2w Jq

2m
(u,v)y = / uv = 27 Z UmO—mm
0

and (Bessel’s equation)

2 27 2
[[ul|Z = / u? =21 ) [
0

meEZ
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Ezxample 6.4. A Sobolev space. Tt is possible to use the frequency space introduced
in the previous example to define the derivatives of a function in L? (0,27) in a
weak or generalized sense. Let u € C! (R), 2mr—periodic. The Fourier coefficients
of u’ are given by

o m = MU,

and we may write

2m
2 ~
I/))? = /0 (W)? =21 3" m? [ (6.15)

mEeEZ

Thus, both sequences {@,,} and {mi,,} belong to (2. But the right hand side in
(6.15) does not involve u’ directly, so that it makes perfect sense to define

H,., (0,27) = {u € L*(0,27) : {Um}, {miy} € *}

and introduce the inner product

(,0), 5= 2m) > [1+m?] U

meEZ

which makes H!,,. (0,27) into a Hilbert space. Since

per
{mau,,} € l(%,

with each u € H}

per

(0,27) is associated the function v € L? (0, 27) given by

v(z) = Z iMU e ™.

meEZ

We see that v may be considered as a generalized derivative of u and H;er (0, 2m)
as the space of functions in L? (0, 27), together with their first derivatives. Let u €
H},,.(0,27) and

u(z) = Z U™,
Since

2 \ m?

the Weierstrass test entails that the Fourier series of u converges uniformly in R.
Thus u has a continuous, 2r—periodic extension to all R. Finally observe that, if
we use the symbol u also for the generalized derivative of u, the inner product in
H},,.(0,1) can be written in the form

) 1 1 1
e = S| < 3 (5 m?

1
()= [ W +uv)
’ 0
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6.4 Projections and Bases

6.4.1 Projections

Hilbert spaces are the ideal setting to solve problems in infinitely many dimensions.
They unify through the inner product and the induced norm, both an analytical
and a geometric structure. As we shall shortly see, we may coherently introduce
the concepts of orthogonality, projection and basis, prove a infinite-dimensional
Pythagoras’ Theorem (an example is just Bessel’s equation) and introduce other
operations, extremely useful from both a theoretical and practical point of view.

As in finite-dimensional linear spaces, two elements x, y belonging to an inner
product space are called orthogonal or normal if (z,y) = 0, and we write z_Ly.

Now, if we consider a subspace V' of R", e.g. a hyperplane through the origin,
every x € R™ has a unique orthogonal projection on V. In fact, if dimV = k and
the unit vectors vy, vy, ..., v, constitute an orthonormal basis in V, we may always
find an orthonormal basis in R™, given by

Vi,V oors Vs Wi 95 -0y Wiy

where Wy41,..., W,, are suitable unit vectors. Thus, if
k n
X = E IEjVj —+ E IEjo,
j=1 j=k+1

the projection of x on V is given by

k
va: E TjVj.
j=1

On the other hand, the projection Pyx can be characterized through the follow-
ing property, which does not involve a basis in R": Pyx is the point in V that
minimizes the distance from x, that is

Pyx — x| = inf |y — x]. 6.16
|Pyx — x| ylgvly x| (6.16)

In fact, if y = Z?:l y;Vv;, we have
k n N
I YIRS DR S RO
j=k+1

j=1 j=k+1

In this case, the “infimum” in (6.16) is actually a “minimum”.
The uniqueness of Pyx follows from the fact that, if y* € V' and

y"—x| = [Pvx —x],
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then we must have

k
Zyjfxﬂ )" =0,

j=1

whence y; = z; for j =1, ...k, and therefore y* = Pyx. Since
(x — Pyx)Llv, YveV
every x € R™ may be written in a unique way in the form

X=y+2z

317

withy € V and z € V+, where V- denotes the subspace of the vectors orthogonal

to V.

Then, we say that R” is direct sum of the subspaces V and V+ and we write

RP=VeaV,

Finally,
2 2 2
x|” = [yl” + Iz
which is the Pythagoras’ Theorem in R”™.

0,x

%

Fig. 6.1. Projection Theorem

We may extend all the above consideration to infinite-dimensional Hilbert
spaces H, if we consider closed subspaces V of H. Here closed means with
respect to the convergence induced by the norm. More precisely, a subset U C H
is closed in H if it contains all the limit points of sequences in U. Observe that if
V has finite dimension k, it is automatically closed, since it is isomorphic to R*
(or CF). Also, a closed subspace of a Hilbert space is a Hilbert space as well, with

respect to the inner product in H.

Unless stated explicitly, from now on we consider Hilbert spaces over R

(real Hilbert spaces), endowed with inner product (-,-) and induced norm ||-||.
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Theorem 6.2. (Projection Theorem). Let V' be a closed subspace of a Hilbert
space H. Then, for every x € H, there exists a unique element Pyx € V such that

|Pye — 2] = inf o2 (6.17)

Moreover, the following properties hold:

1. Pyx =z ifand only ifx € V.
2. Let Qyx = x — Pyx. Then Qyz € V* and

2 2 2
z]I” = [[Pva]” + [|Qva”.

Proof. Let
d=inf ||jv —z||.
veV

By the definition of least upper bound, we may select a sequence {v,,} C V, such
that ||vy, — z|| = d as m — oo. In fact, for every integer m > 1 there exists v,, € V
such that

1
d< Jom -zl <d+ —. (6.18)
m

Letting m — oo in (6.18), we get ||vy, — z|| — d.
We now show that {v,,} is a Cauchy sequence. In fact, using the parallelogram
law for the vectors vy — x and v,,, — x, we obtain

vk + vm — 22> + [lok — vm|” = 2 |Jok — z]|* + 2 |Jvm — 2|*. (6.19)
Since “:4tm € V, we may write

2 Vg + Um 2 2
|lvk + v —22||" =4 — ¢ > 4d

whence, from (6.19):

lve = vm|* = 2 [Jog — 2[|* + 2 [Jvm — 2[|* = [Jok + v — 22
< 2|log — 2| + 2 ||vm — z|* — 4d>.

Letting k, m — oo, the right hand side goes to zero and therefore
vk — v = 0

as well. This proves that {v,,} is a Cauchy sequence.
Since H is complete, v, converges to an element w € H which belongs to V,
because V is closed. Using the norm continuity (Proposition 6.1) we deduce

[om — 2| = [Jw—z| =d

so that w realizes the minimum distance from z among the elements in V.
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We have to prove the uniqueness of w. Suppose w € V is another element such
that ||@w — z|| = d. The parallelogram law, applied to the vectors w — z and w — z,
yields
2

o =o]? = 2w =al? + 2o - of” - 4| “5 = o

<2d?+4+2d% —4d®> =0

whence w = w.
We have proved that there exists a unique element w = Pyxz € V such that

|z — Pyz| = d.

To prove 1, observe that, since V is closed, x € V if and only if d = 0, which means
xr = Pyx.
To show 2, let Qyz = x — Pyx,v eV et € R. Since Pyx + tv € V for every
t, we have:
& < |lz — (Pya + to)|* = [|Qva — to]|”
= |Qva|® — 2t (Qv,v) + ¢ [|v]|*
= &~ 24 (Quar,v) + £ o]

Erasing d? and dividing by ¢ > 0, we get

t
(@Qve,) < 2 [l

which forces (Qvyz,v) < 0; dividing by ¢t < 0 we get
o2
@va,0) > Lol

which forces (Qyz,v) > 0. Thus (Qyx,v) = 0 which means Qyz € V+ and
implies that
|2|* = | Pva + Qua|® = ||Pva|* + |Qve|?,

concluding the proof. O

The elements Py x, Qyx are called orthogonal projections of z on V and
VL, respectively. The least upper bound in (6.17) is actually a minimum. Moreover
thanks to properties 1, 2, we say that H is direct sum of V and V= :

H=VaoV*.

Note that
vt={0} ifandonlyif V =H.
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Remark 6.3. Another characterization of Pyz is the following (see Problem 6.4):
u = Pyx if and only if

lL.ueV
2. (z—wu,v)=0,YweV.

Remark 6.4. 1t is useful to point out that, even if V' is not a closed subspace of H,
the subspace V* is always closed. In fact, if y,, — y and {y,} C V*, we have, for
every x € V,

(ya :E) = lim (ynvx) =0
whence y € V+.
Example 6.5. Let 2 C R™ be a set of finite measure. Consider in L? (£2) the
1—dimensional subspace V of constant functions (a basis is given by f = 1, for

instance). Since it is finite-dimensional, V is closed in L? (£2). Given f € L? (£2),
to find the projection Py f, we solve the minimization problem

min [ (F = A"

[@=ni=[ poanf rexial

we see that the minimizer is )
=y
122] /o

1 1
Pvf:ﬁ/nf and Qvf:f*m/nf-

Thus, the subspace V1 is given by the functions g € L? (£2) with zero mean value.
In fact these functions are orthogonal to f = 1:

<g,1>0:/ng:o.

Since

Therefore

6.4.2 Bases

A Hilbert space is said to be separable when there exists a countable dense subset
of H. An orthonormal basis in a separable Hilbert space H is sequence {wy},~, C

H such that*

(wk,wj) = 5kj k,] Z 1,
|lwe|| =1 k>1

4 8% is the Kronecker symbol.
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and every x € H may be expanded in the form

Z Z, W) (6.20)
k=1

The series (6.20) is called generalized Fourier series and the numbers ¢;, =
(z,wy) are the Fourier coefficients of x with respect to the basis {wy}. Moreover
(Pythagoras again!):

o0

Izl = (@, we)*

k=1

Given an orthonormal basis {w},~, the projection of x € H on the subspace V'
spanned by, say, w1, ..., wy is given by

N
Pyx = E (z,wy)
k=1

An example of separable Hilbert space is L? (§2), 2 C R™. In particular, the set of
functions

1 cosx sinx cos2x sin2x cosmx sinmax

constitutes an orthonormal basis in L? (0, 27) (see Appendix A).
It turns out that:

Proposition 6.2. Every separable Hilbert space H admits an orthonormal basis.

Proof (sketch). Let {z},~,; be dense in H. Disregarding, if necessary, those
elements which are spanned by other elements in the sequence, we may assume
that {zp},~, constitutes an independent set, i.e. every finite subset of {z;},~; is
composed by independent elements.

Then, an orthonormal basis {wk}, -, is obtained by applying to {2k}, the
following so called Gram-Schmidt process. First, construct by induction a sequence
{Ww},~, as follows. Let w1 = z1. Once Wi—1 is known, we construct @y by sub-
tracting from 2, its components with respect to s, ..., Wr_1:

o (zkvd}kfl) ~ (zkvwl) ~
Wg =2k — - 2 Wk—1—"""— 5 Wi.
[k 1] [l

In this way, Wy, is orthogonal to w1, ..., Wr_1. Finally, set wy = Wy / ||Wk—1]|. Since
{#k}p>, is dense in H, then {wy},~, is dense in H as well. Thus {wx},~, is an
orthonormal basis. O B B

In the applications, orthonormal bases arise from solving particular boundary
value problems, often in relation to the separation of variables method. Typical
examples come form the vibrations of a non homogeneous string or from diffusion
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in a rod with non constant thermal properties c,, p, . The first example leads to
the wave equation
P () Ut — TUgy = 0.

Separating variables (u(z,t) = v () z (t)), we find for the spatial factor the equa-
tion
0" 4+ Apv = 0.

In the second example we are led to
(k") + Aeppv = 0.

These equations are particular cases of a general class of ordinary differential
equations of the form
(pu) + qu+ dwu =0 (6.21)

called Sturm-Liouville equations. Usually one looks for solutions of (6.21) in an
interval (a,b), —oo < a < b < 400, satisfying suitable conditions at the end
points. The natural assumptions on p and q are p # 0 in (a, b) and p, ¢, p~! locally
integrable in (a, b). The function w plays the role of a weight function, continuous
in [a, b] and positive in (a,d).

In general, the resulting boundary value problem has non trivial solutions only
for particular values of A, called eigenvalues. The corresponding solutions are called
eigenfunctions and it turns out that, when suitably normalized, they constitute an
orthonormal basis in the Hilbert space L2 (a,b), the set of Lebesgue measurable
functions in (a, b) such that

b
fulfy = [ o @)w (@) do < oo,

endowed with the inner product

We list below some examples®.

e Consider the problem

(1—z?)u" —au' +Au=0 in (-1,1)
u(—1) < oo, u (1) < 0.
The differential equation is known as Chebyshev’s equation and may be written in

the form (6.21):

—1/2

(L—2)2Y + 2 (1-2?) Fu=0

® For the proofs, see Courant-Hilbert, vol. I, 1953.
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which shows the proper weight function w (z) = (1 — x2)71/ ?. The eigenvalues
are A, = n?, n =0,1,2,.... The corresponding eigenfunctions are the Chebyshev
polynomials T,,, recursively defined by Ty (z) = 1, T1 (x) = = and

Tn+1 =2xT, — T, _1 (n > 1) .
For instance:
Ty (x) = 22 — 1, T3 (z) = 42° — 3z, Ty (z) = 82* — 8z — 1.

The normalized polynomials \/1/7Ty, +/2/7T1, ..., \/2/7T,, ... constitute an
orthonormal basis in L2 (—1,1).

o Consider the problem®
(1—a2®)u) + =0 in (~1,1)
with weighted Neumann conditions
(1-2®)u'(z) >0 asz— *1.

The differential equation is known as Legendre’s equation. The eigenvalues are
A =n(n+1),n=0,1,2,.. The corresponding eigenfunctions are the Legendre
polynomials, defined by Lo (x) = 1, Ly (z) = z,

(n+1)Lyy1 =2n+1)zLy, —nlp—1  (n>1)

or by Rodrigues’ formula

1 dr

= onpldgn

For instance, Ls (z) = (3% — 1)/2, L3 (z) = (52® — 3z)/2. The normalized poly-

nomials
2n+1
=1L,
2

constitute an orthonormal basis in L? (—1,1) (here w (z) = 1). Every function
f € L? (—1,1) has an expansion

L, (x)

(2% - l)n (n>0).

f (@)= Z fnLn (2)
n=0

where f, = 2%t fil f (z) L,, (z) dz, with convergence in L2 (—1,1).

e Consider the problem

u” —2zu’ + 2 u =0 in (—o0,+00)
e /2y (z) = 0 as r — +oo.

6 See also Problem 8.5.
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The differential equation is known as Hermite’s equation (see Problem 6.6) and
may be written in the form (6.21):

(67962 u') + 22 “u=0

which shows the proper weight function w (z) = e~*. The eigenvalues are A, =

n, n = 0,1,2,.... The corresponding eigenfunctions are the Hermite polynomials
defined by Rodrigues’ formula

mn
2 dv

H,(z)=(-1)"e¢ dx—nefm (n>0).

For instance
Ho(z) =1, Hy(z) =22, Hy(z)=42>—2, Hj(z)=8z>— 12z.

The normalized polynomials 7—/4 (27n!)~*/? H,, constitute an orthonormal basis
in L2 (R), with w (z) = e~* . Every f € L2 (R) has an expansion

n=0

where f, = [r/22"nl]7! [ f (z) Hy (2) e~*"dzx, with convergence in L2, (R).

e After separating variables in the model for the vibration of a circular mem-
brane the following parametric Bessel equation of order p arises (see Problem 6.8):

v’ + 2w + (Az? —p*)u =0 z € (0,a) (6.22)
where p > 0, A > 0, with the boundary conditions
u (0) finite, w(a)=0. (6.23)

Equation (6.22) may be written in Sturm-Liouville form as
2
(zu') + <>\:c - p_) u=0
x

which shows the proper weight function w (z) = x. The simple rescaling z = v/ Az
reduces (6.22) to the Bessel equation of order p

9 d?u du

2 2 _
z@+za+(z -p)u=0 (6.24)

where the dependence on the parameter A is removed. The only bounded solutions
of (6.24) are the Bessel functions of first kind and order p, given by

5 (1) 2\ P2k
T (2) _;«)F(kﬂ)r(mpﬂ) (5)
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Fig. 6.2. Graphs of Jo,J1 and J>

=

-0.25

where
I'(s)= / e 5 ldt (6.25)
0
is the Euler I'— function. In particular, if p = n > 0, integer:

z ) n+2k

) (71)]6
In (2) = ;«) K (k+ n)! (5

For every p, there exists an infinite, increasing sequence {a,; }j>1 of positive zeroes
of Jp: -
JP (apj) =0 (]: 1v2v)
N2
Then, the eigenvalues of problem (6.22), (6.23) are given by Ap; = (ﬂ) , with
a
corresponding eigenfunctions u,; (z) = Jp (ﬂx). The normalized eigenfunctions
a
e ()
aJpi1 (ap) "\ a

constitute an orthonormal basis in L2 (0, a), with w (z) = x. Every function f €
L2 (0,a) has an expansion in Fourier-Bessel series

F@) =3 10 (22a).
j=1
where .
fi= m/o zf (z) Jp (%x) dz,

convergent in L2 (0, a).
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6.5 Linear Operators and Duality

6.5.1 Linear operators

Let Hy; and Hs be Hilbert spaces. A linear operator from H; into Hs is a
function
L: H1 — H2

such that”, Vo, 3 € R and Vz,y € Hy
L(az + By) = aLx + BLy.

For every linear operator we define its Kernel, N (L) and Range, R (L), as follows:

Definition 6.3. The kernel of L, is the pre-image of the null vector in Ha:
N (L)={z € Hy: Lz =0}.
The range of L is the set of all outputs from points in Hy:
R(LY={y € Hy : 3z € Hy, Lz = y}.

N (L) and R (L) are linear subspaces of H; and Ha, respectively.

Our main objects will be linear bounded operators.

Definition 6.4. A linear operator L : Hy — Hs is bounded if there exists a
number C such that

|La|y, < Cllzly,, Ve H. (6.26)

The number C controls the expansion rate operated by L on the elements of
H;. In particular, if C < 1, L contracts the sizes of the vectors in Hj.
If x # 0, using the linearity of L, we may write (6.26) in the form

k()

sup |[|Lx|y, = K < oo, (6.27)

Izl r, =1

<C

H>

which is equivalent to

since z/ ||z, is a unit vector in H;. Clearly K < C.

Proposition 6.3. A linear operator L : Hy — Hs is bounded if and only if it is
continuous.

" Notation: if L is linear, when no confusion arises, we may write Lz instead of L (x).
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Proof. Let L be bounded. From (6.26) we have, V&, zg € Hy,
L (x = z0)ll g, < Clla = zolly,

so that, if |z — xol|;;, — 0, also [|[Lx — Lxo| y, = [|L (z — 20)||g, — 0. This shows
the continuity of L.
Let L be continuous. In particular, L is continuous at = 0 so that there exists
0 such that
|Lelg, <1 if faly, <6

Choose now y € Hy with |y[|5, =1 and let 2 = dy. We have |[z||;; = ¢ which
implies
1Lyl g, = L2l , <1

or 1
1241, < 5

and (6.27) holds with K < C' = ;. O
Given two Hilbert spaces H; and Hs, we denote by

L (Hq, H?)

the family of all linear bounded operators from Hi into Hy. If Hy = Hy we simply
write £ (H). £ (Hy, H3) becomes a linear space if we define, for z € Hy and X € R,

(G+ L) (z) =Gz + Lx
(AL)x = ALz.

Also, we may use the number K in (6.27) as a norm in £ (Hy, Hy):

VLl oy = sup Ll - (6.28)

], =1

When no confusion arises we will write simply [|L| instead of ||L| ;, f,)- Thus,
for every L € L (Hy, Hz), we have

L], < [I1LN 12, -
The resulting space is complete, so that:
Proposition 6.4. Endowed with the norm (6.28), L (Hy, Hs) is a Banach space.

Ezample 6.6. Let A be an m x n real matrix. The map
L:x+— Ax
is a linear operator from R™ into R™. To compute ||L||, note that

|[Ax|* = Ax-Ax = ATAx - x.
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The matrix AT A is symmetric and nonnegative and therefore, from Linear Alge-
bra,

sup ATAx -x =Ay
l[=ll=1

where Ay is the maximum eigenvalue of AT A. Thus, ||L|| = A .
Ezample 6.7. Let V be a closed subspace of a Hilbert space H. The projections
r+— Pyz, r+— Qyzx,

defined in Theorem 6.2, are bounded linear operators from H into H. In fact, from
lz]* = |Pvz||> + || Qv it follows immediately that

[Pvel <lzl,  [Qvall <=

so that (6.26) holds with C' = 1. Since Pyx = « when z € V and Qv = = when
x € V+, it follows that || Py || = ||Qv || = 1. Finally, observe that

N(Py)=R(Qv)=V" and N(Qv)=R(Fy)=V.

Ezample 6.8. Let V and H be Hilbert spaces with® V' C H. Considering an element
in V as an element of H, we define the operator Iy, : V — H,

IV%H (u) = u,

which is called embedding of V into H. Iy, _, g is clearly a linear operator and it
is also bounded if there exists a constant C' such that

lull g < Clully , for every u € V
In this case, we say that V is continuously embedded in H and we write
V— H.

For instance, H,, (0,2m) < L? (0, 27).

per

6.5.2 Functionals and dual space

When Hs =R (or C, for complex Hilbert spaces), a linear operator L : H — R
takes the name of functional.

Definition 6.5. The collection of all bounded linear functionals on a Hilbert space
H is called dual space of H and denoted by H* (instead of L (H,R)).

8 The inner products in V and H may be different.
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Example 6.9. Let H = L? (2), 2 C R™ and fix g € L? (£2). The functional defined
by

Ly:f— [ fo

is linear and bounded. In fact, Schwarz’s inequality yields

1/2 1/2
2 2
ol =\ [ so < ([102) ([ 1a) " =lall 151,
Q Q Q
so that Ly, € L?(£2)" and | Ly|| < ||g|ly- Actually ||Ly|| = ||gl|, since, choosing
f =g, we have

2
lgllo = Lg(9) < [[Lgll llgllo

whence also || Lg[| > ||gll,-

Ezample 6.10. The functional in Example 6.13 is induced by the inner product
with a fixed element in L? (£2). More generally, let H be a Hilbert space. For fixed
y € H, the functional

Li:xzv— (z,y)

is continuous. In fact Schwarz’s inequality yields |(z,y)| < ||z|| ||y||, whence Ly €
H* and ||L1]|| < ||y||- Actually ||L1]| = ||y|| since, choosing x = y, we have

2
lyll™ = [Layl < [ Lol llyll,

or ||L1|| > |lyll.- Observe that this argument provides the following alternative
definition of the norm of an element y € H:

Iyl = sup (z,y). (6.29)

llzll=1

To identify the dual space of a Hilbert space H is crucial in many instances.
Example 6.14 shows that the inner product with a fixed element y in H defines an
element of H*, whose norm is exactly ||y||. From Linear Algebra it is well known
that all linear functionals in a finite-dimensional space can be represented in that
way. Precisely, if L is linear in R™, there exists a vector a € R™ such that, for every
h e R,

Lh=a-h

and || L|| = |a|. The following theorem says that an analogous result holds in Hilbert
spaces.

Theorem 6.3. (Riesz's Representation Theorem). Let H be a Hilbert space. For
every L € H* there exists a unique uy, € H such that:

1. Lz = (up, x) for every x € H,
2. | Ll = lJuc]-
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Proof. Let N be the kernel of L. If N' = H, then L is the null operator and
urp, = 0. If ' C H, then N is a closed subspace of H. In fact, if {z,} C N and
Zn — x, then 0 = Lz,, — Lz so that z € N; thus A contains all its limit points
and therefore is closed.

Then, by the Projection Theorem, there exists z € N*, z # 0. Thus Lz # 0
and, given any x € H, the element

belongs to N. In fact
L L
Lw=1L x——xz :Lx——xLz:O.
L Lz
Since z € N+, we have
Lx
0=(zw)=(z2)- 7~ [E2l
z
which entails

L(z)

= 2
1]l

Therefore if up, = L (2)||z]| % z, then Lz = (ug, z).

For the uniqueness, observe that, if v € H and

Lz (z,2).

Lz = (v,z) for every xz € H,
subtracting this equation from Lz = (ur, ), we infer
(up —v,2) =0 for every z € H

which forces v = uy,.

To show ||L|| = |JuL||, use Schwarz’s inequality
[(ur, @) < ]| fluc
to get

IL]| = sup |Lz|= sup |(ur,z)| < [lurll.
loll=1 lzll=1

On the other hand,
lurl* = (ur,ur) = Lug < | L|| |uc]

whence
flurll <L

Thus ||L|| = ||ur]]- O
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The Riesz’s map R : H* — H given by
L — uy,

is a canonical isometry, since it preserves the norm:
[ Ll = flucll -

We say that uy, is the Riesz element associated with L, with respect to the scalar
product (-, -). Moreover, H* endowed with the inner product

(Lla LQ)H* = (uLl’uL2)

is clearly a Hilbert space. Thus, in the end, the Representation Theorem allows
the identification of a Hilbert space with its dual.
Typically, L? (§2) or l5 are identified with their duals.

Remark 6.5. Warning: there are situations in which the above canonical identifi-
cation requires some care. A typical case we shall meet later occurs when dealing
with a pair of Hilbert spaces V', H such that

V<H and H"—V*

As we will see in subsection 6.8.1, in this conditions it is possible to identify H
and H* and write
Ve H<—V"

but at this point the identification of V' with V* is forbidden, since it would give
rise to nonsense!

Remark 6.6. A few words about notations. The symbol (-,-) or (-,-); denotes
the inner product in a Hilbert space H. Let now L € H*. For the action of the
functional L on an element x € H we used the symbol Lx. Sometimes, when it is
useful or necessary to emphasize the duality (or pairing) between H and H*, we
shall use the notation (L, x), or even g« (L, x) .

6.5.3 The adjoint of a bounded operator

The concept of adjoint operator extends the notion of transpose of an m X n
matrix A and plays a crucial role in determining compatibility conditions for the
solvability of several problems. The transpose A" is characterized by the identity

(AX,¥)gm =(%, ATY) g, Vx €R",Vy €R™.

We extend precisely this relation to define the adjoint of a bounded linear operator.
Let L € L(Hy, Hs). If y € Hy is fixed, the real map

Ty:z— (Lac,y)H2
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defines an element of Hy. In fact
Tyl = [(Loy) u, | < 1Lalla, 19l < VL 2oy ) 19, l2l e,

so that [Ty || < HLHz;(Hl,Hz) HyHH2
From Riesz’s Theorem, there exists a unique w € H; depending on y, which
we denote by w = L*y, such that

Tyx = (:1c,L*y)H1 YV € Hy, Vy € Hs.

This defines L* as an operator from H into Hj, which is called the adjoint of L.
Precisely:

Definition 6.6. The operator L* : Hy — H; defined by the identity
(Lz,y) g, = (&, L y) g, Vo € Hi,Vy € Ha (6.30)
is called the adjoint of L.

Ezample 6.11. Let R : H* — H the Riesz operator. Then R* = R™! : H — H*.
In fact, for every F' € H* and v € H, we have:

(RF,v)y = (F,v), = (F,R™"v) ...

Example 6.12. Let T : L? (0,1) — L? (0, 1) be the linear map

Schwarz’s inequality gives
2

/ U S:v/ u2,
0 0
whence
1 1 X 2 1 X 1 1 1
HTuHé:/ |Tu|2:/ / u dacg/ (:c/ u?)dr < —/ u? < —HuHé
0 o IJo 0 0 2 Jo 2

and therefore T' is bounded. To compute T, observe that

1 T
(Tu,v), = / [v () / u (y) dy] dz = exchanging the order of integration
0 0

_ /Ol[u ) /: v(2) da] dy = (u, T"), .

Thus,



6.5 Linear Operators and Duality 333

Symmetric matrices correspond to selfadjoint operators. We say that L is self-
adjoint if H; = Hy and L* = L. Then, (6.30) reduces to

(Lz,y) = (z,Ly) .
An example of a selfadjoint operator in a Hilbert space H is the projection Py on
a closed subspace of H; in fact, recalling the Projection Theorem:

(Pvz,y) = (Pve,Pvy + Qvy) = (Pve,Pyy) = (Pve + Qva,Pyy) = (z,Pyy) .

Important self-adjoint operators are associated with inverses of differential oper-
ators, as we will see in Chapter 8.

The following properties are immediate consequences of the definition of adjoint
(for the proof, see Problem 6.10).

Proposition 6.5. Let L,L, € L(H, H2) and Ly € L(Hs, Hs). Then:

(a) L* € L(Hg, Hy). Moreover L** = L and

HL*Hz;(Hz,Hl) = HLHz;(Hl,H2)-
(b) (LaLy)* = Li{L3. In particular, if L is an isomorphism, then
(L) = @)

The next theorem extends relations well known in the finite-dimensional case.
Theorem 6.4. Let L € £ (Hy, Hy). Then

a) R(L) =N (L*)*

b) N (L) = R(L*)"

Proof. a) Let z € R (L). Then, there exists x € H; such that z = Lz and, if
y € N (L*), we have

(=9 m, = (Ley) g, = (@,L7y) g, = 0.
Thus, R (L) € N (L*)". Since N (L*)™ is closed?, it follows that
R(L) SN (L)
as well. On the other hand, if z € R (L), for every = € Hy we have
0= (Lac,z)H2 = (z,L* z)H1

whence L*z = 0. Therefore

equivalent to

O X
g
Il
z
C
'_

equivalent to R (L*)" = N (L).
 Remark 6.8.
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6.6 Abstract Variational Problems

6.6.1 Bilinear forms and the Lax-Milgram Theorem

In the variational formulation of boundary value problems a key role is played by
bilinear forms. Given two linear spaces Vi, Vs, a bilinear form in Vi x V5 is a
function

a:VixVya—=R

satisfying the following properties:

i) For every y € Vs, the function
x+— a(z,y)

is linear in V7.

i) For every = € Vi, the function
y — a(z,y)

is linear in V5.

When Vi = Va, we simply say that a is a bilinear form in V.

Remark 6.7. In complex inner product spaces we define sesquilinear forms, instead
of bilinear forms, replacing ii) by:

iip;s) for every x € Vi, the function
y+— a(z,y)
is anti-linear'® in V5.

Here are some examples.

e A typical example of bilinear form in a Hilbert space is its inner product.

e The formula
b
a(u,v) = / (p(z)u'v' + q(z)u'v + r(x)uv) dx

where p, ¢, 7 are bounded functions, defines a bilinear form in C* ([a, b]).
More generally, if (2 is a bounded domain in R™,

a(uw) = /Q (a Vu - Vo +ub (x) - Vo +ag (x) uv) dx (a>0),

10 That is

a(z,ay + Bz) = aa (z,y) + fa(z, 2)
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or

a(u,v):/aVu'Vvder/ huv do (a>0),
2 o9

(b, ag, h bounded) are bilinear forms in C* (£2).

e A bilinear form in C? (ﬁ) involving higher order derivatives is

a(u,v) = / Au Av dx.
2

Let V be a Hilbert space, a be a bilinear form in V and F € V*. Consider the
following problem, called abstract variational problem:

FindueV
such that (6.31)
a(u,v) = (F,v), YveV

As we shall see, many boundary values problems can be recast in this form.
The fundamental result is:

Theorem 6.5. (Lax — Milgram). Let V be a real Hilbert space endowed with
inner product (-,-) and norm ||-||. Let a = a (u,v) be a bilinear form in V. If:

1) a is continuous, i.e. there exists a constant M such that
ja(u, )| < MJull o], Va,veV;
1) a is V—coercive, i.e. there exists a constant o > 0 such that
a(v,v) > av||?, Ywev, (6.32)

then there exists a unique solution @ € V of problem (6.31). Moreover, the
following stability estimate holds:

|
[al] < = [IF|
(6

Ve (6.33)

Remark 6.8. The coercivity inequality (6.32) may be considered as an abstract
version of the energy or integral estimates we met in the previous chapters. Usually,
it is the key estimate to prove in order to apply Theorem 6.5. We shall come back
to the general solvability of a variational problem in Section 6.8, when a is not
V —coercive.

Remark 6.9. Inequality (6.61) is called stability estimate for the following reason.
The functional F, element of V*, encodes the “data” of the problem (6.31). Since
for every F there is a unique solution u(F'), the map
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is a well defined function from V* onto V. Also, everything here has a linear
nature, so that the solution map is linear as well. To check it, let A\, p € R, F},
Fy € V* and wuq, ug the corresponding solutions. The bilinearity of a, gives

a(Aug + pug,v) = Aa(ug,v) + pa(ug, v) =
= )\Flv + ,U,FQU.
Therefore, the same linear combination of the solutions corresponds to a linear

combination of the data; this expresses the principle of superposition for problem
(6.31). Applying now (6.33) to u1— us2, we obtain

1
lur — ual| < > [[F1 — Fally. .

Thus, close data imply close solutions. The stability constant 1/« plays an im-
portant role, since it controls the norm-variation of the solutions in terms of the
variations on the data, measured by || Fy — Fb||,... This entails, in particular, that
the more the coercivity constant « is large, the more “stable” is the solution.

Proof of theorem 6.5. We split it into several steps.

1. Reformulation of problem (6.31). For every fixed u € V, by the continuity
of a, the linear map
v a(u,v)

is bounded in V and therefore it defines an element of V*. From Riesz’s Represen-
tation Theorem, there exists a unique A [u] € V such that

a (u,v) = (Alu]w), Yo e V. (6.34)
Since F' € V* as well, there exists a unique zg € V such that

Fv = (zp,v) YveV

and moreover ||F||,,. = ||zr||. Then, problem (6.31) can be recast in the following
way:
FindueV
such that

(A [u] ,U) = (ZFvv) 3 Vv eV

which, in turn, is equivalent to finding u such that
Au] = zp. (6.35)
We want to show that (6.35) has exactly one solution. To do this we show that

AV >V

is a linear, continuous, one-to-one, surjective map.
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2. Linearity and continuity of A. We repeatedly use the definition of A and the
bilinearity of a. To show linearity, we write, for every ui, us,v € V and A1, A2 € R,

(A[Arur + Agus] ,w) = a (Mur + Aausg, v) = Ara (u1,v) + Aza (ug, v)
= A1 (Afur] ) + A2 (Afug] w) = (ArA[ur] + A2 A fuz] v)

whence

A [)\1’(,&1 + )\2’(,&2] = >\1A [ul] + )\214. [’LLQ] .

Thus A is linear and we may write Au instead of A [u]. For the continuity, observe
that

| Aul|?* = (Au, Au) = a(u, Au)
< M [|ul] || Au|

whence
[[Aul| < M [[u] .

3. A is one-to-one and has closed range, i.e.
N (A)={0} and R(A) is a closed subspace of V.
In fact, the coercivity of a yields
allul® < a(u,u) = (Au,u) < || Aul| Ju]

whence

1
lull < — || Au]. (6.36)

Thus, Au = 0 implies u = 0 and hence N (4) = {0}.
To prove that R (A) is closed we have to consider a sequence {y,} C R(A)
such that

Ym > Yy EV

as m — oo, and show that y € R (A4). Since y,, € R (A), there exists u,, such
that At = Ym. From (6.36) we infer

1
[k, = tmll < =y = ymll
o

and therefore, since {y,} is convergent, {un} is a Cauchy sequence. Since V is
complete, there exists u € V' such that

U, —> U

and the continuity of A yields y,, = Au,, — Au. Thus Au = y, so that y € R (A)
and R (A) is closed.
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4. A is surjective, that is R (A) = V. Suppose R (A) C V. Since R (4) is a
closed subspace, by the Projection Theorem there exists z # 0, z € R (A)J‘. In
particular, this implies

0=(4z2) = a(z2) = a|z|’

whence z = 0. Contradiction. Therefore R (4) = V.

5. Solution of problem (6.31). Since A is one-to-one and R (A4) = V, there
exists exactly one solution @ € V' of equation

Au= zp.

From point 1, @ is the unique solution of problem (6.31) as well.

6. Stability estimate. From (6.36) with u = u, we obtain

1 1 1
|| < = ||Au|| = = = —||F||y«
Iall < = 4@l = — llz¢ ]l = — | Flly

and the proof is complete. [

Remark 6.10. Some applications require the solution to be in some Hilbert space
W, while asking the variational equation

a(u,v) = (F,v),

to hold for every v € V, with V # W. A variant of Theorem 6.5 deals with this
asymmetric situation. Let F' € V* and a = a (u,v) be a bilinear form in W x V
satisfying the following three hypotheses:

i) there exists M such that
la(u, v)| < M jully lvlly, — VueW,YveV;
ii) there exists a > 0 such that

sup a(u,v) > allully , Yu € W,
vlly=1
i)
sup a(w,v) > 0, Yv e V.
weW

Condition ii) is an asymmetric coercivity, while iii) assures that, for every fixed
v €V, a(v,-) is positive at some point in W. We have (for the proof see Problem
6.11):

Theorem 6.6. (Necas). If i), ii), 4ii) hold, there exists a unique w € W such that
a(u,v) = (F,v), Yve V.

Moreover
Ve (6.37)

1
<~ |F
lully < = 1F]
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6.6.2 Minimization of quadratic functionals
When a is symmetric, i.e. if
a(u,v) =a(v,u) Yu,v eV,

the abstract variational problem (6.31) is equivalent to a minimization problem.
In fact, consider the quadratic functional

E (@) = 3a(v,) — (F,0)

We have:

Theorem 6.7. Let a be symmetric. Then U is solution of problem (6.31) if and
only if @ is a minimizer of E, that is

E (m) = fjrél‘l/lE (v).

Proof. For every € € R and every “variation” v € V' we have

E (@ +ev) — E (q)

{%a(ﬂJrsv,ﬂJrsv) - <F,ﬂ+€v>*} - {%a(ﬂﬁ) - <Fﬁ>*}

1
e{a(@v) - (Fv),} +5¢% (v, 0).
Now, if @ is the solution of problem (6.31), then a (@, v) — (F,v), = 0. Therefore
_ 1,
E(u+ev)— E(u) = € a(v,v) >0
so that @ minimizes E. On the other hand, if w is a minimizer of F, then
E(u+ev)—E () >0,

which entails )
e{a(m,v) — (F,v), } + 552a(v,v) > 0.

This inequality forces (why?)
a(@,v)—(F,v), =0 YveV (6.38)

and @ is a solution of problem (6.31)). O

Letting ¢ (¢) = E (u + ev), from the above calculations we have

©'(0) = a (u,v) — (F,v), .
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Thus, the linear functional
v— a(T,v) — (F,v),
appears as the derivative of E at uw along the direction v and we write
E' (@)v=a(u,v) — (F,v),. (6.39)

In Calculus of Variation E’ is called first variation and denoted by §E.
If a is symmetric, the variational equation

E' (uw)v =a(u,v) — (F,v), =0, YoeV (6.40)
is called Euler equation for the functional E.

Remark 6.11. A bilinear form a, symmetric and coercive, induces in V' the inner
product

(uv U)a =a (uv v) .
In this case, existence, uniqueness and stability for problem (6.31) follow directly

from Riesz’s Representation Theorem. In particular, there exists a unique mini-
mizer u of E.

6.6.3 Approximation and Galerkin method
The solution u of the abstract variational problem (6.31), satisfies the equation
a(u,0) = (F,v), (6.41)

for every v in the Hilbert space V. In concrete applications, it is important to
compute approximate solutions with a given degree of accuracy and the infinite
dimension of V' is the main obstacle. Often, however, V' may be written as a union
of finite-dimensional subspaces, so that, in principle, it could be reasonable to
obtain approximate solutions by “projecting” equation (6.41) on those subspaces.
This is the idea of Galerkin’s method. In principle, the higher the dimension
of the subspace the better should be the degree of approximation. More precisely,
the idea is to construct a sequence {Vj} of subspaces of V with the following
properties:

a) Every Vj is finite-dimensional: dimVjy = k,

b) Vi C V41 (actually, not strictly necessary),

c) UV =V.

To realize the projection, assume that the vectors ¢, ¥, ..., ¥, span Vj. Then,
we look for an approximation of the solution « in the form

k

ue =Y ey, (6.42)

Jj=1
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by solving the projected problem
a (ug,v) = (F,v), Yv € V. (6.43)
Since {11, Vs, ..., 1}, } constitutes a basis in Vj, (6.43) amounts to requiring
a(uk, ¥,) = (F,4,), r=1,..,k. (6.44)
Substituting (6.42) into (6.44), we obtain the k linear algebraic equations
k
> cia(y,1,) = (Fe,), r=1,2,...,k (6.45)
j=1

for the unknown coefficients ¢y, ca, ..., ck. Introducing the vectors

C1 <?1/’1>*
c— :02 , F— < ,1/’2>*
Ck (F,¥),

and the matrix A = (a,;), with entries

Qrj :a’(d)jvd)r)a jv'r:]w""k"
we may write (6.45) in the compact form
Ac=F. (6.46)

The matrix A is called stiffness matriz and clearly plays a key role in the numerical
analysis of the problem.

If the bilinear form a is coercive, A is strictly positive. In fact, let & €R*. Then,
by linearity and coercivity:

k k
AL-E= ) ant,g =) a(U;9,)68
r,g=1 r,g=1
k
= Z gjd)J?grd)r - Zﬁﬂ/’ngﬁﬂ/’r
> alv|?

where i
=1

Since {1, ¥q, ..., ¥} is a basis in V4, we have v = 0 if and only if & = 0. Therefore
A is strictly positive and, in particular, non singular.
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Thus, for each k > 1, there exists a unique solution uy € Vi of (6.46). We want
to show that up — u, as k — o0, i.e. the convergence of the method, and give a
control of the approximation error.

For this purpose, we prove the following lemma, which also shows the role of
the continuity and the coercivity constants (M and «, respectively) of the bilinear
form a.

Lemma 6.1. (Céa). Assume that the hypotheses of the Lax-Milgram Theorem
hold and let u be the solution of problem (6.31). If uy, is the solution of problem

(6.44), then
M .
|lu —ug|| < — inf ||u—v]. (6.47)
o veVy
Proof. We have
a(ug,v) = (F,v),, Yv € Vi

and
a(u,v) = (F,v),, Yv € V.

Subtracting the two equations we obtain
a(u—ug,v) =0, Yv € V.
In particular, since v — ug € Vi, we have
a(u—ug,v—uk) =0, Yv e Vi

which implies

a(u—ug,u—ug) =a(u—ugu—0v)+a(u—ug,v—ug)

=a(u—ug,u—0v).
Then, by the coercivity of a,
ollu—ug]|* < a(u—up,u—ug) <M flu—ugl| Ju— ol
whence,
o~ well < 2] (6.48)

This inequality holds for every v € Vi, with % independent of k. Therefore (6.48)
still holds if we take in the right hand side the infimum over all v € V. O

Convergence of Galerkin’s method. Since we have assumed that
UV =V,

there exists a sequence {wi} C Vi such that wy — u as k — co. Céa’s Lemma
gives, for every k:

M M
lu—ukl < — inf [lu—of| <—lu—wl
a veVy (e

whence
||lu — ug| — 0.
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6.7 Compactness and Weak Convergence

6.7.1 Compactness

The solvability of boundary value problems and the analysis of numerical meth-
ods involve several questions of convergence. In typical situations one is able to
construct a sequence of approximations and the main task is to prove that this
sequence converges to a solution of the problem in a suitable sense. It is often
the case that, through energy type estimates'!, one is able to show that these
sequences of approximations are bounded in some Hilbert space. How can we use
this information? Although we cannot expect these sequences to converge, we may
reasonably look for convergent subsequences, which is already quite satisfactory. In
technical words, we are asking to our sequences to have a compactness property.
Let us spend a few words on this important topological concept '2. Once more,
the difference between finite and infinite dimension plays a big role.

Let X be a normed space. The general definition of compact set involves open
coverings: an open covering of E C X is a family of open sets whose union contains

E.

Definition 6.7. (Compactness 1). We say that E C X is compact if from every
open covering of E it is possible to extract a finite subcovering of E.

It is somewhat more convenient to work with pre-compact sets as well, i.e.
sets whose closure is compact. In finite-dimensional spaces the characterization of
pre-compact sets is well known: ' C R” is pre-compact if and only if F is bounded.
What about infinitely many dimensions? Let us introduce a characterization of
pre-compact sets in normed spaces in terms of convergent sequences, much more
comfortable to use.

First, let us agree that a subset E of a normed space X is sequentially pre-
compact (resp. compact), if for every sequence {x} C F there exists a subsequence
{zk,}, convergent in X (resp. in E).

We have:

Theorem 6.8. (Compactness 2). Let X be a normed space and E C X. Then E
is pre-compact (compact) if and only if it is sequentially pre-compact (compact).

While a compact set is always closed and bounded (see Problem 6.12), the
following example exhibits a closed and bounded set which is not compact in [2.
Consider the real Hilbert space

% = {x—{xk}z1:2xi <oo,:ck€]R}

k=1

1 1 e. estimates for a function and its gradient in L?.
12 For the proofs see e.g. Rudin, 1964 or Yhosida, 1968.
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endowed with
o0 o0
(x,y) = Z-Tkyk and HXH2 = Z f”i
k=1 k=1

Let E = {e*}, _, where ' = {1,0,0,..}, e = {0,1,0, ...}, etc.. Observe that E
constitutes an orthonormal basis in 2. Then, E is closed and bounded in 2.

However, E is not sequentially compact. Indeed, Hej —eF H =/2,if j # k, and
therefore no subsequence of {ek}k>1 can be convergent.

Thus, in infinite-dimensions, closed and bounded does not imply compact. Ac-
tually, this can only happen in finite-dimensional spaces. In fact:

Theorem 6.9. Let B be a Banach space. B is finite-dimensional if and only if the
unit ball {x: ||x|| < 1} is compact.

Criterion of compactness in L2. To recognize that a subset of a Hilbert
space is compact is usually a hard task. The following theorem gives a criterion
for recognizing pre-compact sets S C L2(£2).

Theorem 6.10. Let 2 C R™ be a bounded domain and S C L*(£2). If:

i) S is bounded: i.e. there exists K such that ||u[|;2(o) < K,Vu € S,
ii) there exist o and L, positive, such that, if u is extended by zero outside {2,

u(-+h) —u()llpeo <L |h|*, for every h €R™ and u € S,
then S is pre-compact.

The second condition expresses an equicontinuity in norm of all the elements
in S. We shall meet this condition in subsection 7.10.1.

6.7.2 Weak convergence and compactness

We have seen that the compactness in a normed space is equivalent to sequential
compactness. In the applications, this translates into a very strong requirement
for approximating sequences.

Fortunately, in normed spaces, and in particular in Hilbert spaces, there is
another notion of convergence, much more flexible, which turns out to be perfectly
adapted to the variational formulation of boundary value problems.

Let H be a Hilbert space with inner product (-,-) and norm ||-||. If F € H*, we
know that (F,zx), — (F, ), when |zx — z|| — 0. However, it could be that

<Fa xk>* - <Fa :E>*

for every F' € H*, even if ||z — z|| -» 0. Then, we say that xj converges weakly
to x. Precisely:
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Definition 6.8. A sequence {xx} C H converges weakly to x € H, and we
write
T — T
(with an “half arrow”), if
(F,zy), — (F,x),, VF € H*.

The convergence in norm is then called strong convergence. From Riesz’s Rep-
resentation Theorem, it follows that {zx} C H converges weakly to = € H if and
only if

(zr,y) = (z,y),  VyeH.

The weak limit is unique, since xr — = and x; — z implies
(‘T*Zvy):() vyEH?
whence x = z. Moreover, Schwarz’s inequality gives

(@ — 2, )| < llzr — 2| |yl

so that strong convergence implies weak convergence, which should not be surpris-
ing.

The two notions of convergence are equivalent in finite-dimensional spaces. It
is not so in infinite dimensions, as the following example shows.

Ezample 6.13. Let H = L* (0, 27). The sequence vy (x) = cos kx, k > 1, is weakly
convergent to zero. In fact, for every f € L?(0,27), the Riemann-Lebesgue The-
orem on the Fourier coefficients of f implies that

27

(fyvk)y = (z) coskx dz — 0
0

as k — oo. However
lvlly = v

and therefore {vy},~, does not converge strongly.

Remark 6.12. If L € £ (Hy, H2) and z, — x in H; we cannot say that Lz, — Lz
in H,. However, by definition of weak convergence, Lz — Lz is true. Thus, if L
is (strongly) continuous then it is weakly continuous as well.

Remark 6.15. Warning: Not always strong implies weak! Take a strongly closed
set £ C H. Can we deduce that E is weakly closed as well? The answer is no. In-
deed, “strongly closed” means that E contains all the limits of strongly convergent
sequences {zy} C E. But suppose that zy — z (only weakly); since the conver-
gence is not strong, we can not affirm that z € E. Thus, E is not weakly closed,
in general'?.

For instance, let E = {vy} where vy (z) = cos kx, as in Example 6.23. Then,
E is a strongly closed subset of L? (0, 27) and contained in the set {||v||, = v/7}.
However v, — 0 ¢ E, so that E is not weakly closed.

13 See Problem 6.14.
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We have observed that the norm in a Hilbert space is strongly continuous. With
respect to weak convergence, the norm is only lower semicontinuous, as property
2 in the following theorem shows.

Theorem 6.11. Let {z;} C H such that z; — . Then
1) {zx} is bounded,

2) |lz|| < liminfg_,eo ||k
We omit the proof of 1. For the second point, it is enough to observe that

H:vH2 = klim (g, x) < ||z||liminf ||z ||
—00 k—o0

and simplify by ||z||.

The usefulness of weak convergence is revealed by the following compactness
result. Basically, it says that if we substitute strong with weak convergence, any
bounded sequence in a Hilbert space is weakly pre-compact. Precisely:

Theorem 6.12. Every bounded sequence in a Hilbert space H contains a subse-
quence which is weakly convergent to an element x€H .

Proof. We give it under the additional hypothesis that H is separable. Thus,
there exists a sequence {2} dense in H. Let now {z;} C H be a bounded sequence:
lz;]| < M, Vj > 1. We split the proof into three steps.

1. Using a “diagonal” process, we construct a subsequence {xgs)} such that the

real sequence (x§S>, z1) is convergent for every fixed zx. To do this, observe that

the sequence
(xjv Zl)

is bounded in R and therefore there exists {:v;l)} C {z;} such that
G

is convergent. For the same reason, from {:cg-l)} we may extract a subsequence
@)
{z;”} such that

2
G
is convergent. By induction, we construct {:cg-k)} such that

(@, 21)

converges. Consider the diagonal sequence {xgs)}, obtained by selecting :cgl) from
{:cg-l)}, :cg) from {:v;?)} and so on. Then,

(‘TgS)v Zk)
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is convergent for every fixed k > 1.

2. We use the density of {zx} to show that (xgs), z1,) converges for every z € H.
In fact, for fixed € > 0 and z € H, we may find zj; such that ||z — zx|| < . Write

(‘TgS) - x%n), Z) = (ng) - x%n), = Zk) + (ng) - x%n), Zk)'
If j and m are large enough

|0 = 2, z)| < ¢

since (xS), z1) s convergent. Moreover, from Schwarz’s inequality,
’(9528) — M, 2 — Zk)’ < ngs) - x,(,’L”)H |z — zx|| < 2Me.

Thus, if j and m are large enough, we have

(@) — 2, 2)| < @M + e,
hence the sequence (xf) —zlm ), z) is a Cauchy sequence in R and therefore con-

vergent.
3. From 2, we may define a linear functional T in H by setting

Tz = lim (2%, 2).

S5—> 00

Since ’ xgs)

‘ < M, we have
Tz < M ||z]|
whence T' € H*. From the Riesz Representation theorem, there exists a unique

Too € H such that
Tz = (T, 2), Vz € H.

Thus
(xgs), 2) = (Too, 2) s Vze H
or
) —~ .
O

Ezample 6.14. Let H = L*(£2), 2 C R™ and consider a sequence {uy},s; C
L2 (£2). To say that {uz} is bounded means that

lluxll, < M, for every k > 1.

Theorem 6.11 implies the existence of a subsequence {uy,, },.~, and of u € L* (£2)
such that, as m — 400, B

/ Ug,, v — / uv, for every v € L? (12).
2 2
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6.7.3 Compact operators

By definition, every operator in £ (Hy, Hy) transforms bounded sets in H; into
bounded sets in Hy. The subclass of operators that transform bounded sets into
pre-compact sets is particularly important.

Definition 6.9. Let H, and Hy Hilbert spaces and L € L (H;, Hs). We say that
L is compact if, for every bounded E C Hy, the image L (E) is pre-compact in
H,.

An equivalent characterization of compact operators may be given in terms of
weak convergence. Indeed, an operator is compact if and only if “converts weak
convergence into strong convergence”. Precisely:

Proposition 6.6. Let L € £ (Hy, H2). L is compact if and only if, for every se-
quence {x} C Hy,

T — 0 in Hy implies Lz, — 0 in H,. (6.49)

Proof. Assume that (6.49) holds. Let E C Hj, bounded, and {z;} C L (E).
Then 2z, = Lxy, with 2, € E.

From theorem 6.11, there exists a subsequence {zy, } weakly convergent to
x € Hy. Then y; = z,, —x — 0 in H; and, from (6.49), Ly,, — 0 in Ho, that is
2k, = Ly, = Lz = z in Ho.

Thus, L (F) is sequentially pre-compact, and therefore pre-compact in Hs.

Viceversa, let L be compact and z;, — 0 in H;. Suppose Lz — 0. Then, for
some &€ > 0 and infinitely many indexes k;, we have HLackj H > £. Since

:Ekj - 07

by Theorem 6.10 {:ckj} is bounded in Hy, so that {kaj} contains a subsequence
(that we still call) {Lay,} strongly (and therefore weakly) convergent to some
y € Ha. On the other hand, we have Lzy, — 0 as well, which entails y = 0. Thus
Hkaj H — 0. Contradiction. [

Ezxample 6.15. Let H;er (0,27) be the Hilbert space introduced in Example 6.4.
The embedding
Iy, sr2: Hy, (0,2m) — L? (0, 2)

is compact (see Problem 6.15).

Ezample 6.16. From Theorem 6.8, the identity operator I : H — H is compact if
and only if dimH < co. Also, any bounded operator with finite dimensional range
is compact.

Ezample 6.17. Let Q = (0,1)x(0,1) and g € C (@) Consider the integral operator

To (z) = / g (z,y)v(y) dy. (6.50)
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We want to show that 7" is compact from L? (0,1) into L? (0,1). In fact, for every
€ (0,1), Schwarz’s inequality gives

1
|Iw<xnfsjﬁ 19 9) v @) dy < 9 (@ Mz, 1ol 0, » (6.51)
whence
! 2 2 2
1;|Iw<xn dz < |lglao 102501,

which implies that Tv € L? (0,1) and that T is bounded.
To check compactness, we use Proposition 6.7. Let {vy} C L?(0,1) such that
v — 0, that is

1
/ vgw — 0, for every w € L?(0,1). (6.52)
0

We have to show that Tvxy — 0 in L% (0,1). Being weakly convergent, {vy} is
bounded so that

HkaL2(O,1) <M, (6.53)
for some M and every k. From (6.51) we have
Tor (@)] < M lg (2,201

Moreover, inserting w (-) = g («, -) into (6.52), we infer that

1
Tug, (z) = / g(z,y) vk (y)dy — 0 for every z € (0,1).
0

14

From the Dominated Convergence Theorem'* we infer that Tvy — 0 in

L?(0,1). Therefore T is compact.
The following proposition is useful.

Proposition 6.7. Let L : Hy — Hy be compact. Then:
a) L* : Hy — H; is compact;
b) if G € L (Hz, H3) or G € L (Hy, Hy), the operator Go L or LoG is compact.

Proof. a). We use Proposition 6.7. Let {zx} C Hz and z; — 0. Let us show
that ||L*zy|;, — 0. We have:

VL 2l = (L k Lok g, = (o, LL ), -
Since L* € L (Hz, H1), we have
L*:Ek -0

14 Appendix B.
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in H; and the compactness of L entails LL*x,, — 0 in Hs. Since ||zk| < M, we
finally have

IL* 2k 37, = (2, LL 21) gy, < M | LL 3, — 0.

b). We leave it as an exercise. [

6.8 The Fredholm Alternative

6.8.1 Solvability for abstract variational problems

Let us go back to the variational problem
a(u,v) = (F,v), Yo eV, (6.54)

and suppose that Lax-Milgram Theorem cannot be applied, since, for instance, a
is not V —coercive. In this situation it may happen that the problem does not have
a solution, unless certain compatibility conditions on F' are satisfied. A typical
example is given by the Neumann problem

—Au=f in {2
Opu = g on 0{2.

A necessary and sufficient solvability condition is given by.

/Qer/ang:O. (6.55)

Moreover, if (6.55) holds, there are infinitely many solutions, differing among each
other by an additive constant. Condition (6.55) has both a precise physical inter-
pretation in terms of a resultant of forces at equilibrium and a deep mathematical
meaning, with roots in Linear Algebra!

Indeed, the results we are going to present are extensions of well known facts
concerning the solvability of linear algebraic systems of the form

Ax=b (6.56)

where A is an n x n matrix and b €R". The following dichotomy holds: either
(6.56) has a unique solution for every b or the homogeneous equation Ax = 0 has
non trivial solutions.

More precisely, system (6.56) is solvable if and only if b belongs to the column
space of A, which is the orthogonal complement of ker(AT). If wy,..., w, span
ker(AT), this amounts to asking the s compatibility conditions, 0 < s < n,

b‘WjZO jzl,...,s.
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Finally, ker (A) and ker(A") have the same dimension and if vy, ..., v, span
ker (A), the general solution of (6.56) is given by

s
X:f+ E CjVj
j=1

where X is a particular solution of (6.56) and ¢, ..., ¢ are arbitrary constants.

The extension to infinite-dimensional spaces requires some care. In particular,
in order to state an analogous dichotomy theorem for the variational problem
(6.54), we need to clarify the general setting, to avoid confusion.

The problem involves two Hilbert spaces: V', the space where we seek the so-
lution, and V*, which the data F belongs to. Let us introduce a third space H,
intermediate between V and V*. In boundary value problems, usually H = L? (§2),
with {2 bounded domain in R”, while V is a Sobolev space. In practice, we often
meet a pair of Hilbert spaces V', H with the following properties:

1. V— H,ie. V is continuously embedded in H. Recall that this simply means
that the identity operator Iy, g, from V into H, is continuous or, equivalently
that there exists C' such that

lullg < Cllully, — VueV. (6.57)
2. Vis dense in H.

Using Riesz’s Theorem, we may identify H with H*. Also, we may continuously
embed H into V*, so that any element in H can be thought as an element of V*.
It is enough to observe that, for any fixed v € H, the functional T,, defined by

(Tuv), = (o) veV, (6.59)
is continuous in V. In fact, Schwarz’s inequality and (6.57) give
[(w, 0) | < lullg [0l < Cllully (o]l - (6.59)

Then, we have a continuous map v — T, from H into V*, with | Ty, ||y, < C'[Jul -
If T, = 0 then
(w,v)F =0 VYoeV

which forces u = 0, by the density of V' in H.

Thus, the map u —— T, is one to one and defines a continuous embedding
Ig_,v~. This allows the identification of u with an element of V*, which means
that, instead of (6.58), we can write

<u7 v>* = (uv U)H Vv € Vv,

regarding u on the left as an element of V* and on the right as an element of H.
Finally, it can be shown that V and H are dense in V*. Thus, we have

VeaH<SV"
with dense embeddings. We call (V, H,V*) a Hilbert triplet.
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This is the right setting. We use the symbols
() =0 )ms I =11l

to denote inner product and norm in H, respectively, while (-, -). = v« (-, -}y is
reserved for the duality between V* and V.

To state the main result we need to introduce weakly coercive forms and their
adjoints.

Definition 6.10. We say that the bilinear form a (u,v) is weakly coercive with
respect to the pair (V, H) if there exist A\g € R and o > 0 such that

a(v,v) + X [[v]|* > o]} VoeV
The adjoint form a* of a is given by
a* (uv v) = a’(vvu)v

obtained by interchanging the arguments in the analytical expression of a. In the
applications to boundary value problems, a* is associated with the so called formal
adjoint of a differential operator (see subsection 8.5.1).

We shall denote by AV (a) and NV (a*), the set of solutions u and w, respectively,
of the variational problems

a(u,v)=0, YoveV and a* (w,v) =0, YveV

Observe that A (a) and NV (a*) are both subspaces of V, playing the role of kernels
for a and a*

Theorem 6.13. Let (V, H,V*) be a Hilbert triplet, with V' compactly embedded
in H. Let F € V* and a be a bilinear form in V', continuous and weakly coercive
with respect to (V, H). Then:
a) Either equation
a(u,v) = (F,v). YoeV (6.60)

has a unique solution u and

[zl < C||F|

Ve (6.61)
b) or
dimN (a) = dimN (a.) = d < co.
and (6.60) is solvable if and only if (F,w). = 0 for every w € N (a*).
The proof of Theorem 6.12 relies on a more general result, known as Fredholm’s
Alternative, presented in the next section.

Some comments are in order. The following dichotomy holds: either (6.60) has
a unique solution for every F' € V* or the homogeneous equation a (u,v) = 0 has
non trivial solutions. The same conclusions hold for the adjoint equation

a” (u,v) = (F,v), Yv e V.
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If wy,wa, ..., wq span N (a*), (6.60) is solvable if and only if the d compatibility
conditions
(Fw;), =0, j=1,..d

hold. In this case, equation (6.60) has infinitely many solutions given by

d
u=u-+ E Cjzj
Jj=1

where 7 is a particular solution of (6.60), 21, ..., 24 span N (a) and cy, ..., cq are
arbitrary constants.

We shall apply Theorem 6.12 to boundary value problems in Chapter 8. Here
is however a preliminary example.

Ezample 6.18. Let V = H},,.(0,27), H = L?(0,27) and assume that w = w (t)
is a positive, continuous function in [0, 27]. We know (Example 6.27) that V is
compactly embedded in H. Moreover, it can be shown that V' is dense in H.
Thus (V, H,V*) is a Hilbert triplet.
Given f € H, consider the variational problem

2m 2m
/ u'v'wdt = fo dt, Yo e V. (6.62)
0 0

The bilinear form a (u,v) = [, 2™ /v wdt is continuous in V' but it is not V —coercive.

0
In fact
|a (u,v)] < wimax [[u' [l [V [lg < Wmax ully 0]l

but a(u,u) = 0 if u is constant. However it is weakly coercive with respect to
(V, H), since

2m 2m
a (u,u) + HuHé :/ (u’)detJr/ uldt > min{wmin,l}HuHiQ.
0 0

Moreover,

27
] J ] < Wl ello < £l Tl
0

hence the functional F : v > f02ﬂ fv dt defines an element of V*.
We are under the hypotheses of Theorem 6.12. The bilinear form is symmetric,
so that V' (a) = N (a.). The solutions of the homogeneous equation

27
a(u,v) = / u'v'wdt = 0, YveV (6.63)
0

are the constant functions. In fact, letting v = u in (6.63) we obtain

2m
/ (u/)det =0
0
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which forces u (t) = ¢, constant, since w > 0. Then, dimMN (a) = 1. Thus, from
Theorem 6.11 we can draw the following conclusions: equation (6.62) is solvable if

and only if
27

(F,1), = [ fdt=0.
0

Moreover, in this case, (6.62) has infinitely many solutions of the form u = u + c.

The variational problem has a simple interpretation as a boundary value prob-
lem. By an integration by parts, recalling that v (0) = v (27), we may rewrite
(6.62) as

27
/ [(—wu') — flodt + v (0) [w (2m) v’ (27) — w (0) ' (0)] = 0, Yo e V.
0
Choosing v vanishing at 0 we are left with
27
/ [—(wu') = flodt =0, YveV,v(0)=uv(2m)=0.
0

which forces

Then
v (0) [w (2m) v’ (27) — w (0) ' (0)] =0, YoeV

which, in turn, forces

w (2m) v’ (27) = w (0) v’ (0).

Thus, problem (6.62) constitutes the variational formulation of the following
boundary value problem:

(wu') = — in (0,2m)
u(0) = u (2m)
w(2m)u (27) = w (0) v’ (0).

It is important to point out that the periodicity condition u (0) = u (27) is forced
by the choice of the space V' while the Neuman type periodicity condition is en-
coded in the variational equation (6.62).

6.8.2 Fredholm’s Alternative

We introduce some terminology. Let V;, Vo Hilbert spaces and @ : Vi — V. We
say that @ is a Fredholm operator if N (@) and R ()" have finite dimension. The
index of @ is the integer

ind (®) = dimA (@) — dimR ()" = dimN ($) — dimN (*).

We have!®:

15 For the proof, see e.g. Brezis, 1983.
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Theorem 6.14. (Fredholm'’s Alternative). Let V be a Hilbert space and K €
L (V) be a compact operator. Then

d=1-K
is a Fredholm operator with zero index. Moreover ®* =1 — K*,
R (D) =N (&*)*" (6.64)

and
N(@)={0} <= R(P) =V (6.65)

The last formula shows that @ is one-to-one if and only if it is onto. In other
words, uniqueness for the equation

r—Kx=f (6.66)

is equivalent to existence for every f € V and viceversa. The same thing holds for
the adjoint &* = I — K* and the associated equation

y—K'y=g.

Let d = dimR (#)" = dimMN (*) > 0. Then, (6.64) says that equation (6.66)
is solvable if and only if f 1 N (&*), that is, if and only if (f,y) = 0 for every
solution y of

y—K'y=0. (6.67)

If y1,y2, ..., yq span N ($*), this amounts to asking the d compatibility relations
(f?yj):()v ]Zlv’d
as necessary and sufficient conditions for the solvability of (6.66).

Remark 6.14. Clearly, Theorem 6.13 holds for operators K — AI with A # 0. The
case A = 0 cannot be included. Trivially, for the operator K = 0 (which is com-
pact), we have N (K) = V, hence, if dimV = oo, Theorem 6.13 does not hold. A

more significant example is the one-dimensional range operator
Kz =L (z)xg

where L € L (V) and z is fixed in V. Assume dimV = co. From Riesz’s Theorem,
there exists z € V such that Lz = (z,z) for every x € V. Thus, N(K) is given
by the subspace of the elements in V' orthogonal to z, which has infinitely many
dimensions.

e Proof of Theorem 6.12 (sketch). The strategy is to write equation

a(u,v) = (F,v), (6.68)
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in the form
Iy — Ku=g.

where Iy is the identity operator in V' and K : V — V is compact.

Let J : V — V* the embedding of V into V*. Recall that J is the composition
of the embeddings Iy g and Ig_,v~. Since Iy, g is compact and Ig_,y~ is con-
tinuous, we infer from Proposition 6.8 that J is compact. We write (6.68) in the
form

ax, (u,v) = a(u,v) + Ao (u,v) g = (AoJu+ F,v),

where Ag > 0 is such that ay, (u,v) is coercive. Since, for fixed u € V, the linear
map
v an, (u,v)

is continuous in V, there exists L € £ (V,V*) such that
(Lu,v), = ax, (u,v) Yu,v € V.

Thus, equation a (u,v) = (F,v), is equivalent to

(Lu, vy, = (AoJu + F,v), YoeV

and therefore to
Lu = XJu+ F. (6.69)

Since ay, is V—coercive, from the Lax-Milgram Theorem, the operator L is an
isomorphism between V and V* and (6.69) can be written in the form

u— XL YJu=L"'F.
Letting g = L™'F € V and K = \oL™1J, (6.69) becomes
Iy — Ku=g.

where K:V — V.

Since J is compact and L~! is continuous, K is compact (Proposition 6.8).
Applying the Fredholm Alternative Theorem and rephrasing the conclusions in
terms of bilinear forms we conclude the proof'6. O

6.9 Spectral Theory for Symmetric Bilinear Forms

6.9.1 Spectrum of a matrix
Let A be an n x n matrix and A € C. Then, either the equation

Ax—)Xx=Db

16 We omit the rather long and technical details.
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has a unique solution for every b or there exists u # 0 such that
Au =)\u.

In the last case we say that A, u constitutes an eigenvalue-eigenvector pair. The
set of eigenvalues of A is called spectrum of A, denoted by op (A). If A ¢ op (A)

the resolvent matriz (A—XI)™" is well defined. The set
p(A)=C\op (A)

is called the resolvent of A.If A € op (A), the kernel N (A—AI) is the subspace
spanned by the eigenvectors corresponding to A and it is called the eigenspace of
A. Note that op (A) = op (AT).

The symmetric matrices are particularly important: all the eigenvalues A1, ...\,
are real (possibly of multiplicity greater than 1) and there exists in R™ an orthonor-
mal basis of eigenvectors uy, ..., u,.

We are going to extend these concepts in the Hilbert space setting. A motivation
is .... the method of separation of variables.

6.9.2 Separation of variables revisited

Using the method of separation of variables, in the first chapters we have con-
structed solutions of boundary value problems by superposition of special solu-
tions. However, explicit computations can be performed only when the geometry
of the relevant domain is quite particular. What may we say in general? Let us
consider an example from diffusion.

Suppose we have to solve the problem

uy = Au (z,y) € 2,t>0
u(z,y,0) =g(z,y) (z,y) € 2
u(z,y,t) =0 (z,y) €002,t>0

where {2 is a bounded bi-dimensional domain. Let us look for solutions of the form

u(z,y,t) = v(z,y)w(t).

Substituting into the differential equation, with some elementary manipulations,
we obtain

w' (t)  Av(z,y)
w(t)  v(z,y)
where A is a constant, which leads to the two problems

= —>\’

w + dw =0 t>0 (6.70)

and

(6.71)

—Av=MXv in {2
v=20 on O0f2.
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A number X such that there exists a non trivial solution v of (6.71) is called a
Dirichlet eigenvalue of the operator —A in {2 and v is a corresponding eigen-

function. Now, the original problem can be solved if the following two properties
hold:

a) There exists a sequence of (real) eigenvalues A; with corresponding eigen-
vectors uy. Solving (6.70) for A = Ay, yields

wy, (t) = ce At ceR.

b) The initial data g can be expanded is series of eigenfunctions:

T,y) = nguk (z,y).

Then, the solution is given by

w(z,y,t) = gre *u (z,9)

where the series converges in some suitable sense.

Condition b) requires that the set of Dirichlet eigenfunctions of —A constitutes
a basis in the space of initial data. This leads to the problem of determining the
spectrum of a linear operator in a Hilbert space and, in particular, of self-adjoint
compact operators. Indeed, it turns out that the solution map of a symmetric
variational boundary value problem is often a self-adjoint compact operator. We
will go back to the above problem in subsection 8.4.3.

6.9.3 Spectrum of a compact self-adjoint operator

We define resolvent and spectrum for a bounded linear operator. Although the
natural setting is the complex field C, we limit ourselves to R, mainly for simplicity
but also because this is the interesting case for us.

Definition 6.11. Let H be a Hilbert space, L € L (H), and I the identity in H.

a) The resolvent set p (L) of L is the set of real numbers X such that L — A\ is
one-to-one and onto:

p(L) ={X € R: L — Al is one-to-one and onto} .
b) The (real) spectrum o (L) of L is
o (L) =R\p(L).
Remark 6.15. If A € p (L), the resolvent (L — AI)~" is bounded!”.

17 1t is a consequence of the Closed Graph Theorem: If the graph of a linear operator
A: Hy — Hs is closed in H1 x Ho then A is bounded.
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If H has finite dimension, any linear operator is represented by a matrix, so that
its spectrum is given by the set of its eigenvalues. In infinitely many dimensions
the spectrum may be divided in three subsets. In fact, if A € o (L), different things
can go wrong with (L — AI) ™.

First of all, it may happen that L — AT is not one-to-one so that (L — A\I )71
does not even exist. This means that N (L — AI ) # 0, i.e. that the equation

Lz = Xz (6.72)

has non trivial solutions. Then, we say that A is an eigenvalue of L and that the
non zero solutions of (6.72) are the eigenvectors corresponding to A. The linear
space spanned by these eigenvectors is called the eigenspace of A and denoted by

N(L = AI).

Definition 6.12. The set op (L) of the eigenvalues of L is called the point spec-
trum of L.

Other things can occur. L — A is one-to-one, R(L — AI ) is dense in H, but
(L—XI)~! is unbounded. Then, we say that A belongs to the continuous spectrum
of L, denoted by o¢ (L) .

Finally, L — AI is one-to-one but R(L — AI ) is not dense in H. This defines
the residual spectrum of L.

Ezample 6.19. Let H = [?> and L : 1> — [? be the shift operator which maps
x = {z1,22,...} € [? into y = {0, 21, T2, ...}. We have

(L=XM)z ={-Ax1,21 — Ax2, T2 — AT3,...}.

If A # 0, then X € p(L). In fact for every z = {21, 22, ...} € I,

L) lg=0-2 2,2 L
-anta={-% -2+ 3,

Since R(L) contains only sequences whose first element is zero, R(L) is not dense

in 12, therefore 0 € og (L) = o (L).

We are mainly interested in the spectrum of a compact self-adjoint operator.
The following theorem is fundamental'®.

Theorem 6.15. Let K be a compact, self-adjoint operator on a separable Hilbert
space H. Then:

a) 0 € o (K) and o (K)\ {0} =op (K)\ {0}.
b) H has an orthonormal basis {u,,} consisting of eigenvectors for K.
¢) If dim H = oo, the corresponding eigenvalues different from zero {\,,} can

be arranged in a decreasing sequence |A1| > |A2| > -+, with A\, — 0, as m — oo.

18 For the proof, see Brezis, 1983.
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Thus, the spectrum of a compact self-adjoint operator contains always A = 0,
which is not necessarily an eigenvalue. The other elements in o (L) are eigenvalues,
arranged in a sequence converging to zero if H is infinite dimensional.

If A # 0 is an eigenvalue, Fredholm’s Alternative applies to L — AI, so that, in
particular, the eigenspace N (L — AI) has finite dimension.

A consequence of Theorem 6.15 is the spectral decomposition formula for K. If

x € H and {un},,~, is an orthonormal set of eigenvectors corresponding to all
non-zero eigenvalues {\, }, <, we can describe the action of K as follows:

Kz = Z (Kz, Um) Um = Z Am (%, Um) U, Vo € H. (6.73)

m>1 m>1

6.9.4 Application to abstract variational problems

We now apply theorems 6.13 and 6.14 to our abstract variational problems. The
setting is the same of theorem 6.12, given by a Hilbert triplet (V, H,V*), with
compact embedding of V into H. We assume that H is also separable. Let a be a
bilinear form in V', continuous and weakly coercive; in particular:

axe (4,0) = a(v,v) + Mo [o]? > av],  VYoeV
The notion of resolvent and spectrum can be easily defined. Consider the problem
a (u,v) = X (u,v) + (F,v), Yv e V. (6.74)

The resolvent p(a) is the set of real numbers A such that (6.74) has a unique
solution u (F') € V for every F' € V* and the solution map

Sy Fr—u(F)

is an isomorphism between V* and V.

The (real) spectrum is o (a) = R\p(a), while the point spectrum op (a) is the
subset of the spectrum given by the eigenvalues, i.e. the numbers A such that the
homogeneous problem

a(u,v) = A(u,v) YoeV (6.75)

has non-trivial solutions (eigenfunctions). We call eigenspace of A the space
spanned by the corresponding eigenfunctions and we denote it by N (a, A).

The following theorem is a consequence of the Fredholm Alternative and The-
orem 7.4. and it is based on the following relation between op (Sy,) and op (ax,)-
Note that 0 ¢ o (Sy,) and that o (ay,) C (0,400).

Let 4 € op (Sy,) and f be a corresponding eigenvector, that is,

SAof = ,u'f'
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Thus, necessarily f € V and

axo (SAof? v) = Hax, (fv v) = (fv v)

or

ax, (fvv) = (fvv)

1
I
for all v € V. Therefore A = 1/ is an eigenvalue of ay,, with the same eigenspace.
As a consequence

N(a’)\o) :N(S)\o) cV.

Moreover, since the eigenvalues of ay, are all positive, if follows that p > 0 as well.

Theorem 6.16. Let (V, H,V*) be a Hilbert triplet with H separable and V com-
pactly embedded in H. Let F € V* and a be a symmetric bilinear form in V,
continuous and weakly coercive. We have:

(a) o (a) =op(a) C (=g, +00). Moreover, if the sequence of eigenvalues { \p, }
is infinite, then \,, — +o0.

(b) If w,v are eigenfunctions corresponding to different eigenvalues, then
a (u,v) = (u,v) = 0. Moreover, H has an orthonormal basis of eigenvectors tyy,.

(¢) {um/vAm + X} constitutes an orthonormal basis in V, with respect to
the scalar product
((u,v)) = a(u,v) + Ao (u, v). (6.76)

Proof. By hypothesis, Sy, is an isomorphism between V* and V. In particular,
it is well defined as a map from H into V' C H. Since the embedding of V in
H is compact, then S), is compact as an operator from H into H. Also, by the
symmetry of a, Sy, is selfadjoint, that is

(Sxnof,9) = (f;Sxog)  forall f,ge H.
In fact, let w = S, f and w = S),g. Then, for every v € V,
ax, (u,v) = (f,v)  and  ay, (w,v) = (g,0).
In particular,
ax, (u,w) = (fyw) and ax, (w,u) = (g,u)
so that, since ay, (u,w) = ax, (w,u) and (g,u) = (u, g), we can write
(Sxof9) = (u, 9) = (f,w) = (f,5x9) -

Since 0 ¢ o (Sh,), from Theorem 6.15 it follows that o (Sy,) = op (Sy,) and
the eigenvalues form a sequence {u,,} with p,, | 0. Using Theorem 6.15 and the
relation between op (Sy,) and op (ay,), (a) and (b) follow easily.
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Finally if {u,,} is an orthonormal basis of eigenvectors for a in H, then'?

a (umv uk) = >\m (umv uk) = >\m5mk
so that
(s uk)) = axg (Ums uk) = (Am + Ao) Ik
which easily gives (¢). O

Problems

2

6.1. Heisenberg Uncertainty Principle. Let ¢ € C* (R) such that = [¢ (z)]” — 0

as |z| — oo and [, [¢ (z)]” do = 1. Show that

1§2/R:v2 I (:c)|2d:v/R’1// ()|” da.

(If ¢ is a Schrodinger wave function, the first factor in the right hand side
measures the spread of the density of a particle, while the second one measures
the spread of its momentum).

6.2. Let H be a Hilbert space and a (u,v) be a symmetric and non negative
bilinear form in H:

a(u,v) =a(v,u) and a(u,v)>0 Vu,veH.

Show that
0 ()| < va(w 0)a @ 0).
[Hint. Mimic the proof of Schwarz’s inequality].

6.3. Show the completeness of 2.
[Hint. Take a Cauchy sequence xk} where x* = {x,kn} In particular, ’x,kn — :c,};L’ —
0 as h,k — oo and therefore ), — x,, for every m. Define x = {z,,} and show
that x* — x in [?].

6.4. Let H be a Hilbert space and V' a closed subspace of H. Show that u = Pyx
if and only if
l.ueV
2. (z—u,v)=0,YweV.

6.5. Let f € L?(—1,1). Find the polynomial of degree < n that gives the
best approximation of f in the least squares sense, that is, the polynomial p that

minimizes L
[ =
-1

among all polynomials ¢ with degree < n.

19 8,1 is Kronecker symbol.
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[Answer: p(x) = agLo () + a1L1 (z) + ... + an Ly, (z), where L,, is the n — th
Legendre polynomials and a; = (n +1/2) (f, Ln) p2(_1 1))-

6.6. Hermite’s equation and the quantum mechanics harmonic oscillator. Con-
sider the equation

w4+ 2 +1-2*)w=0 zeR (6.77)

with w (z) — 0 as z — +oo.

a) Show that the change of variables z = we®” /2 transforms (6.77) into Her-
mite’s equation for z :

2" —2x2 42Xz =0
with e~ /22 () — 0 as x — +oo.

b) Consider the Schrédinger wave equation for the harmonic oscillator

8m2m

1
Vit s

(E - 27r2m1/2:c2) =0 reR
where m is the mass of the particle, F is the total energy, h is the Plank constant

and v is the vibrational frequency. The physically admissible solutions are those
satisfying the following conditions:

Y =0 asz—+oo and Y =1

Show that there is a solution if and only if
1
E=hv <n+ 5) n=20,1,2....

and, for each n, the corresponding solution is given by

o))

1/2
4
om h> and H,, is the n — th Hermite polynomial.

where ky, = [ ——
92n (n1)

6.7. Using separation of variables, solve the following steady state diffusion
problem in three dimensions (r, 8, ¢ spherical coordinates, 0 < § < 27, 0 < ¢ < 7):

Au=0 r<l,0<ep<mw
u(lp)=g(p) O<p<m.

[Answer:

u(r, ) = Z anr" Ly, (cos ),
n=0
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where L,, is the n — th Legendre polynomial and

2n+1 !
ay = n2+ / g (cos™' z) L, (z) dz.
—1

At a certain point, the change of variable = cos ¢ is required].

6.8. The vertical displacement u of a circular membrane of radius a satisfies
the bidimensional wave equation us; = Awu, with boundary condition u (a, 8, t) = 0.
Supposing the membrane initially at rest, write a formal solution of the problem.

[Hint:

u(r,0,t) = Z JIp (ap;r) {Apj cos pd + By, sin pf} cos(y/ap;t)
p,j=0

where the coeflicients A,; and Bp; are determined by the expansion of the initial
condition u (r, 6,0) = g (r, 6)].

6.9. In calculus, we say that f : R® — R is differentiable at xg if there exists
a linear mapping L : R™ — R such that

f(xo+h)— f(x0) = Lh+o(|hl) ash — 0.

Determine the Riesz elements associated with L, with respect to the inner prod-
ucts:

a) (x,y) =%y =2"_ 1295, b) (x,¥)a =Ax-y =30, ayziy;,
where A = (a;;) is a positive and symmetric matriz (see Example 6.3).
6.10. Prove Proposition 6.5.
[Hint. First show that
WL 2y myy < W 2 ay )
and then that L** = L. Reverse the role of L and L* to show that |[L*| z g, g,y =
Ll £ty 1) -
6.11. Prove Negas Theorem 6.6.
[Hint. Try to follow the same steps in the proof of the Lax-Milgram Theorem)].
6.12. Let £ C X, X Banach space. Prove the following facts:
a) If F is compact, then it is closed and bounded.

b) Let E C F and F be compact; if E closed then FE is compact.

6.13. Projection on a closed convez set. Let H be a Hilbert space and £ C H,
closed and convex.

a) Show that, for every z € H, there is a unique element Pgx € E (the
projection of = on E) such that

|Pse —al| = inf Jlo— 2] (6.78)
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b) Show that x* = Pgx if and only if
(" —z,v—2")>0 for every v € E. (6.79)

¢) Give a geometrical interpretation of (6.79).
[Hint. a) Follow the proof of the Projection Theorem 6.2. b) Let 0 < ¢t < 1 and
define

o (t) = ||z* +t(v—z*) —z|? veEE.

Show that z* = Pgx if and only if ¢’ (0) > 0. Check that ¢’ (0) > 0 is equivalent
to (6.79)].

6.14. Let H be a Hilbert space and E C H be closed and convex. Show that
FE is weakly closed.
[Hint. Let {zx} C E such that z; — z. Use (6.79) to show that Pgx = x, so that
x € E.

6.15. Show that the embedding of H})
[Hint. Let {ux} C Hy,, (0,27) with

(0,27) into L? (0, 27) is compact.

er

luel® =D (1 +m?) [@h,|* < M.
meEZ

Show that, by a diagonal process, it is possible to select indexes k; such that, for
each m, Jk\jm converges to some number U,,. Let

u(z) = Z Upne'™®

meZ
and show that uy; — w in L? (0, 27)].
9.16. Let L : L?(R) — L?(R) be defined by Lv (z) = v(—x). Show that
o (L) =op (L) ={1}.

6.17. Let V and W be two closed subspaces of a Hilbert space H, with inner
product (-,-). Let 2o € H and define the following sequence of projections (see
Fig. 6.3):

ZTont1 = Pw(Zan), Zont2 = Py (Ton11), n > 0.

Prove that:
(o) HV NW = {0} then =, — 0.
(b) H VNW # {0}, then z,, = Pyaw (x0)
by filling in the details in the following steps.
1. Observe that
Hxn+1H2 = (Tn+1,Tn) -

Computing ||z, 41 — #,|%, show that ||z,]|| is decreasing (hence ||z, | [ > 0) and
|Znt1 — znl| — 0.
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2. If VN W = {0}, show that if a subsequence zs,, — =, then x9,,+1 — x as
well. Deduce that z = 0 (so that the entire sequence converges weakly to 0).

3. Show that
Hxn||2 = (xn+1vxn72) = (xn+2vxn73) === (x2n71vx0)

and deduce that x,, — 0.
4. HV NnW £ {0}, let

Zn = Tp — PVﬂW (IO)

and reduce to the case (a).

Fig. 6.3. The sequence of projections in problem 6.17 (a)
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Distributions and Sobolev Spaces
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lus — Multiplication, Composition, Division, Convolution — Fourier Transform — Sobolev
Spaces — Approximations by Smooth Functions and Extensions — Traces — Compactness
and Embeddings — Spaces Involving Time

7.1 Distributions. Preliminary Ideas

We have seen the concept of Dirac measure arising in connection with the fun-
damental solutions of the diffusion and the wave equations. Another interesting
situation is the following, where the Dirac measure models a mechanical impulse.

v

=1

0

Fig. 7.1. Elastic collision at time t = to

Consider a mass m moving along the z—axis with constant speed vi (see
Fig. 7.1). At time t = ¢ an elastic collision with a vertical wall occurs. After
the collision, the mass moves with opposite speed —wvi. If v, v; denote the scalar
speeds at times t1, t2, t1 < to, by the laws of mechanics we should have

m(vy — v1) = /tt F(t)dt,

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan



368 7 Distributions and Sobolev Spaces

where F' denotes the intensity of the force acting on m. When t; < to < ty or
to < t1 < tg, then v9 = v1 = v or v9 = v; = —v and therefore F = 0: no force
is acting on m before and after the collision. However, if ¢; < ty < to, the left
hand side is equal to 2mwv # 0. If we insist to model the intensity of the force by a
function F', the integral in the right hand side is zero and we obtain a contradiction.

Indeed, in this case, F' is a force concentrated at time tg, of intensity 2muv, that
is

F(t)=2mv é(t—to).

In this chapter we see how the Dirac delta is perfectly included in the theory of
distributions or Schwartz generalized functions. We already mentioned in subsec-
tion 2.3.3 that the key idea in this theory is to describe a mathematical object
through its action on smooth test functions ¢, with compact support. In the case
of the Dirac §, such action is expressed by the formula (see Definition 2.2)

/6<x>so<x>dx:so<o>

where, we recall, the integral symbol is purely formal. As we shall shortly see, the
appropriate notation is (4, ¢) = ¢ (0).

Of course, by a principle of coherence, among the generalized functions we
should be able to recover the usual functions of Analysis. This fact implies that
the choice of the test functions cannot be arbitrary. In fact, let {2 C R™ be a
domain and take for instance a function v € L? (£2). A natural way to define the
action of u on a test ¢ is

(u, ) = (u, )y = /Q up dx.

If we let ¢ be varying over all L? (2), we know from the last chapter, that (u, ©)
identifies uniquely u. Indeed, if v € L? (£2) is such that (u,¢) = (v, ) for every
¢ € L?(£2), we have

0:<u—v,<p>:‘/n(u—v)<p dx Yo € L* (02) (7.1)

which forces (why?) u = v a.e. in {2.

On the other hand, we cannot use L?—functions as test functions since, for
instance, (d, ) = ¢ (0) does not have any meaning.

We ask: is it possible to reconstruct u from the knowledge of (u, ¢),, when ¢
varies on a set of nice functions?

Certainly this is impossible if we use only a restricted set of test functions.
However, it is possible to recover u from the value of (u, ¢),, when ¢ varies in a
dense set in L? (£2). In fact, let (u, ), = (v, ), for every test function. Given
¢ € L* (£2), there exists a sequence of test functions {¢,} such that ||, — ||, —
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0. Then?,
0:/(ufv)<pk dx%/(ufv)w dx
2 2

so that (7.1) still holds for every v € L? (£2) and (u, ¢), identifies a unique element
in L2 (2).

Thus, the set of test functions must be dense in L? (§2) if we want L?—functions
to be seen as distributions. In the next section we construct an appropriate set of
test functions.

However, the main purpose of introducing the Schwartz distributions is not re-
stricted to a mere extension of the notion of function but it relies on the possibility
of broadening the domain of calculus in a significant way, opening the door to an
enormous amount of new applications. Here the key idea is to use integration by
parts to carry the derivatives onto the test functions. Actually, this is not a new
procedure. For instance, we have used it in subsection 2.3.3, when have interpreted
the Dirac delta at z = 0 as the derivative of the Heaviside function , (see formula
(2.63) and footnote 24).

Also, the weakening of the notion of solution of conservation laws (subsection
4.4.2) or of the wave equation (subsection 5.4.2) follows more or less the same
pattern.

In the first part of this chapter we give the basic concepts of the theory of
Schwartz distributions, mainly finalized to the introduction of Sobolev spaces.
The basic reference is the book of L. Schwartz, 1966, to which we refer for the
proofs we do not present here.

7.2 Test Functions and Mollifiers

Recall that, given a continuous function v, defined in a domain 2 C R", the
support of v is given by the closure of the set of points where v is different from
zero:

supp(v) = 2 N closure of {x €2 :v(x) #0}.

Actually, the support or, better, the essential support, is defined also for measurable
functions, not necessarily continuous in 2. Namely, let Z be the union of the open
sets on which v = 0 a.e. Then, 2\ Z is called the essential support of v and we use
the same symbol supp(v) to denote it.

We say that v is compactly supported in £2, if supp(v) is a compact subset of (2.

Definition 7.1. Denote by Cg§° (§2) the set of functions belonging to C* (12),
compactly supported in 2. We call test functions the elements of C§° (£2).

! From

/Qw ) (x — %) dx| < [lu—olly lx — s
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Example 7.1. The reader can easily check that the function given by

n(x) = {CeXp (AXI—l) 0 |§X||X>|T ' ew). (7.2)

belongs to C§° (£2).

The function (7.2) is a typical and important example of test function. Indeed,
we will see below that many other test functions can be generated by convolution
with (7.2).

Let us briefly recall the definition and the main properties of the convolution
of two functions. Given two functions u and v defined in R™, the convolution u*v
of u and v is given by the formula:

) = [ w-y)o@dy= [ u)eex-y)dy.

n

It can be proved that (Young’s Theorem): if u € LP(R™) and v € LI(R™), p,q €
[1,00], then uxv € L"(R™) where % = %Jr ﬁ —1 and

l[w 0| L gny < Null Loy 1l Loy -

The convolution is a very useful device to regularize “wild functions”. Indeed,
consider the function 7 defined in (7.2). We have:

n>0 and supp(n)= B;(0)

where, we recall, Bg (0) = {x € R™: |x| < R}. Choose

-1
c= / exp 2; dx
B1(0) X" -1

so that [, n = 1. Set, for & > 0,

N (x) = in <M> : (7.3)

en €

This function belongs to Cg° (R™) (and therefore to all LP (R™)), with support
equal to B (0), and still [, 7, = 1.

Let now f € LP(£2). If we set f = 0 outside {2, we obtain a function in L? (R"™),
still denoted by f, for which the convolution f * 7, is well defined in all R™:

fs(X):(f*ng)(X):/Qns(X*Y)f(Y)dy
— [ 0@
B.(0)
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Observe that, since fRn 1. = 1, f *n, may be considered as a convexr weighted
average of f and, as such, we expect a smoothing effect on f. Indeed, even if f
is very irregular, f. is a C'*°—function. For this reason 7, is called a mollifier.
Moreover, as € — 0, f. is an approximation of f in the sense of the following
important lemma.

Lemma 7.1. Let f € LP({2); then f. has the following properties:
a. The support of f. is a e—neighborhood of the support of f:

supp (fe) C {x € R™ : dist (x,supp (f)) < e}.

b. f. € C*° (R™) and if the support of f is a compact K C {2, then f. € C3° (12),
fore < 1.

c. If f € C(12), f- — [ uniformly in every compact K C {2 ase — 0.
d. If 1 <p< oo, then

||f€||LP(Q) < ||f||LP(_Q) and | fe - f”L;D(_Q) —0 ase—0.

support of f,

support of f

Fig. 7.2. Support of the convolution with a e-mollifier

Proof. a. Let K =supp(f). If |z| < e and dist(x,K) > ¢, then f(x —2z) =0 so
that f. (x) =0.

b. Since 1, (x —y) € C§° (R™), f. is continuous and there is no problem in
differentiating under the integral sign, obtaining all the time a continuous function.
Thus f. € C*° (R"™). From a., if K is compact, the support of f. is compact as
well and contained in {2 if ¢ < 1. Therefore f. € C§° (£2).

c. Since [, 7. = 1, We can write

fe(X)—f(X)=/ n(2)[f (x —2) — f (x)] da.
{lz|<e}
Then, if x € K C {2, compact,

[fe (%) = f (¥)| < sup |f (x—2) = [ (x)].

|z|<e
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Since f is uniformly continuous in K we have that sup|, <. [f (x —2z) — f (x)[ = 0,
uniformly in x, as € = 0. Thus f. — f uniformly in K.

d. From Holder’s inequality, we have, for ¢ = p/ (p — 1),
5609 = [ 0=y @) dy = [ 0= 3) 0 -3 f () dy
Q Q
1/p
< ([ ne-irwray) .
Q

This inequality and Fubini’s Theorem? yield

el oy < 1 ooy - (7.4)

In fact:

-y = [ 1 (X)|deS/Q</Qn5(Xy)lf(y)|pdy> ix
= [uror ([ e-vax)ay < [ 10 ay =151,

From Theorem B.6, given any 6 > 0, there exists g € Co (£2) such that [|g — f[| o) <
. Then, (7.4) implies

g = fell oy < Mg = FllLo(ay <6

Moreover, since the support of g is compact, g. — ¢ uniformly in 2, by c, so that,
we have, in particular, ||g: — g[| (o) < 0, for € small. Thus,

1f = felloocay S W = glloco) T 19 = 9ell Loy + 19e = fell Loy < 36.

This shows that ||f — fellps (o) —0ase — 0.0

Remark 7.1. Let f € L} (£2),1i.e. f € L(§2") for every® £ CC 2. The convolution

loc

fe (x) is well defined if x stays e—away from 0f2, that is if x belongs to the set
2, = {x €02 dist (x,002) > e}.
Moreover, f. € C* ({2).

Remark 7.2. In general Hf*szLoo(n) -+ 0 as ¢ — 0. However HfEHLm(Q) <
[ £l oo gy 1s clearly true.

2 Appendix B.
3 2 CC £ means that the closure of £2’ is a compact subset of 2.
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Ezample 7.2. Let 2 CC 2 and f = x be the characteristic function of (2.
Then, f. = xqo *n. € C3° (12) as long as € < dist(£2’,042). Note that 0 < f. < 1.
In fact

fe (X):/Qng (x—y)Xo (y)dy:/Q Ne (X*Y)d}’:/ n. (y) dy<1.

'NB. (x) 2'NB. (0)

Moreover, f =1 in 2, . In fact, if x €2/, the ball B, (x) is contained in 2’ and

therefore
/ TIE(X*Y)d.V:/ n. (y)dy =1.
2'NB.(x) B.(0)

A consequence of Lemma 7.1 is the following approximation theorem.
Theorem 7.1. C§° (12) is dense in LP (§2) for every 1 < p < 0.

Proof. Denote by LP (§2) the space of functions in LP (£2), with (essential)
support compactly contained in 2. Let f € L2 (£2) and K = supp(f). From Lemma
7.1.a, we know that supp(f:) is a e—neighborhood of K, which is still a compact
subset of (2, for £ small.

Since by Lemma 7.1.d, f. — f in LP (£2), we deduce that C§° ({2) is dense in
L2 (£2), if 1 < p < co. On the other hand, L? (£2) is dense in LP ({2); in fact, let
{Kn} be a sequence of compact subsets of {2 such that

Kpm C Kpyr and UK, = £2.

Denote by x,  the characteristic function of K,,. Then, we have
{XK f} CIP(2) and HXK - fH 50 asm — 400
- - I

by the Dominated Convergence Theorem?, since ’ X, | ’ <|fl.O

7.3 Distributions

We now endow C§° (£2) with a suitable notion of convergence. Recall that the
symbol

o 0%
= o
denotes a derivative of order |a| = a1 + ... + ay,.

Definition 7.2. Let {¢,} C C§° (£2) and ¢ € C§° (£2) . We say that

(a3

a = (ala ""a'n)a

Y =@ inC(2) ask — +oo
if:
1. D*y¢, — D“¢ uniformly in 2, Vo = (a1, ..., o)

2. there exists a compact set K C {2 containing the support of every .

4 Appendix B.
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It is possible to show that the limit so defined is unique. The space C§° (12) is
denoted by D (£2), when endowed with the above notion of convergence.

Following the discussion in the first section, we focus on the linear functionals
in D (£2). If L is one of those, we shall use the bracket (or pairing) (L, ¢) to denote
the action of L on a test function .

We say that linear functional

L:D(2)—R
is continuous in D (£2) if
(L, 1) — (L, ), whenever ¢, — ¢ in D (£2). (7.5)

Note that, given the linearity of L, it would be enough to check (7.5) in the case
¢ =0.

Definition 7.3. A distribution in {2 is a linear continuous functional in D (12).
The set of distributions is denoted by D’ ({2).

Two distributions ' and G coincide when their action on every test function
is the same, i.e. if

(Foo) =(G,p), VYpeD(1).

To every u € L? (§2) corresponds the functional I, whose action on ¢ is

<Iu,¢>:/ up dr,
(9]

which is certainly continuous in D ({2). Therefore I, is a distribution in D’ (£2)
and we have seen at the end of Section 7.1 that I,, may be identified with w.
Thus, the notion of distribution generalizes the notion of function (in L? (£2))
and the pairing (-,-) between D (£2) and D’ ({2) generalizes the inner product in
L2 (0).
The same arguments show that every function u € Lj, . (£2) belongs to D’ (£2)
and

(u, ) = /Q up dz.

On the other hand, if u ¢ L} , u cannot represent a distribution. A typical

loc?
example is u (z) = 1/x which does not belongs to Lj . (R). However, there is a

distribution closely related to 1/ as we show in Example 7.6.

Ezample 7.3. (Dirac delta). The Dirac delta at the point y, i.e. 4y : D(R") — R,
whose action is

6y, 0) = (¥),

is a distribution D’ (R™), as it is easy to check.
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D' (£2) is a linear space. Indeed if a, § are real (or complex) scalars, ¢ € D (2)
and L1, Ly € D' (£2), we define oLy + 8Ly € D’ (£2) by means of the formula

(aLy + BLz, ) = oLy, @) + B(La2, ¢).
In D’ (£2) we may introduce a notion of (weak) convergence: {Ly} converges to L
in D (0) if
<Lka<)0> - <L7<)0>a VQOED(Q)
If 1 < p < oo, we have the continuous embeddings:
LP () < L}, (2) — D' (£2).

This means that, if uy — w in LP (£2) or in L} (£2), then® uy — u in D’ (£2) as

loc
well.

With respect to this convergence, D’ ({2) possesses a completeness property
that may be used to construct a distribution or to recognize that some linear
functional in D ({2) is a distribution. Precisely, one can prove the following result.

Proposition 7.1. Let {F},} C D’ (£2) such that

lim <Fka <)0>

k—o00
exists and is finite for all p € D (£2). Call F () this limit. Then, F € D' (2) and
F,— F inD ().

In particular, if the numerical series

o0

Z<Fk,<P>

k=1
converges for all p € D (£2), then Y oo, Fy = F € D' (02).
Ezample 7.4. (Dirac comb). For every ¢ € D (R), the numerical series

o0 o0

Yo Ea—ke)= Y ek

k=—o0 k=—o0

is convergent, since only a finite number of terms is different from zero®. From
Proposition 7.1, we deduce that the series

comb(z)= Y d(z—k). (7.6)

k=—o0

® For instance, let ¢ € D (£2). We have, by Hélder’s inequality:

‘ /Q (ur — w)pdx

where ¢ = p/(p — 1). Then, if lux — ul|, ) — 0, also S (ur — u)pdx —0, showing

< fluk — UHLZD(Q) HSOHLq(Q)

the convergence of {uy} in D' (£2).
6 Only a finite number of integers k belongs to the support of ¢.
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is convergent in D’ (R) and its sum is a distribution called Dirac comb. This name
is due to the fact it models a train of impulses concentrated at the integers (see
Fig. 7.3, using some ...fantasy).

e e =

v

Fig. 7.3. A train of impluses

Ezample 7.5. Let h, (z) = 1 — x[_,,) (z) be the characteristic function of the set
R\ [—7, 7]. Define

1 1
p.v.— = lim —h, (z).

€T r—0 x

We want to show that p.v.% defines a distribution in D’ (R), called principal value
of 1. By Proposition 7.1 it is enough to check that, for all ¢ € D (R), the limit

lim lhr (z) p(x)dx

r—0 R T

is finite. Indeed, assume that supp(y) C [—a, a]. Then,

1 ¢ () ¢ (z) — ¢ (0)
—h, (z z)dx = —Zdr = —r T~ dx
/]R z ( )80( ) ~/{r<|m|<a} € ~/{r<|m|<a} z

/ﬁ 20 40 — g,
{r<|z|<a} T

due to the odd symmetry of 1/z. Now, we have

since

p@)—p0)=¢ 0)z+o(x), asz—0,

so that
¢ (z) — ¢ (0)

x

=¢' (0)+0(1) as z — 0.
This implies that [¢ () — ¢ (0)] /x is summable in [—a, a] and therefore

w@%*wmux:/' p (@) —¢(0),
{lz|<a}

x

lim T

=0 Jir<|z|<a} €T
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is a finite number. Thus, p.v.% € D' (R) and the above computations yield

l = lim @x: v wx
<p.v.x,<p>—l dz = p. .‘/R d

"0 r<laly ® z
where p.v. stays for principal value” .

o Support of a distribution. The Dirac § is concentrated at a point. More pre-
cisely, we say that its support coincides with a point. The support of a general
distribution F' may be defined in the following way. We want to characterize the
smallest closed set outside of which F' vanishes. However, we cannot proceed as in
the case of a function, since a distribution is defined on the elements of D (£2), not
on subsets of R™.

Thus, let us start saying that F' € D’ (£2) vanishes in an open set A C §2 if

(Fyp)=0

for every ¢ € D ({2) whose support is contained in A. Let A be the union of all
open sets where F vanishes. A is open. Then, we define:

supp (F) = 2\ A.
For example, supp(comb) = Z.

Remark 7.3. Let F' € D' (§2) with compact support K. Then the bracket (F,v) is
well defined for all v € C*° ({2), not necessarily with compact support. In
fact, let ¢ € D(£2), 0 < ¢ < 1, such that ¢ = 1 in an open neighborhood of K
(see Remark 7.4). Then vy € D (£2) and we can define

<Fav> = <F,v<p>.

Note that (F,vy) is independent of the choice of ¢. Indeed if ¢ has the same
property of ¢, then

<F77)90>7<Fav¢> = <Fav(90*¢)> =0

since ¢ — % = 0 in an open neighborhood of K.

7.4 Calculus

7.4.1 The derivative in the sense of distributions

A central concept in the theory of the Schwartz distributions is the notion of weak
or distributional derivative. Clearly we have to abandon the classical definition,

" Whence the symbol p.v.%.
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1

since, for instance, we are going to define the derivative for a function v € L; _,

which may be quite irregular.

The idea is to carry the derivative onto the test functions, as if we were using
the integration by parts formula.

Let us start from a function u € C* (£2). If ¢ € D (£2), denoting by v = (v1, ..., vp)
the outward normal unit vector to 9f2, we have

/ @0z, u dx :/ wu v; dxf/ u0y,p dx
o o0 o

= f/ u0y,p dx
2

since ¢ = 0 on 9f2. The equation

/ w@miudx:f/uamicpdx,
2 2

interpreted in D’ ({2), becomes

<aﬂﬁiu7 90> = 7<u7 896190> (77)

Formula (7.7) shows that the action of J,,u on the test function ¢ equals the
action of u on the test function —9,,¢. On the other hand, formula (7.7) makes
perfect sense if we replace u by any F' € D’ ({2) and it is not difficult to check
that it defines a continuous linear functional in D (§2). This leads to the following
fundamental notion:

Definition 7.4. Let F € D' (£2). The derivative 0., F is the distribution defined
by the formula

From (7.7), if u € C! (£2) its derivatives in the sense of distributions coincide
with the classical ones. This is the reason we keep the same notations in the two
cases.

Note that the derivative of a distribution is always defined! Moreover, since
any derivative of a distribution is a distribution, we deduce the convenient fact
that every distribution possesses derivatives of any order (in D’ ({2)):

(D*F, 0) = (—1)1*I(Fy., D*¢).
For example, the second order derivative
Op,a, F' = 0z, (00, F)
is defined by
<a$iIka 90> = <Fv aﬂcﬂk90> (78)
Not only. Since ¢ is smooth, then 9., ¢ = Oz, so that (7.8) yields
Oz;zp B = Oppu, F.

Thus, for all F' € D' (§2) we may always reverse the order of differentiation without
any restriction.
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Ezample 7.6. Let u (x) = H (x), the Heaviside function. In D’ (R) we have H' = §.
In fact, let ¢ € D (R). By definition,

<H/a <)0> = 7<Ha 90/>
On the other hand, H € L} . (R), hence

loc

o0

(H, o) = / H () () dx = / o () dz = — (0)

whence
(H', ) = ¢ (0) = (3, )
or H' =4.
Another aspect of the idyllic relationship between calculus and distributions is

given by the following theorem, which expresses the continuity in D’ (£2) of every
derivative D<.

Proposition 7.2. If F, — F in D' ({2) then D*F, — D*F in D' ({2) for any
multi-index a.

Proof. Fy, — F in D’ (£2) means that (Fy,p) — (F, ), Vo € D ().
In particular, since D*p € D (12),

(D*Fy, ) = (=1)*1(Fy, D%¢) — (=1)\°/(F, D*¢) = (D°F, ).

(Il
As a consequence, if Y 7 | F, = F in D' (§2), then

Y DFy=D"F inD ().
k=1
Thus, term by term differentiation is always permitted in D’ ({2).

More difficult is the proof of the following theorem, which expresses a well
known fact for functions.

Proposition 7.3. Let {2 be a domain in R". If F' € D'(2) and 0,,F = 0 for
every j =1,...,n, then F is a constant function.

7.4.2 Gradient, divergence, laplacian

There is no problem to define vector valued distributions. The space of test func-
tions is D (£2;R™), i.e. the set of vectors ¢ = (¢4, ..., ¢,,) whose components belong
to D (£2).

A distribution F €D’ (2;R") is given by F = (F4,..., F,) with F; € D' (12),
j =1,...,n. The pairing between D (£2; R™) and D’ (£2;R") is defined by

n

(F,0) =) (Fipy). (7.9)

=1
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e The gradient of F' € D' (£2), £2 C R™, is simply
F= (amlFa asza ’amnF) .

Clearly VF € D' (2;R"). If ¢ € D (£2;R™), we have

(VE, @) = (0u,F, ;) = = > (F,0z,0;) = —(F, divep)
=1 =1
whence
(VF, @) = —(F,divy) (7.10)

which shows the action of VF on ¢.
e For F € D' (2;R"™), we set

=1

Clearly divF €D’ (£2). If ¢ € D (£2), then

(divF, ) = i F,p) i F;,05,0) = —(F,Vo)
1=1 1=1

whence

(divF,p) = —(F,Vp). (7.11)
e The Laplace operator is defined in D’ (£2) by

=1

If p € D(2), then
(AFp) = (F,A¢) .

Using (7.10), (7.11) we get
(AFp) = (F,divVp) = — (VF Vp) = (divV F,p)
whence A =divV also in D’ (£2).

Ezample 7.7. Consider the fundamental solution for the Laplace operator in R3

11
a7 x|

u(x) =

Observe that u € L}, (R?) so that u € D’ (R?) . We want to show that, in D’ (R?),

—Au=34. (7.12)
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First of all, if £2 C R® and 0 ¢42, we know that u is harmonic in 2, that is
Au =0 in 2

in the classical sense and therefore also in D’ (R?). Thus, let ¢ € D (R3) with
0 esupp(y). We have, since u € L}, (R?):

loc

<mwaA@:i/lAM@M (7.13)

4 R3 m

We would like to carry the laplacian onto 1/ |x|. However, this cannot be done
directly, since the integrand is not continuous at 0. Therefore we exclude a small
sphere B, = B, (0) from our integration region and write

1 1
— Ap (x)dx = lim — Ao (x)dx 7.14
‘@M|M) i [ At (7.14)

where B = Bpg (0) is a sphere containing the support of ¢. An integration by
parts in the spherical shell Cg, = Bg\B, yields®

/ iAc,o (x) dx:/ la,,<p (x) daf/ \Y <i> -V (x)dx
Cr,» x| B, T Cr,» x|

where v = f|;—| is the outward normal unit vector on 0B,. Integrating once more
by parts the last integral, we obtain:

/CR, v <§> Vo) dx = /BBT O (ﬁ) o (x) do— /CR A <ﬁ> i (x) dx
[ o (r)ee

since A (W) = 0 inside Cr . From the above computations we infer

/CR,T éw (x) dx _/BBT %&Ap(x) do— /a& Dy (ﬁ) v (x)do. (7.15)

We have:
1

r

O (x)do
0B,

1
<= / |0y (x)| do < 47r max |V|
T 9B, R3

and therefore

1
lim -dpp (x)do = 0.
r—0 OB, r

8 Recall that ¢ = 0 and Vi = 0 on dBg.
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Moreover, since

()53 (2)- () (5)-

we may write

1 1
/ 0y (—) ¢ (x)do = 4dnr— / ¢ (x)do — 47 (0).
0B, ] dmr® Jop,
Thus, from (7.15) we get

1
lim — Ap (x)dx = —4mp (0)
=0 JBR\B, x|

and finally (7.13) yields

(Auyp) = —p (0) = — (5, ¢)

whence —Au=4.

7.5 Multiplication, Composition, Division, Convolution

7.5.1 Multiplication. Leibniz rule

Let us analyze the multiplication between two distributions. Does it make any
sense to define, for instance, the product & - § = 6% as a distribution in D’ (R)?

Things are not so smooth. An idea for defining 6> may be the following: take
a sequence {uy} of functions in L}, (R) such that uy — & in D'(R), compute u?
and set

6% = lim u? in D'(R).
k—o0

Since we may approximate 0 in D'(R) in many ways (see Problem 7.1), it is neces-
sary that the definition does not depend on the approximating sequence. In other
words, to compute 6> we must be free to choose any approximating sequence.
However, this is illusory. Indeed choose

ur = kX[o,1/x]-
We have ux, — d in D’ (R) but, if ¢ € D (R), by the Mean Value Theorem we have

1/k
/inzkz’/ ¢ = ko (1)
R 1]

for some xj, € [0,1/k]. Now, if ¢ (0) > 0, say, we deduce that

/uicp%Jroo, k — 400
R
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so that {u?} does not converge in D' (R).

The method does not work and it seems that there is no other reasonable way
to define 2. Thus, we simply give up defining 6> as a distribution or, in general,
the product of a pair of distributions. However, if F' € D' ({2) and u € C* (£2),
we may define the product uF' by the formula

(uF, ) = (F,up),  VpecD(N2).

First of all, this makes sense since ug € D (£2). Also, if ¢, — ¢ in D (£2), then
upy, — up in D (£2) and

(uF, pp) = (Fupy) = (Fup) = (uF, ¢) .
so that uF is a well defined element of D’ (£2).
Ezample 7.8. Let u € C* (R). We have
ud = (0) 4.
Indeed, if ¢ € D (R),
(ud, o) = (0, up) = u(0) ¢ (0) = (u(0)d,9).
Note that the product ud makes sense even if u is only continuous. In particular

6 = 0.

The Leibniz rule holds: let F' € D’ (£2) and v € C* ({2) ; then

Op; WF) =u Oy, F + Op,u F . (7.16)

In fact, let ¢ € D (£2); we have:
<8961 (UF) ; 90> - <UF7 896190> - <Fv uaﬂt1<)0>
while

== <Fv aﬂcz (ucp)) + <Fv ‘Pamlu> = <Fv uaﬂt1<)0>

and (7.16) follows.
Ezxample 7.9. From 6 = 0 and Leibniz formula we obtain
S+ 28 =0.

More generally,
™6™ =0 D (R), if0<k<m.
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7.5.2 Composition

Composition in D’ (R) requires caution as well. For instance, if F' = § and u (z) =
23, is there a natural way to define F o u as a distribution in D’ (R)?

As above, consider the sequence u = kX0,1/x) and compute wy = uy o u. If
¢ € D' (R), we have

E—1/3

Jwe=k [ xoap@p@d=k [ p@dr=1p @)

0

for some z, € [0,1/k]. Then, if ¢ (0) > 0, [, wrp — 400 and F ou does not make
any sense. Thus, it seems hard to define the composition between two general
distributions. To see what can be done, let us start analyzing the case of two
functions.

Let ¢ : 2/ — 2 be one to one, with ¢ and ¢ ' of class C®. If F: 2 - R
is a C'—function we may consider the composition

w = Fo1.

For ¢ € D ({2), we have, using the change of variables y = v (x):

[ weemdx= [ Fue)eix= [ Fe)e ! )]det s, o) dy

9]

which becomes, in terms of distributions,

(Fot,p)=(F,pop™"|det Jy1). (7.17)
This formula makes sense also if F' € D’ (£2) and leads to the following
Definition 7.5. If F € D’ (2) and + : £2 — 2 is one to one, with ¢ and ¢~*

of class C*, then formula (7.17) defines the composition F o as an element of
D' (02).

Abuses of notation are quite common, like F' (¢ (x)) to denote F o 4. For in-
stance, we have repeatedly used the (comfortable and incorrect) notation ¢ (x — xg)
instead of the (uncomfortable and correct....) notation § o ¢, with ¢ (x) = x — xo.

Ezample 7.10. In D' (R™), we have

d(ax) = L5 (x).

~ af”

Using formula (7.17) we may extend to distributions some properties, typical of
functions. We list some of them.

We say that F' € D' (R") is:
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e radial, if
F(Ax)=F (x), for every orthogonal matrix A;
e homogeneous of degree A, if
F (tx) = t"F (x), vt > 05
e even, odd if, respectively,
F(=x) = F(x), F(—x) = —F (x);
e periodic with period P, if
F(x+P)=F(x).

Ezample 7.11. a. § € D' (R™) is radial, even and homogeneous of degree A = —n.

b. v.p.2 € D' (R) is odd and homogeneous of degree A = —1.
c. In D’ (R), comb is periodic with period 1.

7.5.3 Division

The division in D’ (£2) is rather delicate, even restricting to F' € D' (£2) and u €
C*> (£2). To divide F by u means to find G € D’ ({2) such that uG = F. If u never
vanishes there is no problem, since in this case 1/u € C*° ({2) and the answer is

simply
G=2F

u

If w vanishes somewhere, things get complicated. We only consider a particular
case in one dimension.

Let I C R be an open interval and u € C* (I). If u vanishes at z, we say that
z is a zero of order m (z) if the derivatives of u up to order m (z) — 1, included,
vanish at z, while the derivative of order m (z) does not vanish at z.

For instance, z = 0 is a zero of order 3 for u (z) = sinz — x.

One can prove the following theorem.

Proposition 7.4. Assume that u vanishes at isolated points zi, zs, ... with order
m (z1),m(22),.... Then, the equation

uG =0
has infinitely many solutions in D’ (I), given by the following formula:

m(z;)—1

G=>" > o™ (z—z) (7.18)
k=0

J

where cjj, are arbitrary constants and 5™ is the derivative of § of order k.
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Ezample 7.12. The solutions in D’ (R) of the equation
zG = 0.
are the distributions of the form G = ¢d, with ¢ € R. To solve the equation
zG =1 (7.19)

we add to the solutions of the homogeneous equation G = 0 a particular solution
of (7.19). It turns out that one of these is

1
Gi1=v.p.—.
T

In fact, if ¢ € D (R), from Example 7.6 we get

(- (v-pé),@ = <v-pé,w> =

_v.p./Rxw(x)dﬂc—/RMﬂU)dx—<1v‘P>

x

whence

1
x- (v.p.;) =1.

Therefore, the general solution of (7.19) is

1
G =v.p.—+cd, ceR.
T

7.5.4 Convolution

The convolution of two distributions may be defined with some restrictions as well.
Let us see why. If u, w € L' (R") and ¢ € D (R") we may write:

e = ([ ubc-y)uE)dye) -
[ [ty ay] o) ax -
— [ [ utow)etcsy) dyix

Now, the question is: may we give any meaning to this formula if v and v are
generic distributions? The answer is negative, mainly because the function

¢ (x,y) = p(x+y)
does not have compact support? in R” x R™ (unless ¢ = 0).

® For instance: if ¢ € D’ (R) and supp(p) = [a, b], then the support of ¢ (x + y) in R? is
the unbounded strip a <z +y <b.
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However, a small modification of the above formula would give the possibil-
ity to define the convolution between two distributions, if at least one of them
has compact support. Here we limit ourselves to define the convolution between
a distribution T" and a C°°—function u. For x fixed, let ¥* (y) = x — y so that

u(x—y)=uop*.
If T € L' (R™), with compact support, then the usual definition of convolution
is

Trw ) = [ T)ulx—y)dy =(Tuov), (7.20)

Since u o™ is a C*°—function, recalling Remark 7.4, the last bracket makes sense
if T is a distribution with compact support as well. Precisely, we have:

Proposition 7.5. Let T € D’ (R™), with compact support, and u € C* (R").
Then, the following formula

(T xu) (x) = (T,uo¢p™) (7.21)
defines a C*°—function called convolution of T' and u.

Ezample 7.13. Let u € C§° (R™). Then
(0xu) (x) =(6,u(x—")) =u(x)

i.e

d*xu=u. (7.22)

Thus, the Dirac distribution at zero, acts as the identity with respect to the
convolution. Formula (7.22) actually holds for all v € D' (R™). In particular:

d*xd =90.
Proposition 7.6. The convolution commutes with derivatives. Actually, we have:
Oz; (T *u) = 0y, T xu =T * 0z, u.
The last equality is easy to prove, under the hypotheses of Proposition 7.5:

(00, T *u) (z) = (05, T,uo0p®) = — (T, 0y, (u o ¢®))
= (T, 0,,u09®) = (T * 0y,u) (2).

In particular, if T'=H and u € D (R),
(Hxu) = (H *u) =6 +u=u.

Warning: The convolution of functions is associative. For distributions, the
convolution is, in general, not associative. In fact, consider the three distributions
1,8, H; we have (formally):

§x1=(6x1)=1=0
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whence

7—[*(5/*1):7{*0:0.

However,

(Hx0)x1=(H *8)x1=(6%6)x1=1.

The problem is that two out of three factors (1 and H) have non compact support.
If at least two factors have compact support one can show that the convolution is
associative.

7.6 Fourier Transform

7.6.1 Tempered distributions

We introduce now the Fourier transform F' of a distribution. As usual, the idea
is to define the action of F' by carrying the transform onto the test functions.
However a problem immediately arises: if ¢ € D(R™) is not identically zero, then

2O = [ et

cannot belong!® to D(R™). Thus, it is necessary to choose a larger space of test
functions. It turns out that the correct one consists in the set of functions rapidly
vanishing at oo, which obviously contains D(R™). It is convenient to consider
functions and distributions with complex values.

Definition 7.6. Denote by S (R™) the space of functions v € C*°(R™) rapidly
vanishing at infinity, i.e. such that

Dou(x) =o(IxI "), x> o0,
for all m € N and every multi-index a.
19 Let n =1 and ¢ € D (R). Assume that
supp (¢) C (—a,a).
We may write

20=[ e owar= [T EE ppyaw=3 CE "oy

n=0 n=0 : -

‘[ " (z) da

it follows that @ is an analytic function in all C. Therefore » cannot vanish outside a
compact interval, unless = 0. But then ¢ = 0 as well.

Since

< max || a”,




7.6 Fourier Transform 389

Ezample 7.14. The function v (x) = e~ X" belongs to S (R™) while v(x) =
e~ 12 sin(e/*I*) does not (why?).

We endow S (R™) with an “ad hoc” notion of convergence. If 5 = (84, ...,6,) is a
multi-index, we set

xP = Tyt
Definition 7.7. Let {vp} € S (R") and v € S (R™). We say that
Vg =V in S (R™)
if for every pair of multi-indexes «, 3,
xP D%y, — x? D%y, uniformly in R™.
Remark 7.4. If {vp} € D(R™) and vy, — v in D (R™), then
vy — v inS(R™)

as well, since each vy vanishes outside a common compact set so that the multi-
plication by x? does not have any influence.

The Fourier transform will be defined for distributions in D’ (R™), continuous
with respect to the convergence in Definition 7.7. These are the so called tempered
distributions. Precisely:

Definition 7.8. We say that T € D’ (R") is a tempered distribution if
<T7 vk> —0

for all sequences {vy} C D (R™) such that vy, — 0 in S (R™). The set of tempered
distributions is denoted by &' (R™).

So far, a tempered distribution T is only defined on D (R™). To define T' on
S (R™), first we observe that D (R™) is dense in S (R™).
In fact, given v € S (R"), let

vk (x) = v (%) p (%[ /F)

where p = p(s), s > 0, is a non-negative C°°—function, equal to 1 in [0, 1] and
zero for s > 2 (see Fig. 7.4). We have {vx} C D (R") and vy, — v in S (R™), since
p(|x] /k) is equal to 1 for {|x| < k} and zero for {|x| > 2k}.
Then, we set
(T,v)y = lim (T, vg). (7.23)
k—o0

It can be shown that this limit exists and is finite, and it is independent of the
approximating sequence {vy} . Thus, a tempered distribution is a continuous
functional on S (R").
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A

B »
»
\.

ra

Fig. 7.4. A smooth decreasing and nonnegative function, equal to 1 in [0, 1] and vanishing
for s > 2

Example 7.15. We leave it as an exercise to show that the following distributions
are tempered.

a. Any polynomial.

b. Any compactly supported distribution.

c. Any periodic distribution (e.g. the Dirac comb).

d. Any function u € LP (R™), 1 < p < oo. Thus, we have

S(R™) c LF (R") Cc &' (R").

On the contrary:

e. e ¢ S’ (R) (why?).

Like D’ (£2), 8§’ (R™) possesses a completeness property that may be used to
construct a tempered distribution or to recognize that some linear functional in
D (R™) is a tempered distribution. First, we say that a sequence {T}} C S’ (R™)
converges to T in S’ (R™) if

(Tg,v) = (T,v), YveSR").
We have:
Proposition 7.7. Let {T},} C &' (R™) such that

lim (Ty,v) ezists and is finite, Yv € §(R").

k—o00
Then, this limit defines T € S’ (R™) and T}, converges to T in S’ (R™).

Ezample 7.16. The Dirac comb is a tempered distribution. In fact, if v € S(R), we
have

(comb (z),v) = > v(k)
k=—oc0
and the series is convergent since v (k) — 0 more rapidly than |k|™™ for every
m > 0. From Proposition 7.7, comb(z) € §'(R).

Remark 7.5. Convolution. If T € S'(R™) and v € S(R™), the convolution is well
defined by formula (7.21). Then, T'x v € §'(R™) and coincides with a function in
> (R™).
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7.6.2 Fourier transform in S’

If w € L' (R"), its Fourier transform is given by
86 = Flul(© = [ e Cuix

It could be that, even if u is compactly supported, @ ¢ L' (R™). For instance, if
Pa () = X[—a,q] (z) then

which is not!! in L! (R). When also © € L' (R"), u can be reconstructed from @
through the following inversion formula:

Theorem 7.2. Let u € L' (R™), @ € L' (R™). Then

1

u(X) = —= e*éu =F'[a] (x). .
() = e [ €€ =F il () (7:24)

In particular, the inversion formula (7.24) holds for u € S(R™), since (exercise)
u € S(R™) as well. Moreover, it may be proved that

U — U in S (R™)

if and only if
U — U in § (R"),
which means that
F, F1:SR") - S(R")

are continuous operators

Now observe that, if u, v € S(R™),

(@, v) = ( / ) e &y (x)dx,v) = / ) ( / ) eixfu(x)dx> v (&) dé¢
_ / ) ( / ey (g) dg) u(x)dx = (u, )

so that (weak Parseval identity):
(T, v) = (u, ). (7.25)

The key point is that the last bracket makes sense for u = T € §'(R") as well,
and defines a tempered distribution. In fact:

1 Appendix B.
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Lemma 7.2. Let T € 8'(R™). The linear functional

v (T,7), Yo € S(R™)
is a tempered distribution.

Proof. Let vy, — v in D(R™). Then vy — v and v — v in S(R™) as well. Since
T € §'(R™), we have
lim (T, vx) = (T,0)

k—o0

so that v — (T,7) defines a distribution. If v, — 0 in S(R™), then v, — 0 in
S(R™) and (T, vy) — 0. Thus, v — (T, ) is a tempered distribution. OJ

We are now in position to define the Fourier transform of T € S'(R"™).

Definition 7.9. Let T' € S'(R™). The Fourier transform T=7F [T'] is the tempered
distribution defined by

(T,v) = (T\3),  YoveSR.

We see that the transform has been carried onto the test function v € (R™). As
a consequence, all the properties valid for functions, continue to hold for tempered
distributions. We list some of them. Let T' € 8&'(R™) and v € S(R™).

1. Translation. If a € R™,
FIT(x—a)=e T and F[**T| =T (&-a).
In fact (v = v (§)):

(FIT(x=a)],v) =(T (x—a),v) = (T,

In fact:

R 1 __/x
(FIT ()], v) = (T (), ) = (T, 520 (3))

. 1 ~ (¢
— (L F ) = T () = (i (£ ) 0
In particular, choosing h = —1, it follows that if T' is even (odd) then T is even

(odd).

3. Derivatives:

a) F [0,,T) =i¢,T  and  b) Fla;T] = ide,T.
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Namely:
(F 0:,T] ,v) = (02, T,0) = — (T, 0,,0)
= (T, F [ig0]) = (i€, T, ).
For the second formula, we have:
(Flz;T],v) = (2T, v) = (T, x;0)
= <T, fi}'[agjv]> = (T, 8¢, v) = (id T, v).
4. Convolution®. If T € §'(R™) and v € S(R™),
F[Txv]=T-%.

Ezample 7.17. We know that 6 € S'(R™). We have:

In fact

<§,v>:<5,6>:/nv(x)dx:<l,v>.

For the second formula, using (7.24) we have:

Lo)= 10 = [ 2@ de=2)"0(0
=((2m)" §,v).
Ezxample 7.18. Transform of x; :
z; =i (2m)" ¢, 0.
Indeed, from 3, b) and Example 7.20, we may write
& =Fla;- 1] =i0,1=i(2m)" 0 o.

7.6.3 Fourier transform in L2

Since L? (R") C &' (R™), the Fourier transform is well defined for all functions in
L? (R™). The following theorem holds, where ¥ denotes the complex conjugate of
v.

Theorem 7.3. u € L? (R") ifand only if i € L? (R™). Moreover, ifu, v € L* (R™),
the following strong Parseval identity holds:

/naﬁ:@w)"/nu.a (7.26)

I Z2 @y = 2m)" [ullZ2 gy - (7.27)

In particular

12 We omit the proof.
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Formula (7.27) shows that the Fourier transform is an isometry in L* (R™)
(but for the factor (27)™).

Proof. Since S (R™) is dense in L? (R™), it is enough to prove (7.26) for u,v €
S (R™). Let w = v. From (7.25) we have

On the other hand,
w(x) = / ) eV (y)dy = (2n)" F~L[0] (x) = (2n)" v (x)

and (7.26) follows. O

Ezample 7.19. Let us compute

sinz 2
(=)
R T

We know that the Fourier transform of p1 = x_y 1) is p1 (§) = 2sin{/€, which
belongs to L? (R). Thus, (7.27) yields

4/]R (siltgé)ng_%/R(X[m (x))2dac:47r
[(55) s

whence

7.7 Sobolev Spaces

7.7.1 An abstract construction

Sobolev spaces constitute one of the most relevant functional settings for the treat-
ment of boundary value problems. Here, we will be mainly concerned with Sobolev
spaces based on L? (§2), developing only the theoretical elements we will need in
the sequell3.

The following abstract theorem is a flexible tool for generating Sobolev Spaces.
The ingredients of the construction are:

e The space D' (£2;R™), in particular, for n = 1, D’ ({2).

13 We omit the most technical proofs, that can be found, for instance, in the classical
books of Adams, 1975, or Mazja, 1985.



7.7 Sobolev Spaces 395

e Two Hilbert spaces H and Z with Z < D’ (£2; R™) for some n > 1. In particular

vy —vin Z implies v —vin D' (2;R"). (7.28)
e A linear continuous operator L : H — D’ (2;R™) (such as a gradient or a
divergence).
We have:

Theorem 7.4. Define
W={veH:LveZ}

and
(u, U)W = (u, U)H + (Lu, LU)Z : (7.29)

Then W is a Hilbert space with inner product given by (7.29). The embedding of
W in H is continuous and the restriction of L to W is continuous from W into Z.

Proof. It is easy to check that (7.29) has all the properties of an inner product,
with induced norm

2 2 2
lullw = llullz + [ Lull -

Thus W is an inner-product space. It remains to check its completeness. Let {vy}

a Cauchy sequence in W. We must show that there exists v € H such that

vy, —vin H and Lvg — Lvin Z.

Observe that {vy} and {Lv,} are Cauchy sequences in H and Z, respectively.
Thus, there exist v € H and z € Z such that

v, — v in H and Lvy — z in Z.
The continuity of L and (7.28) yield
Lvy, — Lv in D' (2;R™) and Lvy — 2z in D' (2;R").
Since the limit of a sequence in D’ (£2; R™) is unique, we infer that
Ly = z.

Therefore Lvy, — Lv in Z and W is a Hilbert space.
The continuity of the embedding W C H follows from

[ull g < llully
while the continuity of Ljyy : W — Z follows from
[ Lull 7 < [l -
Thus, the proof is complete. [
Remark 7.6. The norm induced by the inner product (7.29) is

2 2
l[ully =/ llull + [ Lully

which is called the graph norm of L.
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7.7.2 The space H! (£2)
Let 2 C R™ be a domain. Choose in Theorem 7.4:
H=1L*), Z=L?2;R") D (2;R")
and L : H — D' (2;R™) given by
L=V

where the gradient is considered in the sense of distributions. Then, W is the
Sobolev space of the functions in L? (£2), whose first derivatives in the sense of
distributions are functions in L? (§2). For this space we use the symbol** H(£2).
Thus:

HY (2)={veL*(2):Vve L*({;R")}.

In other words, if v € H'({2), every partial derivative d;,v is a function v; € L?(2).
This means that

<aﬂﬁivv 90> = - (v? aﬂﬁi‘P)O = (via 90)0 s V(,O €D ('Q)

or, more explicitly,

/v(x)amicp(x)dx:f/vi(x)cp(x)dx, Yo e D(02).
2 2

In many applied situations, the Dirichlet integral

/ Vo?
(94

represents an energy. The functions in H! ({2) are therefore associated with config-
urations having finite energy. From Theorem 7.4 and the separability'® of L2(£2),
we have:

Proposition 7.8. H'({2) is a separable Hilbert space, continuously embedded in
L?(82). The gradient operator is continuous from H*({2) into L?(£2;R™).

The inner product and the norm in H! (2) are given, respectively, by

(u,v)Hl(Q):/uv der/ Vu - Vv dx.
2 2

1 Also H2(2) or Wh?2 (2) are used.
15 If we associate with each element w of H'! (£2) the vector u,uz,,...,Uz,, we see that
H' (£2) can be identified with a subspace of

L*(2) x L*(2) x ... x L* (2) = L* (2R")

which is separable because L? (£2) is separable.
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and
2 2
If no confusion arises, we will use the symbols

(u,v); , instead of  (u,v)p (g

and!6

Jully, instead of [lullrs(c) -
Ezample 7.20. Let 2 = B; (0) = {x €R?: [x| < 1} and

u(x) = (~log|x)*,  x#0.

We have, using polar coordinates,

1
/ u? = 27r/ (—logr)** rdr < oo,  for every a € R,
B1(0) 0

so that u € L? (B; (0)) for every a € R. Moreover:

Ug, = —az; |x| 2 (= log|x))*" ", i=1,2,

i

and therefore
Vul = |a(~log |x))* ™" x| "

Thus, using polar coordinates, we get

1
/ |Vu|2:27ra2/ llogr|** > r~tdr.
B1(0) 0

This integral is finite only if 2—2a > 1 or a < 1/2. In particular, Vu represents the
gradient of u in the sense of distribution as well. We conclude that u € H! (B; (0))
only ifa < 1/2.

We point out that when a > 0, v is unbounded near 0.

We have affirmed that the Sobolev spaces constitute an adequate functional
setting to solve boundary value problems. This point requires that we go more
deeply into the arguments in Section 6.1 and make some necessary observations.
When we write f € L? (£2), we may think of a single function

f:92 =R (or C),

square summable in the Lebesgue sense. However, if we want to exploit the Hilbert
space structure of L? (§2), we need to identify two functions when they are equal
a.e. in §2. Adopting this point of view, each element in L?({2) is actually an

'6 The numbers 1,2 in the symbol ||:||, , stay for “first derivatives in L*”.
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equivalence class of which f is a representative. The drawback here is that it does
not make sense anymore to compute the value of f at a single point, since a point
is a set with measure zero!

The same considerations hold for “functions” in H?! (£2), since

H'(2)C L*(2).

On the other hand, if we deal with a boundary value problem, it is clear that we
would like to compute the solution at any point in 2!

Even more important is the question of the trace of a function on the boundary
of a domain. By trace of f on 0f2 we mean the restriction of f to 9f2. In a Dirichlet
or Neumann problem we assign precisely the trace of the solution or of its normal
derivative on 0f2, which is a set with measure zero. Does this make any sense if
ue H (02)?

It could be objected that, after all, one always works with a single representative
and that the numerical approximation of the solution, only involves a finite number
of points, making meaningless the distinction between functions in L2 (£2) or in
H! (£2) or continuous. Then, why do we have to struggle to give a precise meaning
to the trace of a function in H! (£2)?

One reason comes from numerical analysis, in particular from the need to keep
under control the approximation errors and to give stability estimates.

Let us ask, for instance: if a Dirichlet data is known within an error of order ¢
in L?2—norm on {2, can we estimate in terms of ¢ the corresponding error in the
solution?

If we are satisfied with an L? or an L® norm in the interior of the domain,
this kind of estimate may be available. But often, an energy estimate is required,
involving the norm in L2 (£2) of the gradient of the solution. In this case, the
L? norm of the boundary data is not sufficient and it turns out that the exact
information on the data, necessary to restore an energy estimate, is encoded in the
trace characterization of Section 7.9.

We shall introduce the notion of trace on 942 for a function in H! (§2), using
an approximation procedure with smooth functions. However, there are two cases,
in which the trace problem may be solved quite simply: the one-dimensional case
and the case of functions with zero trace. We start with the first case.

e Characterization of H'(a,b). As Example 7.26 shows, a function in H! (£2)
may be unbounded. In dimension n = 1 this cannot occur. In fact, the elements
in H! (a,b) are continuous functions'” in [a, b].

Proposition 7.9. Let u € L? (a,b). Then u € H' (a,b) if and only if u is contin-
uous in [a,b] and there exists w € L* (a,b) such that
y
u(y) = u(z) + / w(s) ds, Va,y € [a,b]. (7.30)

x

Moreover v’ = w (both a.e. and in the sense of distribution).

7 Rigorously: every equivalence class in H' (a,b) has a representative continuous in [a, b].
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Proof. Assume that v is continuous in [a,b] and that (7.30) holds with w €
L?(a,b). Choose z = a. Replacing, if necessary, u by u — u (a), we may assume
u(a) = 0, so that

Yy
u) = [Cw(s)ds,  Vaye bl
Let v € D (a,b). We have:

@wy_<mw_/2@m%9@_1W1lwm4a@@_

a

(exchanging the order of integration)

_AW[w@m%w@ﬁ_én@w@ﬁ_@wy

Thus v/ = w in D’ (a,b) and therefore u € H' (a,b). From the Lebesgue Differen-
tiation Theorem'® we deduce that v’ = w a.e. as well.
Viceversa, let u € H' (a,b). Define

v(z) = /I u' (s)ds, x € [a,b]. (7.31)

The function v is continuous in [a, b] and the above proof shows that v = ' in
D’ (a,b). Then (Proposition 7.3) u = v+ C, C' € R and therefore u is continuous
in [a, b] as well. Moreover, (7.31) yields

()~ u @) = o) 0 (@) = [l (5 ds

which is (7.30). O
Since a function u € H* (a, b) is continuous in [a, b], the value u (zg) at every

point xg € [a, b] makes perfect sense. In particular the trace of u at the end points
of the interval is given by the values u (a) and u (b).

7.7.3 The space H; (£2)

Let £2 C R™. We introduce an important subspace of H! (£2).
Definition 7.10. We denote by H}(2) the closure of D (£2) in H' (£2).

Thus u € H}(£2) if and only if there exists a sequence {¢;} C D (£2) such that
¢, — uin H' (), i.e. both [j¢, — ull, — 0 and ||V, — Vull, — 0 as k — occ.

Since the test functions in D (§2) have zero trace on 9f2, every u € H} (2)
“inherits” this property and it is reasonable to consider the elements H} (£2) as the
functions in H! (£2) with zero trace on 812. Clearly, H}(2) is a Hilbert subspace
of H (02).

An important property that holds in H} (£2), particularly useful in the solution
of boundary value problems, is expressed by the following inequality of Poincaré.

18 Appendix B.
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Theorem 7.5. Let {2 C R™ be a bounded domain. There exists a positive constant
Cp (Poincaré’s constant) such that, for every u € Hg (12),

[ullg < Cp [[Vully - (7.32)

Proof. We use a strategy which is rather common for proving formulas in
H} (£2). First, we prove the formula for v € D (§2); then, if u € Hj (£2), select
a sequence {vi} C D (§2) converging to u in norm |||, , as k — oo, that is

lok —ully, — 0, Vo, — Vul|, — 0.

In particular
lorllo = llullo,  [Vellp = [IVull -

Since (7.32) holds for every vy, we have
[oklly < CrI[Vully -

Letting k& — oo we obtain (7.32) for u. Thus, it is enough to prove (7.32) for
v € D (£2). To this purpose, from the Gauss Divergence Theorem, we may write

/ div (v’x) dx =0 (7.33)
0
since v = 0 on 92. Now,

div (1)2)() = 20V - x+nv?

2
/v2dx:f—/ vV - x dx.
n nJjo

Since {2 is bounded, we have max|x| = M < oo; therefore, using Schwarz’s in-
xef?

1/2 1/2
Sﬂ (/ v2dx> (/ |Vo|? dx) .
n Q Q

[vllg < Cr IVl

so that (7.33) yields

equality, we get

2
/dex:—/ vV - x dx
n niJo

Simplyfying, it follows that

with Cp = 2M/n. O
Inequality (7.32) implies that in HJ(£2) the norm [[ull; o is equivalent to [|Vul[,.
Indeed

2 2
[ully 2 = A/ llulls + [[Vullg

IVullg < llully 5 < /OB + 1 Vullg -

Unless explicitly stated, we will choose in H} (£2)

(u,0); = (Vu, Vo)yand  lully = [[Vul,

and from (7.32),

as inner product and norm, respectively.
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7.7.4 The dual of H}(£2)

In the applications of the Lax-Milgram theorem to boundary value problems, the
dual of H} (£2) plays an important role. In fact it deserves a special symbol.

Definition 7.11. We denote by H1(2) the dual of H}({2) with the norm
IF||l_y = sup {|Fv| : v € Hy(£2), |lvfly < 1}.

The first thing to observe is that, since D (f2) is dense (by definition) and
continuously embedded in H} (£2), H=1(£2) is a space of distributions. This means
two things:

a) if F € H~1(£2), its restriction to D (£2) is a distribution;
b)if F,G € H1(2) and Fp = Gy for every ¢ € D({2), then F = G.

To prove a) it is enough to note that if ¢, — ¢ in D (£2), then ¢, — ¢ in
H} (£2) as well, and therefore Fip, — Fp. Thus F € D' (£2).

To prove b), let u € Hj (£2) and ¢, — u in H} (£2), with ¢, € D (§2). Then,
since F'o, = Gy, we may write

Fu= lim Fcpk:klim Gy, = Gu
—+00

k—+oco

whence F' = G.
Thus, H~1(£2) is in one-to-one correspondence with a subspace of D’ (£2) and
in this sense we will write

H YN cD (2).

Which distributions belong to H ~1(£2)? The following theorem gives a satisfactory
answer.

Theorem 7.6. H~1(2) is the set of distributions of the form
F = fo +divf (7.34)

where fo € L*(2) and f = (f1, ..., f») € L*(£2; R™). Moreover:
IE)—y < 0+ Cp){ll follo + [1£ll} - (7.35)

Proof. Let F € H~'(£2). From Riesz’s Representation Theorem, there exists a
unique u € H§ (£2) such that

(u,v), = Fv Yo € Hy(2).

Since
(u,v); = (Vu, Vv) = — (divVuy, v)

in D’ (£2), it follows that (7.34) holds with fo = 0 and f = —Vu. Moreover, |lu||, =
11—y
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Viceversa, let F' = fo+div f, with fo € L?(£2) and f = (f1, ..., fn) € L2(2;R™).
Then F' € D' (§2) and, letting F'v = (F, v), we have;

Fv:/fov dx+/f~Vv dx Yv € D(£2).
[0} [0}

From the Schwarz and Poincaré inequalities, we have
[Fo] < (Cp+ 1) {llfollo + [IEllo} 1]l - (7.36)

Thus, F is continuous in the Hj— norm. It remains to show that F has a unique
continuous extension to all H(£2). Take u € Hg(£2) and {vx} C D (£2) such that
|lve — ull; — 0. Then, (7.36) yields

[For, — Fop| < (14 Cp){|[follg + Ifllo} [[ox —vally -

Therefore {Fuvi} is a Cauchy sequence in R and converges to a limit which is
independent of the sequence approximating u (why?) and which we may denote
by Fu. Finally, since

|Fu| = lim [Fvi| and  |jul|; = lim [jvgl|;,
k—o0 k—o0
from (7.36) we get:

[Ful < (1+Cp) {llfollo + [IEllo} lully

showing that F € H~1(£2). O

Theorem 7.6 says that the elements of H~!(§2) are represented by a linear
combination of functions in L?(§2) and their first derivatives (in the sense of dis-
tributions). In particular, L2(£2) — H~1(02).

Ezample 7.21. If n = 1, the Dirac § belongs to H (—a, a). Indeed, we have § = H’
where H is the Heaviside function, and H € L?(—a, a).

However, if n > 2 and 0 € 2, § ¢ H'(£2). For instance, let n = 2 and
2 = By (0). Assume § € H~!(£2). Then we may write

0= fo+divf
for some fo€L?(£2) and f €L?(§2;R?). Thus, for every ¢ € D (£2),
P (0) = (G.0) = tho+div £.9) = [ [fop = £l dx.
From Schwarz’s inequality, it follows that
O < {150l + 112} el
and, using the density of D (£2) in H} (£2), this estimate should hold for any ¢ €

H}(£2) as well. But this is impossible, since in H}({2) there are functions which
are unbounded near the origin, as we have seen in Example 7.26.
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Example 7.22. Let {2 be a smooth, bounded domain in R". Let u = x, be its
characteristic function. Since x,, € L? (R"), the distribution F = V, belongs to
H~!(R";R"). The support of F = Vx,, coincides with 92 and its action on a
test o € D (R™;R"™) is described by the following formula:

XQdivgodx:f/ @w-vdo.
o8

(Vxae) =— |

n

We may regard F as a “delta uniformly distributed on 0£2”.

Remark 7.7. It is important to avoid confusion between H~!(£2) and H! ()",
the dual of H' (£2). Since, in general, D ({2) is not dense in H! ({2), the space
H' (£2)" is not a space of distributions. Indeed, although the restriction to D (2)
of every T € H' (£2)" is a distribution, this restriction does not identifies T'. As a
simple example, take f €L? (£2;R™) with |[f| > ¢ > 0 a.e. and div f = 0. Define

Tcp:/fngodx.
0

Since [Tp| < ||f[|, [V¢lly, we infer that T' € H' (£2)*. However, the restriction of
T to D (£2) is the null operator, since in D’ ({2) we have

(T, ) = —(div £,0) =0 Yo e D(02).

7.7.5 The spaces H™ (£2), m > 1

Involving higher order derivatives, we may construct new Sobolev spaces. Let N
be the number of multi-indexes & = (o, ..., o) such that |a| = Y1 | a; < m.
Choose in Theorem 7.4

H=I1*), Z=L*RY)cD (2R"Y),
and L: L?(2) — D' (£;RY) given by
Lv = {Dav}|a|§m .

Then W is the Sobolev space of the functions in L? (£2), whose derivatives (in
the sense of distributions) up to order m included, are functions in L? (£2). For
this space we use the symbol H™({2). Thus:

H™(2) ={ve L*() : D*v € L*(2), Va:|a| < m}.
From Theorem 7.4 and the separability of L? (£2), we deduce:

Proposition 7.10. H™({2) is a separable Hilbert space, continuously embedded
in L?(82). The operators D%, |a| < m, are continuous from H™(§2) into L?(2).
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The inner product and the norm in H™ are given, respectively, by

(1:0) sy = (ws)0 = 3 [ DPuDRv dx
2

laj<m

and

2 2 o 2
filmiy = NulZp = 3 /Q |D*uf? dx.

la|<m
If u € H™ (£2), any derivative of u of order k belongs to H™~* (£2); more generally,
if || = k < m, then
D € H™ % (02)

and H™(2) < H™ % (2), k> 1.

Ezample 7.23. Let By (0) C R3 and consider u (x) = |x|™ . It is easy to check (see
Problem 7.15) that uw € H' (B; (0)) if a < 1/2. The second order derivatives of u
are given by:

Uz,z; = a(a+2)xiz; x| 7% — ady; x| 7472,
Then

|t | < la(a+2)||x| 7“2

so that ug,s, € L*(By(0)) if 2a +4 < 3, or a < —5. Thus u € H? (B (0)) if
a< —1/2.

7.7.6 Calculus rules

Most calculus rules in H™ are formally similar to the classical ones, although their
proofs are not so trivial. We list here a few of them:

Derivative of a product. Let u € H*(£2) and v € D (£2). Then uv € H(£2)
and
V (wv) = uVv + vVu. (7.37)

Formula (7.37) holds if both u,v € H(£2) as well. In this case, however,
w € L' ()  and V(wv) € L' (2;R™).

Composition I. Let u € H!(£2) and g : £ — §2 be one-to-one and Lipschitz.
Then, the composition

uog: 2 =R
belongs to H' (£2') and
Ou; [uo gl (x) =Y Buyu(g(x)) Du,gn (%) (7.38)
k=1

both a.e. in 2 and in D’ (£2). In particular, the Lipschitz change of variables
y =g (x) transforms H' (£2) into H* (£2').
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Composition II. Let v € H'(£2) and f : R—R be Lipschitz. Then, the
composition

fou:2—->R
belongs to H' (£2) and

O, [f o u] (x) = f' (u(x)) Oz u (x) (7.39)

both a.e. in £2 and in D’ (£2).
In particular, choosing respectively

f (t) = |t|v / (t) = max {tv 0} and f (t) = —min {tv O}v

it follows that the following functions:

lu|, ut =max{u,0}, and u~ = —min{u,0}

all belong to H'(£2). For these functions, (7.39) yields

Vu ifu>0 o 0 ifu>0
+ _ _ el
vu _{ 0 ifu<o’ V" _{Vu ifu<0

and V(Ju|) = Vut + Vu~, Vu = Vu™ — Vu~. As a consequence, if u € H' (2) is

constant in a set K C (2, then Vu =0 a.e. in K.

7.7.7 Fourier Transform and Sobolev Spaces

The spaces H™ (R™), m > 1, may be defined in terms of the Fourier transform. In
fact, by Theorem 7.3,

u € L? (R™) if and only if @ € L* (R™)
and
[ullF2@ny = 2m) " |El172 g -
It follows that, for every multi-index « with |a| < m,
D%y € L* (R™) if and only if ~ &€%u € L? (R™)
and
1Dl z2(gny = (2m) " €7 Z2gny

Finally, observe that
€ < g < o+ g

whence we obtain the following result.
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Proposition 7.11. Let u € L? (R™). Then:
i) we H™(R") if and only if (1 + |€[*)™/20 € L2 (R™).

ii) The norms

lullgm ey and || @+ 1€

L2 (Rm)

are equivalent.

e Sobolev spaces of real order. The norm

el oy = || L+ 161724

L2 (Rm)

makes perfect sense even if m is not an integer and we are led to the following
definition.

Definition 7.12. Let s € R, 0 < s < oo. We denote by H® (R") the space of
functions u € L? (R™) such that |€|°u € L? (R™).

Intuitively, the function
F () ]
represents a “derivative of order s” of u. Then,
u € H® (R™)
if the “derivatives of order s” of u belong to L? (R™). We have:

Proposition 7.12. H* (R") is a Hilbert space with inner product and norm given
by
() sy = [ (1+167) 07 de
RTL

and

2\*/%
el ey = || (1 + I€T7) Z .

The space H'/?(R™) of the L?—functions possessing “half derivatives” in
L? (R™) plays an important role in Section 7.9.

7.8 Approximations by Smooth Functions and Extensions

7.8.1 Local approximations

The functions in H!(§2) may be quite irregular. However, using mollifiers, any
u € H(§2) may be approximated locally by smooth functions, in the sense that
the approximation holds in every compact subset of (2.
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Ix|
g

Denote by 1, = Einn ( ) the mollifier introduced in section 7.2 and by (2. the

set of points e—away from 0f2, i.e. (see Remark 7.2):
. = {x €02 dist (x,002) > e}.
We hayve:
Theorem 7.7. Let u € H(£2) and, for ¢ > 0, small, define
Ue = U k7).

Then

1. u.e C* (92.),

2.ife = 0, uc — u in H' (£2') for every 2’ CC (2.

Proof. Property 1 follows from Remark 7.2. To prove 2, recall that, for every
i=1,2,...,n, we have

Oy Ue = Oy, u 1), (7.40)
Then, 2 follows from property d of Lemma 7.1, applied to any 2’ CC 2. O

7.8.2 Estensions and global approximations

By Theorem 7.7, we may approximate a function in H! (£2) by smooth functions, as
long as we stay at positive distance from 9f2. We wonder whether an approximation
is possible in all {2. First we give the following definition.

Definition 7.13. Denote by D (ﬁ) the set of restrictions to 2 of functions in
D (R™).

Thus, ¢ € D () if there is ¢ € D(R") such that ¢ = ¢ in 2. Clearly,
D (ﬁ) cC*™ (ﬁ) We want to establish whether
D (f2) is dense in H' (£2). (7.41)
The case {2 = R" is special, since D (£2) coincides with D (£2). We have:
Theorem 7.8. D (R") is dense in H' (R™). In particular H* (R") = Hj (R™).

Proof. First observe that H! (R™), the subspace of functions with compact
(essential) support in R™, is dense in H!'(R"). In fact, let v € H! (R") and v €
D (R™), such that 0 <v <1 and v =1 if |x| < 1. Define

s () = v (f) w(x) .

S

Then us € H! (R") and

Vs (x) = v (5) Vu (x) + %u(x) Vo (—) .
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From the Dominated Convergence Theorem'?, it follows that
Us = U in H'(R™) as s — oo.
On the other hand D (R") is dense in H! (R"). In fact, if u € H} (R™), we have
ue =ux*1n, € DR")
and u. — u in HY(R"). O
However, in general (7.41) is not true, as the following example shows.

Ezample 7.24. Consider, for instance,
2={(p,0):0<p<1,0<0<2n}.

The domain {2 coincides with the open unit circle, centered at the origin, without
the radius
{(p,0):0<p<1,0=0}.

The closure {2 is given by the full closed circle. Let
u(p,0) = p/? cos(0/2).
Then u € L? (£2), since u is bounded. Moreover2?,

1 1
Vuff =u?+ Sui=— inQ
Vu|™ = uy p uy I in 02,
so that u € H' (£2). However, u (p,0+) = p*/? while u (p, 27—) = —p'/2. Thus, u
has a jump discontinuity across # = 0 and no sequence of smooth functions can
converge to u in H! ({2).

The difficulty in Example 7.24 is that the domain (2 lies on both sides of part
of its boundary (the radius 0 < p < 1,60 = 0). Thus, to have a hope that (7.41) is
true we have to avoid domains with this anomaly and consider domains with some
degree of regularity.

Thus, assume (2 is a C! or even a Lipschitz domain. Theorem 7.8 suggests a
strategy to prove (7.41): given u € H'({2), extend the definition of u to all R in
order to obtain a function in H'(R™) and then apply Theorem 7.8. The first thing
to do is to introduce an extension operator:

Definition 7.14. We say that a linear operator E : H'(£2) — H(R") is an
extension operator if, Vu € H*(£2):

1. E(u)=wuin £,

2. if 12 is bounded, E (u) is compactly supported,

8. E is continuous:
||Eu||H1(Rn) <c(n,92) HUHHI(Q) :

19 Observe that |us| < |u| and |Vus| < |Vu| + M |u| where M = max |Vv|.
20 Appendix C.
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How do we construct E? The first thing that comes into mind is to define
Eu = 0 outside (2 (trivial extension). This certainly works if u € H} (£2). In fact:
u € H}($2) if and only if its trivial extension belongs to H' (R™).

However, the trivial extension works in this case only. For instance, let u €
H'(0,00) with u(0) = @ # 0. Let Eu be the trivial extension of u. Then, in
D' (R), (Eu)’ = v + ad which is not even in L? (R).

Thus, we have to use another method. If {2 is a half space. i.e.

2 =R} ={(z1,...,xzn) : x, > 0}

an extension operator can be defined by a reflection method as follows:

e Reflection method. Let H' (R%) . Write x = (x/, z,). We reflect in an even
way with respect to the hyperplane z,, = 0, by setting Eu = u where

i (x) = u (X, |zn]) .

Then, it is possible to prove that, in D’ (R™):

Ug,; (X, [z ) Jj<n
Uy, (X) = {u (7.42)

(%', |zn|) sign z,,  j=n.
It is now easy to check that E has the properties 1,2,3 listed above. In particular,
2 2
[Eullz gy = 2 1wl @) -

o Extension operator for Lipschitz domains. Suppose now that {2 is a bounded
Lipschitz domain. To construct an extension operator we use two rather general
ideas, which may be applied in several different contexts: localization and reduction
to the half space.

Localization. It is based on the following lemma. Given a set K, by open
covering of K we mean a collection U of open sets, such that K C Uy¢yU.

Lemma 7.3. (Partition of unity). Let K C R™ be a compact set and Uy, ...,Un be
an open covering of K. There exist functions 11, ..., ¥y with the following proper-
ties:

1. For every j =1,...,N,v¢,; € C5° (U;) and 0 < ¢p; < 1.

2. For every x €K, Z;V:1 Y, (x) =1

Proof (sketch). Since K C U;-Vlej and each Uj is open, we can find open sets
Kj CcC Uj such that
K C UL, K.

Let xf, be the characteristic function of K; and 7. the mollifier (7.3). Define
$je =M * X, According to Example 7.2, we may fix € so small in order to have
v;e € C5° (Ujﬁ and ¢, . > 0 on Kj;. Then the functions

¥je

Yi=ev
Zs:l SOS,E



410 7 Distributions and Sobolev Spaces

Fig. 7.5. A set {2 and an open covering of its closure

satisfy conditions 1 and 2. [

The set of functions %4, ..., ¥y is called a partition of unity for K, associated
with the covering Uy, ...,Un. Now, ifu : K — R, the localization procedure consists
in writing

N
u= Z Yu (7.43)
j=1

i.e. as a sum of functions u; = ¢;u supported in Uj.

Reduction to a half space. Take an open covering of 92 by N balls B; =
B (x;), centered at x; € 012 and such that 92N B; is locally a graph of a Lipschitz
function y,, = ¢, (y’) . This is possible, since 012 is compact. Moreover, let Ag C {2
be an open set containing 2\ Ué-vzl B; (Fig. 7.5).

Then, Ay, By, ..., By is an open covering of {2. Let v, ¢y, ..., ¥ be a partition
of unity for (2, associated with Ag, By, ..., By.

e

QNB. 7 7

90 2, =0

Fig. 7.6. The bi-Lipschitz transformation ®; flattens B; N 012

By the definition of Lipschitz domain (see Section 1.4), for each B;, 1 < j < N,
there is a bi-Lipschitz transformation z = ®; (x) such that

Qj(Bjﬂ.Q)EUjCR:L_

and (Fig. 7.6)
®; (B;N0f2) C IR = {z, =0}.
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Let u € H' (£2) and u; = ¥;u. Then, w; = u; o @;1 is supported in Uj, so that,
extending it to zero in R \U;, we have w; € H' (R%).

The function Ew; = 0;, obtained by the reflection method, belongs to H* (R™).
Now we go back defining

EUJ'ZQI}J'O‘I’J', 1§]§N,

in B; and Fu; = 0 outside Bj. Finally, let ug = ¥yuo and let Eug be the trivial

extension of ug. Set
N
Fu = Z Eu;.
§=0

At this point, it is not difficult to show that E satisfies the requirements 1, 2, 3 of
Definition 7.14. We have proved the following

Theorem 7.9. Let (2 be either R} or a bounded, Lipschitz domain. Then, there
exists an extension operator E : H*(£2) — H!(R").

An immediate consequence of Theorems 7.8 and 7.9 is the following global
approximation result:

Theorem 7.10. Let {2 be either R} or a bounded, Lipschitz domain. Then
D (f2) is dense in H' (). In other words, if u € H'({2), there exists a se-
quence {u,,} C D (12) such that

um —ull; , =0 asm— +oo.

7.9 Traces

7.9.1 Traces of functions in H! (£2)

The possibility of approximating any element u € H* (£2) by smooth functions in
2 represents a key tool for introducing the notion of restriction of u on I = 912.
Such restriction is called the trace of u on I" and it will be an element of L? (I').

Observe that if 2 = R%, then I' = R} = R ! and L? (I') is well defined.
If 2 is a Lipschitz domain, we define L? (I") by localization. More precisely, let
By, ..., By be an open covering of I" by balls centered at points on I', as in sub-
section 7.8.2. If g : I' — R, write

where v, ...,y is a partition of unity for I', associated with By, ..., By. Since
I' N Bj is the graph of a Lipschitz function y, = ¢; (y'), on I' N B; there is a
natural notion of “area element”, given by

do=y/1+ |V, |*dy’.
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Thus, we say that g € L? (I") if?!

N
12y = > /FmB v, |g* do< oo. (7.44)
i= :

L?(I') is a Hilbert space with respect to the inner product

N
(9, h)m(r) = Z ¥; ghdo.
j=1JI'NB;

Let us go back to our trace problem. We may consider n > 1, since there is no
problem if n = 1. The strategy consists in the following two steps.
Let 7o : D (£2) — L?(I') be the operator that associates to every function v

its restriction v|p to I': Tov = v|r . This makes perfect sense, since each v € D (ﬁ)
is continuous on I'.

First step: show that || Toul|p2(p) < ¢ (£2,n) [lul[; 5. Thus, 7 is continuous from
D (£2) c H'(£2) into L* (I).

Second step: extend T to all H'({2) using the density of D (£2) in H*(£2).

An elementary analogy may be useful. Suppose we have a function f: Q — R
and we want to define the value of f at an irrational point x. What do we do?
Since Q is dense in R, we select a sequence {ry} C Q such that ri, — z. Then we
compute f (rg) and set f(x) = limg_ oo f (rg). Of course, we have to prove that
the limit exists, by showing, for example, that {f (r,)} is a Cauchy sequence and
that the limit does not depend on the approximating sequence {r,}.

Theorem 7.11. Let {2 be either R?} or a bounded, Lipschitz domain. Then there
exists a linear operator (trace operator) 1o : H'(£2) — L? (I') such that:

1. TouZU|p lfUED(ﬁ),
2. Jroull oy < c(2,m) [[ull, 5

Proof. Let {2 = R%. First, we prove inequality 2 for v € D (ﬁ) In this case
Tou = u(x’,0) and we must show that there is a constant ¢ such that

9 _
/}Rnil lu(x’,0)|" dx’ < cHqul(Ri) Vu e D(12). (7.45)
For every z,, € (0,1) we may write:
u(x',0) = u(x’, z,) f/ ug, (X', t)dt.
0

Since by Schwarz’s inequality

(f it (1) )

21 Observe that the norm (7.44) depends on the particular covering and partition of
unity. However, norms corresponding to different coverings and partitions of unity are
all equivalent and induce the same topology on L? (I").

2

1
< / e, (', 0)[2 dt,
0
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we deduce that (recalling the elementary inequality (a + b)> < 2a2 + 2b2)

2

1
u(x', 0)* < 2 fu(x, 2,)|* + 2 (/ [, (X, 8)] dt)
0
1
< 2|u(x/,xn)|2+2/ g, (x',8)| dt
0

1
< 2|u(x/,xn)|2+2/ \Vu (x,t)| dt
0

Integrating both sides in R*~! with respect to x’ and in (0, 1) with respect to x.,
we easily obtain (7.45) with ¢ = 2.

Assume now u € H' (R7%). Since D (£2) is dense in H! (R%), we can select
{ur} € D (£2) such that up, — uin H' (R%).

The linearity of 7o and estimate (7.45) yield

H‘rouh — ToukHLz(Rn—l) < \/iHuh - ukHHl(Ri) .

Since {uy} is a Cauchy sequence in H' (R), we infer that {Tous} is a Cauchy
sequence in L? (R™~1). Therefore, there exists ug € L?(R™™!) such that

ToUk — Ug in L2(R"Y).

The limiting element uo does not depend on the approximating sequence {u}. In
fact, if {vx} C D (2) and vy, — u in H' (R7), then

Hvk — ukHHl(Ri) — 0.

From
[Tovk — Touk|l p2gn-1) < V2 ||vg, — ukHHl(Ri)

it follows that Tovy — ug in L2(R"™1) as well.

Thus, if v € H! (IR’}L), it makes sense to define Tou = wug. It should be clear
that 7o has the properties 1, 2.

If 2 is a bounded Lipschitz domain, the theorem can be proved once more by
localization and reduction to a half space. We omit the details. [

Definition 7.15. The function Tgu, also denoted by wr, is called the trace of
uonI'.

The following integration by parts formula for functions in H! (£2) is a conse-
quence of the trace theorem 7.11.

Corollary 7.1. Assume {2 is either R"} or a bounded, Lipschitz domain. Let
uw€ H' (2) and v €H' (2;R"). Then

/ Vu-vdx = f/ udivv der/ (tou) (Tov) - v do. (7.46)
2 2 r

where v is the outward unit normal to I and Tov = (TgU1, ..., ToUn) -
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Proof. Formula (7.46) holds if u € D (£2) and v €D (2;R"). Let u € H' (1)
and v eH' (£2;R™). Select {ux} C D (2), {vi} C D (£2;R") such that up — u in
H' () and vi, — v in H* (£2;R™). Then:

/ Vuy - vi dx = f/ ug div vy der/ (Tour) (Tovk) - v do.
I?) I?) r

Letting k — oo, by the continuity of 7¢, we obtain (7.46). O
It is not surprising that the kernel of 7 is precisely?? H} (£2):

Tou=0 <= wuc Hj ().

In similar way, we may define the trace of u € H! (£2) on a relatively open
subset Iy C I

Theorem 7.12. Assume {2 is either R”} or a bounded, Lipschitz domain. Let I
be an open subset of I.
Then there exists a trace operator Tr, : H'(£2) — L? (Iy) such that:

1. Tryu=ujr, ifueD(2),
2. 7yl oy < €(02,m) [lul -

The function Tr,u is called the trace of u on Iy, often denoted by ur, . The
kernel of 7, is denoted by Hg r, (£2):

TL,u=0 <= wue€ Hj r, (12).

This space can be characterized in another way. Let Vo r,, be the set of functions
in D (.Q) vanishing in a neighborhood of I'y. Then:

Proposition 7.13. Hj 1, (£2) is the closure of Vo r, in H' (2).

7.9.2 Traces of functions in H™ (2)

We have seen that v € H™(R"), m > 1, has a trace on I" = OR",. However, if
m = 2, every derivative of u belongs to H*(R" ), so that it has a trace on I". In
particular, we may define the trace of 0,,u on I'. Let

T1u = (0o, u) 1 -

3

In general, for m > 2, we may define the trace on I of the derivatives 87 u = ol

for j=0,1,...,m—1 and set
Tiu= (0 u)r.
In this way, we construct a linear operator = : H™(R") — L? (I'; R™), given by
TU = (ToUy eoey Trn—1U) .

22 However, only the proof of the “ <= ” part is trivial. The proof of the “ = ” part is
rather tecnical and we omit it.
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From Theorem 7.11, 7 satisfies the following conditions:

L Tu= (ur , (@, w)r ... (07 ) p ), if ue D(RY),
2. HTUHL2(F;R") < CHUJHHm(Ri) .

The operator T associates to u € H™ (R’}L) the trace on I" of u and its deriva-
tives up to the order m — 1, in the direction x,,. This direction corresponds to the
interior normal to I' = OR}.

Analogously, for a bounded domain {2 we may define the trace on I" of the
(interior or exterior) normal derivatives of u, up to order m — 1. This requires {2
to be at least a C™ —domain. The following theorem holds, where v denotes the
exterior unit normal to 92.

Theorem 7.13. Assume {2 is either R} or a bounded, C™—domain, m > 2. Then
there exists a trace operator T : H™(2) — L? (I'; R™) such that:

I.Tu:(’l,”p,%'F,. o _u )lfUED(ﬁ),

) gumL|p

2 lrull 2 pmy < € (2,n) [[ull g ) -

Similarly, we may define a trace of the (interior or exterior) normal derivatives
of u, up to order m — 1, on an open subset I C I'.

It turns out that the kernel of the operator T is given by the closure of D (2)
in H™ (£2), denoted by H{"({2). Precisely:

Tu=(0,..,0) <= wueHJ ().

Clearly, HJ*(£2) is a Hilbert subspace of H™ (§2). If u € H{*(§2), u and its normal
derivatives up to order m — 1 have zero trace on I.

7.9.3 Trace spaces

The operator 7 : H! (£2) — L? (I') is not surjective. In fact the image of T is
strictly contained in L? (I'). In other words, there are functions in L? (I") which
are not traces of functions in H'(£2). So, the natural question is: which functions
g € L?(I") are traces of functions in H(£2)? The answer is not elementary: roughly
speaking, we could characterize them as functions possessing half derivatives in
L?(I"). Tt is as if in the restriction to the boundary, a function of H! (£2) loses
“one half of each derivative”. To give an idea of what this means, let us consider
the case {2 = R . We have:

Theorem 7.14. Let u € H' (R%). Then Im 7 = H/? (R™1).

Proof (sketch). First we show that ImTo C H'/2 (R*~!). Let u € H' (R?) and
extend it to all R™ by even reflection with respect to the plane z,, = 0. We write
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the points in R™ as x = (x/, zy,), with X' = (1, ..., zy). Define g (x’) = u (x/,0).
We show that g € H/2 (R"~1), that is

oy = [ €7 16 (&) de’ < oc.

First, we consider v € D (R™) and express g in terms of 4. By the Fourier inversion
formula, we may write

/ 1 ix' ¢ ~ / ix /
wiomn) = e [ e ([a(e6) emenas, ) de

AN 1 eix'-ﬁ' i i / /
16) = s [ e (52 [l e ae,) ae.

This shows that

so that

~ ! 1 ~ !
9(5) :%/RU(Eafn)dfn-
Thus:

1 9 2
o) = G o 0 1€ "

/R a(g,e,) de,

Note now the following two facts. First, from Schwarz’s inequality, we may write

] /R A€, d,

< /(1 +1E7) AL+ (g7) R a (€ 6n) | dé
R

< ( JR !a(e’,sn)!stn)l/Q ( La+ |e|2>1dsn)l/2.

™

Second, 3

214 _ ’12 2\=lge _ .
[a+ieryae, = [+ |ef+e) e, e

Thus,
1

2
o [l a gny < 00

2 1 2\ |~ 2 1 2
ol s ey < g [ (L IE) [ €) dE = Nl gy =

Therefore, g € H'/?(R™~1). By the usual density argument, this is true for every
u € H' (R™) and shows that Im 7o C H'/2 (R"~1).
To prove the opposite inclusion, take any g € H'/2(R*~1) and define

1 ! s/ !
/ 67(1+|E |)mn/g\(€/) eix -€ dé/, z, > 0.
Rn—1

U(X,fvn):W

—+o0
# @+ )t = [2 arctan <§)] = g (a>0).



7.9 Traces 417

Then, clearly u (x’,0) = g (x') and it can be proved that u € H' (R"). Therefore,
g € Im T so that H'/? (R”fl) ClmTo. O

If £2 is a bounded, Lipschitz domain, it is possible to define H'/? (I") by local-
ization and reduction to the half space, as we did for L? (I'). In this way we can
endow H'/? (I') with an inner product that makes it a Hilbert space, continuously
embedded in L? (I"). It turn out that H/2 (I") coincides with Im 7¢:

HY2(I) = {ur :ue H(2)}. (7.47)

Actually, changing slightly our point of view, we could take (7.47) as a definition
of HY/?(I') and endow H'/?(I') with the equivalent norm

I9llsrs/2(ry = inf { sy 5w € HY(2), wpr = g} (7.48)

This norm is equal to the smallest among the norms of all elements in H!({2)
sharing the same trace g on I'" and takes into account that the trace operator 7
is not injective, since we know that Ker 7o = Hj (£2). In particular, the following
trace inequality holds:

Hu|F HHI/2([‘) < HuH1,2? (749)
which means that the trace operator T is continuous from H'(£2) onto H'/?(I').

In similar way, if I is a relatively open subset of I', by localization and reduc-
tion to the half space, we may define the space H'/?(Iy) and make it a Hilbert
space, continuously embedded in L? (I'y). H'/? (I'y) coincides with Im T, that is

HY? (o) = {wr, rue H(2)},
and can be endowed with the norm
9l z1272ryy = it { s+ w € HNR), wiry =g}
In particular, the following trace inequality holds:
iz | gy < Null g o) - (7.50)

which means that the trace operator T, is continuous from H'(£2) in H'/? (Iy) .

Finally, if £2is R} or a bounded C™— domain, m > 2, the space of the traces of
functions in H™(2) is the fractional order Sobolev space H™~1/2 (I'), still showing
a loss of “half derivative”. Coherently, the trace of a normal derivative undergoes
a loss of one more derivative and belongs to H™3/2 (I'); the derivatives of order
m — 1 have traces in H'/? (I"). Thus we obtain:

T H™(0) > (H"H/2 (), H™3/2 (), ..., H/? (r)) .

The kernel of 7 is H{" (12).
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7.10 Compactness and Embeddings

7.10.1 Rellich’s theorem

Since
ully < llull; 5,

H' () is continuously embedded in L? (£2) i.e., if a sequence {uy} converges to u
in H! (£2) it converges to u in L2 (£2) as well.

If we assume that (2 is a bounded, Lipschitz domain, then the embedding
of H (£2) in L? (£2) is also compact. Thus, a bounded sequence {uy} C H! (£2)
has the following important property:

There exists a subsequence {uy,} and u € H' ({2), such that

a. up, —uin L? (),
b. up, — uin H' (12) (i.e. ug, converges weakly** to u in H' (12)).
Actually, only property a follows from the compactness of the embedding.

Property b expresses a general fact in every Hilbert space H: every bounded
subset E C H is sequentially weakly compact (Theorem 6.11).

Theorem 7.15. Let {2 be a bounded, Lipschitz domain. Then H' (§2) is com-
pactly embedded in L* (£2).

Proof. We use the compactness criterion expressed in Theorem 6.9. First, ob-
serve that, for every v € D (R"™) we may write

1y 1
v(x+h)v(x)—/0 Ev(erth)dt—/O Vv (x+th) - h dt

whence

2

1 1
et~ 0G0l = | [ Voberm) har) < [ Vo Gern) dr
0 0

Integrating on R™ we find

1
[ oG =0 P dx < b [ dx [ 90 Germ) e < B Vol
so that

[ ) = 0G0 dx < bl Vol (7.51)

Since D (R™) is dense in H' (R™), we infer that (7.51) holds for every u € H! (R")
as well.

24 Section 6.7.
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Let now S C H' (£2) be bounded, i.e. there exists a number M such that:

By Theorem 7.9, every u € S has an extension o € H! (R™), with support cotained
in an open set 2 DD 2. Thus, u € H{ (£2') and moreover,

IVl 2oy < VUl p2(q) < eM.
Denote by S the set of such extensions. Then (7.51) holds for every & € S :

et~ 60 dx < b [V ey < 02 B

Theorem 6.9 implies that S is precompact in L2 (£2), which implies that S is
precompact in L2 (£2). O

7.10.2 Poincaré’s inequalities

Under suitable hypotheses, the norm |[jul|, , is equivalent to ||Vul|,. This means
that there exists a constant Cp, depending only on n and {2, such that

[ullp < Cr [[Vullg - (7.52)

Inequalities like (7.52) are called Poincaré’s inequalities and play a big role
in the variational treatment of boundary value problems, as we shall realize in
the next chapter. We have already proved (Theorem 7.5) that (7.52) holds if u €
H} (£2), i.e. for functions vanishing on 92.

On the other hand, (7.52) cannot hold if u = constant # 0. Roughly speaking,
the hypotheses that guarantee the validity of (7.52) require that v vanishes in some
“non trivial set”. For instance, under each one of the following conditions, (7.52)
holds:

i) w € H p, (£2) (u vanishes on a non empty relatively open subset Iy C 042);
ii) u € H'(£2) and v =0 on a set E C {2 with positive measure: |E| =a > 0;

iii) u € H'(2) and [, u =0 (u has mean value zero in {2).

Theorem 7.16. Let {2 be a bounded Lipschitz domain. Assume that u satisfies
one among the hypotheses 1), ii), iii) above. Then, there exists Cp such that

[ully < Cr [[Vully - (7.53)

Proof. Assume 7) holds. By contradiction suppose (7.53) is not true. This means
that for every integer j > 1, there exists u; € Hy r,, (£2) such that

lujllo > 3 1Vuslly - (7.54)
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Normalize u; in L? (£2) by setting
Uy

wj = ——.
T gl
Then, from (7.54),

1
g =1 and [Vl <5 <1

Thus {w;} is bounded in H' (£2) and by Rellich’s Theorem there exists a subse-
quence {wj, } and w € Hj r, (£2) such that

o w; —win L?(12),
o Vuw,, — Vw in L*(02).

The continuity of the norm gives
=1l il, = 1.
el = lm flw;ll
On the other hand, the weak semicontinuity of the norm (Theorem 6.10) yields,
< liminf il, =
[Vwly < liminf Vg, = 0
so that Vw = 0. Since {2 is connected, w is constant and since w € Hy , (12), we

infer w = 0, in contradiction to |lw||, = 1.
The proof in the other cases is identical. [

Remark 7.8. If u € H (2), let

1

Then w = u — ug has zero mean value and (7.53) holds for w. Thus, in general,
the Poincaré inequality takes the form:

[u—ugaly < Cp[|Vull-

7.10.3 Sobolev inequality in R"

From Proposition 7.9 we know that the elements of H' (R) are continuous and
(Problem 7.19) vanish as * — fo00. Moreover, if u € D (R), we may write

x d T

u? (z) = / d—u2 (s)ds = 2/ u(s)u' (s)ds.

oo ds o
Using Schwarz’s inequality and 2ab < 2a? + 2b%, we get
2

u($)2 <2 HUHL2(R) HU/HL2(R) < HuHiz(R) + HU/HL2(R) = H’UJHEI(R)'

Since D (R) is dense in H' (R), this inequality holds if u € H! (R) as well. We
have proved:



7.10 Compactness and Embeddings 421

Proposition 7.14. Let u € H! (R). Then u € L* (R) and
HUHLDO(R) < HUHHI(R)-
On the other hand, Example 7.26 implies that, when 2 C R", n > 2,
ue HY(N)»uec L™ (N0).

However, it is possible to prove that u is actually p—summable with a suitable
p > 2. Moreover, the LP —norm of u can be estimated by the H'—norm of u.
To realize which exponent p is the correct one, assume that the inequality

HUHLP(R") < CHVUHL2(R") (7.56)

is valid for every u € D (R™), where ¢ may depend on p and n but not on wu.
We now use a typical “dimensional analysis” argument.

Inequality (7.56) must be invariant under dilations in the following sense. Let
u € D (R™) and for A > 0 set

uy (x) = u (Ax).

Then uy € D (R™) so that inequality (7.56) must be true for uy, with ¢ indepen-
dent of X:
Hu)\HLP(R") < CHvu)\HL2(Rn)' (757)

1
| wix= [ uowpac—sz [ urdy

1
/|Vu)\|2dx:/ |Vu()\x)|2dx:ﬁ/ IVu (y)|? dy.
R R A R

Therefore, (7.57) becomes

1 ) 1/p 1 , 1/2
U dy) <c(n,p) ——== </ Vu dy)
AP </n [ul ( )A(n72)/2 an [Vl

1_nin
[ull Logny < €A =t IVl g2 @ny -

Now,

while

or

The only way to get a constant independent of A is to choose p such that

n n
1-=—+-—=0.
2+p

Hence, if n > 2, the correct p is given by

2n
n—2

*

p:

which is called the Sobolev ezponent for H' (R™). The following theorem of Sobolev,
Gagliardo, Nirenberg holds:
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Theorem 7.17. Let u € H* (R"),n > 3. Thenu € LP" (R") with p* = -2, and
the following inequality holds.

llull Lo ®) = CHVUHL2(R") (7.58)
where ¢ = ¢ (n).
In the case n = 2 the correct statement is:

Proposition 7.15. Let u € H' (R?). Then u € L? (R) for 2 < p < o, and
HUHLp(R2) < c(p) HuHHl(Rz) .

7.10.4 Bounded domains

We now consider bounded domains. In dimension n = 1, the elements of H' (a, b)
are continuous in [a, b] and therefore bounded as well. Furthermore, the following
inequality holds:

[0l Loe (a,5) < C N0l 1110, (7.59)
with

= \/imax{(b —a) V(b a)1/2} .
Indeed, by Schwarz’s inequality we have, for any z,y € [a, b], y > x:
y

u (y) :u(x)Jr/ u' (s) ds

x

<u(z)+ \/HHU/HL2(a,b)
whence, using the elementary inequality (A + B)® < 242 + 2B2,
u(®)” <20 (@)’ +2(0 - a) [u]|7aq -
Integrating over (a,b) with respect to x we get
(b= a)u®)” <2 [ulljap +2(b = 0) 720

from which (7.59) follows easily.

In dimension n > 2, the improvement in summability is indicated in the fol-
lowing theorem.

Theorem 7.18. Let {2 be a bounded, Lipschitz domain. Then:

1.Ifn > 2, HY(2) < LP () for 2 < p < 2% Moreover, if 2 < p < -2 the
embedding of H*(2) in LP (§2) is compact.

2.Ifn=2, H(2) — L? (22) for 2 < p < oo, with compact embedding.
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In the above cases
lall o < €, 2) Jll e -

For instance, in the important case n = 3, we have

2n

Hence
HY () — L° ()
and
lull o2y < e(92) lull g (g -

When the embedding of H!(£2) in LP ({2) is compact, the Poincaré inequality in
Theorem 7.16 may be replaced by (see Problem 7.20)

lull Loy < c(n,p, 2) [IVull 1> (g - (7.60)

Theorem 7.18 shows what we can conclude about a H!—function with regards to
further regularity. It is natural to expect something more for H™ —functions, with
m > 1. In fact:

Theorem 7.19. Let {2 be a bounded, Lipschitz domain, and m > n/2. Then
H™) > C* (@), for 0<k<m-
with compact embedding. In particular,
ol ) < B, 2) [l ey -
Theorem 7.19 implies that, in dimension n = 2,
H*(2)cC’(12).
In fact, if m =2, n = 2 then m —n/2 =1, so that k = 0. Similarly
H¥2) c CL (R),

sincem —n/2=3-1=2.

Also in dimension n = 3, we have
H*(2)cC’(2) and H*(2)cCC'(N2),
as it is easy to check.

Remark 7.9. If u € H™(£2) for any m > 1, then u € C* (£2) . This kind of results
is very useful in the regularity theory for boundary value problems.
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7.11 Spaces Involving Time

7.11.1 Functions with values in Hilbert spaces

The natural functional setting for evolution problems requires spaces which involve
time. Given a function u = u(x,t), it is often convenient to separate the roles of
space and time adopting the following point of view. Assume that ¢ € [0,7] and
that for every ¢, or at least for a.e. ¢, the function u (-, t) belongs to a Hilbert space
V (e.g. L? (2) or H' (02)).

Then, we may consider u as a function of the real variable ¢t with values in V:

w: [0, 7] = V.

When we adopt this convention, we write u () and u (t) instead of u(x,t) and
Ut (X,t).

We can extend to these types of functions the notions of measurability and
integral, without too much effort, following more or less the procedure outlined in
Appendix B. First, we introduce the set of functions s: [0,7] — V which assume
only a finite number of values. These functions are called simple and are of the
form

s(t) = xg, ()u; (0<t<T) (7.61)

where, uy,...,uy € V and Ei, ..., Ey are Lebesgue measurable, mutually disjoint
subsets of [0, 7.

We say that f:[0,T] — V is measurable if there exists a sequence of simple
functions sg: [0, 7] — V such that, as k — oo,

sk (t) — f ()]}, — O, a.e. in[0,7].

It is not difficult to prove that, if f is measurable and v € V', the (real) function
t— (f(t),v), is Lebesgue measurable in [0, T7.
The notion of integral is defined first for simple functions. If s is given by (7.61),

we define
N

T
/0 s(t)dt =Y |Ej|u;.

j=1
Then:

Definition 7.16. We say that f:[0,T] — V is summable in [0, T if there exists a
sequence si: [0,T] — V of simple functions such that

T
/ lsk (t) = f ()]l dt =0 as k — +oo. (7.62)
0
If f is summable in [0, T], we define the integral of f as follows:

T T
/ f@®)dt= lim s (t)dt as k — +oo. (7.63)
0 k—+oo Jo
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Since (check it)

T T
[ n@-scwnar] < [ s sl a
0 0

14
T T
S/O l[sk (&) = F (D)l dt+/0 sk (8) = f @)y dt

it follows from (7.62) that the real sequence

{ /OT o (1) dt}

is a Cauchy sequence so that the limit (7.63) is well defined and does not depend on
the choice of the approximating sequence {sx}. Moreover, the following important
theorem holds:

Theorem 7.20. (Bochner). A measurable function f:[0,7] — V is summable in
[0, T if and only if the real function t — || f (t)||;, is summable in [0, T]. Moreover

| /OTf@dt

T T
<u, / 120 dt) = / (u, f(£))y dt, VueV. (7.65)
0 v 0

T
VSAIf@Wﬁ (7.64)

and

The inequality (7.64) is well known in the case of real or complex functions.
By Riesz’s Representation Theorem, (7.65) shows that the action of any element
of V* commutes with the integrals.

7.11.2 Sobolev spaces involving time

Once the definition of integral has been given, we can introduce the spaces
C([0,T);V) and LP (0,T;V), 1 < p < co. The symbol C ([0,T]; V) denotes the set
of continuous functions wu: [0, 7] — V. Endowed with the norm

el o2y = s [ ]y

C ([0,T];V) is a Banach space.

We define LP (0,T;V) as the set of measurable functions u:[0,7] — V such
that:
if1<p<oo

T 1/p
MAMMINy—<A|u@M@ﬂ> < oo (7.66)
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while if p = 00

ull oo 0,7,y = €ss sup_|lu(t)]ly, < oo.
0<t<T

Endowed with the above norms, L? (0,T; V) becomes a Banach space for 1 <p <
oo. If p =2, the norm (7.66) is induced by the inner product

T
«u%mmwzﬂ<ﬂﬂw@wﬁ

that makes L2 (0,7;V) a Hilbert space.
To define Sobolev spaces, we need to give the notion of derivative in the sense
of distributions for functions u€Li  (0,7T;V).

loc

We say that weLj (0,T;V) is the derivative in the sense of distribution (or

loc
the weak derivative) of u if

for every ¢ € D(0,T) or, equivalently, if

T T
/ @ (t) (u(t),v), dt = —/ @(t) (u(t),v),d YveV. (7.67)
0 0

Then, we can introduce the following spaces:

a) We denote by WP (0, T; V) the Sobolev space of the functions u€LP (0,T; V')
whose weak derivative
weLP(0,T;V).
With the norm

1/p

T T
|Mwmumq—<é|ﬂm€ﬁ+lld@wﬁ> if1<p <o

and
[l o,y = sup [lu@)lly + sup [[a(t)]ly, ifp=oc
0<t<T 0<t<T

these spaces are all Banach spaces.
b) If p = 2, we may write H! (0,T;V) instead of W12 (0,T;V). This is a
Hilbert space with inner product

T
wwmwm:A{W®w®n+@®m@NMt

Since functions in H! (a,b) are continuous in [a, b], it makes sense to consider
the value of u at any point of [a, b]. In a certain way, the functions in W17 (0, T; V)
depends only on the real variable ¢, so that the following theorem is not surprising.
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Theorem 7.21. Let ucH' (0,T;V). Then, u € C ([0,T]; V) and

OrgtanT llu ()|, < C(T) HUHHI(O,T;V) :

Moreover, the fundamental theorem of calculus holds:
t
u(t):u(s)Jr/zl(r)dr 0<s<t<T.
The typical functional setting for the applications to initial-boundary value
problems is a Hilbert triplet (V, H,V*),
Ve H<—V",

with V separable. It is necessary to deal with functions u € L?(0,T;V) whose
derivative @ belongs to L? (0,7;V*). This means that in the left hand side of
(7.67), the inner product (4 (t),v), has to be replaced by the duality (u (t),v)
The following result is fundamental®®.

Theorem 7.22. Let ucL? (0,T;V), with u€L? (0,T;V*). Then :
a) u € C([0,T]; H) and

masx [u®llg < € {lullaozw) + el o) } - (7.68)

b) If also ve L? (0, T; V) and v€L? (0,T; V*), the following integration by parts
formula holds:

/{<1l(7"),v(?")>*+<U(7")M>(?")>*}d?":(U(t),v(t))H*(U(S),U(S))H (7.69)

for all s,t € [0,T].
Remark 7.10. From (7.69) we infer,

% (w(®),v(t)y = (@(t),v ), + (u®),o (),

a.e. t € [0,7] and (letting u = v)

el

[ S = e O~ o) (7.70)

S

We conclude this chapter with a useful result (see Problem 7.25): the weak
convergence in L? (0, T; V) “preserves boundedness in L> (0,T;V)”.

Proposition 7.16. Let {ux} C L? (0,T;V), weakly convergent to u. Assume that

sup |Juk (¢)[ly, < C
t€[0,T]

with C independent of k. Then, also,

sup |[u (t)|ly, < C.
t€[0,T]

%5 For the proof, see Dautray-Lions, volume 5, chapter XVIII, 1985.
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Problems

7.1. Approzimations of 6.

(a) Let B, = B, (0) C R™. Show that, if xp_is the characteristic function of
B”’?

1
lim — = in D' (R™).
im |BT|XBT 0 in D' (R™)

r—0

(b) Let 1, be the mollifier in (7.3). Show that lim._,o7n, =4, in D' (R™).

(¢) Let I'p (x,t) be the fundamental solution of the heat equation u; = DAu.
Show that
I'p(-,t) =4, inD (R")

ast— 0.

7.2. Let {zx} C R, z — +oo. Show that > -, ckd (z — zx) converges in
D'(R) for all {cx} C R.

7.3. Show that the series

o0

E cpsinkx

k=1

converges in D’(R) if the numerical sequence {ck} is slowly increasing, i.e. if there
exists p € R such that ¢, = O (kP) as k — oo.

7.4. Show that if FF € D'(R™), v € D(R™) and v vanishes in an open set
containing the support of F, then (F,v) = 0. Is it true that (F,v) = 0 if v vanishes
only on the support of F'?

7.5. Let u (z) = |z| and S (z) = sign(z). Prove that +' = S in D' (R).
7.6. Prove that 26 = 0 in D' (R), if 0 < k < m.
7.7. Let u (z) = In|z|. Then, v’ = p.v.1,in D' (R).
[Hint. Write
W) =~} == [l @)do = ~lim [ fal ¢/ (z)da
R =0 J{jal>e}

and integrate by parts].
7.8. Let n =3 and F € D’ (£2;R?). Define curl F € D’ (£2;R?) by the formula

curl F = (aszg — 8I3F2, 8ISF1 — amng, 8IIF2 — 8I2F1) .
Check that, for all ¢ = (1, ¢s, p3) € D (2;R3),

(curl F, ) = (F,curl ¢).
7.9. Show that if

1
u (21, 72) = “or In(z + x3)
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then
—Au =94, in D’ (RQ) .

7.10. Show that if ur, — w in LP(R™) then uy — w in S'(R™).

7.11. Solve the equation 2§ = 0 in D’ (R).

7.12. Let u € C* (R) with compact support in [0, 1]. Compute comb * wu.
[Answer. 0% u(z — k).

7.13. Let H = H (x) be the Heaviside function. Prove that

2 1 1 1

a) F [signz] = n p.v.g, b) FH] =nd+ n p.v.g.
[Hint. a) Let u (z) =sign(z) . Note that v’ = 26. Transform this equation to obtain
€a(e) = 2.

Solve this equation using formula (7.18), and recall that % is odd while § is even.
b) Write # (z) = £ + 3signz and use a)].
7.14. Compute the Fourier transform of comb.

7.15. Let 2 = B; (0) C R, n > 2, and u (x) = |x|™“, x # 0. Determine for
which values of a, u € H? (£2).

7.16. Choose in Theorem 7.4,
H=L*(2;R™), Z=1L*2)cD ()
and L : H — D' (£2) given by L = div. Identify the resulting space W.

7.17. Let X and Z be Banach spaces with Z — D’ (£;R") (e.g. LP(f2) or
LP(£2;R™)).
Let L : X — D' (2;R") be a linear continuous operator (e.g. a gradient or a

divergence). Define
W={veX:LveZ}

with norm
2 2 2
ully = llullx + [[LulZ -
Prove that W is a Banach space, continuously embedded in X.

[Hint: Follow the proof of Theorem 7.4].
7.18. The Sobolev spaces W1P. Let 2 C R™ be a domain. For p > 1. Define

WhP(Q) = {v € LP(R2) : Vv € LP(£;R™)}.
Using the result of Problem 7.17, show that W1P(£2) is a Banach space.

7.19. Let u € H® (R). Prove that, if s > 1/2, u € C(R) and u(z) — 0 as
x — too0.

[Hint: Show that u € L* (R)].
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7.20. Let u and {2 satisfy the hypotheses of Theorem 7.16. Prove that, if the
embedding H'(£2) < LP (£2) is compact, then

HUHLP(Q) <c(n,p, 2) HVUHL2(Q) :
7.21. Let 2 be a bounded domain (not necessarily Lipschitz). Show that
H} () is compactly embedded in L? (£2).
[Hint: Extend u by zero outside {2].

7.22. Let
Hj . (a,b) = {ue H" (a,b) :u(a) =0}.
Show that Poincaré’s inequality holds in Hg , (a, b).
7.23. Let n > 1 and

R={(x,2,):x eR" ", 0<z, <d}.

Show that in H} (£2) a Poincaré inequality holds.

7.24. Let {2 be a bounded, Lipschitz domain and let I" = 9{2.
a) Show that

(U,U)laz/U|FU|F dUJr/ Vu - Vv dx
’ r Q

is an inner product in H! (£2).
b) Show that the norm

1/2
lull 5 = </ u?; da+/ Vul? dx> (7.71)
o9 (9}

is equivalent to [[ul], ,.
[Hint: b) Let ujp = g. By the Projection Theorem 6.2, it is possible to write in a
unique way
u=1uo+ 9,

with ug € H§ (2), g € H'(£2) and (u,§); , = 0. Using (7.48), show that
19l s/ = 11 o) |

7.25. Prove Proposition 7.16.

[Hint. Recall that a sequence of real functions {gj } convergent to g in L' (0,T),
has a subsequence converging a.e. to the same limit (Theorem B.4).

Apply this result to the sequence gi (t) = (ux(t),v),, and observe that
g @A) < C o]y ]-
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Variational Formulation of Elliptic Problems

Elliptic Equations — The Poisson Problem — Diffusion, Drift and Reaction (n = 1) —
Variational Formulation of Poisson’s Problem — General Equations in Divergence Form —
Regularity — Equilibrium of a plate — A Monotone Iteration Scheme for Semilinear Equa-
tions — A Control Problem

8.1 Elliptic Equations

Poisson’s equation Au = f is the simplest among the elliptic equations, according
to the classification in Section 5.5, at least in dimension two. This type of equations
plays an important role in the modelling of a large variety of phenomena, often
of stationary nature. Typically, in drift, diffusion and reaction models, like those
considered in Chapter 2, a stationary condition corresponds to a steady state, with
no more dependence on time.

Elliptic equations appear in the theory of electrostatic and electromagnetic
potentials or in the search of vibration modes of elastic structures as well (e.g.
through the method of separation of variables for the wave equation).

Let us define precisely what we mean by elliptic equation in dimension n.

Let 2 C R™ be a domain, A (x) = (a;; (x)) a square matrix of order n, b(x) =
(b1 (X) ,.vey by (X)), €(x) = (c1 (%), ..., cn (X)) vector fields in R™, ag = ag(x) and
f = f(x) real functions. An equation of the form

n n

=3 O, (@i () uay) + Y O, (bi(x)u) + Y €i(X)ua, +a0 (X)u = f(x) (8.1)

1,j=1 =1 =1

or
n

= i (%) g, + Z bi (X) ug, +ao (x)u = f(x) (8.2)

ij=1

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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is said to be elliptic in 2 if A is positive in (2, i.e. if the following ellipticity
condition holds:

n

3 ay (X)€€, >0, Vx e, VEER™ E40.

1,j=1

We say that (8.1) is in divergence form since it mat be written as

—div(A (x) Vu) + div(b(x)u) + ¢ (x) - Vu +ag (x) u = f(x) (8.3)
——— ~——
dif fusion transport reaction external source

which emphasizes the particular structure of the higher order terms. Usually, the
first term models the diffusion in heterogeneous or anisotropic media, when the
constitutive law for the flux function q is given by the Fourier or Fick law:

q=—AVu.

Here u may represent a temperature or the concentration of a substance. Thus, the
term —div(AVu) is associated with thermal or molecular diffusion. The matrix A
is called diffusion matriz; the dependence of A on x denotes anisotropic diffusion.
The examples in Chapter 2 explain the meaning of the other terms in equation
(8.3). In particular, div(bu) models convection or transport and corresponds to a
flux function given by
q = bu.

The vector b has the dimensions of a velocity. Think, for instance, of the fumes
emitted by a factory installations, which diffuse and are transported by the wind.
In this case b is the wind velocity. Note that, if divb = 0, then div(bu) reduces to
b - Vu which is of the same form of the third term ¢ - Vu.

The term agu models reaction. If u is the concentration of a substance, ag
represents the rate of decomposition (ag > 0) or growth (ag < 0).

Finally, f represents an external action, distributed in {2, e.g. the rate of heat
per unit mass supplied by an external source.

If the entries a;; of the matrix A and the component b; of b are all differen-
tiable, we may compute the divergence of both AVwu and bu, and reduce (8.1) to
the non-divergence form

n

- Z Qij (X) Ug;z; + Z I;k (X) Ug), + 5(X) u=f (X)
k=1

ij=1

where
by, (x) = Z D, it (X) + b (X) + ¢ (x)  and  &(x) = divb (x) + ag (x) .

However, when the a;; or the b; are not differentiable, we must keep the divergence
form and interpret the differential equation (8.3) in a suitable weak sense.
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A non-divergence form equation is also associated with diffusion phenomena
through stochastic processes which generalize the Brownian motion, called diffu-
sion processes. In simple cases, we may proceed as in Section 2.6. For example,
considering a random walk in hZ?, separately symmetric along each axis, and pass-
ing to the limit in a suitable way as h and the time step 7 go to zero, we obtain
an equation of the form

ug = D1 (2, y) Uza + D2 (2,Y) uyy

with diffusion matrix

A(z,y) = (Dl (ox’y) Ds (gc,y)>

where Dy (z,y) > 0, Dy (z,y) > 0. Thus, the steady state case is a solution of a
non-divergence form equation.

In the next section we give a brief account of the various notions of solution
available for these kinds of equations, using the Poisson equation as a model.

We develop the basic theory of elliptic equations in divergence form, recasting
the most common boundary value problems within the functional framework of
the abstract variational problems of Section 6.6.

8.2 The Poisson Problem

Assume we are given a domain {2 C R™, a constant a > 0 and two real functions
ao, f: 2 — R. We want to determine a function u satisfying the equation

—aAu+ agu = f in 2

and one of the usual boundary conditions on 9f2.

Let us examine what we mean by solving the above Poisson problem. The
obvious part is the final goal: we have to show existence, uniqueness and stability
of the solution; then, based on these results, we want to compute the solution by
Numerical Analysis methods.

Less obvious is the meaning of solution. In fact, in principle, every problem
may be formulated in several ways and a different notion of solution is associated
with each way. What is important in the applications is to select the “most efficient
notion” for the problem under examination, where “efficiency” may stand for the
best compromise between simplicity of both formulation and theoretical treatment,
sufficient flexibility and generality, adaptability to numerical methods.

Here is a (non exhaustive!) list of various notions of solution for the Poisson
problem.

e Classical solutions are twice continuously differentiable functions; the dif-
ferential equation and the boundary conditions are satisfied in the usual pointwise
sense.
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e Strong solutions belong to the Sobolev space H? (§2). Thus, they possess
derivatives in L?(£2) up to the second order, in the sense of distributions.

The differential equation is satisfied in the pointwise sense, a.e. with respect to
the Lebesgue measure in {2, while the boundary condition is satisfied in the sense
of traces.

e Distributional solutions belong to L} (£2) and the equation holds in the
sense of distributions, i.e.:

/ {—audp + ag(x)up}dx = / fodx, Yo eD(2).
[0} [0}

The boundary condition is satisfied in a very weak sense.

e Weak or variational solutions belong to the Sobolev space H'! (£2). The
boundary value problem is recast within the framework of the abstract variational
theory developed in Section 6.6. Often the new formulation represents a version of
the principle of virtual work.

Clearly, all these notions of solution must be connected by a coherence principle,
which may be stated as follows: if all the data (domain, boundary data, forcing
terms) and the solution are C*°, all the above notions must be equivalent. Thus,
the non-classical notions constitute a generalization of the classical one.

An important task, with consequences in the error control in numerical meth-
ods, is to establish the optimal degree of regularity of a non-classical solution.

More precisely, let u be a non-classical solution of the Poisson problem. The
question is: how much does the regularity of the data ag, f and of the domain {2
affect the regularity of the solution?

An exhaustive answer requires rather complicated tools. In the sequel we shall
indicate only the most relevant results.

The theory for classical and strong solutions is well established and can be
found, e.g. in the book of Gilbarg-Trudinger, 1998. From the numerical point of
view, the method of finite differences best fits the differential structure of the
problem and aims at approximating classical solutions.

The distributional theory is well developed, is quite general, but is not the most
appropriate framework for solving boundary value problems.

Indeed, the sense in which the boundary values are attained is one of the most
delicate points, when one is willing to widen the notion of solution.

For our purposes, the most convenient notion of solution is the last one: it leads
to a quite flexible formulation with a sufficiently high degree of generality and a
basic theory solely relying on the Lax-Milgram Theorem (Section 6.6). Moreover,
the analogy (and often the coincidence) with the principle of virtual work indicates
a direct connection with the physical interpretation.

Finally, the variational formulation is the most natural to implement the
Galerkin method (finite elements, spectral elements, etc...), widely used in the
numerical approximation of the solutions of boundary value problems.
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To present the main ideas behind the variational formulation, we start from
one-dimensional problems with an equation slightly more general than Poisson’s
equation.

8.3 Diffusion, Drift and Reaction (n = 1)

8.3.1 The problem

We shall derive the variational formulation of the following problem:

—(p(x)u) + q(x)u + r(x)u = f(x), in the interval (a,b)
—_———— N—— ——
dif fusion transport  reaction (84)

boundary conditions at x =a and x = b.

We may interpret (8.4) as a stationary problem of diffusion, drift and reaction.
The main steps for the weak formulation are the following:

a. Select a space of smooth test functions, adapted to the boundary conditions.
b. Multiply the differential equation by a test function and integrate over (a,b) .

c. Carry one of the derivatives in the divergence term onto the test function via
an integration by parts, using the boundary conditions and obtaining an integral
equation.

d. Interpret the integral equation as an abstract variational problem (Section 6.6)
in a suitable Hilbert space. In general, this is a Sobolev space, given by the closure
of the space of test functions.

8.3.2 Dirichlet conditions

We start by analyzing homogeneous Dirichlet conditions:

u(a) =wu(b)=0. (8:5)

{ —(p(@)u) +q(z)v' +r(z)u=f(z), in(a,b)

Assume first that p € C* ([a, b]), with p > 0, and ¢, 7, f € C ([a, b]).

Let u € C? (a,b) N C ([a, b]) be a classical solution of (8.5). We select C§ (a, b)

as the space of test functions. These test functions have a continuous derivative
and compact support in (a, b). In particular, they vanish at the end points.

Now we multiply the equation by an arbitrary v € C} (a,b) and integrate over
(a,b). We find:

b b b
—/ (pu/)/vdach/ [qu/Jrru]vdac:/ fudx. (8.6)

a



436 8 Variational Formulation of Elliptic Problems

Integrating by parts the first term and using v (a) = v (b) = 0, we get:
b

b b
—/ (pu/)/vdac:/ pu'v'dz — [pu/v]i)l :/ pu'v' dz.

a

From (8.6) we derive the integral equation

b b
/ [pu'v' + qu'v + ruv]dz = / fvdz, Vv e Cj(a,b). (8.7)

Thus, (8.5) implies (8.7).
On the other hand, assume that (8.7) is true. Integrating by parts in the reverse
order, we recover (8.6), which can be written in the form

b
/ {-=(pu') +q@)v +r(@)u— f(z)}vdr =0 Yv € C’& (a,b).
The arbitrariness of v entails!
—(p(x)u) +q(x)uv +r(@)u—f(x)=0 in (a,b)

i.e. the original differential equation.
Thus, for classical solutions, the two formulations (8.5) e (8.7) are
equivalent. Observe that equation (8.7)

involves only one derivative of u, instead of two,

makes perfect sense even if p, g, 7 and f are merely locally integrable,

has transformed (8.5) into an integral equation, valid on an infinite-dimensional
space of test functions.

These features lead to the following functional setting:

a) we enlarge the class of test functions to HJ(a,b), which is the closure of
C} (a,b) in H'—norm;

b) we look for a solution belonging to H{(a,b), in which the homogeneous
Dirichlet conditions are already included.

Thus, the weak or variational formulation of problem (8.5) is:
Determine u € H}(a,b) such that

b b
/ {pu'v' + qu'v + ruv} dx = / fudez, Vv € Hj(a,b). (8.8)
If we introduce the bilinear form
b
B (u,v) = / {pu'v' + qu'v + ruv} dz

1If g € C ([a,b]) and fab gudz = 0 for every v € C} (a,b), then g = 0 (exercise).



8.3 Diffusion, Drift and Reaction (n = 1) 437

b
Lv :/ fu dz,
equation (8.8) can be recast as
B (u,v) = Lv, Yov € Hj(a,b).

and the linear functional

Then existence, uniqueness and stability follow from the Lax-Milgram Theorem
6.5, under rather natural hypotheses on p, q,r, f. Recall that, by Poincaré’s in-
equality (7.32) we have

lully < Cp [lu'lly,

so that we may choose in H}(a,b) the norm
llully = llwllg
equivalent to HuH12 = [lully + llu|,
Proposition 8.1. Assume that p,q,q’,r € L*(a,b) and f € L*(a,b). If
1
p(x)>a>0 and — §q/ () +7r(x) >0 a.e in (a,b), (8.9)
then (8.8) has a unique solution u € H{(a,b). Moreover
Cp
Iollo < S 1l (8.10)

Proof. Let us check that the hypotheses of the Lax-Milgram Theorem hold,
with V = H{(a, b).
Continuity of the bilinear form B. We have:

b
B (u,v)| < / {Upll oo /0] + llgll poo 0] + 7]l oo [uv]} da.
a
Using the Schwarz and Poincaré inequalities, we obtain

B (u, )| < pll e 110 llg [10"1lg + gl oe 14 llg 01lg + Il oo lullo 01l
< (Ipll + Cpllgll L + CB lIrll o) 1/llg 1Vl

so that B is continuous in V.

Coercivity of B. We may write:

b
B (u,u) :/ {p(')* + qu'u +ru*}dz
2 1P / ’
> a|\u/|\0+§/ q (u?) d:ch/ ru’dz

b
1
(integrating by parts) = o Hu/Hg + / {5(]/ + 7"} u?dx
a
(from (8.9)) > a|u/|[}

and therefore B is V —coercive.
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Continuity of L in V. The Schwarz and Poincaré inequalities yield

/abfvdx

so that [|L[[\,. < Cp| fllo-
Then, the Lax-Milgram Theorem gives existence, uniqueness and the stability
estimate (8.10). O

| Lo| = < fllo lollo < Cr llfllo 10"l -

Remark 8.1. The hypotheses on the coeflicient q are rather restrictive; a better
result can be achieved using the Fredholm Alternative Theorem and a weak maxi-
mum principle, as we will show later on. This remark holds for the other types of
boundary value problems as well.

Remark 8.2. If ¢ = 0, the bilinear form B is symmetric. From Proposition 6.6, in
this case the weak solution minimizes in H} (a, b) the “energy functional”

b
J(u) = / {p (W) +ru? — 2fu} dx.
Then, equation (8.8) coincides with the Euler equation of J:
J' (u)v =0, Vv € Hj (a,b).

Remark 8.3. In the case of nonhomogeneous Dirichlet conditions, e.g. u (a) = A,
u(b) = B, set w = u — y, where y = y () is the straight line through the points

B—-A

y@)=A+ (z—a) —

Then, the variational problem for w is

b b
/ [pw'v" + qu'v + rwvldz = / (Fv+Gv')dx Yv € Hi(a,b) (8.11)

a

with
)= @)+ 2R @) () (A+<xa>f;4)
and
¢ =22y

Proposition 8.1 still holds with small adjustments (see Problem 8.1).

Remark 8.4. In subsection 6.6.3. we presented the Galerkin approximation method
in an abstract setting. In this case, we have to construct a sequence {V4} of sub-
spaces of Hj(a,b) such that:
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a) Every Vj, is finite-dimensional (for instance, but not necessarily, of dimension
k);

b) Vi C V41 (this is actually not strictly necessary);
C) UV = H&(a, b)
Given a basis 9, s, ..., ¥, for Vi, we write

k

U = Z cj1/)j

Jj=1

and determine cy, ca, ..., ¢, by solving the k linear algebraic equations

k
Zaijcj :me = 1,2,...,k,
i=1
where the elements a;; of the stiffness matrix are given by

b
iy = By, %) = [ v+ auip, o dde, =120k

Observe that, for the approximations, Céa’s Lemma 6.1 yields the estimate

+C o +C27] ;o
< WPl + Crllallpe + CR ML 06y gy,

o= el - Jnf.

This inequality shows the relative influence of diffusion, transport and reaction
on the approximation. In principle, the Galerkin approximation works as long as
llgllz + 7|l is not much greater than ag and ||p||;~ /o is not large. In the
opposite case, one needs suitably stabilized numerical methods (see Quarteroni-
Valli, 2000). Clearly, this remark extends to the other types of boundary conditions
as well.

8.3.3 Neumann, Robin and mixed conditions

We now derive the weak formulation of the Neumann problem

—(p(@)) + q (@) v +r(z)u=f(z), in(a,b)
—p(a)u' (a) = A, p(b)u (b) =B.

The boundary conditions prescribe the outward flux at the end points. This way of
writing the Neumann conditions, with the presence of the factor p in front of the
derivative, is naturally associated with the divergence structure of the diffusion
term.

Again, assume first that p € C!([a,b]), with p > 0, and q,r, f € C°([a,b]).
A classical solution u has a continuous derivative up to the end points so that
u € C%(a,b) N C* ([a, b)]).

(8.12)
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As space of test functions, we choose C* ([a,b]). Multiplying the equation by
an arbitrary v € C! ([a, b]) and integrating over (a,b), we find again

b b b
—/ (pu') vdx + / [qu' + rulvdz = / fudz. (8.13)
Integrating by parts the first term and using the Neumann conditions, we get
b

b b
—/ (pu”) vdx = / pu'v' dz — [pu/v]i)l = / pu'v'dr — v (b) B — v (a) A.

a

Then (8.13) becomes

b b
/ [pu'v’ + qu'v + ruvldz — v (b)) B—v(a) A = / fudz, (8.14)

for every v € C' ([a,b]).

Thus, (8.12) implies (8.14). If the choice of the test functions is correct, we
should be able to recover the classical formulation from (8.14).
Indeed, let us start recovering the differential equation. Since

Co (a,b) € C* ([a, b)),

(8.14) clearly holds for every v € C§ (a,b). Then, (8.14) reduces to (8.7) and we
deduce, as before,

—(pu) +qu' +ru—f=0, in (a,b). (8.15)

Let us now use the test functions which do not vanish at the end points. Integrating
by parts the first term in (8.14) we have:

b b
/ pu'v'dr = — / (pu)v dz +p(®d)v(d)u (b) —p(a)v(a)u (a).
Inserting this expression into (8.14) and taking into account (8.15) we find:
v (b) [p(b) ' (b) = B] — v (a) [p(a) v’ (a) + A] = 0.
The arbitrariness of the values v (b) and v (a) forces
p()u' () =B,  —p(a)u'(a) =4,

recovering the Neumann conditions as well.

Thus, for classical solutions, the two formulations (8.12) and (8.14) are
equivalent.

Enlarging the class of test functions to H!(a,b), which is the closure of
C' (la,b]) in H'—norm, we may state the weak or variational formulation of
problem (8.12) as follows:
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Determine u € H'(a,b) such that, Vv € H'(a,b),

b b
/ {pu'v' + qu'v + ruv} dx = / fv dz+ v (b) B+ v (b) A. (8.16)

We point out that the Neumann conditions are encoded in equation (8.16), rather
than forced by the choice of the test functions, as in the Dirichlet problem.
Introducing the bilinear form

B (u,v) = /b {puv' + qu'v + ruv} dz
and the linear functional
Lo —/bfv dx +v(b) B+v(a)A,
equation (8.16) can be recast in the abstract form

B (u,v) = Lv, Yov € H'(a,b).

Again, existence, uniqueness and stability of a weak solution follow from the Lax-
Milgram Theorem, under rather natural hypotheses on p,q, 7, f.
Recall that if v € H'(a,b), inequality (7.59) yields

v(z) < C* v, (8.17)
for every x € [a,b], with C* = v/2max { (b — a)~'2 (b — a)1/2} .
Proposition 8.2. Assume that:
i) p,q, 7 € L>(a,b) and f € L?*(a,b)
1) p(z) > ap >0, r(xz)>co >0 ae. in (a,b) and
. 1
Ky = min{ag,co} — 3 llg|l = > 0.
Then, (8.8) has a unique solution u € H*(a,b). Furthermore
lully 2 < Ko {lI£llo +C* (1Al +BI)} - (8.18)

Proof. Let us check that the hypotheses of the Lax-Milgram Theorem hold,
with V = H(a,b).
Continuity of the bilinear form B. We have:

b
B (u,v)| < / {lIpll oo [w'v'] + llgll oo 0] + 7]l oo [uv]} da.
a
Using Schwarz’s inequality, we easily get

B (u,0)] < ([Pllpee +llallzee + lI7llLee) lully o 0]l 2

so that B is continuous in V.
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Coercivity of B. We have

b
B (u,u) = / {p(v')* + qu'u +ru’}da.

The Schwarz inequality gives

b
/ qu'u dx
a

Then, by i),

1 2 2
< Nl I llg Nl < 5 Nallw {11013 + Nul}

1 2 1 2 2
B (u,u) > (a0 — 3 lall o) ll%[lg 4 (co — 3 lall o) lully = Ko [lull} 5

so that B is V —coercive.

Continuity of L in V. Schwarz’s inequality and (8.17) yield
[ Lo < |[fllo [[vllo + [v (b) B+ v (a) Al <
<A{lifllo + (Al + 1B} o]l 2
ve <Ifllo + €™ (1Al + [B)).

Then, the Lax-Milgram Theorem gives existence, uniqueness and the stability
estimate (8.18). O

whence || L]

Remark 8.5. Suppose, p =1, ¢ = r = 0. The problem reduces to

{ u' = f in (a,b)
—u' (a) = A, u'(b)=B.

Hypothesis i) is not satisfied (since r = 0). If u is a solution of the problem and
k € R, also u + k is a solution of the same problem. We cannot expect uniqueness.
Not even we may prescribe f, A, B arbitrarily, if we want that a solution exists.
In fact, integrating the equation u” = f over (a,b), we deduce that the Neumann
data and f must satisfy the compatibility condition

BJrA—/bf(:c)d:c. (8.19)

If (8.19) does not hold, the problem has no solution. Thus, to have existence and
uniqueness we must require that (8.19) holds and select a solution (e.g.) with
zero mean value in (a,b). We will return on this kind of solvability questions in
Chapter 9.

Robin conditions. Suppose that the boundary conditions in problem (8.12)
are:

—p(a)u' (a) = A, p(b)u' (b) + hu (b) = B (h > 0, constant)
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where, for simplicity, the Robin condition is imposed at z = b only. With small
adjustments, we may repeat the same computations made for the Neumann con-
ditions (see Problem 8.3 ). The weak formulation is:

Determine u € H' (a,b) such that, Vv € H* (a,b),

/b {pu'v' + qu'v + ruv} dz + hu (b) v (b) = /b fvdx + v (b) B+ v (a)A. (8.20)

Introducing the bilinear form

b
B (u,v) = / {pu'v' + qu'v + ruv} dx + hu (b) v (b)

we may write our problem in the abstract form
B(u,v) =Lv Yo € H' (a,b).
We have:

Proposition 8.3. Assume that i) and ii) of Proposition 8.2 hold and that h > 0.
Then (8.20) has a unique solution u € H'(a,b). Furthermore

lull 2 < Ko {IIfllo + C*(1A] + B}
Proof. Let V = H(a,b). Since
B (u,u) = B (u,u) + hu® (b) > Ko Julf7 ,
and

B (u,v)| < 1B (w,0)] + hu(b)v(b)

< (Ipllg + llall oo + Il oo +2(C)?) flully 2 0]l 2,

B is continuous and V —coercive. The conclusion follows easily. [J

Mixed conditions. The weak formulation of mixed problems does not present
particular difficulties. Suppose, for instance, we assign at the end points the con-
ditions

u(a) =0, p(b)u (b) = B.
Thus, we have a mixed Dirichlet-Neumann problem. The only relevant observation
is the choice of the functional setting. Since u (a) = 0, we have to choose V = Hg ,,
the space of functions v € H' (a, b), vanishing at x = a. The Poincaré inequality
holds in Hf, (see Problem 7.21), so that we may choose ||u/[, as the norm in
H(%’a. Moreover, the following inequality

v(x) < C* [V, (8.21)
holds? for every x € [a, b, with C** = (b — a)'/2.

? Since v (a) = 0, we have v (z) = [ v’ so that |v(z)| < Vb —a V'],
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The weak formulation is: Determine u € Hg , such that

b b
/ {pu'v' + qu'v + ruv} dx = / fvdx 4+ v (b) B, Yo € Hy,. (8.22)
We hayve:

Proposition 8.4. Assume that ¢) and ii) of Proposition 8.2 hold. Then, (8.22)
has a unique solution u € Hj ,. Furthermore

lu'lly < Ko {CP | fllo + C**|B} -

We leave the proof as an exercise.

8.4 Variational Formulation of Poisson’s Problem

Guided by the one-dimensional case, we now analyze the variational formulation
of Poisson’s problem in dimension n > 1, starting with a Dirichlet condition.

8.4.1 Dirichlet problem

Let £2 C R™ be a bounded domain. We examine the following problem:

{ —aAu+ag (x)u=f in 2 (3.23)

u=0 on 0f2

where o > 0, constant. To achieve a weak formulation, we first assume that ag
and f are smooth and that u € C? (£2) N C° (£2) is a classical solution of (8.23).
We select C} (£2) as the space of test functions, having continuous first derivatives
and compact support in (2. In particular, they vanish in a neighborhood of 0f2.
Let v € C§ (£2) and multiply the Poisson equation by v. We get

/ {—aAu+ apu— f }v dx=0. (8.24)
Q

Integrating by parts and using the boundary condition, we obtain
/ {aVu - Vv + aouv} dx = / fv dx, Vv e Ch (12). (8.25)
o o

Thus (8.23) implies (8.25).

On the other hand, assume (8.25) is true. Integrating by parts in the reverse
order we return to (8.24), which entails —aAu+ apu —f = 0 in £2.

Thus, for classical solutions, the two formulations (8.23) and (8.25) are
equivalent.
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Observe that (8.25) only involves first order derivatives of the solution and of
the test function. Then, enlarging the space of test functions to H{ (£2), closure of
Cg (£2) in the norm ||ul|; = ||Vul|,, we may state the weak formulation of problem
(8.5) as follows:

Determine u € H} (£2) such that
/Q {aVu - Vv + gouv} dx = /Q fo dx, Yo € Hy (12). (8.26)
Introducing the bilinear form
B (u,v) = /Q {aVu- Vv + aouv} dx

and the linear functional
Lv = / fu dx,
0
equation (8.26) corresponds to the abstract variational problem
B (u,v) = Lv, Yov € Hj ().

Then, the well-posedness of this problem follows from the the Lax-Milgram The-
orem under the hypothesis ag > 0. Precisely:

Theorem 8.1. Assume that f € L? (£2) and that 0 < ag (x) < 7y, a.e. in £2. Then,
problem (8.26) has a unique solution u € H} (£2). Moreover
Cp
[Vaully < o £l -

Proof. We check that the hypotheses of the Lax-Milgram Theorem hold, with
V = H}(92).
Continuity of the bilinear form B. The Schwarz and Poincaré inequalities yield:
B (u,0)| < al|Vully [[Vollg + 7o llully vl
< (a+CEyo) IVully Vol

so that B is continuous in H{ (£2).

Coercivity of B. It follows from
B (u,u) = / o |Vul? dx Jr/ apu’dx > a HVuHé
o 0

since ag > 0.

Continuity of L. The Schwarz and Poincaré inequalities give

|Lv|—’/ fv dx
2

Hence L € H~! (£2) and ILll z7-1(2) < CpIfllo- The conclusions follow from the
Lax-Milgram Theorem. [

< |fllollollg < Crllfllg Vol -
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Remark 8.6. Suppose that ¢ = 0 and that u represents the equilibrium position of
an elastic membrane. Then B (u, v) represents the work done by the elastic internal
forces, due to a wirtual displacement v. On the other hand Lv expresses the work
done by the external forces. The weak formulation (8.26) states that these two
works balance, which constitutes a version of the principle of virtual work.

Furthermore, due to the symmetry of B, the solution u of the problem mini-
mizes in H} (£2) the Dirichlet functional

E(u) = / alVul?dx  — / fu dx
L/_/ &/_/

internal elastic energy  external potential energy

which represents the total potential energy. Equation (8.26) constitutes the
Euler equation for F.

Thus, in agreement with the principle of virtual work, u minimizes the potential
energy among all the admissible configurations.

Similar observations can be made for the other types of boundary conditions.

e Non homogeneous Dirichlet conditions. Suppose that the Dirichlet condition
is u = g on 0. If £ is a Lipschitz domain and g € H'/2 (012), then g is the trace
on 912 of a (non unique) function § € H*(£2), called extension of g to §2. Then,
setting

w=u—g

we are reduced to homogeneous boundary conditions. In fact, w € H}(2) and is
a solution of the equation

/{anon dx + agwv} dx:/Fv dx, Yve€ Hj(02)
2 2

where F' = f — aV§ — agg € L*(£2). The Lax-Milgram Theorem yields existence,
uniqueness and the stability estimate

C
IVwlly < =H{lfllo + (@ + a0) 3], .} (8.27)

for any extension g of g. Since |lul; , < ||w|l; 5 + [|g]l; 5 and recalling that (sub-
section 7.9.3)

91172 02y = nf {lglls 2 : 5 € H'(2), Glo = g}

taking the lowest upper bound with respect to g, from (8.27) we deduce, in terms
of u:

el < C (@90:2, 2) {170 + gl raqo | -
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8.4.2 Neumann, Robin and mixed problems

Let 2 C R™ be a bounded, Lipschitz domain. We examine the following problem:

{aAquao(x)u—f in £2

Opu=g¢g on0f2 (8.28)

where a > 0 is constant and v denotes the outward normal unit vector to 9f2. As
usual, to derive a weak formulation, we first assume that ag, f and g are smooth
and that u € C?(£2) N C* (2) is a classical solution of (8.28). We choose C* (£2)
as the space of test functions, having continuous first derivatives up to 0f2. Let
vecCt (ﬁ), arbitrary, and multiply the Poisson equation by v. Integrating over
2, we get

/ {—aAu + apu} v dx :/ fv dx. (8.29)
2 2

An integration by parts gives

—/ adypu vdUJr/ {aVu - Vv +a0uv}dx:/ fodx, YveC! (ﬁ)
an [0 [0
(8.30)

Using the Neumann condition we may write

/ {aVu - Vv + apuv} dx = / fv dera/ gv do Yo e C* (2).  (8.31)
Q Q o0

Thus (8.28) implies (8.31).
On the other hand, suppose that (8.31) is true. Integrating by parts in the
reverse order, we find

/ {—aAu+apu— f }v der/ adyu vdo = a/ gv do, (8.32)
9] 9]

2 o8

for every Vv € C* (£2). Since C} (£2) C C* (£2) we may insert any v € C§ (£2) into
(8.32), to get

/ {—alAu+ apu—f }vdx=0.
2

The arbitrariness of v € C} (£2) entails —aAu+ agu —f = 0 in §2. Therefore (8.32)
becomes

Opu vdo = / gv do Vv € C* (ﬁ)
o0 o0

and the arbitrariness of v € C*! (ﬁ) forces d,u = g, recovering the Neumann
condition as well.

Thus, for classical solutions, the two formulations (8.28) and (8.31) are
equivalent.

Recall now that, by Theorem 7.10, C* (£2) is dense in H* (£2), which therefore
constitutes the natural Sobolev space for the Neumann problem. Then, enlarg-
ing the space of test functions to H! (£2), we may give the weak formulation of
problem (8.5) as follows:
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Determine u € H* (§2) such that

/ {aVu - Vv + apuv}dx = / fvdera/ gudo, Yoe H (2). (8.33)
7 Q Ye)

Again we point out that the Neumann condition is encoded in (8.33) and not
explicitly expressed as in the case of Dirichlet boundary conditions. Since we used
the density of C! (£2) in H!(£2) and the trace of v on 042, some regularity of
the domain (Lipschitz is enough) is needed, even in the variational formulation.
Introducing the bilinear form

B (u,v) = / {aVu - Vv + apuv} dx (8.34)
2
and the linear functional

Lv :/ fu dera/ gudo, (8.35)
Q Ye)

(8.33) may be formulated as the abstract variational problem
B (u,v) = Lv, Yov € Hj (02).

The following theorem states the well-posedness of this problem under reasonable
hypotheses on the data. Recall from Theorem 7.11 the trace inequality

1ol 200 < T (0, 2) o], .- (8.36)

Theorem 8.2. Let 2 C R™ be a bounded, Lipschitz domain, f € L?(02), g €
L?(892) and 0 < ¢ < ag (x) <7, a.e. in £2.
Then, problem (8.33) has a unique solution u € H' (£2). Moreover,
1

min {a, ¢}

{1716+ T llgl 2oy } -

Proof. We check that the hypotheses of the Lax-Milgram Theorem hold, with
V =HYN).

Continuity of the bilinear form B. The Schwarz inequality yields:

HUJHLQ <

B (u,v)| < a|[Vullg [[Vollg + o [lully vl
< (a+7) HUH12 HUH1,2

so that B is continuous in H' (£2).

Coercivity of B. It follows from
B (u,u) = / o |Vul® dx Jr/ apu’dx > min {a, co} HuH? 9
o) o) '

since ag (x) > ¢o > 0 a.e. in £2.
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Continuity of L. From Schwarz’s inequality and (8.36) we get:

|Lv|§’/ fvdx / gv do
[0} o8

< {I71o + Callglom  I10)h,2-

+ «

< I fllo lvllg + e llgll 2o 1Vl 2 (00

Therefore L is continuous in H! (§2) with

1Ll g2 2y < W ll2) + Callgllagon) -
The conclusion follows from the Lax-Milgram Theorem. [

Remark 8.7. As in the one-dimensional case, without the condition ag (x) > ¢o >
0, neither the existence nor the uniqueness of a solution is guaranteed. Let, for
example, ag = 0. Then two solutions of the same problem differ by a constant. A
way to restore uniqueness is to select a solution with, e.g., zero mean value, that

i /Q u (x) dx =0.

The existence of a solution requires the following compatibility condition on the

data f and g:
/ f dera/ g do =0, (8.37)
[0} o0

obtained by substituting v = 1 into the equation

/ aVu - Vv dx :/ fo dera/ gv do.
[0} [0} o8

Note that, since 2 is bounded, the function v = 1 belongs to H' (§2).

If ap = 0 and (8.37) does not hold, problem (8.28) has no solution. Viceversa,
we shall see later that, if this condition is fulfilled, a solution exists.

If g = 0, (8.37) has a simple interpretation. Indeed problem (8.28) is a model for
the equilibrium configuration of a membrane whose boundary is free to slide along
a vertical guide. The compatibility condition |, o fdx = 0 expresses the obvious
fact that, at equilibrium, the resultant of the external loads must vanish.

Robin problem. The same arguments leading to the weak formulation of the
Neumann problem (8.28) may be used for the problem

(8.38)

—aAu+ag (x)u=f in £2
Opu+hu=g on 0f2.

The weak formulation comes from (8.30), observing that

Opu =—hu+g on 0f2.
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We obtain the following variational formulation:
Determine u € H' (§2) such that

/ {aVu - Vv + apuv} dera/ huv do :/ fv dera/ gdo Yve H' ().
2 o9 2 o9

We have:

Theorem 8.3. Let 2, f, g and ag be as in Theorem 8.2 and 0 < h (x) < hg a.e.
on 912. Then, problem (8.38) has a unique weak solution u € H' (£2). Moreover

1

mintacy UM lo + Callgliaon |-

[ull 2 <
Proof. Introducing the bilinear form
B (u,v) = B (u,v) Jra/ huv do
o8

the variational formulation becomes

B (u,v) = Lv Yo € H' ()

where B and L are defined in (8.34) and (8.35), respectively.
From the Schwarz inequality and (8.36), we infer

/ huv do
o9

On the other hand, the positivity of «, ap and h entails that

—=2
< hollull 200) vl L200) < C ho llully 2 1]l 5 -

B (u,u) > B (u,u) > min{a,co} |[ull ,.

The conclusions follow easily. [

Mixed Dirichlet-Neumann problem. Let I'p be a non empty relatively
open subset of 912. Set I'y = 002\I'p and consider the problem

—aAu+ag (x)u=f in 2
u=0 onlp
Ou=g only.

The correct functional setting is Hj - (£2), i.e. the set of functions in H' (£2) with

zero trace on I'p. From Theorem 7.16, the Poincaré inequality holds in Hj - (£2)
and therefore we may choose the norm

lullag . (= IVl
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From (8.29) and the Gauss formula, we obtain, since v =0 on I'p,

7/ aayu Ud0'+/ {avu Vv + Q,OUU} dx :/ fU dX, Yov € Cl (ﬁ) .
'y 2 2

The Neumann condition on Iy, yields the following variational formulation:

Determine u € Hj p, (£2) such that, Vv € Hj 1 (1),

/ aVu - Vv dach/ apuv dx :/ fo dera/ gv do.
o 0 0 Iy

Using the trace inequality (Theorem 7.12)

loll 2y < Cllolly o (8.39)

the proof of the next theorem follows the usual pattern.

Theorem 8.4. Let 2 C R"™ be a bounded Lipschitz domain. Assume f € L? ({2),
g€ L*(I'y) and 0 < ag (x) < v, a.e. in £2. Then the mixed problem has a unique
solution u € Hj p (§2). Moreover:

1 ~
19ullg < = 1£lly + € llglacry)

8.4.3 Eigenvalues of the Laplace operator

In subsection 6.9.2 we have seen how the efficacy of the separation of variables
method for a given problem relies on the existence of a basis of eigenfunctions
associated with that problem. The abstract results in subsection 6.9.4, concern-
ing the spectrum of a weakly coercive bilinear form, constitute the appropriate
tools for analyzing the spectral properties of uniformly elliptic operators and in
particular of the Laplace operator. It is important to point out that the spectrum
of a differential operator must be associated with specific homogeneous
boundary conditions.

Thus, for instance, we may consider the Dirichlet eigenfunctions for the Laplace
operator in a domain {2, i.e. the non trivial solutions of the problem

{ —Au=AMu in 2 (8.40)

u=20 on O0f2.

A weak solution of problem (8.40) is a function u € Hj (£2) such that
a(u,v) = (Vu, Vo), = A(u,v), Vo € Hj (2).

If {2 is bounded, the bilinear form is H{ (£2) —coercive so that Theorem 6.15 gives:
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Theorem 8.5. Let {2 be a bounded domain. Then, there exists in L? (£2) an or-
thonormal basis {uy},~, consisting of Dirichlet eigenfunctions for the Laplace
operator. The corresponding eigenvalues {\; },~, are all positive and may be ar-
ranged in an increasing sequence

O< A< A< <A<

with A\ — +o00.
The sequence {uy/+/ Ak}k>1 constitutes an orthonormal basis in Hg (£2), with
respect to the scalar product (u,v), = (Vu, Vv),.

Remark 8.8. Let u € L? (£2) and denote by ¢x = (u,uy), the Fourier coefficients
of u with respect to the orthonormal basis {u}, . Then we may write

o0 o0

u= Z CLUE and HuHé = Z cx.

k=1 k=1

Note that
HVung = (Vuk,Vuk)O = >\k (uk,uk)o = >\k-

Thus, u € Hg (£2) if and only if
[Vaully = Zkkck < 0. (8.41)

Moreover, (8.41) implies that, for every u € H} (£2),
IVulls = M\ kzl ¢k =M lulls -

We deduce the following variational principle for the first Dirichlet eigen-
value:

Vu|?
A1 = min { fnf|72| :u € Hy (£2), u non identically zero.} (8.42)
u
[0

The quotient in (8.42) is called Raiyeigh’s quotient.

If the domain {2 is smooth, it can be shown that \; is simple, i.e. the corre-
sponding eigenspace has dimension 1, and that the corresponding normalized
eigenvector u; is either strictly positive or strictly negative in (2.

Similar theorems hold for the other types of boundary value problems as well.
For instance, the Neumann eigenfunctions for the Laplace operator in {2 are the
non trivial solutions of the problem

—Au=pu in {2
o,u=0 on 0f2.

Applying Theorem 6.15 we find:
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Theorem 8.6. If 2 is a bounded Lipschitz domain, there exists in L? ({2) an
orthonormal basis {uy},~, consisting of Neumann eigenfunctions for the Laplace
operator. The corresponding eigenvalues form a non decreasing sequence {fiy, }1.>1,
with py = 0 and p;, — +00.

Moreover, the sequence {uy/+/j, + 1}, constitutes an orthonormal basis in
H' (), with respect to the scalar product (u, V)19 = (u,v)g + (Vu, Vo).

8.4.4 An asymptotic stability result

The results in the last subsection may be used sometimes to prove the asymptotic
stability of a steady state solution of an evolution equation as time t — +oc0.

As an example consider the following problem for the heat equation. Suppose
that u € C%! (2 x [0, +00)) is the (unique) solution of

uy — Au = f(x) x€eN, t>0
u(x,0) =up (x) x€N
u(ot) =0 occinN,t>0

where {2 is a smooth, bounded domain. Denote by us = s (X) the solution of
the stationary problem

—Auee = f in 2
Uso =0  on 92.

Proposition 8.5. Fort > 0, we have
[u(-,t) = toolly < e {OB I fllo + lluolly} (8.43)
where Ay is the first Dirichlet eigenvalue for the Laplace operator in f2.

Proof. Set g (x) = up(X) — Uoso (x). The function w (x,t) = u (X,t) — Uoo (X)
solves the problem

wy — Aw =0 x€2,t>0
w(x,0)=g(x) =xen (8.44)
w(o,t) =0 o€ 0, t>0.

Let us use the method of separation of variables and look for solutions of the form
w (x,t) = v (x) z (t). We find

with A constant. Thus we are lead to the eigenvalue problem

—Av=MXv in 2
v=>0 on 0f2.
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From Theorem 8.5, there exists in L? ({2) an orthonormal basis {uy},~, consisting
of eigenvectors, corresponding to a sequence of non decreasing eigenvalues {\},
with A\; > 0 and Ay — 4o00. Then, if g;, = (g, ur),, we can write

o0 o0
2
9=">_ grur and  lgllg = gi-
1 k=1

As a consequence, we find 2 (t) = e~ *** and finally

o0

w(x,t) = Z e M gru (x) .

1
Thus,

2 2
w5 t) = uoollo = llw (- )l
o0
— 2672)\th%
k=1
and since A\ > A1 for every k, we deduce that
o0
2 _ _ 2
(o) = usollg < D> e™*Mlgt = e | gfg .
k=1

Theorem 8.1 yields, in particular

luscllo < CB 11 £llo

and hence

lgllo < llwollg + llucollo
< lluolly + CE II£1lo
giving (8.43). O

Proposition 8.5 implies that the steady state uo, is asymptotically stable in
L? () —norm as t — +oo. The speed of convergence is exponential® and it is
determined by the first eigenvalue A;.

8.5 General Equations in Divergence Form

8.5.1 Basic assumptions

In this section we consider boundary value problems for elliptic operators with
general diffusion and transport terms. Let 2 C R™ be a bounded domain and

set
Eu=—div(A (x) Vu—b (x)u) +c(x)-Vu+ag (x)u (8.45)

where A =(asj)i j=1,...n, b = (b1,...,bp), ¢ = (c1, ..., ¢n) and ayp is a real function.

3 Compare with subsection 2.1.4.
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Throughout this section, we will assume that the following hypotheses hold.

1. The differential operator £ is uniformly elliptic, i.e. there exist positive
numbers o and M such that:

aléP <AX)E-€< ML), VEER”, ae. in £2. (8.46)
2. The coefficients b, ¢ and ag are all bounded:
b(x)| <8, lex) <7, lao(x)| <7, ae in (8.47)

The uniform ellipticity condition (8.46) states that A is positive in 2 with
the minimum eigenvalue bounded from below by «, called ellipticity constant, and
the maximum eigenvalue bounded from above by M. We point out that at this
level of generality, we allow discontinuities also of the diffusion matrix A, of the
transport coefficients b and c, in addition to the reaction coefficient ag.

We want to extend to these type of operators the theory developed so far.
The uniform ellipticity is a necessary requirement. In this section, we first indicate
some sufficient conditions assuring the well-posedness of the usual boundary value
problems, based on the use of the Lax-Milgram Theorem.

On the other hand, these conditions may be sometimes considered rather re-
strictive. When they are not satisfied, precise information on solvability and well-
posedness can be obtained from Theorem 6.12.

As in the preceding sections, we start from the Dirichlet problem.

8.5.2 Dirichlet problem

Consider the problem

(8.48)

Eu=f+divf in{2
u=20 on 0f2

where f € L? (2) e f €L? (2;R™).

A comment on the right hand side of (8.48) is in order. We have denoted by
H=1 () the dual of H} (£2). We know (Theorem 7.6) that every element F €
H~1 () can be identified with an element in D’ (£2) of the form

F = f +div f.

Moreover
1E N =102y < N fllo + 1€l - (8.49)

Thus, the right hand side of (8.48) represents a generic element of H 1 (§2).

4 1If A is only nonnegative, the equation is degenerate elliptic and things get too com-
plicated for this introductory book.
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As in Section 8.4, to derive a variational formulation of (8.48), we first assume
that all the coefficients and the data f, f are smooth. Then, we multiply the
equation by a test function v € C§ (£2) and integrate over §2:

/Q [—div(AVu — bu) v] dx + /

[c-Vu + agu]v dx = / [f + divf]vdx.
2

[0}

Integrating by parts, we find, since v = 0 on 9£2:

/ [-div(AVu — bu) v] dx :/ [AVu- Vv —bu-Vv]dx
2 2

/vdivfdx:f/fon dx.
Q 2

Thus, the resulting equation is:

and

/ {AVu-Vv—bu-Vv+cv-Vu + aguv}dx = / {fv—£Vov }dx (8.50)
2 2

for every v € C§ (£2).

It is not difficult to check that for classical solutions, the two formulations
(8.48) and (8.50) are equivalent.

We now enlarge the space of test functions to H} (£2) and introduce the bilinear
form

B (u,v) = / {AVu-Vv—bu-Vv+cv-Vu + aouv}dx
2
and the linear functional
Fv :/ {fv—£-Vv }dx.
2
Then, the weak formulation of problem (8.48) is the following:
Determine u € H} (£2) such that
B (u,v) = Fv, Vv € H} (£2). (8.51)

A set of hypotheses that ensure the well-posedness of the problem is indicated in
the following proposition.

Proposition 8.6. Assume that hypotheses (8.46) and (8.47) hold and that f €
L?(02), f € L? (£2;R"). Then if b and ¢ have Lipschitz components and

1

idiv (b—c)+ap >0, ae. in £, (8.52)

problem (8.51) has a unique solution. Moreover, the following stability estimate
holds:

1
llull, < = {lI£llo + 1£llo} - (8.53)
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Proof. We apply the Lax-Milgram Theorem with V = H} (£2). The continuity
of B in V follows easily. In fact, the Schwarz inequality and the bound in (8.46)
give:

< ‘/Q Z ’aijamiu aij’dX

1,j=1

/ AVu - Vo dx
Q

< M/ |Vu| Vo] dx < M ||Vul|, [Vl -
Q
Moreover, using (8.46) and Poincaré’s inequality as well, we get

< (B+7)CP [Vully [Vl

/ [bu- Vv — cv-Vu| dx
2

/ apuv dx
0

Thus, we can write

and

< /Q fulJo] dx < 40C% [ Vally [ V0]l -

1B (u,v)] < (M + (8 +7)Cp +1C3) [Vully [Vl
which shows the continuity of B. Let us analyze the coercivity of B. We have:
B (u,u) = / {AVu-Vu— (b—c)u-Vu+ apu®} dx.
o

Observe that, since u = 0 on 942, integrating by parts we obtain

/ (b —c)u-Vu dx = 1 / (b —¢)-Vu?dx = 1 / div(b — c) u?dx.
2 2/)a 2

[0}

Therefore, from (8.46) and (8.52), it follows that
1
B (u,u) > a/ |Vu|2dx+/ [idiv(b - c)+a0] u?dx >a||Vul)}
2 2

so that B is V —coercive. Since we already know that F € H~!({2), the Lax-
Milgram Theorem and (8.49) give existence, uniqueness and the stability estimate
(8.53). O

Remark 8.9. If A is symmetric and b = ¢ = 0, the solution « is a minimizer in
H} (£2) for the “energy” functional

E(u) = ‘/Q {AVu-Vu+ cu® — fu} dx.

As in Remark 8.6, equation (8.51) constitutes the Euler equation for E.
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Remark 8.10. If the Dirichlet condition is nonhomogeneous, i.e.
u=g¢g on 0f2,

with g € H'/2(812), we consider an extension § of g in H' (2) and set w = u — §.
In this case we require that (2 is at least a Lipschitz domain, to ensure the existence
of §. Then w € H} (£2) and solves the equation

Ew=f+div(f+AVg§—Dbg) —c -Vj—cg.
From (8.46) and (8.47) we have

cVg+cge L?(2) and AVg —bg €L? (£;R™).

Therefore, the Lax-Milgram Theorem yields existence, uniqueness and the estimate

||u||1’2 S C(OL, n, M’ 57 Y Yo Q) {Hf”O + ||f||0 + ||9||H1/2(69)} .

08 -
06 -
04

02 -

Fig. 8.1. The solution of problem (8.54)

Example 8.1. Figure 8.1 shows the solution of the following Dirichlet problem in
the upper half circle:

—Uppy—pru, —pug =0 p<1,0<0<m
u(1,0) = sin(0/2) 0<f<m (8.54)
u(p,0)=0, u(p,m)=p p<1

where (p, 0) denotes polar coordinates. Note that, in rectangular coordinates,
—pUp = YUy — TUy (8.55)

so that it represents a transport term of the type ¢-Vu with ¢ = (y, —z). Since
divb =0, Proposition 8.6 ensures the well posedness of the problem.
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Alternative for the Dirichlet problem. We will see later that problem
(8.48) is actually well posed under the condition

divb+ag > 0,
which does not involve the coefficient c.
In particular, this condition is fulfilled if ap (x) > 0 and b (x) = 0 a.e. in 2. In

general however, we cannot prove that the bilinear form B is coercive. What we
may affirm is that B is weakly coercive, i.e. there ezists Ag € R such that:

B (u,v) = B (u,v) + \o (u,v)y = B (u,v) Jr)\o/ uv dx
o
is coercive. In fact, from the elementary inequality

1
lab| < ea® + 4—b2, Ve >0,
€

we get
2
/ (b — c)u-Vu dx| < (B + ’y)/ |u-Vu|dx <e HVUHS + B HuHé .
0 0 4e
Therefore:
2 B+’
B@wnnuvmémumédvmé(—z;—+v|m§- (8.56)

If we choose € = /2 and \g = (8 + 7)?/4e + v, we obtain

e

B (uu) 2 5 |Vl

which shows the coercivity of B. Introduce now the Hilbert triplet
V=H}(2),H=L*(Q),V*=H ' ()

and recall that, since {2 is a bounded, Lipschitz domain, H} ({2) is dense and
compactly embedded in L? (§2). Finally, define the adjoint bilinear form of B by

B* (u,v) = / {(ATVu+cu) Vv —bv-Vu+auv} dx=B(v,u),
2

associated with the formal adjoint of £
E*u = —div (ATVU + cu) —b - Vu+ agu.

We are now in position to apply Theorem 6.12 to our variational problem. The
conclusions are:
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1) The subspaces Np and Np- of the solutions of the homogeneous problems
B(u,v) =0, Yve Hj ()
and
B* (w,v) =0, Yove Hy ()

share the same dimension d, 0 < d < oo.

2) The problem

B (u,v) = Fu, Vv € Hy (2)

has a solution if and only if Fw =0 for every w € Np-.
Let us translate the statements 1) and 2) into a less abstract language:

Theorem 8.7. Let {2 be a bounded, Lipschitz domain, f € L? (2) and f €L? (2;R").
Assume (8.46) and (8.47) hold. Then, we have the following alternative:

a) Either £ is an isomorphism between H} (£2) and H~'({2) and therefore
problem (8.48) has a unique weak solution, with

[Vullg < C(n,a, K, B,7) {lIfllo + Ifllo}

or the homogeneous and the adjoint homogeneous problems

Eu=0 in 2 E*w =0 in (2
and
u=0 on 012, w=0 ond2

have each d linearly independent solutions.

b) Moreover, problem (8.48) has a solution if and only if

/ {fw—£-Vw}dx =0 (8.57)
o
for every solution w of the adjoint homogeneous problem.

Theorem 8.7 implies that if we can show the uniqueness of the solution of
problem (8.48), then automatically we infer both the existence and the stability
estimate.

To show uniqueness, the weak maximum principles in subsection 8.5.5 are quite
useful. We will be back to this argument there.

The conditions (8.57) constitute d compatibility conditions that the data have
to satisfy in order for a solution to exists.
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8.5.3 Neumann problem

Let {2 be a bounded, Lipschitz domain. The Neumann condition for an operator
in the divergence form (8.45) assigns on 0f2 the flux naturally associated with
the operator. This flux is composed by two terms: AVu - v, due to the diffusion
term —divAVu, and —bu-v, due to the convective term div(bu), where v is the
outward unit normal on 9£2. We set

n

u = (AVu —bu)v = Z Oz, U Vi — UZ bjv;.
J

i,5=1
We call 05 u conormal derivative of u. Thus, the correct Neumann problem is:

{5u—f in 2

8.58
u=g ondf. (8.58)

with f € L?(£2) and g € L% (942). The variational formulation of problem (8.58)
may be obtained by the usual integration by parts technique. It is enough to note,
that, multiplying the differential equation £u = f by a test function v € H! (£2)
and using the Neumann condition, we get, formally:

/ {(AVu — bu)Vv + (c-Vu)v + apuv} dx = / fv der/ gv do.
2 2 o9

Introducing the bilinear form
B (u,v) = / {(AVu — bu)Vv + (c-Vu)v + apuv} dx (8.59)
2

and the linear functional

Fv:/fvder/ gv do,
0 o0

we are led to the following weak formulation, that can be easily checked to be
equivalent to the original problem, when all the data are smooth:

Determine u € H' (£2) such that
B (u,v) = Fv, Yve H'(0). (8.60)
If the size of b — ¢ is small enough, problem (8.60) is well-posed, as the following
proposition shows.
Proposition 8.7. Assume that hypotheses (8.46) and (8.47) hold and that f €
L?(2), g€ L?(092). If ag (x) > co > 0 a.e. in 2 and
ap =min{a — (8+7)/2,c0 = (B+7)/2} > 0, (8.61)

then, problem (8.60) has a unique solution. Moreover, the following stability esti-
mate holds:

1 —
el < o {1710 +C (. 2) gl 2o } -
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Proof (sketch). Since
B (u,v)| < (M + B+ +70) llully 5 vl

B is continuous in H! (£2). Moreover, we may write

B (u,u) > a/ |Vul? dx—
2

/Q [(b—c)Vu] udx

+/ apu’dx.
0

From Schwarz’s inequality and the inequality 2ab < a? + b2, we obtain

< B+ 1Vl full, < P52

2
l[lly2 -

/Q [(b—c)Vu] udx

Thus, if (8.61) holds, we get B (u,u) > g HquQ and therefore B is coercive.
Finally, using (8.36), it is not difficult to check that F € H! (£2)*, with

Il g2y < I1fllg +C (10, 2) llgll z202) -
O

Alternative for the Neumann problem. The bilinear form B is coercive
also under the conditions

1
(b—c) -v<0 a.e.ondf? and §div(b —c)+ap > co >0 aein £,

as it can be checked following the proof of Proposition 8.6.
However, in general the bilinear form B is only weakly coercive. In fact, choosing
in (8.56) e = a/2 and Ao = (8+7)° /2 + 27 + 27, we easily get

2
2« 2 B+7) 2
B (u,u) = B (u,u) + Xo |Jully > 5 Vully + (745 +y+70 | llully

and therefore B is coercive. Applying theorem 6.12, we obtain the following alter-
native:

Theorem 8.8. Let {2 be a bounded, Lipschitz domain. Assume that (8.46) and
(8.47) hold. Then, if f € L*(§2) and g € L? (002):
a) Either problem (8.58) has a unique solution u € H' (£2) and
2 < C (1,0 M, 8,7, %) {1 Fllo + 9] 20
or the homogeneous and the adjoint homogeneous problems
Eu=0 in {2 d E*w=0 in {2
a
(AVu—bu)-v=0 on oS N (ATVw+cw)-v=0 ondf2

have each d linearly independent solutions.
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b) Moreover, problem (8.60) has a solution if and only if

Fw:/ fw der/ gw do =0 (8.62)
2 BYe;

for every solution w of the adjoint homogeneous problem.

Remark 8.11. Again, uniqueness implies existence. Note that if b=c = 0 and
ag = 0, then the solutions of the adjoint homogeneous problem are the constant
functions. Therefore d = 1 and the compatibility condition (8.62) reduces to the

well known equation
/ fder/ g do =0.
0 an

Remark 8.12. Note that in the right hand side of (8.58) there is no term of the
form div f, as was the case in the Dirichlet problem. Indeed, it is better to avoid
terms of that form for the following reason. Consider, for instance, the problem
— Ay =divf, d,u = 0. A weak formulation would be, after the usual integration
by parts,

/ Vu - Vo dx:/ (f-v) vdaf/ fVvdx WYve H' (). (8.63)
2 o0 2

However, even if f is smooth, (8.63) is equivalent to div(Vu+f) =0 in the sense
of distributions, but with

(Vu+f) - v =0 on 012,

giving rise to a different problem.

8.5.4 Robin and mixed problems

Robin problem. The variational formulation of the problem

Eu=f in 2 (8.64)
Ofuthu=g on df. ’

is obtained by replacing the bilinear form B in problem (8.60), by
B (u,v) = B (u,v) Jr/ huv do
o8

If 0 < h(x) < hg a.e. on 912, Proposition 8.7 still holds for problem (8.64).

As for the Neumann problem, in general the bilinear form B is only weakly
coercive and a theorem perfectly analogous to Theorem 8.8 holds. We leave the
details as an exercise.
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Mixed Dirichlet-Neumann problem. Let I'p be a non empty relatively
open subset of 912 and I'y = 92\I'p. Consider the mixed problem

Eu=f in 2
u=~0 onl'p
Ou=g on Iy

As in subsection 8.4.2, the correct functional setting is H (£2) with the norm
HUHHé,pD(Q) = ||Vul|,. Introducing the linear functional

Fv:/fvder/ gv do,
[0 I'n

the variational formulation is the following: Determine u € H(%’ ry, (£2) such
that
B(u,v) = Fv, YveHjp, (12). (8.65)

Proceeding as in Proposition 8.6, we may prove the following result:
Proposition 8.8. Assume that hypotheses (8.46) and (8.47) hold and that f €
L?(0), g € L?(I'y). If b and ¢ have Lipschitz components and

1
(b—c)-v<0 ae on Iy, idiv(bfc)Jrao >0, a.e in {2,

then problem (8.65) has a unique solution u € Hy p (£2). Moreover, the following
stability estimate holds:

1 _
lully < = {11£1lo + Cllgllzary) } -

Remark 8.13. If w = go on I'p, i.e. if the Dirichlet data are nonhomogeneous, set
w = u — go, where go € H'(£2) is an extension of go. Then w € Hj p (£2) and
solves

B(w,v):B(go,v)Jr/ fv der/ gv do VUEH&FD ().
Q I'n

For the mixed problem as well, in general the bilinear form is only weakly
coercive and we may resort to the alternative theorem, achieving a result similar
to Theorems 8.7. Only note that the compatibility conditions (8.60) take the form

Fw:/fwder/ gw do =0
0 Iy

for every solution w of the adjoint problem

E*w=0 in 2
w=20 onl'p
(ATVercw)ou:O only.
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8.5.5 Weak Maximum Principles

In Chapter 2 we have given a version of the maximum principle for the Laplace
equation. This principle has an extension valid for general divergence form opera-
tors. First, some remarks.

Let £2 be a bounded, Lipschitz domain and v € H' (£2). Since C* (£2) is dense

in H' (£2), u > 0 on 842 if there exists a sequence {vg},-,; C C* (£2) such that
vg — uwin H' () and vy > 0. It is as if the trace of u on 92 “inherits” the
nonnegativity from the sequence {vy}, ;.

Since v > 0 on 942 is equivalent to saying that® the negative part v; =
max {—vg, 0} has zero trace on 02, it then turns out that u > 0 on 942 if and only
if u= € H} (£2). Similarly, u < 0 on 942 if and only if u™ € Hj (£2).

Other inequalities follow in a natural way. For instance, we have u < v on 02
if u —v < 0 on 0f2. Thus, we may define:

supu =inf{k € R:u <k on 02}, iangu:sup{kER:quona.Q}
o8

which coincide with the usual greatest lower bound and lowest upper bound when
u e C(012).
Consider the equation

B (u,v) = / {(AVu — bu)Vv + cv-Vu + agouv} dx = 0, (8.66)
7

for every v € Hj (£2). We have:

Theorem 8.9. (Weak mazimum principle). Assume that u € H'({2) satisfies
(8.66) and that (8.46) and (8.47) hold. Moreover, let b Lipschitz and

divb + a9 >0 a.e. in 02 (8.67)
Then
< + d inf > infu". .
s1[12p u< saué) u an inf > infu (8.68)

Proof . For simplicity, we give the proof only for b = ¢ = 0, and therefore ag > 0
a.e. in {2. We have:

/AVU'VU dx:f/aouv dx, Yo € H} (92).
2 2

Let
l=sup u"
o8
We may assume that [ < oo, otherwise there is nothing to be proved. Select as a

test function v = max {u — 1,0} > 0, which belongs to H{ (£2).

® Recall from subsection 7.5.2 that, if v € H* (£2) then its positive and negative part,
u™ = max {u,0} and 4~ = max {—wu, 0}, belong to H* () as well.
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Now, observe that in the set {u > [}, where v > 0 a.e., we have Vv = Vu so
that, using the uniform ellipticity condition and (8.67), we obtain

a/ [Vo|? dx S/ AVu-Vvu dx:f/ apu (u — 1) dx <0.
{u>1} 9] {u>1}

Thus, either |[{u >1}| = 0 or Vv = 0. In any case, since v € H} (£2), we infer
v = 0, whence u < [.
The second inequality in (8.68) may be proved in similar way. O

Remark 8.14. Note that Theorem 8.9 implies that if u < 0 or w > 0 on 0f2, then
u<0orwu>0in 2. In particular, if w = 0 on 92 then v = 0 in (2.

Also, it is not possible to substitute supy,, ut by supyg, u or infsou~ with
infpn u in (8.68). A counterexample in dimension one is shown in figure 8.2. The
solution of —u” +u = 0 in (0,1), w(0) = w (1) = —1, has a negative mazimum
which is greater than —1.

-1

Fig. 8.2. The solution of —u” +u =01in (0,1), v (0) =u (1) = -1

Using Theorem 6.12, we have:
Corollary 8.1. Under the hypotheses of Theorem 8.9, the Dirichlet problem

Eu= f+divf in 2
u=0 on 012

has a unique solution v € Hj (£2) and
[Vully < C(n, o, K, 8,7) {lI fllo + [I£llo} -

A similar maximum principle holds for Robin or mixed conditions, yielding
uniqueness and therefore well-posedness, for the corresponding problems.
Suppose for instance that u € H* (§2) satisfies the equation

B (u,v)=0, Yv € Hgp, (£2). (8.69)

Then u is a solution of a mixed problem with f = g = 0. We may prove the
following result (compare with Example 8.18).
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Theorem 8.10. Let I'p C 02, open, I'p # (. Assume that u € H' (§2) satisfies
(8.69) and that (8.46) and (8.47) hold. Moreover, let b be Lipschitz and

b-v<0 ae only, divb+4+ay>0 a.e in{2.

Then

sup u < sup u* and inf > infu™.
9] I'p 2 I'p

8.6 Regularity

An important task, in general technically rather complicated, is to establish the
optimal regularity of a weak solution in relation to the degree of smoothness of
the data: the domain 2, the boundary data, the coefficients of the operator and the
forcing term. To get a clue of what happens, consider for example the following
Poisson problem:

—Au+u=F in 2
u=0 on 0f2

where ' € H~!(£2). Under this hypothesis, the Lax-Milgram Theorem yields a
solution u € H{ (£2) and we cannot get much more, in terms of smoothness. Indeed,
from Sobolev inequalities (see subsection. 7.10.4) it follows that u € LP(§2) with
p= %, if n >3, or ue LP(£2), with 2 < p < oo, if n = 2. However, this gain in
integrability does not seriously increase the smoothness of u.

Reversing our point of view, we may say that, starting from a function in
H} (£2) and applying to it a second order operator “two orders of differentiability
are lost™: the loss of one order drives from H{ (£2) into L? (§2) while a further loss
leads to H~1(£2). It is as if the upper index —1 indicates a “lack” of one order of
differentiability.

Nevertheless, consider the case in which v € H! (R") is a solution of the equa-
tion

—Au+u=f inR™ (8.70)

We ask: if f € L? (R™) what is the optimal regularity of u?

Following the above argument, our conclusions would be: it is true that we
start from u € H! (R"), but applying the second order operator —A + I, where
I denotes the identity operator, we find f € L?(R). Thus we conclude that the
starting function should actually be in H? (R™) rather than H! (R"). Indeed this
is true and can be easily proved using the Fourier transform. Since

—

Opu (&) = i€ (),  Dupm,u(€) = —£,£;0(E)

we have

—

—Au(€) = €7 a (€)
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and equation (8.70) becomes

1+ eP)ace) =f €
whence R
N (3
u(g) = TP (8.71)

From (8.71) we easily draw the information we were looking for: every second
derivative of u belongs to L? (R™). This comes from the following facts:

e formula (7.27):
Iol1Z2 @y = ()" 022 gn

e the elementary inequality

2’616]’ <1+|£|2v V’Lv.]:]w’n

e the simple computation

| ouefax= [ e Rn%]ﬂe)ﬁe
<1/n

~ 2m
7 (é)] e —Q/R 7 ()P dx.
Thus, u € H? (R™) and moreover, we have obtained the estimate

[ull 2y < C N Fll L2 ny -

We may go further. If f € H' (R"), i.e. if f has first partials in L? (R"), a
similar computation yields u € H?(R"). Iterating this argument, we conclude
that for every m > 0,

if fe H™(R™) then  we H™? (R").

Using the Sobolev embedding theorems of subsection 7.10.4, we infer that, if m is
sufficiently large, u is a classical solution. In fact, if u € H™*2 (R™) then

u € C* (R™) fork<m+2—g,

and therefore it is enough that m > % to have u at least in C* (R"). An immediate
consequence is:

if fe C*(R") then u e C(R™).

This kind of results can be extended to uniformly elliptic operators £ in diver-
gence form and to the solutions of the Dirichlet, Neumann and Robin problems.
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The regularity for mixed problems is more delicate and requires compatibility con-
ditions along the border between I'p and I'y. We will not insist on this subject.
There are two kinds of regularity results, concerning interior reqularity and
global regularity, respectively. Since the proofs are quite technical (see Evans,
1998), we only state the main results.
In all the theorems below u is a weak solution of

Eu=f in £

We keep the hypotheses (8.46) and (8.47).

o Interior regularity. The next theorem is a H?—interior regularity result. Note
that the boundary of the domain does not play any role. We have:

Theorem 8.11. (H? interior regularity). Let the coefficients a;; be Lipschitz in
Q. Then u € HE () and if ' CC 0,

loc

llzragary < € {1l za(ay + Il ooy }- (8.72)

Thus, v is a strong solution (see Section 8.2) in {2. The constant C' depends on
all the relevant parameters «, 3,7, 7y, M and also on the distance of 2’ from 0f2
and the Lipschitz constant of a;; and b;, 7,5 =1, ..., n.

Remark 8.15. The presence of the norm [[uf| 2 () in the right hand side of (8.72)

is necessary® and due to the fact that the bilinear form B associated to £ is only
weakly coercive.

If we increase the regularity of the coefficients, the smoothness of u increases
according to the following theorem:

Theorem 8.12. (Higher interior regularity). Let a;;,b; € C™ (£2) and c¢j, a9 €
C™ (2), m>1,4,5=1,...,n. Then u € H?(2) and if 2' CC 12,

ol sy < C {1 sy + Nl }-

As a consequence, if a;;,bj, cj, ao, f € C (£2), then u € C™ (£2) as well.

e Global regularity. We focus on the optimal regularity of a solution (non neces-
sarily unique!) of the boundary value problems we have considered in the previous
sections.

Consider first H?—regularity. If u € H?({2), its trace on {2 belongs to
H?/2(00) so that a Dirichlet data gp has to be taken in this space. On the
other hand, the trace of the normal derivative belongs to H'/? (9£2) and hence we
have to assign a Neumann or a Robin data gx in this space. Also, the domain has
to be smooth enough, say C?, in order to define the traces of u and 9, u.

¢ For instance, u (z) = sinz is a solution of the equation u” 4 u = 0. Clearly we cannot
control any norm of u with the norm of the right hand side alone!
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Thus, assume that u is a solution of £u = f in {2, with one of the following
boundary conditions:
u=gp € H*?(01)

or

O +hu= gy € H/?(892),
with

0<h(o)<hy a.e. ondf
We have:

Theorem 8.13. Let 2 be a bounded, C*—domain. Assume that a;j,bj, i,j =
1,...,n, are Lipschitz in 2 and f € L? (£2). Then u € H*(£2) and

lull =y < C {lllo + Iflo + 9Dl zs/200y ) (Dirichlet),

lull =y < C {lully + 17 lg + l9ml s 200} (Newmann/Robin).

If we increase the regularity of the domain, the coefficients and the data, the
smoothness of u increases accordingly to the following theorem.

Theorem 8.14. Let {2 be a bounded C™"%—domain. Assume that a;;,b; €

™ () ,cj,a0 € C™ () 4,5 = 1,...,n, f€H™ (). If gp € H™3/2(902)

or gy € H™1/2(982) and h € C™*1 (02), then u € H™2() and moreover,
lull vy < € {ully + 17y + Dl sensaraomy } (Diriche),

HUHHT"+2(Q) S C {HUHO + HfHHm(Q) + HgRHHm+l/2(BQ)} (Neumann, ROblﬂ)

In particular, if 2 is a C*°—domain, all the coefficients are in C*° (ﬁ) and the
boundary data are in C*° (842), then u € C* (£2).

e A particular case. Let 2 be a C?—domain and f € L? (£2). The Lax-Milgram
Theorem and Theorem 8.11 imply that the solution of the Dirichlet problem

—Au=f in 2
u=20 on 012

belongs to H?(£2) N Hg({2) and that
lellgs o < C 1 fllo = € 1Ay (8.73)

Since clearly we have
| 8ully < ul g2 e

we draw the following important conclusion:
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Corollary 8.2. If u € H?(2) N H}(12), then
| Auly < 14l 2y < Co 1 Aully

In other words, || Aully and [|ul| g2 (g are equivalent norms in H?(£2) N H(£2).

In the next section, we will see an application of Corollary 8.2 to an equilibrium
problem for a bent plate.

e Domains with corners. The above regularity results hold for smooth domains.
However, in several applied situations, Lipschitz domains are the relevant ones.
For these domains the regularity theory is not elementary and goes beyond the
purposes of the present book. Thus, we only give an idea of what happens by
means of two examples.

o5

Fig. 8.3. The case a = gw in Example 8.17

Ezample 8.2. Consider the plane sector:
Sa ={(r8):0<r<l,—a/2<6<a/2} (0 < a < 2m).

The function -
u (r,0) = 1o cos —0
o

o
o

is harmonic in S,, since it is the real part of f (z) = z«, which is holomorphic in

S Furthermore,
u(r,—a/2) =u(r,a/2) =0, 0<r<1 (8.74)

and -
u (1,0) = cos —40, 0<0<a. (8.75)
o

We focus on a neighborhood of the origin. If a = 7, S, is a semicircle and

u(r,0) =Rez =1z € C> (S,).
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Suppose a # . Since

|Vu|2 =+ —

2 1
/ Vul® dzydzy = 7T—/ r2E g =T
Sa @ Jo 2

so that u € H!(S,) and is the unique weak solution of Au = 0 in S, with the
boundary conditions (8.74), (8.75). It is easy to check that for every i,j = 1,2,

we have

z_9
&

|8mimju| ~r asr — 0

1
2 ™ _
/ |8mimju| dIldI22/ r2a=3dr.
S, 0

o

whence

This integral is convergent only for
2l 3> 1.
e

The conclusion is that u € H? (S, ) if and only if a < 7, i.e. if the sector is convez.
Ifa>mn ug¢g H2(S.).

Conclusion: in a neighborhood of a non convex angle, we expect a low degree
of regqularity of the solution (less than H?).

Fig. 8.4. The solution of the mixed problem in Example 8.18

Ezample 8.3. As a second example, the function u (r,0) = rs sing is a weak solu-

tion in the half circle

Se={(r,0):0<r<1, 0<0<mn}
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of the mixed problem

Au=0 in S,
u(l,@):sing 0<f<m
u(r,0) =0 and O, u(r,7) =0 0<r<l.
Namely,
1
Vul? = —
vl = 1
so that

/ \Vul® dzidzy = %

™

whence u € H' (S;). Moreover,
. 1
Oz, U = Uy sin @ + —ugcos§ = —=cos =
T

hence
Oz, (r,m) = 0.

However, along the half-line § = /2, for example, we have

_3
2

lﬁmimju’ ~r r~20

1
2 _
/ lamimju’ d{Eld"EQN/ r2dr = .
S 0

and therefore u ¢ H? (S;) .

Thus, the solution has a low order of regularity near the origin, even though
the boundary of Sy is flat there. Note that the origin separates the Dirichlet and
Neumann regions (see Fig. 8.4).

so that

Conclusion: in general, the optimal regularity of the solution of a mized prob-
lem is less than H? near the boundary between the Dirichlet and Neumann regions.

8.7 Equilibrium of a plate

The range of application of the variational theory is not confined to second order
equations. In this section we consider the vertical deflection u = u (z,y) of a bent
plate of small thickness (compared with the other dimensions) under the action of
a normal load. If 2 C R? represents the transversal section of the plate, it can be
shown that u is governed by the fourth order equation

AAu:A2u:%E in £2,

where ¢ is the density of loading and D encodes the elastic properties of the mate-
rial. The operator A? is called biharmonic or bi-laplacian and the solutions of
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A2y = 0 are called biharmonic functions. In two dimensions, the explicit expres-
sion of A? is given by’

o4 o4 o4
2_ 9 2
A= Ox* +28x28y2 + oyt

If the plate is rigidly fixed along its boundary (clamped plate), then u and its
normal derivative must vanish on 9£2. Thus, we are led to the following boundary
value problem:

{ APu = f in 2 (8.76a)

u=0,u=0 on 0f.
We want to derive a variational formulation. To obtain it, choose C3({2) as space of
test functions, i.e. the set of functions in C? (§2), compactly supported in §2. This

choice takes into account the boundary conditions. Now, multiply the biharmonic
equation by a function v € C3({2) and integrate over (2:

/9 A2y v dx = /9 f v dx. (8.77)

Integrating by parts twice and using the conditions v = d,v = 0 on 942, we get:

/ A%y v dx = / (divV Au)v dx = Oy (Au)v da—/ VAu - Vv dx
2 2 2

o8

= — Aud,v dUJr/ AuAv dx = / AuAv dx.
N o} 9]

Thus, (8.77) becomes
/ AuAv dx :/ fo dx. (8.78)
2 2

Now we enlarge the space of test functions by taking the closure of C3(£2) in
H? (£2), which is Hg (£2). Note that (see subsection 7.9.2) this is precisely the space
of functions u such that u and 0,u have zero trace on 9f2.

Since HZ (£2) C H} (2)NH? (£2), from Corollary 8.2 we know that in this space
we may choose [|ul|, = [|Au||, as a norm. We are led to the following variational
formulation:

" It is possible to give the definition of ellipticity for an operator of order higher than
two (see Renardy-Rogers, 2004). For instance, consider the linear operator with con-
stant coefficients £ = Z‘a‘:m aa D%, m > 2, where a = (a1, ...,an) is a multi-index.
Associate with £ its symbol, given by

Sc(€)= ) aa(i)".

|e]=m
Then L is said to be elliptic if Sz (£) # 0 for every € €R™, € # 0. The symbol of

L = A% in 2 dimensions is —&} — 262¢2 — £€2, which is negative if (£,,£,) # (0,0). Thus
A? s elliptic. Note that, for m = 2, we recover the usual definition of ellipticity.
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Determine u € HE (§2) such that

/ Aulv dx = / fvdx, Yve HZ(R2). (8.79)
2 2

The following result holds:

Proposition 8.9. If f € L?({2), there exists a unique solution u € HZ (£2) of
(8.79). Moreover,
[Aullo < Co [l £l -

Proof. Note that the bilinear form
B (u,v) :/ Au - Av dx
o

coincides with the inner product in HZ (£2). On the other hand, setting,

Lv :/ fv dx,
[0

from Corollary 8.2, we have:
L (v)] = /Q [fol dx <||llo Ilvllg < Co [ fllg [ Av]lg

so that L € H2 (£2)". We conclude the proof directly from the Riesz Representation
Theorem. [

Remark 8.16. Let u be the solution of problem (8.79). Setting w = Au, we have
Aw = f with f € L? (£2). Thus, Corollary 8.2 implies w € H? ({2) which, in turn,
yields u € H* (02).

8.8 A Monotone Iteration Scheme for Semilinear Equations

The weak maximum principle can be used to construct iteration schemes for solving
nonlinear boundary value problems. We consider here the following problem:

—Au= f(u) in £2
{ u=g on 0f2. (8.80)

We assume that {2 is a smooth domain and that f € C'(R), g € HY/?(902). A
weak solution of problem (8.80) is a function v € H' (2) such that u = g on 912
and

/vu.vv dx:/f(u)vdx Vv e Hy (2). (8.81)
2 2
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We need to introduce weak sub and super solutions. We say that u, € H! (£2) is a
weak subsolution of problem (8.80) if u. < g on 92 and

/Vu*~Vvdx§/f(u*)vdx Yo € Hy (2), v >0 a.e. in £2.
2 2

Similarly, we say that u* € H' (£2) is a weak supersolution of problem (8.80) if
u* > g on 02 and

/Vu*«Vvde/f(u*)vdx Yo € Hy (£2), v >0 ae. in £2.
2 2

We want to prove the following theorem.

Theorem 8.15. Assume that g is bounded on 0f2 and that there exist a weak
subsolution u, and a weak supersolution u* of problem (8.80) such that:

a<u,<g<u*<b a,beR.
Then, there exists a solution u of problem (8.80) such that
ux <u<u’.

Proof. Let M = maxi, y | f'|. Then the function F (s) = f (s) + Ms is nonde-
creasing. Write Poisson’s equation in the form

—Au+ Mu=F (u).

The idea is to exploit the linear theory to define recursively the following sequence
{ur},>, of functions: let u; be the solution of

—Aug + Muy = F (uy) in 2
uy =g on 0{2.

Given uy, let ug+1 be the solution of

{ —Augy1 + Mug1 = F (ug) in £ (8.82)

Uy =g on 0f2.
We claim that uy is non decreasing and trapped between u, and u*:
U < up <upyr <u*  ace. in f2.

Assuming the claim, we deduce that uy converges a.e in {2 to some bounded func-
tion u, as k — +oo. Since F' (a) < F (u) < F (b), by the Dominated Convergence
Theorem we infer that

/F(uk)vdx%/F(u)vdx as k — oo,
2 2
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for every v € H} (£2). Now it is enough to show that there is a subsequence {uy;}
which converges weakly in H* (§2) to u, in order to pass to the limit in the equation

/ (Vug, 1 - Vo + Muy, 11v) dx :/ F(ug,)vdx Vv e Hj(2)
7 7

and obtain (8.81).
We now prove the claim. Let us check that u, < wuj a.ein £2. Set hg = Uy —uy.
Then supyg, by = 0 and

\_/ 0" \_/U + IM oV ax <(', VU € 3 v > a.e. 1n .
2

From the proof of Theorem 8.9 we deduce hy < 0. Similarly, we infer that u; < u*.
Now assume inductively that

U < Up—1 < up < u* a.e. in (2.

We prove that u, < up < ugq1 < u* a.e. in 2. Let wg = ug — ug41. We have
wy, = 0 on 412 and

/ (Vwy, - Vo + Mwgv) dx :/ [F (ug—1) — F (ug)]v dx Yo € Hy (92).
[0} [0}

Since F' is nondecreasing, we deduce that F' (ux—1) — F (ux) < 0 a.e. in §2 so that
/ (Vwy, - Vo + Mwv) dx <0 Vv € Hy (2), v >0 a.e. in 0.
2

Again, the proof of Theorem 8.9 yields wi < 0 a.e. in {2. Similarly, we infer that
Uy < ug and ugy; < u*.

To complete the proof we have to show that u; — u, weakly in H! (£2). This
follows from the estimate for the nonhomogeneous Dirichlet problem (8.82):

lurlly 5 < € (0 M, 2) {IF ()l + gl 2/200 |

< C1 (n, M, 2) {F () + 9] 1172 00} -

Since {uy} is bounded in H! ({2), there exists a subsequence weakly convergent to
u. O

The functions u, and u* in the above theorem are called lower and upper
barrier, respectively. Thus, Theorem 8.17 reduces the solvability of problem (8.80)
to finding a lower and an upper barrier. In general we cannot assert that the
solution is unique. Here is an example of non uniqueness.

Ezample 8.4. Consider the following problem for the stationary Fisher equation:

—Au=u(l—u) in £2
u=0 on 0f2.
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Clearly, u, = 0 is a solution. If we assume that the domain (2 is smooth and that
the first Dirichlet eigenvalue for the Laplace operator is A\; < 1, we can show that
there exists a solution which is positive in (2. In fact, u* = 1 is an upper barrier.
We now exhibit a positive lower barrier. Let w; be the nonnegative normalized
eigenfunction corresponding to A;. From Remark 8.8 we know that w; > 0 inside
2 and from elliptic regularity, w; is smooth up to 9f2. Let u, = ocw;. We claim that,
if o is positive and small enough, u, is a lower barrier. Indeed, since —Aw; = Ajwy,
we have,

—Auy — uy (1 —uy) = owi (A — 1+ owy). (8.83)

If m = maxgw; and o < (1 — A1)/m, then the right hand side of (8.83) is
negative and wu, is a lower barrier.

From Theorem 8.17 we infer the existence of a solution u such that w; < u < 1.
O

The uniqueness of the solution of problem (8.80) is guaranteed if, for instance,
f is nonincreasing:

F(s)<0, seR.

Then, if u1 and us are two solutions of (8.80), we have w = u; —us € Hj (£2) and
we can write

—Aw= f () — f (uz) = c(x)w

where ¢(x) = f'(a(x)), for a suitable @ between u; and ug. Since ¢ < 0 we
conclude from the maximum principle that w = 0 or u; = us.

8.9 A Control Problem

Control problems are more and more important in modern technology. We give
here an application of the variational theory we have developed so far, to a fairly
simple temperature control problem.

8.9.1 Structure of the problem

Suppose that the temperature u of a homogeneous body, occupying a smooth
bounded domain 2 C R3, satisfies the following stationary conditions:

{Eu = —Au+div(bu) = z in 2 (8.84)

u=0 on 0f2.
where b €C? (£2;R?) is given, with divb >0 in £2.
In (8.84) we distinguish two types of dependent variables: the control variable
2, that we take in H = L? ({2), and the state variable u.

Coherently, (8.84) is called the state system. Given a control z, from Corollary
8.1, (8.84) has a unique weak solution

ulz] €V = Hy (2).
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Thus, setting
a(u,v) = / (Vu - Vo — ub-Vv) dx,
2

u [2] satisfies the state equation
a(ulz],v) = (2,v), YoeV (8.85)

and
uwlz]ll, < Izl - (8.86)

From elliptic regularity (Theorem 8.13) it follows that u € H? (£2) N Hj (§2), so
that u is a strong solution of the state equation and satisfies it in the a.e. pointwise
sense as well.

Our problem is to choose the source term z in order to minimize the
“distance” of u from a given target state uq.

Of course there are many ways to measure the distance of u from ugy. If we are
interested in a distance which involves u and ug over an open subset 25 C 2, a
reasonable choice may be

J(u,z) = %/ﬂ (u — ug)? dx+§/9z2dx (8.87)

where 3 > 0.

J (u, z) is called cost functional or performance index. The second term
in (8.87) is called penalization term; its role is, on one hand, to avoid using “too
large” controls in the minimization of J, on the other hand, to assure coercivity
for J, as we shall see later on.

Summarizing, we may write our control problem in the following way:

Find (u*,2*) € H x V, such that

J (u*,z*) = in J(u,
(w", 2%) (o) eV x H (u,2)

under the conditions (8.88)
Eu=2z in2, u=0 ondf?

If (u*, z*) is a minimizing pair, v* and z* are called optimal state and optimal
control, respectively.

Remark 8.17. When the control z is defined in an open subset {2y of {2, we say
that it is a distributed control. In some cases, z may be defined only on 92 and
then is called boundary control.

Similarly, when the cost functional (8.87) involves the observation of w in 2y C
{2, we say that the observation is distributed. On the other hand, one may observe u
or dyu on I' C 912. These cases correspond to boundary observations and the cost
functional has to take an appropriate form. Some examples are given in Problems
8.20-8.22.
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The main questions to face in a control problem are:

Establish existence and/or uniqueness of an optimal pair (u*, z*).
Derive necessary and/or sufficient optimality conditions.
e Counstruct algorithms for the numerical approximation of (u*, z*).

8.9.2 Existence and uniqueness of an optimal pair

Given z € H, we may substitute into J the unique solution u = u [z] of (8.85) to
get the functional

j(z):J(u[z],z):%/Q (u[z]fud)deJrg/Qszx,

depending only on z. Thus, our minimization problem (8.88) is reduced to find an
optimal control z* € H such that

J(z*) =minJ (2). (8.89)

Once z* is known, the optimal state is given by u* = wu [2*].

The strategy to prove existence and uniqueness of an optimal control is to use
the relationship between minimization of quadratic functionals and abstract vari-
ational problems corresponding to symmetric bilinear forms, expressed in Propo-
sition 6.4. The key point is to write .J (z) in the following way:

J(2) = %b (2,2) + Lz +¢ (8.90)

where ¢ € R (irrelevant in the optimization) and:
e b(z,w) is a bilinear form in H, symmetric, continuous and H— coercive;
e L is a linear, continuous functional in H.

Then, by Proposition 6.4, there exists a unique minimizer z* € H. Moreover z* is
the minimizer if and only if z* satisfies the Euler equation (see (6.40))

J (Y w=b(z"w)—Lw=0 VweH. (8.91)
This procedure yields the following result.

Theorem 8.16. There exists a unique optimal control z* € H. Moreover, z* is
optimal if and only if the following Euler equation holds (u* = u [2*]):

J' (z*)w:/ﬂ (u* — ug) u [w] derﬂ/Q 2w =0 Vw € H. (8.92)
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Proof. According to the above strategy, we write J (z) in the form (8.90).

First note that the map z +— wu[z] is linear. In fact, if a1,y € R, then
ufagz1 + @oz2] is the solution of ulaiz; + asze] = @121 + @szouy. Since £ is
linear,

E(aqulz1] + avu[z2]) = ar€u [z1] + o [z2] = ar21 + aaze

and therefore, by uniqueness, u [a121 + @223] = ayu[z1] + agu [23].
As a consequence,

b(z,w) = / u 2] u [w] derﬂ/ zw (8.93)
20 [0}
is a bilinear form and
Lw = / uw]ug dx (8.94)
20

is a linear functional in H.
Moreover, b is symmetric (obvious), continuous and H —coercive. In fact, from
(8.86) and the Schwarz and Poincaré inequalities, we have, since 29 C 2,

1b(z,w)| < llw[2]ll L2 o) 1w [0l L2 (0q) + B 12ll0 1wl
< (CE+B) Izl lwll

which gives the continuity of b. The H —coercivity of b follows from
b(z,z2)= / u? 7] derﬂ/ 22 >0 HzHg
20 0
Finally, from (8.86) and Poincaré’s inequality,

L] < Nl gy I (@]l gy < Cop Nl Trolly

and we deduce that L is continuous in H.
Now, if we set: ¢ = fQo u? dx, it is easy to check that

~ 1
J(z) = §b(z,z)—Lz+q.

Then, Proposition 6.4 yields existence and uniqueness of the optimal control and
Euler equation (8.91) translates into (8.92) after simple computations. [J

8.9.3 Lagrange multipliers and optimality conditions

The Euler equation (8.92) gives a characterization of the optimal control z* but it
is not suitable for its computation.

To obtain more manageable optimality conditions, let us change point of view
by regarding the state equation u [z] = —Au+div(bu) = z, with u = 0 on 912,
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as a constraint for our minimization problem. Then, the key idea is to introduce a
multiplier p € V, to be chosen suitably later on, and write J (2) in the augmented
form

%/g (uz] — ug)® dx + g/nz‘zdﬂ/np(zfgu 2]) dx. (8.95)

In fact, we have just added zero. Since z — w [z] is a linear map,
Lz= / p(z—Eulz])dx
Q

is a linear functional in H and therefore Theorem 8.15 yields the Euler equation:
J (z)w= / (v — ug) u[w] der/ (p+Bz")w dx—/ p Eulw]dx =0 (8.96)
2 [0 [0

for every w € H. Now we integrate twice by parts the last term, recalling that
ulw] = 0 on 0f2. We find:

‘/ngu [w]dx = ‘/Bnp (=0puw]+ (b - v)uw])do + ‘/Q (=Ap—b-Vp)uw] dx

:—/ p Opu [w) dUJr/ E*p uw] dx,
o9 Q

where the operator £* = —A — b - V is the formal adjoint of £.
Now we choose the multiplier: let p* be the solution of the following adjoint
problem:

5*p = (u* — ud) X2 in 2 (897)
p=20 on 0f2.
Using (8.97), the Euler equation (8.96) becomes
J (2w = / (p* + B2 )w dx =0 Vwe H, (8.98)
2

equivalent to p* + Bz* = 0.

Summarizing, we have proved the following result:

Theorem 8.17. The control z* and the state u* = u (z*) are optimal if and only
if there exists a multiplier p* € V such that z*, u* and p* satisfy the following
optimality conditions:

Eu* = —Au* +div (bu*) = 2* n {2, u* =0 on 0N
Ep* = —Ap* —b - Vp* = (u* —ug) xq, inf, p*=0 ondf
p*+pz" =0. (Euler equation).

Remark 8.18. The optimal multiplier p* is also called adjoint state.
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Remark 8.19. We may generate the state and the adjoint equations in weak form,
introducing the Lagrangian L = L (u, z,p), given by

L (u7 Zap) =J (u7 Z) —a (U,p) + (zvp)O-

Notice that £ is linear in p, therefore®

L, (u*, 2%, p")v=—a(u*,v) + (2",v)o = 0
corresponds to the state equation. Moreover

[’; (’U,*, Z*vp*) ¥ = J’L/L (’U,*, Z*) Y- a(cp,p*)
= (u* — Ud, (P)L2(QO) — a[*(p*,so) = 0

generates the adjoint equation, while

L, (u, 2%, p")w =B (w,2"), + (w,p")o =0
constitutes Euler equation.
Remark 8.20. Tt is interesting to examine the behavior of J (z*) as 8 — 0. In our

case it is possible to show that .J (2*) — 0 as 3 — 0.

8.9.4 An iterative algorithm
From Euler equation (8.98) and the Riesz Representation Theorem, we infer that
p* + B32* is the Riesz element associated with J' (2*),

called the gradient of J at z* and denoted by the usual symbol VJ (z*) or by
0z (z*,p*). Thus, we have

VJ (") =p" + Bz".
It turns out that —VJ (z*) plays the role of the steepest descent direction for J,

as in the finite-dimensional case. This suggests an iterative procedure to compute
a sequence of controls {2y}, convergent to the optimal one.

Select an initial control zg. If 2 is known (k > 0), then zxy; is computed
according to the following scheme.

1. Solve the state equation a (ug,v) = (2x,v),, Vv € V.

2. Knowing ug, solve the adjoint equation

a” (pr; ) = (ur — ud, SO)Lz(QO) Vo e V.

3. Set
Zk+1 — Rk — TkVJ (Zk) (899)

8 L}, £, and £, denote the derivatives of the quadratic functional £ with respect to
p, 2, u, respectively.
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and select the relazation parameter T in order to assure that
J (zeg1) < J (1) (8.100)

Clearly, (8.100) implies the convergence of the sequence {J (zx)}, though in
general not to zero. Concerning the choice of the relaxation parameter, there are
several possibilities. For instance, if § < 1, we know that the optimal value J (z*)
is close to zero (Remark 8.23) and then we may chose

T =J (z) |VJ (z)] 2.
With this choice, (8.99) is a Newton type method:

vJ (Zk)

VT (z1)]? I (3

Zk+1 = Rk —

Also Ty, = 7, constant, may work, as in the following example, where 7 = 10.

Example 8.20. Let 2 = (0,4) x (0,4) C R? and 2y = (2.5,3.5) x (2.5, 3.5).
Consider problem (8.88), with uq = x,, 8 = 10~* and state system

—Au+ 3.5uz + 1.5uy = 2, in 2 and u = 0 on 942

According to Theorem 8.16, there exists a unique optimal control z*. The adjoint
system is

—Ap —3.5p; — 1.5py = (u — 1) xq,, in £2 and p = 0 on 012

Figures 8.5 and 8.6 show the optimal state and the optimal control, respectively,
with their isolines. Note the hole at the center of {2y in the graph of z*, in which
z* attains a negative minimum. This is due to the fact that, without control, the

Ups. 251

o

Fig. 8.5. Optimal state u* in Example 8.20
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Fig. 8.6. Optimal control z* in Example 8.20

solution of the state equation tends to be smooth and greater than one on (2 so
that the control has to counterbalance this effect.”

Problems

8.1. Consider the Dirichlet problem

—(a(x)u) +b(x) v + ap(z)u = f (z), a<z<b)
u(a) = A, u(b) = B.

State and prove an existence, uniqueness and stability theorem.
[Hint: use Remark 8.3].
8.2. Write the weak formulation of the following problem:
(22 + u” —2v/ =sin27z O0<z<1
{ uw(0)=u(1)=0.
Show that there exists a unique solution v € H} (0,1) and that [wllr2(0,1) < 1//2.

8.3. Fill in the details of the weak formulations of the Robin and mixed prob-
lem, in subsection 8.3.3.

8.4. Write the weak formulation of the following problem:
coszu’ —sinz v —zu=1 0O0<z<l1
{u' (0)=—u(0), u(r/4)=0
Discuss existence and uniqueness and derive a stability estimates.

¥ For more on control theory see e.g. A.K. Aziz, J.W. Wingate and M.J. Balas eds, Con-
trol Theory of Systems Governed by Partial Differential Equations, Academic Press,
1977.
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8.5. Legendre equation. Let
2 2\1/2 2
X:{UEL (-1,1): (1—2?) EL(fl,l)}

with inner product

(u,v)x = / [uv + (1 — 2%) u'v'] d.

-1

a) Check that (u,v)y is indeed an inner product and that X is a Hilbert space.
b) Study the variational problem

1
(u,v)y = / fv dx for every v € X (8.101)
—1

where f € L? (—1,1).
¢) Determine the boundary value problem whose variational formulation is
(8.101).

[a) Hint: Use Theorem 7.4, with V = L?(—1,1) and Z = L2 (-1,1), w(z) =
(1—22)"*. Check that Z < D (~1,1).
b) Hint: Use the Lax-Milgram Theorem.

c

- =

Answer: The boundary value problem is

7[(17x2)u’]/+u:f -l<z<1
(1—2Hu' () -0 as v — £1.
This is a Legendre equation with the natural Neumann conditions at both end
points].

8.6. Let V = H!, (0,2m) = {u € H'(0,27) :u(0) =u(2m)} and F be the

per
linear functional

2m
F:vr—>/ tv (t) dt.
0

(a) Check that F € V*.

(b) According to Riesz’s Theorem, there is a unique element u € V such that
(u,v); o = (F,v),, for every v € V. Determine explicitly u.

8.7. Transmission conditions (I). Consider the problem

[0t =0

where f € L? (a,b), p(z) = p1 > 01in (a,c) and p(z) = p2 > 0 in (c, b).
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Show that problem (8.102) has a unique weak solution in H' (a,b), satisfying
the conditions:
pu”’ = f in (a,c)
pQUN =f in (Cv b)
p1v’ (¢—) = pau/ (c+).
Observe the jump of the derivative of u at = ¢ (Fig. 8.7).

e

Pl \

I 3

Fig. 8.7. The solution of the transmission problem (p(z)u') = —1, u (0) = u(3) = 0,
with p (z) =3 1in (0,1) and p(z) =1/2 in (1, 3)

8.8. Let 2= (0,1) x (0,1) C R?. Prove that the functional
1 2
E(Ww) =< {|Vv| —:w} dzdy
2/a

has a unique minimizer u € H} (£2). Write the Euler equation and find an explicit
formula for u.

8.9. Consider the following subspace of H! (£2):

V—{uEH1 |Q|/udx0}

a) Show that V is a Hilbert space with inner product (-, -); and find which boundary
value problem has the following weak formulation:

/VUondx:/fvdx, Yv e V.
7 7
b) Show that if f € L?({2) there exists a unique solution.

8.10. Consider the following subspace of H! (£2):

— 1 . 1 —
V—{UEH (Q)'|3Q| aQuda—O .

Show that V is a Hilbert space with inner product (-, .)1’2 and find which boundary
value problem has the following weak formulation:

/{VUonJruv}dx:/fvdx, Yv e V.
7 7

May we apply the Lax-Milgram Theorem?
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[Answer: —Au+u = f, 0,u = constant; yes, we may apply it].

8.11. Let 2 C R™ and g € H/? (002). Define
H;(Q):{veﬂl(ﬂ):v:g on 912} .

Prove the following theorem, known as Dirichlet principle: Among all the func-
tions v € Hy, the harmonic one minimizes the Dirichlet integral

D (v) = /g |Vo)? dx.

[Hint: ITn H! (£2) use the inner product

(u,v)laz/ uv dUJr/ Vu- Vv dx
' o0 2

and the norm (see Problem 7.24):

1/2
Jully 5 = </ u? da+/ [Vul® dx) : (8.103)
' o0 0

Then, minimizing D (v) over Hj ({2) amounts to minimizing HvHia. Let u €
H}(£2), be harmonic in 2. If v € H}(£2), write v = u + w, with w € Hg (£2).
Show that (u,w), , = 0 and conclude that [[ul3 , < [[v]|7 ;).

8.12. Let £ = —div(A (x) V), with A symmetric. State and prove the ana-
logues of Theorems 8.5 and 8.6.

8.13. A simple system. Consider the Neumann problem for the following sys-
tem:

—Aul +U17UQ:f1 in 2
7A’U,2+’LL1 +UQ:f1 in 2
O,u; =0,up =0 on 0f2.
Derive a variational formulation and establish a well-posedness theorem.

[Hint: Variational formulation:
/ {Vuy - Vi + Vug - Vug + w101 — ugvr + u1v2 + ugva} = / (fivr + fav2)
Q Q

for every (vi,v2) € H' (£2) x H' (£2)].

8.14. Transmission conditions (II). Let {21 and {2 be bounded, Lipschitz do-
mains in R™ such that 2, CC 2. Let {22 = 2\1. In 4 and 2 counsider the
following bilinear forms

ar, (u,v) = A" (x) Vu - Vv dx (k=1,2)
2
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with A* uniformly elliptic. Assume that the entries of A* are continuous in 2},

but that the matrix . .
. A (X) in Ql
A(x) = {A2 (x) in 2

may have a jump across I' = 921. Let u € H} (£2) be the weak solution of the
equation

a(u,v) = ay (u,v) + az (u,v) = (f,v), VUEH& (),

where f € L? (£2).
a) Which boundary value problem does u satisfy?
b) Which conditions on I' do express the coupling between u; and us?

[Hint: b) w1, = up, and Al'Vu; - v = A?Vus - v, where v points outward
with respect to 24].

8.15. Find the mistake in the following argument. Consider the Neumann prob-
lem

(8.104)

—Au+cVu=f in 2
O,u=0 ondfN

with £2 smooth, ¢ €C! (2) and f € L? (2). Let V = H' (£2) and

B (u,v) = L {Vu-Vv+ (c-Vu)v}.

If dive = 0, we may write

1
/(CoVu)udx:—/CoV(UQ)dx:/ u?c- v do.
2 2Je o9

Thus, if ¢ - v >c¢g > 0 then, recalling Problem 8.11,
2
B(u,u) > [|Vull§ + collulZ2 00y = C llull; »

so that B is V —coercive and problem (8.104) has a unique solution!!

8.16. Let 2 = (0,7) x (0, 7). Study the solvability of the Dirichlet problem

Au+2u=f in Q
u=0 on dQ.

In particular, examine the cases f (z,y) =1 and f (z,y) =2 — 7/2.

8.17. Let Bf = {(z,y) € R*: 2? +y* <1,y > 0}. Examine the solvability of
the Robin problem
—Au=f in By
{&,quyu—O on OBy .
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8.18. Let 2 = (0,1) x (0,1), ap € R. Examine the solvability of the mixed
problem

Au+agu =1 in 2
u=0 on 02\ {y = 0}
Ou=c on {y=0}.

8.19. Derive a variational formulation of the following problem

A%y = f in 2
Au+ pdpu=0  on 0f2

where p is a positive constant.

Show that the right functional setting is H? (£2) N H} (£2), i.e. the space of
functions in H? (£2) with zero trace. Prove the well-posedness of the resulting
problem.

[Hint: The variational formulation is
/ Ay - Av der/ POLU - Oy v da:/ fv dx, Yo e H?(2)N Hy (£2).
2 o9 2

To show the well-posedness, use [|0,v]| 250 < [[Av]y, Yo € H? (£2) N Hy (£2)].

8.20. Distributed observation and control, Neumann conditions. Let {2 C R"
be a bounded, smooth domain and 2y an open (non empty) subset of 2. Set
V =H'(2),H = L? (22) and consider the following control problem:

Minimize the cost functional
1
J(u,z) = —/ (u—ug)® dx + é/ 22dx
2 Ja, 2 /o

over (u,z) € H' (2) x L?(§2), with state system

Eu=—Au+apu ==z in 2
(8.106)

du=yg on 012

where ag is a positive constant, g € L? (012) and z € L? (£2).
a) Show that there exists a unique minimizer.
b) Write the optimality conditions: adjoint problem and Euler equations.

[a) Hint: Follow the proof of Theorem 8.15, observing that, if u [2] is the solution
of (8.106) the map z — wu [2] — w[0] is linear. Then write

j(z)zé/Q (u[z]fu[0]+u[0]fud)2dx+§‘/nz2dx

and adjust the bilinear form (8.93) accordingly.
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b) Answer: The adjoint problem is (£ = £*)

—Ap+ aop = (u — 2a)X 0, in 2
a,p=0 on 0f2.

Where X, is the characteristic function of {2y. The Euler equation is: p + 8z =0
in L? (2)].

8.21. Distributed observation and boundary control, Neumann conditions. Let
2 C R™ be a bounded, smooth domain. Consider the following control problem:
Minimize the cost functional

J(u,z)_%‘/n(uud)de+§éQz2dx

over (u,z) € H' (2) x L? (012), with state system

—Au+ agu = f in 2
o,u=z on 02

where aq is a positive constant, f € L? (£2) and z € L* (012).

a) Show that there exists a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.
[a) Hint: See problem 8.20, a).

b) Answer: The adjoint problem is is

—Ap+app =u— 24 in 2
O,p=0 on 012
The Euler equation is: p + 8z = 0 in L? (942)].

8.22. Boundary observation and distributed control, Dirichlet conditions. Let
2 C R™ be a bounded, smooth domain. Consider the following control problem:

Minimize the cost functional
1
J(u,z) = —/ (Byu — ug)® do + é/ 22 dx
2 Jog 2 Ja
over (u, z) € Hy (£2) x L?(§2), with state system

—Au+c-Vu=f+z in 2
u=20 on 0f2

where c is a constant vector and f € L? (02).

a) Show that, by elliptic regularity, J (u, z) is well defined and that there exists
a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.
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Weak Formulation of Evolution Problems

Parabolic Equations — Diffusion Equation — General Equations — The Wave Equation

9.1 Parabolic Equations

In Chapter 2 we have considered the diffusion equation and some of its generaliza-
tions, as in the reaction-diffusion model (Section 2.5) or in the Black-Scholes model
(Section 2.9). This kind of equations belongs to the class of parabolic equations,
that we have already classified in spatial dimension 1, in subsection 2.4.1 and that
we are going to define in a more general setting.

| Q4

s

Fig. 9.1. Space-time cylinder

Let 2 C R™ be a bounded domain, T' > 0 and consider the space-time cylinder
Qr = 2 x (0,T). Let A = A(x,t) be a square matrix of order n, b = b(x,t),
c = c(x,t) vectors in R™, ap = ap(x,t) and f = f(x,t) real functions. Equations
in divergence form of the type

uy — div(AVu — bu) + ¢ - Vu+ apu = f (9.1)

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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or in non divergence form of the type
uy —Tr (AD’u) + b Vu+aou = f (9.2)
are called parabolic in Qr if
Axt)€E-€>0 V(x,t)eQr, V€ € R", € #0.

For parabolic equations we may repeat the arguments concerning elliptic equa-
tions in Sections 9.1 and 9.2. Also in this case, different notions of solutions may
be given, with the obvious corrections due to the evolutionary nature of (9.1) and
(9.2). For identical reasons, we develop the theory for divergence form equations.
Thus, let

Eu = —div(AVu — bu) + ¢ - Vu + agu.

Given f in Qr, we want to determine a solution w, of the parabolic equation
ug +Eu=f in Qr

satisfying an initial (or Cauchy) condition
u (x,0) = ug (x) in 2

and one of the usual boundary conditions (Dirichlet, Neumann, mized or Robin)
on the lateral boundary St = 92 x [0, T7.

The star among parabolic equations is clearly the heat equation. We use the
Cauchy-Dirichlet problem for this equation to introduce a possible weak formu-
lation. This approach requires the use of integrals for function with values in a
Hilbert space and of Sobolev spaces involving time. A brief account of these no-
tions is presented in Section 7.11.

9.2 Diffusion Equation

9.2.1 The Cauchy-Dirichlet problem

Suppose we are given the problem

u — aAu=f inQr
u (x,0) = g (x) in 2 (9.3)
u(ot) =0 on St
where a > 0.
We want to find a weak formulation. Let us proceed formally. As we did several

times in Chapter 1, we multiply the diffusion equation by a smooth function v =
v (x), vanishing at the boundary of {2, and integrate over {2. We find

/Q ug (x,t) v (x) dx—« /Q Au (x,t) v (x)dx = /Q f(x,t)v(x)dx.
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Integrating by parts the second term, we get

/Q ug (x,t) v (%) dx+a /Q Vu (x,t) - Vo (x) dx = /Q f(x,t) v (x)dx. (9.4)

This looks like what we did for elliptic equations, except for the presence of u;.
Moreover, here we will have somehow to take into account the initial condition.
Which could be a correct functional setting?

First of all, since we are dealing with evolution equations, it is convenient to
adopt the point of view of section 7.11, and consider u = u (x,t) as a function of
t with values into a suitable Hilbert space V:

w:[0,T] = V.

When we adopt this convention, we write u (¢) instead of u (x,t) and u instead
of us. Accordingly, we write f(¢) instead of f(x,t). With these notations, (9.4)
becomes

/Qzl(t)v dera/QVu (t)- Vo dx:/nf(t)v dx. (9.5)

The homogeneous Dirichlet condition, i.e. u (t) = 0 on 8f2 for ¢ € [0, T, suggests
that the natural space for u () is V = H} (£2), at least for a.e. t € [0,T]. As usual,
in H} (£2) we use the inner product

(w,v); = (Vw, Vv),

with corresponding norm ||-[|;. Thus, the second integral in (9.5) may be written
in the form
(Vu(t), Vo),

Also, it would seem to be appropriate that 1 (t) € L?(£2), looking at the first
integral. This however is not coherent with the choice u (t) €H} (£2), since we have
Au(t) € H™' (22) and

w(t) = adu(t)+ f(t) (9.6)
from the diffusion equation. Thus, we deduce that H ! (£2) is the natural space
for 4 as well. Consequently, the first integral in (9.5) has to be interpreted as

(@ (t) , v),

where (-, ), denotes the pairing between H ! (£2) and H} (£2).
A reasonable hypothesis on f is f € L?(Qr), which in the new notations
becomes!
feL?*(0,T;L*(£2)) .

Coherently, from (9.6) we require ueL? (0, T; H{ (£2)) and u€L? (0,T; H~* (£2)).
Now, from Theorem 7.22 we know that

ue C ([0,T]; L? (2))

so that the initial condition u (0) = g makes perfect sense if we choose g € L? (£2).

! Also f € L?(0,T; V*) is fine.
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The above arguments motivate the following definition. Consider the Hilbert
triplet (V, H, V*), where V = H} (2), H = L? (2) and V* = H~! (£2). Recall that
Poincaré’s inequality holds in V:

[ollo < Cp o], -

Finally, let
a(w,v) = a(Vw, Vo)g

Definition 9.1. A function u€L? (0,T;V) is called weak solution of problem
(9.8) ifueL? (0, T;V*) and:

1. for every v € V,
(@ (t) v}, +a(u(t),v)=(f(t),v) a.e. t €10,T]. (9.7)
2.u(0)=g.

Remark 9.1. Equation (9.7) may be interpreted in the sense of distributions. To
see this, observe that, for every v € V, the real function

w (t) = (i(t),v),
is a distribution in D’ (0, T") and
d
L _4a
(i), v), = =
This means that, for every ¢ € D (0,T), we have

T T
/'m@wnwwﬂ:f/<wmm¢@ﬂ
0 0

In fact, since u (t) € V, by Bochner’s Theorem 7.20 and the definition of u, we
may write

T T T
A<MW@wﬁwhﬂAU®w@ﬁw%:FA u(t) b (t) dt, v)..

On the other hand, [ u (t) ¢ (t)dt € V so that 2

(u(t),v), in D'(0,7). (9.8)

T T T
«A u@¢@ﬂwm:eA U@¢@ﬁﬂ%:*A (u (1), 0)y & (1) dt.

Thusw € L} (0,T) C D' (0,T) and (9.8) is true. As a consequence, equation (9.7)

loc
may be written in the form

d

5 (@), v)g +a(u(t)w) = (fv) (9.9)
in the sense of distributions in D’ (0,T), for all v e V.

Remark 9.2. We leave it to the reader to check that if a weak solution u is smooth,
ie.uecC?! (QT), then u is a classical solution.

? Recall from Section 6.8 that if u € H and v € V, (u,v), = (u,v),.
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9.2.2 Faedo-Galerkin method (I)

We want to show that problem (9.3) has exactly one weak solution, which depends
continuously on the data in a suitable norm.

Although there are variants of the Lax-Milgram Theorem perfectly adapted to
solve evolution problems, we shall use the so-called Faedo-Galerkin method, also
more convenient for numerical approximations. Let us describe the main strategy.

1. We select a sequence of smooth functions {wy},—, constituting®

an orthogonal basis in V = Hj (12)

and
an orthonormal basis in H = L* (£2).

In particular, we can write
o0
9= Z 9rWk
k=1

where g, = (g, wy), and the series converges in H.
2. We construct the sequence of finite-dimensional subspaces

Vi = span {wy, wa, ..., Wi} -

Clearly
Vin CVipe1r and UV, =V.

For m fixed, let

Un () =D k(O wr,  Gm=)_ gews. (9.10)
k=1 k=1

We solve the following approximate problem: Determine u,, € H' (0,T;V), satis-
fying, for every s =1,...,m,

{ (thm (£) ,ws)g + @ (U () ,ws) = (f (t) ws)g,  aete[0,T]

o (0) = G (9.11)

Note that the differential equation in (9.11) is true for each element of the basis
wg, s = 1,...,m,if and only if it is true for every v € V,,. Moreover, since ,, €
L?(0,T;V), we have

(i (£) ,0)g = (@m (1) ,0), -
We call u,, a Galerkin approzimation of the solution wu.

3. We show that {u,,} and {,,} are bounded in L? (0,T;V) and L? (0,T;V*),
respectively (energy estimates). Then, the weak compactness Theorem 6.11 implies
that a subsequence {u,, } converges weakly in L? (0, T; V) to some element u, while
{tim, } converges weakly in L? (0,T;V*) to .

4. We prove that u in step 3 is the unique weak solution of problem (9.3).

3 This is possible since V is a separable Hilbert space. In particular, here we can choose
as wy, the Dirichlet eigenfunctions of the Laplace operator, normalized with respect to
the norm in H (see Theorem 8.5).
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9.2.3 Solution of the approximate problem
The following lemma holds:

Lemma 9.1. For all m, there exists a unique solution u,, of problem (9.11). In
particular, since u,, € H' (0,T;V,,), we have u,, € C ([0, T]; Vin)-

Proof. Since wy, ..., Wy, are mutually orthonormal in L? (£2), we have

k=1

(i (1), ws) = (Z e (t) wk,ws> = ¢ (t).
0

Also, wy, ..., Wy, is an orthogonal system in V;,,, hence

a (Z ek () wk,ws> = a (Vws, V), cs (t) = a ||V |3 cs ().

k=1
Let
Fo@t)=(f(t),ws), Fpt)=(F1(t),....,Fn(t))
and

Cn (t) = (Cl (t)a“"cm(t))a gm = (gla'-',gm)'

If we introduce the diagonal matrix
. 2 2 2
W = diag {[|Vwill§, [Vw2lly, .. [Vwnll}}

of order m, problem (9.11) is equivalent to the following system of m uncoupled
linear ordinary differential equations, with constant coefficients:

C (t) = —aWC,, (t) + F,, (t),  ae. te[0,T] (9.12)

with initial condition
Ch (0) = gm,.
Since F € L?(0,T;R™), there exists a unique solution C,, (t) € H(0,T;R™).
From .
Um (£) =Y cx () wp,

k=1
we deduce that u,, € H' (0,T;V,,). O
Remark 9.3. We have chosen a basis {wy} orthonormal in L? and orthogonal in
H} because with respect to this base, the Laplace operator becomes a diagonal

operator, as it is reflected by the approximate problem (9.12). However, the method
works using any countable basis for both spaces. Problem (9.11) becomes

Cm (t) = —M'WC,, (t) + M7 'F,,, (t) ae. tel0,T]
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where*
M = (Msk) ) My, = (ws, wk)o 5
W = (W), Wi = a (Vws, VWk)o .

This is particularly important in the numerical implementation of the method,
where, in general, the elements of the basis in V,,, are not mutually orthogonal.

9.2.4 Energy estimates

Our purpose is to show that we can extract from the sequence of Galerkin approx-
imations {u,,} a subsequence converging in some sense to a solution of problem
(9.3). This is a typical compactness problem in Hilbert spaces. The key tool is
Theorem 6.11: let H be a Hilbert space and {x,,} C H a bounded sequence. Then,
{zm} has a subsequence {x,, } weakly convergent to x € H. Moreover

[lz|| <lm inf ||z, - (9.13)
k—ro0

Thus, what we need is to show that suitable Sobolev norms of u,, can be
estimated by suitable norms of the data, and the estimates are independent
of m. Moreover, these estimates must be powerful enough in order to pass to the
limit as m — +o0 in the approximating equation

(um, U)o + o (Vum,Vv)O = (fv U)o

In our case we will be able to control the norms of u,, in L% (0,T;H) and
L?(0,T;V), and the norm of 1, in L% (0,T;V*), that is the norms

g e Ol [ o @17t and [ i

Thus, let uy, = Y po ¢k (t) wi be the solution of problem (9.11).

Theorem 9.1. (Estimate of u,,). For every t € [0,T], the following estimate
holds:

t 02 t
o O+ [ on (s < ol + 2 [ U @Gas 1)

Note in particular how estimate (9.14) deteriorates as « approaches to zero.
An alternative estimate is given in Problem 9.3.

Proof. Multiplying equation (9.11) by ¢ (¢) and summing for k = 1, ...,m, we
get
(o (£)  um (£))g + @ (um (£) , um (£)) = (f () jum (£))o (9.15)

4 Since wi, ..., W is a basis in Vi, the matrix M is positive, hence non singular.
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for a.e. t € [0,T]. Now, note that

(i (6t (D) = 5 e (D3, et (0,7)

and
2 2
a (um (), um (1)) = a[[Vum (8)llg = a[lum (£ -
From the inequalities of Schwarz and Poincaré and the elementary inequality

2
lab < ;‘—5 + %bQ Va,b€ R, Ve > 0 (9.16)

with € = a, we deduce

(F(8)sm (69 < 15 @)l () < C 17 (g 1 ()],
< SEIF@IR+ 3 lum I

Thus, from (9.15) we obtain

D 1 + afum D2 < C2 15 @)1
dt m 0 m 1 = a 0
We now integrate over (0,t), using formula (7.70) in Remark 7.34. Since u,, (0) =

G, and observing that
2 2
1Gmllo < llgll

by the orthogonality of wy, ..., w,, in L? (£2), we may write:
2 ! 2 2, Cp [! 2
o O+ [ oon () ds < 1Galls + 2 [UF@I3ds ©a7)

2 Cp [! 2
<lglio+—=[ 115 (s)llg ds
@ Jo
which is (9.14). O

We now give an estimate of the norm of ,, in L? (0, T;V*).

Theorem 9.2. (Estimate of ,,). The following estimate holds:

T T
/ i (D2 dt < 2a|\9l\§+40}‘3/ I1F ()15 dt (9.18)
0 0

Proof. Let v € V and write
v=w+z

where w € V,,, and z € V;-. We have

[wlly < loll; -
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Let v = w in problem (9.11); this yields

(am (t) av)o = (um (t) aw)o =—a (um (t) ,’LU) + (f (t) aw)o .

Since
la (um (1), w)| < allum @) lw]l,

we infer, using the Schwarz and Poincaré inequalities,

[ (i (£)  0)o| < effum ()1 [[wlly + [[f (B)llo [[wll
< Aallum @l +CrIf @llo} [wlly
<Aallum @l +Cr IF Ollo} vl -

Then, by the definition of norm in V*, we may write

l[dem (D). < e lfum @)y + Cr1F #)llo -
Squaring both sides and integrating over (0,t) we get®

/Hum ds<2a / |l (s Hl ds+2CP/ IIf (s HO ds.

Using (9.14) to estimate 2a? fo [t (8)]|% ds, we easily obtain (9.18). [J

~— —

9.2.5 Existence, uniqueness and stability

Theorems 9.1 and 9.2. show that the sequence of Galerkin’s approximations
{um} is bounded in L% (0,T;V), hence in L? (0,T;V), while {i,} is bounded
in L2 (0,T;V*).

We now use the compactness Theorem 6.11 and deduce that there exists a
subsequence, which for simplicity we still denote by {u,,}, such that, as m — oo,

Um —u  weakly in L* (0,T;V)

and®
Um — 0 weakly in L? (0,T;V*).
This u is the unique solution of problem (9.3). Precisely:

Theorem 9.3. Let feL? (0,T;L*(£2)) and g € L*(£2). Then, u is the unique
solution of problem (9.8). Moreover

T
2C%
lu ()15 + a/o lu (D117 di < llgllg + —£ Hf( )llo dt (9.19)
for every t € [0,T], and
T 2 2 T 2
/0 l[a (B[] dt < 2 lglly +4C%/0 1 @)llo dt (9.20)

% (a+b)* < 2a% 4 2b°
6 Rigorously: tm — v in L? (0,T; V™) and one checks that v=1.
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Proof. Existence. To say that u,, — u, weakly in L?(0,T;V) as m — oo,
means that

T T
/ (Vi (£), Vo (), dt — / (Vu(t), Vo (L)), dt
0 0

for all veL? (0, T; V). Similarly, t,, — @, weakly in L? (0,T;V*), means that

T T T
| @ 0ot = [ i @0 @)t [ 0000 (0. a1
0 0 0
for all ve L2 (0, T; V).
We want to use these properties to pass to the limit as m — +oco in problem

(9.11), keeping in mind that the test functions have to be chosen in V,,. Fix
veL?(0,T;V); we may write

v (t) = ibk (t) W

k=1

with the series convergent in V, for a.e. t € [0, 7. Let

N
un () =) by () wi (9.21)
k=1

and keep N fixed, for the time being. If m > N, then vy € L?(0,T; V;,). Multi-
plying equation (9.11) by by, (t) and summing for k =1,..., N, we get

(im (£) ;0w (£))g + @ (Vum (), Von (£)) = (f (&) sow (£))g -

An integration over (0,7 yields

T T
/ { (i, v )y + @ (Vg Vo) } dt = / (f,vw), dt. (9.22)
0 0

Thanks to the weak convergence of u,, and %, in their respective spaces, we can
let m — +o00. Since

T T T
/ (’l:Lm,UN)O dt = / <1lm,vN>* dt — / <’CL,UN>* dt,
0 0 0

we obtain r -
/ {<a,vN>*+a(Vu,VvN)0}dt:/ (f,vN), dt.
0 0

Now, let N — oo observing that vy — v in L? (0, T;V) and in particular weakly
in this space as well. We obtain

T T
/ {4, v), + a (Vu, Vv),} dt = / (f,v),dt. (9.23)
0 0
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Then, (9.23) is valid for all v € L2 (0,T; V). This entails’
(@ (t),v), +a(Vu(t), Vv)gdt = (f(t),v)

for all v€V and a.e. ¢t € [0, T)]. Therefore u satisfies (9.7). From Theorem 7.22, we
know that ueC ([0,T];H).

It remains to check that w (t) satisfies the initial condition w (0) = g. Let
veC1([0,T);V) with v (T) = 0. Integrating by parts (see Theorem 7.22, b)), we
obtain

T T
/ (it 03 )g dt = (G o (0))g — / (g, )
0 0

so that, from (9.22) we find

T T
f/ {(Um,ON)g + @ (Vum, Von )} dt = — (G, vN (0))0+/ (f,vN), dt.
0 0

Let first m — oo and then N — oo; we get

T T
—/ {(u,0)y + a(Vu, Vo), }dt = —(g,v(0)), + / (f,v),dt. (9.25)
0 0

On the other hand, integrating by parts in formula (9.23) (see again Theorem 7.22,
b)) we find

T T
—/) {(u,0)y + a(Vu, V), } dt = (u (0),v(0)), + /) (f(t),v(t)),dt. (9.26)
Subtracting (9.25) from (9.26), we deduce
(u(0),v(0)) = (9,v(0)),

and the arbitrariness of v (0) forces

u(0) =g.

Uniqueness. Let u; and uy be weak solutions of the same problem. Then,
w = u1 — Uz is a weak solution of

(i (£) ,v), +a (Ve (£), Vo)y = 0

for all v€V and a.e. t € [0, T], with initial data w (0) = 0. Choosing v = w (t) we
have

" Precisely: equation (9.23) is valid, in particular, for v (t) of the form wye (t), with
peL? (0, T). Therefore, for each k there is a set Ex of measure zero, such that

(@ (t),wr), +a(Vu(t), Vwr), dt = (f (t),wr), (9.24)

forall t ¢ Ej. Then, (9.24) holds for every k, as long as t ¢ Ug>1Es. Since |Ug>1Ex| =0
and {wg} is a basis in V, we conclude that (9.24) holds for all v € V, a.e. t € [0,T].
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(W (t),w(t), +aVw(t), Vw(t), =0
or, using Remark 7.34,

| .

lw ()llo = —allw (D13

N =
S

t

whence, since ||w (O)Hg =0,

T
|w<t>|§—/0 ol @) dt <0

which entails w (t) = 0 for all ¢ € [0, T']. This gives uniqueness of the weak solution.

Stability estimates. Letting m — +oo in (9.14) and (9.18) we get, using
(9.13) and Proposition 7.16,

2 2 2 0123 r 2d
[l 0,750y NllL2qo,my < Nlgllo +—= [ [l Fllo dt
0

and
-2 2 2 T 2
Vil 0.y < 20 llgll2 +4C3 / 17]2 dt
which give (9.19) and (9.20). O

Remark 9.4. As a by-product of the above proof, we deduce that, if f=0, u satisfies

the equation
d

it [|lu

which shows the dissipative nature of the diffusion equation.

@)llg = —2aflu @)} <0

9.2.6 Regularity

As in the elliptic case, the regularity of the solution improves with the regularity
of the data. Precisely, we have:

Theorem 9.4. Let 2 be a C?—domain and u be the weak solution of problem
(9.3). If g € V, then u € L?(0,T; H?(£2)) N L*>®(0,T;V) and u € L*(0,T; H).
Moreover

lull 220,12 (0)) + 1ll oo 0,750y + 18l 20,50y < C () {HQHV + HfHL2(O,T;H)}'
(9.27)

Proof. Multiplying equation (9.11) by ¢ (¢) and summing for k = 1, ...,m, we
get
it (£)][5 + 0 (Ve (2) , Vi (£))g = (f (2) st (£))g (9-28)
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for a.e. t € [0,T]. Now, note that

1d

= 55 IVum @z,  aete(0,T)

(Vi (1), Vi, (1)),

and that, from Schwarz’s inequality

(F (8 st ()0 < I Ol i 9l < 5 17 O3 + 5 Nt (012

From this inequality and (9.28), we infer
d .
@ IV I3 + i O3 < 1 @13 ae te 7).

An integration over (0, t) yields

t t
o [V (O] + / i (5)]2ds < / 17 ()12 ds + llgmll?. (9.20)

Passing to the limit as m — co along an appropriate subsequence, we deduce
that the same estimate holds for u and therefore, that uw € L* (0,T;V) and 4 €
L?(0,T; H). In particular, we may write (9.7) in the form:

a(Vu(t),Vu),=(f () —u(t),v), ae tecl0,T]

forallv e V.

Now, the regularity theory for elliptic equations (Theorem 8.13) implies that
u(t) € H?(92) for a.e. t € [0,T] and that

(012 < € (0 2) {lgll? + 1 @I + i )2}
Integrating and using (9.29), we obtain
u € L*(0,T; H* (2))

and the estimate (9.27). O

Further regularity requires compatibility conditions on f and g. We limit our-
selves to consider the following situation in the case f = 0. Suppose we have
ue C™® (QT). Since u = 0 on the lateral side, we have

u:@tu:o~:8gu:~~:0, Vj >0, on 92 x (0, 00)

which hold, by continuity, also for ¢ = 0. On the other hand, the heat equation
gives

Oyu = aAu, 8t2u = aA(Qu) = aA%y

and, in general, _ _
Hu=aAu, Vj>0,in Q7.
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Since u € C*° (@T), these equations still hold for ¢ = 0. As a consequence, we
conclude that

g=Ag=---=Alg=-.-=0 Vj>0,0n 9. (9.30)

Thus, conditions (9.30) are necessary in order to have u € C* (Qr) . It turns

out that they are sufficient as well, as stated by the following theorem?®.

Theorem 9.5. Let u be the weak solution of problem (9.3). If g € H™ (£2), for
every m > 1, and conditions (9.30) hold, then u € C* (QT) .

9.2.7 The Cauchy-Neuman problem

The Faedo-Galerkin method works with the other common boundary conditions,
with small adjustments. Let us examine the weak formulation of the diffusion
equation,

(@ (t),v), +a(u(t),v)=(f(t),v), (9.31)
which must be true for all v € V and a.e. in [0,T]. For the Cauchy-Dirichlet
problem, the bilinear form a is

a(w,v) =a(Vw, Vo),

which is a multiple of the inner product in V' = H}(£2). Thus, a is continuous but
also V' —coercive, which is crucial for the method, as in the elliptic case.

However, once the relevant Hilbert triplet (V, H,V*) has been selected, for
parabolic equation it is enough that a be weakly coercive i.e that there exists
a >0, A > 0 such that

a(v,v) + Aol3 >alvl}  YweV. (9.32)

Indeed, if (9.32) holds, set
w(t)=e Mu(t).

Then,
w (1) =e Ma (t) — de Mu(t) = e M (t) — dw (t)

so that, if u solves (9.31), w solves
(W (1)), +a (w0 (£),0) + A (w (8), ) = (€F (1) ,0)
which is an equation of the same type, with the coercive bilinear form
a(w,v) =a(w,v) +A(w,v)y

and forcing term e * f (¢). In other words, if the bilinear form a is only weakly
coercive, by a simple change of variable we may reduce ourselves to an equivalent

8 For the proof, see Evans, 1998.
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equation, associated with a modified coercive bilinear form (see however Problem
9.4).
For instance, consider the following Cauchy-Neumann problem?:

Uy — alAu=f inQr
u (x,0) = g (x) in 2 (9.33)
Ovu (O',t) =0 on St.

where f € L? (Qr) and g € L? (£2). For the weak formulation choose H = L? (2)
and V = H! (§2), where, we recall, inner product and norm are given by

(u,0)1 5 = (Vu, Vo)g + (u,v)g s lullf o = [[Vallg + [lulls.
A weak formulation of the Cauchy-Neumann problem may be stated as follows:
Find ueL? (0,T;V) such that ucL* (0,T;V*) and
1. for allv eV and a.e. t € [0, 7],
(i (t) ), +a(u(t),0) = (£ (1),0)g
2. u(0)=g.

The bilinear form
a(u,v) = a(Vu, Vv),

is weakly coercive: any A > 0 works.
For simplicity, let A = a; then

a(w,v) = a{(Vu, Vo), + (u,v),}.

With the change of variable
w(t)= e *u(t)

we are reduced to the following equivalent formulation:
Find weL? (0,T;V) such that

wel? (0,T;V*)
and
1. for allv eV and a.e. t € [0,T],
(W (t),v), +a(w (t),v) = (e7*f () ,v),,
2. w(0)=g.

¥ For nonhomogeneous Neumann conditions, see Problem 9.2.
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With small adjustments, the technique used for Dirichlet boundary conditions
yields existence and uniqueness of a unique solution w of the above Cauchy-
Neumann problem and therefore of the original problem. The stability estimates
for w take the form

I\W(t)l\§+/0 lw (s)II% > ds SC(Q){IQI§+/O emslf(S)lgdS}

and , ,
/0 1 (s)1% ds < e(e) {Iglg +/0 C |f(s)|§ds}
for all ¢ € [0, T]. Going back to u, we obtain the following theorem.

Theorem 9.6. There exists a unique weak solution u of (9.31) satistying the initial
condition u (0) = g. Moreover

T T
/0 {llu )12+ i ()12 } ds < c{|g|§ + / |f<s>|§ds} (9.34)
where C = C (o, T).

9.2.8 Cauchy-Robin and mixed problems

Consider the problem

up — aldu=f inQr
u (x,0) = g (x) inf2
u(ot)+h(o)u(ot)=0  onSr

where h € L (92) and h > 0. For the weak formulation we choose H = L? (£2)
and V = H! (£2). As in the elliptic case, we consider the bilinear form

a(u,v) = a(Vu, Vo), Jr/ huv do. (9.35)
o0

A weak formulation is the following;:
Determine ueL? (0,T;V) such that ucL?(0,T;V*) and
1. for allv eV and a.e. t € 0,77,
(@ (t),v), +a(u(t),v)=(f(t),v),
2. 4 (0) = uo.

The following theorem holds.
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Theorem 9.7. There exists a unique weak solution u of the Cauchy-Robin prob-
lem. Moreover, the inequality (9.34) holds for u, with C' = C(a, 2, [|h[| L (90))-

Proof. We may argue as in the case of Neumann conditions. The bilinear form
(9.35) is continuous and weakly coercive for any A > 0, since!® h > 0 on 942.
Choosing A = a, we have

a(u,v) = a{(Vu, Vo), + (u,v),} + ~/BQ huv do > a (u,v); 5.

Moreover, thanks to the trace inequality (see Theorem 7.11)
lull 200y < Cxllully (9.36)
we may write

|a(u,v)] <« HUH1,2 HUH1,2 + HhHLw(an) HUHL2(69) HUHL2(39)
< (a+ Cullbll g o)) lully 2 vl

whence @ is continuous as well. Setting
w(t) =e~*u(t),
we are led to determine weL? (0,T;V) such that weL? (0,T;V*) and
1. for allv eV and a.e. t € 0,77,
(W (t),v), +a (w (), v) = (7 f (t),v),
2. w(0) = uo.

Then, the energy inequalities follow as in the case of the Dirichlet problem.
For the existence and uniqueness of the weak solution, we need only to observe
that the trace inequality (9.36) gives, for the Galerkin approximations {u,,}, the
estimate

T T T
| Oy ae <2 [ ||um<t>||i2dtsC<a,T>{||g|3+ / ||f<s>||§ds}-

Thus, {u,} has a subsequence weakly convergent in L? (9£2). Therefore we can
pass to the limit as m — 400 in the term

/ hu, (t) vdo
o8

as well. O

Y0 If |h| < M on 882, a is weakly coercive for A large enough (check it).
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Finally, we consider the mixed problem

ur — alAu = f inQr

u (x,0) = g (x) in £2

Ou(ot)=0 only x][0,T)
u(ot) =0 on I'p x [0, 7.

where I'p is a relatively open subset of 92 and I'y = 9f\I'p. For the weak
formulation we choose H = L* (2) and V = Hg  (£2), with inner product

(uv v)l = (vuv VU)O
and norm ||-||;. Recall that in Hj - (£2) Poincaré’s inequality holds:
[vllg < Cplv]l, -

The bilinear form
a(w,v) = a(Vw, Vv),

is continuous and V —coercive. Reasoning as in the case of the Dirichlet condition,
we conclude that:

Theorem 9.8. There exists a unique weak solution u of the initial-mixed problem.
Moreover, the inequalities (9.19) and (9.20) hold.

9.2.9 A control problem
Using the same techniques of Section 8.8, we may solve simple control problems

for the diffusion equation. Consider, for instance, the problem of minimizing the
cost functional

1
J(u,z) = 5 /Q lu (T) — ug|® dx + g 22 dxdt

Qr
under the condition (state system)
u— Au=z in Qr
u=20 on St (9.37)

u(x,0) =g (x) in {2

Thus, we want to control the distributed heat flux in @7, given by z, in order to
minimize the distance from uy of the final observation of u, given by
u (T).

If g € L? (£2) and the class of admissible controls is L? (Q), we know from The-
orem 9.3 that problem (9.37) has a unique weak solution u = u [z] for every control
z. Moreover, we assume that (2 is a C?—domain and that g € H{ (§2), so that The-
orem 9.4 implies that, actually, u € L? (0, T; H? (£2)) and @ € L* (0, T; L? (12)).
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Substituting u [z] into J, we obtain the functional

~ 1
J(z)=J(ulz],z2) = _/ (w[T; 2] — ug)® dx + s Z2dxdt, (9.38)
2 /o 2 Jor
where we have set u [t; 2] = u[2] (¢).
Since the mapping z — u [z] — « [0] is linear (why?), we write

j(z):%‘/Q(U[T;z]—u[T;O]Jru[T;O]—ud)deJrg o 22 dxdt,

and then it is easy to check that J has the form
J(z) = %b(z,z)JrLerq
where
b(z,w)= ‘/Q (w[T; 2] —u[T50]) (u[T;w] — uw[T;0]) dx+08 zw dxdt

Qr

and
Lz = / (w[T; 2] —w[T;0]) (w[T;0] — uq) dx
[0}

with ¢ = § [, (u[T;0] — ug)® dx.

Following the proof of Theorem 8.15 we deduce that there exists a unique
optimal control z*, with corresponding optimal state u* = u[z*]. Moreover, the
optimal control is characterized by the following Fuler equation:

J'(2*) [w] = b(z*,w) + Lw =0

which, after some adjustments becomes

J (z%) [w] = / (u* (T) —uq) (u[T;w] —u[T;0]) dx+ 0 z*w dxdt =0
n Qr

for every w € L? (Qr).

Using the method of Lagrange multiplier as in subsection 8.8.3 we may obtain
a more manageable set of optimality conditions. In fact, let us write the cost
functional (9.38) in the following augmented form, highlighting the role of the
linear map z — u [z] — u [0]:
- 1 I6]

J(2) = _/ (w[T; 2] —ug)* dx+ = 22dxdt
2Ja 2 Jor

+/ p{z— (4[z] —4[0]) + A(u[z] —u[0])} dxdt

where p is a multiplier. Note that we have just added zero to J.
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The Euler equation for the augmented functional becomes:

Tl = [ @ (1) =) @l = ulT50) dxs [ (827 +phw st +

*/ p {(@[w] = a[0]) = A(u[w] — u[0])} dxdi=0

for all w € L? (Qr). We now integrate by parts the last integral. We have, since
u[0;w] —u[0;0] =g —g=0:

/Tp(tl[w]a[O])dxdt_/OT/Qp(u[w]a[o])dxdt

:/p(T) (u[T;w]—u[T;O])dx—/ B (ww] — u [0])dxd.
(9}

T

Furthermore, since u [w] — u[0] =0 on St,

/ p Au[w] — u [0])dxdt = /S p (uy [w] — uy [0]) dodt — o Vp - V(u[w] — u[0])dxdt
= / p (uy [w] — u, [0]) dodt + Ap (u[w] — u[0])dxdt.
St Qr

Let the multiplier p be the unique solution of the following adjoint problem:

pe+Ap=0 in Qr
p=0 on St (9.39)
p(x,T)=—(u"(T) — uq) in £2.

Then the Euler equation reduces to
J' (%) [w] = / (B2 +p)w dxdt =0 VYw e L? (Qr)
T

whence

Bz* +p=0. (9.40)

Let us summarize the above results. The control z*and the state u* [z*] are
optimal if and only if there exist a multiplier p* € L? (0,T; H?(2)), with p* €
L?(0,T;L*(£2)), such that z*, u* and p* satisfy the state system (9.37), the
adjoint system (9.39) and the Euler equation (9.40).

Remark 9.5. Note that the adjoint system is a final value problem for the backward
heat equation, which is a well posed problem.
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9.3 General Equations

9.3.1 Weak formulation of initial value problems
We now consider divergence form operators'!
Eu = —divAVu + c-Vu + agu.

The matrix A = (a;,; (x,t)), in general different from a multiple of the identity ma-
trix, encodes the anisotropy of the medium with respect to diffusion. For instance,
(see subsection 2.6.2) a matrix of the type

a0
0e0
00e

with a > ¢ > 0, denotes higher propensity of the medium towards diffusion
along the x;—axis, than along the other directions. As in the stationary case, for
the control of the stability of numerical algorithms, it is important to compare the
effects of the drift, reaction and diffusion terms. We make the following hypotheses:

(a) the coefficients ¢, ag are bounded (i.e. all belong to L (Qr)), with
[ <, laol < 70, a.e. in Qr.
(b) € is uniformly elliptic:
ale <Axt)E-¢E< K| for all £ €R™, € # 0, ae. (x,t) € Qr.

We consider initial value problems of the form:

ug +Eu=f inQr
u (x,0) = g (x) x € (9.41)
Bu(o,t) =0 (o,t) € St

where Bu stands for one of the usual homogeneous boundary conditions. For in-
stance, Bu = d,u for the Neumann condition.

The weak formulation of problem (9.41) follows the pattern of the previous
sections. Let us briefly review the main ingredients.

Functional setting. The functional setting is constituted by a Hilbert triplet
(V,H,V*), where H = L* (2) and H}(£2) CV C H*(£2). The choice of V depends
on the type of boundary condition we are dealing with. The familiar choices are
V = H(92) for the homogeneous Dirichlet condition, V = H*(§2) for the Neumann
or Robin condition, V' = H 1, (£2) in the case of mixed conditions.

1 For simplicity we consider b = 0, but the extension of the results to the case b # 0 is
straightforward,
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The bilinear form. We set
a(u,v;t) = /Q {AVu - Vv + (c:Vu)v + apuv} dx
and, in the case of Robin condition,
a(u,v;t) = ‘/Q {AVu - Vv + (c-Vu)v + apuv} dx + / huv do

o8

where we require h € L™ (042), h > 0 an 9f2. Notice that a is time dependent, in
general.
Under the stated hypotheses, it is not difficult to show that

la (u, v; )] < M [ully [lv]ly

so that a is continuous in V. The constant M depends on K, v, v, that is, on
the size of the coefficients asj, ¢;, ao (and on [|h[| . 5p) in the case of Robin

condition).
Also, a is weakly coercive. In fact from (9.16), we have, for every £ > 0:

/Q (e-Vu)u dx > — ||Vl ull,

Y 2 1, 9
> 2 [e vt + L ult]

and
/ aouldx > —y, |lul2
(9]

whence, as h > 0 a.e. on 02,
Yo g
a(u,uit) = [a— 2] | 9ul? = [ + 0] lull- (9.42)
We distinguish three cases:

If v = 0 and 7, = 0 the bilinear form is V—coercive when V = H{ (£2). If
Hy(2) CV C HY(%2),

a(u,v;t) = a(u,v;t) + Ao (u,v), (9.43)
is V' —coercive for any Ay > 0.
If v =0 and 7, > 0, (9.43) is V —coercive for any Ag > 7.
If v > 0, choose in (9.42)

2

- Y
[—j:; and )\0—2[2 +'YO:|—2|:%+’YO:|

Then "
(i) > § [Vulf + 3 fuld > min{ 5.5 bl

so that a is weakly coercive.
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The data g and f. We assume g € H and feL? (0,T;V*)
The solution. We look for u such that u (t) € V, at least a.e. ¢t € [0, T]. Since

v — a (u,v;t)

and f (t) are elements of V*, a.e. t € [0,T], we ask 4 (t) € V* a.e. in [0, T] as well.
Moreover we require that ||u (¢)||;, and || ()], belongs to L? (0,T).

The weak formulation. The above considerations lead to the following weak
formulation of the initial-boundary value problem:

Given feL?(0,T;V*) and g € L*(82), determine ucL? (0,T;V) such that
weL? (0,T;V*) and that:

1. for allv €V and a.e. t € 0,77,
(@ (t) v}, +a(u(t);t) = (f(t),v),, (9.44)
2. u(0)=g.

Again, since v € C ([0,T]; H), condition 2 means |lu(t) —g||, — 0 when ¢ —
07T. As for the heat equation, (9.44) may be written in the equivalent form

d
7 (@), 0) +a(ut)wt)=(f{1),v).

for all v € V and in the sense of distributions in D' [0,T].
If a is not coercive, we make the change of variable

w (t) =e~ 0ty ()
and (9.44) becomes
(i (), v), +a(u(t) wst) = (e F (1), 0)s
with the coercive bilinear form
a(u,v;t) = a(u,ust) + Ao (u,v), .

Every stability estimate for w translates into a corresponding estimate for u, times
the factor e*ot.

9.3.2 Faedo-Galerkin method (II)

We want to show that our initial value problem has a unique weak solution, which
continuously depends on the data, in the appropriate norms. The method of Faedo-
Galerkin may be used also in this case, as in the previous sections, with small
corrections only.

Choose an orthonormal basis {wg} in H, orthogonal in V', and let

Vi = span {wy, wa, ..., Wy} -
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Look at the projected equation
(T, ), + a (um,v; t) = (f,v), Yv € Vi (9.45)

where wp, = um (t) = >y ck (t) wi.
Galerkin approximations. Inserting v = ws, s = 1, ..., m, into (9.45) we are
led to the following linear system of ordinary differential equations:

{ C.,{t)=-W({)C, (t) +F(t), a.e. 1 € [0,77, (9.46)

Cn. (0) = gm-
where C,,, (t) = (c1 (t), ..., cm (t)), the entries of the matrix W are
Wik (t) = a (wg, ws, t)

and
Fo(t) =(f(t),ws),,  Fm(t)=(F1(t),.... Fm (1)),
gs:(ngs)» gm:(gly,gm)

Since F € L? (0, T; R™) and W€ L™= (0,T), for every m > 1 there exists a unique
solution u,, € H' (0,T;V,,) of Problem (9.46).

The energy estimates for u,, and their proofs, necessary to pass to the limit in
(9.45), are perfectly analogous to those indicated in Theorems 9.1 and 9.2.

If a is not coercive, we make the change of variable

w (t) =e~ 0ty ()
and (9.44) becomes
(i (), v), +al(u(t) o t)] = (e (1), 0)
with the coercive bilinear form
a(u,v;t) = a(u,u;t) + Ao (u,v), -

Every stability estimate for w translates into a corresponding estimate for u, times
the factor e*o’. Precisely, we have:

Estimates of u,, and ,,. Let u,, be the solution of problem (9.46). Then

tel0,T

T T
max um (t)|§+a/0 |- dt < C{/O I£11% e + Iglg} (9-47)

and

T T
/ i3 dt < C {/ I£1Z dt + Iglg} (9-48)
0 0

where C' depends only on 2, o, K, 3,7, T.
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Existence and uniqueness. From (9.47), the sequence {u,,} of Galerkin
approximations is bounded in L? (0, T; V), while, from (9.48), {,,} is bounded in
L?(0,T;V*). Thus, there exists a subsequence of {u,,}, which we still denote by
{um}, such that, for m — oo,

Um — u  weakly in L? (0,T;V)

and
Um — 0 weakly in L? (0,T;V*).

Then:

Theorem 9.9. If feL? (0,T; L?(£2)) and g € L? (£2), u is the unique weak solu-
tion of problem (9.41). Moreover

T T
max [|u (¢)]]g +a/0 a3 dt < C{/O I£1Z dt + ||9||§}

t€[0,T]
T 2 T 2 2
/Onu(t)n*dtsc{/o ||f||*df+||9||o}

where C' depends only on (2, o, K, 3,7, T.

Fig. 9.2. The solution of problem (9.49) in Example 9.1

Remark 9.6. The method works with non homogeneous boundary conditions as
well. For instance, for the initial-Dirichlet problem, if the data is the trace of a
function ¢ € L? (0,T; H' (£2)) with ¢ € L2 (0,T; L*(12)), the change of variable
w = u — ¢ reduces the problem to homogeneous boundary conditions.
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Ezample 9.1. Figure 9.2 shows the graph of the solution of the Cauchy-Dirichlet
problem

Up — Uy + 2Uu, = 0.2t O<zx<b,t>0
u (z,0) = max (2 — 2z, 0) 0<z<5 (9.49)
u(0,t) =2—1t/6,u(5,t)=0 ¢>0

Note the tendency of the drift term 2u,, to “transport to the right” initial data
and the effect of the source term 0.2tz to increase the solution near x = 5, more
and more with time.

9.4 The Wave Equation

9.4.1 Hyperbolic Equations

The wave propagation in a nonhomogeneous and anisotropic medium leads to
second order hyperbolic equations. With the same notations of section 9.1, an
equation in divergence form of the type

ugr — div(A (x,t) Vu) + b(x,t) - Vu + ¢ (x,t) u = f (x,t) (9.50)
or in non-divergence form of the type
uge — tr(A (x,t) D?u) + b(x,t) - Vu + ¢ (x,t) u = f (x,t) (9.51)
is called hyperbolic in Q7 = 2 x (0,7T) if
Axt)E-€>0 a.e. (x,t)eQr,V€ € R", £ £ 0.

The typical problems for hyperbolic equations are those already considered for the
wave equation. Given f in Qr, we want to determine a solution u of (9.50) or
(9.51) satisfying the initial conditions

u(x,0) =g(x), u(x,0)=h(x) in 2

and one of the usual boundary conditions (Dirichlet, Neumann, mized or Robin)
on the lateral boundary St = 92 x [0, T7.

Even if from the phenomenological point of view, the hyperbolic equations dis-
play substantial differences from the parabolic ones, for divergence form equations
it is possible to give a similar weak formulation,which can be analyzed by means of
Faedo-Galerkin method. We will limit ourselves to the Cauchy-Dirichlet problem
for the wave equation. For general equations, the theory is more complicated, un-
less we assume that the coefficients a;i, entries of the matrix A, are continuously
differentiable with respect to both x and ¢.
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9.4.2 The Cauchy-Dirichlet problem

Consider the problem

Uy — AU = f in@Qr
u(x,0)=g(x), u (x,0) =g (x) xeN (9.52)
u(o,t) =0 (o,t) € St.

To find an appropriate weak formulation, multiply the wave equation by a function
v = v (x), vanishing at the boundary, and integrate over {2. We find

/Q uge (X,t) v (x) dx—c? /Q Au (x,t) v (x)dx = /Q f(x,t)v(x)dx.

Integrating by parts the second term, we get

/Q uge (x,t) v (x) dx+c /Q Vu (x,t) - Vv (x) dx = /Q f(xt)v(x)dx (9.53)

which becomes, in the notations of the previous sections,
/ i (t)v dera/ Vu (t) - Vo dx:/ ft)v dx
[0 [0 [0

where i stays for uy. Again the natural space for u is L? (0, T; H} (£2)). Thus, a.e.
t >0, u(t)eV=H} (22), and Au(t) € V* = H~'(£2). On the other hand, from
the wave equation we have

uy = 2 Au+ f.

If feL?(0,T; H), with H = L2 (£2), it is natural to require i€ L? (0, T; V™).
Accordingly, a reasonable assumption for u is @ € L? (0, T; H), an intermediate
space between L2 (0,T;V) and L2 (0,T;V*). Thus, we look for solutions u such
that
we L*(0,T;V), weL*0,T;H), 4cL?(0,T;V*). (9.54)

It can be shown'? that, if u satisfies (9.54), then,
we C([0,T;V) and weC([0,T];H).

Thus, it is reasonable to assume u (0) =g € V, 4 (0) = g¢' € H.
The above considerations lead to the following weak formulation.

Given feL?(0,T;V*) and g € V, g* € H, determine ucL? (0, T;V) such that
we€ L*(0,T;H), 4eL?(0,T;V*)

and that:
12 Lions-Magenes, Chapter 3, 1972.
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1. for allv €V and a.e. t € [0,T],
(@(t),v), +c* (Vu(t), Vo)g = (f (t),v),, (9.55)
2. u(0)=g,u(0)=g'

Remark 9.7. Equation (9.55) may be interpreted in the sense of distributions in
D' (0,T). First observe that, for every v € V, the real function

is a distribution D’ (0,7") and

w(t) = % (u(t),v), in D' (0,7T). (9.56)

This means that for every ¢ € D (0,T) we have

T T
[ wwewi= [ wo.vewa
0 0

In fact, since u (t) € V*, we may write, thanks to Bochner’s Theorem,

T T T
A w@w@ﬁ:A W®whﬂﬂﬁ—<AU@¢®ﬁwk

T T
= (/ u (t)§ (t) di ,v> :/ (u(t),v))of () dt.
0 0

0

for all ¢ € D(0,T). Since the last integral is well defined, w € Lj . (0,T) and
therefore w € D’ (0, T). Moreover, by definition,

T . T d2
| womzma= [ w0 ewa

in D’ (0,T), which is (9.56). As a consequence, (9.55) may be written in the form

d2

o (u(t),v)g + ¢ (Vuw (t), Vo) = (f (1), v), (9.57)

for all v € V and in the sense of distributions in [0, T).

Remark 9.8. We leave it to the reader to check that if a weak solution u is smooth,
ie.ucC? (QT), then w is a classical solution.
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9.4.3 Faedo-Galerkin method (III)

We want to show that problem (9.52) has a unique weak solution, which con-
tinuously depends on the data, in appropriate norms. Once more, we are going
to use the method of Faedo-Galerkin, so that we briefly review the main steps,
emphasizing the differences with the parabolic case.

1. We select a sequence of smooth functions {wy},-, constituting
an orthogonal basis in V

and
an orthonormal basis in H.

In particular, we can write

o0 o0
9= grwr,  g' =) giwk
k=1 k=1

where gi, = (g, wr)o, 9k = (9, wx),, with the series converging in H.
2. Let
Vin = span {wy, wa, ..., W}
and
m m m
Um () =Y re(wr,  Gm =Y grws, G = Ghwk-
k=1 k=1 k=1
We construct the sequence of Galerkin approximations u,, by solving the following
projected problem:
Determine u,, € H?(0,T;V) such that, for all s = 1,...,m,

{ (i, (t) ,ws)o +c? (Vum, (t), va)o =(f(@) ,ws)07 O=t=t (9.58)

U (0) = Gyt (0) = G

Note that the differential equation in (9.58) is true for each element of the
basis ws, s = 1,...,m,if and only if it is true for every v € V,,,. Moreover, since
um € H?(0,T;V) we have ii,, € L? (0,T;V), so that

(um (t) ,v)o = <um (t) vv>* .

3. We show that {u,, }, {tm } and {ii,, } are bounded in L? (0,T; V), L? (0, T; H)
and L2 (0,T;V*), respectively (energy estimates). Then, the weak compactness
Theorem 6.11 implies that a subsequence {u,,, } converges weakly in L? (0,T; V)
to u, while {1, } and {iis,, } converge weakly in L? (0,T; H) and L2 (0,T;V*) to
w and .

4. We prove that u in step 3 is the unique weak solution of problem (9.52).
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9.4.4 Solution of the approximate problem

The following lemma holds.

Lemma 9.2. For all m > 1, there exists a unique solution to problem (9.58). In
particular, since u,, € H?(0,T;V), we have u,, € C* ([0,T]; V).

Proof. Observe that, since wy, wa, ...,w,, are orthonormal in H,

(i)’m (t) vws)o = (Z Tk (t) Wk, ws) =T (t)
0

k=1

and since they are orthogonal in V,

2 (Z T (t) Vwg, va> = % (Vws, V) 7s (t) = ¢ | Vws][o 75 (2) -
k=1 0

Set
Fo@t)=(f(),ws), F(t)=F@),....Fn(t)

and

Ry () = (11 (1), eos T (1)) s 8 = (91y s Gm) s 8o = (9151 95) -

If we introduce the diagonal matrix
. 2 2 2
W = diag {[|Vwill§, [Vw2lly, .. [Vwnll}}

of order m, problem (9.58) is equivalent to the following system of m uncoupled
linear ordinary differential equations, with constant coefficients:

R, (t) = —c*WR,, (t) + F,, (),  ae t€[0,T] (9.59)

with initial conditions

Since Fs € L?(0,T), for all s = 1,...,m, system (9.59) has a unique solution
R, (t) € H?(0,T;R™). From

we deduce u,, € H?(0,T;V). O
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9.4.5 Energy estimates

We want to show that from the sequence of Galerkin approximations {u,,} it is
possible to extract a subsequence converging to the weak solution of the original
problem. As in the parabolic case, we are going to prove that the relevant Sobolev
norms of u,, can be controlled by the norms of the data, in a way that does
not depend on m. Moreover, the estimates must be powerful enough in order to
pass to the limit as m — 400 in the approximating equation.

(i (), 0)g + ¢ (Vam (£) V) = (f (), ),
In this case we can give a bound of the norms of u,, in L (0,T;V), of 4, in

L> (0,T; H) and of i in L? (0,T;V*), that is the norms

T
. 2
e s o iy and [ i )1 .

For the proof, we shall use the following elementary but very useful lemma.

Lemma 9.3. (Gronwall). Let ¥, G be continuous in [0, T|, with G nondecreasing
and~y > 0. If

U (t) < G()+y/0tw )ds,  forallte[0,T]

then
U(t)<G(t)er, for all t € [0,T].

Proof. Let
R (s) :’y/) v (r)dr.

Then, for all t € [0, 77,

R (s) =¥ (s) <~ [G(S)Jr’y/oslp(r)dr] =v[G(s) + R(s)].

Multiplying both sides by exp (—vt), we can write the above inequality in the form

d

75 LB (s) exp (=7t)] <G (s) exp (—t).

Integrating over (0,t) gives (R (0) = 0):

t
R(t) <~ / G(s)e?t¥ds <G (t)e,  forallte0,T].
0
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Theorem 9.10. (Estimate of wp,, @ ). Let u,, be the solution of problem (9.58).
Then

. 2
e {lion (15 426 Jumn ()13} < " {1lgl + 193 + 17z 0.z } - (9:60)

Proof. Since u,, € H?(0,T;V), we may choose v = 1, (t) as a test function in
(9.58). We find

(Gm (t) , tm () + c? (Vg (), Vi ()g = (f (), @m (8))o (9.61)
for a.e. t € [0,T]. Observe that

(i (1) i (D)9 = 3 5 i (D13, e t€(0,7)

and
(Vm (t), Vit () = ¢ — [ Vum (#)]5 -
By Schwarz’s inequality,

(F(0) i ()0 < 17 () o (Dl < 3 17 ()1 4 3 i 1)1
so that, from (9.61) we deduce

& i 12+ 262 i (O} < 17 (013 + 1o (13

dt
Integrating over (0,t) we get (Remark 7.34 applied to %, and Vu,,)
. 2 2
[ (£)llg + 22 [[um ()13

t t
2 .
<Gl + HGLHﬁ/@ |\f<s>|\§ds+/0 it (3)I7 ds

t t
< g2 + | + / 1 (s)]2ds + / i ()12 ds,
since ) ) 5 5
1Gwl} < llgl}, [IGLe < llg*]ls -
Let
t
() = l[im ()5 + 26 [um OIF, G (&) = lgll? +[|o* ] +/0 If (3)]12 ds.

Note that both ¥ and G are continuous in [0, 7]. Then

LT/(t)SG(t)Jr/tLT/(S)dS
0
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and Gronwall Lemma yields, for every ¢ € [0, T,

t
i (#)llg +2¢* [fum (D17 Set{lglf+|hlﬁ+/0 IflgdS}

We now give a control of the norm of i, in L? (0, T; V™).

Theorem 9.11. (Estimate of i,,). Let wu,, be the solution of problem (9.58).
Then

T 9 T
/ it (£)]1? dtsc<c,T>{|g|?+Hngo+ / I1f (s)l[5 ds. } (9.62)
0 0

Proof. Let v € V and write

v=w+=z

with w € V,,, = span{wy, ws, ..., w,} and z € V,;-. Since wy, ..., w, are orthogonal
in V, we have

l[wlly <ol -
Choosing w as a test function in problem (9.58), we obtain
(tim (t) ,v)g = (lim (t) ,w)g = — (Vum (t), Vw), + (f (t) w)g -

Since
|(Vtg, (8), Vw)ol < [lum ()] [wll;

we may write

|G (), 0)o] < {? llum (Ol + 1f ®)lo} 1wy
<A llum Ol + 1 Ol } 121l -

Thus, by the definition of norm in V*, we infer

it (), < ¢ )]l + 1 )]l -

Squaring and integrating over (0,7") we obtain

T 2 T 2 T 2
/Ouam(t)m dts2c4/0 e ()2 dt+2/0 IF )2 dt

and Theorem 9.10 gives (9.62). O
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9.4.6 Existence, uniqueness and stability

Theorem 9.10 shows that the sequence {u,,} of Galerkin approximations is
bounded in L® (0,T; V), hence, in particular, in L? (0,7T; V), while the sequence
{iimm } is bounded in L% (0, T; V*).

Theorem 6.11 implies that there exists a subsequence, which for simplicity we
still denote by {u,,}, such that, as m — oo,

Um — u  weakly in L* (0,T;V)
Um — U weakly in L* (0,T; H)
thy — i weakly in L* (0,T;V*).

The following theorem holds:

Theorem 9.12. Let feL?(0,T;H), g € V, g € H. Then u is the unique weak
solution of problem (9.52). Moreover,

. .. 2
HuHiw(o,T;V) + HuHiw(o,T;H) + HuH;(o,T;V* <C {HfH;(o,T;H) + HQH? + HQIHO}
with C = C (¢, T).
Proof. Existence. We know that:
T T
/0 (Vum (t), Vo (t)), dt — /0 (Vu(t), Vo (t)), dt

for all ve L% (0, T; V),

T T
/ (i (£) w0 (£)) d = / (1) yw (6))g dt
0 0

for all weL? (0, T; H), and

T T T
/0 (i (£), 0 (£)) = / (it (£) 0 (1)), dt — / (i (t) 0 (£)), dt

for all ve L% (0, T; V),

We want to use these properties to pass to the limit as m — +oco in problem
(9.58), keeping in mind that the test functions have to be chosen in V,,. Fix
veL?(0,T;V); we may write

v (t) = ibk (t) W

k=1

where the series converges in V for a.e. t € [0,7T]. Let

N
o (8) =) bi () wi (9.63)
k=1
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and keep N fixed, for the time being. If m > N, then vy € L% (0,T; V,y,) . Multi-
plying equation (9.58) by by (t) and summing for k =1,..., N, we get

(i (t) , vN (t))o +c (Vum, vUN)O =(f(@),on (t))o .

An integration over (0,7 yields

T T
/ { (i, vv)o + €& (Vm, Vun), } dt = / (f,vn), dt. (9.64)
0 0

Thanks to the weak convergence of u,, and i, in their respective spaces, we can
let m — +o00. Since

(tm (t), 0N (t)g = (tm (), on (1)), = (@ (), vn (1)),
we obtain

T T
| tGiow).+ ¢ (uvu}de= [ (Gowy
0 0

Now, let N — oo, observing that vy — v in L? (0, T; V) and, in particular, weakly
in this space as well. We obtain

T T
‘A{www@x+8wwmvwmﬁﬂ—A(ﬂww@%ﬁ (9.65)

Then, (9.65) is valid for allv € L? (0, T’; V). This entails, in particular (see footnote
7
(@ (t),v), +c* (Vu(t), Vo)gdt = (f (t),v),

for all veV and a.e. t € [0,T]. Therefore u satisfies (9.55) and we know that
weC ([0,T]:V), 4eC ([0, T);H).

To check the initial conditions, we proceed as in Theorem 9.3. We choose any
function v € C? ([0, T); V), with v (T) = v (T) = 0. Integrating by parts twice in
(9.65), we find

T

/0 [ (t),5(8), + & (Vu(t), Vo (1), ) dt (9.66)
T

:/ (f (t),v(t))ydt+ (u(0),v(0)) — (u(0),v(0)).

0

On the other hand, integrating by parts twice in (9.64), and letting first m — +o0,
then N — oo, we deduce

T

/0 [ (t),5(8), + A (Va(t), Vo (1)), ) dt (9.67)
T

:/(ﬂ0w®%ﬁ+wm®»*@v@%

0
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Comparing (9.66) and (9.67), we conclude
(@(0),(0)) — (u(0),v(0) = (¢",2(0)) — (g,v(0))

for every v € C? ([0, T]; V), with v (T) = © (T') = 0. The arbitrariness of ¥ (0) and
v (0) gives
w(0)=g¢g' and wu(0)=g.

Uniqueness. Assume g = g = 0 and f = 0. We want to show that u = 0. The
proof would be easy if we could choose @ as a test function in (9.55), but « (¢) does
not belong to V. Thus, for fixed s, set!?

[lu(r)ydr f0<t<s
v(t) =
0 ifs<t<T.

We have v (t) € V for all ¢t € [0,T], so that we may insert it into (9.55). After an
integration over (0,7'), we deduce

/08 {(i(t),v (@), +(Vu(t),Vv(t)),}dt = 0. (9.68)

An integration by parts yields
/0 (i (t) v (1)), dt = — / (i (1) 0 (1)), dt = / (i (t) u (£), dt

1 [/°d )
==/ = |u@)|?dt
5 | g

since v (s) =4 (0) =0 and v (¢t) = —u (t) if 0 < ¢ < s. On the other hand,

[ v von,di= [ (vs 0. Voydi= -3 [ LIvelia

Hence, from (9.68),

| G (@ = 1w @i} ae—o
or
lu(9)[l§ + ¢ |V ()5 = 0
which entails u (s) = 0.

Stability. To prove the estimate in Theorem 9.12, use Proposition 7.16. to pass
to the limit as m — oo in (9.60). This gives the estimates for u and 4. The estimate
for i follows from the weak lower semicontinuity of the norm in L2 (0,7;V*). O

13 We follow Ewvans, 1998.
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Problems
9.1. Consider the problem

ur — (@ (@) ug)e + 0 (@) ug + c()u= f(z,t) 0<z<l,0<t<T
u(z,0) =g(z), 0<z<1
w(0,t) =0,u(l,t)=k(t). 0<t<T.
1) Modifying u suitably, reduce the problem to homogeneous Dirichlet condi-
tions.
2) Write a weak formulation for the new problem.
3) Prove the well-posedness of the problem, under suitable hypotheses on the
coeflicients a, b, c and the data f, g. Write a stability estimate for the original w.
9.2. Consider the Neumann problem (9.33) with non-homogeneous boundary
condition d,u = h, with h € L? (Sr).
a) Give a weak formulation of the problem and derive the main estimates for

the Galerkin approximations.
b) Deduce existence and uniqueness of the solution.

9.3. Prove a variant of the energy estimate in Theorem 9.1, by showing first
that

d
= llum (1)llg + 20 lum O < I1F B)llg + llum )1

and then using Gronwall’s Lemma.

9.4. Derive the energy estimate for the Galerkin approximations u,, of the
solution of the Cauchy-Neumann problem, whithout using the change of variable

w(t) = e Mu(t).
[Hint. Add and subtract A ||upm, (t)Hira use the weak coercivity of a and Gron-
wall’s Lemma. |

9.5. H? — regularity. State and prove a H2—regularity result for the heat equa-
tion with homogeneous Neumann boundary conditions.

9.6. Consider the problem

Uy — 2Au = f in 2x(0,7)
u(x,0) = g(x), ut (x,0) =h(x) in {2
u, (0,t) = 0. on 92 x [0,T].

Write a weak formulation of the problem and prove the analogues of Theorems
9.10, 9.11 and 9.12.

9.7. Concentrated reaction. Consider the problem

Ut — Ugg +u (2,8) 0 (2) =0 —-l<z<1l,0<t<T
u(x,O):g(x),ut(x,O):h(x) —l<z<1
u(—1,t) =u(l,t) =0. 0<t<T.
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where d (z) denotes the Dirac ¢ at the origin.
a) Write a weak formulation for the problem.

b) Prove the well-posedness of the problem, under suitable hypotheses on g and
h.

[Hint. a) Let V = H{ (—1,1) and H = L? (—1,1). The weak formulation is: find
ue C([-1,1],V), withuw € C([-1,1],H) and @ € C ([-1,1],V*), such that, for
every v €V,

(U (t),v), + (uz (t) ,v5) + w(0,t)v(0) =0 for a.e. t € (0,7T)

and ||u (t) — gy, =0, ||e(t) —h|ly —0ast—0].

9.8. Consider the minimization of the cost functional

1
J(u,z) = _/ u (T) — ug|” + B axat
2 Jo 2 Jor
under the condition (state system)
Uy — Au=f+z in Qr
u=_0 on St

u(x,0) = u (x,00=0 in 2

where (2 is a C?—domain and f € L? (Qr). Show that there exists a unique optimal
control z* € L? (Qr) and determine the optimality conditions (adjoint equation
and Euler equation).



Appendix A

Fourier Series

Fourier coefficients — Expansion in Fourier series

A.1 Fourier coefficients

Let u be a 2T-periodic function in R and assume that u can be expanded in a
trigonometric series as follows:

u(z) =U+ Y {akcoskwzx + by sin kwz} (A1)
k=1

where w = 7/T.

First question: how u and the coefficients U, ay and by are related to each
other? To answer, we use the following so called orthogonality relations, whose
proof is elementary:

T T
/ cos kwzx cosmwzx dr = / sin kwz sinmwz dz =0 ifk#m
-T -T

T
/ coskwz sinmwz de =0 for all k,m > 0.
-T

Moreover

T T
/ cos? kwx dx = / sin? kwzx dx = T. (A.2)
-7 -7

Now, suppose that the series (A.1) converges uniformly in R. Multiplying (A.1)
by cos nwz and integrating term by term over (—T,T'), the orhogonality relations
and (A.2) yield, for n > 1,

T
/ u (z) cosnwz dr = Ta,
-7

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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or

1 (T
ap, = —/ u (z) cosnwzx d. (A.3)
TJ) 7
For n =0 we get
T
/ u(x) de =2UT
-7
or, setting U = ap/2,
1 (T
ap = —/ u(zx) de (A4)
TJ) 7

which is coherent with (A.3) as n = 0.
Similarly, we find

T
by = i‘/ u () sin nwzx dx. (A.5)
TJ) 7

Thus, if u has the uniformly convergent expansion (A.1l), the coefficients a, b,
(with ap = 2U) must be given by the formulas (A.3) and (A.5). In this case we
say that the trigonometric series

% + > {ak cos kwz + b sin kwz } (A.6)
k=1

is the Fourier series of u and the coeflicients (A.3), (A.4) and (A.5) are called the
Fourier coefficients of u.

e Odd and even functions. If u is an odd function, i.e. u(—z) = —u(z), we
have ay = 0 for every k > 0, while

9 [T
b = = u () sin kwz dz.
T Jo
Thus, if u is odd, its Fourier series is a sine Fouries series:

u(z) = bysinkwz.
k=1

Similarly, if u is even, i.e. u (—z) = u (z), we have by, = 0 for every k > 1, while

2 T
ax = —/ u () cos kwz dz.
T Jo

Thus, if u is even, its Fourier series is a cosine Fouries series:

u(x) = % + kzl a cos kw.
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e Fourier coefficients of a derivative. Let u € C! (R) be 2T —periodic. Then
we may compute the Fourier coefficients aj, and b}, of w’. We have, integrating by
parts, for k > 1:

1 T
ay, = —/ u' (x) cos kwr dz
TJ)-r

1 kw [T
=7 [u () cos kwx]iT + Tw / u (z) sin kwz dx
-T

kw [T

S u () sin kwz dz
T ).

= kwbk

and

/ 1 T / .
b, = = u' (z)sin kwz dx
T
-T
1

kw (T
=7 [u (z) sin kwx]iT — Tw u () cos kwz dz
-T
kw (T
S u () cos kwz dz
T/,
= —kway

Thus, the Fourier coefficients aj, and b}, are related to as and by by the following
formulas:

ajy, = kwbg, b, = —kway. (A.7)
o Complex form of a Fourier series. Using the Euler identities

et — cos kwzr + i sin kwz

the Fourier series (A.6) can be expressed in the complex form
S} .
Z Ck ezkwm,
k=—oc0
where the complex Fourier coefficients ci are given by
1 T

=57 L u(z) e *% sz,

Ck

The relations among the real and the complex Fourier coefficients are:

B 1
Co = 5o
and
ck:l(ak—bk),c,kzék for k > 0.

2
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A.2 Expansion in Fourier series

In the above computations we started from a function v admitting a uniform
convergent expansion in Fourier series. Adopting a different point of view, let u be
a 2T —periodic function and assume we can compute its Fourier coefficients, given
by formulas (A.3) and (A.5). Thus, we can associate with u its Fourier series and
write

ap s .
ur~ — 4+ > {agcoskwz + by sin kwx} .
k=1

The main questions are now the following:

1. Which conditions on v do assure “the convergence” of its Fourier series?
Of course there are several notions of convergence (e.g pointwise, uniform, least
squares).

2. If the Fourier series is convergent in some sense, does it always have sum u?

A complete answer to the above questions is not elementary. The convergence
of a Fourier series is a rather delicate matter. We indicate some basic results (for
the proofs, see e.g. Rudin, 1964 and 1974, Royden, 1988, or Zygmund and Wheeden,
1977.

o Least squares or L? convergence. This is perhaps the most natural type of
convergence for Fourier series (see subsection 6.4.2). Let

ao

Sn () 5

N
+ > {ay cos kwx + by sin kwz }
k=1

be the N —partial sum of the Fourier series of u. We have
Theorem A.1 Let u be a square integrable function* on (=T, T). Then
T

i » [Sn (@) — u (z)]* dz = 0.

Moreover, the following Parseval relation holds:
e 2G5 X 5 o
T) " "2 54

Since the numerical series in the right hand side of (A.8) is convergent, we deduce
the following important consequence:

Corollary A.1 (Riemann-Lebesgue).

lim ar = lim by, =0
k—+oco k—+oco

e Pointwise convergence. We say that u satisfies the Dirichlet conditions in
[T, T] if it is continuous in [—T,T] except possibly at a finite number of points

! That is ITT u? < oo.
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of jump discontinuity and moreover if the interval [T, T] can be partitioned in a
finite numbers of subintervals such that u is monotone in each one of them.
The following theorem holds.

Theorem A.2. If u satisfies the Dirichlet conditions in [—T,T] then the
Fourier series of u converges at each point of [—T,T]. Moreover?:

u(z+) +u(z-)
2
u(T-)4+u(-T+)
2

ao ze (-T,7T)

5 + > {ag coskwz + by sinkwz} =
k=1

=T

In particular, under the hypotheses of Theorem A.2, at every point x of continuity
of u the Fourier series converges to u ().

e Uniform convergence. A simple criterion of uniform convergence is provided
by the Weierstrass test (see Section 1.4). Since

|ak cos kwzx + by sin kwz| < |ag| + |bk|

we deduce: If the numerical series

8

|ak| and Z |bk|
k=1

k=1

are convergent, then the Fourier series of w is uniformly convergent in R, with sum
u.

This is the case, for instance, if u € C! (R) and is 27T periodic. In fact, from
(A.7) we have for every k > 1,

ap = fw—lkb; and by = ﬁa;.
Therefore
jaxl < —3 + (0})?
and

1
|br| < k2 + (a3,)*.

Now, the series Y 7 is convergent. On the other hand, also the series
o () 2 o (7 2
> (ay)” and 37 (b)
k=1 k=1

are convergent, by Parseval’s relation (A.8) applied to v’ in place of u. The conclu-
sion is that if u € C! (R) and 2T periodic, its Fourier series is uniformly convergent
in R with sum u.

2 We set f (z+) = limy—1, f ().
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Another useful result is a refinement of Theorem A.2.

Theorem A.3 Assume u satisfies the Dirichlet conditions in [T, T]. Then:

a) If w is continuous in [a,b] C (—T,T), then its Fourier series converges
uniformly in [a, b].

b) If w is continuous in [-T,T] and u(—T) = w(T), then its Fourier series
converges uniformly in [—T,T] (and therefore in R).
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Measures and Integrals

Lebesgue Measure and Integral

B.1 Lebesgue Measure and Integral

B.1.1 A counting problem

Two persons, that we denote by R and £, must compute the total value of M
coins, ranging from 1 to 50 cents. R decides to group the coins arbitrarily in piles
of, say, 10 coins each, then to compute the value of each pile and finally to sum
all these values. £, instead, decides to partition the coins according to their value,
forming piles of 1-cent coins, of 5-cents coins and so on. Then he computes the
value of each pile and finally sums all their values.

In more analytical terms, let

V:M—N

a value function that associates to each element of M (i.e. each coin) its value.
R partitions the domain of V in disjoint subsets, sums the values of V' in such
subsets and then sums everything. £ considers each point p in the image of V
(the value of a single coin), considers the inverse image V! (p) (the pile of coins
with the same value p), computes the corresponding value and finally sums over
every p.

These two ways of counting correspond to the strategy behind the definitions
of the integrals of Riemann and Lebesgue, respectively. Since V is defined on a
discrete set and is integer valued, in both cases there is no problem in summing its
values and the choice is determined by an efficiency criterion. Usually, the method
of L is more efficient.

In the case of a real (or complex) function f, the “sums of its values” corresponds
to an integration of f. While the construction of R remains rather elementary, the
one of L requires new tools.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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Let us examine the particular case of a bounded and positive function, defined
on an interval [a,b] C R. Thus, let

f :[a,b] = [inf f,sup f].

To construct the Riemann integral, we partition [a,b] in subintervals I, ..., In
(the piles of R), then we choose in each interval I a point £, and we compute
f (&)1 (Ix), where I(I) is the length of Iy, (i.e. the value of the k — th pile). Now
we sum the values f (£,,) (Ix) and set

b N
®) [ 1=l > (6 )
where 6 = max{l(I1),...,! (In)}. If the limit is finite and moreover is independent

of the choice of the points £, then this limit defines the Riemann integral of f in
[a, b].

Now, let us examine the Lebesgue strategy. This time we partition the interval
[inf f, sup f] in subintervals [yr_1, yx] (the values of each coin for £) with

inff=yo<y1 <..<yn—1<yn =supf.

Then we consider the inverse images Ex = f~* ([yx_1,¥x]) (the piles of homoge-
neous coins) and we would like to compute their .... length. However, in general
FE is not an interval or a union of intervals and, in principle, it could be a very
irregular set so that it is not clear what is the “length” of Ej.

Thus, the need arises to associate with every Ej a measure, which replaces the
length when Ej, is an irregular set. This leads to the introduction of the Lebesgue
measure of (practically every) set E C R, denoted by |E|.

Once we know how to measure Ej, (the number of coins in the k — th pile), we
choose an arbitrary point @y € [yk—1, yx] and we compute ay |Eg| (the value of
the k — th pile). Then, we sum all the values @y, |E}| and set

b N
(L)/a f:;%;ak|Ek|.

where p is the maximum among the lengths of the intervals [yr_1, yx]. It can be
seen that under our hypotheses, the limit exists, is finite and is independent of the
choice of @g. Thus, we may always choose @) = yg—1. This remark leads to the
definition of the Lebesgue integral in subsection B.3: the number Zivzl Ye—1 | Ekl
is nothing else that the integral of a simple function, which approximates f from
below and whose range is the finite set yo < ... < yny_1. The integral of f is the
supremum of these numbers.

The resulting theory has several advantages with respect to that of Riemann.

For instance, the class of integrable functions is much wider and there is no need
to distinguish among bounded or unbounded functions or integration domains.
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Especially important are the convergence theorems presented in subsection
B.1.4, which allow the possibility of interchanging the operation of limit and inte-
gration, under rather mild conditions.

Finally, the construction of the Lebesgue measure and integral can be greatly
generalized as we will mention in subsection B.1.5.

For the proofs of the theorems stated in this Appendix, the interested reader
can consult Rudin, 1964 and 1974, Royden, 1988, or Zygmund and Wheeden, 1977.

B.1.2 Measures and measurable functions

A measure in a set (2 is a set function, defined on a particular class of subsets of
{2 called measurable set which “behaves well” with respect to union, intersection
and complementation. Precisely:

Definition B.1 A collection F of subsets of {2 is called c—algebra if:
(i) @,NelF;

(ii) A€ F implies \A € F;

(iii) if {Ax},cy C F then also UAy and NAy belong to F.

Ezample B.1. If {2 = R™, we can define the smallest c—algebra containing all the
open subsets of R", called the Borel oc—algebra. Its elements are called Borel sets,
typically obtained by countable unions and/or intersections of open sets.

Definition B.2 Given a c—algebra F in a set {2, a measure on F is a function
w:F =R

such that:
(i) wp(A) >0 for every A € F;

(ii) if Aj, Asg, ...are pairwise disjoint sets in F, then
p(Ug>14r) Z w(Ag) (o — additivity).
E>1

The elements of F are called measurable sets.

The Lebesgue measure in R™ is defined on a o —algebra M containing the Borel
o—algebra, through the following theorem.

Theorem B.1 There exists in R™ a o—algebra M and a measure
|-],, : M — [0, +00]
with the following properties:

1. Each open and closed set belongs to M.
2. If A€ M and A has measure zero, every subset of A belongs to M and has
measure zero.
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3. If
A={xeR":a; <z; <b;; j=1,...,n}
then |A| = Hn (bJ — aj) .

j=1

The elements of M are called Lebesgue measurable sets and |-|,, (or simply || if
no confusion arises) is called the n—dimensional Lebesgue measure. Unless explic-
itly said, from now on, measurable means Lebesgue measurable and the measure is
the Lebesgue measure.

Not every subset of R™ is measurable. However, the nonmeasurable ones are
quite ... pathological® !

The sets of measure zero are quite important. Here are some examples: all
countable sets, e.g. the set Q of rational numbers; straight lines or smooth curves
in R?; straight lines, hyperplanes, smooth curves and surfaces in R3.

Notice that a straight line segment has measure zero in R? but, of course not
in R.

We say that a property holds almost everywhere in A € M (in short, a.e. in A)
if it holds at every point of A except that in a subset of measure zero.

For instance, the sequence fj () = exp (fn sin? :c) converges to zero a.e. in
R, a Lipschitz function is differentiable a.e. in its domain (Rademacher’s Theorem
1.1).

The Lebesgue integral is defined for measurable functions, characterized by the
fact that the inverse image of every closed set is measurable.

Definition B.3 Let A C R™ be measurable, and f : A — R. We say that f is
measurable if

[ er
for any closed set C' C R.

If f is continuous, is measurable. The sum and the product of a finite num-
ber of measurable functions is measurable. The pointwise limit of a sequence of
measurable functions is measurable.

If f: A— R, is measurable, we define its essential supremum or least upper
bound by the formula:

esssup f =inf{K : f <K a.e. in A}.
Note that, if f = X, the characteristic functions of the rational numbers, we have
sup f = 1, but esssup f = 0, since |Q| = 0.
Every measurable function may be approximated by simple functions.A func-
tion s : A C R™ — R is said to be simple if its range is constituted by a finite

number of values s, ..., sy , attained respectively on measurable sets Ay, ..., A,
contained in A. Introducing the characteristic functions x A,> We may write

N
§= E 55X A, -
j=1

! See e.g. Rudin, 1974.
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We have:

Theorem B.2. Let f : A — R, be measurable. There exists a sequence {sj}
of simple functions converging pointwise to f in A. Moreover, if f > 0, we may
choose {sy} increasing.

B.1.3 The Lebesgue integral

We define the Lebesgue integral of a measurable function on a measurable set A.

For a simple function s = 3%

j=15iXa, We set:

N
/ s=Y_s;|Al
A O

with the convenction that, if s; = 0 and |A;| = +oo, then s;|4;| = 0.
If f > 0 is measurable, we define

fir-on

where the supremum is computed over the set of all simple functions s such that
s < fin A.

In general, if f is measurable, we write f = f* — f~, where f* = max{f,0}
and f~ = max{—f,0} are the positive and negative parts of f, respectively. Then

we set:
J=f=]r

under the condition that at least one of the two integrals in the right
hand side is finite.

If both these integrals are finite, the function f is said to be integrable or
summable in A. From the definition, it follows immediately that a measurable
functions f is integrable if and only if |f]| is integrable.

All the functions Riemann integrable in a set A are Lebesgue integrable as
well. An interesting example of non integrable function in (0,4o00) is given by

h(z) =sinz/z. In fact?
+00 |q;
/ Mdm = +00.
0 X

On the contrary, it may be proved that

N ginx ™

lim de = —.
N—+o00 0 x 2

and therefore the improper Riemann integral of A is finite.

2 We may write

|s1na:| / |s1na:| = 1 /l€7r . = 2
x > — |sinz|dx = — =
/0 Z k—1)m ; k) h—1)x ; km
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The set of the integrable functions in A is denoted by L' (A). If we identify
two functions when they agree a.e. in A, L' (A) becomes a Banach space with the

IlOrIIlB

We denote by L, (A) the set of locally summable functions, i.e. of the functions
which are summable in every compact subset of A.

B.1.4 Some fundamental theorems

The following theorems are among the most important and useful in the theory of
integration.

Theorem B.3 (Dominated Convergence Theorem). Let {fr} be a sequence
of summable functions in A such that fi, — f a.e.in A. If there exists g > 0,
summable in A and such that |fi| < g a.e. in A, then f is summable and

klggo/Afk:/Af.

Theorem B.4 Let {fi} be a sequence of summable functions in A such that
[ fe = fll1(ay = 0 as k — +oo. Then there exists a subsequence {fx,} such that
fr; = f ae as j — +oo.

In particular

Theorem B.5 (Monotone Convergence Theorem). Let {fi} be a sequence of
nonnegative, measurable functions in A such that

< <filfeym1 <.
Then
klggo /A Jr= /Aklglgo T

Example B.2. A typical situation we often encounter in this book is the following.
Let f € L' (A) and, for e > 0, set A. = {|f| > €}. Then, we have

/Af%/Af as e — 0.

This follows from Theorem B.4 since, for every sequence £; — 0, we have [f| x4 <
J

|f] and therefore
/ f:/fXAEA*}/f as € — 0.
A, A I A

3 See Chapter 6.



B.1 Lebesgue Measure and Integral 543

Let Cp(A) be the set of continuous functions in A, compactly supported in
A. An important fact is that any summable function may be approximated by a
function in Cj (A).

Theorem B.6. Let f € L' (A). Then, for every & > 0, there exists a continuous
function g € Cy (A) such that

1f = gllpra) <0

The fundamental theorem of calculus extends to the Lebesgue integral in the
following form:

Theorem B.7. (Differentiation). Let f € L} (R). Then

loc

%/:f(t)dt—f(x) a.e. z € R.

Finally, the integral of a summable function can be computed via iterated
integrals in any order. Precisely, let

L={xeR": -0 <a; <z;<b;<o0;i=1,..,n}

and
L={yeR™: —c0<a; <y; <bj <oo; j=1,..,m}.

Theorem B.8 (Fubini). Let f be summable in [ = I; X Is C R™ x R™. Then
1. f(x,-) € L' (Iz) for a.e. x €l1, and f (-, y) € L' (I) for a.e. y €1,

2. f[2 f (aY) dy S Ll (Il) and f[l f (X’ ) dx € Ll (12)’
3. the following formulas hold:

/f(x,y) dxdy:/ dx | f(x,y) dy:/ dx | f(x,y)dy.
I Iy I Iz Iy

B.1.5 Probability spaces, random variables and their integrals

Let F be a o—algebra in a set 2. A probability measure P on F is a measure in
the sense of definition B.2, such that P ({2) =1 and

P:F—[0,1].

The triplet (£2,F, P) is called a probability space. In this setting, the elements w
of 2 are sample points, while a set A € F has to be interpreted as an event. P (A)
is the probability of (occurrence of) A.

A typical example is given by the triplet

2=10,1, F=Mnl0,1], P(A) = |4]

which models a uniform random choice of a point in [0, 1].
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A 1—dimensional random variable in (£2,F, P) is a function
X:2—-R
such that X is F—measurable, that is
XtoyerF
for each closed set C' C R.

Example B.3. The number k of steps to the right after N steps in the random walk
of Section 2.4 is a random variable. Here (2 is the set of walks of N steps.

By the same procedure used to define the Lebesgue integral we can define the
integral of a random variable with respect to a probability measure. We sketch the
main steps.

If X is simple, i.e. X = Zjvzl 8jX 4, we define

N
/ X dP =Y s;P(A)).
o) =

If X >0 we set

/XdP—sup{/YdP:YSX,Ysimple}.
[0 [0

Finally, if X = X+ — X~ we define

/XdP:/XdePf/X*dP
2 2 2

provided at least one of the integral on the right hand side is finite.
In particular, if

/|X| dP < oo,
0
then
E(X):(X}:/XdP
0

is called the expected value (or mean value or expectation) of X, while

Var(X):/Q(X—E(X))Q dp

is called the variance of X.
Analogous definitions can be given componentwise for n—dimensional random
variables

X: 02— R"



Appendix C

Identities and Formulas

Gradient, Divergence, Curl, Laplacian — Formulas

C.1 Gradient, Divergence, Curl, Laplacian

Let F be a smooth vector field and f a smooth real function, in R3.

Orthogonal cartesian coordinates

1. gradient:

_of., of. of
Vf—aleray,]Jrazk

2. diwergence (F =F1i+ F1j+ F3k):

D 9 )
le F —a—l‘Fl + %FQ + &Fg

3. laplacian:

o*f O f  O*f

Af=—S+——+—
/ 0x?  Oy? 022
4. curl:
ij k
curl F =10, 0y 0.
Fy Fy Fs
Cylindrical coordinates
z=rcosf, y=rsinfh, 2=z (r>0,0<6<2m
e, = cosfi+sinfj, ey = —sinfi+coslj, e, =k.

Salsa S. Partial Differential Equations in Action: From Modelling to Theory
© Springer-Verlag 2008, Milan
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1. gradient:
B 8f 1 8f 8f
vf ’l" e, + - 80 €9 + = a
2. divergence (F =Fre, + Fpey + F.k):
10 10 0

div F :;E (’I"FT) + ;%Fg + &Fz

3. laplacian:
10 af 10°f 9°f 9*f 10f 18°f 8°f
Af—?ﬁ(?"a?) 2o 02 o Tror rPogt a2
4. curl:
e, rey e,

curl F==19, 89 0,
F,.rFy F,

Spherical coordinates

z =rcosfsinty, y=rsinfsinty, z = rcos (r>0,0<6<2m, 0<% <m)

e, = cos 0sin i+ sin @ sin Y j+ cos Pk
ey = —sin fi+ cos 0]
e, = cos 0 cos 1i+ sin 0 cos 1j— sin YPk.
1. gradient:
of 1 of 19f
Vf— or T+rsn1/)80 et r 0 v

2. divergence (F =F,e, + Fypeg + Fyey):

. 0 2 1] 1 0
leF_a Fet Dh r [smw 80F oY
%/_/

radial part

qu + cot 1/)F¢]

spherical part

3. laplacian:

82f 20f { 1 0*f 82_f f}
Af = or2 +r8r+ (sin)? 802+31/) coty o

radial part spherical part (Laplace-Beltrami operator)

4. curl:
) e, rey rsinyey
tF=———10, 0O 0
ro r2siny v 0
F. rFy rsinyF,



C.2 Formulas

Gauss’ formulas

In R™, n > 2, let:

u, v be vector fields of class C! (ﬁ)

¢, 1 be real functions of class C' (£2);
do be the area element on 0f2.

Jpdivudx = [ u-vdo

- Jo Ve dx = [, v do
JoApdx=[,,Vo-vdo= [,,0.p do
[yt divF dx = [, UF v do — [, Vi - F dx
- JoAp dx = [, ¢0,p do — [, V- Vi dx
- Ja(WAp — pAY) dx =[50 (VOup —d,¢) do

. fncurludx:ffanuxuda

N O Ot s W N

Identities

div curl u =0

curl Vo =0

div (pu) = ¢ div u+Ve - u
curl (pu) = p curl u+Vp x u

div (u x v) = curlu- v—curlv - u

(wV)u = curlu x u+3V lu|?

curl curl u = V(div u) — Au.

© 0 N ok W

Jou curl vdx = [ v curl udx— [, (uxv)-vdo.

curl (u x v) =(v-V)u— (u-V) v+ (div v) u— (div u) v

V(u-v)=uxcurl v+ vx curl u+ (u-V) v+ (v-V)u

C.2 Formulas 547

2 be a bounded smooth domain and and v the outward unit normal on 9£2;

(Divergence Theorem)

(Integration by parts)
(Green’s identity I)
(Green’s identity II)
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Absorbing barriers 98
Adjoint problem 482
Advection 157
Arbitrage 80

Barenblatt solutions 91
Bernoulli’s equation 284
Bond number 287
Boundary conditions 17
Dirichlet 17,28

Mixed 28
mixed 18
Neumann 17,28
Robin 18,28

Breaking time 175
Brownian

motion 49
path 49

Canonical form 254, 256
Canonical isometry 331
Capillarity waves 291
Cauchy sequence 308

Characteristic 158, 194, 258

parallelogram 238
strip 209

system 209
Chebyshev polynomials
Classical solution 433
Closure 7

Compact

operator 348

set 8

Condition

compatibility 105
Conjugate exponent 9
Conormal derivative 461
Convection 56
Convergence

least squares 24

uniform 9

weak 344
Convolution 370, 386
Cost functional 479
Critical mass 67
Cylindrical waves 261

d’Alembert formula 237
Darcy’s law 90

Diffusion 14

coefficient 48

Direct sum 317

Dirichlet eigenfunctions 451
Dispersion relation 224, 249, 289
Distributional

derivative 378

solution 434

Domain 7

Domain of dependence 239, 279
Domains

Lipschitz 11

smooth 10

Drift 54,78

Eigenfunction 322,358, 359
Eigenvalues 322, 358, 359
Elliptic equation 431
Entropy condition 183
Equal area rule 177
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Equation
backward heat 34
Bessel 65

Bessel (of order p) 324

Black-Scholes 3, 82
Bukley-Leverett 207
Burger 4

diffusion 2,13
Eiconal 4

eikonal 212
elliptic 250

Euler 340

Fisher 4

fully non linear 2
hyperbolic 250
Klein-Gordon 249
Laplace 3

linear elasticity 5
linear, nonlinear 2
Maxwell 5
minimal surface 4
Navier Stokes 5,130
parabolic 250
partial differential 2
Poisson 3,102
porous media 91
porous medium 4
quasilinear 2
reduced wave 155
Schrodinger 3
semilinear 2
stochastic differential
Sturm-Liouville 322
transport 2
vibrating plate 3
wave 3

Escape probability 120
Essential

support 369
supremum 311
European options 77
Expectation 52,61
Expiry date 77
Extension operator 409
Exterior

Dirichlet problem 139
domain 139

Robin problem 141,154

Fick’s law 56

Final payoff 82

First

exit time 119
integral 201, 203
variation 340

Flux function 156
Forward cone 276
Fourier

coefficients 321

law 16

series 24

transform 388, 405
Fourier-Bessel series 66, 325
Froude number 287
Function

Bessel (of order p) 324
characteristic 8
compactly supported 8
continuous &8
d-harmonic 106
Green’s 133
harmonic 14, 102
Heaviside 40

test 43, 369

Fundamental solution 39,43, 125, 244,

275

Gaussian law 51, 60

Global Cauchy problem 19,29, 68
non homogeneous 72

Gram-Schmidt process 321

Gravity waves 290

Green’s identity 12

Gronwall Lemma 522

Group velocity 224

Harmonic

measure 122

oscillator 363

waves 222
Helmholtz decomposition formula
Hermite polynomials 324
Hilbert triplet 351
Hopf’s maximum principle 152
Hopf-Cole transformation 191

Incoming/outgoing wave 263
Infimum 8
Inflow/outflow

boundary 201

128



characteristics 162
Inner product space 312
Integral

norm (of order p) 311

surface 193
integration by parts 12
Inward heat flux 28
Ito’s formula 78

Kernel 326
Kinematic condition 285
Kinetic energy 228

Lattice 58,105
Least squares 24
Legendre polynomials 323
Light cone 213
Linear waves 282
littleo of 9
Local

chart 10

wave speed 167
Logarithmic potential 128
Logistic growth 93
Lognormal density 80

Mach number 272
Markov properties 51,61
Mass conservation 55
Maximum principle 31, 74, 107
Mean value property 110
Method 19
Duhamel 72
electrostatic images 134
characteristics 165
descent 279
Faedo-Galerkin 496, 514, 520
Galerkin 340
stationary phase 226
separation of variables
357,453
vanishing viscosity 186
Metric space 308
Mollifier 371
Multidimensional symmetric random walk
58

19, 22, 231, 268,

Neumann
eigenfunctions 452
function 138

Normal probability density 38

Index

Normed space 308

Open covering 409
Operator

adjoint 332
discrete Laplace 106
linear, bounded 326
mean value 105
Optimal

control 479

state 479

Parabolic

dilations 35

equation 492
Parallelogram law 312
Partition of unity 410
Phase speed 222
Plane waves 223, 261
Poincaré’s inequality 399, 419
Point 7

boundary 7

interior 7

limit 7
Poisson formula 116
Potential 102

double layer 142

Newtonian 126

single layer 146
Potential energy 229
Pre-compact set 343
Problem

eigenvalue 23

well posed 6,16
Projected characteristics 201
Put-call parity 85

Random

variable 49

walk 43

walk with drift 52
Range 326

of influence 239, 276
Rankine-Hugoniot condition
Rarefaction/simple waves 170
Reaction 58
Reflecting barriers 98
Reflection method 409
Resolvent 357, 358
Retarded potential 282
Retrograde cone 265

173,181

555
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Riemann problem 185
Rodrigues’ formula 323, 324

Schwarz

inequality 312

reflection principle 151
Self-financing portfolio 80, 88
Selfadjoint operator 333

Sets 7
Shock
curve 172
speed 173
wave 173

Similarity, self-similar solutions 36
Sobolev exponent 421
Solution 21

self-similar 91

steady state 21

unit source 41
Sommerfeld condition 155
Spectrum 357, 358
Spherical waves 223
Standing wave 223, 232
Steepest descent 483
Stiffness matrix 341
Stochastic process 49, 60
Stopping time 52,119
Strike price 77
Strong Huygens’ principle 276, 279
Strong Parseval identity 393
Strong solution 434
Superposition principle 13,69, 230
Support 8

of a distribution 377

Tempered distribution 389

Term by term
differentiation 9
integration 9

Topology 7
Trace 411

inequality 417
Traffic in a tunnel 216
Transition

function 61

layer 188

probability 51
Travelling wave 158,167, 187, 221
Tychonov class 74

Uniform ellipticity 455
Unit impulse 40

Value function 77

Variational formulation
Biharmonic equation 474
Dirichlet problem 436, 445, 456
Mixed problem 444,451, 464
Neumann problem 440, 447, 461
Robin problem 443, 450
solution 434

Volatility 78

Wave
number 222
packet 224

Weak coerciveness 459

Weak formulation
Cauchy-Dirichlet problem 495
Cauchy-Neumann problem 506
Cauchy-Robin problem 507
General initial-boundary problem 514
Initial-Dirichlet problem (wave eq.)

518

Weak Parseval identity 391

Weakly coercive (bilinear form) 505, 513

Weierstrass test 9, 25
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