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Prefacetothe Third Edition

In the thirteen years since the first edition of this book appeared the growth of mathe-
matical biology and the diversity of applications has been astonishing. Its establishment
as a distinct discipline is no longer in question. One pragmatic indication is the in-
creasing number of advertised positions in academia, medicine and industry around the
world; another is the burgeoning membership of societies. People working in the field
now number in the thousands. Mathematical modelling is being applied in every ma-
jor discipline in the biomedical sciences. A very different application, and surprisingly
successful, is in psychology such as modelling various human interactions, escalation
to date rape and predicting divorce.

The field has become so large that, inevitably, specialised areas have developed
which are, in effect, separate disciplines such as biofluid mechanics, theoretical ecology
and so on. It is relevant therefore to ask why I felt there was a case for a new edition of
a book called simply Mathematical Biology. It is unrealistic to think that a single book
could cover even a significant part of each subdiscipline and this new edition certainly
does not even try to do this. I feel, however, that there is still justification for a book
which can demonstrate to the uninitiated some of the exciting problems that arise in
biology and give some indication of the wide spectrum of topics that modelling can
address.

In many areas the basics are more or less unchanged but the developments during
the past thirteen years have made it impossible to give as comprehensive a picture of the
current approaches in and the state of the field as was possible in the late 1980s. Even
then important areas were not included such as stochastic modelling, biofluid mechanics
and others. Accordingly in this new edition only some of the basic modelling concepts
are discussed—such as in ecology and to a lesser extent epidemiology—but references
are provided for further reading. In other areas recent advances are discussed together
with some new applications of modelling such as in marital interaction (Volume I),
growth of cancer tumours (Volume II), temperature-dependent sex determination (Vol-
ume I) and wolf territoriality (Volume II). There have been many new and fascinating
developments that I would have liked to include but practical space limitations made
it impossible and necessitated difficult choices. I have tried to give some idea of the
diversity of new developments but the choice is inevitably prejudiced.

As to general approach, if anything it is even more practical in that more emphasis
is given to the close connection many of the models have with experiment, clinical
data and in estimating real parameter values. In several of the chapters it is not yet
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possible to relate the mathematical models to specific experiments or even biological
entities. Nevertheless such an approach has spawned numerous experiments based as
much on the modelling approach as on the actual mechanism studied. Some of the more
mathematical parts in which the biological connection was less immediate have been
excised while others that have been kept have a mathematical and technical pedagogical
aim but all within the context of their application to biomedical problems. I feel even
more strongly about the philosophy of mathematical modelling espoused in the original
preface as regards what constitutes good mathematical biology. One of the most exciting
aspects regarding the new chapters has been their genuine interdisciplinary collaborative
character. Mathematical or theoretical biology is unquestionably an interdisciplinary
science par excellence.

The unifying aim of theoretical modelling and experimental investigation in the
biomedical sciences is the elucidation of the underlying biological processes that re-
sult in a particular observed phenomenon, whether it is pattern formation in develop-
ment, the dynamics of interacting populations in epidemiology, neuronal connectivity
and information processing, the growth of tumours, marital interaction and so on. I
must stress, however, that mathematical descriptions of biological phenomena are not
biological explanations. The principal use of any theory is in its predictions and, even
though different models might be able to create similar spatiotemporal behaviours, they
are mainly distinguished by the different experiments they suggest and, of course, how
closely they relate to the real biology. There are numerous examples in the book.

Why use mathematics to study something as intrinsically complicated and ill un-
derstood as development, angiogenesis, wound healing, interacting population dynam-
ics, regulatory networks, marital interaction and so on? We suggest that mathematics,
rather theoretical modelling, must be used if we ever hope to genuinely and realistically
convert an understanding of the underlying mechanisms into a predictive science. Math-
ematics is required to bridge the gap between the level on which most of our knowledge
is accumulating (in developmental biology it is cellular and below) and the macroscopic
level of the patterns we see. In wound healing and scar formation, for example, a mathe-
matical approach lets us explore the logic of the repair process. Even if the mechanisms
were well understood (and they certainly are far from it at this stage) mathematics would
be required to explore the consequences of manipulating the various parameters asso-
ciated with any particular scenario. In the case of such things as wound healing and
cancer growth—and now in angiogensesis with its relation to possible cancer therapy—
the number of options that are fast becoming available to wound and cancer managers
will become overwhelming unless we can find a way to simulate particular treatment
protocols before applying them in practice. The latter has been already of use in under-
standing the efficacy of various treatment scenarios with brain tumours (glioblastomas)
and new two step regimes for skin cancer.

The aim in all these applications is not to derive a mathematical model that takes
into account every single process because, even if this were possible, the resulting model
would yield little or no insight on the crucial interactions within the system. Rather the
goal is to develop models which capture the essence of various interactions allowing
their outcome to be more fully understood. As more data emerge from the biological
system, the models become more sophisticated and the mathematics increasingly chal-
lenging.
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In development (by way of example) it is true that we are a long way from be-
ing able to reliably simulate actual biological development, in spite of the plethora of
models and theory that abound. Key processes are generally still poorly understood.
Despite these limitations, I feel that exploring the logic of pattern formation is worth-
while, or rather essential, even in our present state of knowledge. It allows us to take
a hypothetical mechanism and examine its consequences in the form of a mathemat-
ical model, make predictions and suggest experiments that would verify or invalidate
the model; even the latter casts light on the biology. The very process of constructing
a mathematical model can be useful in its own right. Not only must we commit to a
particular mechanism, but we are also forced to consider what is truly essential to the
process, the central players (variables) and mechanisms by which they evolve. We are
thus involved in constructing frameworks on which we can hang our understanding. The
model equations, the mathematical analysis and the numerical simulations that follow
serve to reveal quantitatively as well as qualitatively the consequences of that logical
structure.

This new edition is published in two volumes. Volume I is an introduction to the
field; the mathematics mainly involves ordinary differential equations but with some
basic partial differential equation models and is suitable for undergraduate and graduate
courses at different levels. Volume II requires more knowledge of partial differential
equations and is more suitable for graduate courses and reference.

I would like to acknowledge the encouragement and generosity of the many peo-
ple who have written to me (including a prison inmate in New England) since the ap-
pearance of the first edition of this book, many of whom took the trouble to send me
details of errors, misprints, suggestions for extending some of the models, suggesting
collaborations and so on. Their input has resulted in many successful interdisciplinary
research projects several of which are discussed in this new edition. I would like to
thank my colleagues Mark Kot and Hong Qian, many of my former students, in partic-
ular Patricia Burgess, Julian Cook, Tracé Jackson, Mark Lewis, Philip Maini, Patrick
Nelson, Jonathan Sherratt, Kristin Swanson and Rebecca Tyson for their advice or care-
ful reading of parts of the manuscript. I would also like to thank my former secretary
Erik Hinkle for the care, thoughtfulness and dedication with which he put much of the
manuscript into IATEX and his general help in tracking down numerous obscure refer-
ences and material.

I am very grateful to Professor John Gottman of the Psychology Department at the
University of Washington, a world leader in the clinical study of marital and family in-
teractions, with whom I have had the good fortune to collaborate for nearly ten years.
Without his infectious enthusiasm, strong belief in the use of mathematical modelling,
perseverance in the face of my initial scepticism and his practical insight into human in-
teractions I would never have become involved in developing with him a general theory
of marital interaction. I would also like to acknowledge my debt to Professor Ellworth
C. Alvord, Jr., Head of Neuropathology in the University of Washington with whom I
have collaborated for the past seven years on the modelling of the growth and control of
brain tumours. As to my general, and I hope practical, approach to modelling I am most
indebted to Professor George F. Carrier who had the major influence on me when I went
to Harvard on first coming to the U.S.A. in 1956. His astonishing insight and ability to
extract the key elements from a complex problem and incorporate them into a realistic
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and informative model is a talent I have tried to acquire throughout my career. Finally,
although it is not possible to thank by name all of my past students, postdoctorals, nu-
merous collaborators and colleagues around the world who have encouraged me in this
field, I am certainly very much in their debt.

Looking back on my involvement with mathematics and the biomedical sciences
over the past nearly thirty years my major regret is that I did not start working in the
field years earlier.

Bainbridge Island, Washington J.D. Murray
January 2002



Prefaceto the First Edition

Mathematics has always benefited from its involvement with developing sciences. Each
successive interaction revitalises and enhances the field. Biomedical science is clearly
the premier science of the foreseeable future. For the continuing health of their subject,
mathematicians must become involved with biology. With the example of how mathe-
matics has benefited from and influenced physics, it is clear that if mathematicians do
not become involved in the biosciences they will simply not be a part of what are likely
to be the most important and exciting scientific discoveries of all time.

Mathematical biology is a fast-growing, well-recognised, albeit not clearly defined,
subject and is, to my mind, the most exciting modern application of mathematics. The
increasing use of mathematics in biology is inevitable as biology becomes more quan-
titative. The complexity of the biological sciences makes interdisciplinary involvement
essential. For the mathematician, biology opens up new and exciting branches, while for
the biologist, mathematical modelling offers another research tool commensurate with
a new powerful laboratory technique but only if used appropriately and its limitations
recognised. However, the use of esoteric mathematics arrogantly applied to biologi-
cal problems by mathematicians who know little about the real biology, together with
unsubstantiated claims as to how important such theories are, do little to promote the
interdisciplinary involvement which is so essential.

Mathematical biology research, to be useful and interesting, must be relevant bio-
logically. The best models show how a process works and then predict what may fol-
low. If these are not already obvious to the biologists and the predictions turn out to be
right, then you will have the biologists’ attention. Suggestions as to what the governing
mechanisms are may evolve from this. Genuine interdisciplinary research and the use
of models can produce exciting results, many of which are described in this book.

No previous knowledge of biology is assumed of the reader. With each topic dis-
cussed I give a brief description of the biological background sufficient to understand
the models studied. Although stochastic models are important, to keep the book within
reasonable bounds, I deal exclusively with deterministic models. The book provides a
toolkit of modelling techniques with numerous examples drawn from population ecol-
ogy, reaction kinetics, biological oscillators, developmental biology, evolution, epidemi-
ology and other areas.

The emphasis throughout the book is on the practical application of mathemati-
cal models in helping to unravel the underlying mechanisms involved in the biological
processes. The book also illustrates some of the pitfalls of indiscriminate, naive or un-
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informed use of models. I hope the reader will acquire a practical and realistic view
of biological modelling and the mathematical techniques needed to get approximate
quantitative solutions and will thereby realise the importance of relating the models and
results to the real biological problems under study. If the use of a model stimulates
experiments—even if the model is subsequently shown to be wrong—then it has been
successful. Models can provide biological insight and be very useful in summarising,
interpreting and interpolating real data. I hope the reader will also learn that (certainly
at this stage) there is usually no ‘right’ model: producing similar temporal or spatial pat-
terns to those experimentally observed is only a first step and does not imply the model
mechanism is the one which applies. Mathematical descriptions are not explanations.
Mathematics can never provide the complete solution to a biological problem on its
own. Modern biology is certainly not at the stage where it is appropriate for mathemati-
cians to try to construct comprehensive theories. A close collaboration with biologists is
needed for realism, stimulation and help in modifying the model mechanisms to reflect
the biology more accurately.

Although this book is titled mathematical biology it is not, and could not be, a
definitive all-encompassing text. The immense breadth of the field necessitates a re-
stricted choice of topics. Some of the models have been deliberately kept simple for
pedagogical purposes. The exclusion of a particular topic—population genetics, for
example—in no way reflects my view as to its importance. However, I hope the range
of topics discussed will show how exciting intercollaborative research can be and how
significant a role mathematics can play. The main purpose of the book is to present
some of the basic and, to a large extent, generally accepted theoretical frameworks for a
variety of biological models. The material presented does not purport to be the latest de-
velopments in the various fields, many of which are constantly expanding. The already
lengthy list of references is by no means exhaustive and I apologise for the exclusion of
many that should be included in a definitive list.

With the specimen models discussed and the philosophy which pervades the book,
the reader should be in a position to tackle the modelling of genuinely practical prob-
lems with realism. From a mathematical point of view, the art of good modelling relies
on: (i) a sound understanding and appreciation of the biological problem; (ii) a realistic
mathematical representation of the important biological phenomena; (iii) finding use-
ful solutions, preferably quantitative; and what is crucially important; (iv) a biological
interpretation of the mathematical results in terms of insights and predictions. The math-
ematics is dictated by the biology and not vice versa. Sometimes the mathematics can
be very simple. Useful mathematical biology research is not judged by mathematical
standards but by different and no less demanding ones.

The book is suitable for physical science courses at various levels. The level of
mathematics needed in collaborative biomedical research varies from the very simple to
the sophisticated. Selected chapters have been used for applied mathematics courses in
the University of Oxford at the final-year undergraduate and first-year graduate levels. In
the U.S.A. the material has also been used for courses for students from the second-year
undergraduate level through graduate level. It is also accessible to the more theoretically
oriented bioscientists who have some knowledge of calculus and differential equations.

I would like to express my gratitude to the many colleagues around the world who
have, over the past few years, commented on various chapters of the manuscript, made
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valuable suggestions and kindly provided me with photographs. I would particularly
like to thank Drs. Philip Maini, David Lane, and Diana Woodward and my present
graduate students who read various drafts with such care, specifically Daniel Bentil,
Meghan Burke, David Crawford, Michael Jenkins, Mark Lewis, Gwen Littlewort, Mary
Myerscough, Katherine Rogers and Louisa Shaw.

Oxford J.D. Murray
January 1989
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1. Multi-Species Waves and
Practical Applications

1.1 Intuitive Expectations

In Volume 1 we saw that if we allowed spatial dispersal in the single reactant or species,
travelling wavefront solutions were possible. Such solutions effected a smooth transition
between two steady states of the space independent system. For example, in the case
of the Fisher—Kolmogoroff equation (13.4), Volume I, wavefront solutions joined the
steady state U = 0 to the one at U = 1 as shown in the evolution to a propagating wave in
Figure 13.1, Volume I. In Section 13.5, Volume I, where we considered a model for the
spatial spread of the spruce budworm, we saw how such travelling wave solutions could
be found to join any two steady states of the spatially independent dynamics. In this and
the next few chapters, we shall consider systems where several species—cells, reactants,
populations, bacteria and so on—are involved, concentrating, but not exclusively, on
reaction diffusion chemotaxis mechanisms, of the type derived in Sections 11.2 and
11.4, Volume L. In the case of reaction diffusion systems (11.18), Volume I, we have

9
8—‘: — f(u) + DV2u, (1.1)

where U is the vector of reactants, f the nonlinear reaction kinetics and D the matrix of
diffusivities, taken here to be constant.

Before analysing such systems let us try to get some intuitive idea of what kind of
solutions we might expect to find. As we shall see, a very rich spectrum of solutions it
turns out to be. Because of the analytical difficulties and algebraic complexities that can
be involved in the study of nonlinear systems of reaction diffusion chemotaxis equa-
tions, an intuitive approach can often be the key to getting started and to what might be
expected. In keeping with the philosophy in this book such intuition is a crucial element
in the modelling and analytical processes. We should add the usual cautionary caveat,
that it is mainly stable travelling wave solutions that are of principal interest, but not al-
ways. The study of the stability of such solutions is not usually at all simple, particularly
in two or more space dimensions, and in many cases has still not yet been done.

Consider first a single reactant model in one space dimension X, with multiple
steady states, such as we discussed in Section 13.5, Volume I, where there are 3 steady
states Uj, I = 1,2, 3 of which u; and u3 are stable in the spatially homogeneous situa-
tion. Suppose that initially U is at one steady state, U = U say, for all X. Now suppose
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we suddenly change U to U3 in X < 0. With U3z dominant the effect of diffusion is to
initiate a travelling wavefront, which propagates into the U = U region and so eventu-
ally u = u3 everywhere. As we saw, the inclusion of diffusion effects in this situation
resulted in a smooth travelling wavefront solution for the reaction diffusion equation.
In the case of a multi-species system, where f has several steady states, we should rea-
sonably expect similar travelling wave solutions that join steady states. Although math-
ematically a spectrum of solutions may exist we are, of course, only interested here in
nonnegative solutions. Such multi-species wavefront solutions are usually more diffi-
cult to determine analytically but the essential concepts involved are more or less the
same, although there are some interesting differences. One of these can arise with in-
teracting predator—prey models with spatial dispersal by diffusion. Here the travelling
front is like a wave of pursuit by the predator and of evasion by the prey: we discuss one
such case in Section 1.2. In Section 1.5 we consider a model for travelling wavefronts in
the Belousov—Zhabotinskii reaction and compare the analytical results with experiment.
We also consider practical examples of competition waves associated with the spatial
spread of genetically engineered organisms and another with the red and grey squirrel.

In the case of a single reactant or population we saw in Chapter 13, Volume I that
limit cycle periodic solutions are not possible, unless there are delay effects, which we
do not consider here. With multi-reactant kinetics or interacting species, however, as
we saw in Chapter 3, Volume I we can have stable periodic limit cycle solutions which
bifurcate from a stable steady state as a parameter, y say, increases through a critical y¢.
Let us now suppose we have such reaction kinetics in our reaction diffusion system (1.1)
and that initially y > yc for all X; that is, the system is oscillating. If we now locally
perturb the oscillation for a short time in a small spatial domain, say, 0 < | X| < ¢ < 1,
then the oscillation there will be at a different phase from the surrounding medium. We
then have a kind of localised ‘pacemaker’ and the effect of diffusion is to try to smooth
out the differences between this pacemaker and the surrounding medium. As we noted
above, a sudden change in U can initiate a propagating wave. So, in this case as U reg-
ularly changes in the small circular domain relative to the outside domain, it is like
regularly initiating a travelling wave from the pacemaker. In our reaction diffusion situ-
ation we would thus expect a travelling wave train of concentration differences moving
through the medium. We discuss such wave train solutions in Section 1.7.

It is possible to have chaotic oscillations when three or more equations are in-
volved, as we noted in Chapter 3, Volume I, and indeed with only a single delay equa-
tion in Chapter 1, Volume I. There is thus the possibility of quite complicated wave
phenomena if we introduce, say, a small chaotic oscillating region in an otherwise reg-
ular oscillation. These more complicated wave solutions can occur with only one space
dimension. In two or three space dimensions the solution behaviour can become quite
baroque. Interestingly, chaotic behaviour can occur without a chaotic pacemaker; see
Figure 1.23 in Section 1.9.

Suppose we now consider two space dimensions. If we have a small circular do-
main, which is oscillating at a different frequency from the surrounding medium, we
should expect a travelling wave train of concentric circles propagating out from the
pacemaker centre; they are often referred to as target patterns for obvious reasons. Such
waves were originally found experimentally by Zaikin and Zhabotinskii (1970) in the
Belousov—Zhabotinskii reaction: Figure 1.1(a) is an example. Tyson and Fife (1980)
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(a)

(c)

Figurel1.1. (@) Target patterns (circular waves) generated by pacemaker nuclei in the Belousov—Zhabotinskii
reaction. The photographs are about 1 min apart. (b) Spiral waves, initiated by gently stirring the reagent. The
spirals rotate with a period of about 2 min. (Reproduced with permission of A. T. Winfree) (C) In the slime
mould Dictyostelium, the cells (amoebae) at a certain state in their group development, emit a periodic signal
of the chemical, cyclic AMP, which is a chemoattractant for the cells. Certain pacemaker cells initiate target-
like and spiral waves. The light and dark bands arise from the different optical properties between moving and

stationary amoebae. The cells look bright when moving and dark when stationary. (Courtesy of P. C. Newell
from Newell 1983)

discuss target patterns in the Field-Noyes model for the Belousov—Zhabotinskii reac-
tion, which we considered in detail in Chapter 8. Their analytical methods can also be
applied to other systems.

We can think of an oscillator as a pacemaker which continuously moves round a
circular ring. If we carry this analogy over to reaction diffusion systems, as the ‘pace-
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maker’ moves round a small core ring it continuously creates a wave, which propagates
out into the surrounding domain, from each point on the circle. This would produce, not
target patterns, but spiral waves with the ‘core’ the limit cycle pacemaker. Once again
these have been found in the Belousov—Zhabotinskii reaction; see Figure 1.1(b) and, for
example, Winfree (1974), Miiller et al. (1985) and Agladze and Krinskii (1982). See
also the dramatic experimental examples in Figures 1.16 to 1.20 in Section 1.8 on spi-
ral waves. Kuramoto and Koga (1981) and Agladze and Krinskii (1982), for example,
demonstrate the onset of chaotic wave patterns; see Figure 1.23 below. If we consider
such waves in three space dimensions the topological structure is remarkable; each part
of the basic ‘two-dimensional’ spiral is itself a spiral; see, for example, Winfree (1974),
Welsh et al., (1983) for photographs of actual three-dimensional waves and Winfree and
Strogatz (1984) and Winfree (2000) for a discussion of the topological aspects. Much
work (analytical and numerical) on spherical waves has also been done by Mimura and
his colleagues; see, for example, Yagisita et al. (1998) and earlier references there.

Such target patterns and spiral waves are common in biology. Spiral waves, in par-
ticular, are of considerable practical importance in a variety of medical situations, par-
ticularly in cardiology and neurobiology. We touch on some of these aspects below.
A particularly good biological example is provided by the slime mould Dictyostelium
discoideum (Newell 1983) and illustrated in Figure 1.1(c); see also Figure 1.18.

Suppose we now consider the reaction diffusion situation in which the reaction
kinetics has a single stable steady state but which, if perturbed enough, can exhibit
a threshold behaviour, such as we discussed in Section 3.8, Volume I, and also in
Section 7.5; the latter is the FitzHugh—Nagumo (FHN) model for the propagation of
Hodgkin—Huxley nerve action potentials. Suppose initially the spatial domain is every-
where at the stable steady state and we perturb a small region so that the perturbation
locally initiates a threshold behaviour. Although eventually the perturbation will disap-
pear it will undergo a large excursion in phase space before doing so. So, for a time the
situation will appear to be like that described above in which there are two quite dif-
ferent states which, because of the diffusion, try to initiate a travelling wavefront. The
effect of a threshold capability is thus to provide a basis for a travelling pulse wave. We
discuss these threshold waves in Section 1.6.

When waves are transversely coupled it is possible to analyse a basic excitable
model system, as was done by Gaspar et al. (1991). They show, among other things,
how interacting circular waves can give rise to spiral waves and how complex planar
wave patterns can evolve. Petrov et al. (1994) also examined a model reaction diffusion
system with cubic autocatalysis and investigated such things as wave reflection and
wave slitting. Pascual (1993) demonstrated numerically that certain standard predator—
prey models that diffuse along a spatial gradient can exhibit temporal chaos at a fixed
point in space and presented evidence for a quasiperiodic route to it as the diffusion in-
crease. Sherratt et al. (1995) studied a caricature of a predator—prey system in one space
dimension and demonstrated that chaos can arise in the wake of an invasion wave. The
appearance of seemingly chaotic behaviour used to be considered an artifact of the
numerical scheme used to study the wave propogation. Merkin et al. (1996) also in-
vestigated wave-induced chaos using a two-species model with cubic reaction terms.
Epstein and Showalter (1996) gave an interesting overview of the complexity in oscil-
lations, wave pattern and chaos that are possible with nonlinear chemical dynamics.
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The collection of articles edited by Maini (1995) shows how ubiquitous and diverse
spatiotemporal wave phenomena are in the biomedical disciplines with examples from
wound healing, tumour growth, embryology, individual movement in populations, cell—
cell interaction and others.

Travelling waves also exist, for certain parameter domains, in model chemotaxis
mechanisms such as proposed for the slime mould Dictyostelium (cf. Section 11.4, Vol-
ume I); see, for example, Keller and Segel (1971) and Keller and Odell (1975). More
complex bacterial waves which leave behind a pseudosteady state spatial pattern have
been described by Tyson et al. (1998, 1999) some of which will be discussed in detail
in Chapter 5.

It is clear that the variety of spatial wave phenomena in multi-species reaction dif-
fusion chemotaxis mechanisms is very much richer than in single species models. If
we allow chaotic pacemakers, delay kinetics and so on, the spectrum of phenomena is
even wider. Although there have been many studies, only a few of which we have just
mentioned, many practical wave problems have still to be studied, and will, no doubt,
generate dramatic and new spatiotemporal phenomena of relevance. It is clear that here
we can only consider a few which we shall now study in more detail. Later in Chapter 13
we shall see another case study involving rabies when we discuss the spatial spread of
epidemics.

1.2 Waves of Pursuit and Evasion in Predator—Prey Systems

If predators and their prey are spatially distributed it is obvious that there will be tem-
poral spatial variations in the populations as the predators move to catch the prey and
the prey move to evade the predators. Travelling bands have been observed in oceanic
plankton, a small marine organism (Wyatt 1973), animal migration, fungi and vegeta-
tion (for example, Lefever and Lejeune, 1997 and Lejeune and Tlidi, 1999) to mention
only a few. They are also fairly common, for example, in the movement of primitive
organisms invading a source of nutrient. We discuss in some detail in Chapter 5 some of
the models and the complex spatial wave and spatial phenomena exhibited by specific
bacteria in response to chemotactic cues. In this section we consider, mainly for illustra-
tion of the analytical technique, a simple predator—prey system with diffusion and show
how travelling wavefront solutions occur. The specific model we study is a modified
Lotka—Volterra system (see Section 3.1, Volume I) with logistic growth of the prey and
with both predator and prey dispersing by diffusion. Dunbar (1983, 1984) discussed this
model in detail. The model mechanism we consider is

U U
5= AU (1 - E) — BUV + D;V?U,
(1.2)
Vv
- = CUV — DV + D,V?V,

where U is the prey, V is the predator, A, B, C, D and K, the prey carrying capacity, are
positive constants and D and D, are the diffusion coefficients. We nondimensionalise
the system by setting
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We consider only the one-dimensional problem, so (1.2) become, on dropping the as-
terisks for notational simplicity,

au sl —u— )4 Dazu
e Ul—-u—v 2=
ot ax2

0 avu—b)+ v
W vu—tb) 4 Y
ot ax2

(1.3)

and, of course, we are only interested in non-negative solutions.

The analysis of the spatially independent system is a direct application of the pro-
cedure in Chapter 3, Volume I; it is simply a phase plane analysis. There are three steady
states (i) (0, 0); (ii) (1, 0), that is, no predator and the prey at its carrying capacity; and
(iii) (b, 1 — b), that is, coexistence of both species if b < 1, which henceforth we as-
sume to be the case. It is left as a revision exercise to show that both (0, 0) and (1, 0)
are unstable and (b, 1 — b) is a stable node if 4a < b/(1 — b), and a stable spiral if
4a > b/(1 — b). In fact in the positive (U, v) quadrant it is a globally stable steady state
since (1.3), with 3/dX = 0, has a Lyapunov function given by

L, v):a[u—b—bln (%)]+|:v—l+b—(l—b)ln (%bﬂ

That is, L(b, 1 — b) = 0, L(u, v) is positive for all other (U, v) in the positive quadrant
and dL/dt < O (see, for example, Jordan and Smith 1999 for a readable exposition of
Lyapunov functions and their use). Recall, from Section 3.1, Volume I that in the sim-
plest Lotka—Volterra system, namely, (1.2) without the prey saturation term, the nonzero
coexistence steady state was only neutrally stable and so was of no use practically. The
modified system (1.2) is more realistic.

Let us now look for constant shape travelling wavefront solutions of (1.3) by setting

ux,t) =U(@2), vx,t)=V(@, z=x-+ct, (1.4)

in the usual way (see Chapter 13, Volume I) where C is the positive wavespeed which
has to be determined. If solutions of the type (1.4) exist they represent travelling waves
moving to the left in the X-plane. Substitution of these forms into (1.3) gives the ordinary
differential equation system

U’ =U( —U — V) + DU”,

(1.5)
cvV =avU —b)y+V’,

where the prime denotes differentiation with respect to z.
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The analysis of (1.5) involves the study of a four-dimensional phase space. Here
we consider a simpler case, namely, that in which the diffusion, D, of the prey is very
much smaller than that of the predator, namely D, and so to a first approximation
we take D(= D;/D;) = 0. This would be the equivalent of thinking of a plankton—
herbivore system in which only the herbivores were capable of moving. We might rea-
sonably expect the qualitative behaviour of the solutions of the system with D # 0 to
be more or less similar to those with D = 0 and this is indeed the case (Dunbar 1984).
With D = 0 in (1.5) we write the system as a set of first-order ordinary equations,
namely,

U1 -U-V)
- - ,

v’ V=W, W=cW-aVvU —b). (1.6)
In the (U, V, W) phase space there are two unstable steady states (0, 0, 0) and (1, 0, 0),
and one stable one (b, 1 — b, 0); we are, as noted above, only interested in the case
b < 1. From the experience gained from the analysis of Fisher—-Kolmogoroff equa-
tion, discussed in detail in Section 13.2, Volume I, there is thus the possibility of a
travelling wave solution from (1,0, 0) to (b, 1 — b, 0) and from (0, 0,0) to (b, 1 —
b, 0). So we should look for solutions (U (2), V(2)) of (1.6) with the boundary condi-
tions

U(—x)=1, V(-00)=0, U(c)=hb, V(o)=1-b (1.7)
and
U(—0) =0, V(—o0)=0, U(cx)=b, V(x)=1-h (1.8)

We consider here only the boundary value problem (1.6) with (1.7). First linearise
the system about the singular point (1, 0, 0), that is, the steady state u = 1, v = 0,
and determine the eigenvalues X in the usual way as described in detail in Chapter 3,
Volume I. They are given by the roots of

1 1
—A— = —— 0
C Cc
0 —x 1 |=0
0 —-a(l—-b) c—2A
namely,
1 1 2 172
A= s A2, A3 = E{Ci [cc —4a(l —b)]"/<). (1.9)

Thus there is an unstable manifold defined by the eigenvectors associated with the eigen-
values Ay and A3 which are positive for all ¢ > 0. Further, (1, 0, 0) is unstable in an
oscillatory manner if ¢ < 4a(1 — b). So, the only possibility for a travelling wavefront
solution to exist with non-negative U and V is if

c>Mal-b1"2, b<l. (1.10)
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With c satisfying this condition, a realistic solution, with a lower bound on the wave
speed, may exist which tends to U = 1 and v = 0 as Z — —oo. This is reminiscent of
the travelling wavefront solutions described in Chapter 13, Volume L.

The solutions here, however, can be qualitatively different from those in Chapter 13,
Volume I, as we see by considering the approach of (U, V) to the steady state (b, 1 —b).
Linearising (1.6) about the singular point (b, 1 — b, 0) the eigenvalues A are given by

b b
a2 2 0
C C
0 2 1 |=0

—-a(l—-b)y 0 c—2A

and so are the roots of the cubic characteristic polynomial

pu)zxf—ﬂ<c—2>—Ab—ég%;92=o. (1.11)

To see how the solutions of this polynomial behave as the parameters vary we consider
the plot of p(A) for real A and see where it crosses p(A) = 0. Differentiating p(1), the
local maximum and minimum are at

1 b b\?
AM,Am=§ <c——)i (c——) +3b
C C

and are independent of a. For a = 0 the roots of (1.11) are

2
A =0, M,M:l (C—E>:t{<c—9) —|—4b]
2 c c

as illustrated in Figure 1.2. We can now see how the roots vary with a. From (1.11),
as a increases from zero the effect is simply to subtract ab(1 — b)/c everywhere from

1/2

1/2

p(A) T a=0

TN k

Figure 1.2. The characteristic polynomial p(1) from (1.11) as a function of A as a varies. There is a critical
value a* such that for a > a* there is only one real positive root and two complex ones with negative real
parts.
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b - L b
S ¢
1-b .
1-b
v
(Predator)
z z

(b)

Figure 1.3. Typical examples of the two types of waves of pursuit given by wavefront solutions of the preda-
tor (v)—prey (u) system (1.3) with negligible dispersal of the prey. The waves move to the left with speed C.
(a) Oscillatory approach to the steady state (b, 1 — b), when a > a*. (b) Monotonic approach of (u, v) to
(b, 1 —b) when a < a*.

the p(1; a = 0) curve. Since the local extrema are independent of a, we then have the
situation illustrated in the figure. For 0 < a < a* there are 2 negative roots and one
positive one. For a = a* the negative roots are equal while for a > a* the negative
roots become complex with negative real parts. This latter result is certainly the case
for a just greater than a* by continuity arguments. The determination of a* can be
carried out analytically. The same conclusions can be derived using the Routh—Hurwitz
conditions (see Appendix B, Volume I) but here if we use them it is intuitively less clear.

The existence of a critical a* means that, for a > a*, the wavefront solutions
(U, V) of (1.6) with boundary conditions (1.7) approach the steady state (b, 1 — b) in
an oscillatory manner while for a < a* they are monotonic. Figure 1.3 illustrates the
two types of solution behaviour.

The full predator—prey system (1.3), in which both the predator and prey diffuse,
also gives rise to travelling wavefront solutions which can display oscillatory behaviour
(Dunbar 1983, 1984). The proof of existence of these waves involves a careful analysis
of the phase plane system to show that there is a trajectory, lying in the positive quad-
rant, which joins the relevant singular points. These waves are sometimes described as
‘waves of pursuit and evasion’ even though there is little evidence of prey evasion in the
solutions in Figure 1.3, since other than quietly reproducing, the prey simply wait to be
consumed.

Convective Predator—Prey Pursuit and Evasion Models

A totally different kind of ‘pursuit and evasion’ predator—prey system is one in which
the prey try to evade the predators and the predators try to catch the prey only if they
interact. This results in a basically different kind of spatial interaction. Here, by way of
illustration, we briefly describe one possible model, in its one-dimensional form. Let us
suppose that the prey (U) and predator (v) can move with speeds C; and C;, respectively,
that diffusion plays a negligible role in the dispersal of the populations and that each
population obeys its own dynamics with its own steady state or states. Refer now to
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U= ug

u (Prey) v =,

v (Predator) o .
< 2 €T

Cy ca

-— -~ . > T

Wy Wy Increasing Wy Wy
(a) time
¢ —houy c; +hve
(b)

Figure 1.4. (a) The prey and predator populations are spatially separate and each satisfies its own dynamics:
they do not interact and simply move at their own undisturbed speed €; and C,. Each population grows until
it is at the steady state (Us, vs) determined by its individual dynamics. Note that there is no dispersion so the
spatial width of the ‘waves’ wy and w, remain fixed. (b) When the two populations overlap, the prey put on
an extra burst of speed hjvx, hy > 0 to try and get away from the predators while the predators put on an
extra spurt of speed, namely, —hpuy, hy > 0, to pursue them: the motivation for these terms is discussed in
the text.

Figure 1.4 and consider first Figure 1.4(a). Here the populations do not interact and,
since there is no diffusive spatial dispersal, the population at any given spatial position
simply grows or decays until the whole region is at that population’s steady state. The
dynamic situation is then as in Figure 1.4(a) with both populations simply moving at
their undisturbed speeds €; and ¢, and without spatial dispersion, so the width of the
bands remains fixed as U and v tend to their steady states. Now suppose that when the
predators overtake the prey, the prey try to evade the predators by moving away from
them with an extra burst of speed proportional to the predator gradient. In other words,
if the overlap is as in Figure 1.4(b), the prey try to move away from the increasing
number of predators. By the same token the predators try to move further into the prey
and so move in the direction of increasing prey. At a basic, but nontrivial, level we can
model this situation by writing the conservation equations (see Chapter 11, Volume I)
to include convective effects as

ur — [(€1 + hiv)ulx = f(u, v), (1.12)
vt — [(€2 — hauy)vlx = g(v, u), (1.13)
where f and g represent the population dynamics and h; and h; are the positive param-

eters associated with the retreat and pursuit of the prey and predator as a consequence
of the interaction. These are conservation laws for U and v so the terms on the left-hand
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sides of the equations must be in divergence form. We now motivate the various terms
in the equations.

The interaction terms f and g are whatever predator—prey situation we are con-
sidering. Typically f (u, 0) represents the prey dynamics where the population simply
grows or decays to a nonzero steady state. The effect of the predators is to reduce the
size of the prey’s steady state, so f (u, 0) > f(u, v > 0). By the same token the steady
state generated by g(v, U # 0) is larger than that produced by g(v, 0).

To see what is going on physically with the convective terms, suppose, in (1.12),
h; = 0. Then

Ut — Ciux = f(u, v),

which simply represents the prey dynamics in a travelling frame moving with speed C;.
We see this if we use Z = X 4 cit and t as the independent variables in which case
the equation simply becomes Uy = f(u, v). If ¢; = ¢y, the predator equation, with
h, = 0, becomes v; = g(v, U). Thus we have travelling waves of changing populations
until they have reached their steady states as in Figure 1.4(a), after which they become
travelling (top hat) waves of constant shape.

Consider now the more complex case where h; and h; are positive and ¢; # C;.
Referring to the overlap region in Figure 1.4(b), the effect in (1.12) of the hjvy term,
positive because vy > 0, is to increase locally the speed of the wave of the prey to the
left. The effect of —hyuy, positive because Uy < 0, is to increase the local convection
of the predator. The intricate nature of interaction depends on the form of the solutions,
specifically Ux and vy, the relative size of the parameters ¢, C, h; and hy and the
interaction dynamics. Because the equations are nonlinear through the convection terms
(as well as the dynamics) the possibility exists of shock solutions in which u and v
undergo discontinuous jumps; see, for example, Murray (1968, 1970, 1973) and, for a
reaction diffusion example, Section 13.5 in Chapter 13 (Volume 1).

Before leaving this topic it is interesting to write the model system (1.12), (1.13)
in a different form. Carrying out the differentiation of the left-hand sides, the equation
system becomes

Ut — [(C1 + hjv)Jux = (U, v) + hjuvky,

(1.14)
vt — [(C2 — haux)Jvx = g(v, U) — hvuxy.

In this form we see that the h; and h, terms on the right-hand sides represent cross
diffusion, one positive and the other negative. Cross diffusion, which, of course, is only
of relevance in multi-species models was defined in Section 11.2, Volume I: it occurs
when the diffusion matrix is not strictly diagonal. It is a diffusion-type term in the
equation for one species which involves another species. For example, in the u-equation,
hiuvxy is like a diffusion term in v, with ‘diffusion’ coefficient hju. Typically a cross
diffusion would be a term d(Dwvy) /09X in the U-equation. The above is an example where
cross diffusion arises in a practical modelling problem—it is not common.

The mathematical analysis of systems like (1.12)—(1.14) is a challenging one which
is largely undeveloped. Some analytical work has been done by Hasimoto (1974), Yoshi-
kawa and Yamaguti (1974), who investigated the situation in which h; = hy = 0 and
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Murray and Cohen (1983), who studied the system with h; and h, nonzero. Hasimoto
(1974) obtained analytical solutions to the system (1.12) and (1.13), where h; = hy, =0
and with the special forms f (u, v) = ljuv, g(u, v) = lpuv, where |; and I, are con-
stants. He showed how blow-up can occur in certain circumstances. Interesting new
solution behaviour is likely for general systems of the type (1.12)—(1.14).

Two-dimensional problems involving convective pursuit and evasion are of ecolog-
ical significance and are particularly challenging; they have not been investigated. For
example, in the first edition of this book, it was hypothesized that it would be very inter-
esting to try and model a predator—prey situation in which species territory is specifically
involved. With the wolf-moose predator—prey situation in Canada we suggested that it
should be possible to build into a model the effect of wolf territory boundaries to see if
the territorial ‘no man’s land’ provides a partial safe haven for the prey. The intuitive
reasoning for this speculation is that there is less tendency for the wolves to stray into
the neighbouring territory. There seems to be some evidence that moose do travel along
wolf territory boundaries. A study along these lines has been done and will be discussed
in detail in Chapter 14.

A related class of wave phenomena occurs when convection is coupled with ki-
netics, such as occurs in biochemical ion exchange in fixed columns. The case of a
single-reaction kinetics equation coupled to the convection process, was investigated in
detail by Goldstein and Murray (1959). Interesting shock wave solutions evolve from
smooth initial data. The mathematical techniques developed there are of direct relevance
to the above problems. When several ion exchanges are occurring at the same time in
this convective situation we then have chromatography, a powerful analytical technique
in biochemistry.

1.3 Competition Model for the Spatial Spread
of the Grey Squirrel in Britain

Introduction and Some Facts

About the beginning of the 20th century North American grey squirrels (Sciurus caro-
linensis) were released from various sites in Britain, the most important of which was
in the southeast. Since then the grey squirrel has successfully spread through much of
Britain as far north as the Scottish Lowlands and at the same time the indigenous red
squirrel Sciurus vulgarishas disappeared from these localities.

Lloyd (1983) noted that the influx of the grey squirrel into areas previously occu-
pied by the red squirrel usually coincided with a decline and subsequent disappearance
of the red squirrel after only a few years of overlap in distribution.

The squirrel distribution records in Britain seem to indicate a definite negative ef-
fect of the greys on the reds (Williamson 1996). MacKinnon (1978) gave some rea-
sons why competition would be the most likely among three hypotheses which had
been made (Reynolds 1985), namely, competition with the grey squirrel, environmen-
tal changes that reduced red squirrel populations independent of the grey squirrel and
diseases, such as ‘squirrel flu’ passed on to the red squirrels. These are not mutually
exclusive of course.
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Prior to the introduction of the grey, the red squirrel had evolved without any inter-
specific competition and so selection favoured modest levels of reproduction with low
numerical wastage. The grey squirrel, on the other hand, evolved within the context of
strong interspecific competition with the American red squirrel and fox squirrel and so
selection favoured overbreeding. Both red and grey squirrels can breed twice a year but
the smaller red squirrels rarely have more than two or three offspring per litter, whereas
grey squirrels frequently have litters of four or five (Barkalow 1967).

In North America the red and grey squirrels occupy separate niches that rarely
overlap: the grey favour mixed hardwood forests while the red favour northern conifer
forests. On the other hand, in Britain the native red squirrel must have evolved, in the
absence of the grey squirrel, in such a way that it adapted to live in hardwood forests as
well as coniferous forests. Work by Holm (1987) also tends to support the hypothesis
that grey squirrels may be at a competitive advantage in deciduous woodland areas
where the native red squirrel has mostly been replaced by the grey. Also the North
American grey squirrel is a large robust squirrel, with roughly twice the body weight
of the red squirrel. In separate habitats the two squirrel species show similar social
organisation, feeding and ranging ecology but within the same habitat we would expect
even greater similarity in their exploitation of resources, and so it seems inevitable that
two species of such close similarity could not coexist in sharing the same resources.

In summary it seems reasonable to assume that an interaction between the two
species, probably largely through indirect competition for resources, but also with some
direct interaction, for example, chasing, has acted in favour of the grey squirrel to drive
off the red squirrel mostly from deciduous forests in Britain. Okubo et al. (1989) investi-
gated this displacement of the red squirrel by the grey squirrel and, based on the above,
proposed and studied a competiton model. It is their work we follow in this section.
They also used the model to simulate the random introduction of grey squirrels into red
squirrel areas to show how colonisation might spread. They compared the results of the
modelling with the available data.

Competition Model System

Denote by S;(X, T) and (X, T) the population densities at position X and time T
of grey and red squirrels respectively. Assuming that they compete for the same food
resources, a possible model is the modified competition Lotka—Volterra system with
diffusion, (cf. Chapter 5, Volume I), namely,

9% =DV’S +aiS(1-bS — D),

oT

'S, (1.15)
3T = DV2S + aS(1 — S — ¢S,

where, fori = 1, 2, & are net birth rates, 1/bj are carrying capacities, ¢; are competition
coefficients and D;j are diffusion coefficients, all non-negative. The interaction (kinet-
ics) terms simply represent logistic growth with competition. For the reasons discussed
above we assume that the greys outcompete the reds so

b >c, ©>b. (1.16)
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We now want to investigate the possibility of travelling waves of invasion of grey
squirrels which drive out the reds. We first nondimensionalise the model system by
setting

6 =0bS,i=12t=aT,x=(a/D)/?X,

(1.17)
v1=C1/by, y2 = /b1, k = Dy/D1, = a1/&
and (1.15) becomes
06, 2
5= V01 +01(1 — 61 — v167),
(1.18)
06 2
E =kVO +ab(1 — 6y — 61).
Because of (1.16),
n<l, p>1. (1.19)

In the absence of diffusion we analysed this specific competition model system
(1.18) in detail in Chapter 5, Volume I. It has three homogeneous steady states which,
in the absence of diffusion, by a standard phase plane analysis, are (0, 0) an unstable
node, (1, 0) a stable node and (0, 1) a saddle point. So, with the inclusion of diffusion,
by the now usual procedure, there is the possibility of a solution trajectory from (0, 1)
to (1,0) and a travelling wave joining these critical points. This corresponds to the
ecological situation where the grey squirrels (61) outcompete the reds (6>) to extinction:
it comes into the category of competitive exclusion (cf. Chapter 5, Volume I).

In one space dimension X = X we look for travelling wave solutions to (1.18) of
the form

6 =6(2),i=1,2, z=x—ct,c>0, (1.20)

where C is the wavespeed. 61(2) and 6,(Z) represent wave solutions of constant shape
travelling with velocity C in the positive X-direction. With this, equations (1.18) become

d?0;  do
—21+C—1+91(1—91 —y16h) =0,
dz dz
5 (1.21)
d-6, do,
— +C— (1 — 62 — y261) =0,
kgp tegy T 2 ( b — 1201)
subject to the boundary conditions
61=1,60=0, atz=—-o00, 61 =0,60=1, atz=o00. (1.22)

That is, asymptotically the grey (61) squirrels drive out the red (6>) squirrels as the wave
propagates with speed ¢, which we still have to determine.
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Hosono (1988) investigated the existence of travelling waves for the system (1.18)
with (1.19) and (1.22) under certain conditions on the values of the parameters. In gen-
eral, the system of ordinary differential equations (1.18) cannot be solved analytically.
However, in the special case where k = « = 1, y1 4+ y» = 2 we can get some analytical
results. We add the two equations in (1.21) to get

2
d—9+cd—9+9(1—9)=0, 0 =61+ 6, (1.23)
dz2 dz
which is the well-known Fisher—Kolmogoroff equation discussed in depth in Chap-
ter 13, Volume I which we know has travelling wave solutions with appropriate bound-
ary conditions at 200. However, the boundary conditions here are different to those for
the classical Fisher—-Kolmogoroff equation: they are, from (1.22),

0=1 at z==o0 (1.24)
which suggest that for all z,

0=1= 01+6,=1. (1.25)
Substituting this into the first of (1.21) we get

d?0;  do

—+Cc— + (1 —y)oi(1 —61) =0, 1.26

G oy T e =6 (1.26)
which is again the Fisher—Kolmogoroff equation for #; with boundary conditions (1.22).
From the results on the wave speed we deduce that the wavefront speed for the grey
squirrels will be greater than or equal to the minimum Fisher—Kolmogoroff wave speed
for (1.26); that is,

C>Cuin=2(1—yD"% yi <1 (1.27)

Similarly, from the second of (1.21) with (1.25) the equation for 6, is

d26, do,
—~ 4+c—= — D61 —6y) = 1.2
a7 +¢g; + (2, — D61 —62) =0, (1.28)

with boundary conditions (1.22). This gives the result that for the red squirrels
C=Cmin =202 - D% > 1 (1.29)

Since y1 4+ y» = 2 (and remember too that «k = « = 1) these two minimum
wavespeeds are equal. In terms of dimensional quantities, we thus get the dimensional
minimum wavespeed, Cpip, as

c\ 172
Chin =2 |:a1 D, (1 — E)] . (1.30)
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Parameter Estimation

We must now relate the analysis to the real world competition situation that obtains
in Britain. The travelling wavespeeds depend upon the parameters in the model system
(1.15) so we need estimates for the parameters in order to compare the theoretical wave-
speed with available data. As reiterated many times, this is a crucial aspect of realistic
modelling.

Let us first consider the intrinsic net growth rates a; and a&. Okubo et al. (1989)
used a modified Leslie matrix described in detail by Williamson and Brown (1986).
In principle the estimates should be those at zero population density, but demographic
data usually refer to populations near their equilibrium density. Three components are
considered in estimating the intrinsic net growth rate, specifically the sex ratio, the birth
rate and the death rate. The sex ratio is taken to be one to one. Determining the birth and
death rates, however, is not easy. It depends on such things as litter size and frequency
and their dependence on age, age distribution, where and when the data are collected,
food source levels and life expectancy; the paper by Okubo et al. (1989) shows what
is involved. After a careful analysis of the numerous, sometimes conflicting, sources
they estimated the intrinsic birth rate for the grey squirrels as a; = 0.82/year with
a stable age distribution of nearly three young to one adult and for the red squirrels,
& = 0.61/year with an age distribution of just over two young for each adult.

Determining estimates for the carrying capacities 1/b; and 1/b, involves a simi-
lar detailed examination of the available literature which Okubo et al. (1989) also did.
They suggested values for the carrying capacities of 1/b; = 10/hectare and 1/b; =
0.75/hectare respectively for the grey and red squirrels.

Unfortunately there is no quantitative information on the competition coefficients
¢i and ;. In the model, however, only the ratios ¢;/b; = y; and ¢;/b; = y» are
needed to estimate the minimum speed of the travelling waves. As far as the speed of
propagation of the grey squirrel is concerned, we only need an estimate of yj: recall
that 0 < y; < 1. Since y; appears in the expression of the minimum wavespeed in
the term (1 — yl)l/ 2. the speed is not very sensitive to the value of yj if it is small, in
fact unless it is larger than around 0.6. We expect that the competition coefficient i,
that is, red against grey, should have a small value. So, this, together with the smallness
of the carrying capacity b,!, it is reasonable to assume that the value of y] is close to
zero, so that the minimum speed of the travelling wave of the grey squirrel, Cpip, is
approximately given from (1.30) by 2(D;a;)!/2. In the numerical simulations carried
out by Okubo et al. (1989) they used several different values for the y's since the analysis
we carried out above was for special values which allowed us to do some analysis.

Let us now consider the diffusion coefficients, D; and D,. These are crucial pa-
rameters in wave propagation and notoriously difficult to estimate. (The same problem
of diffusion estimation comes up again later in the book when we discuss the spatial
spread of rabies in a fox population, bacterial patterns and tumour cells in the brain.)
Direct observation of dispersal is difficult and usually short term. The reported values
for movement vary widely. There is also the movement between woodlands.

For grey squirrels, a maximum for a one-dimensional diffusion coefficient of 1.25
km? /yr, and for a two-dimensional diffusion coefficient of 0.63 km? /yr, was derived
based on individual movement. However, this may not correspond to the squirrels’



1.3 Spatial Spread of the Grey Squirrel in Britain 17

Table 1.1. Two-dimensional diffusion coefficients for the grey squirrel as a function of the distance | km
between woodland areas. The minimum wavespeed Cyjp km/year = 2(g Dl)l/ 2 with a; = 0.82/year.
(From Okubo et al. 1989)

| (km) 1 2 5 | 10| 15 20
Dy (km2/year) | 0.179 | 0.714 | 4.46 | 17.9 | 40.2 | 71.4
Cunin(km/year) | 0.77 | 1.53 | 3.82 | 7.66 | 11.5 | 153

movement between woodlands. If the annual dispersal in the grey squirrel takes place
primarily between woodlands rather than within a woodland, then the values of these
diffusion coefficients should be too small to be considered representative. Okubo et al.
(1989) speculated that it might not be unreasonable to expect a diffusion coefficient for
grey squirrels of the order of 1020 km?/year rather than of the order of 1 km?/year.
They gave a heuristic argument, which we now give, to support these much larger values
for the diffusion coefficient.

Consider a patch of woodlands, each having an equal area of A hectare (ha) with
four neighbours and separated from each other by a distance |. Suppose a woodland
is filled with grey squirrels and the carrying capacity for grey squirrels is 10/ha. This
implies that the woodland carries N = 10A individuals. With the intrinsic growth rate
a; = 0.82/yr, the woodland will contain 22.7A animals (since e0-82 — 2.27) in the
following year of which 12.7 A individuals have to disperse. Assuming the animals dis-
perse into the nearest neighbouring woodlands, 12.7/4A = 3.175A individuals will
arrive at a neighbouring woodland. This woodland will then be filled with grey squir-
rels in T = 1.4 years (10A = 3.175Ae"#27), after which another dispersal will occur. In
other words, the grey squirrels make dispersal to the nearest neighbouring woodlands,
on average, every 1.4 years. Thus, a two-dimensional diffusion coefficient for the grey
squirrel is estimated as

D; =12/(4 x 1.4) km?/year = 1?/5.6 km? /year. (1.31)

Table 1.1 gives the calculated diffusion coefficient, Dy, using (1.31) as a function I.
Williamson and Brown (1986) estimated the speed of dispersal of grey squirrels to
be 7.7 km/year. If we take this value we then get, from the table, a value of D; =
17.9 km?/year. So, a mean separation between neighbouring woodlands of 10 km,
which is reasonable, would give the minimum speed of travelling waves that agrees
well with the data.

Comparison of the Theoretical Rate of Spread with the Data

One of the best sources of information on the spread of the grey squirrel in Britain is
given by Reynolds (1985), who studied it in detail in East Anglia during the period 1960
to 1981. Colonization of East Anglia by the grey squirrel has been comparatively recent.
In 1959 no grey squirrels were found and red squirrels were still present more or less
throughout the county of Norfolk both in 1959 and at the later survey in 1971. However,
by 1971 the grey squirrel was also recorded over about half the area of Norfolk.
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Reynolds (1985) constructed a series of maps showing the annual distribution of the
grey and red squirrels for the period of 1960 to 1981 using grids of 5 x 5 km squares.
Based on these maps Williamson and Brown (1986) calculated the rate of spread of the
grey squirrel during the period 1965-1981 and obtained a rate of spread of between
5 and 10 km per year; the mean rate of spread of the grey squirrel was calculated to
be 7.7 km/year, the value mentioned above which, if we use the Fisher—Kolmogoroff
minimum wavespeed gives an estimated value of the diffusion coefficient for the grey
squirrels of approximately D; = 17.9 km?/year. So, there is a certain data justification
for the heuristic estimation of the diffusion ceofficient we have just given.

Solutions to the dimensionless model system (1.18) have to be done numerically
if we use values for the y’s other than those satisfying y; + y» = 2. In one dimension
the waves are qualitatively as we would expect from the boundary conditions and the
form of the equations, even with unrelated values of y. For the grey squirrels there will
be a wave of advance qualitatively similar to a typical Fisher—Kolmogoroff wave with a
corresponding wave of retreat (almost a mirror image in fact) for the red squirrels; these
are shown in Okubo et al. (1989). Colonization is, of course, two-dimensional where
analytical solutions of propagating wavelike fronts are not available—it is a very hard
problem. In the special case of a radially symmetric distribution of grey squirrels, the
velocity of the invasive wave is less than in the corresponding one-dimensional case (be-
cause of the term (1/r)(06;/9r) and the equivalent for 6, in the Lapalacian). Numerical
solutions, however, can be found relatively easily. We started with an initial small scat-
tered distribution of grey squirrels in a predominantly red population. These small areas
of grey squirrels moved outward, coalesced with other areas of greys and eventually
drove out the red population completely. Figure 1.5 shows a typical numerical solution
with a specimen set of parameter values.

The basic models of population spread via diffusion and growth, such as with the
Fisher—Kolmogoroff model, start with an initial seed which spreads out radially even-
tually becoming effectively a one-dimensional wave because the (1/r)(06;/0r) term
tends to zero as r — oo. The same holds with the model we have discussed here, al-
though the competition wave of advance is slower, which is not surprising since the
effective birth rate of the grey squirrels is less than a simple logistic growth. There are
numerous maps (references are given in Okubo et al. 1989) of the advance of the grey
squirrel and retreat of the red squirrel in Britain dating back to 1930. The behaviour
exhibited in Figure 1.5 is a fair representation of the major patterns seen. The parameter
values used were based on the detailed survey of Reynolds (1985). The parameters and
hence the course of the competition, however, inevitably vary with the climate, density
of trees and their type and so on. It seems that the broad features of the displacement
of the red squirrels by the grey is captured in this simple competition model and is
a practical example of the principle of competitive exclusion discussed in Chapter 5,
Volume I.

1.4 Spread of Genetically Engineered Organisms

There is a rapidly increasing use of recombinant DNA technology to modify plants (and
animals) to perform special agricultural functions. However, there is an increasing con-
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Figure 1.5a,b. Two-dimensional numerical solution of the nondimensionalised model equations (1.18) on a
4.9 x 2.4 rectangle with zero flux boundary conditions. The initial distribution consists of red squirrels at unit
normalised density, seeded with small pockets of grey squirrels of density 0.1 at points (1.9,0.4),(3.9,0.4),
(2.9,0.9) and (2.4,1.4). (a) Surface plot of the solution at time t = 5; the base density of greys is 0.0 and of
the reds 1.0. Solutions at subsequent times: (b) t = 10, () t = 20, (d) t = 30. As the system evolves the
greys begin to increase in density and spread outwards while the reds recede. Eventually the greys drive out
the reds. Parameter values: y; = 0.2, y» = 1.5, ¢ = 0.82/0.61, «k = 1(D; = Dy = 0.001). (From Okubo et
al. 1989)
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cern about its possible disruption of the ecosystem and even the climatic system caused
by the release of such genetically engineered organisms. Studies of the spatiotemporal
dynamics of genetically engineered organisms in the natural environment are clearly
increasingly important. Scientists have certainly not reached a consensus regarding the
risks or containment of genetically engineered organisms. In the case of plants the initial
timescale is short compared with genetically engineered trees. For example fruit trees
have been modified to kill pests who land on the leaves. Means are also being studied
to have trees clean up polluted ground. Hybrid plants, of course, have been widely used
for a very long time but without the direct genetically designed input. In the case of
the even more controversial genetically modified (and also cloned) animals there are
other serious risks. Their use, associated with animal development for human trans-
plants, poses different epidemiological problems. Whatever the protesting Luddites say,
or do, genetic manipuation of both plants and animals (including humans) is here to
stay.

One of the main concerns regarding the release of engineered organisms is how
far and how rapidly they are likely to spread, under different ecological scenarios and
management plans. An unbiased assessment of the risks associated with releasing such
organisms should lead to strategies for the effective containment of an outbreak. There
is still little reliable quantitative information for estimating spread rates and analysing
possible containment strategies. Some initial work along these lines, however, was car-
ried out by Cruywagen et al. (1996).

Genetically engineered microbes are especially amenable to mathematical analyses
because they continuously reproduce, lack complex behaviours and exhibit population
dynamics well described by simple models. One example of such a microbe is Pseu-
domonas syringae (ice minus bacteria), which can reduce frost damage to crops by
occupying crop foliage to the exclusion of Pseudomonas syringae strains that do cause
frost damage (Lindow 1987).

In this section we develop a model to obtain quantitative results on the spatiotem-
poral spread of genetically engineered organisms in a spatially heterogeneous environ-
ment; we follow the work of Cruywagen et al. (1996). We get information regarding the
risk of outbreak of an engineered population from its release site in terms of its dispersal
and growth rates as well as those of a competing species. The nature of the environment
plays a key role in the spread of the organisms. We focus specifically on whether con-
tainment can be guaranteed by the use of geographical barriers, for example, water, a
different crop or just barren land.

For the basic model we start with a system of two competing and diffusing species,
namely, the one we used in the last section for the spatial spread of the grey squirrel in
Britain. As we saw this model provides an explanation as to why the externally intro-
duced grey squirrel invaded at the cost of the indigenous red squirrel which was driven
to extinction in areas of competition.

Most invasion models deal with invasion as travelling waves propagating in a ho-
mogeneous environment. However, because of variations in the environment (natural or
made), this is almost never the case. Not only is spatial heterogeneity one of the most
obvious features in the natural world, it is likely to be one of the more important factors
influencing population dynamics.
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A first analysis of propagating frontal waves in a heterogeneous unbounded habitat
was carried out by Shigesada et al. (1986) (see also the book by Shigesada and Kawasaki
1997) for the Fisher—Kolmogoroff equation which describes a single species with logis-
tic population growth and dispersal. Here we again use the Lotka—Volterra competition
model with diffusion to model the population dynamics of natural microbes and com-
peting engineered microbes. However, we modify this model to account for a spatially
heterogeneous environment by assuming a periodically varying domain consisting of
good and bad patches. The good patches signify the favourable regions in which the
microbes are released, while the bad patches model the unfavourable barriers for in-
hibiting the spread of the microbes. We are particularly interested in the invasion and
containment conditions for the genetically engineered population.

Although the motivation for this discussion is to determine the conditions for the
spread of genetically engineered organisms, the models and analysis also apply to the
introduction of other exotic species where containment, or in some cases deliberate
propagation, is the goal.

Let E(X, t) denote the engineered microbes and N (X, t) the unmodified microbes.
Here we consider only the one-dimensional situation. We use classical Lotka—Volterra
dynamics to describe competition between our engineered and natural microbes and
allow key model parameters to vary spatially to reflect habitat heterogeneity. So, we
model the dynamics of the system by

IE 9 IE
= = &<D(x)&>+rEE[G(x)—aEE—bEN], (1.32)
IN 9 aN
5 A <d(X)a—X> +rnN[g(x) —anN — by E], (1.33)

where D(X) are d(X) are the space-dependent diffusion coefficients and rg and ry are
the intrinsic growth rates of the organisms. These are scaled so that the maximum values
of the functions G(X) and g(X), which quantify the respective carrying capacities, are
unity. The positive parameters ag and ay measure the effects of intraspecific competi-
tion, while bg and by are the interspecific competition coefficients.

In this section we model the environmental heterogeneity by considering the dis-
persal and carrying capacities D(X), d(x), G(X) and g(X) to be spatially periodic. We
assume that | is the periodicity of the environmental variation and so define

DX)=DXx+1,dX) =dx+1),GX) =GX+1),gx) =gx+1). (1.34)

Initially we assume there are no engineered microbes, that is, E(X, 0) = 0, so the
natural microbes N (X, 0) satisfy the equation

0

anN rNnN@XX) —anN) =0 1.35
8X<()§>+N(g()—N)—- (1.35)

The engineered organisms are then introduced at a release site, which we take as the
origin. This initial distribution in E(X, t) is represented by the initial conditions
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H it
E(x. 0) :{ >0 X =X (1.36)

0 if |X| > Xc,

where H is a positive constant.

To bring in the idea of favourable and unfavourable patches we consider the envi-
ronment consists of two kinds of homogeneous patches, say, Patch 1 of length |1, the
favourable patch, and Patch 2 of length I, the unfavourable patch, connected alternately
along the X-axis such that| = |; +1,. In the unfavourable patches the diffusion and car-
rying capacity of the organisms are less than in the favourable patches. This could occur
because the unfavourable patch is a hostile environment that either limits a population or
interferes with its dispersal. Correspondingly, the functions D (X), d(X), G(X) and g(x)
are periodic functions of X. In Patch 1, whereml < x <ml +1; form=0,1,2, ...,

DX)=D; >0,d(x)=d; >0, GXx) =1,9x) =1, (1.37)
and in Patch 2, whereml —l, < X <ml form=20,1,2, ...,
D(X) =Dy > 0,d(x) =dr > 0, G(X) = G2, g(X) = Go. (1.38)
Since Patch 1 is favourable,
Di = Do, di >th;1>Go, 1 > . (1.39)
Figure 1.6 shows an example of how the diffusion of the engineered microbes could

vary in space.
At the boundaries between the patches, say, X = X;, with

Xom=ml, Xomer =ml +1; form=0,+£1,+2,..., (1.40)
D(x)
1
D,
I)2 L
-«
L
X

Figure 1.6. The spatial pattern in the diffusion coefficient of the genetically engineered microbes, D(X), in
the periodic environment. There are two patch types with a higher diffusion in the favourable patch, Patch 1,
of length |1, than in the unfavourable patch, Patch 2, of length I,.
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the population densities and fluxes are continuous so

lim E(x,t) = lim E(x,t),

x—xt X=X~

lim N(x,t) = lim N(x,b),

x—x*t X—>X;
OE(Xx,t AE(X,t
lim Do) =X i po EXY
x—xt X X%~ d
IN(X, t IN(X,t
lim d(x )& lim d(X)&.
x—xt X=X~ d

The mathematical problem is now defined. The key questions we want to answer
are: (i) Under which conditions will the engineered organisms invade successfully when
rare? and (ii) If invasion succeeds, will the engineered species drive the natural popula-
tion to invader-dominant or will a coexistent state be reached? Here we follow Shige-
sada et al. (1986) and consider the problem on an infinite domain and assume that the
diffusion and carrying capacities vary among the different patch types. We focus on the
stability of the system to invasions initiated by a very small number of engineered or-
ganisms. Mathematically this means we can use a linear analysis with spatiotemporal
perturbations about the steady state solutions.

Nondimensionalisation

We nondimensionalise equations by introducing

1
D) _'n be bn

D* - 9 - 5 = — = —,
D x) = D, e Ye an YN ae

1/2 1/2 1/2
r r r
|*=|<D—E1> ,|T=|1<D—El) ,|;=|2<D_El) : (1.41)

and the nondimensional model equations, where we have dropped the asterisks for al-
gebraic convenience, become

re 1/2
e=agE,n=anN,t* =rgt, x* _X<D>

d*(x) =

d 0

2 (D(x)—) +eG(x) — e— yenl, (1.42)
an a an

5 ax (d(x)&) +rn[g(X) — n — ypel, (1.43)

where
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D(x) = 1 %fml<x<m|+|1
D, ifml -1, <x <ml,

(1.44)
d(x)z{dl itml <x <ml +1

d ifm -1, <x<ml,

and the functions G(X) and g(X) are as before (see (1.37)—(1.39)).
At the boundaries between the patches, X = X, where X; = ml for i = 2m and
Xi=ml +1; fori =2m+1(m =0, 1,2,...) the nondimensional conditions are now

hm e(x,t) = lim e(x,t), hm n(x,t) = lim n(x,t), (1.45)
x—>x X=X~ x—>x X=X~
and
m D(x )ae(x ) m D(x )ae(x t)
x—>xi X=X
1m+d( )an(x b _ d( )an(x Y (1.46)

for all integers i.

No Patchiness and Conditions for Containment

In the case when the whole domain is favourable the unfavourable patch has zero length,
I, =0.So D(X) = 1,d(X) = dj, G(X) = 1 and g(X) = 1 everywhere. This results
in the Lotka—Volterra competition model with diffusion that we considered in the last
section.

The initial steady state reduces to €, = 0, n; = 1, which below we refer to as the
native-dominant steady state. There are two other relevant steady states: the invader-
dominant steady state, where the engineered organisms have driven the natural organ-
isms to invader-dominant, that is, & = 1, n, = 0, and the coexistence steady state given
by

—1 —1
& = Ly Ne = L. (1.47)
Ynye— 1 YnYe — 1

The latter is only relevant, of course, if it is positive, which means that either ye < 1
and yn < 1, that is, weak interspecific competition for both species, or ye > 1 and
¥n > 1, which represents strong interspecific competition for both species. The trivial
zero steady state is of no significance here. With these specific competition interactions
there are no other steady state solutions in a Turing sense, that is, with zero flux bound-
ary conditions.

As with the red and grey squirrel competition we know it is possible to have
travelling wave solutions connecting the native-dominant steady state (ef, np), to the
existence steady state, (€, N»), or the invader-dominant steady state, (€3, N3). Such so-
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lutions here correspond to waves of microbial invasion, either driving the natural species
to invader-dominant or to a new, but lower, steady state.

A usual linear stability analysis about the initial native-dominant steady state, (€1,
Nnp) determines under which conditions invasion succeeds. By looking for solutions of
the form &K*t* in the linearised system we get the dispersion relationship (this is left
as an exercise)

AK2) = [—b(kz)i b2(k2)—4c(k2)], (1.48)

1
2
where

b(k?) = K>(d; + 1) + (ye— 1) +,
c(k®) =dik* +[ye — 1+ 11K +r(ye—1). (1.49)

The native-dominant steady state is linearly unstable if there exists a k> so that
A(k?) > 0. From the dispersion relationship we can see that if ye > 1 then the initial
steady state will always be linearly stable, since b(k?) and c(k?) are always positive.
However if ye < 1 then there are values of K for which the steady state is unstable and
the invasion of the engineered species, €, will succeed.

If we now linearize about the other steady states we can also determine their sta-
bility in a similar way (another exercise). The invader-dominant steady state, (€, Ny),
is stable if 3 > 1, and unstable if y < 1. The coexistence steady state (€3, N3) is
stable if yh < 1 and e < 1, and unstable if 5 > l and ye > 1. If o < 1 < yp Or
¥n < 1 < ye the coexistence steady state is no longer relevant, since either €3 or n3 in
(1.47) becomes negative. The trivial steady state is always linearly unstable since in the
absence of an indigenous species either the natural strain, the engineered strain, or both,
would invade.

Since we have already considered the travelling wave of invasion in the last section
in this situation we do not repeat it here. In summary, if the native-dominant steady state
is unstable, then if ye < 1 a travelling wave connecting the native-dominant steady state
to the invader-dominant steady state results, but only if 3, > 1. On the other hand, a
travelling wave connecting the native-dominant steady state to the coexistence steady
state results only if yn < 1. The numerical solutions for the case when ye < 1 and
¥n < 1 are similar to those in Figure 1.5.

The requirement, ye < 1, for the native-dominant steady state to be unstable, im-
plies, in terms of our original dimensional variables, defined in (1.41), that the inter-
specific competitive effect of the natural organisms, n, on the engineered species, €, is
dominated by the intraspecific competition of the natural species.

If yh > 1 the natural species is driven to invader-dominant and, in terms of the orig-
inal dimensional parameters, this happens when increases in density of the engineered
species reduce the population growth of the natural species more than they reduce their
own population’s growth rate. When y, < 1 the situation is just reversed; again refer to
(1.41).

If, on the other hand, the native-dominant state is stable, e > 1, we can, simul-
taneously, have the invader-dominant steady state stable if y;, > 1. These are also the
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conditions for the coexistence steady state to be unstable. In this case the stability of
the native-dominant steady state depends on the initial conditions (1.36). If H repre-
sents a small perturbation about € = 0 then the native-dominant steady state remains
the final steady state solution. However, Cruywagen et al. (1996) found from numerical
experimentation that for very large perturbations corresponding to a very large initial
release of €, a travelling wave solution results and the invader-dominant steady state be-
comes the final solution. So, containment can only be guaranteed for all initial release
strategies if ye > 1 and y, < 1.

If we consider the whole domain as unfavourable, instead of favourable, by setting
I1 = 0 instead of I; = 0, then we obtain analogous results. In this situation, however,
the nonzero steady states are now different. The native-dominant steady state is € =
0, n; = O, the invader-dominant steady state is €& = G», Ny = 0, while the coexistence
steady state is

_ G2 — & e = Yo — G

) 3 . (1.50)
Yevn — 1 Yeyn — 1

The stability conditions are now determined from whether ye and ypn are respec-
tively larger or smaller than G,/g; and yn < 02/Gs: the coexistence steady state is
stable, and all other steady states are unstable.

Soatially Varying Diffusion

As above we again carry out a linear stability analysis about the various steady states but
now consider spatial variations in the diffusion, that is, when patchiness affects the dif-
fusion functions. Here we only investigate how spatially varying diffusion coefficients
affect the ability of the engineered species to invade.

Conditions for Invasion

The initial native-dominant steady state is (€1, N;), where again €; = 0 and, depending
on the function g(X), either Ny = 1 or Ny is a periodic function of X with period related
to the length of the patches.

As a first case, let us assume, however, that g(X) = 1 so that nj is then independent
of X: this simplifies the problem considerably. Cruywagen et al. (1996) consider the
much more involved problem when g(X) is a periodic function of X.

To determine the stability of the initial native-dominant steady state we linearise
about (er, n;) = (0, 1) to obtain

e 0 oe
e_2 <D(X)a_x> +elGX) — rel. (1.51)
on 0 on
n_2 (d(x)&> +r[—=n— ynel, (152)

where € and N now represent small perturbations from the steady state (Nnp, €j)
(lel< L InfKD.
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Here we can determine the stability of this system by looking at just the equation
for the engineered species, (1.51), since it is independent of n. This reduces the linear
stability problem to analysing

o8 _ oe + €1 — yel in Patch 1 (1.53)
— in Patch 1, .

ot e ve

de 9%e _

m =D,— e + €[Gy — ye] in Patch 2. (1.54)

Substituting e(X, t) = e M f(x) into these equations gives the characteristic equation
of the form

d

ix <D(x)—) +[G(X) —ye+ Al f =0, (1.55)

which is known as Hill’s equation. Here, according to our definition, G(X) — ye and
D(x) are both periodic functions of period |. There is a well-established theory on the
solution behaviour of Hill’s equation in numerous ordinary differential equation books.

It is known from the theory of Hill’s equation with periodic coefficients that there
exists a monotonically increasing infinite sequence of real eigenvalues A,

—OO<X0<)~L]<)~L2<X]<X2<X3§)\4<-~, (1.56)

associated with (1.55), for which it has nonzero solutions. The solutions are of period |
if and only if A = Aj, and of period 2| if and only if A = ;. Furthermore, the solution
associated with A = XA has no zeros and is globally unstable (in the spatial sense) in
that f — oo as | X| — oo; this is discussed in detail by Shigesada et al. (1986). For the
detailed theory see, for example, the book by Coddington and Levinson (1972).

So, the stability of the native dominant steady state of the partial differential equa-
tion system (1.53) and (1.54) is determined by the sign of Ag. If Ag < O the trivial
solution &y = 0 of (1.55) is dynamically unstable and if 1y > O it is dynamically sta-
ble. Cruywagen et al. (1996) obtained a bound on Aq, which then gives the containment
conditions we require, and which we now derive.

By defining the function

I} + Galy

Q(X) = G(x) — i . (1.57)
we can write (1.55) in the form
df I
ddx <D(x)—) [Q( ) + 1+|62 2 e+x] f=o0. (1.58)

As a preliminary we have to derive a result associated with the equation

d

dx (D(X)—> + [0+ QMX)]u =0, (1.59)
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where D(X) and Q(X) are periodic with period | and D(X) > 0. From the above quoted
result on Hill’s equation we know that the periodic solution U(X) = Ug(X) of period
| corresponding to the smallest eigenvalue 0 = op has no zeros. We can assume that
Up(X) > O for all X, and then define the integrating factor h(x) as

h(x) = dix In ugp(X). (1.60)

So, h(x) is periodic of period | and is a solution of

d
Ix [POOR0OT+ D(x)h*(x) = —0p — Q(X). (1.61)

If we now integrate this over one period of length | we get
¢+l
/ D(x)h*(x) dx = —log, forreal ¢, (1.62)
Iq

since D(X), h(x) and Q(X) are periodic. So, oy = 0 if the integral over h2(x) is zero;
otherwise o9 < 0 because D(X) > 0.
Now, since

€+l
/ Q(xX)dx =0 for arbitrary real ¢, (1.63)
¢l

and comparing (1.58) and (1.59) and using the result we have just derived,

1 + Gala

| —Yet+ o <O0. (1.64)

So, we now have the following sufficient condition for A9 < 0, and hence for the system
(1.53) and (1.54), to be unstable,

(1 —ye)li = (ve — G)la. (1.65)

There are now three relevant cases to consider. Remember that G, < 1.

In the case when ye > 1 > G, the native-dominant steady state is stable in both
the favourable and unfavourable patches if they are considered in isolation. Refer again
to the above detailed discussion of the stability conditions for either the favourable or
unfavourable patches (note that g = 1 here). Although it seems reasonable, we cannot
conclude from (1.65) that the native-dominant steady state will be stable for the full
problem, since this is only a sufficient condition for instability.

On the other hand, when 1 > G; > ye the native-dominant steady state is unstable
in both patches if they are considered in isolation. Not only that, as expected, it follows
from (1.65) that the native-dominant steady state is also unstable for the problem on the
full domain considered here. So, if the carrying capacity for the engineered microbes
in the unfavourable patch, Patch 2 (reflected by G,), exceeds their loss due to the in-
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terspecific competitive effect of the natural organisms (reflected by ye), the engineered
organisms always invade.

However, if 1 > pe > G2, the native-dominant steady state is unstable in the
favourable patch but stable in the unfavourable patch when considered in isolation.
Which of these patches dominates the actual stability of the native-dominant steady
state depends on the relative sizes of these patches, as can be seen from inequality (1.65).
By increasing the favourable patch length, |1, and/or decreasing the unfavourable patch
length, |5, the native-dominant steady state will become unstable so that invasion does
occur. So, the condition (1.65) is not a necessary condition for instability and so does
not provide exact conditions for ensuring the stability of the native-dominant steady
state.

We start by deriving separable solutions for (1.53) and (1.54) for each of the two
types of patches. Since we expect periodic solutions this suggests that we use Fourier
series expansions to find the solutions.

In Patch 1 we get, after a little algebra, the solution

ex,t) = Z Ae "t cos |:(X - |§1 - ml> V1I—ve+ Xi} , (1.66)
i=0

while in Patch 2 we have

ex, ) :ZBie_mcos[(X+|52—(m+l)|) W] (1.67)
i=0 2

with Aj and B; constants.

Applying the continuity conditions (1.45) and (1.46) the following series of equal-
ities must hold

I
V1 —Ye+ A tan(%\/l—ye+)q)

Ga — ve+ A b |Gy —ye+ A
=-Dp)p/———— tan|= | ——— ], 1.68
2 D, > D, (1.68)
fori =0,1,2,... .If the expressions inside the square roots become negative we have
to use the identities
taniz=itanhz, arctaniz =i arctanhz. (1.69)

We are, of course, interested in the sign of the smallest eigenvalue, A = ¢, which
satisfies the above equality. It is easy to show that A is negative if and only if the
expressions 1 — ye + Ao and G, — ye + A appearing under the square roots have
opposite signs. Since, by definition G, < 1, this can occur only if ye < 1. So, since
this is the case in the problem with spatially uniform coefficients, a necessary condition
for the native-dominant steady state to be unstable, thereby letting engineered microbes
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invade, is that the competitive effect bg of the natural species on the engineered species
is smaller than the intraspecific competition effect, ay, of the natural species; refer to
the dimensionless forms in (1.41).

If G2 > ye then X is negative and invasion will succeed regardless of the other
parameters and the patch sizes, as we discussed above. However, if Gy < ye < 1,
then depending on the various parameter values, Ao can be either negative or positive.
We now consider this case, in which the native-dominant steady state is unstable in the
favourable patch but stable in the unfavourable patch, in further detail. As we have seen
above, the relative sizes of the patches now become important.

At the critical value, Ag = 0, the following holds,

| —G | —G
ST —vetan | 2/ T—ye| = Do [ L2 tann | 2 (Yo 22| (1.70)
2 D, 2\ D,

from which we determine the critical length, |, of Patch 1 as

2 D -G | -G
I} = ———==arctan 2(yeiz)tamh 2 [Ye— ™2 . (1.71)
I —ye 1—vys 2 D)

Forl; < | T the native-dominant steady state would be stable, since Ay would be positive,
while for I} > I, A9 would be negative and the native-dominant steady state unstable.
So, as we showed earlier in this section, invasion will succeed if the favourable patch is
large enough compared to the unfavourable patch.

Note that as |, tends to infinity the boundary curve approaches the asymptote

. 2 D2(ye — G2)
lim l{(,) =1 = ———arctan | ———=". (1.72)
l,—o00 1 V1 —ve 1 —ve
So, invasion will always succeed, regardless of the unfavourable patch size, if |} > If.
Furthermore, since

2 arctan oo T
I >IM= = s (1.73)
I ! V1T —ve V1 —ve

invasion will succeed regardless of the values of |2, G2 (< ye) and Dy if | > I{". The sta-
bility region in terms of || and |, for the case when G, < Ve, is shown in Figure 1.7(a).

In a similar way we can draw a stability curve for ye versus lp. We have shown
that if Ye < G invasion will always succeed independent of the length of Patch 2 (1).
However, as ye increases beyond G; a stability curve appears from infinity at some crit-
ical value ye = y£. The asymptote of the curve, y<, can be obtained from the following
nonlinear relationship

Dy(yE -G I
M — tan? <_] 1— yc> ) (1.74)
1—y§
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Figure 1.7. The stability diagram for the native-dominant steady state, obtained from (1.70), with spatially
periodic diffusion coefficients and a spatially periodic carrying capacity for the engineered population. The
boundary curves are indicated by the solid line, while the asymptotes are indicated by the dotted lines. (a)
The (11, 1) plane for Dy = 0.5, ye = 0.75 and G, = 0.5. (b) The (ye, |) plane for D, = 0.5,1; = 1.0 and
Gy = 0.5. () The (Dy, I) plane for ye = 0.75,1; = 1.0 and G, = 0.5. The algebraic expressions for the

asymptotes are given in the text. (From Cruywagen et al. 1996)
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This stability region is shown in Figure 1.7(b). Note here that, as || increases towards | €,
the stability curve would appear for increasingly larger values of y¢$, while for I} > 17,
the stability curve would not appear at all.

The properties of the stability graph of G, versus |, is similar to that of ye versus I».
For G, > ye invasion is successful, however, because the value of G, decreases beyond
Ye; a stability curve appears from infinity at the asymptote

—1 |
GS = ye+ VBDZ tan? <—“/1 - ye) . (1.75)

2

The diffusion rate of the engineered species in the unfavourable patch, Patch 2, also
plays an important role in determining the stability of the native-dominant steady state
ifl] < IT. For sufficiently small values of D; invasion succeeds regardless of the value
of |,. Biologically this implies that the diffusion is so small in the unfavourable patch
that the effect on the favourable patch is minimal. However, as D; increases, a stability
curve appears from infinity at the critical asymptotic value D, = DS, with

1 - !
DS = —— € (an? <—‘,/1 - ye>. (1.76)

Ye — G2 2

On the other hand, as Dy — oo the stability curve approaches an asymptote at |5.
Since, from (1.70),

D: arc tanh i tan (I—l 1-— ye) (L.77)
Ye— G2 Da(ye — G2) 2

and, after applying L’Hopital’s rule, we get

l, =2

lim (D) = 1§ = W= ve ('—‘\/1 —ye). (1.78)

Dy—o0 Ye — Gy 2

So for I, < |‘23 the engineered microbes invade for any diffusion rate. Figure 1.7(c)
shows the graph of the D versus |, stability curve.

We can conclude that for ye < 1 necessary conditions for containment are Gy < e,
and

Lho<If, 12>15, ye>ys, G2<G5, D,>DS. (1.79)

These inequalities show that containment can be ensured either by decreasing |1 or G,
or by increasing ye, Dy or |,. Recall from above that ye < 1 implies that the native-
dominant steady state is unstable in the favourable patch, while, on the other hand,
G, < ye implies that it is stable in the unfavourable patch. The simplest strategy for
ensuring the stability of the native-dominant steady state is, however, to have ye > 1 as
we discussed above.

It is important to note here that linear stability has been discussed for the patchy
domain as a whole. Even though invasion succeeds somewhere in the whole domain,
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it might be the case that, depending on initial conditions, invasion is only local and,
in effect, contained in a certain patch. This could be the case when 1 > ye > Gj.
Although the native-dominant steady state can be stable for the full problem it is locally
unstable in the favourable patch. Local invasion in a favourable patch, resulting from
small nonzero initial perturbations for e in that patch, might thus occur in some cases.
Cruywagen et al. (1996) considered such an example.

We have just obtained the stability conditions for the native-dominant steady state,
(er, np). There are three other possible steady states, the zero steady state (€, Ng), the
invader-dominant steady state (&, N»), and the coexistence steady state (€3, N3). We
can determine whether, and under what conditions, the solution would evolve into any
of these steady states. Naturally in these cases, travelling wave solutions, connecting
the unstable native-dominant steady state to non-native-dominant steady states, are to
be expected. Cruywagen et al. (1996) examined these other steady states in a similar
way to the above and showed that e > 1 and y, < 1 is the only strategy for con-
tainment that is safe for any initial microbe release density. Comparing this result with
the one we obtained above we see that varying diffusion does not affect the stability
conditions.

Cruywagen et al. (1996) also considered the effect of a varying carrying capacity by
considering G(x) and g(X) to be spatially periodic which means that all three nonzero
steady states have spatially periodic solutions. Determining their stability is difficult so
they used perturbation techniques to obtain approximate stability conditions.

Although the model of Cruywagen et al. (1996) is really too simple to be realistic,
it identifies several key scenarios for the effect of a heterogeneous environment on in-
vasion in competitive systems. In spite of the relative simplicity the detailed analysis is
complicated and involves considerable bookkeeping. Cruywagen et al. (1996) produced
quite a complex summary table of approximate predictions of coexistence, extinction
and invasion for genetically engineered microbes competing with a wild-type strain in
terms of the various parameters and forms of the diffusion and variable carrying ca-
pacities, including patch sizes. First, although invasion is less likely to occur for large
unfavourable ‘moats’ surrounding an interior suitable habitat island, once the interior
island gets sufficiently large, no size of the surrounding hostile region can prevent an
invasion. In general, a decrease in the relative size of patch type in which the native
species dominates increases the chances that the exotic species can invade. Perhaps the
most interesting scenario involves a situation in which an invasion can succeed locally
(within one patch) but fail globally. It is in this situation where results are not intuitively
clear and the mathematical model is particularly helpful.

Further work on models that include convective transport as well as a possible dis-
tinction of sedentary and mobile classes has been done by Lewis et al. (1996); see also
Lewis and Schmitz (1996). This work takes into account the fact that microbes enter
different mobile and immobile compartments, such as the roots of plants, various hosts,
ground water or wind. The paper by Lewis (1997) and the book of articles edited by
Tilman and Kareiva (1997) are of particular relevance to the spatial spread of invading
species. Finally, any study and extension of the basic model considered should be asso-
ciated with field studies to estimate the interspecific competition parameters to ensure
realistic field predictions (Kareiva 1990).
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1.5 Travelling Frontsin the Belousov—Zhabotinskii Reaction

One of the reasons for studying chemical waves in the Belousov—Zhabotinskii reac-
tion is that it is now just one of many such reactions which exhibit similar wave and
pattern formation phenomena. These reactions are used as paradigms for biological pat-
tern formation systems and as such have initiated numerous experiments in embryonic
development and greatly enhanced our understanding of some of the complex wave
behaviour in the heart and other organs in the body. So, although the study of these
chemical waves is interesting in its own right, we discuss them here with the pedagog-
ical aim of their use in furthering our understanding of biological pattern formation
mechanisms.

The waves in Figure 1.1(a) are travelling bands of chemical concentrations in the
Belousov—Zhabotinskii reaction; they are generated by localised pacemakers. In this
section we derive and analyse a model for the propagating front of such a wave. Far
from the centre the wave is essentially plane, so we consider here the one-dimensional
problem and follow in part the analysis of Murray (1976). The reason for investigating
this specific problem is the assumption that the speed of the wavefront depends primar-
ily on the concentrations of the key chemicals, bromous acid (HBrO,) and the bromide
ion (Br™) denoted respectively by X and y. Refer to Chapter 8, Volume I, specifically
Section 8.1, for the details of the model reaction kinetics. This section can, however,
be read independently by starting with the reaction scheme in (1.80) below. We assume
that these reactants diffuse with diffusion coefficient D. We believe that the wavefront is
dominated by process | of the reaction, namely, the sequence of reactions which (i) re-
duces the bromide concentration to a small value, (ii) increases the bromous acid to its
maximum concentration and in which (iii) the cerium ion catalyst is in the Ce3* state.
Since the concentration of Ce*t was denoted by z in Section 8.1, Volume I, the last
assumption implies that z = 0. The simplified reaction sequence, from equation (8.2),
Volume I without the cerium reaction and with z = 0, is then

A+Y X xipP x+Y8aop
(1.80)

k
A+ X8oax. axXpya

where X and Y denote the bromous acid and bromide ion respectively and the k’s are
rate constants. P (the compound HBrO) does not appear in our analysis and the con-
centration A(BrO3™) is constant.

Applying the Law of Mass Action (see Chapter 6, Volume I) to this scheme, using
lowercase letters for concentrations, and including diffusion of X and Y, we get

aX 9%x
—_— = k]ay— ksz+ k3ax — k4)(2 + D_a
ot 0s?
5 (1.81)
ay a7y
— = —kjay — kox D—,
5t 1ay — KaXy + Py

where S is the space variable. An appropriate nondimensionalisation here is
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K kg 12
=i v s=(T) s
’ ;M ) ) (1.82)
t"—ksat, L=—2 M=— b=-_2,
’ koks ks kq

where I is a parameter which reflects the fact that the bromide ion concentration far
ahead of the wavefront can be varied experimentally. With these, (1.81) becomes, on
omitting the asterisks for notational simplicity,

au 9%u
— =Lrv+ull—-u—rv)+ —
ot 9s?
5 (1.83)
ov v
— =—Mv—-hu —.
ot T

Using the estimated values for the various rate constants and parameters from Chapter 8,
Volume I, equations (8.4), we find

L~M=010"%, b=o0(q).

The parameter I can be varied from about 5 to 50.
With the nondimensionalisation (1.82) the realistic steady states are

u=v=0; u=1,v=0, (1.84)
so we expect U and v to be O(1)-bounded. So, to a first approximation, since L < 1

and M « 1 in (1.83), we may neglect these terms and thus arrive at a model for the
leading edge of travelling waves in the Belousov—Zhabotinskii reaction, namely,

au 9%u
—=ul—-u—-rv)+—
ot 0s?
(1.85)
ov buv + 9%
e — _buv+ —,
ot 0s?

where r and b are positive parameters of O(1). Note that this model approximation
introduces a new steady state (0, S), where S > 0 can take any value. This is because
this is only a model for the front, not the whole wave pulse, on either side of which
v— 0.

Let us now look for travelling wavefront solutions of (1.85) where the wave moves
from a region of high bromous acid concentration to one of low bromous acid con-
centration as it reduces the level of the bromide ion. With (1.84) we therefore look for
waves with boundary conditions

U(—00,t) =0, wv(—00,t) =1, u(co,t)=1, wv(o0,t)=0 (1.86)

and the wave moves to the left.
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Before looking for travelling wave solutions we should note that there are some
special cases which reduce the problem to a Fisher—Kolmogoroff equation. Setting

v:l%b(l—u), b#1, r#0 (1.87)

the system (1.85) reduces to

o _ i 92u
ot u(l—u) + 52
the Fisher—Kolmogoroff equation (13.4) in Volume I, which has travelling monotonic
wavefront solutions going from u = 0 to u = 1 which travel at speeds ¢ > 2+/b. Since
we are only concerned here with nonnegative U and v, we must have b < 1 in (1.87). If
we take the initial condition

u(s,0) ~ O(exp[—pBsS]) as S— o0

we saw in Chapter 13, Volume I that the asymptotic speed of the resulting travelling
wavefront is

ﬁ+9, 0<p=<+b
c= B (1.88)

2vVh, B8 > vb.

The wavefront solutions given by the Fisher—Kolmogoroff wave with v as in (1.87) are
not, however, of practical relevance unless 1 — b = r since we require U and v to satisfy
the boundary conditions (1.86), where v = 0 when U = 1 and v = 1 when U = 0. The
appropriate Fisher—Kolmogoroff solution with suitable initial conditions, namely,

0 S< S
u@s,0) = {h(s) for SI<S<S, (1.89)
1 S <S

where h(s) is a positive monotonic continuous function with h(s;) = 0 and h(s;) = 1,
then has wavespeed ¢ = 2v/b = 24/1 —r from (1.88) and v = 1 — u. Necessarily
O0<r <l1.

We can further exploit the results for the Fisher—Kolmogoroff equation by using the
maximum principle for parabolic equations. Let Ut (S, t) denote the unique solution of

ouf 32Uf

— =us(l—u —_—
ot rA=un+—g (1.90)

Ui(—0o,t) =0, uf(oo,t) =1

with initial conditions (1.89). The asymptotic travelling wavefront solution has speed
€ = 2. Now write
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w(s,t) =u(s,t) —us(s, t)

and let U(s, t) have the same initial conditions as U, namely, (1.89). Subtracting equa-
tion (1.90) from the equation for U given by (1.85) and using the definition of w in the
last equation we get

wss — Wt + [1 — (U+Uf)]w =ruv.

We are restricting our solutions to 0 < U < 1 and, since 0 < uf < 1, we have
[1 — (u+4uf)] <1 and so we cannot use the usual maximum principle immediately. If
we set W = w exp [—Kt], where K > 0 is a finite constant, the last equation becomes

Wss — Wi +[1 — (U+uf) — KIW = ruve Xt > 0.

Choosing K > 1 we then have [ — (U+ Uf) — K] < 0 and the maximum principle
can now be used on the W-equation. It says that W, and hence w, has its maximum at
t =0orats=00.But wWmax = (U—Uf)max = 0 att = 0 and at S = £00 so we have
the result

u(s,t) <us(s,t) forall s, t=>0.

This says that the solution for U of (1.85) is at all points less than or equal to the Fisher—
Kolmogoroff solution us which evolves from initial conditions (1.89). So, if the so-
lutions of (1.85) have travelling wave solutions with boundary conditions (1.86) and
equivalent initial conditions to (1.89), then their wavespeeds C must be bounded by the
Fisher—Kolmogoroff speed and so we have the upper bound c(r, b) < 2 for all values of
the parameters r and b. Intuitively we would expect any such travelling wave solution
of (1.85) to have speed ¢ < 2 since with Uv > 0 the term —r uv in the first of (1.85)
is like a sink term in addition to the kinetics U(1 — u). This inhibits the growth of u at
any point as compared with the Fisher—Kolmogoroff wave solution so we would expect
U and its speed to be bounded above by the Fisher—Kolmogoroff solution.

Various limiting values for the wavespeed C, as a function of r and b, can be derived
from the equation system (1.85). Care, however, has to be taken in their derivation
because of nonuniform limiting situations; these will be pointed out at the appropriate
places.

If b = 0, the equation for v from (1.85) becomes the basic diffusion equation vy =
vss Which cannot have wave solutions. This means that neither can the first of (1.85)
for U, since a wave solution requires U and v to have the same speed of propagation.
This suggests that the limit c(b — 0,r) = 0 forr > 0. If b — o0, (1.85) says that
v = 0 (we exclude the trivial solution U = 0) in which case c(b — oo, r) = 2 for all
r > 0. Now if r = 0, the U and v equations are uncoupled with the u-equation being
the basic Fisher—Kolmogoroff equation (1.90) which, with initial conditions (1.89), has
wavefront solutions with ¢ = 2: this means that the relevant v-solution also has speed 2.
This gives the limiting case c(b,r — 0) =2 forb > 0.Ifr — cothenu=0orv =0,
either of which implies that there is no wave solution, so c(b,r — 0o) = 0. Note the
nonuniform limiting situation with this case: the limit r — oo with v # 0 is not the
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same as the situation with v = 0 and then letting r — oo. In the latter, U is governed
by the Fisher—Kolmogoroff equation and r is irrelevant. As we said above, however, we
are here concerned with travelling waves in which neither U nor v are identically zero.
With that in mind we then have in summary

c0,r)y=0, r >0 c(oo,r)=2, r=>0

(1.91)
cb,0)=2, b>0; c(b,o0) =0, b>0.
The first of these does not give the whole story for small b as we see below.
The travelling wavefront problem for the system (1.85), on using the travelling
wave transformation

uis,t)y = f(2, wv(st)=92, z=s+ct,
and the boundary conditions (1.86), become

f/"—ct'+f(1—-f—-rgp=0, g’'—cg —bfg=0
(1.92)
f(o0) =g(—00) =1, f(—00)=g(c0) =0.

Using various bounds and estimation techniques for monotonic solutions of (1.92) with
f > 0and g > 0, Murray (1976) obtained the general bounds on € in terms of the
parameters I and b given by

2p\ /2
|:<r2+?> —r] Rb+2r)]" 2 <c<2. (1.93)

The system (1.85), with initial and boundary conditions (1.86) and (1.89), were
solved numerically (Murray 1976) and some of the results are shown in Figure 1.8.
Note, in Figure 1.8(b), the region bounded by b = 0, ¢? = 4b and ¢ = 2 within which
nonnegative solutions do not exist. The limit curve ¢> = 4b is obtained using the special

2.0k r=0
__________________ Rc? = 4b r=0.25
r=20 "~3 ¢ \ =05
c=0.16 N N r =0.75
Wave T=1
propagation > r=2
¢ = .096 =5
7T =10
i 1 1 I - L /T‘ ‘= w
—20 —10 0 10 20 0 1 2 3 b

(a) (b)

Figure 1.8. (a) Typical computed wavefront solution of the Belousov—Zhabotinskii model system (1.85) for
u and v for b = 1.25 and two values of the upstream bromide parameter r. The u-curves for both values of
r are effectively indistinguishable. (b) Wavespeed ¢ of wavefront solutions as a function of b for various r.
(From Murray 1976)
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case solution in whichv =1 —uandb =1 —r,r < 1. A fuller numerical study of the
model system (1.85) was carried out by Manoranjan and Mitchell (1983).

Let us now return to the experimental situation. From Figure 1.8(a), if we keep
b fixed, the effect of increasing r (which with the nondimensionalisation (1.82) is the
equivalent of increasing the upstream bromide ion (Br™) concentration) is to flatten the
v-curve. That is, the wavefront becomes less sharp. On the other hand, for a fixed r
and increasing b, the front becomes sharper. Although it is imprecise, we can get some
estimate of the actual width of the wavefront from the width, @ say, of the computed
wavefront solution. In dimensional terms this is wp where, from (1.82),

D \!/2

—4

wp = <—) w45 x 10" wcm,
k3a

where we have taken D ~ 2 x 107> cm?s~!, a typical value for reasonably small

molecules such as we are concerned with here, and kza ~ 10%s~! obtained from the
parameter values in (8.4) in Chapter 8. From Figure 1.8(a), w is around 10 which then
gives wp of the order of 10~3 cm. This is of the order found experimentally; the front
is very thin.

Another practical prediction, from Figure 1.8(b), is that for b larger than about
2, we see that for a fixed r the wavespeed is fairly independent of b. Computations
for values of b up to about 50 confirm this observation. This has also been observed
experimentally.

From the nondimensionalisation (1.82) the dimensional wavespeed, Cp say, is given
by

co = (ksaD)'/?c(r, b),

where r is a measure of the upstream bromide concentration and b = k/k4. From
the parameter estimates given in Chapter 8, Volume I, equations (8.4), we get b ~ 1.
Assigning I is not very easy and values of 5-50 are reasonable experimentally. With
r of O(10) and b about 1 we get the dimensionless wavespeed from Figure 1.8(b) to
be O(10~1); the precise value for € can be calculated from the model system. With the
values for D and kza above we thus get cp to be O(4.5 x 103 cms™!) or O(2.7 x
10~! cm min~!), which is again in the experimental range observed. In view of the
reasonable quantitative comparison with experiment and the results derived here from
a model which mimics the propagation of the wavefront, we suggest that the speed of
propagation of Belousov—Zhabotinskii wavefronts is mainly determined by the leading
edge and not the trailing edge.

Finally, in relation to the speed of propagation of a reaction diffusion wavefront
compared to simple diffusion we get the time for a wavefront to move 1 cm as O(10/2.7
min), that is, about 4 minutes as compared to the diffusional time which is O(1 cm? /D),
namely, O(5 x 10* s) or about 850 minutes. So, as a means of transmitting informa-
tion via a change in chemical concentration, we can safely say that reaction diffusion
waves are orders of magnitude faster than pure diffusion, if the distances involved are
other than very small. Later we discuss in detail the problem of pattern formation in
embryological contexts where distances of interest are of the order of cell diameters,
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so diffusion is again a relevant mechanism for conveying information. However, as we
shall see, it is not the only possible mechanism in embryological contexts.

The model system (1.85) has been studied by several authors. Gibbs (1980), for
example, proved the existence and monotonicity of the travelling waves. An interesting
formulation of such travelling wave phenomena as Stefan problems, together with a
singular perturbation analysis of the Stefan problem associated with the Murray model
(1.85) in which the parameters r and b are both large, is given by Ortoleva and Schmidt
(1985).

Showalter and his colleagues have made major contributions to this area of travel-
ling fronts, crucially associated with experiments, many involving the Belousov—
Zhabotinskii reaction. For example, Merkin et al. (1996) looked at wave-induced chaos
based on a simple cubic autocatalytic model involving chemical feedback. Their model
involves a cubic autocatalytic feedback represented by

A+ 2B — 3B, reaction rate = kjab?,
coupled with a decay step given by
B — C, reaction rate = kyb,
where a and b are the concentrations of A and B. The setup consists of a gel reaction
zone on one side of which there is a reservoir kept at a constant ay with which it can

exchange a and on the other side, kept at by with which it can exchange b. The reaction
diffusion system is then given by

d
ab 2 5
a9t = Dp v~ b+ K¢ (bp — b) + kjab”™ — kab,

where K+ is a constant parameter associated with the inflow and outflow of the reactants
and the D’s are their respective diffusion coefficients. Although these equations do not
look very different, except in reaction details, to many that have been studied in the
past they exhibit an interesting spectrum of solutions. Merkin et al. (1996) show, for
example, by linear, travelling wave and numerical (in one and two dimensions) analyses,
that there are ranges of the dimensionless parameters y = kla(% /Ki and ¢ = (K¢ +
kp)/ks for which there can be travelling fronts, travelling pulses, Hopf bifurcations and
interestingly chaotic behaviour, the latter being induced behind a travelling wave.

1.6 Wavesin Excitable Media

One of the most widely studied systems with excitable behaviour is neural commu-
nication by nerve cells via electrical signalling. We discussed the important Hodgkin—
Huxley model in Chapter 7, Volume I, and derived a mathematical caricature, the
Fitzhugh—Nagumo equations (FHN). Here we first consider, simply by way of example,
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the spatiotemporal FHN model and demonstrate the existence of travelling pulses which
only propagate if a certain threshold perturbation is exceeded. By a pulse here, we mean
a wave which represents an excursion from a steady state and back to it—Ilike a solitary
wave on water; see, for example, Figure 1.10. We shall consider models with kinetics

ug = f(u,v), v =9, v)

for a specific class of f and g. The approach we shall describe is quite general and
applies to a wide class of qualitative models of excitable media whose null clines are
qualitatively similar to those in Figure 1.9(a). This section can be read without refer-
ence to the actual physiological situation if the equation system (1.94) below is simply
considered as a specific model example for an excitable medium.

As we saw in Section 7.5, Volume I, without any spatial variation, that is, the space-
clamped situation, the FHN equations exhibited a threshold behaviour in time as illus-
trated in Figure 7.12, Volume I (refer also to Section 3.8, Volume I). The FHN system
without any applied current (I = 0), but where we allow spatial ‘diffusion’ in the
transmembrane potential and with a slight change in notation for consistency in this
chapter, is

au %u  dv

— = f(u)— D—, —=bu-—

ot — WD T (1.94)
f(w=u@—-w-1).

Here u is directly related to the membrane potential (V in Section 7.5, Volume I) and
v plays the role of several variables associated with terms in the contribution to the
membrane current from sodium, potassium and other ions. The ‘diffusion’ coefficient
D is associated with the axial current in the axon and, referring to the conservation of
current equation (7.38) in Section 7.5, Volume I, the spatial variation in the potential V
gives a contribution (d/4rj)Vyx on the right-hand side, where r; is the resistivity and
d is the axon diameter. The parameters 0 < a < 1, b and y are all positive. The null
clines of the ‘kinetics’ in the (U, v) plane are shown in Figure 1.9(b).

We want to demonstrate in this section how travelling wave solutions arise for reac-
tion diffusion systems with excitable kinetics. There are several important physiological
applications in addition to that for the propagation of nerve action potentials modelled
with the FHN model. One such important application is concerned with the waves which
arise in muscle tissue, particularly heart muscle: in their two- and three-dimensional
context these excitable waves are intimately related to the problem of atrial flutter and
fibrillation (see, for example, Winfree 1983a,b). Another example is the reverberating
cortical depression waves in the brain cortex (Shibata and Bure§ 1974). Two- and three-
dimensional excitable waves can also arise in the Belousov—Zhabotinskii reaction and
others. We shall come back to these applications below. The system (1.94) has been
studied in some detail and the following is only a very small sample from the long and
ever-increasing list of references. The review by Rinzel (1981) specifically discussed
models in neurobiology. Rinzel and Keller (1973) considered the piecewise linear car-
icature of (1.94) where y = 0 and obtained analytical results for travelling pulses and
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Figure 1.9. (a) Typical null clines for excitable kinetics. The kinetics here have only one steady state, S,
which is globally stable but excitable. (b) Null clines for the excitable Fitzhugh-Nagumo system (1.94): the
origin is the single steady state.

periodic wavetrains: the method of analysis here has more general applicability and is
often the only way to investigate such nonlinear problems analytically. The caricature
form when f (u) is replaced by the piecewise linear approximation f (u) = H(u—a)—u
where H denotes the Heaviside function (H(X) = 0if X < 0, H(X) = 1 if X > 0) has
been studied by McKean (1970) while Feroe (1982) looked at the stability of multiple
pulse solutions of this caricature. Ikeda et al. (1986) considered the Hodgkin—Huxley
system and demonstrated the instability of certain slow wave solutions. The situation
when b and y in (1.94) are such that v = bu/y intersects the U-null cline to give three
steady states was studied by Rinzel and Terman (1982). General discussions and re-
views of waves in excitable media have been given, for example, by Keener (1980),
Zykov (1988) and Tyson and Keener (1988) and of periodic bursting phenomena in ex-
citable membranes by Carpenter (1979). The book by Keener and Sneyd (1998) also
discusses the phenomenon; see other references there.

Travelling wave solutions of (1.94), in which U and v are functions only of the
travelling coordinate variable z = X — ct, satisfy the travelling coordinate form of
(1.94), namely,

DU +ct+ f(uW)—v=0, c+bu—yv=0, z=x-ct, (1.95)

where the prime denotes differentiation with respect to z and the wavespeed C is to be
determined. The boundary conditions corresponding to a solitary pulse are

u—0, U

-0, v—>0 as |Z|]—> (1.96)
and the pulse is typically as illustrated in Figure 1.10(a). The corresponding phase tra-
jectory in the (U, v) plane is schematically as in Figure 1.10(b).

Initial conditions play a critical role in the existence of travelling pulses. Intuitively
we can see why. Suppose we have a spatial domain with (U, v) initially at the zero rest
state and we perturb it by a local rise in U over a small domain, keeping v = 0, as
in Figure 1.11(a). If the perturbation has a maximum U less than the threshold up in
Figure 1.10(b) (and Figure 1.11(c)) then the kinetics cause U to return to the origin and
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(a) D (b)

Figure 1.10. (a) Typical travelling pulse, or solitary wave, solution for the excitable system (1.94). (b) Cor-
responding phase trajectory in the (U, v) plane. Note the threshold characteristic of the null clines. A per-
turbation from the origin to a value U < up will simply return to the origin with u always less than ua. A
perturbation to U > U initiates a large excursion qualitatively like ABCDO. The position of C is obtained
from the analysis as explained in the text.

the spatial perturbation simply dies out. On the other hand if the perturbation is larger
than the threshold u A then the kinetics initiate a large excursion in both U and v as shown
by 0BC DO in Figure 1.11(c). When a wave is initiated the trailing edge is represented
in the phase plane by CD. Whereas it is intuitively clear that the leading edge should be
at 0B the positioning of CD is not so obvious. We now consider this important aspect
of travelling pulses.

t=1 >0

(b)

(c)

Figure 1.11. (a) The perturbation given by the solid line has Upax < Ua, where U is the threshold value
in Figure 1.10(b). The solution is then simply a decaying transient such as illustrated in (b). With the dashed
line as initial conditions the maximum value of U is larger than the threshold U and this initiates a travelling
pulse such as in Figure 1.10(a). (C) Typical phase trajectories for u and v depending on whether the initial u
is greater or less than ua. The positioning of the trailing edge part of the trajectory, CD, is discussed in the
text.
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It is analytically easier to see what is going on if we consider (1.94) with b and y
small, so we write

b=¢L, y=eM, 0<exl
and (1.94) becomes
Ut = Duxx + f(U) —v, v =e&(Lu— Mvo). (1.97)

Now refer back to Figure 1.10(a) and consider the leading front 0AB. In the limiting
situation ¢ — 0 the last equation says that v ~ constant and from Figures 1.10(a) and
1.10(b), this constant is zero. The U-equation in (1.97) then becomes

Ut = Duygx + f(u), fu) =u@—-u)(u-1), (1.98)

where f(u) is sketched as a function of u in Figure 1.10(b). It has three steady states
U =0,u=aand U = 1. In the absence of diffusion (1.98) implies thatu = O0and U = 1
are linearly stable and U = a is unstable. We can thus have a travelling wave solution
which joins U = 0 to u = 1. Equation (1.98) is a specific example of the one studied
in Section 13.5, Volume I, specifically equation (13.73), which has an exact analytical
solution (13.78) with a unique wavespeed given by (13.77). For the wave solution here
we thus get

D\ /2
u=u@, z=x-ct; c= (E) (1 —2a), (1.99)

and so the wavespeed is positive only if & < 1/2. This is the same condition we get
from the sign determination given by (13.70) in Volume I, which, for (1.98), is

1
> . >
czo if /0 f(u)duzo.

Referring now to Figure 1.10(b), the area bounded by OA and the curve v = f(u) is
less than the area enclosed by AB and the curve v = f(u) so ¢ > 0; carrying out the
integration gives ¢ > 0 for alla < 1/2.

We arrived at the equation system for the wave pulse front by neglecting the
e-terms in (1.97). This gave us the contribution to the pulse corresponding to 0AB
in Figure 1.10(b). Along BC, v changes. From (1.97) a change in v will take a long
time, O(1/¢) in fact, since vy = O(e). To get this part of the solution we would have to
carry out a singular perturbation analysis (see, for example, Keener 1980), the upshot
of which gives a slow transition period where U does not change much but v does. This
is the part of the pulse designated BC in Figures 1.10(a) and 1.10(b).

The crucial question immediately arises as to where the next fast transition takes
place, in other words where C is on the phase trajectory. Remember we are investigating
the existence of pulse solutions which travel without change of shape. For this to be so
the wavespeed of the trailing edge, namely, the speed of a wavefront solution that goes
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from C to D via P in Figure 1.10(a) (and Figure 1.11(c)), has to be the same as that for
the leading edge OAB. On this part of the trajectory v & vc and the equation for the
trailing edge wavefront from (1.97) is then given by

Ut = Duxy + f(u) —vc. (1.100)
A travelling wavefront solution of this equation has to have
u=u(2, z=X-—ct; uU(—o0) = up, Uu(o0) =uc.

The analytical solution and its unique wavespeed are again given in terms of Uc, Up
and Up by the analysis in Section 13.5, Volume I. It gives the wavespeed as

12
c= <E> (Uuc —2up + up). (1.101)

From the expression for f(u) in (1.98), the roots Uc, Up and up of f(u) = vc are
determined in terms of vc. The wavespeed c in (1.101) is then c(vc), a function of vc.
We now determine the value of vc by requiring this c(vc) to be equal to the previously
calculated wavespeed for the pulse front, namely, ¢ = (D/ 2)172(1 — 2a) from (1.99).
In principle it is possible to determine it in this way since the expression for vc is the
solution of a polynomial.

To complete the analytical determination of the wave pulse we now have to consider
the part of the solution and the phase trajectory DO in Figures 1.10 and 1.11(c). As for
the part BC, during this stage v again changes by O(1) in a time O(1/¢). This is
referred to as the refractory phase of the phenomenon. Figure 1.12 shows a computed
example for the system (1.94) where the cubic f (U) is approximated by the piecewise
linear expression f(u) = H(u—a) — u.

Threshold waves are also obtained for more general excitable media models. To
highlight the analytical concepts let us consider the two-species system in which one of
the reactions is fast. To facilitate the analysis we consider the reaction diffusion system

Ut = e°Dilgx + (U, v), vt = e*Dovyx + g(U, v), (1.102)

~— ¢ Increasing

C
’ f [ Figure 1.12. Development of a travelling
0 wave pulse solution from square initial data

for the excitable system (1.97) with
f(u)=H(@u—a) —uwitha =0.25,
D=1,e=0.1,L=1,M =0.5.The
wave is moving to the right. (Redrawn from
—1 L i L 1 Rinzel and Terman 1982 with permission of

0 20 40 60 80 =z J. Rinzel)
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Figure 1.13. (a) Schematic null clines f(u,v) = 0, g(u,v) = 0 for the excitable system (1.102). The
travelling pulse solution corresponds to the dashed trajectory. (b) Typical pulse solutions for u and v.

where 0 < ¢ « 1 and the kinetics f and g have null clines like those in Figure 1.13(a),
and we exploit the fact that ¢ is small. The key qualitative shape for f (u, v) = 0is a cu-
bic. This form is typical of many reactions where activation and inhibition are involved
(cf. Section 6.6 and Section 6.7, Volume I).

The system (1.102) is excitable in the absence of diffusion. In Section 3.8, Volume I
the description of a threshold mechanism was rather vague. We talked there of a system
where the reactants underwent a large excursion in the phase plane if the perturbation
was of the appropriate kind and of sufficient size. A better, and much more precise,
definition is that a mechanism is excitable if a stimulus of sufficient size can initiate a
travelling pulse which will propagate through the medium.

For 0 < ¢ « 1, the O(1) form of (1.102) is f(u, v) = 0 which we assume can
be solved to give U as a multivalued function of v. From Figure 1.13(a) we see that for
all given vy < v < vy there are three solutions for u of f(u,v) = 0: they are the
intersections of the line v = constant with the null cline f (u, v) = 0. In an analogous
way to the above discussion of the FHN system we can thus have a wavefront type
solution joining Sto A and a trailing wavefront from B to C with slow transitions in
between. The time for U to change from its value at Sto that at A is fast. This is what
f(u, v) = 0 means since (referring to Figure 1.13(a)) if there is a perturbation to a
value U to the right of D, u goes to the value at A instantaneously since U moves so
that f (u, v) is again zero. It takes, in fact, a time O(g). On the other hand it takes a
relatively long time, O(1), to traverse the AB and CS parts of the curve, while BC is
covered again in O(e).

The analytical investigation of the pulse solution is quite involved and the detailed
analysis of this general case has been given by Keener (1980). Here we consider by way
of illustration how to go about carrying out the analysis for the leading front: that is,
we consider the transition from Sto A in Figures 1.13(a) and 1.13(b). The transition
takes place quickly, in a time O(e), and spatially it is a sharp front of thickness O(e);
see Figure 1.13(b). These scales are indicated by a singular perturbation appraisal of
equations (1.102). This suggests that we introduce new independent variables by the
transformations

t X=X
‘[:—’ é: T
&

(1.103)
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where X7 is the position of the transition front, which we do not need at this stage or
level of analysis. All the introduction of X1 does is to make the leading edge of the
wave pulse at the origin £ = 0 in the £-plane. Substitution into (1.102) and letting
& — 0, keeping 7 and & fixed in the usual singular perturbation way (see Murray 1984
or Kevorkian and Cole 1996) gives the O(1) system as

Ur = Uge + F(Uv), v =0. (1.104)

So, considering the line SA, the second equation is simply v = vs and we then have to
solve

U = Uge + T (U, vs). (1.105)

This is just a scalar equation for U in which f has three steady states, namely Us, Up
and Ua and is qualitatively the same as those studied in the last chapter. It is essentially
the same as equation (13.62) which was discussed in detail in Section 13.5, Volume I.
In the absence of diffusion the steady states at S, D and A are respectively stable,
unstable and stable. We have already shown in Section 13.5, Volume I how a travelling
monotonic wave solution with a unique wavespeed exists which can join Us and Up as
in Figure 1.13(b).

The complete solution requires determining the wavespeed and the other parts of
the pulse, namely, AB, BC and CS, making sure that they all join up consistently. It
is an interesting singular perturbation analysis. This was carried out by Keener (1980),
who also presented numerical solutions as well as an analysis of threshold waves in two
space dimensions.

Another type of threshold wave of practical interest occurs when the null clines
f(u, v) = 0, g(u, v) = 0 intersect such as in Figure 1.14(a). That is there are 3 steady
states. With the scaling as in (1.102) we now have the sharp front from A to D and
the slower DC transition essentially the same as above. We can get the sign of the
wavespeed in the same way as described in Section 13.5, Volume I. Now there is a tail

0 UA Uc u z

(a) (b)

Figure 1.14. (a) Null clines f (u, v) = 0, g(u, v) = 0 where there are 3 steady states: with these kinetics A
and C are linearly stable while B is unstable. (b) Typical travelling wave effecting a transition from Ato C if
the initial perturbation from A is sufficiently large and ¢ is small in (1.102).
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to the wave since C is a linearly stable steady state. Figure 1.14(b) is a typical example
of such threshold front waves. There is also the possibility of a transition wave obtained
by perturbing the uniform steady state at C thus effecting a transition to A. Rinzel and
Terman (1982) studied such waves in the FHN context.

Threshold waves exist for quite a varied spectrum of real world systems—any in
fact which can exhibit threshold kinetics. For example, Britton and Murray (1979) stud-
ied them in a class of substrate inhibition oscillators (see also the book by Britton 1986).
New wave phenomena and their potential use is described in an article (Steinbock et al.
1996) from Showalter’s group which describes the new concept of chemical wave logic
gates in excitable systems and (like most of this group’s articles) the ideas and analysis
are backed up by original and illuminating experiments.

1.7 Travelling Wave Trainsin Reaction Diffusion Systems
with Oscillatory Kinetics

Wavetrain solutions for general reaction diffusion systems with limit cycle kinetics
have been widely studied; the mathematical papers by Kopell and Howard (1973) and
Howard and Kopell (1977) are seminal. Several review articles in the book edited by
Field and Burger (1985) are apposite to this section; other references will be given at
appropriate places below.

The general evolution system we shall be concerned with is (1.1), which, for our
purposes we restrict to one spatial dimension and for algebraic simplicity we incorporate
the diffusion coefficient in a new scaled space variable X — X/D!/2. The equation
system is then

au 9%u
— =f(u — 1.106
o = W+ 2 (1.106)

We assume that the spatially homogeneous system

du
— =f(u; 1.1
m u; v, (1.107)

where y is a bifurcation parameter, has a stable steady state for y < yc and, via a Hopf
bifurcation (see, for example, Strogatz 1994), evolves to a stable limit cycle solution
for y > yc; thatis, for y = y¢ + ¢, where 0 < ¢ < 1, a small amplitude limit cycle
solution exists and is stable.

Travelling plane wavetrain solutions are of the form

ux,t) =U(2), z=ot—Kkx, (1.108)

where U is a 2 -periodic function of z, the ‘phase.” Here o > 0 is the frequency and
k the wavenumber; the wavelength w = 27/k. The wave travels with speed ¢ = o/k.
This form is only a slight variant of the general travelling waveform used in Chapter 13,
Volume I and above and can be reduced to that form by rescaling the time. Substituting



50 1. Multi-Species Waves and Practical Applications

(1.108) into (1.106) gives the following system of ordinary differential equations for U,
k*U” —oU’ +f(U) = 0, (1.109)

where prime denotes differentiation with respect to z. We want to find o and K so that
the last equation has a 2 -periodic solution for U.

Rather than consider the general situation (see Kopell and Howard 1973 and the
comments below) it is instructive and algebraically simpler to discuss, by way of demon-
stration, the analysis of the A—w model system described in Section 7.4, Volume I and
given by equations (7.30). Later we shall relate it to general reaction diffusion systems
which can arise from real biological situations. This two-reactant model mechanism, for
(u, v) say, is

d (u\ _(A(r) —o))(u 32 [u s o
ﬁ(v)_(a)(r) K(r))(v>+ﬁ<v>, where r“=u"+v-. (1.110)

Here w(r) and A(r) are real functions of r. If rg is an isolated zero of A(r) for some
ro > 0,1/ (rg) < 0and w(rg) # 0, then the spatially homogeneous system, that is, with
82/9x? = 0, has a limit cycle solution (see Section 7.4, Volume I and (1.113) below).

It is convenient to change variables from (U, v) to polar variables (r, 8), where 0 is
the phase, defined by

U=rcosf, v=rsinf (1.111)
with which (1.110) becomes
My =rA(r) +rxx — 62,

| (1.112)
6 = () + r—z(rzex)x.

If ro > 0 exists and A'(rg) < O the asymptotically stable limit cycle solution of the
kinetics is given immediately by

r=ro, 6=060+awlolt, (1.113)

where 6 is some arbitrary phase. Substituting into (1.111) gives the limit cycle solutions
uand v as

U=rgcos[w(ro)t +6p], v =rgsin[w(rg)t+ ], (1.114)
which have frequency w(rg) and amplitude rg.
Suppose we look for travelling plane wave solutions of the type (1.108) in the polar

form

r=a, 0=oct—kx (1.115)
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Substituting into (1.112) we get the necessary and sufficient conditions for these to be
travelling wave solutions as

oc=w@), Kk =ia). (1.116)

So, with « the convenient parameter, there is a one-parameter family of travelling wave-
train solutions of (1.110) given by

U = cos [a)(ot)t - Xkl/z(a)] . v=asin [a)(a)t - XAI/Z(a)] . (1.117)

The wavespeed is given by

o _ o) 1118

Rt (1.118)

Ifr = a — ry, that is, there is a limit cycle solution of the A—w dynamics, the
wave number of the plane waves tends to zero. This suggests that we should look for
travelling plane wavetrain solutions near the limit cycle. Kopell and Howard (1973)
showed how to do this in general. Here we consider a specific simple, but nontrivial,
example where A(r) and w(r) are such that the kinetics satisfy the Hopf requirements
of (1.107), and on which we can carry out the analysis simply, so as to derive travelling
wavetrain solutions; we mainly follow the analysis of Ermentrout (1981).

Suppose

o) =1, Ar)=y—r2 (1.119)

The dynamics in (1.110) then has U = v = 0 as a steady state which is stable for
y < 0 and unstable for y > 0. y = 0 is the bifurcation value yc such thatat y = 0
the eigenvalues of the linearization about U = v = 0 are =i. This is a standard Hopf
bifurcation requirement (see Strogatz 1994) so we expect small amplitude limit cycle
solutions for small positive y; thatis, y = yc + ¢ with 0 < ¢ « 1. With the above
general solutions (1.117), since A = 0 whenr = /¥, these limit cycle solutions are
given by

u,(t) = /ycost, v, (t)=,/ysint, y>0 (1.120)
and in polar variables by
ro=.vy. 0=t+6, (1.121)
where 6 is some arbitrary phase which we can take to be zero.
Now consider the reaction diffusion system (1.112) with A and @ from (1.119). On

substituting travelling plane wave solutions of the form

r=rg, 0 =ot—kx
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we find, as expected from (1.116),
o=1, K=y—-r} 0<ro<.7,
which result in the small amplitude travelling wavetrain solutions

u=ropcos(t — X[y — ré]“z),
(1.122)
v =rgsin(t — X[y — r§]‘/2)-

Figure 1.15 illustrates these solutions, which have amplitude ro < ,/y and wavelength
L=2n/(y —r)V2

Such travelling wavetrains are really only of relevance, for example, to the target
patterns in Figure 1.1, if they are stable. Linear stability for this particular system can
be done but in general it is far from trivial. It is a rare example where we can carry out
the analysis fairly easily.

The effect of diffusion on reaction kinetics which exhibit periodic behaviour is to
generate travelling periodic wavetrain solutions. The specific nonlinearity in the above
A—w example, namely, A(r) = y —r2, is typical of a Hopf bifurcation problem. It seems
likely that reaction diffusion mechanisms where the reaction kinetics alone exhibit peri-
odic limit cycle behaviour via a Hopf bifurcation will also generate periodic wavetrain
solutions. To show this it suffices to demonstrate that general reaction diffusion systems
with this property are similar to A—w systems in the vicinity of the Hopf bifurcation.

Consider the two-species system

ur = F(u,v; y) + DV2U, v = G(U,v;y)+ DV, (1.123)

where F and G are the reaction kinetics. For algebraic simplicity suppose (1.123) has
a steady state at U = v = 0 and the diffusionless (D = 0) system exhibits a Hopf
bifurcation to a limit cycle at the bifurcation value ;. Now consider U and v as the
perturbations about the zero steady state and write

_ (Y _(Fu R (D 0
=) =6 o) P o)

Figure 1.15. Small amplitude travelling wave solution for the . — w system (1.110) with A and w given by
(1.119). The wavespeed ¢ = o/k = [y — rg]_l/2 and the wavelength L = 2x[y — rg]_l/2 depend on the
amplitude ro; 0 <rg < /.
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The terms in M are functions of the bifurcation parameter y. The linearised form of
(1.123) is then

Tt = MT 4 PV?T (1.124)

and the full system (1.123) can be written as

f(u,v, y))
Ti=MT+PV3T+H, H= , 1.125
‘ + + (g(u, v.7) (1.125)

where f and g are the nonlinear contributions in U and v to F and G in the vicinity of
u=v=0.
Since the kinetics undergo a Hopf bifurcation at y = y, the eigenvalues, o say, of

the matrix M are such that Reo (y) < O for y < ¢, Reo(ye) = 0, Imo (y¢) # 0 and
Reo(y) > O0fory > yc. So,aty =y,

TTM=0, detM >0 = o(y) = =i(detM)/2. (1.126)
Introduce the constant matrix N and the nonconstant matrix W by
T=NW = W =N 'MNW+N'PNV?W+ N"'H (1.127)
from (1.125). Now choose N such that

0 —k

-1 _
N MN_<k 0

) at y=y = K =detMly_y.

In the transformed system (1.127) we now have the coefficients in the linearised matrix

1 _faly) —BW)
N™"MN = (,8()/) 5(7) ), (1.128)
where
a(ye) =0=138(), B(r) #0. (1.129)

That is, the general system (1.123) with a Hopf bifurcation at the steady state can be
transformed to a form in which, near the bifurcation yg, it has a A—w form (cf. (1.110)).
This result is of some importance since analysis valid for A—w systems can be carried
over in many situations to real reaction diffusion systems. This result is not restricted
to equal diffusion coefficients for U and v as was shown by Duffy et al. (1980) who
discussed the implications for spiral waves, a subject we discuss in the next section.

It is perhaps to be expected that if we have travelling wavetrains associated with
oscillatory kinetics we should see even more complex wave phenomena from kinetics
which exhibit period doubling and chaos. The type of chaos found by Merkin et al.
(1996), and briefly described above, is not of this period-doubling type.
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1.8 Spiral Waves

Rotating spiral waves occur naturally in a wide variety of biological, physiological and
chemical contexts. A class which has been extensively studied is those which arise in
the Belousov—Zhabotinskii reaction. Relatively, it is a very much simpler system than
those which arise in physiology where we do not know the detailed mechanism involved
unlike the Belousov—Zhabotinskii mechanism. Experimental work on spiral solutions in
this reaction has been done by many people such as Winfree (1974), one of the major
figures in their early study and subsequent application of the concepts to cardiac prob-
lems, Krinskii et al. (1986) and by Miiller et al. (1985, 1986, 1987). The latter’s novel
experimental technique, using light absorption, highlights actual concentration levels
quantitatively. Figure 1.16 as well as Figures 1.19 and 1.20, show some experimentally
observed spiral waves in the Belousov—Zhabotinskii reaction; refer also to Figure 1.1(b).
Although the spirals in these figures are symmetric, this is by no means the only pat-
tern form; see, for example, Winfree (1974) in particular, and Miiller et al. (1986), who
exhibit dramatic examples of complex spiral patterns. A lot of work has gone into the
mathematical study of spiral waves and in particular the diffusion version of the FKN
model system. Keener and Tyson (1986) analysed spiral waves in excitable reaction dif-
fusion systems with general excitable kinetics. They applied their technique to the FKN
model with diffusion and the results are in good agreement with experiment. Although
in a different context, see Figure 1.18 for other examples of nonsymmetric, as well as
symmetric, spirals. There are numerous examples of spiral waves in the book by Keener
and Sneyd (1998). General discussions of spiral waves have been given, for example,
by Keener (1986), who presents a geometric theory, Zykov (1988) in his book on wave
processes in excitable media and in the book by Grindrod (1996).

Much novel and seminal work on chemical spiral waves has been carried out by
Showalter and his colleagues. In the paper by Amemiya et al. (1996), for example, they
use a Field—Koros—Noyes (FKN) model system for the Belousov—Zhabotinskii reaction
(similar to that studied in Chapter 8, Volume I) which exhibits excitability kinetics, to
investigate three-dimensional spiral waves and carry out related experiments to back up
their analysis; see other references there.

There are many other important occurrences of spiral waves. Brain tissue can ex-
hibit electrochemical waves of ‘spreading depression’ which spread through the cortex

Figure 1.16. Spiral waves in a thin (1 mm) layer of an
excitable Belousov—Zhabotinskii reaction. The section
shown is 9 mm square. (Courtesy of T. Plesser from
Miiller et al. 1986)
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Figure 1.17. (a) Evolution of spiralling reverberating waves of cortical spreading depression about a lesion
(a thermal coagulation barrier) in the right hemisphere of a rat cerebral cortex. The waves were initiated
chemically. The shaded regions have different potential from the rest of the tissue. (After Shibata and Bure§
1974) (b) Rotating spiral waves experimentally induced in rabbit heart (left atria) muscle: the numbers repre-
sent milliseconds. Each region was traversed in 10 msec with the lettering corresponding to the points in the
heart muscle on the right. The right also shows the isochronic lines, that is, lines where the potential is the
same during passage of the wave. (Reproduced from Allessie et al. 1977, courtesy of M.A. Allessie and the
American Heart Association, Inc.)

of the brain. These waves are characterised by a depolarisation of the neuronal mem-
brane and decreased neural activity. Shibata and Bure§ (1972, 1974) studied this phe-
nomenon experimentally and demonstrated the existence of spiral waves which rotate
about a lesion in the brain tissue from the cortex of a rat. Figure 1.17(a) schematically
shows the wave behaviour they observed. Keener and Sneyd (1998) discuss wave mo-
tion in general and in particular the types of wave propagation found in the Hodgkin—
Huxley equations and their caricature system, the FitzHugh—Nagumo equations. They
also describe cardiac rhythmicity and wave propagation and calcium waves; some of
the wave phenomena discussed are quite different to those covered in this book, such
as wave curvature effects. A general procedure, based on an eikonal approach, for in-
cluding curvature effects, particularly on curved surfaces is given by Grindrod et al.
(1991).

There are new phenomena and new applications of reaction diffusion models and
spiral waves that are continuing to be discovered. A good place to start is with papers by



56 1. Multi-Species Waves and Practical Applications

Winfree and the references given in them. For example, Winfree et al. (1996) relate trav-
elling waves to aspects of movement in heart muscle and nerves which are ‘excitable.’
They obtain complex periodic travelling waves which resemble scrolls radiating from
vortex rings which are organising centres. Winfree (1994b) uses a generic excitable re-
action diffusion system and shows that the general configuration of these vortex lines is
a turbulent tangle. The generic system he used is

au ul
ﬁszH[“‘?‘”}/&
(1.130)

ov

ﬁ=v2v+8(u+,3—2).

2

When death results from a disruption of the coordinated contractions of heart mus-
cle fibres, the cause is often due to fibrillation. In a fibrillating heart, small regions
undergo contractions essentially independent of each other. The heart looks, as noted
before, like a handful of squirming worms — it is a quivering mass of tissue. If this
disruption lasts for more than a few minutes death usually results. Krinskii (1978) and
Krinskii et al. (1986), for example, discussed spiral waves in mathematical models of
cardiac arrhythmias. Winfree (1983a,b) considered the possible application to sudden
cardiac death. He suggested there that the precursor to fibrillation is the appearance of
rotating waves of electrical impulses. Figure 1.17(b) illustrates such waves induced in
rabbit heart tissue by Allessie et al. (1977). These authors (Allessie et al. 1973, 1976,
Smeets et al. 1986) also carried out an extensive experimental programme on rotating
wave propagation in heart muscle.

Winfree (1994a, 1995) put forward the interesting hypothesis that sudden cardiac
death could involve three-dimensional rotors (spiral-type waves) of electrical activity
which suddenly become unstable when the heart thickness exceeds some critical value;
see there references to other articles in this general area. He has made extensive studies
of the complex wave phenomena in muscle tissue over the past 20 years. For example,
electrical aspects, activation fronts, anisotropy, and so on are important in cardiac phys-
iology and have been discussed in detail by Winfree (1997) within a reaction diffusion
context. He also discusses the roles of electrical potential diffusion, electrical turbu-
lence, activation front curvature and anisotropy in heart muscle and their possible role
in cardiac failure. His work suggests possible scenarios for remedial therapy for seri-
ous cardiac failures such as ventricular fibrillation. With his series of papers modelling
muscle tissue activity in the heart Winfree has greatly enhanced our understanding of
sudden cardiac death and changed in a major way previously held (medical) beliefs.

The spirals that arise in signalling patterns of the slime mould Dictyostelium dis-
coideum are equally dramatic as seen in Figure 1.18. A model for these, based on an
experimentally motivated kinetics scheme, was proposed by Tyson et al. (1989a,b).

It is really important (and generally) that, although the similarity between Fig-
ures 1.1(b) and 1.18 is striking, one must not be tempted to assume that the model for
the Belousov—Zhabotinskii reaction is then an appropriate model for the slime mould
patterns—the mechanisms are very different. Although producing the right kind of pat-



1.8 Spiral Waves 57

Figure1.18. Spiral signalling patterns in the slime mould Dictyostelium discoideum which show the increas-
ing chemoattractant (cyclic AMP) signalling. The photographs are taken about 10 min apart, and each shows
about 5 x 107 amoebae. The Petri dish is 50 mm in diameter. The amoebae move periodically and the light
and dark bands which show up under dark-field illumination arise from the differences in optical properties
between moving and stationary amoebae. The cells are bright when moving and dark when stationary. The
patterns eventually lead to the formation of bacterial territories. (Courtesy of P. C. Newell from Newell 1983)

terns is an important and essential aspect of successful modelling, understanding the
basic mechanism is the ultimate objective.

The possible existence of large-scale spirals in interacting population situations
does not seem to have been considered with a view to practical applications, but, given
the reaction diffusion character of the models, they certainly exist in theory.

From a mathematical point of view, what do we mean by a spiral wave? In the
case of the Belousov—Zhabotinskii reaction, for example, it is a rotating, time periodic,
spatial structure of reactant concentrations; see Figures 1.17 and 1.20. At a fixed time a
snapshot shows a typical spiral pattern. A movie of the process shows the whole spiral
pattern moving like a rotating clock spring. Figure 1.19 shows such a snapshot and a
superposition of the patterns taken at fixed time intervals. The sharp wavefronts are
contours of constant concentration, that is, isoconcentration lines.

Consider now a spiral wave rotating around its centre. If you stand at a fixed po-
sition in the medium it seems locally as though a periodic wavetrain is passing you by
since every time the spiral turns a wavefront moves past you.

As we saw in Chapter 9, Volume I, the state or concentration of a reactant can be
described by a function of its phase, ¢. It is clearly appropriate to use polar coordinates
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Figure1.19. (a) Snapshot (4.5 mm square) of a spiral wave in a thin (1 mm) layer of an excitable Belousov—
Zhabotinskii reagent. The grey-scale image is a measure of the level of transmitted light intensity (7 intensity
levels were measured), which in turn corresponds to isoconcentration lines of one of the reactants. (b) The
grey-scale highlights the geometric details of the isoconcentration lines of one of the reactants in the reaction.
() Superposition of snapshots (4.5 mm square) taken at three-second intervals, including the one in (a).
The series covers approximately one complete revolution of the spiral. Here six light intensity levels were
measured. Note the small core region. (From Miiller et al. 1985 courtesy of T. Plesser and the American
Association for the Advancement of Science: Copyright 1985 AAAS)



1.8 Spiral Waves 59

r and 6 when discussing spiral waves. A simple rotating spiral is described by a periodic
function of the phase ¢ with

¢ =Qt+mo+v(r), (1.131)

where 2 is the frequency, m is the number of arms on the spiral and ¥ (r) is a func-
tion which describes the type of spiral. The & in the m@ term determines the sense of
rotation. Figure 1.20 shows examples of 1-armed and 3-armed spirals including an ex-
perimental example of the latter. Suppose, for example, we set ¢ = 0 and look at the
steady state situation; we get a simple geometric description of a spiral from (1.131): a
1-armed spiral, for example, is given by 8 = ¥ (r). Specific () are

f=ar, O=alnr (1.132)

with a > 0; these are respectively Archimedian and logarithmic spirals. For a spiral
about a central core the corresponding forms are

6 =a(r —rg), 6 =aln{ —ryp). (1.133)

(a) (b)

(d)

Figure 1.20. (a) Typical 1-armed Archimedian spiral. The actual spiral line is a line of constant phase ¢,
that is, a line of constant concentration. (b) Typical 3-armed spiral. (C) Three-dimensional spiral. These have
a scroll-like quality and have been demonstrated experimentally by Welsh et al. (1983) with the Belousov—
Zhabotinskii reaction. (d) Experimentally demonstrated 3-armed spiral in the Belousov—Zhabotinskii reac-
tion. (From Agladze and Krinskii 1982 courtesy of V. Krinskii)
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Figure 1.20(a) is a typical Archimedian spiral with Figure 1.20(b) an example with
m=3.

A mathematical description of a spiral configuration in a reactant, U say, could then
be expressed by

ur,6,t) = F(e), (1.134)

where F(¢) is a 2w-periodic function of the phase ¢ given by (1.131). If t is fixed
we get a snapshot of a spiral, the form of which puts certain constraints on ¥ (r) in
(1.131); ar and alnr in (1.132) are but two simple cases. A mixed type, for example,
has ¥ (r) = ar +blinr with a and b constants. In (1.134) with ¢ as in (1.131), if we fix
r and t and circle around the centre we have m-fold symmetry where m is the number
of arms; an example with m = 3 is shown in Figure 1.20(b) and in Figure 1.20(d),
one obtained experimentally by Agladze and Krinskii (1982). If we fix r and 6, that
is, we stay at a fixed point, we see a succession of wavefronts as we described above.
If a wavefront passes at t = 1y with say, ¢ = ¢, the next wave passes by at time
t =tp + 27/ Q2 which is when ¢ = ¢g + 2.

If we look at a snapshot of a spiral and move out from the centre along a ray we see
intuitively that there is a wavelength associated with the spiral; it varies however as we
move out from the centre. If one wavefront is at r'; and the next, moving out, is at I, we
can define the wavelength X by

A=ry—ry, 06(p) =06(r) +2m.
From (1.131), with t fixed, we have, along the curve ¢ = constant,

¢+¢rq
9 —
' do ¢=constant

and so, if, to be specific we take —m6 in (1.131),

=0

[d_f] __ % m
deo ¢=constant B ¢r B l/f/(l’)'

The wavelength A(r) is now given by

0(r)+2 0(r)+2m
e o[ sl
o(r) do () Y'(r(6))

where I, as a function of 6, is given by (1.131) with t =constant and ¢ = constant
which we can take to be zero. For an Archimedian spiral r = 0/a, so ¥’ = a and the
wavelength is . = m/a.

The pitch of the spiral is defined by

|:dr] . m
deo ¢=constant I///(r)
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Figure1.21. Evolution of spiral waves for the two-dimensional FitzHugh-Nagumo model mechanism (1.94),
namely, ut = u@—u)(l —u) —v+ DV2u, vt = bu — yv for excitable nerve action potentials. Parameter
values: D =2 x 1079, a=0.25,b = 1073, y=3x 103, The dark regions are where U > a; that is, U is
in the excited state. (From Tsujikawa et al. 1989 courtesy of M. Mimura)

which, for an Archimedian spiral where ¥/(r) = a, gives a constant pitch m/a, while
for a logarithmic spiral gives the pitch as mr /a since ¥'(r) = a/r. For large r, the pitch
of the latter is large, that is, loosely wound, while for small r the pitch is small; that is,
the spiral is tightly wound.

Before discussing the analytic solutions of a specific reaction diffusion system we
should note some numerical studies on the birth of spiral waves carried out by Krinskii
et al. (1986) and Tsujikawa et al. (1989). The latter considered the FitzHugh—Nagumo
excitable mechanism (1.94) and investigated numerically the propagation of a wave of
excitation of finite spatial extent. Figure 1.21 shows a time sequence of the travelling
wave of excitation and shows the evolution of spiral waves; similar evolution figures
were obtained by Krinskii et al. (1986) who discussed the evolution of spiral waves
in some detail. The evolution patterns in this figure are similar to developing spirals
observed experimentally in the Belousov—Zhabotinskii reaction.

1.9 Spiral Wave Solutions of A—w Reaction Diffusion Systems

Numerous authors have investigated spiral wave solutions of general reaction diffusion
models, such as Cohen et al. (1978), Duffy et al. (1980), Kopell and Howard (1981) and
Mikhailov and Krinskii (1983). The papers by Keener and Tyson (1986), dealing with
the Belousov—Zhabotinskii reaction, and Tyson et al. (1989a,b) with the slime mould
Dictyostelium, are specific examples. The analysis is usually quite involved with much
use being made of asymptotic methods. The A—w system, which exhibits wavetrain so-
lutions as we saw above in Section 1.7, has been used as a model system because of
the relative algebraic simplicity of the analysis. Spiral wave solutions of A—w systems
have been investigated, for example, by Greenberg (1981), Hagan (1982), Kuramoto
and Koga (1981) and Koga (1982). The list of references is fairly extensive; other rele-
vant references are given in these papers and the book by Keener and Sneyd (1998). In
this section we develop some solutions for the A—w system.
The A—w reaction diffusion mechanism for two reactants is

d (u\ (i@ -w@) u 5 (u P
5(”) B (w(a) A@) ><v)+DV <U> A2 = 12 + 02, (1.135)
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where w(a) and A(a) are real functions of A. (The change of notation from (1.110)
is so that we can use I as the usual polar coordinate.) We assume the kinetics sustain
limit cycle oscillations; this puts the usual constraints on A and w; namely, if Ay is an
isolated zero of A(a) for some Ag > 0 and A'(Ag) < 0 and w(Ag) # 0, then the
spatially homogeneous system, that is, with D = 0, has a stable limit cycle solution
u? +v2 = Ay with cycle frequency w(Ayp) (see Section 7.4, Volume I).

Setting w = U + iv, (1.135) becomes the single complex equation

wi = (A +iw)w + DVZw. (1.136)
The form of this equation suggests setting
w = Aexp [i¢], (1.137)

where A is the amplitude of w and ¢ its phase. Substituting this into (1.136) and equat-
ing real and imaginary parts gives the following equation system for A and ¢,

A = AL(a) — DA| Vo |> + DV?A,
(1.138)
o = w(@) +2A"'D(VA- V¢) + DV?¢,

which is the polar form of the A—w system. Polar coordinates I and 8 are the appropriate
ones to use for spiral waves. Motivated by (1.131) and the discussion in the last section,
we look for solutions of the form

A=Ar), ¢=SQt+md+y(r), (1.139)

where €2 is the unknown frequency and m the number of spiral arms. Substituting these
into (1.138) gives the ordinary differential equations for A and ¥:

D Dm?
DA + r—A/ + A [A(a) —Dy”? - r_z} =0,

(1.140)
. 1 2A f o
Dy +D<F+T>1ﬁ =Q—-w(@),

where the prime denotes differentiation with respect to r. On multiplying the second
equation by r A%, integration gives

/ _ 1 ' 2
v (r) = W%r)/o SAZ(S)[2 — w(A(S))]ds. (1.141)

The forms of (1.140) and (1.141) are convenient for analysis and are the equations
which have been the basis for many of the papers on spiral waves of A—w systems, using
asymptotic methods, fixed point theorems, phase space analysis and so on.

Before analysing (1.140) we have to decide on suitable boundary conditions. We
want the solutions to be regular at the origin and bounded as r — oo. The former,
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together with the form of the equations for A and ¥/, thus requires

A0) =0, ¥'(0)=0. (1.142)

If A— Ay asr — oo we have, from (1.141),

r
/ ~ 2 _

VO~ o /0 SALIQ - (Al ds
12— oAl

2D

— 0

and so ¥’ is bounded only if @ = w(As). The first of (1.140) determines ¥’ (c0) as
[AM(Ax)/ D1'/2. We thus have the dispersion relation

A(Aso)
D

172
Y (00) = |: ] , Q=w(Ax) (1.143)

which shows how the amplitude at infinity determines the frequency 2.
Nearr = 0, set

o0
A(r) NrCZanr”, as r — 0,
n=0

where 8y # 0, substitute into the first of (1.140) and equate powers of I in the usual
way. The coefficient of lowest order, namely, r ¢=2, set equal to zero gives

cc—)+c—-m=0 = c==m.
For A(r) to be nonsingular as r — 0 we must choose C = m, with which
Ar) ~agr™, as r — 0,
where @y is an undetermined nonzero constant. The mathematical problem is to de-

termine @y and 2 so that A(r) and v'(r) remain bounded as r — oo. From (1.137),
(1.139) and the last equation, we get the behaviour of U and v nearr = 0 as

u r™cos[Qt + mé + ¥ (0)]
(v) & (rmsin[9t+m9+1ﬂ(0)]>' (1.144)

Koga (1982) studied phase singularities and multi-armed spirals, analytically and
numerically, for the A—w system with

r@)=1-—A% w@=-pA% (1.145)

where 8§ > 0. Figure 1.22 shows his computed solutions for 1-armed and 2-armed
spirals.
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(a) (b)

Figure 1.22. Computed (@) 1-armed and (b) 2-armed spiral wave solutions of the A-w system (1.135) with
the A and w given by (1.145) with § = 1. Zero flux boundary conditions were taken on the square boundary.
The shaded region is where u > 0. (From Koga 1982, courtesy of S. Koga)

The basic starting point to look for solutions is the assumption of the functional
form for u and v given by

u\ _ (A(r)cos[Qt +mb + ¢ (r)]
(”) B <A(r) sin[Qt + mo + 1/;(0}) : (1.146)

With A(r) a constant and /(') o In r these represent rotating spiral waves as we have
shown. Cohen et al. (1978) proved that for a class of A(a) and w(a) the system (1.136)
has rotating spiral waves of the form (1.146) which satisfy boundary conditions which
asymptote to Archimedian and logarithmic spirals; that is, ¥ ~ cr and ¥ ~ CInr as
r — oo. Duffy et al. (1980) showed how to reduce a general reaction diffusion system
with limit cycle kinetics and unequal diffusion coefficients for u and v, to the case
analysed by Cohen et al. (1978).
Kuramoto and Koga (1981) studied numerically the specific A—w system where

r@) =e—aA’, (@) =c—bA?
where ¢ > 0 and a > 0. With these the system (1.136) becomes
wi = (e +ic)w — (@+ib)|w*w + DVZw.

We can remove the c-term by setting w — we' (algebraically the same as setting
¢ = 0) and then rescale w, t and the space coordinates according to

a\1/2 e\1/2
w — <—) w, t—et, 11— <—> r
I3 D

to get the simpler form

we=w—1+ip)|w?w+ Vw, (1.147)
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where 8 = b/a. The space-independent form of the last equation has a limit cycle
solution w = exp (—ipt).

Kuramoto and Koga (1981) numerically investigated the spiral wave solutions of
(1.147) as | B | varies. They found that for small | 8| a steadily rotating spiral wave
developed, like that in Figure 1.22(a) and of the form (1.144). As | 8| was increased
these spiral waves became unstable and appeared to become chaotic for larger | 8 |.
Figure 1.23 shows the results for | 8 | = 3.5.

Kuramoto and Koga (1981) suggest that ‘phaseless’ points, or black holes, such as
we discussed in Chapter 9, Volume I, start to appear and cause the chaotic instabilities.
Comparing (1.147) with (1.136) we have A = 1 — A%, @ = —BA? and so0 § is a mea-
sure of how strong the local limit cycle frequency depends on the amplitude A. Since
A varies with the spatial coordinate r we have a situation akin to an array of coupled,
appropriately synchronized, oscillators. As | 8 | increases the variation in the oscillators
increases. Since stable rotating waves require a certain synchrony, increasing the vari-
ation in the local ‘oscillators’ tends to disrupt the synchrony giving rise to phaseless
points and hence chaos. Chaos or turbulence in wavefronts in reaction diffusion mech-
anisms has been considered in detail by Kuramoto (1980); see other references there to
this interesting problem of spatial chaos.

To conclude this section let us look at the 1-dimensional analogue of a spiral wave,
namely, a pulse which is emitted from the core, situated at the origin, periodically and
on alternating sides of the core. If the pulses were emitted symmetrically then we would
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Figure 1.23. Temporal development (time T) of chaotic patterns for the A — w system (1.147) for 8 = 3.5
and zero flux boundary conditions. (From Kuramoto and Koga 1981, courtesy of Y. Kuramoto)
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have the analogue of target patterns. Let us consider (1.138) with V2 =932/9x%, 1(a) =
1 — A% and w(a) = gA2. Now set

X A=AKX), ¢=Qt+yY(Xx)

X
~ Dz
to get as the equations for A and v,

Axx + Al — A2 —y2) =0,

2AZ¢X gl (1.148)

Yxx +
Boundary conditions are

AX) ~ax as Xx—0, v¥x(@0) =0,

A(X), ¥x(X) boundedas X — oo.

The problem boils down to finding ap and €2 as functions of q so that the solution of the
initial value problem to the time-dependent equations is bounded. One such solution is

O\ 1/2
A(x):(a) tanh(X/~/2),

(1.149)

2\ » 9.9
Yx(X) = (1 — a) tanh(x/ﬁ), Q-+ EQ -3 =0,

as can be verified. These solutions are generated periodically at the origin, alternatively
on either side.

The stability of travelling waves and particularly spiral waves can often be quite
difficult to demonstrate analytically; the paper by Feroe (1982) on the stability of ex-
citable FHN waves amply illustrates this. However, some stability results can be ob-
tained, without long and complicated analysis, in the case of the wavetrain solutions
of the A—w system. In general analytical determination of the stability of spiral waves
is still far from complete although numerical evidence, suggests that many are indeed
stable. As briefly mentioned above, more recently Yagisita et al. (1998) have investi-
gated spiral waves on a sphere in an excitable reaction diffusion system. They show,
among other things, that the spiral tip rotates. They consider the propagation in both a
homogeneous and inhomogeneous medium.

Biological waves exist which are solutions of model mechanisms other than reac-
tion diffusion systems. For example, several of the mechanochemical models for gener-
ating pattern and form, which we discuss later in Chapter 6, also sustain travelling wave
solutions. Waves which lay down a spatial pattern after passage are also of considerable
importance as we shall also see in later chapters. In concluding this chapter, perhaps
we should reiterate how important wave phenomena are in biology. Although this is
clear just from the material in this chapter they are perhaps even more important in
tissue communication during the process of embryological development. Generation of
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steady state spatial pattern and form is a topic of equal importance and will be discussed
at length in subsequent chapters.

Exercises

1. Consider the modified Lotka—Volterra predator—prey system in which the predator
disperses via diffusion much faster than the prey; the dimensionless equations are

M d—u—v. 2 avu—b+ v
~ = - —v), — =av - PNLR
at ot X2

where a > 0,0 < b < 1 and U and v represent the predator and prey respectively.
Investigate the existence of realistic travelling wavefront solutions of speed C in
terms of the travelling wave variable X + Ct, in which the wavefront joins the steady
states U =v = 0and u = b, v = 1 — b. Show that if ¢ satisfies 0 < ¢ < [4a(l —
b)]'/? such wave solutions cannot exist whereas they can if ¢ > [4a(l — b)]'/2.

Further show that there is a value a* such that for a > a* (u, v) tend to (b, 1 — b)
exponentially in a damped oscillatory way for large X + ct.

2. Consider the modified Lotka—Volterra predator—prey system

ou U

— =A 1-—)—-BUV+D

ot U( K) UV 4 D1Uxx,
AV

o =CUV — DV + Dy Viy,

where U and V are respectively the predator and prey densities, A, B, C, D and
K, the prey carrying capacity, are positive constants and D and D, are the diffu-
sion coefficients. If the dispersal of the predator is slow compared with that of the
prey, show that an appropriate nondimensionalisation to a first approximation for
D,/D; & 0 results in the system

M il —u—v)+ 0 B _ o (U —b)
—=u(l—-u—v)+-—, — =av(u-Dh).
ot » ot

Investigate the possible existence of travelling wavefront solutions.

3. Quadratic and cubic autocatalytic reaction steps in a chemical reaction can be rep-
resented by

A+ B — 2B, reaction rate = kgab,
A + 2B — 3B, reaction rate = kcab?,

where a and b are the concentrations of A and B and the K’s are the rate constants.
With equal diffusion coefficients D for A and B these give rise to reaction diffusion
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systems of the form

2—";‘: D v? a — keab® — kqab,
ab 5 5
= D v~ b+ +kcab” + kgab.

First nondimensionalise the system and then show that it can be reduced to the
study of a single scalar equation with polynomial reaction terms.

Consider in turn the situations when there is only a cubic autocatalysis, that
is, Kg = 0,Kkc # 0, and then when there is only a quadratic autocatalysis term,
that is, when Kq # 0, ke = 0. In the one-dimensional situation investigate possible
travelling waves in terms of the travelling wave coordinate z = X — ct where C is
the wavespeed.

A primitive predator—prey system is governed by the model equations

MU _ s Da2u A +kDazv

— = —Uv —, — = Uv —s.

ot ax2’ ot ax2
Investigate the possible existence of realistic travelling wavefront solutions in which
A > 0and u(—oo,t) = v(oo,t) = 0, u(oco, t) = v(—oo,t) = K, a positive con-
stant. Note any special cases. What type of situation might this system model?

Travelling bands of microorganisms, chemotactically directed, move into a food
source, consuming it as they go. A model for this is given by

bt = i |:Dbx — b—Xax] , & = —kb,
X a

where b(X, t) and a(x, t) are the bacteria and nutrient respectively and D, x and k
are positive constants. Look for travelling wave solutions, as functions of z = x—ct,
where C is the wavespeed, with the boundary conditions b — 0 as |z] — oo,
a— 0asz— —oo,a — 1as z— oo. Hence show that b(z) and a(2) satisfy

b/—i kb_X_Cz a’—@
“cD| a ’

where the prime denotes differentiation with respect to z, and then obtain a rela-
tionship between b(z) and a(2).
In the special case where y = 2D show that

a2 = [1 + Ke_CZ/D]71 . b2 = %e—cz/D [1 n Ke—cz/D]f2 ’

where K is an arbitrary positive constant which is equivalent to a linear transla-
tion; it may be set to 1. Sketch the wave solutions and explain what is happening
biologically.
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Consider the two species reduction model (1.85) for the wavefront spatial variation
in the Belousov—Zhabotinskii reaction in which the parametersr = b > 1. That is,
consider the system

uv uv
Utz—?'i‘u(l_u)‘l‘uxx, Ut=—?+vxx7 O<ex .

By looking for travelling wave solutions in powers of &,

(u) = Z (un(z)) ", z=x-—ct
v = vn(2) ’

show, by going to O(g), that the equations governing Uy, vg are
4 / " /
Upvo =0, Uy + CUg + Up(1 — Ug) = vy + Cuy,.

Hence deduce that the wave problem is split into two parts, one in which Ug # O,
vo = 0 and the other in which up = 0, v9 # 0. Suppose that z = 0 is the point
where the transition takes place. Sketch the form of the solutions you expect.

In the domain where vyp = 0 the equation for Ug is the Fisher—Kolmogoroff
equation, but with different boundary conditions. We must have u(—oo) = 1 and
Uo(0) = 0. Although ug = 0 for all z > 0, in general u6(0) would not be zero. This
would in turn result in an inconsistency since U, (0) # 0 implies there is a flux of ug
into z > 0 which violates the restriction Uy = O for all z > 0. This is called a Stefan
problem. To be physically consistent we must augment the boundary conditions to
ensure that there is no flux of Uy into the region z > 0. So the complete formulation
of the Ug problem is the Fisher—-Kolmogoroff equation plus the boundary conditions
Up(0) = u6(0) = 0, u(—oo0) = 1. Does this modify your sketch of the wave?
Do you think such a wave moves faster or slower than the Fisher—Kolmogoroff
wave? Give mathematical and physical reasons for your answer. [This asymptotic
form, with b # r, has been studied in detail by Schmidt and Ortoleva (1980), who
formulated the problem in the way described here and obtained analytical results
for the wave characteristics.]

The piecewise linear model for the FHN model given by (1.94) is
ur = f(u) — v+ Duxx, vt =bu—yv, f(uy=Hu-a)—u,

where H is the Heaviside function defined by H(S) = 0 for s < 0, H(s) = 1 for
s> 0,and 0 < a < 1, b, D and y are all positive constants. If b and y are small
and the only rest state is U = v = 0, investigate qualitatively the existence, form
and speed of a travelling solitary pulse.

The piecewise linear FHN caricature can be written in the form

Ut = f(U) — v+ Duxx, vt =c¢e(u—yv), f(uy=Hu-a) —u,
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where H is the Heaviside function defined by H(s) = 0 fors < 0, H(s) = 1 for
s> 0,and 0 < a < 1, ¢, D and y are all positive constants. Sketch the null clines
and determine the condition on the parameters a and y such that three steady states
exist.

When ¢ <« 1 and a and y are in the parameter domain such that three steady
states exist, investigate the existence of a threshold travelling wavefront from the
zero rest state to the other stable rest state if the domain is originally at the zero
rest state. Determine the unique wavespeed of such a front to O(1) for & small.
Sketch the wave solution and make any relevant remarks about the qualitative size
and form of the initial conditions which could give rise to such a travelling front. If
initially u and v are everywhere at the non-zero steady state discuss the possibility
of a wave from it to the zero rest state.

[Problems 6 and 7 have been investigated in depth analytically by Rinzel and
Terman (1982).]



2. Spatial Pattern Formation with Reaction
Diffusion Systems

2.1 Roleof Pattern in Biology

Embryology is that part of biology which is concerned with the formation and devel-
opment of the embryo from fertilization until birth. Development of the embryo is a
sequential process and follows a ground plan, which is usually laid down very early in
gestation. In humans, for example, it is set up roughly by the 5th week. There are many
books on the subject; the one by Slack (1983) is a readable account of the early stages of
development from egg to embryo. Morphogenesis, the part of embryology with which
we are mainly concerned, is the development of pattern and form. How the develop-
mental ground plan is established is unknown as are the mechanisms which produce the
spatial patterning necessary for specifying the various organs.!

The following chapters and most of this one will be devoted to mechanisms which
can generate spatial pattern and form, and which have been proposed as possible pattern
formation processes in a variety of developmental situations. Wave phenomena create
spatial patterns, of course, but these are spatio-temporal patterns. Here we shall be con-
cerned with the formation of steady state spatially heterogeneous spatial patterns. In
this chapter we introduce and analyse reaction diffusion pattern formation mechanisms
mainly with developmental biology in mind. Section 2.7, however, is concerned with
an ecological aspect of pattern formation, which suggests a possible strategy for pest
control—the mathematical analysis is different but directly relevant to many embry-
ological situations.

The questions we would like to answer, or, more realistically, get any enlighten-
ment about, are legion. For example, are there any general patterning principles that are
shared by bacteria, which can form complex patterns and wolf packs when they mark

Iprofessor Jean-Pierre Aubin in his book on Mutational and Morphological Analysis notes that the ad-
jective morphological is due to Goethe (1749-1832). Goethe spent a lot of time thinking and writing about
biology (the discipline ‘biology’ dates from 1802). Aubin goes on to describe Goethe’s theory of plant evo-
lution that hypothesizes that most plants come from one archetypal plant. Except for Geoffroy St. Hilaire, a
distinguished early 19th century French biologist who wrote extensively about teratologies, or monsters (see
Chapter 7), it was not taken seriously. Goethe was very bitter about it and complained about the difficulties in
trying to work in a discipline other than one’s own: it is still a problem. Goethe’s work had some reevaluation
in the 20th century, primarily by historians of science (see, for example, Lenoir 1984, Brady 1984 and other
references there).
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out territory? Spatial patterns are ubiquitous in the biomedical sciences and understand-
ing how they are formed is without question one of the major fundamental scientific
challenges. In the rest of the book we shall study a variety of pattern formation mecha-
nisms which generate pattern in a variety of diverse areas.

Cell division starts after fertilisation. When sufficient cell division has taken place
in a developing embryo the key problem is how the homogeneous mass of cells are
spatially organised so that the sequential process of development can progress. Cells
differentiate, in a biological sense, according to where they are in the spatial organi-
sation. They also move around in the embryo. This latter phenomenon is an important
element in morphogenesis and has given rise to a new approach to the generation of
pattern and form discussed in some detail in Chapter 6.

It is impossible not to be fascinated and enthralled with the wealth, diversity and
beauty of pattern in biology. Figure 2.1 shows only four examples. How such patterns,
and millions of others, were laid down is still unknown although considerable progress
has been made in several different fronts such as in the early patterning in the embryo
of the fruit fly, spatial patterning in slime moulds and bacterial patterns discussed in
Chapter 5. The patterning problems posed by only the few patterns in Figure 2.1 are
quite diverse.

As a footnote to Figure 2.1(c), note the antennae on the moth. These antennae
very effectively collect molecules of the chemical odorant, called a pheromone called
bombykol, which is exuded by the female to attract the male. In the case of the silk
moth the male, which cannot fly, can detect the pheromone from the female as far away
as a kilometre and can move up the concentration gradient towards the female. The
filtering efficiency of such antennae, which collect, and in effect count, the molecules,
poses a very different and interesting mathematical biology patterning problem to those
discussed in this book, namely, how such a filter antenna should be designed to be most
efficient. This specific problem—an interesting fluid mechanics and diffusion one—was
discussed in detail by Murray (1977).

The fundamental importance of pattern and form in biology is self-evident. Our
understanding is such that whatever pattern we observe in the animal world, it is al-
most certain that the process that produced it is still unknown. Pattern formation studies
have often been criticized for their lack of inclusion of genes in the models. But then
the criticism can be levelled at any modelling abstraction of a complex system to a rel-
atively simple one. It should be remembered that the generation of pattern and form,
particularly in development, is usually a long way from the level of the genome. Of
course genes play crucial roles and the mechanisms must be genetically controlled; the
genes, however, themselves cannot create the pattern. They only provide a blueprint or
recipe, for the pattern generation. Many of the evolving patterns could hardly have been
anticipated solely by genetic information. Another of the major problems in biology is
how genetic information is physically translated into the necessary pattern and form.
Much of the research in developmental biology, both experimental and theoretical, is
devoted to trying to determine the underlying mechanisms which generate pattern and
form in early development. The detailed discussion in these next few chapters discusses
some of the mechanisms which have been proposed and gives an indication of the role
of mathematical modelling in trying to unravel the underlying mechanisms involved in
morphogenesis.
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(b)

(d)
Figure2.1. (a) Leopard (Panthera pardus) in the Serengeti National Park, Tanzania. Note the individual spot
structure. (Photograph courtesy of Hans Kruuk) (b) Radiolarians (Trissocyclus spaeridium and Eucecryphalus
genbouri). These are small marine organisms—protozoa—of the order of a millimeter across. (After Haekel
1862, 1887) The structural architecture of radiolarians is amazingly diverse (see, for example, the plate repro-
ductions of some of Haeckel’s drawings in the Dover Archive Series, Haeckel 1974, but see also the historical
aside on Haeckel in Section 6.1). (C) Moth (Hyalophora cecropia). As well as the wing patterns note the
stripe pattern on the body and the structure of the antennae. (d) California king snake. Sometimes the pattern
consists of crossbands rather than a backstripe. (Photograph courtesy of Lloyd Lemke)
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A phenomenological concept of pattern formation and differentiation called posi-
tional information was proposed by Wolpert (1969, see the reviews in 1971, 1981). He
suggested that cells are preprogrammed to react to a chemical (or morphogen) concen-
tration and differentiate accordingly, into different kinds of cells such as cartilage cells.
The general introductory paper by Wolpert (1977) gives a very clear and nontechnical
description of development of pattern and form in animals and the concepts and applica-
tion of his positional information scenario. Although it is a phenomenological approach,
with no actual mechanism involved it has given rise to an immense number of illuminat-
ing experimental studies, many associated with the development of the limb cartilage
patterning in chick embryos and feather patterns on other bird embryos, such as the
quail and guinea fowl (see, for example, Richardson et al. 1991 and references there).
A literature search of positional information in development will produce an enormous
number of references. Although it is a simple and attractive concept, which has resulted
in significant advances in our knowledge of certain aspects of development, it is not a
mechanism.

The chemical prepattern viewpoint of embryogenesis separates the process of
development into several steps; the essential first step is the creation of a morphogen
concentration spatial pattern. The name ‘morphogen’ is used for such a chemical
because it effects morphogenesis. The notion of positional information relies on a
chemical pre-specification so that the cell can read out its position in the coordinates
of chemical concentration, and differentiate, undergo appropriate cell shape change, or
migrate accordingly. So, once the prepattern is established, morphogenesis is a slave
process. Positional information is not dependent on the specific mechanism which sets
up the spatial prepattern of morphogen concentration. This chapter is concerned with
reaction diffusion models as the possible mechanisms for generating biological pattern.
The basic chemical theory or reaction diffusion theory of morphogenesis was put for-
ward in the classical paper by Turing (1952). Reaction diffusion theory, which now has
a vast literature, is a field of research in its own right.

With the complexity of animal forms the concept of positional information neces-
sarily implies a very sophisticated interpretation of the ‘morphogen map’ by the cell.
This need not pose any problem when we recall how immensely complex a cell is
whether or not it is positional information or simply a cell responding in some way
to small differences in chemical concentration. The scale of pattern that can be formed
by reaction diffusion can be very small as seen in the experimental patterns shown in
Figure 2.11. A very rough idea of cell complexity is given by comparing the weight per
bit of information of the cell’s DNA molecule (deoxyribonucleic acid) of around 10722,
to that of, say, imaging by an electron beam of around 10~ or of a magnetic tape of
about 1073, The most sophisticated and compact computer chip is simply not in the
same class as a cell.

An important point arising from theoretical models is that any pattern contains its
own history. Consider the following simple engineering analogy (Murray et al. 1998)
of our role in trying to understand a biological process. It is one thing to suggest that
a bridge requires a thousand tons of steel, that any less will result in too weak a struc-
ture, and any more will result in excessive rigidity. It is quite another matter to instruct
the workers on how best to put the pieces together. In morphogenesis, for example, it
is conceivable that the cells involved in tissue formation and deformation have enough



2.2 Reaction Diffusion (Turing) Mechanisms 75

expertise that given the right set of ingredients and initial instructions they could be
persuaded to construct whatever element one wants. This is the hope of many who are
searching for a full and predictive understanding. However, it seems very likely that
the global effect of all this sophisticated cellular activity would be critically sensitive to
the sequence of events occurring during development. As scientists we should concern
ourselves with how to take advantage of the limited opportunities we have for communi-
cating with the workforce so as to direct experiment towards an acceptable end-product.

None of the individual models that have been suggested for any biological pat-
terning process, and not even all of them put together, could be considered a complete
model. In the case of some of the widely studied problems (such as patterning in the
developing limb bud), each model has shed light on different aspects of the process
and we can now say what the important conceptual elements have to be in a complete
model. These studies have served to highlight where our knowledge is deficient and to
suggest directions in which fruitful experimentation might lead us. Indeed, a critical test
of these theoretical constructs is in their impact on the experimental community.?

To conclude this section it must be stressed again that mathematical descriptions,
including phenomenological descriptions, of patterning scenarios are not explanations.
This is generally accepted, but often forgotten.

2.2 Reaction Diffusion (Turing) M echanisms

Turing (1952) suggested that, under certain conditions, chemicals can react and diffuse
in such a way as to produce steady state heterogeneous spatial patterns of chemical or
morphogen concentration. In Chapter 11, Volume I we derived the governing equations
for reaction diffusion mechanisms, namely, (11.16), which we consider here in the form:

e _ f(c) + DVZc, 2.1
ot

where C is the vector of morphogen concentrations, f represents the reaction kinetics

and D is the diagonal matrix of positive constant diffusion coefficients. This chapter is

mainly concerned with models for two chemical species, A(r, ¢) and B(r, t) say. The

equation system is then of the form

JA 5
—— = F(A, B)+ DsV?A,
ot

2B (2.2)
= = G(A, B) + DgV’B,

where F and G are the kinetics, which will always be nonlinear.

2In the case of the mechanical theory of pattern formation discussed later, after some discussion, Lewis
Wolpert (a friend and colleague of many years) who did not believe in the mechanical theory of pattern
formation, designed some experiments specifically to disprove the theory. Although the experiments did not in
fact do so, he discovered something else about the biological process he was studying—patterning in the chick
limb bud. The impact of the theory was biologically illuminating even if the motivation was not verification.
As he freely admits, he would not have done these specific experiments had he not been stimulated (or rather
provoked) to do so by the theory.
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Turing’s (1952) idea is a simple but profound one. He said that, if in the absence of
diffusion (effectively D4 = Dp = 0), A and B tend to a linearly stable uniform steady
state then, under certain conditions, which we shall derive, spatially inhomogeneous
patterns can evolve by diffusion driven instability ift D4y # Dp. Diffusion is usually
considered a stabilising process which is why this was such a novel concept. To see
intuitively how diffusion can be destablising consider the following, albeit unrealistic,
but informative analogy.

Consider a field of dry grass in which there is a large number of grasshoppers
which can generate a lot of moisture by sweating if they get warm. Now suppose the
grass is set alight at some point and a flame front starts to propagate. We can think of
the grasshopper as an inhibitor and the fire as an activator. If there were no moisture
to quench the flames the fire would simply spread over the whole field which would
result in a uniform charred area. Suppose, however, that when the grasshoppers get
warm enough they can generate enough moisture to dampen the grass so that when the
flames reach such a pre-moistened area the grass will not burn. The scenario for spatial
pattern is then as follows. The fire starts to spread—it is one of the ‘reactants,” the
activator, with a ‘diffusion’ coefficient Dr say. When the grasshoppers, the inhibitor
‘reactant,” ahead of the flame front feel it coming they move quickly well ahead of
it; that is, they have a ‘diffusion’ coefficient, D¢ say, which is much larger than Dp.
The grasshoppers then sweat profusely and generate enough moisture to prevent the
fire spreading into the moistened area. In this way the charred area is restricted to a
finite domain which depends on the ‘diffusion’ coefficients of the reactants—fire and
grasshoppers—and various ‘reaction’ parameters. If, instead of a single initial fire, there
were a random scattering of them we can see how this process would result in a final
spatially heterogeneous steady state distribution of charred and uncharred regions in
the field and a spatial distribution of grasshoppers, since around each fire the above
scenario would take place. If the grasshoppers and flame front ‘diffused’ at the same
speed no such spatial pattern could evolve. It is clear how to construct other analogies;
other examples are given below in Section 2.3 and another in the Scientific American
article by Murray (1988).

In the following section we describe the process in terms of reacting and diffusing
morphogens and derive the necessary conditions on the reaction kinetics and diffusion
coefficients. We also derive the type of spatial patterns we might expect. Here we briefly
record for subsequent use two particularly simple hypothetical systems and one exper-
imentally realised example, which are capable of satisfying Turing’s conditions for a
pattern formation system. There are now many other systems which have been used in
studies of spatial patterning. These have varying degrees of experimental plausibility.
With the extensive discussion of the Belousov—Zhabotinskii reaction in Chapter 8, Vol-
ume I and the last chapter we should particularly note it. Even though many other real
reaction systems have been found it is still the major experimental system.

The simplest system is the Schnakenberg (1979) reaction discussed in Chapter 7,
Volume I which, with reference to the system form (2.2), has kinetics

F(A,B) =ki — koA + k3A’B,
(2.3)
G(A, B) = k4 — k3A°B,
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where the k’s are the positive rate constants. Here A is created autocatalytically by
the k3A2B term in F(A, B). This is one of the prototype reaction diffusion systems.
Another is the influential activator—inhibitor mechanism suggested by Gierer and Mein-
hardt (1972) and widely studied and used since then. Their system was discussed in
Chapter 6, Volume I and is

k3A2 5
F(A, B) =k —k2A+T, G(A,B) = k4A“ — k5B, 2.4)

where here A is the activator and B the inhibitor. The k3A%/B term is again autocat-
alytic. Koch and Meinhardt (1994) review the applications of the Gierer—Meinhardt
reaction diffusion system to biological pattern formation of complex structures. They
give an extensive bibliography of applications of this specific model and its variations.

The real empirical substrate-inhibition system studied experimentally by Thomas
(1975) and also described in detail in Chapter 6, Volume I, has

F(A,B) =k —kA—H(A,B), G(A,B)=k3—kaB— H(A,B),

ksAB (2.5)
HA,B)= ———.
ke + k7A + k8A2
Here A and B are respectively the concentrations of the substrate oxygen and the en-
zyme uricase. The substrate inhibition is evident in the H-term via kg A%. Since the
H-terms are negative they contribute to reducing A and B; the rate of reduction is in-
hibited for large enough A. Reaction diffusion systems based on the Field-Koros—Noyes
(FKN) model kinetics (cf. Chapter 8, Volume I) is a particularly important example be-
cause of its potential for experimental verification of the theory; references are given at
the appropriate places below.

Before commenting on the types of reaction kinetics capable of generating pattern
we must nondimensionalise the systems given by (2.2) with reaction kinetics from such
as (2.3) to (2.5). By way of example we carry out the details here for (2.2) with F and
G given by (2.3) because of its algebraic simplicity and our detailed analysis of it in
Chapter 7, Volume I. Introduce L as a typical length scale and set

k3 \ /2 k3 \ /2 Dat X
u=A[(= , v=2_RB =3 L =t =2
ko %) L2 L

Dp ki (k3 172 kg (k3 172 L2k2
d=—, a=—|— , b=—|—= , Yy =—.
Dy ky \ k3 ky \ k2

The dimensionless reaction diffusion system becomes, on dropping the asterisks for
algebraic convenience,

ur = y@—u+u?v)+ Vu =yfu,v) + Vu,
2.7)
v =y (b —u?v) +dV*v = ygu, v) + dV?v,
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where f and g are defined by these equations. We could incorporate y into new length
and timescales by setting y!/?r and yt for r and ¢ respectively. This is equivalent to
defining the length scale L such that y = 1; that is, L = (D4/k2)'/?. We retain the
specific form (2.7) for reasons which become clear shortly as well as for the analysis in
the next section and for the applications in the following chapters.

An appropriate nondimensionalisation of the reaction kinetics (2.4) and (2.5) give
(see Exercise 1)

2
f(u,v):a—bu—i—u—, g(u,v):uz—v,
v

fw,v)y=a—-u—h(u,v), gu,v)=u0ab-v)—hu,v)), (2.8)
B pUY
hlu, v) = 14+u+ Ku?’

where a, b, o, p and K are positive parameters. If we include activator inhibition in the
activator—inhibitor system in the first of these we have, for f and g,

2

u 2
I S 2.9
v(1 + ku?) g, v) =u"—v 9

f(u,v) =a—bu+

where k is a measure of the inhibition; see also Section 6.7 in Chapter 6 in Volume I.
Murray (1982) discussed each of these systems in detail and drew conclusions as to
their relative merits as pattern generators; he presented a systematic analytical method
for studying any two-species reaction diffusion system. For most pattern formation (an-
alytical) illustrations with reaction diffusion mechanisms the simplest, namely, (2.7),
turned out to be the most robust of those considered and, fortunately, the easiest to
study.

All such reaction diffusion systems can be nondimensionalised and scaled to take
the general form

ur = yfu,v)+Vau, v =ygu,v)+dVv, (2.10)

where d is the ratio of diffusion coefficients and y can have any of the following inter-
pretations.

(i) y!'/? is proportional to the linear size of the spatial domain in one dimension.
In two dimensions y is proportional to the area. This meaning is particularly
important as we shall see later in Section 2.5 and in Chapter 3.

(ii) y represents the relative strength of the reaction terms. This means, for example,
that an increase in y may represent an increase in activity of some rate-limiting
step in the reaction sequence.

(iif) Anincrease in y can also be thought of as equivalent to a decrease in the diffusion
coefficient ratio d.
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Particular advantages of this general form are: (a) the dimensionless parameters y and d
admit a wider biological interpretation than do the dimensional parameters and (b) when
we consider the domains in parameter space where particular spatial patterns appear,
the results can be conveniently displayed in (y, d) space. This aspect was exploited by
Arcuri and Murray (1986).

Whether or not the systems (2.2) are capable of generating Turing-type spatial pat-
terns crucially depends on the reaction kinetics f and g, and the values of y and d.
The detailed form of the null clines provides essential initial information. Figure 2.2
illustrates typical null clines for f and g defined by (2.7)—-(2.9).

In spite of their different chemical motivation and derivation all of these kinetics
are equivalent to some activation—inhibition interpretation and when coupled with un-
equal diffusion of the reactants, are capable of generating spatial patterns. The spatial
activation—inhibition concept was discussed in detail in Section 11.5 in Chapter 11 in
Volume I, and arose from an integral equation formulation: refer to equation (11.41)
there. As we shall see in the next section the crucial aspect of the kinetics regarding
pattern generation is incorporated in the form of the null clines and how they intersect
in the vicinity of the steady state. There are two broad types illustrated in the last fig-
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Figure2.2. Null clines f(u, v) =0, g(u, v) = 0: (a) The dimensionless Schnakenberg (1979) kinetics (2.7)
with a = 0.2 and b = 2.0 with the dashed curve, where a = —0.2 and which is typical of the situation when
a < 0. (b) The dimensionless Gierer and Meinhardt (1972) system with @ = +0.1, » = 1 and no activator
inhibition. (C) The empirical Thomas (1975) system defined by (2.8) with parameter values a = 150, b = 100,
a = 1.5, p =13, K = 0.05. (d) The kinetics in (2.9) witha > 0, b > 0 and k > 0, which implies activator
inhibition; the dashed curve has a < 0.
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ure. The steady state neighbourhood of the null clines in Figures 2.2(b), (c) and (d) are
similar and represent one class, while that in Figure 2.2(a) is the other.

‘We should note here that there are other important classes of null clines which we
do not consider, such as those in which there is more than one positive steady state; we
discussed such kinetics in Chapter 7, Volume I for example. Reaction diffusion systems
with such kinetics can generate even more complex spatial patterns: initial conditions
here are particularly important. We also do not discuss here systems in which the diffu-
sion coefficients are space-dependent and concentration- or population-dependent; these
are important in ecological contexts (recall the discussion in Chapter 1 on the spread of
genetically engineered organisms). We briefly considered density-dependent diffusion
cases in Chapter 11, Volume I. Later in the book we discuss an important application in
which the diffusion coefficient is space-dependent when we model the spread of brain
tumours in anatomically realistic brains.

It is often useful and intuitively helpful in model building to express the mech-
anism’s kinetics in schematic terms with some convention to indicate autocatalysis,
activation, inhibition, degradation and unequal diffusion. If we do this, by way of illus-
tration, with the activator—inhibitor kinetics given by the first of (2.8) in (2.10) we can
adopt the convention shown in Figure 2.3(a).

The effect of different diffusion coefficients, here with d > 1, is to illustrate the
prototype spatial concept of local activation and lateral inhibition illustrated in Fig-
ures 2.3(b) and 2.4(b). The general concept was introduced before in Chapter 11, Vol-
ume [. It is this generic spatial behaviour which is necessary for spatial patterning: the
grasshoppers and the fire analogy is an obvious example with the fire the local activation
and the grasshoppers providing the long range inhibition. It is intuitively clear that the
diffusion coefficient of the inhibitor must be larger than that of the activator.

The concept of local activation and lateral inhibition is quite old going back at least
to Ernst Mach in 1885 with his Mach bands. This is a visual illusion which occurs
when dark and light bands are juxtaposed. Figure 2.4 is a schematic illustration of what
happens together with an example of the Hermann illusion which is based on it.

a Autocatalysis .
Local

@ Diffusion activation
~bu o +
Inhibition Activation
w Diffusion (d > 1) \/
: Long range {1 :pition
—~ v Degradation Lateral
(a) (b)

Figure2.3. (a) Schematic representation of the activator-inhibitor system u; = a —bu + (uz/v) +V2u, v =
u? — v +dv2v. (b) Spatial representation of local activation and long range inhibition.
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retinal ganglion cells
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Figure 2.4. (@) If a light is shone on an array of retinal ganglion cells there is local activation of the cells in
the immediate neighbourhood of the light with lateral inhibition of the cells farther away from the light source.
The result is a landscape of local activation and lateral inhibition as illustrated in (b). (C) This illustrates the
Hermann illusion. Here cells have more illumination in their inhibitory surrounding regions than cells in other
white regions and so are more strongly inhibited and appear darker.
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2.3 General Conditionsfor Diffusion-Driven Instability: Linear
Stability Analysis and Evolution of Spatial Pattern

A reaction diffusion system exhibits diffusion-driven instability, sometimes called Tur-
ing instability, if the homogeneous steady state is stable to small perturbations in the ab-
sence of diffusion but unstable to small spatial perturbations when diffusion is present.
The concept of instability in biology is often in the context of ecology, where a uniform
steady state becomes unstable to small perturbations and the populations typically ex-
hibit some temporal oscillatory behaviour. The instability we are concerned with here is
of a quite different kind. The main process driving the spatially inhomogeneous insta-
bility is diffusion: the mechanism determines the spatial pattern that evolves. How the
pattern or mode is selected is an important aspect of the analysis, a topic we discuss in
this (and later) chapters.

We derive here the necessary and sufficient conditions for diffusion-driven instabil-
ity of the steady state and the initiation of spatial pattern for the general system (2.10).
To formulate the problem mathematically we require boundary and initial conditions.
These we take to be zero flux boundary conditions and given initial conditions. The
mathematical problem is then defined by

u =yfu,v)+Vau, v =rygu,v)+dviv,

u (2.11)
(n-v) <v) =0, rondB; u(r,0), v(r,0) given,

where dB is the closed boundary of the reaction diffusion domain B and n is the unit
outward normal to d B. There are several reasons for choosing zero flux boundary con-
ditions. The major one is that we are interested in self-organisation of pattern; zero flux
conditions imply no external input. If we imposed fixed boundary conditions on u and
v the spatial patterning could be a direct consequence of the boundary conditions as we
shall see in the ecological problem below in Section 2.7. In Section 2.4 we carry out
the analysis for a specific one- and two-dimensional situation with the kinetics given by
2.7).

The relevant homogeneous steady state (i, vo) of (2.11) is the positive solution of

fu,v)=0, gu,v)=0. (2.12)

Since we are concerned with diffusion-driven instability we are interested in linear in-
stability of this steady state that is solely spatially dependent. So, in the absence of any
spatial variation the homogeneous steady state must be linearly stable: we first deter-
mine the conditions for this to hold. These were derived in Chapter 3, Volume I but as a
reminder and for notational completeness we briefly rederive them here.

With no spatial variation u and v satisfy

ur =yfu,v), vi=ygu,v). (2.13)
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Linearising about the steady state (¢, vo) in exactly the same way as we did in Chap-

ter 3, Volume I, we set
_(u—up
W= (v _ vo) (2.14)

and (2.13) becomes, for | w | small,

W, = yAW, A= (f” f”) , (2.15)
8u 8v 10,00

where A is the stability matrix. From now on we take the partial derivatives of f and g
to be evaluated at the steady state unless stated otherwise. We now look for solutions in
the form

w o et (2.16)
where X is the eigenvalue. The steady state w = 0 is linearly stable if Re A < 0 since

in this case the perturbation W — 0 as t — oo . Substitution of (2.16) into (2.15)
determines the eigenvalues A as the solutions of

V8u Y8u — A (2.17)
= )‘z_y(fu +gv))\+)/2(fugv_fvgu):0v
SO
1 ) 12
Moo=y | et s 2|+ e —4fuso— fug} |- @18)
Linear stability, that is, Re & < 0, is guaranteed if
trA=f,+g, <0, |A|= fugv— fogu >0. (2.19)

Since (19, vg) are functions of the parameters of the kinetics, these inequalities thus
impose certain constraints on the parameters. Note that for all cases in Figure 2.2 in
the neighbourhood of the steady state, f, > 0, g, < 0, and for Figure 2.2(a) f, > 0,
gu < 0 while for Figure 2.2(b) to (d) f, <0, g, > 0. Sotr A and | A | could be positive
or negative: here we are only concerned with the conditions and parameter ranges which
satisfy (2.19).

Now consider the full reaction diffusion system (2.11) and again linearise about the
steady state, which with (2.14) is w = 0, to get

W; = yAw + DV?w, D = (é 2) ) (2.20)
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To solve this system of equations subject to the boundary conditions (2.11) we first de-
fine W (r) to be the time-independent solution of the spatial eigenvalue problem defined
by

VW +k*W =0, (n-V)W=0 for rondB, (2.21)

where k is the eigenvalue. For example, if the domain is one-dimensional, say, 0 < x <
a, W o cos(nmx/a) where n is an integer; this satisfies zero flux conditions at x = 0
and x = a. The eigenvalue in this case is k = nw/a. So, 1/k = a/nm is a measure of
the wavelike pattern: the eigenvalue k is called the wavenumber and 1/ k is proportional
to the wavelength w; @ = 2w /k = 2a/n in this example. From now on we shall refer
to k in this context as the wavenumber. With finite domains there is a discrete set of
possible wavenumbers since n is an integer.

Let W (r) be the eigenfunction corresponding to the wavenumber k. Each eigen-
function Wy satisfies zero flux boundary conditions. Because the problem is linear we
now look for solutions W(r, t) of (2.20) in the form

w(r, 1) = cheMWk(r), (2.22)
k

where the constants ¢ are determined by a Fourier expansion of the initial conditions
in terms of W (r). A is the eigenvalue which determines temporal growth. Substituting
this form into (2.20) with (2.21) and cancelling e*’, we get, for each k,

AW = y AW, + DVZW,,
=yAW; — DkZWk.

We require nontrivial solutions for Wy so the A are determined by the roots of the
characteristic polynomial

Al —yA+ Dk*| =0.

Evaluating the determinant with A and D from (2.15) and (2.20) we get the eigenvalues
L(k) as functions of the wavenumber k as the roots of

A2 AR+ d) — v (fu + &)1+ h(K*) =0,

(2.23)
h(k?) = dk* =y (dfu + g)K* + ¥?| Al

The steady state (u¢, vp) is linearly stable if both solutions of (2.23) have Re A < 0.

We have already imposed the constraints that the steady state is stable in the absence
of any spatial effects; that is, Re A(k% = 0) < 0. The quadratic (2.23) in this case is
(2.17) and the requirement that Re A < 0 gave conditions (2.19). For the steady state
to be unstable to spatial disturbances we require Re A(k) > O for some k£ # 0. This
can happen if either the coefficient of A in (2.23) is negative, or if h(k?) < 0 for some
k # 0. Since (f;, + gv) < 0 from conditions (2.19) and k2(1 +d) > Oforall k # 0 the
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coefficient of A, namely,

K21 +d) — y(fu + gu)]1 > 0,

so the only way Re A(k?) can be positive is if /(k?) < 0 for some k. This is immediately
clear from the solutions of (2.23), namely,

20 = [k (1 +d) — y(fu + g)] £ A +d) — y(fu + go)]* — 40 (kD)2

Since we required the determinant | A | > 0 from (2.19) the only possibility for 4 (k?) in
(2.23) to be negative is if (df, + gv) > 0. Since (f,, + gv) < 0 from (2.19) this implies
that d # 1 and f, and g, must have opposite signs. So, a further requirement to those
in (2.19) is

dfi+g >0 = d#1. (2.24)

With the reaction kinetics giving the null clines in Figure 2.2 we noted that f;, > 0
and g, < 0, so the first condition in (2.19) and the last inequality (2.24) require that
the diffusion coefficient ratio d > 1. For example, in terms of the activator—inhibitor
mechanism (2.8) this means that the inhibitor must diffuse faster than the activator as
we noted above.

The inequality (2.24) is necessary but not sufficient for ReA > 0. For h(k?) to
be negative for some nonzero k, the minimum /nj, must be negative. From (2.23),
elementary differentiation with respect to k> shows that

(dfu + 80)° dfu+g
hin = 1 [|A| -SSRk =y R @2s)
Thus the condition that (k%) < 0 for some k% # 0 is
d 2
M >|A]. (2.26)

4d
At bifurcation, when hpin = 0, we require |A| = (df, + gv)2 /4d and so for fixed

kinetics parameters this defines a critical diffusion coefficient ratio d.(> 1) as the ap-
propriate root of

dczfuz +2Q2fv8u — fugv)de + glz, =0. 2.27)

The critical wavenumber k. is then given (using (2.26)) by

dc : A 1/2 ; _ 5 1/2
k2=y Su+ 8o :y[u] zyl:fgv fog :| . (2.28)

¢ 2dC dc dC

Figure 2.5(a) shows how h(k?) varies as a function of k2 for various d.
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h(k?)
d = d. ReA ‘Wavenumbers

d<d, of unstable modes
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Figure2.5. (a) Plotof & (k2) defined by (2.23) for typical kinetics illustrated in Figure 2.2. When the diffusion
coefficient ratio d increases beyond the critical value d,, h(kz) becomes negative for a finite range of k2 > 0.
(b) Plot of the largest of the eigenvalues A(kz) from (2.23) as a function of k2. Whend > d. there is a range
of wavenumbers k% <k < k% which are linearly unstable.

Whenever h(k%) < 0, (2.23) has a solution A which is positive for the same range
of wavenumbers that make # < 0. From (2.23) with d > d, the range of unstable
wavenumbers k% <k?< k% is obtained from the zeros k% and k% of h(k?) = 0 as

K= = @+ 80) = (fu+ 807 —4d1 A)2] < &2
(2.29)
< o [@hi+ g0 + s+ g0* —dal A = .
Figure 2.5(b) plots a typical A(k%) against k2. The expression 1 = A(k?) is called a
dispersion relation. We discuss the importance and use of dispersion relations in more
detail in the next two sections. Note that, within the unstable range, Re k(kz) > (Ohasa
maximum for the wavenumber £, obtained from (2.25) with d > d.. This implies that
there is a fastest growing mode in the summation (2.22) for w; this is an attribute we
now exploit.

If we consider the solution W given by (2.22), the dominant contributions as ¢ in-
creases are those modes for which Re (k) > 0 since all other modes tend to zero
exponentially. From Figure 2.5, or analytically from (2.29), we determine the range,
k? < k* < k3, where h(k?) < 0, and hence Re A(k?) > 0, and so from (2.22)

ky
w(r, 1)~ > e Wi (r) - for large 1. (2.30)
ki

An analysis and graph of the dispersion relation are thus extremely informative in that
they immediately say which eigenfunctions, that is, which spatial patterns, are linearly
unstable and grow exponentially with time. We must keep in mind that, with finite do-
main eigenvalue problems, the wavenumbers are discrete and so only certain k in the
range (2.29) are of relevance; we discuss the implications of this later.
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The key assumption, and what in fact happens, is that these linearly unstable eigen-
functions in (2.30) which are growing exponentially with time will eventually be bound-
ed by the nonlinear terms in the reaction diffusion equations and an ultimate steady state
spatially inhomogeneous solution will emerge. A key element in this assumption is the
existence of a confined set (or bounding domain) for the kinetics (see Chapter 3, Vol-
ume I). We would intuitively expect that if a confined set exists for the kinetics, the
same set would also contain the solutions when diffusion is included. This is indeed
the case and can be rigorously proved; see Smoller (1983). So, part of the analysis of
a specific mechanism involves the demonstration of a confined set within the positive
quadrant. A general nonlinear analysis for the evolution to the finite amplitude steady
state spatial patterns is still lacking but singular perturbation analyses for d near the
bifurcation value d,. have been carried out and a nonuniform spatially heterogeneous
solution is indeed obtained (see, for example, Lara-Ochoa and Murray 1983, Zhu and
Murray 1995). Singular perturbation analyses can be done near any of the critical pa-
rameters near bifurcation. There have now been many spatially inhomogeneous solu-
tions evaluated numerically using a variety of specific reaction diffusion mechanisms;
the numerical methods are now quite standard. The results presented in the next chapter
illustrate some of the richness of pattern which can be generated.

To recap, we have now obtained conditions for the generation of spatial patterns
by two-species reaction diffusion mechanisms of the form (2.11). For convenience we
reproduce them here. Remembering that all derivatives are evaluated at the steady state
(10, vo), they are, from (2.19), (2.24) and (2.26),

Jut 8 <0, fugv— fogu >0,

) (2.31)
dfy +gv >0, (dfy+ gy —4d(fugv — fvgu) > 0.

The derivatives f,, and g, must be of opposite sign: with the reaction kinetics exhibited
in Figure 2.2, f, > 0, g, < 0 so the first and third of (2.31) imply that the ratio of
diffusion coefficients d > 1.

There are two possibilities for the cross-terms f;, and g, since the only restriction is
that f,g, < 0. So, we must have f, < 0 and g, > 0 or the other way round. These cor-
respond to qualitatively different reactions. The two cases are illustrated schematically
in Figure 2.6. Recall that the reactant which promotes growth in one is the activator and
the other the inhibitor. In the case illustrated in Figure 2.6(a), u is the activator, which is
also self-activating, while the inhibitor, v, inhibits not only u, but also itself. For pattern
formation to take place the inhibitor must diffuse more quickly than the activator. In the
case illustrated in Figure 2.6(b), v is the activator but is still self-inhibiting and diffuses
more quickly. There is another difference between the two cases. The pattern grows
along the unstable manifold associated with the positive eigenvalue. In Figure 2.6(a)
this means that the two species are at high or low density in the same region as the pat-
tern grows as in Figure 2.6(c); in case Figure 2.6(b) u is at a high density where v is low,
and vice versa as in Figure 2.6(d). The qualitative features of the phase plane (just for
the reaction terms) in the vicinity of the steady state are shown in Figure 2.6(e) and (f)
for the two cases. The fact that the patterns are either in or out of phase has fundamental
implications for biological applications.
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Figure 2.6. Schematic illustration of the two qualitatively different cases of diffusion driven instability. (a)
self-activating u also activates v, which inhibits both reactants. The resulting initially growing pattern is shown
in (). (b) Here the self-activating u inhibits v but is itself activated by v with the resulting pattern illustrated
in (d). The matrices give the signs of f, fu, gu, v evaluated at the steady state. (€) and (f) The reaction
phase planes near the steady state. The arrows indicate the direction of change due to reaction (in the absence
of diffusion). Case (€) corresponds to the interactions illustrated in (&) and (C) while that in (f) corresponds to
the interactions illustrated in (b) and (d).

- -
u

To get an intuitive feel for these two cases let us consider two different ecological
predator—prey scenarios. In the first, that is, Figure 2.6(e), let u and v represent the
prey and predator respectively. At high predator density prey numbers are reduced but
at low densities their number is increased. Near the steady state the prey benefit from
each other in that an increase in number is temporarily amplified. Predators decrease in
numbers if the predator-to-prey ratio is high, but otherwise increase. Another example,
from parasitology, is if v is a parasite dispersing via a motile host while u is a more
sedentary host that is severely affected by the parasite. In these the interaction near the
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steady state is as in Figure 2.6(a) with the local null clines and qualitative growth as in
Figure 2.6(e).

A necessary condition for diffusion-driven instability in this predator—prey situa-
tion is that the predators disperse faster than the prey. In this case the patterns form as in
Figure 2.6(c). Let us suppose there is a region of increased prey density. Without diffu-
sion this would be damped out since the predators would temporarily increase and then
drop back towards the steady state. However, with the predators diffusing it is possible
that the local increase in predators (due to an increase in the prey) partially disperses
and so is not strong enough to push the prey population back towards equilibrium. When
predators disperse they lower the prey density in the neighbourhood. It is therefore pos-
sible to end up with clumps of high prey and predator populations interspersed with
areas in which both densities are low. In the parasite analogy clumping of the sedentary
prey (the host) coincides with areas of high parasite density. Hosts can also exist at high
levels because the parasites continue to disperse into the nearby ‘dead zone’ in which
there are few of this type of host. The scale on which patterning takes place depends on
the ratio of the diffusion coefficients d.

Now consider the second type of interaction illustrated in Figures 2.6(b), (d) and
(f). Again with a predator—prey situation let # now be the predator and v the prey. In this
case the predators are ‘autocatalytic’ since when densities are close to the steady state,
an increase in predator density is temporarily amplified, a not uncommon situation. For
example, increased predator densities could improve hunting or reproductive efficiency.
Another difference between this case and the first one is that it is now the prey that
disperse at a faster rate.

Suppose again that there is a high prey density area. Without diffusion the predator
numbers would increase and eventually make both populations return to the steady state.
However, it could happen that the predators grow and reduce the prey population to a
level below the steady state value (the temporary increase in prey is enough to prompt
the autocatalytic growth of predators to kick in). This would result in a net flux of prey
from neighbouring regions which in turn would cause the predator density to drop in
those regions (as autocatalysis works in the other direction) thereby letting the prey
populations grow above their steady state value. A pattern could become established in
which areas of low predator/high prey supply with extra prey in those areas in which
there are few prey and large numbers of predators. In effect, autocatalytic predators
benefit both from being at a high density locally and also because nearby there are
regions containing few predators which thus supply them with a constant extra flux of
prey. Prey continue to flow towards regions of high predation because of the random
nature of diffusion.

If the conditions (2.31) are satisfied there is a scale (y)-dependent range of patterns,
with wavenumbers defined by (2.29), which are linearly unstable. The spatial patterns
which initially grow (exponentially) are those eigenfunctions W (r) with wavenumbers
between ki and k> determined by (2.29), namely, those in (2.30). Note that the scale
parameter y plays a crucial role in these expressions, a point we consider further in
the next section. Generally we would expect the kinetics and diffusion coefficients to
be fixed. In the case of embryogenesis the natural variable parameter is then y which
reflects the size of the embryo or rather the embryonic domain (such as a developing
limb bud) we are considering.
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Diffusion-Driven Instability in Infinite Domains: Continuous Spectrum of Eigenvalues

In a finite domain the possible wavenumbers k and corresponding spatial wavelengths
of allowable patterns are discrete and depend in part on the boundary conditions. In
developmental biology the size of the embryo during the period of spatial patterning is
often sufficiently large, relative to the pattern to be formed, that the ‘boundaries’ cannot
play a major role in isolating specific wavelengths, as, for example, in the generation
of patterns of hair, scale and feather primordia discussed in later chapters. Thus, for
practical purposes the pattern formation domain is effectively infinite. Here we describe
how to determine the spectrum of unstable eigenvalues for an infinite domain—it is
easier than for a finite domain.
We start with the linearised system (2.20) and look for solutions in the form

w(r, t) o exp[rt + ik - r],
where K is the wave vector with magnitude £ = | k |. Substitution into (2.20) again gives
| —yA+Dk*| =0

and so the dispersion relation giving X in terms of the wavenumbers k is again given by
(2.23). The range of eigenvalues for which Re A3 > 0is again given by (2.29). The
crucial difference between the situation here and that for a finite domain is that there
is always a spatial pattern if, in (2.29), 0 < k12 < k% since we are not restricted to a
discrete class of k> defined by the eigenvalue problem (2.21). So, at bifurcation when
kg, given by (2.28), is linearly unstable the mechanism will evolve to a spatial pattern
with the critical wavelength w, = 2m/k.. Thus the wavelength with the maximum
exponential growth in Figure 2.5(b) will be the pattern which generally emerges at least
in one dimension: it is not always the case and depends on the number of unstable
modes and initial conditions. In the next chapter on biological applications we shall see
that the difference between a finite domain and an effectively infinite one has important
biological implications: finite domains put considerable restrictions on the allowable
patterns.

2.4 Detailed Analysisof Pattern Initiation in a Reaction
Diffusion Mechanism

Here we consider, by way of example, a specific two-species reaction diffusion sys-
tem and carry out the detailed analysis. We lay the groundwork in this section for the
subsequent applications to real biological pattern formation problems. We calculate the
eigenfunctions, obtain the specific conditions on the parameters necessary to initiate
spatial patterns and determine the wavenumbers and wavelengths of the spatial distur-
bances which initially grow exponentially.

We study the simplest reaction diffusion mechanism (2.7), first in one space dimen-
sion; namely,
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ur=yf,v)+uyxy=y@—u+ M2U) + Uyx,
(2.32)
vr = yg(u, v) + dvgy = y (b — u?v) + dvy,.

The kinetics null clines f = 0 and g = 0 are illustrated in Figure 2.2(a). The uniform
positive steady state (ug, vo) is

b

= b, = ",
Hp=at+ v (a + b)?

b>0, a+b>0 (2.33)

and, at the steady state,

b—a —2b
= —, — <0,

a-+b a+b (2.34)
gv=—(@+b)?><0, fugy— fogu=(a+b)*>0.

fu fo=@+b?*>0, g =

Since f, and g, must have opposite signs we must have b > a. With these expressions,
conditions (2.31) require

fut+g <0 = 0<b—a<(a+b)

fugp = fogu >0 = (a+b)*>0,

dfy+g>0 = db—a)> (a+b), (2.35)

(dfu + 80)* = 4d(fugy — fugu) > 0

= [d(b—a)—(a+b)’ > 4d(a + b)*.
These inequalities define a domain in (a, b, d) parameter space, called the pattern for-
mation space (or Turing space), within which the mechanism is unstable to certain spa-
tial disturbances of given wavenumbers k, which we now determine.

Consider the related eigenvalue problem (2.21) and let us choose the domain to be
x € (0, p) with p > 0. We then have

Wy + kW =0, W,=0forx=0,p (2.36)
the solutions of which are
W, (x) = A,cos(nex/p), n==x1,£2,..., (2.37)

where the A, are arbitrary constants. The eigenvalues are the discrete wavenumbers
k = nm/p. Whenever (2.34) are satisfied and there is a range of wavenumbers k =
nm/p lying within the bounds defined by (2.29), then the corresponding eigenfunctions
W,, are linearly unstable. Thus the eigenfunctions (2.37) with wavelengths w = 27 /k =
2p/n are the ones which initially grow with time like exp{A([n7r/p]*)t}. The band of
wavenumbers from (2.29), with (2.34), is given by
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2
yL@a.b,d) = k? < k> = (%) <k =yM(a.b,d)

_[db—a) — (a+b)*1—{[d(b — a) — (a + b)*1> — 4d(a + b)*}'/2

L (2.38)
2d(a + b)
Yo db—a)—(@+ b1+ {[d(b — a) — (a + b)*]* — 4d(a + b)*}'/?
- 2d(a + b) '

In terms of the wavelength w = 2m/k, the range of unstable modes W, have wave-
lengths bounded by w; and w,, where

4 2 2 2 4 2
— T =) s — (2.39)
yL(a,b,d) n yM(a,b,d)

Note in (2.38) the importance of scale, quantified by y. The smallest wavenumber
is 7/ p; that is, n = 1. For fixed parameters a, b and d, if y is sufficiently small (2.38)
says that there is no allowable k in the range, and hence no mode W,, in (2.37), which
can be driven unstable. This means that all modes in the solution W in (2.30) tend to
zero exponentially and the steady state is stable. We discuss this important role of scale
in more detail below.

From (2.30) the spatially heterogeneous solution which emerges is the sum of the
unstable modes, namely,

2,2

ny
W(x, ) ~ Z C,exp |:A (%) ti| cos E, (2.40)
ny

p

where A is given by the positive solution of the quadratic (2.23) with the derivatives from
(2.34), n1 is the smallest integer greater than or equal to pkj/m, ny the largest integer
less than or equal to pky/m and C, are constants which are determined by a Fourier
series analysis of the initial conditions for w. Initial conditions in any biological con-
text involve a certain stochasticity and so it is inevitable that the Fourier spectrum will
contain the whole range of Fourier modes; that is, the C,, are nonzero. We can therefore
assume at this stage that y is sufficiently large to ensure that allowable wavenumbers
exist in the unstable range of k. Before discussing the possible patterns which emerge
let us first obtain the corresponding two-dimensional result.

Consider the two-dimensional domain defined by 0 < x < p,0 < y < g whose
rectangular boundary we denote by d B. The spatial eigenvalue problem in place of that
in (2.36) is now

V2W 4+ kW =0, (n-V)W=0 for (x,y)ondB (2.41)

the eigenfunctions of which are

2 2
W4 (x, ) = Cy p cOs 17X cos w, k> =n? (n—2 + m—) , (2.42)
p q p
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where n and m are integers. The two-dimensional modes W (x, y) which are linearly
unstable are those with wavenumbers k, defined by the last equation, lying within the
unstable band of wavenumbers defined in terms of a, b and d by (2.38). We again
assume that y is sufficiently large so that the range of unstable wavenumbers contains
at least one possible mode. Now the unstable spatially patterned solution is given by
(2.30) with (2.42) as

W(x,y, 1) ~ ZCn,mek(kz)t cos % cos m_rry’
n,m p q
5 ) (2.43)
2 2 2 m 2
yL(a,b,d) =k <k"=m (—2 + —2> <ky=yM(a,b,d),
p q

where the summation is over all pairs (n, m) which satisfy the inequality, L and M
are defined by (2.38) as before and LK) is again the positive solution of (2.23) with
the expressions for the derivatives of f and g given by (2.34). As ¢ increases a spatial
pattern evolves which is initially made up of the modes in (2.43).

Now consider the type of spatial patterns we might expect from the unstable solu-
tions in (2.40) and (2.43). Suppose first that the domain size, as measured by y, is such
that the range of unstable wavenumbers in (2.38) admits only the wavenumber n = 1:
the corresponding dispersion relation for A in terms of the wavelengths @ = 2p/n is
illustrated in Figure 2.7(a). The only unstable mode, from (2.37) is then cos(;rx/p) and
the growing instability is given by (2.40) as

2 TX
W(x,t) ~Crexp | A — | t|cos —,
4 4

where A is the positive root of the quadratic (2.23) with f,, fy, g, and g, from (2.34)
and with k> = (1r/p)?. Here all other modes decay exponentially with time. We can
only determine the C; from initial conditions. To get an intuitive understanding for
what is going on, let us simply take C; as (¢, €) for some small positive ¢ and consider
the morphogen u; that is, from the last equation and the definition of w from (2.14),

2
u(x,t) ~ug+eexp [k (7‘(_2) t:| cos n_x. (2.44)
p p

This unstable mode, which is the dominant solution which emerges as ¢ increases, is
illustrated in Figure 2.7(b). In other words, this is the pattern predicted by the dispersion
relation in Figure 2.7(a).

Clearly if the exponentially growing solution were valid for all time it would imply
u — oo ast — oo. For the mechanism (2.32), the kinetics has a confined set, within
the positive quadrant, which bounds the solution. So the solution in the last equation
must be bounded and lie in the positive quadrant. We hypothesise that this growing
solution eventually settles down to a spatial pattern which is similar to the single cosine
mode shown in Figure 2.7(b). As mentioned before, singular perturbation analyses in the
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Figure 2.7. (a) Typical dispersion relation for the growth factor Re A as a function of the wavelength
obtained from a linearization about the steady state. The only mode which is linearly unstable has n = 1;
all other modes have ReA < 0. (b) The temporally growing linear mode which eventually evolves from
random initial conditions into a finite amplitude spatial pattern such as shown in (C), where the shaded area
corresponds to a concentration higher than the steady state u( and the unshaded area to a concentration lower
than the steady state value.

vicinity of the bifurcation in one of the parameters, for example, near the critical domain
size for y, such that a single wavenumber is just unstable, or when the critical diffusion
coefficient ratio is near d., bear this out as do the many numerical simulations of the
full nonlinear equations. Figure 2.7(c) is a useful way of presenting spatial patterned
results for reaction diffusion mechanisms—the shaded region represents a concentration
above the steady state value while the unshaded region represents concentrations below
the steady state value. As we shall see, this simple way of presenting the results is
very useful in the application of chemical prepattern theory to patterning problems in
developmental biology, where it is postulated that cells differentiate when one of the
morphogen concentrations is above (or below) some threshold level.

Let us now suppose that the domain size is doubled, say. With the definition of y
chosen to represent scale this is equivalent to multiplying the original y by 4 since in
the one-dimensional situation ,/y is proportional to size, that is, the length here, of the
domain. This means that the dispersion relation and the unstable range are simply moved
along the k%-axis or along the w?-axis. Suppose the original ¥ = . The inequalities
(2.38) determine the unstable modes as those with wavelengths w (= 27/ k) determined
by (2.39); namely,

472 5 472

_ _ 2.45
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Let this be the case illustrated in Figure 2.7(a) and which gives rise to the pattern in Fig-
ure 2.7(c). Now let the domain double in size. We consider exactly the same domain as
in Figure 2.7 but with an increased y to 4y;. This is equivalent to having the same y; but
with a domain 4 times that in Figure 2.7. We choose the former means of representing a
change in scale. The equivalent dispersion relation is now illustrated in Figure 2.8(a)—it
is just the original one of Figure 2.7(a) moved along so that the wavelength of the ex-
cited or unstable mode now has w = p; that is, n = 2. The equivalent spatial pattern is
then as in Figure 2.8(b). As we shall see in the applications chapters which follow, it is a

ReA(w)

T e

Figure 2.8. (a) Dispersion relation Re 1 as a function of the wavelength @ when the single mode with n = 2
is unstable for a domain size 4y ; the dashed curves are those with y =y and y < y. < y1, where y, is the
critical bifurcation scale value of the domain that will not admit any heterogeneous pattern. (b) The spatial
pattern in the morphogen u predicted by the dispersion relation in (a). The dashed line, the mirror image about
u = u, is also an allowable form of this solution. The initial conditions determine which pattern is obtained.
() The spatial pattern obtained when the domain is sufficiently large to fit in the number of unstable modes
equivalent to n = 10: the shaded regions represent morphogen levels u > u(, the uniform steady state.
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particularly convenient way, when presenting spatial patterned solutions, to incorporate
scale solely via a change in y.

We can thus see with this example how the patterning process works as regards
domain size. There is a basic wavelength picked out by the analysis for a given y = y1,
in this example that with n = 1. As the domain grows it eventually can incorporate the
pattern with n = 2 and progressively higher modes the larger the domain, as shown
in Figure 2.8(c). In the same way if the domain is sufficiently small there is clearly a
y = Y. such that the dispersion relation, now moved to the right in Figure 2.8(a), will
not even admit the wavelength with n = 1. In this case no mode is unstable and so no
spatial pattern can be generated. The concept of a critical domain size for the existence
of spatial pattern is an important one both in developmental biology, and in spatially
dependent ecological models as we show later.

Note in Figure 2.8(b) the two possible solutions for the same parameters and zero
flux boundary conditions. Which of these is obtained depends on the bias in the initial
conditions. Their existence poses certain conceptual difficulties from a developmental
biology point of view within the context of positional information. If cells differentiate
when the morphogen concentration is larger than some threshold then the differentiated
cell pattern is obviously different for each of the two possible solutions. Development,
however, is a sequential process and carries with it its own history so, a previous stage
generally cues the next. In the context of reaction diffusion models this implies a bias
in the initial conditions towards one of the patterns.

Now consider the two-dimensional problem with a dispersion relation such that
the unstable modes are given by (2.43). Here the situation is not so straightforward
since for a given y, representing the scale, the actual modes which are unstable now
depend on the domain geometry as measured by the length p and the width g. Refer-
ring to (2.43), first note that if the width is sufficiently small, that is, ¢ is small enough,
even the first mode with m = 1 lies outside the unstable range. The problem is then
equivalent to the above one-dimensional situation. As the width increases, that is, g in-
creases, genuine two-dimensional modes with n # 0 and m # 0 become unstable since

' ' xz

n=1 m=1 n=3 m=2

Figure 2.9. Typical two-dimensional spatial patterns indicated by the linearly unstable solution (2.43) when
various wavenumbers are in the unstable range. The shaded regions are where u > u(, the uniform steady
state.
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72(n?/ p* + m?/¢?) lies in the range of unstable wavenumbers. Figure 2.9 illustrates
typical temporally growing spatial patterns indicated by (2.43) with various nonzero n
and m.

Regular Planar Tesselation Patterns

The linear patterns illustrated in the last figure arise from the simplest two-dimensional
eigenfunctions of (2.41). Less simple domains require the solutions of

V2 + k> =0, (n-V)y =0 for rondB. (2.46)

Except for simple geometries the analysis quickly becomes quite complicated.
Even for circular domains the eigenvalues have to be determined numerically. There
are, however, some elementary solutions for symmetric domains which tesselate the
plane, namely, squares, hexagons, rhombi and, by subdivision, triangles; these were
found by Christopherson (1940). In other words we can cover the complete plane with,
for example, regular hexagonal tiles. (The basic symmetry group of regular polygons
are hexagons, squares and rhombi, with, of course, triangles, which are subunits of
these.) Hexagonal patterns, as we shall see, are common in many real developmental
situations—feather distribution on the skin of birds is just one example (just look at the
skin of a plucked chicken). Refer also to Figure 2.11 below where a variety of experi-
mentally obtained patterns is shown. Thus we want solutions {» where the unit cell, with
zero flux conditions on its boundary, is one of the regular tesselations which can cover
the plane. That is, we want solutions which are cell periodic; here the word ‘cell’ is, of
course, meant as the unit of tesselation.
The solution of (2.46) for a hexagon is

cosk (@ + %) + cosk (@ - %) + coskx
3
cos {krsin (6 + Z)} + cos {kr sin (6 — Z)} + cos {krsin (6 — %)}
3 )

Y(x,y) =

(2.47)

From (2.46), a linear equation, v is independent to the extent of multiplication by an
arbitrary constant: the form chosen here makes ¢ = 1 at the origin. This solution
satisfies zero flux boundary conditions on the hexagonal symmetry boundaries if k =
nmw,n = =+1,+2,....Figure 2.10(a) shows the type of pattern the solution can generate.

The polar coordinate form shows the invariance to hexagonal rotation, that is, in-
variance to rotation by /3, as it must. That is,

V.0) = v (10 +3) = HY(r0) =y (.0),

where H is the hexagonal rotation operator.
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(a)

(d)

Figure 2.10. (a) Patterns which are obtained with the solution (2.47) with k = 7 and k = 27. The shaded
region is where ¥ > 0 and the unshaded region where ¥ < 0. (b) Patterns generated by the solution (2.48)
for a square tesselation with k = 7 and k = 2m. (C) Rhombic patterns from (2.49) with k = 7 and k = 27.
(d) One-dimensional roll patterns from (2.50).

The solution for the square is

coskx + cos ky
2
cos(kr cos @) + cos(kr sin9)
2 b

Y(x,y)=
(2.48)

where k = £1,£2... and ¥ (0, 0) = 1. This solution is square rotationally invariant
since
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V.0) =y (n0+3) = SY0) = ¥ 0).

where S is the square rotational operator. Typical patterns are illustrated in Figure 2.10(b).
The solution for the rhombus is

coskx + cos{k(x cos¢ + ysin¢)}

Yx,y) = 5
(2.49)
_ cos{kr cos 0} + cos{kr cos(0 — @)}
= 5 ,
where ¢ is the rhombus angle and again k = =1, £2,.... This solution is invariant

under a rhombic rotation; that is,

V(r,0:0) =y 0 +m;¢) = RY(r,0; ¢),

where R is the rhombic rotation operator. Illustrative patterns are shown in Figure 2.10(c).
A further cell periodic solution is the one-dimensional version of the square; that
is, there is only variation in x. The solutions here are of the form

Y(x,y)=coskx, k=nm, n==I1,£2,... (2.50)

and represent rolls with patterns as in Figure 2.10(d). These, of course, are simply the
one-dimensional solutions (2.37).

When the full nonlinear equations are solved numerically with initial conditions
taken to be small random perturbations about the steady state, linear theory turns out
to be a good predictor of the ultimate steady state in the one-dimensional situation,
particularly if the unstable modes have large wavelengths, that is, small wavenumbers.
With larger wavenumbers the predictions are less reliable—and even more so with two-
dimensional structures. Since the equations we have studied are linear and invariant
when multiplied by a constant, we can have equivalent solutions which are simply mir-
ror images in the line u = ug; refer to Figure 2.8(b). Thus the pattern that evolves
depends on the initial conditions and the final pattern tends to be the one closest to the
initial conditions. There is, in a sense, a basin of attraction for the spatial patterns as re-
gards the initial conditions. Once again near bifurcation situations singular perturbation
analysis indicates nonlinear patterns closely related to the linear predictions. In general,
however, away from the bifurcation boundaries linear predictions are much less reliable;
see the computed patterns exhibited in the next chapter. Except for the simplest patterns,
we should really use linear theory for two and three dimensions only as a guide to the
wealth of patterns which can be generated by pattern formation mechanisms. Linear
theory does, however, determine parameter ranges for pattern generation.

Figure 2.10 shows a selection of regular patterns that can be formed by reaction dif-
fusion equations based on linear theory. Mathematically (and experimentally of course)
a key question is which of these will be formed from given initial conditions. If one
pattern is formed, variation of which parameters will effect changing to another? To de-
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termine which of the various possible patterns—hexagons, rhombi, squares or rolls—
will be stable we have to go beyond linear theory and carry out a weakly nonlinear
analysis; that is, the parameters are such that they are close to the bifurcation bound-
ary from homogeneity to heterogeneity. When we do such a nonlinear analysis we can
determine the conditions on the parameters for stability of these steady state spatially
heterogeneous solutions. This has been done for reaction diffusion equations by Ermen-
trout (1991) and Nagorcka and Mooney (1992) using a multi-scale singular perturbation
analysis. Other pattern formation mechanisms, namely, cell-chemotaxis and mechanical
mechanisms for pattern formation were studied by Zhu and Murray (1995). The latter
compare chemotaxis systems and their patterning potential with reaction diffusion sys-
tems. Zhu and Murray (1995) were particularly interested in determining the parameter
spaces which give rise to stable stripes, spots, squares and hexagons and their spatial
characteristics such as wavelength and so on.

In the case of spots they could also determine which of the tessalation spot ar-
rangement patterns would be stable. They compared the robustness and sensitivity of
different models and confirmed the results with extensive numerical simulations of the
equations. The analytical technique is well established but the details are fairly com-
plex. Zhu and Murray (1995) show from their numerical study of the equations how
the transition takes place from stripes to spots and then to hexagonal patterns and the
converse pathway how hexagons become unstable and eventually end up in stripes. The
hexagons in effect become elongated and rhombic in character with the spots lining up
in lines and eventually fusing; it makes intuitive sense. The analytical procedure near
bifurcation is referred to as weakly nonlinear stability analysis, an extensive review of
which is given by Wollkind et al. (1994). Generally the form of the interaction kinetics
plays a major role in what patterns are obtained. Cubic interactions tend to favour stripes
while quadratic interactions tend to produce spots. When different boundary conditions
(other than zero flux ones) are used the patterns obtained can be very different and less
predictable. Barrio et al. (1999) investigated the effect of these and the role of the non-
linearities in the patterns obtained. From extensive numerical simulations they sugggest
that such reaction diffusion mechanisms could play a role in some of the complex pat-
terns observed on fish.

The patterns we have discussed up to now have mainly been regular in the sense
that they are stripes, spots, hexagonal patterns and so on. Reaction diffusion systems
can generate an enormous range of irregular patterns as we shall see in the following
chapter where we discuss a few practical examples. The recent article by Meinhardt
(2000: see also other references there) discusses complex patterns and in particular the
application of reaction diffusion mechanisms to patterns of gene activation, a subject
not treated in this book. He also reviews other important applications not treated here
such as branching structures in plant morphology.

In the analyses of the pattern formation potential of reaction diffusion systems here
the reactants, or morphogens, must have different diffusion coefficients. In many de-
velopmental situations there are often preferred directions in which the diffusion of the
same morphogen may have different values in different directions; that is, the diffusion
is anisotropic. Although we do not discuss it here, this can have, as we would expect,
a marked affect on the patterns formed in a Turing instability of the uniform state (see
Exercise 10).
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It has been known for a long time, from the 1970’s in fact, from many numerical
studies that reaction diffusion systems can produce steady state finite amplitude spa-
tial patterns. It is only in the last 10 years, however, that such steady state patterns,
sometimes called Turing structures or Turing patterns, have been found experimentally.
The experimental breakthrough started in 1989; see Ouyang et al. (1990, 1993), Castets
et al. (1990), Ouyang and Swinney (1991), Gunaratne et al. (1994), De Kepper et al.
(1994) and other references in these articles. The last two are good reviews to get an
overall picture of some of these developments. The latter also describe the complex
structures which are obtained when the Turing structures interact with travelling waves;
they can be highly complex with such phenomena as spatiotemporal intermittency and
spot splitting to form more complex patterns and so on. Ouyang and Swinney (1991)
experimentally demonstrate the transition from a uniform state to hexagonal and eventu-
ally striped patterns; the transition is similar to that found by Zhu and Murray (1995) for
both reaction diffusion and cell-chemotaxis pattern formation mechanisms. Since these
early experimental studies, Turing patterns have been found with several quite different
reaction systems; the details of the chemistry and experimental arrangements are given
in detail in the papers. Figure 2.11 shows chemical Turing patterns obtained experimen-
tally with a chlorite-iodide-malonic acid reaction diffusion system from Gunaratne et
al. (1994). Note the small size of the domain and the accurately defined wavelength of
the patterns which vary from 0.11 mm to 0.18 mm; these are certainly in the range we
would expect of many morphogenetic situations and clearly demonstrate the potential
for fine-scale delineation of pattern with reaction diffusion mechanisms and, from the
theoretical studies of Zhu and Murray (1994) with other pattern generators. That they
are of morphogenetic scale, in the case of the developing chick limb, at the time of the
patterning associated with cartilage formation the width of the limb bud is of the order
of 2 mm (see the discussion on a limb bud patterning scenario in Chapter 6). Wollkind
and Stephenson (2000a,b) give a thorough and comprehensive discussion of the various
transitions between patterns, including the black eye pattern shown in Figure 2.11. They
specifically study the chlorite-iodide-malonic acid reaction system which was used in
the experiments and importantly compare their results with experiment. They also re-
late these transitions between symmetry breaking structures in the chemical system to
similar ones in quite different scientific contexts.

The application of reaction diffusion pattern generation to specific developmen-
tal biology problems is often within the context of a prepattern theory whereby cells
differentiate according to the level of the morphogen concentration in which they find
themselves. If the spatial patterns is quite distinct, as described above or with relatively
large gradients, less sensitive tuning is required of the cells in order to carry out their
assigned roles than if the pattern variation or the concentration gradients are small. It
is perhaps useful therefore to try to get a quantitative measure of spatial heterogene-
ity, which is meaningful biologically, so as to compare different mechanisms. Another
biologically relevant method will be discussed in the next section.

Berding (1987) introduced a ‘heterogeneity’ function for the spatial patterns gener-
ated by reaction diffusion systems with zero flux boundary conditions. Suppose the gen-
eral mechanism (2.10), in one space variable, is diffusionally unstable and the solutions
evolve to spatially inhomogeneous steady state solutions U(x) and V(x) as t — oo.
With the definition of y in (2.6) proportional to the square of the domain length we can
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Figure2.11. Chemical patterns obtained with the reaction diffusion system with the chlorite-iodide-malonic
reaction from Gunaratne et al. (1994). The domain size is 6 mm x 6 mm. (&) Multiple domains with stripes
with wavelength 0.11 mm. (b) This shows multiple domains of hexagonal patterns with different orientations.
Here the wavelength is 0.12 mm. (C) This again shows hexagonal patterns with a single boundary separating
the hexagonal lattices with different orientations: the wavelength here is 0.18 mm. (d) This shows a fully
developed complex black eye pattern: the domain size is 1.6 mm x 1.6 mm. (€) When the hexagonal pattern
in (d) becomes unstable it deforms into rhombic structures and the spots line up eventually becoming the
striped pattern (in a similar way to the transition patterns in Zhu and Murray 1995): the domain is again
1.6 mm x 1.6 mm. The experimental details are given in Gunaratne et al. (1994). (Photographs reproduced
courtesy of Harry Swinney)



2.5 Scale and Geometry Effects in Pattern Formation Models 103

measure domain size by y and hence take x to be in (0, 1). Then (U, V) satisfy the
dimensionless equations

U'+yfU,V)=0, dV"+ygU,V)=0,

(2.51)
U'o=U'1)=VvV'0) =V =0.
The non-negative heterogeneity function is defined by
1
H= / WU”? +V?dx >0, (2.52)
0

which depends only on the parameters of the system and the domain scale y. H is an
‘energy function.” If we now integrate by parts, using the zero flux boundary conditions
in (2.51),

1
H = —/ wu” +vv"dx
0
which, on using (2.51) for U” and V", becomes
y (!
H = 5/ [dUfU, V) + Vg, V)ldx. (2.53)
0

If there is no spatial patterning, U and V are simply the uniform steady state solutions of
fWU,V)=gU,V)=0andso H =0, as also follows, of course, from the definition
(2.52).

From (2.53) we see how the scale parameter and diffusion coefficient ratio appear in
the definition of heterogeneity. For example, suppose the domain is such that it sustains
a single wave for y = yj, in dimensional terms a domain length L = L say. If we
then double the domain size to 2L we can fit in two waves and so, intuitively from
(2.52), H must increase as there is more heterogeneity. Since y oc L2, H from (2.53) is
simply quadrupled. From an embryological point of view, for example, this means that
as the embryo grows we expect more and more structure. An example of this increase
in structure in a growing domain is illustrated in Figure 2.18 below. Berding (1987)
discusses particular applications and compares specific reaction diffusion mechanisms
as regards their potential for heterogeneity.

2.5 Dispersion Relation, Turing Space, Scale and Geometry Effects
in Pattern Formation Models

We first note some general properties about the dispersion relation and then exploit it
further with the specific case we analysed in the last section. The formation of spatial
patterns by any morphogenetic model is principally a nonlinear phenomenon. However,
as we noted, a good indication of the patterns in one dimension can be obtained by a
simple linear analysis. For spatial patterns to form, we saw that two conditions must
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hold simultaneously. First, the spatially uniform state must be stable to small perturba-
tions, that is, all A(kz) in (2.22) have Re )»(k2 = 0) < 0, and second, only patterns of a
certain spatial extent, that is, patterns within a definite range of wavelengths k, can begin
to grow, with Re A(k? # 0) > 0. These conditions are encapsulated in the dispersion
relation in either the (A, kz) or (A, a)z) forms such as in Figure 2.5(b) and Figure 2.7(a).
The latter, for example, also says that if the spatial pattern of the disturbances has k>
large, that is, very small wavelength disturbances, the steady state is again linearly
stable. A dispersion relation therefore immediately gives the initial rate of growth or
decay of patterns of various sizes. Dispersion relations are obtained from the general
evolution equations of the pattern formation mechanism. A general and nontechnical
biologically oriented discussion of pattern formation models is given by Oster and Mur-
ray (1989).

Since the solutions to the linear eigenfunction equations such as (2.36) are simply
sines and cosines, the ‘size’ of various spatial patterns is measured by the wavelength of
the trigonometric functions; for example, cos(rnmx/p) has a wavelength w = 2p/n. So,
the search for growing spatial patterns comes down to seeing how many sine or cosine
waves can ‘fit’ into a domain of a given size. The two-dimensional situation is similar,
but with more flexibility as to how they fit together.

A very important use of the dispersion relation is that it shows immediately whether
patterns can grow, and if so, what the sizes of the patterns are. The curves in
Figure 2.5(b) and Figure 2.7(a) are the prototype—no frills—dispersion relation for
generating spatial patterns. We show later that other forms are possible and imply dif-
ferent pattern formation scenarios. However, these are less common and much is still
not known as to which patterns will evolve from them. The mechanochemical models
discussed in detail in Chapter 6 can in fact generate a surprisingly rich spectrum of dis-
persion relations (see Murray and Oster 1984) most of which cannot be generated by
two- or three-species reaction diffusion models.

The prototype dispersion relation has the two essential characteristics mentioned
above: (i) the spatially featureless state (k = 0, ® = 00) is stable; that is, the growth
rate of very large wavelength waves is negative, and (ii) there is a small band, or window,
of wavelengths which can grow (that is, a finite band of unstable ‘modes,” cos(nmx/L),
for a finite number of integers n in the case of a finite domain). Of these growing modes,
one grows fastest, the one closest to the peak of the dispersion curve. This mode, &, say,
is the solution of

aA—o Re 1] = Re A(k2
FyS i = max[Re A] = Re A(k;,).

Strictly k;,, may not be an allowable mode in a finite domain situation. In this case it is
the possible mode closest to the analytically determined &, .

Thus the dispersion curve shows that while the spatially homogeneous state is sta-
ble, the system will amplify patterns of a particular spatial extent, should they be excited
by random fluctuations, which are always present in a biological system, or by cues from
earlier patterns in development. Generally, one of the model parameters is ‘tuned’ until
the dispersion curve achieves the qualitative shape shown. For example, in Figure 2.5(b)
if the diffusion ratio d is less than the critical d., Re A < 0 for all k2. As d increases, the
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curve rises until d = d, after which it pushes its head above the axis at some wavenum-
ber k., that is, wavelength w, = 2/ k., whereupon a cosine wave of that wavelength
can start to grow, assuming it is an allowable eigenfunction. This critical wavenumber
is given by (2.28) and, with d = d, from (2.27), we thus have the critical wavelength

1/4
wczz—”zzn{L} . (2.54)
Vz(fugv — fogu)

With the illustrative example (2.32) there are 4 dimensionless parameters: a and b,
the kinetics parameters, d, the ratio of diffusion coefficients and y, the scale parame-
ter. We concentrated on how the dispersion relation varied with d and showed how a
bifurcation value d, existed when the homogeneous steady state became unstable, with
the pattern ‘size’ determined by k. or w, given by the last equation. It is very use-
ful to know the parameter space, involving all the parameters, wherein pattern forms
and how we move into this pattern forming domain by varying whatever parameter we
choose, or indeed when we vary more than one parameter. Clearly the more parameters
there are the more complicated is this corresponding parameter or Turing space. We
now determine (analytically) the parameter space for the model (2.32) by extending the
parametric method we described in Chapter 3, Volume I, for determining the space in
which oscillatory solutions were possible. The technique was developed and applied to
several reaction diffusion models by Murray (1982); it is a general procedure applicable
to other pattern formation mechanisms. Numerical procedures can also be used such as
those developed by Zhu and Murray (1995)

The conditions on the parameters a, b and d for the mechanism (2.32) to generate
spatial patterns, if the domain is sufficiently large, are given by (2.35) with y coming
into the picture via the possible unstable modes determined by (2.38). Even though the
inequalities (2.35) are probably the simplest realistic set we could have in any reaction
diffusion mechanism they are still algebraically quite messy to deal with. With other
than extremely simple kinetics it is not possible to carry out a similar analysis analyt-
ically. So let us start with the representation of the steady state used in Section 7.4,
Volume I, namely, (7.24), with u¢ as the nonnegative parametric variable; that is, vy and
b are given in terms of a and u¢ from (7.24) (Volume I), or (2.33) above, as

w=22"9% p_u—a (2.55)

2
Uy

The inequalities (2.35), which define the conditions on the parameters for spatial pat-
terns to grow, involve, on using the last expressions,

2a 2
fu=_1+2u0v0=1_u_a Sfo = ug,
0 (2.56)
2(up — a) 2
gll = _ZMOUO - - 5 gv = _uo.
uo

We now express the conditions for diffusion-driven instability given by (2.31) as
inequalities in terms of the parameter u¢; these define boundary curves for domains in
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parameter space. With the first,

2a 2
futg <0 = 1-—-u5<0

)
uo(1 — u?) uo(1 + u)

>— 0 p—yy-a>—9 (2.57)

2 2

(1 + u3)

B 2

as the boundary where, since we are interested in the boundary curve, the b = ugp — a
comes from the steady state definition (2.55) and where we replace a by its expression
from the inequality involving only uo and a. These define a domain parametrically in
(a, b) space as we let ug take all positive values; if the inequality is replaced by an
equality sign, (2.57) define the boundary curve parametrically. We now do this with
each of the conditions in (2.31).

The second condition of (2.31), using (2.56), requires

Sugv — fo&@u >0 = M% >0, (2.58)

which is automatically satisfied. The third condition requires

uo(d — u? uo(d + u?
dfy+g,>0=> a< %, b=uy—a > %,
(2.59)
uo(d + u%)
2
as the boundary curve.
The fourth condition in (2.31) is a little more complicated. Here
(dfu + g)* = 4d(fugo — fogu) > 0
= [uo(d — ud) — 2dal* — 4du > 0
= 4a*d® — daduo(d — uf) + [ud(d — ud)* — 4ud] > 0
which, on factorising the left-hand side, implies
2 2
) 2ug  ug ug 2ug Uy
—(1-—=-— —([14+—=-—].
a<2< ﬂd) 0ra>2<+ﬁd
Thus this inequality results in two boundary curves, namely,
1 up U 2ug  ud
- T =" 7 I b = - == 1 = R ’
a= uo ( Jid ) uop —a uo ( A
(2.60)
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The curves, and the enclosed domains, defined parametrically by (2.57)—(2.60),
define the parameter space or Turing space (see Murray 1982), where the steady state
can be diffusionally driven unstable and hence create spatial patterns. As we noted in
Section 2.4 the first and third conditions in (2.35) require f;, and g, to have opposite
signs which require b > a and hence d > 1.

It is now a straightforward plotting exercise to obtain the curves defined by (2.57)—
(2.60); we simply let u( take on a range of positive values and calculate the correspond-
ing a and b for a given d. In general, with inequalities (2.57)-(2.60), five curves are
involved in defining the boundaries. Here, as is often the case, several are redundant in
that they are covered by one of the others. For example, in the first of (2.60),

1 2ug u(z) 1 u(2)
Z 1= === _20 Z 1— -9
a<2u0( Jid <2u0 y

since we are considering ug > 0, so (2.59) is automatically satisfied if we satisfy the
first condition in (2.60). Also, since d > 1,

1 u? 1
Euo (1 — f) > Euo (1 — u%)

so the curve defined by (2.57) lies below the curve defined by (2.59); the former is a
lower limiting boundary curve, so a suitable domain is defined if we use the first of
(2.60). Furthermore, since

there can be no domain satisfying (2.59) and the second curve in (2.60).
Finally, therefore, for this mechanism we need only two parametric curves, namely,
those defined by (2.57) and the first of (2.60), and the Turing space is determined by

1 1
a> 5140(1 — u%), b= EMO(I + M(2))a

2.61
1 . 2up  ud ) 1 1+2u0+u(2) (2.61)
a< —u - ==, = —u — 4+ —].
0 20 Ja p

We know that when d = 1 there is no Turing space; that, is there is no domain where
spatial patterns can be generated. The curves defined by (2.61) with d = 1 contradict
each other and hence no Turing space exists. Now let d take on values greater than 1.
For a critical d, d, say, a Turing space starts to grow for d > d.. Specifically d =
d. = 3 + 24/2, calculated from (2.61) by determining the d such that both curves give
a = 0at b = 1 and at this value the two inequalities are no longer contradictory. The
space is defined, in fact, by two surfaces in (a, b, d) space. Figure 2.12 shows the cross-
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Figure 2.12. Turing space for (2.32), that is,
the parameter space where spatial patterns
can be generated by the reaction diffusion
mechanism (2.32). For example, if d = 25
any values for @ and b lying within the
domain bounded by the curves marked C
(that is, d = 1) and d = 25 will result in
diffusion-driven instability. Spatial pattern
will evolve if the domain (quantified by y) is
sufficiently large for allowable k2, defined
by (2.38) and (2.43).

sectional regions in (a, b) parameter space where the mechanism (2.32) can generate
spatial patterns.

Even if a and b, for a given d > 1, lie within the Turing space this does not guaran-
tee that the mechanism will generate spatial patterns, because scale and geometry play a
major role. Depending on the size of y and the actual spatial domain in which the mech-
anism operates, the unstable eigenfunctions, or modes, may not be allowable solutions.
It is here that the detailed form of the dispersion relation comes in again. To be specific
consider the one-dimensional finite domain problem defined by (2.36). The eigenvalues,
that is, the wavenumbers, k = nw/p, n = +1, £2... are discrete. So, referring to Fig-
ure 2.5(b), unless the dispersion relation includes in its range of unstable modes at least
one of these discrete values no structure can develop. We must therefore superimpose
on the Turing space in Figure 2.12 another axis representing the scale parameter y. If y
is included in the parameters of the Turing space it is not necessarily simply connected
since, if the dispersion relation, as y varies, does not include an allowable eigenfunction
in its unstable modes, no pattern evolves. Let us consider this aspect and examine the
dispersion relation in more detail.

The Turing space involves only dimensionless parameters which are appropriate
groupings of the dimensional parameters of the model. The parameters a, b and d in the
last figure are, from (2.6),

k1 (k3 172 kg (k3 172 Dp
a = — - ) b = —\— ) d = -
ko \ ko ko \ ko Dy

Suppose, for example, d = 100 and a and b have values associated with P in Fig-
ure 2.12; that is, the mechanism is not in a pattern formation mode. There is no unique
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way to move into the pattern formation domain; we could decrease either a or b so that
we arrive at Q or R respectively. In dimensional terms we can reduce a, for example,
by appropriately changing k1, ky or k3—or all of them. Varying other than k; will also
affect b, so we have to keep track of b as well. If we only varied k» the path in the Turing
space is qualitatively like that from P to S. If d can vary, which means either of D4 or
Dp can vary, we can envelope P in the pattern formation region by simply increasing d.
Interpreting the results from a biological point of view, therefore, we see that it is the
orchestration of several effects which produce pattern, not just one, since we can move
into the pattern formation regime by varying one of several parameters. Clearly we can
arrive at a specific point in the space by one of several paths. The concept of equivalent
effects, via parameter variation, producing the same pattern is an important one in the
interpretation and design of relevant experiments associated with any model. It is not
a widely appreciated concept in biology. We shall discuss some important biological
applications of the practical use of dimensionless groupings in subsequent chapters.

To recap briefly, the dispersion relation for the general reaction diffusion system
(2.10) is given by the root A(k%) of (2.23) with the larger real part. The key to the
existence of unstable spatial modes is whether or not the function

h(k?) = di* — y(dfy + g)k* + > (fugv — fo&u) (2.62)

is negative for a range of k> # 0; see Figure 2.5(a). Remember that the f and g deriva-
tives are evaluated at the steady state (ug, vo) where f(ug, v9) = g(up, vo) = 0, so
h(k?) is a quadratic in k> whose coefficients are functions only of the parameters of the
kinetics, d the diffusion coefficient ratio and the scale parameter y. The minimum, Ay,
at k = k;, corresponds to the A with the maximum Re A and hence the mode with the
largest growth factor exp[A (k,%,)t]. From (2.25), or simply from the last equation, /min
is given by

1 2
Bnin = h(k2) = —Zyz [dff + % —2(fugo — 2fvgu>} ,
(2.63)
dfu + gv
k2 =t oV
m=Y"

The bifurcation between spatially stable and unstable modes is when /i, = 0.
When this holds there is a critical wavenumber k. which, from (2.28) or again simply
derived from (2.62), is when the parameters are such that

dfu + gv

i (2.64)

(dfu +80)* =4d(fugo — fog) = ki=vy

As the parameters move around the Turing space we can achieve the required equal-

ity, the first of the equations in (2.64), by letting one or other of the parameters pass
through its bifurcation values, all other parameters being kept fixed. In the last section,
and in Figure 2.5(b), for example, we chose d as the parameter to vary and for given a
and b we evaluated the bifurcation value d.. In this situation, just at bifurcation, that is,
when hpin (kg) = 0, a single spatial pattern with wavenumber k. is driven unstable, or
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excited, for d = d. + ¢, where 0 < & <« 1. This critical wavenumber from (2.64) is
proportional to ./ and so we can vary which spatial pattern is initiated by varying y.
This is called mode selection and is important in applications as we shall see later.

In the case of finite domains we can isolate a specific mode to be excited, or driven
unstable, by choosing the width of the band of unstable wavenumbers to be narrow and
centred round the desired mode. Let us take the parameters in the kinetics to be fixed
andletd = d.+¢,0 < ¢ < 1. We then get from (2.64) the appropriate y for a specified
k as

2
y n 2dek” (2.65)
de fu + gv

where the kinetics parameters at bifurcation, sometimes called the marginal kinetics
state, satisfy the first of (2.64). So, by varying y we can isolate whatever mode we
wish to be excited. Figure 2.13(a) shows a typical situation. Arcuri and Murray (1986)
have carried out an extensive Turing space analysis for the much more complex Thomas
(1975) mechanism in such a case. Note in Figure 2.13(a) that as y increases hpi, be-
comes more negative, as is indicated by (2.63).

Suppose now we keep y and the kinetics parameters fixed, and let d increase from
its bifurcation value d.. From (2.63) hmin ~ —(d/4)(y fu)2 for d large and so . — oo
with d. The width of the band of unstable modes has wavenumbers bounded by the zeros
ki and k> of h(k?) in (2.62). These are given by (2.29), or immediately from (2.62) as

K = [+ 80) = (@fu+ 80" —4d(fugs = fog)}"]
(2.66)
B = = @+ 80) + (dfu+ 807 = 4d(fugu = Fog)}' 2.

from which we get
k?~0, k3~yf, as d— oo. (2.67)

So, for a fixed scale there is an upper limit for the unstable mode wavenumber and
hence a lower limit for the possible wavelengths of the spatial patterns. Figure 2.13(b)
illustrates a typical case for the Thomas (1975) system given by (2.8).

With all kinetics parameters fixed, each parameter pair (d, y) defines a unique
parabola h(k?) in (2.62), which in turn specifies a set of unstable modes. We can thus
consider the (d, y) plane to be divided into regions where specific modes or a group of
modes are diffusively unstable. When there are several unstable modes, because of the
form of the dispersion relation, such as in Figure 2.5(b), there is clearly a mode with
the largest growth rate since there is a maximum Re X for some krzn say. From (2.23), the
positive eigenvalue Ay (k%) is given by

204 (kD) = v (fu + g0) — K2 +d) +{ly (fu + gv) — k(1L +d)]* — dh(kH)}'/?

which has a maximum for the wavenumber &, given by
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Figure 2.13. (@) Isolation of unstable modes (that is, h(kz) < 0 in (2.23)) by setting the diffusion ratio
d =d;+¢,0 <& < 1and varying the scale y for the Thomas (1975) kinetics (2.8) with a = 150, b = 100,
a=1.5,p=13, K =0.05,d = 27.03: the critical d. = 27.02. (b) The effect of increasing d with all other
parameters fixed as in (). As d — oo the range of unstable modes is bounded by k2 =0and k% = Vfu.

1/2
Y fog
kzzk,i:ﬁ (d+1)[—%] —futguy. (2.68)

As we have noted the prediction is that the fastest growing k,,-mode will be that which
dominates and hence will be the mode which evolves into the steady state nonlinear
pattern. This is only a reasonable prediction for the lower modes. The reason is that
with the higher modes the interaction caused by the nonlinearities is more complex than
when only the simpler modes are linearly unstable. Thus using (2.68) we can map the
regions in (d, y) space where a specific mode, and hence pattern, will evolve; see Arcuri
and Murray (1986). Figures 2.14(a) and (b) show the mappings for the Thomas (1975)
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Figure2.14. (a) Predicted solution space, based on linear theory, showing the regions with the fastest growing
modes for the Thomas (1975) system (2.8) with parameter values as in Figure 2.13 and zero flux boundary
conditions. (b) A typical space as evaluated from the numerical simulation of the full nonlinear Thomas
system (2.8) with the same parameter values and zero flux boundary conditions as in (&). Each (y, d) point
marked with a period represents a specific simulation of the full nonlinear system. (C) The corresponding
spatial concentration patterns obtained with parameters d and y in the regions indicated in (b). Spatial patterns
can be visualised by setting a threshold ™ and shading for u > u*. The first two morphogen distributions,
for example, correspond to the first two patterns in Figure 2.9. (From Arcuri and Murray 1986)



2.6 Mode Selection and the Dispersion Relation 113

system in one space dimension calculated from the linear theory and the full nonlin-
ear system, while Figure 2.14(c) shows the corresponding spatial morphogen patterns
indicated by Figure 2.14(b).

An important use of such parameter spaces is the measure of the robustness of the
mechanism to random parameter variation. With Figure 2.14(b), for example, suppose
the biological conditions result in a (d, y) parameter pair giving P, say, in the region
which evolves to the 4-mode. A key property of any model is how sensitive it is to the
inevitable random perturbations which exist in the real world. From Figure 2.14(b) we
see what leeway there is if a 4-mode pattern is required in the developmental sequence.
This (d, y) space is but one of the relevant spaces to consider, of course, since any
mechanism involves other parameters. So, in assessing robustness, or model sensitivity,
we must also take into account the size and shape of the Turing space which involves all
of the kinetics parameters. Probably (d, y) spaces will not be too different qualitatively
from one reaction diffusion system to another. What certainly is different, however,
is the size and shape of the Turing space, and it is this space which provides another
useful criterion for comparing relevant robustness of models. Murray (1982) studied
this specific problem and compared various specific reaction diffusion mechanisms with
this in mind. He came to certain conclusions as to the more robust mechanisms: both
the Thomas (1975) and Schnakenberg (1979) systems, given respectively by (2.7) and
(2.8), have relatively large Turing spaces, whereas that of the activator—inhibitor model
of Gierer and Meinhardt (1972), given by (2.9) is quite small and implies a considerable
sensitivity of pattern to small parameter variation. In the next chapter on specific pattern
formation problems in biology we touch on other important aspects of model relevance
which are implied by the form of the dispersion relation and the nondimensionalisation
used.

The parameter spaces designating areas for specific patterns were all obtained with
initial conditions taken to be random perturbations about the uniform steady state. Even
in the low modes the polarity can be definitively influenced by biased initial conditions.
We can, for example, create a single hump pattern with a single maximum in the cen-
tre of the domain or with a single minimum in the centre; see Figure 2.8(b). So even
though specific modes can be isolated, initial conditions can strongly influence the po-
larity. When several of the modes are excitable, and one is naturally dominant from
the dispersion relation, we can still influence the ultimate pattern by appropriate initial
conditions. If the initial conditions include a mode within the unstable band and whose
amplitude is sufficiently large, then this mode can persist through the nonlinear region to
dominate the other unstable modes and the final pattern qualitatively often has roughly
that wavelength. We discuss this in more detail in the next section. These facts also have
highly relevant implications for biological applications.

2.6 Mode Selection and the Dispersion Relation

Consider a typical no frills or simplest dispersion relation giving the growth factor A as
a function of the wavenumber or wavelength @ such as shown in Figure 2.5(b) where
a band of wavenumbers is linearly unstable. Let us also suppose the domain is finite so
that the spectrum of eigenvalues is discrete. In the last section we saw how geometry
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and scale played key roles in determining the particular pattern predicted from linear
theory, and this was borne out by numerical simulation of the nonlinear system; see
also the results presented in the next chapter. We pointed out that initial conditions can
play a role in determining, for example, the polarity of a pattern or whether a specific
pattern will emerge. If the initial conditions consist of small random perturbations about
the uniform steady state then the likely pattern to evolve is that with the largest linear
growth. In many developmental problems, however, the trigger for pattern initiation is
scale; there are several examples in the following chapter, Chapter 4 in particular, but
also in later chapters. In other developmental situations a perturbation from the uniform
steady state is initiated at one end of the spatial domain and the spatial pattern devel-
ops from there, eventually spreading throughout the whole domain. The specific pattern
that evolves for a given mechanism therefore can depend critically on how the instabil-
ity is initiated. In this section we investigate this further so as to suggest what patterns
will evolve from which initial conditions, for given dispersion relations, as key parame-
ters pass through bifurcation values. The problem of which pattern will evolve, namely,
mode selection, is a constantly recurring one. The following discussion, although moti-
vated by reaction diffusion pattern generators, is quite general and applies to any pattern
formation model which produces a similar type of dispersion relation.

Consider a basic dispersion relation A(w?) where the wavelength w = 27/k with
k the wavenumber, such as in Figure 2.15(a). Now take a one-dimensional domain and
consider in turn the three possible ways of initiating pattern as shown in Figures 2.15(b),
(c) and (d).

Consider first the case in Figure 2.15(b). Here the initial perturbation has all modes
present in its expansion in terms of the eigenfunctions and so all modes in the unstable
band of wavelengths in Figure 2.15(a) are stimulated. The mode with the maximum
X, wy, is the one with the fastest growth and it ultimately dominates. The steady state
inhomogeneous pattern that persists is then that with wavelength w;.

In Figure 2.15(c) we envisage the domain to be growing at a rate that is slow com-
pared with the time to generate spatial pattern. Later in this section we describe a cari-
cature system where growth is not small. In Chapter 4 we go into the important effect
of growth on pattern in more detail; the interaction is crucial there. For small L(¢) the
domain is such that it cannot contain any wave with wavelengths in the unstable band.
When it reaches L., the critical domain size for pattern, it can sustain the smallest
wavelength pattern, namely, that with wavelength 1. In the time it takes L(#) to grow
sufficiently to allow growth of the next wavenumber, that with wavelength w; is suffi-
ciently established to dominate the nonlinear stage. So the final pattern that emerges is
that with the base wavelength w;.

Travelling Wave Initiation of Pattern

Consider the situation, as in Figure 2.15(d), where the pattern is initiated at one end
of the domain; what happens here is more subtle. We expect the final pattern to have
a wavelength somewhere within the unstable band predicted by the dispersion relation.
To see how to calculate the wavenumber in general let us start with an infinite one-
dimensional domain and a general linear system

JwW =0, W(x,t)ocexpikx+xrt) = i=2xrk), (2.69)
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Figure 2.15. (a) Typical basic dispersion relation giving the growth coefficient A as a function of the wave-
length @ of the spatial pattern. (b) Here the initial disturbance is a random perturbation (white noise) about
the uniform steady state ug. The pattern which evolves corresponds to w» in (), the mode with the largest
growth rate. (C) Pattern evolution in a growing domain. The first unstable mode to be excited, w1, remains
dominant. (d) Here the initial disturbance is at one end and it lays down a pattern as the disturbance moves
through the domain. The pattern which evolves has a wavelength @™ somewhere within the band of unstable
wavelengths.

(d)

where J is a linear operator such as that associated with the linear form of reaction
diffusion equations. For (2.20), for example, J = (9/9t) —y A — DV?) and the disper-
sion relation A (k) is like that in Figure 2.5(b) or in the last figure, Figure 2.16(a), with
o replaced by k; in other words the classic form. The general solution W of the linear
system in (2.69) is

W(x, 1) = / A(k) explikx + A(k)t]dk, (2.70)

where the A (k) are determined by a Fourier transform of the initial conditions W(x, 0).
Since we are concerned with the final structure and not the transients we do not need to
evaluate A (k) here.

Suppose the initial conditions W(x, 0) are confined to a small finite domain around
x = 0 and the pattern propagates out from this region. We are interested in the wavelike
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generation of pattern as shown in the second figure in Figure 2.15(d). This means that
we should look at the form of the solution well away from the origin. In other words,
we should focus our attention on the asymptotic form of the solution for x and ¢ large
but such that x /¢ is O (1), which means we move with a velocity ¢ = x /¢ and so are in
the vicinity of the ‘front,” roughly where the arrow (with ¢ at the end) is in the second
figure in Figure 2.15(d). We write (2.70) in the form

W(x,t) = /A(k) explo (k)tldk, o(k)=ikc+Ar(k), c= ; (2.71)

The asymptotic evaluation of this integral for # — oo is given by analytically continuing
the integrand into the complex k-plane and using the method of steepest descents (see
Murray’s 1984 book, Chapter 3) which gives

> 1/2
W(x, 1) ~ J(ko) [m} exp{t[ikoc + A(ko)1},

where J is a constant and ko (now complex) is given by
o' (ko) =ic+ N (ko) = 0. (2.72)

The asymptotic form of the solution is thus

K
W(x, ) ~ 7 exp{t[icko + A(ko)]}, (2.73)

where K is a constant.

For large r the wave ‘front’ is roughly the point between the pattern forming tail
and the leading edge which initiates the disturbances, that is, where W neither grows nor
decays. This is thus the point where

Re [icko 4 A(ko)] ~ 0. (2.74)
At the ‘front’ the wavenumber is Re kg and the solution frequency of oscillation w is
o = Im [icky + A(ko)].

Denote by k* the wavenumber of the pattern laid down behind the ‘front.” We now
assume there is conservation of nodes across the ‘front’ which implies

k*c = w = Im [icko + A(ko)]. (2.75)

The three equations (2.72), (2.74) and (2.75) now determine ky and the quantities we
are interested in, namely, ¢ and k*, which are respectively the speed at which the pattern
is laid down and the steady state pattern wavenumber. Because of the complex variables
this is not as simple as it might appear. Myerscough and Murray (1992), for the case
of a cell-chemotaxis system (see also Chapter 4), used the technique and developed a
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caricature dispersion relation to solve the three equations analytically. They compared
their analytical results with the exact numerical simulations; the comparison was good
and, of course, qualitatively useful since analytical results were obtained. This technique
has also been used (numerically) by Dee and Langer (1983) for a reaction diffusion
mechanism.

Dynamics of Pattern Formation in Growing Domains

The time evolution of patterns in growing domains can be quite complex, particularly
if the domain growth is comparable with the generation time of the spatial pattern and
there are two or more space dimensions. The form of the dispersion relation as the
scale y increases can have highly pertinent biological implications as we shall see in
Chapter 6 when we consider, as one example, cartilage formation in the developing
limb. Here we introduce the phenomenon and discuss some of the implications of two
specific classes of dispersion relation behaviour as y increases with time.

The form of reaction diffusion equations in growing domains has to be derived care-
fully and this is done in Chapter 4 which is mainly concerned with patterning problems
and the effect of growth on the patterns formed. Here we consider only a caricature form
to demonstrate certain time-dependent effects of growing domains. With a simplified
caricature we should not expect to capture all of the possible sequential spatial patterns
and this is indeed the case. Crampin et al. (1999), in a comprehensive analytical and
numerical examination of reaction diffusion systems in growing one-dimensional do-
mains, categorise the sequential patterns which evolve. They consider different growth
forms. They use a self-similarity argument to predict frequency doubling in the case
of exponential growth and show how growth may be a mechanism for increasing pat-
tern robustness. Kulesa et al. (1996a,b) (see also Chapter 4) show that the sequential
positioning of teeth primordia (precursors of teeth) is intimately related to jaw growth,
which is experimentally determined. The correct sequence of primordial appearance de-
pends crucially on the interaction of the pattern formation process and domain growth
dynamics. A somewhat different approach to including domain change was used by
Murray and Myerscough (1992) in their study of snake patterns which we discuss in
some detail in Chapter 4: they looked at bifurcations from solutions of the steady state
equations (cell-chemotaxis equations in this case).

In Figure 2.8(a) we saw that as the scale y increased the dispersion curve was
moved along the axis where it successively excited modes with smaller wavelengths.
Figure 2.16(a) is a repeat example of this behaviour. Figure 2.16(b) is another possible
behaviour of a dispersion relation as the scale y increases. They imply different pattern
generation scenarios for growing domains.

Consider first the situation in Figure 2.16(a). Here for y = y; the mode with wave-
length w is excited and starts to grow. As the domain increases we see that for y = y»
no mode lies within the unstable band and so the pattern decays to the spatially uniform
steady state. With further increase in scale, to y = y3 say, we see that a pattern with
wavelength w» is created. So the pattern formation is effectively a discrete process with
successively more structure created as y increases but with each increase in structure in-
terspersed with a regime of spatial homogeneity. Figure 2.17(a) illustrates the sequence
of events as y increases in the way we have just described.
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Figure 2.16. (a) As the scale y increases from y; to y3 the dispersion relation isolates specific modes inter-
spersed with gaps during which no pattern can form. (b) Here as y increases the number of unstable modes
increases: the mode with maximum growth varies with y. Unstable modes exist for all y > y;.
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Consider now the behaviour implied by the dispersion relation dependence on scale
implied by Figure 2.16(b). Here the effect of scale is simply to increase the band of
unstable modes. The dominant mode changes with y so there is a continuous evolution
from one mode, dominant for y = yj say, to another mode as it becomes dominant for
y = y3 say. This dynamic development of pattern is illustrated in Figure 2.17(b). We
shall see later in Section 6.6 how the implications of Figures 2.16 and 2.17 have a direct
bearing on how cartilage patterns form in the developing limb.

When comparing different models with experiments it is not always possible to
choose a given time as regards pattern generation to carry out the experiments since it is
not generally known exactly when the pattern formation takes place in embryogenesis.

(b)

Figure 2.17. (a) Development of spatial patterns with a dispersion relation dependence on scale, via y, as
shown in Figure 2.16(a). (b) Sequential development of pattern as y varies according to the dispersion relation
in Figure 2.16(b).
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When it is possible, then similarity of pattern is a necessary first step in comparison
with theory. When it is not possible, the dynamic form of the pattern can be important
and can be the key step in deciding which mechanism is the more appropriate. We shall
recall these comments later in Chapters 4 and 6.

A computed example of dynamic pattern formation as the scale y is increased is
shown in Figure 2.18.
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Figure 2.18. Sequence of one-dimensional spatial patterns obtained numerically with the mechanism (2.10)
and kinetics given by the second of (2.8). Zero flux boundary conditions were used and the domain growth
is incorporated in the scale parameter y () = s + 0.1¢2 with s fixed. This gives a caricature for the reaction
diffusion system for a linear rate of domain growth since y o (length)z. Parameter values for the kinetics
are as in Figure 2.13(a) except for d. (@) and (b) have d = 30 (d. ~ 27), s = 100 and two different sets of
initial random perturbations. Note how the two sets of patterns converge as time ¢ increases. (C) has d = 60,
s = 50. As d increases more modes are missed in the pattern sequence and there is a distinct tendency towards
frequency doubling. (After Arcuri and Murray 1986)



120 2. Spatial Pattern Formation

In these simulations the mechanism’s pattern generation time is smaller than a rep-
resentative growth time since the sequence of patterns clearly forms before breaking
up to initiate the subsequent pattern. This is an example of a dispersion relation be-
haviour like that in Figure 2.16(b); that is, there is no regime of spatial homogeneity.
The tendency to period doubling indicated by Figure 2.18(c) is interesting and as yet
unexplained. Arcuri and Murray (1986) consider this and other aspects of pattern for-
mation in growing domains. It must be kept in mind that the latter study is a caricature
reaction diffusion system in a growing domain; refer to Chapter 4 for the exact formu-
lation with exponential domain growth and Crampin et al. (1999) for a comprehensive
discussion.

2.7 Pattern Generation with Single-Species M odels: Spatial
Heter ogeneity with the Spruce Budworm Model

We saw above that if the domain size is not large enough, that is, y is too small, reaction
diffusion models with zero flux boundary conditions cannot generate spatial patterns.
Zero flux conditions imply that the reaction diffusion domain is isolated from the ex-
ternal environment. We now consider different boundary conditions which take into
account the influence of the region exterior to the reaction diffusion domain. To be spe-
cific, consider the single reaction diffusion equation in the form

uy = f(u) + DV?u, (2.76)

and think of the model in an ecological setting; that is, u denotes the population density
of a species. Here f (u) is the species’ dynamics and so we assume f(0) = 0, f/(0) # 0,
f(u;) = 0fori = 1if there is only one (positive) steady state or i = 1, 2, 3 if there are
three. Later we shall consider the population dynamics f(u) to be those of the spruce
budworm, which we studied in detail in Chapter 1, Volume I, Section 1.2 and which
has three steady states as in Figure 1.5(b) (Volume I). The diffusion coefficient D is a
measure of the dispersal efficiency of the relevant species.

We consider in the first instance the one-dimensional problem for a domain x €
(0, L), the exterior of which is completely hostile to the species. This means that on the
domain boundaries # = 0. The mathematical problem we consider is then

ur = f(u) + Dityy,

u@©,t) =0=u(L,t), u(x,0)=up(x),

fO =0, f'(0)>0, flu)=0, f(u2)>0,
fw) =0, f'u)<0, i=13,

(2.77)

where u( is the initial population distribution. The question we want to answer is
whether or not such a model can sustain spatial patterns.

In the spatially homogeneous situation # = 0 and ¥ = u, are unstable and u;
and u3 are stable steady states. In the absence of diffusion the dynamics imply that u
tends to one or other of the stable steady states and which it is depends on the initial



2.7 Single-Species Models: Spruce Budworm 121

conditions. In the spatial situation, therefore, we would expect u(x, t) to try to grow
from u = 0 except at the boundaries. Because u, # 0 at the boundaries the effect
of diffusion implies that there is a flux of u out of the domain (0, L). So, for # small
there are two competing effects, the growth from the dynamics and the loss from the
boundaries. As a first step we examine the linear problem obtained by linearising about
u = 0. The relevant formulation is, from (2.77),

Ur = f/(O)M + Duyy,
u@©O,t) =u(L,t) =0, u(x,0)=upx).

(2.78)

We look for solutions in the form

u(x,t) = z:a,,eM sin(nmx/L),
n

which by inspection satisfy the boundary conditions at x = 0, L. Substitution of this
into (2.78) and equating coefficients of sin(nzwx/L) determines A as A = [f'(0) —
D(nmr/L)?] and so the solution is given by

uGe, 1) =Y ay exp { [f’(()) -D (%)2] t} sin ””Tx (2.79)

where the a,, are determined by a Fourier series expansion of the initial conditions u¢(x).
We do not need the a,, in this analysis. From (2.79) we see that the dominant mode in
the expression for u is that with the largest A, namely, that with n = 1, since

exp [f’(O) ) (%)2} t < exp [f’(O) _D (%)2} t, forall n>2.

So, if the dominant mode tends to zero as t — 00, so then do all the rest. We thus get
as our condition for the linear stability of u = 0,

p 12
:| (2.80)

/! T 2
£(0) D(L) <0 = L <Lc_n|:f/(0)
In dimensional terms D has units cm?s~! (or km?yr~! or whatever scale we are
interested in) and f’(0) has units s~! since it is the linear birth rate (for u small f (u) ~
f'(0)u) which together give L. in centimetres. Thus if the domain size L is less than
the critical size L., u — 0 as t — oo and no spatial structure evolves. The larger the
diffusion coefficient the larger is the critical domain size; this is in keeping with the
observation that as D increases so also does the flux out of the region.
The scenario for spatial structure in a growing domain is that as the domain grows
and L just passes the bifurcation length L., u = 0 becomes unstable and the first mode

, T\2 . TTX
alexp|:f (0)_D<Z) t:|smT
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starts to grow with time. Eventually the nonlinear effects come into play and u(x, 1)
tends to a steady state spatially inhomogeneous solution U (x), which, from (2.77), is
determined by

DU + f(U) =0, U@©)=U(L)=0, 2.81)

where the prime denotes differentiation with respect to x. Because f(U) is nonlinear
we cannot, in general, get an explicit solution for U.

From the spatial symmetry in (2.77) and (2.81) —setting x — —x leaves the equa-
tions unchanged — we expect the solutions to be symmetric in x about the midpoint
x = L/2. Since u = 0 at the boundaries we assume the midpoint is the maximum, u,,
say, where U’ = 0; it is helpful now to refer to Figure 2.19(a). If we multiply (2.81) by
U’ and integrate with respect to x from 0 to L we get

U
%DU’Z + F(U) = F(up), FU) =/ f(s)ds (2.82)
0

since U = u,, when U’ = 0. It is convenient to change the origin to L/2 so that
U’'(0) = 0 and U(0) = uy,; that is, set x — x — L/2. Then

Bl/zd—U—[F — F(U)'/?
(2) I = Fum) — FU)

which integrates to give

D\ /2
1=(3)

which gives the solution U (x) implicitly; typical solutions are illustrated schematically
in Figure 2.19(b). The boundary conditions u = 0 at x = L /2 and the last equation
give

/ N [F (um) — F(w)]™?dw, (2.83)
U(x)

Um
L=(2D)? / [F(um) — Fa)l™ Pdw = wp = un(L). (2.84)
0
U U
L Increasing
Um
Ll .
L2 LT - L/)2 0 Ly F

(a) (b)

Figure 2.19. (a) Typical steady state pattern in the population u governed by (2.77) when the domain length
L > L., the critical size for instability in the zero steady state. Note the symmetry about L /2. (b) Schematic
steady state solution with the origin at the symmetry point where u = u;; and uy = 0.
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We thus obtain, implicitly, u,, as a function of L. The actual determination of the depen-
dence of u,, on L has to be carried out numerically. Note the singularity in the integrand
when w = u,,, but because of the square root it is integrable. Typically u,, increases
with L as illustrated in Figure 2.19(b).

Spatial Patterning of the Spruce Budworm

Now consider the model for the spruce budworm, the dynamics for which we derived
in Chapter 1, Volume 1. Here, using (1.8) for f(u), (2.77) becomes

2
w=ru(1-2) = X 4 Dur = fw) + Dus, (2.85)
q 1+ u?

where the positive parameters r and g relate to the dimensionless quantities associated
with the dimensional parameters in the model defined by (1.7) in Chapter 1, Volume I;
q is proportional to the carrying capacity and r is directly proportional to the linear birth
rate and inversely proportional to the intensity of predation. The population dynamics
f(u) is sketched in Figure 2.20(a) when the parameters are in the parameter domain
giving three positive steady states u1, up and u3, the first and third being linearly stable
and the second unstable. With F'(1) defined by (2.82) and substituted into (2.84) we
have u,, as a function of the domain size L. This was evaluated numerically by Ludwig
et al. (1979) the form of which is shown in Figure 2.20(b); there is another critical
length, Lg say, such that for L > Lo more than one solution exists. We analyse this
phenomenon below.

From an ecological viewpoint we would like to know the critical domain size L
when the maximum population can be in the outbreak regime; that is, u,, > u> in
Figure 2.20(a). This is determined from numerical integration of (2.84) and is shown in
Figure 2.20(b). When L > L we see from Figure 2.20(b) that there are three possible
solutions with different u,,. The ones with u in the refuge and outbreak regimes are

flur,q)

0 uVug 'u:\ U

(a) (b)

Figure2.20. (a) Typical dynamics f (u; r, ) for the spruce budworm as defined by (2.85). (b) The maximum
population u,;, as a function of the domain size L. For u;; < u the population is in the refuge range, whereas
um > up for L > L, which is in the outbreak regime.
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stable and the other, the middle one, is unstable. Which solution is obtained depends
on the initial conditions. Later we shall consider possible ecological uses of this model
in the control of the budworm. Before doing so we describe a useful technique for
determining approximate values for L analytically.

Analytical Method for Determining Critical Domain Sizes and Maximum Populations

The numerical evaluation of u,, (L) when there are three possible u,,’s for a given L is
not completely trivial. Since the critical domain size Lo, which sustains an outbreak, is
one of the important and useful quantities we require for practical applications, we now
derive an ad hoc analytical method for obtaining it by exploiting an idea described by
Lions (1982).

The steady state problem is defined by (2.81). Let us rescale the problem so that the
domainis x € (0, 1) by setting x — x/L so that the equivalent U (x) is now determined
from

DU"+L*f(U)=0, U©0) =U()=0. (2.86)
From Figure 2.19 the solution looks qualitatively like a sine. With the rescaling so that

x € (0, 1) the solution is thus qualitatively like sin(;rx). This means that U” ~ —7%U
and so the last equation implies

Dn2U
ZZ ~ f(U). (2.87)

—Dr’U+L*f(U)~0 =

We are interested in the value of L such that the last equation has three roots for U: this
corresponds to the situation in Figure 2.20(b) when L > L. Thus all we need do to
determine an approximate Lg is simply to plot the last equation as in Figure 2.21 and
determine the value L such that three solutions exist.

For a fixed dispersal coefficient D we see how the solutions U vary with L. As L
increases from L = 0 the first critical L, L., is given when the straight line DU/ L?
intersects f(U), that is, when D2 / L? = f/(0), as given by (2.80). As L increases
further we can determine the critical Lo when DU/ L(2) is tangent to the curve f(U),
at P in Figure 2.21. It is simply a matter of determining L which gives a double positive
root of

Dr*U
—5— = fW),

It is left as an exercise (Exercise 7) to determine L as a function of r, ¢ and D when
f(U) is given by (2.85). For any given L the procedure also determines, approximately,
the maximum U. From Figure 2.21 we clearly obtain by this procedure a figure similar
to that in Figure 2.20(b). This simple procedure is quite general for determining critical
domain sizes, both for structure bifurcating from the zero steady state and for domains
which can sustain larger populations arising from population dynamics with multiple
positive steady states.
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Dr2U/L2 o
e o

L Increasing

0 u 1\/U2 ug\ U

Figure2.21. Approximate analytic procedure for determining the critical domain sizes L. and L which can
sustain respectively a refuge and an outbreak in the species population where the dynamics is described by
f(U). L is the value of L when D712U/L2 is tangent to f(U) at U = 0. L is given by the value of L when
Dr U/L2 is just tangent to F(U) at P.

2.8 Spatial Patternsin Scalar Population I nteraction Diffusion
Equations with Convection: Ecological Control Strategies

In practical applications of such models the domains of interest are usually two-dimen-
sional and so we must consider (2.76). Also, with insect pests in mind, the exterior
region is not generally completely hostile, so # = 0 on the boundaries is too restrictive
a condition. Here we briefly consider a one- and two-dimensional problem in which
the exterior domain is not completely hostile and there is a prevailing wind. This is
common in many insect dispersal situations and can modify the spatial distribution of
the population in a major way.

Suppose, for algebraic simplicity, that the two-dimensional domain is a rectangular
region B defined by 0 < x < a,0 < y < b having area A. The completely hostile
problem is then given by

F) + D 9%u n 9%u
uy = f(u — 4+ —,
! ax2  9y?

(2.88)
u=0 for (x,y)ondB.

Following the same procedure as in the last section for # small we get the solution of
the linearised problem to be

2 2
n> m . nmx . mmw
u(x,y,t) = ,,E,m mn €XP { |:f/(0) — Dn? (a_2 + b—2)1| t] sin —= sin by'

(2.89)

So the critical domain size, which involves both a and b, is given by any combination
of a and b such that
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a’b? _ Drn?
a+b2  f(0)

Since
P e ab—2a o LA
a > 2ab = _— < —
a? + b? 2

we get an inequality estimate for spatial patterning to exist, namely,

2Dx?

A>——.
1)

(2.90)

Estimates for general two-dimensional domains were obtained by Murray and Sperb
(1983). Clearly the mathematical problem is that of finding the smallest eigenvalue for
the spatial domain considered.

In all the scalar models considered above the spatial patterns obtained have only a
single maximum. With completely hostile boundary conditions these are the only type
of patterns that can be generated. With two-species reaction diffusion systems, however,
we saw that more diverse patterns could be generated. It is natural to ask whether there
are ways in which similar multi-peak patterns could be obtained with single-species
models in a one-dimensional context. We now show how such patterns could occur.

Suppose there is a constant prevailing wind w which contributes a convective flux
(W - V)u to the conservation equation for the population u(r, ¢). Also suppose that
the exterior environment is not completely hostile in which case appropriate boundary
conditions are

(N-VYu+hu=0, rondB, 2.91)

where N is the unit normal to the domain boundary d B. The parameter % is a measure
of the hostility: 47 = oo implies a completely hostile exterior, whereas 7 = 0 implies
a closed environment, that is, zero flux boundaries. We briefly consider the latter case
later. The mathematical problem is thus

ur + W-Vyu = f(u) + DVZu, (2.92)

with boundary conditions (2.91) and given initial distribution u#(r, 0). Here we consider
the one-dimensional problem and follow the analysis of Murray and Sperb (1983), who
also deal with the two-dimensional analogue and more general aspects of such prob-
lems.

The problem we briefly consider is the one-dimensional system which defines the
steady state spatially inhomogeneous solutions U (x). From (2.91) and (2.92), since

(W V)u = wiy,

nNn-Vu+hu=0 = uy+hu=0, x=L; uy—hu=0 x=0,
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where w is the x-component of the wind w, the mathematical problem for U (x) is

DU” —uw U’ + f(U) =0,

(2.93)
U'(0)—hU©0)=0, U'(L)+hU(L)=0.
We study the problem using phase plane analysis by setting
dv V—-fU
U=V, DV =wV—fU) = _wV =7 (2.94)

du ~ DV
and we look for phase plane trajectories which, from the boundary conditions in (2.93),
join any point on one of the following lines to any point on the other line,

V =hU, V=-hU. (2.95)

The phase plane situation is illustrated in Figures 2.22(a) and (b) as we now show.
Refer first to Figure 2.22(a). From (2.94) we get the sign of dV/dU at any point
(U,V). On the curve V = f(U)/wi, dV/dU = 0 with dV/dU positive and neg-
ative when (U, V) lies respectively above (if V > 0) and below it. So, if we start
on the boundary line V = hU at say, P, the trajectory will qualitatively be like 7}

4

4
%/ v = £
/. 1

T3
'y \T1

o

v Ulz)
(%) i
V = hU )
’——A - - !
0 :——""— - Us T ;
== 7 :
—_—— B '
By ‘BB‘\~\\ (C) '
L ov=Twy !
(b) 0 Lz

Figure2.22. (a) With A sufficiently large the possible trajectories from V = hU to V = —hU admit solution
trajectories like 77 and T, with only a single maximum Uy, . (b) For small enough # it is possible to have more
complex patterns as indicated by the specimen trajectory 7. (C) A typical solution U (x) for a phase trajectory
like T in (b).
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since dV /dU < 0 everywhere on it. If we start at S, say, although the trajectory starts
with dV/dU < 0, it intersects the dV/dU = 0 line and passes through to the re-
gion where dV /dU > 0 and so the trajectory turns up. The trajectories 7>, 73 and Ty
are all possible scenarios depending on the parameters and where the solution trajectory
starts. 73 and 74 are not solution trajectories satisfying (2.94) since they do not termi-
nate on the boundary curve V = —hU. T1 and T; are allowable solution paths and each
has a single maximum U where the trajectory crosses the V = 0 axis.

We now have to relate the corresponding domain length L to these solution trajec-
tories. To be specific let us focus on the trajectory 75. Denote the part of the solution
with V > 0 by VT(U) and that with V < 0 by V= (U). If we now integrate the first
equation in (2.94) from Up to U /Q that is, the U-values at either end of the 7> trajec-
tory, we get the corresponding length of the domain for the solution represented by 7>
as

Un U,

L= f V) du + f vy du. (2.96)
Up m

So, for each allowable solution trajectory we can obtain the corresponding size of the

solution domain. The qualitative form of the solution U (x) as a function of x can be

deduced from the phase trajectory since we know U and U’ everywhere on it and from

the last equation we can calculate the domain size. With the situation represented by

Figure 2.22(a) there can only be a single maximum in U (x). Because of the wind con-

vection term, however, there is no longer the solution symmetry of the solutions as in

the last Section 2.7.

Now suppose the exterior hostility decreases, that is, & in (2.95) decreases, so that
the boundary lines are now as illustrated in Figure 2.22(b). Proceeding in the same
way as for the solution trajectories in Figure 2.22(a) we see that it is possible for a
solution to exist corresponding to the trajectory 7. On sketching the corresponding
solution U (x) we see that here there are two maxima in the domain: see Figure 2.22(c).
In this situation, however, we are in fact patching several possible solutions together.
Referring to Figure 2.22(b) we see that a possible solution is represented by that part
of the trajectory 7' from A to Bj. It has a single maximum and a domain length L
given by the equivalent of (2.96). So if we restrict the domain size to be L this is the
relevant solution. However, if we allow a larger L the continuation from Bj to B is now
possible and so the trajectory ABj B; corresponds to a solution of (2.93). Increasing L
further we can include the rest of the trajectory to B3. It is thus possible to have multi-
humped solutions if the domain is large enough. The length L corresponding to the
solution path T is obtained in exactly the same way as above, using the equivalent of
(2.96).

So, for small enough values of # it is possible to have more and more structure as
the trajectory winds round the point u; in the (U, V) phase plane. For such solutions
to exist, of course, it is essential that w; # 0. If w; = O the solutions are symmetric
about the U-axis and so no spiral solutions are possible. Thus, a prevailing wind is
essential for complex patterning. It also affects the critical domain size for patterns to
exist. General results and further analysis are given by Murray and Sperb (1983).
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An Insect Pest Control Strategy

Consider now the problem of insect pest control. The forest budworm problem is very
much a two-dimensional spatial problem. As we pointed out in Chapter 1, Volume I,
Section 1.2, a good control strategy would be to maintain the population at a refuge
level. As we also showed in Section 1.2, Volume I it would be strategically advan-
tageous if the dynamics parameters r and ¢ in (2.85) could be changed so that only
a single positive steady state exists. This is not really ecologically feasible. With the
more realistic spatial problem, however, we have a further possible means of keeping
the pest levels within the refuge range by ensuring that their spatial domains are of a
size that does not permit populations in the outbreak regime. The arguments go through
for two-dimensional domains, but for illustrative purposes let us consider first the one-
dimensional situation.

Refer to Figure 2.20(b). If the spatial region were divided up into regions with size
L < Ly, that s, so that the maximum u,, was always less than u1, the refuge population
level, we would have achieved our goal. So, a possible strategy is to spray the region in
strips so that the non-sprayed regions impose an effective L < L as in Figure 2.23(a):
the solid vertical lines separating the sprayed regions are the boundaries to a completely
hostile exterior.

Of course it is not practical to destroy all pests that stray out of the unsprayed
region, so a more realistic model is that with boundary conditions (2.91) where some
insects can survive outside the untreated domain. The key mathematical problem to be
solved then is the determination of the critical width of the insect ‘break’ Lj. This must
be such that the contributions from neighbouring untreated areas do not contribute a
sufficient number of insects, which diffuse through the break, to initiate an outbreak in
the neighbouring patches even though L < Ly, the critical size in isolation. A qualitative
population distribution would typically be as shown by the dashed line in Figure 2.23(a).

The two-dimensional analogue is clear but the solution of the optimisation prob-
lem is more complicated. First the critical domain Ag which can sustain an insect pest

U
Sprayed Sprayed

Ly Le<L <Ly Ly

Sprayed
(a) (b)

Figure 2.23. (a) A possible control strategy to contain the insect pest in a refuge rather than an outbreak
environment. Strips—insect ‘breaks’—are sprayed to maintain an effective domain size L < L, the critical
size for an outbreak. The broken line is a more typical situation in practice. (b) Equivalent two-dimensional
analogue where A > A is a typical domain which can sustain a pest refuge population but which is not
sufficient to sustain an outbreak; that is, A < Ag.
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outbreak has to be determined for boundary conditions (2.91). Then the width of the
sprayed strips has to be determined. It is not a trivial problem to solve, but certainly a
possible one. A preliminary investigation of these problems was carried out by Ben-Yu
et al. (1986).

Although we have concentrated on the budworm problem the techniques and con-
trol strategies are equally applicable to other insect pests. The field of insect dispersal
presents some very important ecological problems, such as the control of killer bees
now sweeping up through the western United States (see, for example, Taylor 1977)
and locust plagues in Africa. Levin (see, for example, 1981a,b) has made realistic and
practical studies of these and other problems associated with spatially heterogeneous
ecological models. The concept of a break control strategy to prevent the spatial spread
of a disease epidemic will be discussed in some detail later in Chapter 13 when we
discuss the spatial spread of rabies; it is now in use.

In an interesting ecological application of diffusion-driven instability Hastings et al.
(1997) investigated an outbreak of the western tussock moth which had been hypothe-
sised to be the result of a predator—prey interaction between the moths and parasitoids.
The model they analyse qualitatively is a two-species system in which the prey do not
move. We saw in Chapter 13, Section 13.7, Volume I how the effect of having a per-
centage of the prey sessile gave rise to counterintuitive results. Hastings et al. (1997)
also obtain counterintuitive results by considering a quite general system with typical
predator—prey interactions in which the prey does not diffuse. Their new analysis is very
simple but highly illuminating. Their approach is reminiscent of that in Section 1.6 on
excitable waves for determining where the trajectory for the wave in the phase plane is
closed, thereby determining the wavespeed among other things, and revolves around the
existence of three possible steady states at each spatial position, two of which are sta-
ble, with the possibility of a jump, or rather a steep singular region joining them. They
then show that, counterintuitively, the spatial distribution of the prey will have its high-
est density at the edge of the outbreak domain. This phenomenon has been observed
in western tussock moth outbreaks. The role of theory in predicting counterintuitive
behaviours and subsequent experimental or observational confirmation is particularly
important when, as is frequently the case, the plethora of observational facts is bewil-
dering rather than illuminating. The article by Kareiva (1990) is particularly relevant to
this relation of theory to data.

2.9 Nonexistence of Spatial Patternsin Reaction Diffusion Systems:
General and Particular Results

The scalar one-dimensional reaction diffusion system with zero flux is typically of the
form

ur = fw) +uxx, x€(@,1), t>0
ux(0,1) =u,(l,1) =0, t>0.

(2.97)

Intuitively the only stable solution is the spatially homogeneous one u = ug, the steady
state solution of f(u) = O: if there is more than one stable solution of f(u) = 0
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which will obtain depends on the initial conditions. It can be proved that any spatially
nonuniform steady state solution is unstable (the analysis is given in the first edition of
this book: it involves estimating eigenvalues). This result does not carry over completely
to scalar equations in more than one space dimension as has been shown by Matano
(1979) in the case where f(u) has two linearly stable steady states. The spatial patterns
that can be obtained, however, depend on specific domain boundaries, non-convex to be
specific. For example, a dumbbell shaped domain with a sufficiently narrow neck is an
example. The pattern depends on the difficulty of diffusionally transporting enough flux
of material through the neck to effect a change from one steady state to another so as to
achieve homogeneity.

We saw in Sections 2.3 and 2.4 how reaction diffusion systems with zero flux
boundary conditions could generate a rich spectrum of spatial patterns if the param-
eters and kinetics satisfied appropriate conditions: crucially the diffusion coefficients of
the reactants had to be different. Here we show that for general multi-species systems
patterning can be destroyed if the diffusion is sufficiently large. This is intuitively what
we might expect, but it is not obvious if the diffusion coefficients are unequal. This
we now prove. The analysis, as we show, gives another condition involving the kinetic
relaxation time of the mechanism which is certainly not immediately obvious.

Before discussing the multi-species multi-dimensional theory it is pedagogically
helpful to consider first the general one-dimensional two-species reaction diffusion sys-
tem

ur = f(u,v) + Dityy,
(2.98)
Uy = g(M, V) + Dovyy

with zero flux boundary conditions and initial conditions

ur(0,1) = uy(1,1) = v.(0,1) = v, (1,£) =0
u(x,0) = uo(x), (2.99)
v(x, 0) = vo(x),

where u;,(x) and vj(x) are zero on x = 0, 1. Define an energy integral E by
Lo 2
E(t)= 3 (uy +vy)dx. (2.100)
0

This is, except for the 1/2, the heterogeneity function introduced in (2.52). Differentiate
E with respect to ¢ to get

dE !
E = (uxUyxr + VyVx) dX
0

and substitute from (2.98), on differentiating with respect to x, to get, on integrating by
parts,
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dE !
E = [ty (Dyutygy)x + tx (fulty + fovy)
0
+ vy (D2vxx)x + vx(gultx + guvx)] dx,

1
= [uxDiuyx + vxDZUxx](l) - f (Dluix + D2U,%x)dx
0
1
+/ I:fuu)zc + gvv)% +(fo+ gu)uxvx] dx.
0

Because of the zero flux conditions the integrated terms are zero.
Now define the quantities d and m by

: 2 2 2 2 172
d =min(Dy, D), m = max (fu P2+ gv> , (2.101)
u,

where max, , means the maximum for # and v taking all possible solution values. If
we want we could define m by some norm involving the derivatives of f and g; it is
not crucial for our result. From the equation for d E /dt, with these definitions, we then
have

dE /1 2 2 ! 2 2
— < —d (us, +v )dx+4m/ (us +v9)dx
dt o M o 7 (2.102)
< (4m — 272d)E,
where we have used the result
1 1
/ u dx > 712/ u? dx (2.103)
0 0

with a similar inequality for v; see Appendix A for a derivation of (2.103).

From the inequality (2.102) we now see that if the minimum diffusion coefficient d,
from (2.101), is large enough so that (4m — 272d) < 0 then dE /dt < 0, which implies
that E — 0 ast — oo since E(t) > 0. This implies, with the definition of E from
(2.100), that u, — 0 and vy — 0 which implies spatial homogeneity in the solutions
u and v as t — oo. The result is not precise since there are many appropriate choices
for m; (2.101) is just one example. The purpose of the result is simply to show that it is
possible for diffusion to dampen all spatial heterogeneities. We comment briefly on the
biological implication of this result below.

We now prove the analogous result for general reaction diffusion systems. Consider

u, = f(u) + DV2u, (2.104)

where U, with components u;, i = 1,2, ..., n, is the vector of concentrations or pop-
ulations, and D is a diagonal matrix of the positive diffusion coefficients D;, i =
1,2,...,n and f is the nonlinear kinetics. The results we prove are also valid for a
diffusion matrix with certain cross-diffusion terms, but for simplicity here we only deal
with (2.104). Zero flux boundary and initial conditions for U are
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(N-V)u=0 rondB, u(r,0)=uyr), (2.105)

where n is the unit outward normal to d B, the boundary of the domain B. As before
we assume that all solutions U are bounded for all # > 0. Practically this is effectively
assured if a confined set exists for the reaction kinetics.

We now generalise the previous analysis; it helps to refer to the equivalent steps in
the above. Define the energy E () by

1
E(r)=—/ || Vul|*dr, (2.106)
2 Jp

where the norm
n
2 2
[IVull® = E | Vu; |~
i=1

Let d be the smallest eigenvalue of the matrix D, which in the case of a diagonal matrix
is simply the smallest diffusion coefficient of all the species. Now define

m= u || Vuf(u)|l, (2.107)
max

where U takes on all possible solution values and V|, is the gradient operator with respect
to u.

Differentiating E (¢) in (2.106), using integration by parts, the boundary conditions
(2.105) and the original system (2.104) we get, with (a, b) denoting the inner product
of aand b,

dE

= vu, Vu,) dr
yr /;( )

=/(Vu,VDV2u)dr —i—/(Vu, Vi) dr
B B

(2.108)
=/ (Vu, DV?u)dr —/(Vzu, DVzu)dr—i-/(Vu, Vuf - Vu) dr
9B B B
g—d/ | V2u |>dr + mE.
B
In Appendix A we show that when (n- V)u =0on 0B,
/ | V2u | dr zu/ || Vul[*dr, (2.109)
B B

where  is the least positive eigenvalue of
V2 +up=0, (nN-V)¢=0 rondB,

where ¢ is a scalar. Using the result (2.109) in (2.108) we get
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dE
< m-2ud)E = lim E(t)=0 if m <2ud (2.110)
dt t—00

and so, once again, if the smallest diffusion coefficient is large enough this implies that
Vu — 0 and so all spatial patterns tend to zero as t — 00.

Othmer (1977) has pointed out that the parameter m defined by (2.101) and (2.107)
is a measure of the sensitivity of the reaction rates to changes in U since 1/m is the
shortest kinetic relaxation time of the mechanism. On the other hand 1/(2ud) is a mea-
sure of the longest diffusion time. So the result (2.110), whichis 1/m > 1/(2ud), then
implies that if the shortest relaxation time for the kinetics is greater than the longest
diffusion time then all spatial patterning will die out as # — oo. The mechanism will
then be governed solely by kinetics dynamics. Remember that the solution of the latter
can include limit cycle oscillations.

Suppose we consider the one-dimensional situation with a typical embryological
domain of interest, say, L = O (1 mm). Withd = 0(10~%cm?s™!) the result (2.110)
then implies that homogeneity will result if the shortest relaxation time of the kinetics
1/m > L?/(2n3d), that is, a time of O(500 s).

Consider the general system (2.104) rescaled so that the length scale is 1 and the
diffusion coefficients are scaled relative to D say. Now return to the formulation used
earlier, in (2.10), for instance, in which the scale y appears with the kinetics in the
form yf. The effect of this on the condition (2.110) now produces ym — 2u < 0 as
the stability requirement. We immediately see from this form that there is a critical y,
proportional to the domain area, which in one dimension is (length)?, below which no
structure can exist. This is of course a similar result to the one we found in Sections 2.3
and 2.4.

We should reiterate that the results here give qualitative bounds and not estimates
for the various parameters associated with the model mechanisms. The evaluation of
an appropriate m is not easy. In Sections 2.3 and 2.4 we derived specific quantitative
relations between the parameters, when the kinetics were of a particular class, to give
spatially structured solutions. The general results in this section, however, apply to all
types of kinetics, oscillatory or otherwise, as long as the solutions are bounded.

In this chapter we have dealt primarily with reaction or population interaction ki-
netics which, in the absence of diffusion, do not exhibit oscillatory behaviour in the
restricted regions of parameter space which we have considered. We may ask what kind
of spatial structure can be obtained when oscillatory kinetics is coupled with diffusion.
We saw in Chapter 1 that such a combination could give rise to travelling wavetrains
when the domain is infinite. If the domain is finite we could anticipate a kind of regular
sloshing around within the domain which is a reflection of the existence of spatially
and temporally unstable modes. This can in fact occur but it is not always so. One case
to point is the classical Lotka—Volterra system with equal diffusion coefficients for the
species. Murray (1975) showed that in a finite domain all spatial heterogeneities must
die out (see Exercise 11).

There are now several pattern formation mechanisms, other than reaction-diffusion-
chemotaxis systems. One of the best critical and thorough reviews on models for
self-organisation in development is by Wittenberg (1993). He describes the models in
detail and compares and critically reviews several of the diverse mechanisms includ-
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ing reaction-diffusion-chemotaxis systems, mechanochemical mechanisms and cellular
automaton models.

In the next chapter we shall discuss several specific practical biological pattern
formation problems. In later chapters we shall describe other mechanisms which can
generate spatial patterns. An important system which has been widely studied is the
reaction-diffusion-chemotaxis mechanism for generating aggregation patterns in bacte-
ria and also for slime mould amoebae, one model for which we derived in Chapter 11,
Volume I, Section 11.4. Using exactly the same kind of analysis we discussed above for
diffusion-driven instability we can show how spatial patterns can arise in these model
equations and the conditions on the parameters under which this will happen (see Ex-
ercise 9). As mentioned above these chemotaxis systems are becoming increasingly
important with the upsurge in interest in bacterial patterns and is the reason for includ-
ing Chapter 5 below. We discuss other quite different applications of cell-chemotaxis
mechanisms in Chapter 4 when we consider the effect of growing domains on pattern-
ing, such as the complex patterning observed on snakes.

Exercises

1. Determine the appropriate nondimensionalisation for the reaction kinetics in (2.4)
and (2.5) which result in the forms (2.8).

2. An activator—inhibitor reaction diffusion system in dimensionless form is given by

2
u 2
Uy = — —bu+uyy, vV =u"—v+duvyy,
v

where b and d are positive constants. Which is the activator and which the inhibitor?
Determine the positive steady states and show, by an examination of the eigenvalues
in a linear stability analysis of the diffusionless situation, that the reaction kinetics
cannot exhibit oscillatory solutions if b < 1.

Determine the conditions for the steady state to be driven unstable by diffusion.
Show that the parameter domain for diffusion-driven instability is given by 0 < b <
1,db > 3+ 24/2 and sketch the (b, d) parameter space in which diffusion-driven
instability occurs. Further show that at the bifurcation to such an instability the
critical wavenumber k. is given by k2 = (1 4 +/2)/d.

3. An activator—inhibitor reaction diffusion system with activator inhibition is mod-
elled by

2

Uy =a—bu+ + Uy,

u
o(l + Ku?)
v = u? — v+ dvyy,

where K is a measure of the inhibition and a, b and d are constants. Sketch the null
clines for positive b, various K > 0 and positive or negative a.
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Show that the (a, b) Turing (parameter) space for diffusion-driven instability
is defined parametrically by

a = bug— (1 + Kuj)?
combined with

1
b>20u(l+ Kug) ™ =1, b>0, b>2fu(l+Kup) > - —,

1
b < 2[u(l + Kud)1™* — 2+/2[du(l + Ku})17'/* + o

where the parameter u( takes on all values in the range (0, co). Sketch the Turing
space for (i) K = 0 and (ii) K # O for various d (Murray 1982).

Determine the relevant axisymmetric eigenfunctions W and eigenvalues k? for the
circular domain bounded by R defined by

dW
V2W + kK2W = 0, d—:Oonr:R.
r

Given that the linearly unstable range of wavenumbers k2 for the reaction dif-
fusion mechanism (2.7) is given by

yL(a,b,d) <k* <yM(a,b,d),

where L and M are defined by (2.38), determine the critical radius R, of the domain
below which no spatial pattern can be generated. For R just greater than R, sketch
the spatial pattern you would expect to evolve.

Consider the reaction diffusion mechanism given by

2
u
U =y (7 - bu) Fyy, v =y U —v) + duyy,

where y, b and d are positive constants. For the domain 0 < x < 1 with zero
flux conditions determine the dispersion relation (k%) as a function of the wave-
numbers k of small spatial perturbations about the uniform steady state. Is it pos-
sible with this mechanism to isolate successive modes by judicious variation of the
parameters? Is there a bound on the excitable modes as d — oo with b and y
fixed?

Suppose fishing is regulated within a zone H km from a country’s shore (taken to
be a straight line) but outside of this zone overfishing is so excessive that the pop-
ulation is effectively zero. Assume that the fish reproduce logistically, disperse by
diffusion and within the zone are harvested with an effort E. Justify the following
model for the fish population u(x, t).
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u
U =ru (1 —?)—EU—i—Duxx,

u=0onx=H, uy=0onx=0,

where r, K, E(< r) and D are positive constants.
If the fish stock is not to collapse show that the fishing zone H must be greater
than Z[D/(r — E )]'/2 km. Briefly discuss any ecological implications.

Use the approximation method described in Section 2.7 to determine analytically
the critical length Lg as function of r, g and D such that an outbreak can exist in
the spruce budworm population model

u l/l2
Ur=ru l—; —m—’—DMxx, u:OOH}C:O,l.

Determine the maximum population u,, when L = L.

Consider the Lotka—Volterra predator—prey system (see Chapter 3, Volume I, Sec-
tion 3.1) with diffusion given by

ur =u(l —v) 4+ Duy,, v, =av(u—1)~+ Dvyy

in the domain 0 < x < 1 with zero flux boundary conditions. By multiplying the
first equation by a(# — 1) and the second by (v — 1) show that

S; = DSy — Do 2,
2 2
S =au+ v — In(uv), 02:a<u—x> +(v_x> > (.

u v
Determine the minimum S for all # and v. Show that necessarily o — O ast — 00
by supposing o2 tends to a nonzero bound, the consequences of which are not pos-
sible. Hence deduce that no spatial patterns can be generated by this model in a
finite domain with zero flux boundary conditions.

(This result can also be obtained rigorously, using maximum principles; the
detailed analysis is given by Murray (1975).)

The amoebae of the slime mould Dictyostelium discoideum, with density n(x, t),
secrete a chemical attractant, cyclic-AMP, and spatial aggregations of amoebae start
to form. One of the models for this process (and discussed in Section 11.4, Vol-
ume I) gives rise to the system of equations, which in their one-dimensional form,
are

ny = Dpnyy — x(nax)y, a; =hn —ka+ Dyayy,

where a is the attractant concentration and %, k, x and the diffusion coefficients D,,
and D, are all positive constants. Nondimensionalise the system.

Consider (i) a finite domain with zero flux boundary conditions and (ii) an
infinite domain. Examine the linear stability about the steady state (which intro-
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duces a further parameter here), derive the dispersion relation and discuss the role
of the various parameter groupings. Hence obtain the conditions on the parame-
ters and domain size for the mechanism to initiate spatially heterogeneous solu-
tions.

Experimentally the chemotactic parameter y increases during the life cycle of
the slime mould. Using x as the bifurcation parameter determine the critical wave-
length when the system bifurcates to spatially structured solutions in an infinite
domain. In the finite domain situation examine the bifurcating instability as the
domain is increased.

Briefly describe the physical processes operating and explain intuitively how
spatial aggregation takes place.

Consider the dimensionless reaction anisotropic diffusion system

u £ ) d 8%u td 8%u
- = u,v a0 PR
a7 Tox2 79252
v ( )+d 9%u s 9%u
— = u,v —.
or V8 Sox T M2

In the absence of diffusion the steady state U = (uq, vg) is stable. By carry-
ing out a linear analysis about the steady state by looking for solutions in the
form U — Ug eMtitkex+kyy) where ky and k, are the wavenumbers, show that
if

H(k}, k}) = didsk} + pikiks + dadaky — ypaky — ykips + v (fuge — fogu)-
where

=didys +drds, pr=dsfy+digy, p3=difyu+dagy

is such that H < 0 for some k)%kg # 0 then the system can be diffusionally unstable
to spatial perturbations. The maximum linear growth is given by the values kf and

k2 which give the minimum of H (k2 k2) Show that the minimum of H is given
by

k| _ _ (dds—dods) [—dafu +dogy
k2 Y dids — dods)? | ~digo +dsfu |

For a spatial pattern to evolve we need real values of ky, k, which requires, from
the last equation, that

—da fu + d2gy 0
didy — dprd .
(dids — d 3)|:_d1gv+d3fui| <[0}

By considering the two cases (d1da — drd3) < 0 and (d1ds — drd3) > 0 show
that the minimum of H does not lie in the first quadrant of the kf - k% plane and
that diffusion-driven instability will first occur, for increasing ratios d3/dy, da/d>
on one of the axial boundaries of the positive quadrant.
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By setting kf, k% equal to 0 in turn in the expression for H show that the con-

ditions for diffusion-driven instability are

d4fu +d28v > 0, d3fu +dlgv >0
(dafu — drgy)? + 4dods fygu > 0, (d3fy — digv)* + 4dids fogu > 0

so for it to occur (d3/dy) > d. and/or (ds/d>) > d. where

d 1
c fu2
Now consider the rectangular domain 0 < x < a,0 < y < b with zero
flux boundary conditions with a, b constants with a sufficiently greater than b
so that the domain is a relatively thin rectangular domain. Show that it is possi-
ble to have the first unstable mode 2 bifurcation result in a striped pattern along
the rectangle if the diffusion coefficient ratio in one direction exceeds the critical
ratio. (Such a result is what we would expect intuitively since if only one ratio,
ds/dr > d., then the diffusion ratio in the x-direction is less than the critical ra-
tio and we would expect spatial variation only in the y-direction, hence a striped
pattern along the rectangle. A nonlinear analysis of this problem shows that such
a pattern is stable. It further shows that if both ratios exceed the critical ratio a
stable modulated (wavy) stripe pattern solution can be obtained along the rectan-
gle.)

I:(zfvgu — fugv) + 2 fogu — fugv)2 - ,42812)]1/2] .

Suppose that a two-species reaction diffusion mechanism in # and v generates
steady state spatial patterns U(x), V(x) in a one-dimensional domain of size L
with zero flux boundary conditions u, = v, = 0 at both boundaries x = 0 and
x = L. Consider the heterogeneity functions defined by

I I )
He(w) = Z/o wydx, Hs(w) = Z/o [wy — Hg ()] dx.

Biologically the first of these simply measures the gradient while the second mea-
sures the deviation from the simple gradient. Show that the heterogeneity or energy
integral

1 L
H =+ / (U? + V) dx = [Ho(U)* + [Ho(V)]* + Hs(U) + Hs(V).
0
(Berding 1987)
Show that the reaction diffusion mechanism
u; = f(u) + DV?u,

where the concentration vector U has n components, D is a diagonal diffusion ma-
trix with elements d;, i = 1,2,...,n and f is the nonlinear kinetics, linearises
about a positive steady state to
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W; = AW + DV2w,

where A is the Jacobian matrix of f at the steady state.
Let k be the eigenvalue of the problem defined by

V2W +k*W =0, (n-V)W=0 rondB.

On setting W oc exp[Af + ik - ) show that the dispersion relation A(k?) is given by
the solutions of the characteristic polynomial

P =|A—k>D—21|=0.

Denote the eigenvalues of P (1), with and without diffusion, by k;r and A; respec-
tively. Diffusion-driven instability occurs if Re A <0,i=1,2,...,n and at least
one Re )»;’ > 0 for some k% # 0.

From matrix algebra there exists a transformation 7 such that

n
A=l =T A=aDT | =]} = .
i=1

Use this result and the fact that Re A;” < 0 to show that if d; = d for all i then
Re A?‘ < 0 for all i and hence that a necessary condition for diffusion-driven insta-
bility is that at least one diffusion coefficient is different from the rest.

The linearisation of a reaction diffusion mechanism about a positive steady state
is

W, = AW + DV2w,

where A is the Jacobian matrix of the reaction kinetics evaluated at the steady
State.

If the matrix A + AT, where T denotes the transpose, is stable this means that
all of its eigenvalues A are real and negative. Show that w- Aw < —§w-w, for some
§>0.

[Hint: By considering w; = AW first show that (Wz)t = 2WAW. Then show
that w/ - w = w? ATw and w” - w, = w” Aw to obtain (W?), = w’ (A + AT)w.
Thus deduce that WAW = (1/2)wW” (AT + A)w < —8w - w for some § > 0.]

Let k2 be the eigenvalues of the eigenvalue problem

V2W + k*w = 0.
By considering d E /dt, where
E(@) = / W -wdr
B

with B the spatial domain, show that W> — 0 as t — oo and hence that such reac-
tion diffusion systems cannot generate spatial patterns if the Jacobian matrix is of
this particular form.



3. Animal Coat Patterns and Other Practical
Applications of Reaction Diffusion Mechanisms

In this chapter we discuss some real biological pattern formation problems and show
how the modelling discussed above, particularly that in the last chapter, has been ap-
plied. As an applications chapter of theories developed earlier, it contains considerably
more biology than mathematics. Since all models for spatial pattern generation are nec-
essarily nonlinear, practical applications require numerical solutions since useful analyt-
ical solutions are not available, nor likely to be. A preliminary linear analysis, however,
is always useful, generally a necessity in fact. In each of the applications the biolog-
ical modelling is discussed in detail. Most of the finite amplitude patterns reproduced
are numerical solutions of the model equations and are applied directly to the specific
biological situation.

In Section 3.1 we show how the pattern of animal coat markings such as on the
zebra, leopard and so on, could be generated using a reaction diffusion mechanism. In
the other sections we describe other pattern formation problems, namely, butterfly wing
patterns in Section 3.3, and patterns which presage hairs in whorls during regeneration
in Acetabularia, an important marine alga, in Section 3.4.

Reaction diffusion theory has now been applied from a patterning point of view
to a large number of biological situations. For example, Kauffman et al. (1978) pre-
sented one of the first practical applications to the early segmentation of the embryo
of the fruit fly Drosophila melanogaster. With the greatly increased understanding of
the early stages of development the model is not valid; it was nevertheless useful at the
time. There have been many more recent reaction diffusion models proposed for early
insect development and how they could interact with gene expression; see especially
the articles by Hunding and Engelhardt (1995), Meinhardt (1999, 2000) and Hunding
(1999) and references given there. There have also been several very good reviews, such
as those by Maini (1997, 1999). The early paper by Bunow et al. (1980) is specifically
related to some of the material in this chapter; they discuss pattern sensitivity among
other things. The book by Meinhardt (1982) has many examples based on activation—
inhibition type of reaction diffusion models. The applications cover a wide spectrum of
real biological problems; see the collection of articles in the books edited by Othmer et
al. (1993), Chaplain et al. (1999) and Maini and Othmer (2000).

A key difficulty with the application of Turing’s (1952) theory of morphogenesis is
the identification of the morphogens and this has been a major obstacle to its acceptance
as one of the essential processes in development; it still is. The fact that certain chemi-
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cals are essential for development does not necessarily mean they are morphogens. Iden-
tification of their role in the patterning process is necessary for this. It is partially for
this reason that we discuss in Section 3.4 hair initiation in Acetabularia, where calcium
is proposed as an example of a real morphogen. Theoretical and experimental evidence
is given to back up the hypothesis. Even now, nearly 50 years after Turing’s classic pa-
per, the evidence for reaction diffusion mechanisms’ role in development is still largely
circumstantial. However, the large amount of circumstantial evidence is such that their
importance is gaining acceptance as a necessary element in development. There is no
question about its acceptance in ecology of course. The fact that the evidence is mainly
circumstantial by no means implies that they have not been responsible for many major
advances in our understanding of many developmental processes. Numerous case stud-
ies are described in detail in the rest of the book and in references to other studies. It is
not possible to give other than a flavour of many successful (in the sense of having had
a positive effect on our understanding) applications of the theory.

3.1 Mammalian Coat Patterns—‘How the Leopard Got Its Spots’

Mammals exhibit a rich and varied spectrum of coat patterns; Figure 3.1 shows some
typical markings. The beautifully illustrated (all drawings) multi-volume (seven) series
of books, East African Mammals, produced since 1971 by Jonathan Kingdon (see, for
example, the volume on carnivores, 1978, and large mammals, 1979) give, among other
things, the most comprehensive and accurate survey of the wealth and variety of animal
coat patterns. The book by Portmann (1952) has some interesting observations (some
quite wild) on animal forms and patterns. However, as with almost all biological pat-
tern generation problems (and repeated like some mantra in this book) the mechanism
involved has not yet been determined. Murray (1980, 1981a,b) studied this particular
pattern formation problem in some depth and it is mainly this work we discuss here: see
also the general article in Scientific American by Murray (1988). Among other things
he suggested that a single mechanism could be responsible for generating practically
all of the common patterns observed. Murray’s theory is based on a chemical concen-
tration hypothesis by Searle (1968) who was one of the first to mention the potential
of a Turing mechanism.! It had been more or less ignored up to then and would not be

Tn the search for the earliest reference to a model for animal coat patterns, I think it is the one in the
Book of Genesis in the Old Testament. It is a typical tale of exploitation, deception, scheming, fornication,
perseverance, lack of trust and revenge. It is in the story of Laban, Laban’s daughters Leah and Rachel, and
Jacob who worked for seven years on Laban’s promise that he could marry Rachel. Laban forced him to
marry Leah first. Laban kept reneging on his bargains. Finally, Laban and Jacob agreed on what animals
Jacob should have for all his labours. He said Jacob could take all the spotted and speckled cattle as part of
his wages. Jacob decided to slant the count in his favour. The exact reference (Genesis, Ch. 30, Verses 38-39
in the King James Version of the Bible) to Jacob’s mechanism as to how pattern comes about is the following.

‘And he (Jacob) set the rods which he had pilled before the flocks in the gutters in the watering troughs
when the flocks came to drink, that they would conceive when they came to drink. And the flocks conceived
before the rods, and brought forth cattle ringstraked, speckled and spotted.’

These are the well-known Jacob sheep, of course, which are spotted, and so beloved by those wishing to
play farmer. As a theory it might be a little difficult to get published in a reputable journal today.
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Figure 3.1. Typical animal coat markings on the (a) leopard (Panthera pardus); (b) zebra (Equus grevyi);
(c) giraffe (Giraffa camelopardis tippelskirchi); (Photographs courtesy of Dr. Hans Kruuk) (d) tiger (Felis
tigris).
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picked up seriously again until the 1970’s from which time it has become a veritable
industry. Murray (1980, 1981) took a reaction diffusion system, which could be diffu-
sively driven unstable, as the possible mechanism responsible for laying down most of
the spacing patterns; these are the morphogen prepatterns for the animal coat markings.
The fundamental assumption is that subsequent differentiation of the cells to produce
melanin simply reflects the spatial pattern of morphogen concentration.

In the last chapter we showed how such reaction diffusion mechanisms can gener-
ate spatial patterns. In this section we (i) present results of numerical simulations of a
specific reaction diffusion system with geometries relevant to the zoological problem,
(ii) compare the patterns with those observed in many animals and finally (iii) highlight
the circumstantial evidence to substantiate the hypothesis that a single mechanism is all
that is possibly required. Bard (1981) and Young (1984) also investigated animal coat
patterns from a reaction diffusion point of view. Cocho et al. (1987) proposed a quite
different model based on cell-cell interaction and energy considerations; it is essen-
tially a cellular automata approach. Savic (1995) used a mechanochemical model (see
Chapter 6) based on a prepattern of polarized cells in the epithelium, the surface of the
skin. Several of the subsequent models are based on a computer graphics approach such
as the one by Walter et al. (1998) who also review the general area and recent contri-
butions. Their ‘clonal mosaic model’ is based on cell—cell interactions (with specific
rules) and involves cell division. They specifically use it to generate the spot and stripe
patterns on giraffes and the large cats. The patterns they obtain are remarkably similar
in detail to those found on specific animals. They relate their model to recent experi-
ments on pigment cells. Their model and graphics procedure can be used on complex
surfaces and include growth. It is certainly now possible to generate more or less most
of the observed patterns. In many ways there are enough models for generating ani-
mal coat paterns. Progress now really depends on the experiments that are suggested
by the models and how the results can be interpreted from a modelling point of view.
The work on the patterns on the alligator and on their teeth patterning discussed in
depth in Chapter 4 are case studies where some progress has been made along these
lines.

Although the development of the colour pattern on the integument, that is, the skin,
of mammals occurs towards the end of embryogenesis, we suggest that it reflects an un-
derlying prepattern that is laid down much earlier. In mammals the prepattern is formed
in the early stages of embryonic development—in the first few weeks of gestation. In
the case of the zebra, for example, this is around 21-35 days; the gestation period is
about 360 days. In the case of alligator stripes it is about halfway through the gestation
period (around 65 days); see Chapter 4.

To create the colour patterns certain genetically determined cells, called melano-
blasts, migrate over the surface of the embryo and become specialised pigment cells,
called melanocytes, which lie in the basal layer of the epidermis. Hair colour comes
from the melanocytes generating melanin, within the hair follicle, which then passes
into the hair. The book by Prota (1992) discusses the whole processs of melanogenesis.
As a result of graft experiments, it is generally agreed that whether or not a melanocyte
produces melanin depends on the presence of a chemical although we still do not yet
know what it is. In this way the observed coat colour pattern reflects an underlying
chemical prepattern, to which the melanocytes are reacting to produce melanin.
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For any pattern formation mechanism to be applicable the scale of the actual size
of the patterns has to be large compared to the cell diameter. For example, the number
of cells in a leopard spot, which, at the time of laying down the pattern, is probably
of the order of 0.5 mm, that is, of the order of 100 cells. Since we do not know what
reaction diffusion mechanism is involved, and since all such systems are effectively
mathematically equivalent as we saw in the previous chapter, all we need at this stage
is a specific system to study numerically. Solely for illustrative purposes Murray (1980,
1981a) chose the Thomas (1975) system, the kinetics of which is given in (2.5) in the
last chapter: it was chosen because it is a real experimental system with parameters as-
sociated with real kinetics. There are now several others equally reasonable to use, but
until we know what the patterning mechanism is it suffices for our study. The nondi-
mensional system is given by (2.7) with (2.8), namely,

0 0

a—l: =vf(u,v)+ Vzu, B_II) = yg(u,v) +dV*y

f,v)=a—u—h(,v), gu,v)=ab-v)—nh@u,v) (3.1
PUY

hu,v) = ———.

(@, v) 14+u+ Ku?

Here a, b, a, p and K are positive parameters. The ratio of diffusion coefficients, d,
must be such that d > 1 for diffusion-driven instability to be possible. Recall from the
last chapter that the scale factor y is a measure of the domain size.

With the integument of the mammalian embryo in mind the domain is a closed
surface and appropriate conditions for the simulations are periodic boundary conditions
with relevant initial conditions—random perturbations about a steady state. We envisage
the process of pattern formation to be activated at a specific time in development, which
implies that the reaction diffusion domain size and geometry is prescribed. The initiation
switch could, for example, be a wave progressing over the surface of the embryo which
effects the bifurcation parameter in the mechanism which in turn activates diffusion-
driven instability. What initiates the pattern formation process, and how it is initiated,
are not the problems we address here. We consider only the pattern formation potential
of the mechanism, to see whether or not the evidence for such a system is borne out,
when we compare the patterns generated by the mechanism and observe animal coat
markings with similar geometrical constraints to those in the embryo.

In Sections 2.4 and 2.5 in the last chapter we saw how crucially important the scale
and geometry of the reaction diffusion domain were in determining the actual spatial
patterns of morphogen concentration which start to grow when the parameters are in
the Turing space where the system is diffusionally unstable. Refer also to Figures 2.8
and 2.9. (It will be helpful in the following to have the analysis and discussions in
Sections 2.1-2.6 in mind.)

To investigate the effects of geometry and scale on the type of spatial patterns gen-
erated by the full nonlinear system (3.1) we chose for numerical simulation a series of
two-dimensional domains which reflect the geometric constraints of an embryo’s in-
tegument.

Let us first consider the typical markings found on the tails and legs of animals,
which we can represent as tapering cylinders, the surface of which is the reaction diffu-
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sion domain. From the analysis in Sections 2.4 and 2.5 when the mechanism undergoes
diffusion-driven instability, linear theory gives the range of unstable modes, k2, in terms
of the parameters of the model system: in two space dimensions with the domain defined
by 0 <x < p,0 <y < g, these are given by (2.43) as

n2 2

yL:k%<k2=n2<?+’Z—2><k%=yM, (3.2)

where L and M are functions only of the kinetics parameters of the reaction diffusion
mechanism. With zero flux boundary conditions, the solution of the linear problem in-
volves exponentially growing modes about the uniform steady state, and is given by
(2.43) as

2 2
Z Com exp[A(k?)t] cos I7X cos mny7 where k? = 72 <n_ + m_) . @33
n,m p q

P’ q°

where the C are constants which are obtained from a Fourier series of the initial condi-
tions (they are not needed here) and summation is over all pairs (n, m) satisfying (3.2).

Now consider the surface of a tapering cylinder of length s with 0 < z < s and
with circumferential variable g. The linear eigenvalue problem equivalent to that in
(2.41) requires the solutions W(@, z; r) of

VAW + E*W =0, (3.4

with zero flux conditions at z = 0 and z = s and periodicity in 8. Since we are only
concerned here with the surface of the tapering cylinder as the domain, the radius of
the cone, r, at any point is essentially a ‘parameter’ which reflects the thickness of the
cylinder at a given z. The equivalent solution to (3.3) is

m I’l2 I’I’l27T2

ZC"”” exp[k(kz)t] cos(n) cos T[Z, where k% = S+
ot s r s

(3.5)

where the summation is over all pairs (n, m) satisfying the equivalent of (3.2); namely,

2 2.2

L=k <k <> + 2
L=k <k <547

<k =yM. (3.6)
Note that r appears here as a parameter.

Now consider the implications as regards the linearly growing spatial patterns,
which we know for simple patterns usually predict the finite amplitude spatial pat-
terns which are ultimately obtained. If the tapering cylinder is everywhere very thin this
means r is small. This in turn implies that the first circumferential mode with n = 1,
and all others with n > 1, in (3.5) lie outside the unstable range defined by (3.6). In this
case the unstable modes involve only z-variations. In other words it is equivalent to the
one-dimensional situation with only one-dimensional (stripe) patterns as in Figure 2.8;
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Figure 3.2. Computed solutions of the nonlinear reaction diffusion system (3.1) with zero flux boundary con-
ditions and initial conditions taken as random perturbations about the steady state. The dark regions represent
concentrations in the morphogen u above the steady state ug. Parameter values « = 1.5, K = 0.1, p = 18.5,
a =92, b = 64 (these imply a steady state uy = 10, vy = 9),d = 10. With the same geometry, in (a) the scale
factor y = 9 and in (b) y = 15. Note how the pattern bifurcates to more complex patterns as y increases.
In (c) the scale factor y = 25 and a longer domain is used to illustrate clearly the spot-to-strip transition:
here the dark regions have u < uy. (d) Typical tail markings from an adult cheetah (Acinonyx jubatis). (e)
Typical adult jaguar (Panthera onca) tail pattern. (f) Prenatal (but just prenatal) tail markings in a male genet
(Genetta genetta). (After Murray 1981a,b) (g) Typical markings on the tail of an adult leopard. Note how far
down the tail the spots are with only a few stripes near the tip. See also the photograph in Figure 3.1(a) where
the leopard’s tail is conveniently draped so as to demonstrate this trait clearly. The prenatal leopard tail is very
much shorter and shows why the adult pattern is as shown. (h) A common genet (Genetta genetta) showing
the distinctly striped tail emerging from a spotted body. (Photograph courtesy of Dr. Hans Kruuk)
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see also Figure 3.2(a). If, however, r is large enough near one end so that n # 0 is in
the unstable range defined by (3.6), 6-variations appear. We thus have the situation in
which there is a gradation from a two-dimensional pattern in z and 6 at the thick end to
the one-dimensional pattern at the thin end. Figure 3.2 shows some numerically com-
puted solutions (using a finite element procedure) of (3.1) for various sizes of a tapering
domain. In Figures 3.2(a) and (b) the only difference is the scale parameter y, which
is the bifurcation parameter here. In fact, in all the numerical simulations of the non-
linear system (3.1) reproduced in Figures 3.2 to 3.4, the mechanism parameters were
kept fixed and only the scale and geometry varied. Although the bifurcation parameter
is scale (), geometry plays a crucial role.

The tail patterns illustrated in Figure 3.2 are typical of many spotted animals, par-
ticularly the cats (Felidae). The cheetah, jaguar and genet are good examples of this
pattern behaviour. In the case of the leopard (Panthera pardus) the spots almost reach
the tip of the tail, whereas with the cheetah there is always a distinct striped part and
the genet has a totally striped tail. This is consistent with the embryonic tail structure of
these animals around the time we suppose the pattern formation mechanism is operative.
The genet embryo tail has a remarkably uniform diameter which is relatively quite thin;
in the photograph of the fully grown genet in Figure 3.2(h) the hair is typically fluffed
up. The prenatal leopard tail sketched in Figure 3.2(g) is sharply tapered and relatively
short; the adult leopard tail (see Figures 3.1(a) and 3.2(g)) is long but it has the same
number of vertebrae. Thus the fact that the spots go almost to the tip is consistent with
a rapid taper, with stripes, often incomplete, only appearing at the tail tip, if at all. This
postnatal stretching is also reflected in the larger spots farther down the tail as compared
to those near the base or the body generally; refer to Figures 3.1(a) and 3.2(g).

Consider now the typical striping on the zebra as in Figures 3.1(b) and 3.3(a) and
(b). From the simulations reproduced in Figure 3.2(a) we see that reaction diffusion
mechanisms can generate stripes easily. Zebra striping was investigated in detail by Bard
(1977) who argued that the pattern was laid down around the 3rd to 5th week through
gestation. He did not discuss any actual patterning mechanism but from the results in
this section this is not a problem. The different species of zebra have different stripe
patterns and he suggested that the stripes were therefore laid down at different times in
gestation. Figure 3.3 shows the hypothesised patterning on embryos at different stages
in gestation and schematically shows the effect of growth.

By noting the number of adult stripes, and how they had been distorted by growth
if laid down as a regular stripe array, Bard (1977) deduced that the distance between
the stripes when they were laid down was about 0.4 mm. He also deduced the time in
gestation when they were created. Figure 3.3(c), with pattern distortion with growth as
shown in Figure 3.3(d) and (e), is consistent with the stripe pattern on the zebra Equus
burchelli as in Figure 3.3(b); see also the photograph in Figure 3.1(b). Grevy’s zebra,
Equus grevyi, in Figure 3.3(a) has many more stripes and these are laid down later in
gestation, around 5 weeks, as in Figure 3.3(e) where again they are taken to be 0.4-mm
apart.

If we now look at the scapular stripes on the foreleg of zebras as illustrated in Fig-
ure 3.4(a), we have to consider an actual pattern formation mechanism as was done by
Murray (1980, 1981a,b). Here we see that the mathematical problem is that of the junc-
tion between a linear striped domain joined at right angles to another striped domain;
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Figure 3.3. Typical zebra patterns: (a) Equus grevyi; (b) Equus burchelli. Proposed strip pattern 0.4 mm apart
superimposed on two zebra embryos: (¢) 12 day embryo; (d) The effect of 3—4 days of the pattern in (c). (e)
A similar stripe pattern laid down on a 5 week old embryo. ((¢)—(e) redrawn after Bard 1977)

Figure 3.4(b) is the pattern predicted by the reaction diffusion mechanism for such a
domain. The experimentally obtained pattern displayed below in Figure 3.8(e) confirms
this mathematical prediction.

The markings on zebras are extremely variable yet remain within a general stripe
theme. Animals which are almost completely black with lines of white spots as well as
those almost completely white have been seen (see, for example, Kingdon 1979). We
come back to the question of pattern abnormalities below in Section 3.2 on coat marking
teratologies.

If we now consider the usual markings on the tiger (Felis tigris) as in Figure 3.1(d)
we can see how its stripe pattern could be formed by analogy to the zebra. The gestation
period for the tiger is around 105 days. We anticipate the pattern to be laid down quite
early on, within the first few weeks, and that the mechanism generates a regularly spaced

Scapular
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Figure 3.4. (a) Typical examples of scapular stripes on the foreleg of zebra (Equus zebra zebra). (b) Predicted
spatial pattern from the reaction diffusion mechanism: see also Figure 3.8(e). (After Murray, 1980, 1981a)
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stripe pattern at that time. Similar remarks to those made for the zebra regarding growth
deformation on the stripe pattern equally apply to tiger stripes. Many tigers show similar
distortions in the adult animal.

Let us now consider the giraffe, which is one of the largest animals that still exhibits
a spotted pattern. Figure 3.5(a) is a sketch of a giraffe embryo 35 to 45 days old; it
already has a clearly recognizable giraffe shape, even though the gestation period is
about 457 days. The prepattern for the giraffe coat pattern has almost certainly been laid
down by this time. Figure 3.5(b) is a sketch of typical neck markings on the reticulated
giraffe. Figures 3.5(c)—(e) are tracings, on approximately the same scale, of trunk spots
from the major giraffe species. Figure 3.5(f) shows a typical pattern computed from the
mechanism (3.1) with the same kinetics parameter values as for Figure 3.2.

lcm

(e) ~ ' (g)

Figure 3.5. (a) Giraffe (Giraffa camelopardis): 35—45-day embryo. (b) Typical neck spots on the reticulated
giraffe (Giraffa camelopardis reticulata). (¢)—(e) Tracings (after Dagg 1968) of trunk spots (to the same scale)
of giraffe, Giraffa camelopardis (c) rothschildi, (d) reticulata, (e) tippelskirchi. (f) Spatial patterns obtained
from the model mechanism (3.1) with kinetics parameter values as in Figure 3.2. (g) Spatial pattern obtained
when a lower threshold than in (f) is considered to initiate melanogenesis in the same simulations which gave
(f). (From Murray 1981b, 1988)
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We arbitrarily chose the homogeneous steady state as the threshold for melanocytes
to produce melanin, represented by the dark regions in the figure. It is possible, of
course, that the threshold which triggers melanogenesis is either lower or larger than
the homogeneous steady state. For example, if we choose a lower threshold we get a
different pattern: Figure 3.5(g) is an example in which we chose a lower threshold in
the simulations which gave Figure 3.5(f). This produces larger areas of melanin. We
can thus see how the markings on different species of giraffe could be achieved simply,
if the melanocytes are programmed to react to a lower morphogen concentration. The
giraffe photographs in Murray (1988) illustrate this particularly clearly.

The dramatic effect of scale is clearly demonstrated in Figure 3.6 where only the
scale varies from one picture to the other—as indicated by the different values for y. It
is not suggested that this is necessarily the typical shape of the integument at the time
of prepattern formation; it is only a nontrivial specimen shape to illustrate the results
and highlight the striking effect of scale on the patterns generated. If the domain size
(y) is too small, then no spatial pattern can be generated. We discussed this in detail in
the last chapter, but it is clear from the range of unstable modes, m and n in (3.6), for
example. With a small enough domain, that is, small enough y, even the lowest nonzero
m and n lie outside the unstable range. This implies that in general very small animals
can be expected to be uniform in colour; most of them are. As the size increases, y

» @ )

Figure 3.6. Effect of body surface scale on the spatial patterns formed by the reaction diffusion mechanism
(3.1) with parameter values @ = 1.5, K = 0.125, p = 13, a = 103, b = 77 (steady state ug = 23, vy = 24),
d = 7. Domain dimension is related directly to y. From top to bottom, left to right, the y-values are: y < 0.1;
y =05y =25,y = 250; y = 1250; y = 3000; y = 5000. The same size shape was used for all
simulations. The variable size here is for illustrative purposes. (From Murray 1988 based on Murray 1980,
1981a)
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Figure 3.7. Examples of the simplest coat patterns found in animals: (a) ratel or honey badger (Mellivora
capensis). (b) Adult Valais goat (Capra aegragrus hircus). (After Herdn 1976). (¢) Young Valais goat. (Pho-
tograph courtesy of Avi Baron and Paul Munro)

passes through a series of bifurcation values and different spatial patterns are generated.
However, for very large domains as in the last figure in Figure 3.6, the morphogen
concentration distribution is again almost uniform: the structure is very fine. This might
appear, at first sight, somewhat puzzling. It is due to the fact that for large domains, large
y, the linearly unstable solutions derived from (3.3) have the equivalent of large m and
n, which implies a very fine scale pattern; so small, in fact, that essentially no pattern
can be seen. This suggests that most very large animals, such as elephants, should be
almost uniform in colour, as indeed most are.

Consider now the first bifurcation from a uniform coat pattern as implied by the
second figure in Figure 3.6: Figures 3.7(a)—(c) are sketches and a photograph of two
striking examples of the half-black, half-white pattern, namely, the ratel, or honey bad-
ger, and the Valais goat. The next bifurcation for a longer and still quite thin embryo
at pattern formation is elegantly illustrated in Figure 3.7(d) below which relates to the
third pattern in Figure 3.6. Figure 3.7(e) below is another example of this latter pattern
in the Belted Galloway cows, common in South Scotland (where I grew up) where they
are known as ‘belties.’

In all the numerical simulations with patterns other than the simplest, such as the
first three in Figure 3.6, the final patterns were dependent on the initial conditions.
However, for a given set of parameters, geometry and scale, the patterns for all initial
conditions are qualitatively similar. From the point of view of the applicability of such
mechanisms for generating animal coat patterns, this dependence on initial conditions is
a very positive attribute of such models. The reason is that the initial random conditions
for each animal are unique to that animal and hence so is its coat pattern, but each lies
within its own general class. So, all leopards have a spotted pattern yet each has a unique
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(d)

Figure 3.7. (continued) (d) The next pattern bifurcation is dramatically and elegantly illustrated in an early
19th century print of the anteater (Tumandua tetradactyl) and in (e) of Galloway belted cows in South Scot-
land.(Photograph by Allan Wright, Castle Douglas, Scotland and reproduced with permission)

distribution of spots. On tigers and zebras, for example, the stripe patterns can be quite
diverse while still adhering to a general theme.

Although we have considered only a few specific coat markings (see Murray 1981a,
b, 1988 for further discussion) we see that there is a striking similarity between the
patterns that the model generates and those found on a wide variety of animals. Even
with the restrictions we imposed on the parameters for our simulations the wealth of
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possible patterns is remarkable. The patterns depend strongly on the geometry and scale
of the reaction domain although later growth may distort the initial pattern.

To summarise we hypothesise that almost all animal coat patterns can be gener-
ated by a single mechanism. Any reaction diffusion mechanism capable of generating
diffusion-driven spatial patterns would be a plausible model. The pattern which evolves
is determined at the time the mechanism is activated since this relates directly to the
geometry and scale of the embryo’s integument. The time of the activation wave (such
as that illustrated in Figure 2.15(d)), or activation switch, is inherited. With most small
animals with short gestation periods we would expect uniformity in color, which is
generally the case. For larger surface integument at the time of activation, the first bifur-
cation produces patterns where animals can be half black and half white; see Figure 3.7.
For progressively larger domains at activation more and more pattern structures emerge,
with a progression through certain anteaters, zebras, on to the large cats and so on. The
simpler patterns are remarkably stable; that is, they are quite insensitive to conditions
at the time the mechanism is activated. At the upper end of the size scale we have more
variability within a class as in the close spotted giraffes. As mentioned we expect very
large animals to be uniform in colour again, which indeed is generally the case, with
elephants, rhinoceri and hippopotami being typical examples.

As mentioned above, we expect the time of activation of the mechanism to be in-
herited and so, at least in animals where the pattern is important for survival, pattern
formation is initiated when the embryo is a given size. Of course, the conditions on
the embryo’s surface at the time of activation naturally exhibit a certain randomness
which produces patterns which depend uniquely on the initial conditions, the geometry
and the scale. A very important aspect of this type of mechanism is that, for a given
geometry and scale, the patterns found for a variety of random initial conditions are
qualitatively similar. For example, with a spotted pattern it is essentially only the distri-
bution of spots which varies. The resultant individuality is important for both kin and
group recognition. Where the pattern is of little importance to the animal’s survival, as
with domestic cats, the activation time need not be so carefully controlled and so pattern
polymorphism, or variation, is much greater.

It is an appealing idea that a single mechanism could generate all of the observed
mammalian coat patterns. Reaction diffusion models, cell-chemotaxis models and the
powerful mechanochemical models discussed later in Chapter 6 have many of the at-
tributes such a pattern formation mechanism must have. The latter in fact have a pattern
generation potential even richer than that of reaction diffusion mechanisms. The con-
siderable circumstantial evidence which comes from comparing the patterns generated
by the model mechanism with specific animal pattern features is encouraging. The fact
that many general and specific features of mammalian coat patterns can be explained by
this simple theory does not, of course, mean that it is correct, but so far they have not
all been explained satisfactorily by any other general theory. The above results never-
theless support a single all-encompassing mechanism for pattern formation for animal
coat markings.

As an interesting mathematical footnote, the initial stages of spatial pattern for-
mation by reaction diffusion mechanisms (when departures from uniformity are small)
poses the same type of mathematical eigenvalue problem as that describing the vibra-
tion of thin plates or drum surfaces. The vibrational modes are also governed by (3.4)
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except that W now represents the amplitude of the vibration. So, we can highlight ex-
perimentally how crucial geometry and scale are to the patterns by examining analogous
vibrating drum surfaces. If the size of the surface is too small it will simply not sustain
vibrations; that is, the disturbances simply die out very quickly. Thus a minimum size is
required before we can excite any sustainable vibration. If we consider a domain similar
to that in Figure 3.6 for the drum surface, which in our model is the reaction diffusion
domain, we get a set of increasingly complicated modes of possible vibration as we
increase the size.

Although it is not easy to use the same boundary conditions for the vibrations that
we used in the reaction diffusion simulations, the general features of the patterns exhib-
ited must be qualitatively similar from mathematical considerations. The equivalent of
y in the vibrating plate problem is the frequency of the forcing vibration. So, if a pattern

Figure 3.8. Sequence of time-average holographic interferograms on a plate excited by sound waves of in-
creasing frequency from (a) to (d). The vibrational patterns are broadly in line with the patterns shown in
Figure 3.6. Increasing frequency is equivalent to vibration at a constant frequency and increasing the plate
size. (e) This shows vibrations very similar to the predicted pattern in Figure 3.4(b) while in (f) the spot-to-
stripe transition in a tapering geometry is clearly demonstrated. (From Xu et al. 1983)
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Figure 3.8. (continued)

forms on a plate vibrating at a given frequency then the pattern formed on a larger but
similar plate is the same as on the original plate vibrated at a proportionally larger fre-
quency. According to linear vibration theory, a doubling of the plate size, for example,
is equivalent to keeping the original plate size and doubling the frequency. These ex-
periments were carried out for geometries similar to those in Figures 3.2(c), 3.4 and 3.6
and the results are shown in Figure 3.8 (see Xu et al. 1983 for further details).

3.2 Teratologies: Examples of Animal Coat Pattern Abnormalities

The model we have discussed above offers possible explanations for various pattern
anomalies on some animals. Under certain circumstances a change in the value of one
of the parameters can result in a very marked change in the pattern obtained. An early
activation, for example, in a zebra would result in an all black animal. A delay in acti-
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vating the mechanism would give rise to spots on the underlying black field. Examples
of both of these have been observed and recorded, for example, by Kingdon (1979).

Whether a parameter change affects the pattern markedly depends on how close
the parameter value is to a bifurcation value (recall Figure 2.14 and the discussion in
Section 2.5). The fact that a small change in a parameter near a bifurcation boundary can
result in relatively large changes in pattern has important implications for evolutionary
theory as we show later in Chapter 7.

Disruption of the usual patterning mechanism can clearly be effected by a change
in the timing of the pattern formation mechanism or of any of the parameters involved
in the process. There are many such examples of coat pattern teratologies. For example,
a delay in the pattern formation mechanism in the case of the zebra, say, would result
in the animal being more spotted than striped since the domain is larger at the time of
pattern generation. Such pattern aberrations in the past have frequently given rise to a
‘new’ species. Since we do not know how most patterns are formed in development it
is not surprising that the discovery of some unusual coat pattern could spawn a ‘new’
species. This was the case with a cheetah trapped in 1926 in the Umvukwe area in Zim-
babwe (Rhodesia as it then was) and which was reported to the Natural History Museum
in London and a photograph of it published in the English magazine The Field in 1927.
Figure 3.9(a) is from a drawing of it from Pocock (1927; see also Ewer 1973). Pocock,
a distinguished biologist of the time, was so convinced that it was a new species of
cheetah (Acinonyx) based primarily on the coat pattern but also on other aspects of the
anatomy that he was convinced were different to the normal cheetah (claw length etc.),
that he declared it a new species and called it Acinonyx rex. With our knowledge of
how only a small variation in the timing of the mechanism which generates the spatial
pattern on animal coats could result in major variations, it seems likely that this is what
happened in this case. Figure 3.9(b) is a recent photograph, from South Africa, of a sim-
ilar kind of coat pattern abnormality on a cheetah. Interestingly Pocock comments that
it is unusual that there are so few other examples of this new species, which of course,
adds support to the theory that it is only a slight change in the patterning mechanism
which is responsible for the pattern aberration. There are, in fact, few cases of relatively
stable polymorphic forms.

It is interesting that the abnormal coat patterns in both animals in Figure 3.9 are
quite similar with stripes down the back and spots appearing towards the belly. We can
envisage how such a pattern could have arisen. If the above mechanism for generating
coat patterns obtains (or an equivalent one which is geometry and scale-dependent in a
similar way) then the mechanism was probably activated at an earlier time in gestation
when the embryo was considerably smaller than the size at the normal activation time.
The pattern in such circumstances would be less complex and the possibility of stripe
formation would be more likely. Later in Chapter 6 we shall see that many patterns,
such as the precursors of hair on the back of animals, spread out laterally from the
dorsal midline. This is also probably the scenario in more complex animal coat pattern
formation. In this way if the time for the mechanism to form pattern is comparable in the
normal and abnormal animals, complex (spot-like) patterns will form where the domain
becomes sufficiently large to sustain them and become more like the usual spots on a
cheetah. In both cases however, the spots are less distinct and much larger, also as we
would expect.
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Figure 3.9. (a) A drawing of the coat pattern abnormality found on a cheetah in Zimbabwe in 1926. It was
originally thought to be a hybrid between a cheetah and a leopard but then it was decided that it was a new
species and was called Acynonix rex. (From Pocock 1927) (b) A recent photograph of such a cheetah in the
Kruger National Park in South Africa. (Photograph by Anthony Bannister, reproduced with permission of
ABPL Image Library, Parklands, South Africa)

There are some other interesting examples of mechanism disruption in animal coat
pattern formation. Figure 3.10 is a photograph of a zebra which is almost totally black,
which is clearly the default colour and so zebras are therefore black animals with white
stripes rather than white animals with black stripes.?

2In a small not very serious survey I have taken over a number of years, when an audience is asked whether
they think a zebra is a black animal with white stripes or the converse, with surprising unanimity black people
say it is a black animal with white stripes with white people saying the opposite.
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Figure 3.10. A photograph of a coat pattern teratology in the case of a zebra Equus burchelli taken in the
Kruger National Park in South Africa.

In this case since the default colour of the zebra is black a possible explanation
is that the mechanism could have been activated at the usual time in gestation but its
time for pattern formation was curtailed thus giving rise to poorly formed and very thin
stripes. The zebra seemed in all other respects normal except that it clearly knew it was
different and was somewhat of a social outcast, spending most of its time on the edge
of the group.

Another example of pattern disruption is that of the zebra-like striped sheep as
shown in Figure 3.11 that appeared in a flock of sheep in Australia. The default colour
of sheep used to be black but they were bred out of the flocks because the white fleece
was more desirable.3 Here the mechanism of pattern formation is, in a sense, to make the
sheep white in which case the embryo at the time the ‘pattern’ is laid down is small so
that a uniform colour is obtained. If the embryo is larger when the mechanism operates
it produces spatial patterns in the form of stripes.

In relation to the default colour in sheep being black, in an article in Nature in
1880, Charles Darwin noted: ‘the appearance of dark-coloured or piebald sheep is due
to a reversion to the primeval colouring of the species’—a tendency ‘most difficult to
eradicate, and quickly to gain in strength if there is no selection.” He went on to quote

3T was told by an Australian friend and colleague, who went to school with the man in the photograph, that
there was enormous interest by people wanting to buy the fleece of this striped sheep. Apparently the owner
has been trying to reproduce it by various mating strategies but, so far, without success. It would be interesting
to see if a ‘Dolly’-like clone would produce a similar but not, of course, exactly the same coat pattern.
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Figure 3.11. A photograph of a striped coat pattern teratology on a sheep in Australia. (Photograph repro-
duced with permission of The Canberra Times, Australia)

from a letter from a Mr. Sanderson which referred to the declining percentage of spot-
ted or black sheep due to the Australian woolgrowers’ selection which certainly speeds
up evolutionary development: ‘In the early days before fences were erected and when
shepherds had charge of very large flocks (occasionally 4000 and 5000) it was impor-
tant to have a few sheep easily noticed amongst the rest; and hence the value of a certain
number of black or partly black sheep, so that coloured lambs were then carefully pre-
served. It was easy to count ten or a dozen such sheep in a flock, and when one was
missing it was pretty safe to conclude that a good many had strayed with it, so that the
shepherd really kept count of his flock by counting the speckled sheep. As fences were
erected the flocks were made smaller and the necessity for having spotted sheep passed
away.

Perhaps all we can say, at this stage, about all of these mutations is that the mech-
anism of coat pattern formation has been disrupted. The tightness in the timing of ac-
tivation of the pattern formation mechanism is important in animals in the wild since
their survival is intimately tied up with their visual markings. The mechanism and its
genetic control are important hereditary traits, aberrations from which are generally less
successful, such as in the case of the black zebra in Figure 3.10. Where it is not impor-
tant we would expect considerably more variation. This is the case with markings on
domestic cats and dogs, for example.
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Figure 3.12. Examples of the varied and complex patterns on butterfly wings: (a) Stichophthalma camadeva.
(Photograph courtesy of H.F. Nijhout) (b) Dichorragia nesimachus. (¢) Basic groundplan of the pattern el-
ements in the forewing and backwings in the Nymphalids. (After Schwanwitsch 1924, Suffert 1927) The
letters denote: marginal bands (R), border ocelli (O), central symmetry bands (C), distal spots (D), basal
bands (B), wing root bands (W). The butterfly in (a) exhibits almost all of the basic pattern elements. The
arrowhead patterns in (b) pose a particular challenge to any pattern formation mechanism.

3.3 A Pattern Formation Mechanism for Butterfly Wing Patterns

The variety of different patterns, as well as their spectacular colouring, on butterfly and
moth wings is astonishing. Figures 3.12(a) and (b) show but two examples; see also
Figure 3.22 below. There are close to a million different types of butterflies and moths.*
The study of butterfly wing colours and patterns has a long history, often carried out by
gifted amateur scientists, particularly in the 19th century. In the 20th century there was
a burgeoning of scientific activity. A review of the major elements in lepidopteran wing

4With such a vast number of types it is not surprising that there is a vast number of interesting aspects
about their evolved social behaviour and reproduction. Andersson et al. (2000), in a recent study describe a
fascinating aspect of sexual cooperation in the pierid butterfly (Pieris napi) the implications of which would
be interesting to study from a modelling point of view. Traditional selection theory implies different selection
pressures on the male and female which give rise to sexual conflict. In these butterflies, however, there is a
remarkable cooperation between the male and female associated with mating. After mating they both share
a common interest in reducing harassment of the female by other males wanting to mate. Andersson et al.
(2000) found that the male, at mating, transfers a volatile anti-aphrodisiac which the female then emits when
courted by other males; it very quickly makes them lose interest. This anti-aphrodisiac is so strong that males
even avoid virgin females on which the aphrodisiac has been applied artificially.
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patterns is given by Nijhout (1978; see also 1985a, 1991) and French (1999). Sekimura
et al. (1998) review wing pattern formation from a different point of view, namely, at the
scale level. Although the spectrum of different wing patterns is at first sight bewildering,
Schwanwitsch (1924) and Suffert (1927) showed that in the case of the Nymphalids
there are relatively few pattern elements; see, for example, the review by Nijhout (1978).
Figure 3.12(c) shows the basic groundplan for the wing patterns in the Nymphalids;
each pattern has a specific name. In this section we discuss a possible model mechanism
for generating some of these regularly recurring patterns and compare the results with
specific butterfly patterns and experiments.

Broadly speaking two types of butterfly wing patterns have been studied, namely,
the gross colour patterns we discuss in this chapter, and the spacing patterns of cells
on the wings. These patterns are on two different spatial scales. In the former cell in-
teraction takes place over large distances while in the latter it is on the length scale
of the cells. Also in the latter, precursors of these scale cells spread in a monolayer
throughout the epidermis and migrate into rows approximately parallel to the body axis
about 50 p apart. Sekimura et al. (1999) developed a model for generating these paral-
lel rows of cells on lepidopteran wings based on differential origin-dependent cell adhe-
sion. Among other things they showed that biologically realistic cell adhesive properties
were sufficient to generate these rows and, in particular, in the right orientation.

As with the development of the coat patterns on mammals the patterns on the wings
of lepidoptera (butterflies and moths) appear towards the end of morphogenesis but
they reflect an underlying prepattern that was laid down much earlier. The prepattern
in lepidoptera is probably laid down during the early pupal stage or in some cases it
perhaps starts just before (Nijhout 1980a).

Here we describe and analyse a possible model mechanism for wing patterns pro-
posed by Murray (1981b). We apply it to various experiments concerned with the effect
on wing patterns of cautery at the pupal stage in the case of the ‘determination stream
hypothesis’ (Kuhn and von Engelhardt 1933), and on transplant results associated with
the growth of ocelli or eyespots (Nijhout 1980a) all of which will be described below.
As in the last section, a major feature of the model is the crucial dependence of the pat-
tern on the geometry and scale of the wing when the pattern is laid down. Although the
diversity of wing patterns might indicate that several mechanisms are required, among
other things we shall show here how seemingly different patterns can be generated by
the same mechanism.

As just mentioned, the formation of wing pattern can be made up by a combina-
tion of relatively few pattern elements. Of these, the central symmetry patterns (refer to
Figure 3.12(c)) are common, particularly so in moth wings, and roughly consist of mir-
ror image patterns about a central anterior—posterior axis across the middle of the wing
(see, for example, Figure 3.12(a)). They were studied extensively by Kuhn and von
Engelhardt (1933) in an attempt to understand the pattern formation on the wings of the
small moth Ephestia kuhniella. They proposed a phenomenological model in which a
‘determination stream’ emanates from sources at the anterior and posterior edges of the
wing and progresses as a wave across the wing to produce anterior—posterior bands of
pigment; see Figure 3.13(b). They carried out microcautery experiments on the pupal
wing and their results were consistent with their phenomenological hypothesis. Work by
Henke (1943) on ‘spreading fields’ in Lymantria dispar (see Figure 3.15(g)) also sup-
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Figure 3.13. (a) Forewing of a generalised lepidopteran with the basic venation nomenclature: A, anal; Cu
cubitus; M, media; R, radius; Sc, subcostal; D, distal. The regions between veins are wing cells. Dotted lines
represent veins that exists at the pupal state, but later atrophy. (b) Hypothesised ‘determinations stream’ for
central symmetry pattern formation (after Kuhn and von Engelhardt 1933). (¢) Idealised pupal wing with A
and P the anterior and posterior sources of the determination stream (morphogen). (d) Schematic representa-
tion of the right pupa wing approximately 6-12 hours old (after Kuhn and von Engelhardt 1933). (e) Schematic
cross section through the wing vertically through the cauterised region, showing the upper and lower epithelia
and veins. (After Kuhn and von Engelhardt 1933)

ports this hypothesis. The results from the model mechanism discussed in this section
will also be related to his experiments. The model relies on scale-forming stem cells in
the epithelium reacting to underlying patterns laid down during the pupal or just prepu-
pal stage. Goldschmidt (1920) suggested that primary patterns may be laid down before
the pattern is seen; this seems to be borne out by more recent experimental studies.
Eyespots or ocelli are important elements in many butterfly wings; see the ex-
amples in Figure 3.12(a). Nijhout (1980a,b) presents evidence, from experiments on
the Nymphalid butterfly Precis coenia, that the foci of the eyespots are the influenc-
ing factors in their pattern formation. Carroll et al. (1994) and French and Brakefield
(1995) also discuss eyespot development with the latter paper dealing with the focal
signal. The foci generate a morphogen, the level of which activates a colour-specific
enzyme. Colour production, that is, melanogenesis, in Precis coenia involves melanins
which are not all produced at the same time (Nijhout 1980b). In another survey Sibatani
(1981) proposes an alternative model based on the existence of an underlying prepat-
tern and suggests that the ocellus-forming process involves several interacting variables.
These two models are not necessarily mutually exclusive since a ‘positional informa-
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tion” (Wolpert 1969) model relies on cells reacting in a specified manner to the concen-
tration level of some morphogen.

The cautery work of Kuhn and von Engelhardt (1933) suggests that there are at
least two mechanisms in the pattern formation in Ephestia kuhniella, since different
effects are obtained depending on the time after pupation at which the cauterization
occurs. There are possibly several independent pattern-formation systems operating, as
was suggested by Schwanwitsch (1924) and Suffert (1927). However, the same mech-
anism, such as that discussed here, could simply be operating at different times, which
could imply different parameter values and different geometries and scale to produce
quite different patterns. It would also not be unreasonable to postulate that the number
of melanins present indicates the minimum number of mechanisms, or separate runs of
the same mechanism.

Although the main reason for studying wing pattern in lepidoptera is to try to un-
derstand their formation with a view to finding a pattern generation mechanism (or
mechanisms), another is to show evidence for the existence of diffusion fields greater
than about 100 cells (about 0.5 mm), which is about the maximum found so far. With
butterfly wing patterns, fields of O (5 mm) seem to exist. From a modelling point of view
an interesting aspect is that the evolution of pattern looks essentially two-dimensional,
so we must again consider the roles of both geometry and scale. As in the last section
we shall see that seemingly different patterns can be generated with the same mecha-
nism simply by its activation at different times on different geometries and on different
scales.

Model Mechanism: Diffusing Morphogen—Gene Activation System

We first briefly discuss central symmetry patterns (see Figure 3.12(c)) since it is the
experimental work on these which motivates the model mechanism. These crossbands
of pigment generally run from the anterior to the posterior of the wings and are pos-
sibly the most prevalent patterns. Dislocation of these bands along wing cells, namely,
regions bounded by veins and a wing edge, can give rise to a remarkably wide variety
of patterns (see, for example, Nijhout 1978, 1991); Figure 3.12(a) displays a good ex-
ample. Figure 3.13(a) is a diagram of the forewing of a generalised lepidopteran, and
illustrates typical venation including those in the distal cell(D) where the veins later
atrophy and effectively disappear.

Khun and von Engelhardt (1933) carried out a series of experiments, using micro-
cautery at the pupal stage, to try to see how central symmetry patterns arose on the
forewing of the moth Ephestia khuniella. Some of their results are illustrated in Fig-
ures 3.15(a)—(c). They seem consistent with a ‘determination stream’ or wave emanat-
ing from sources on the anterior and posterior edges of the wing, namely, at A and P in
Figure 3.13(b). The front of this wave is associated with the position of the crossbands
of the central symmetry system. The work of Schwartz (1962) on another moth tends
to confirm the existence of such a determination wave for central symmetry systems.
Here we develop a possible mechanism, which we suggest operates just after pupation,
for generating this specific pattern (as well as others) and we compare the results with
experiment.

We assume that there are sources of a morphogen, with concentration S, situated
at A and P on the anterior and posterior edges of the wing, which for simplicity (not
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necessity) in the numerical calculations is idealised as shown in Figure 3.13(c) to be
a circular sector of angle 6 bounded by radii r; and r>. At a given time in the pupal
stage, which we assume to be genetically determined, a given amount of morphogen Sy
is released and it diffuses across the wing. The wing has an upper and lower epithelial
surface layer of cells and vein distribution such as illustrated in Figures 3.13(d) and (e).
The pattern on the upper and lower sides of the wing are determined independently.
As the morphogen diffuses we assume it is degraded via first-order kinetics. The dif-
fusion field is the wing surface and so we have zero flux boundary conditions for the
morphogen at the wing edges. The governing equation for the morphogen concentration
S(r, 0, 1) is then

BN 328 13S 13%S Xs 37
ar ~ O\ e e ’ G-D
where D(cm?s™!) is the diffusion coefficient and K(s~!) the degradation rate constant.

As § diffuses across the wing surface, suppose the cells react in response to the
local morphogen level, and a gene G is activated by S to produce a product g. We
assume that the kinetics of the gene product exhibits a biochemical switch behaviour
such as we discussed in Chapter 1, Volume I and in more detail in Chapter 6, Volume I
(note specifically Exercise 3): see also Figures 3.14(a) and (b). Such a mechanism can
effect a permanent change in the gene product level as we show. (A model, with similar

(@ )

e 92

(c)

Figure 3.14. (a) Biochemical switch mechanism with typical bistable kinetics such as from (3.12). The graph
shows y_]dg/dt against g for appropriate k1, ky, k3 and several values of S. The critical S is defined as
having two stable steady states for S < S, and one, like g = g3, for § > Sc. (b) Schematic behaviour of g
as a function of ¢ from (3.12) for various pulses of S which increase from S = 0 to a maximum Smax and
then decrease to S = 0 again. The lowest curve is for the pulse with the smallest Spax. The final stage of
g, for large time, changes discontinuously from g = 0 to g = g3 if Smax passes through a critical threshold
Sih (> Se¢). (€) Schematic solution, (3.16) below, for the morphogen S as a function of position r measured
from the release point of the morphogen.
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kinetics, in which the morphogen activates a colour-specific enzyme that depends on
the local morphogen level is another possible mechanism.) There are now several such
biochemically plausible switch mechanisms (see, for example, Edelstein 1972). It is not
important at this stage which switch mechanism we use for the gene product g, but, to
be specific we use a standard cubic-like form

d K
—g=K1S+ 28

dr m — Ksg, (3.8)

where the K ’s are positive parameters. Here g is activated linearly by the morphogen S,
by its own product in a nonlinear positive feedback way and linearly degraded propor-
tional to itself. g(¢; r, 6) is a function of position through S. It is easy to construct other
examples: a simple polynomial with three roots would suffice for the last two terms in
Figure 3.8.

The model involves Sy of morphogen released on the wing boundaries at A and
P as in Figure 3.13(c) in the idealised wing geometry we consider. The morphogen
satisfies (3.7) within the domain defined by

rn<r=<r, 0<6=<0, (3.9

and S satisfies zero flux boundary conditions. Sy is released from A(r = r4,0 = 6p)
and P(r = rp, 8 = 0) as delta functions at ¢+ = 0: initially S = 0 everywhere. We take
the gene product to be initially zero; that is, g(0; r, §) = 0. The appropriate boundary
and initial conditions for the mathematical problem are then

Sr,0,00=0, ri<r<ry, 0<6 <0,
S(rp,0,1) = Sod(1)  S(ra, 6o, 1) = Sod(#),

%:0, 0<0<6y, r=ry, r=rp, (3.10)
§=0, ry <r <rnr, 9:0, 9:90,

00

g(0;r,0) =0,

where 8(¢) is the Dirac delta function. Equations (3.7) and (3.8) with (3.10) uniquely
determine S and g for all # > O.

As always, it is useful to introduce nondimensional quantities to isolate the key
parameter groupings and indicate the relative importance of different terms in the equa-
tions. Let L(cm) be a standard reference length and a(cm), for example, r» — 1, a
relevant length of interest in the wing. Introduce dimensionless quantities by

a\?2 S r D
= | — s S*z—’ >k:—’ l‘*:—[’
v (L) So " a a?
3.11)
kL2 KL KL KL g
=D l_DTQ’ z—D—K4, 3= D g = s
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and the model system (3.7), (3.8) with (3.10) becomes, on dropping the asterisks for
notational simplicity,

9S _9*S  19S 1 0%S

9 _92 29 VS,
ot 8r2+r8r+r2892 v

(3.12)
dg kag?
2=y |kS+ —= —k = ;8.
r )’(1 +1+g2 38| =rf(gS)

The last equation defines f(g; S).

Recall, from the last section, the reason for introducing the scale parameter y,
namely, the convenience in making scale changes easier. If our ‘standard’ wing has
a = L, thatis, y = 1, then for the same parameters a similar wing but twice the size
hasa = 2L, thatis, y = 4, butit can be represented diagrammatically by the same-sized
figure as for y = 1. (Recall Figure 3.6 which exploited this aspect.)

The initial and boundary conditions (3.10) in nondimensional form are algebraical-
ly the same except that now

Srp,0,1) =68(t) S(ra,bp,t) =5(1). (3.13)

The switch and threshold nature of the gene kinetics mechanism in the second of
(3.12) can be seen by considering the schematic graph of y ~'dg/dt as a function of g,
as in Figure 3.14(a), for various constant values for S and appropriate k’s.

To determine a range of k’s in (3.12) so that the kinetics exhibit a switch mecha-
nism, consider first f(g; 0) from (3.12): refer also to the last figure. We simply require
vy~ ldg/dt = f(g;0) to have 2 positive steady states; that is, the solutions of

ky + (k3 — 4k3)'/2
2k,

f(g0)=0 = g=0, gi,g= (3.14)

must all be real. This is the case if k> > 2k3. For § > 0 the curve of f(g; S) is simply
moved up and, for small enough S, there are 3 steady states, two of which are stable.
The S-shape plot of y ~!dg/dt against g is typical of a switch mechanism.

Now suppose that at a given time, say, t = 0, g = 0 everywhere and a pulse of
morphogen S is released. It activates the gene product since with S > 0, dg/dt > 0
and so, at each position, g increases with time typically as in Figure 3.14(b), which are
curves for g as a function of time for a given S. If S never reaches the critical threshold
Sthn(> Sc), then as § decreases again to zero after a long time so does g. However,
if S exceeds Sc for a sufficient time, then g can increase sufficiently so that it tends,
eventually, to the local steady state equivalent to g3, thus effecting a switch from g = 0
to g = g3. That S must reach a threshold is intuitively clear. What is also clear is that
the detailed kinetics in the second of (3.12) are not critical as long as they exhibit the
threshold characteristics illustrated in Figure 3.14.

Even the linear problem for S posed by (3.12) with the relevant boundary and ini-
tial conditions (3.10) is not easily solved analytically in a usable form. We know S
qualitatively looks like that in Figure 3.14(c) with S reaching a different maximum at
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each r. Also for a given S(r, t) the solution for g has to be found numerically. The crit-
ical threshold Sy, which effects the switch is also not trivial to determine analytically;
Kath and Murray (1986) present a singular perturbation solution to this problem for fast
switch kinetics. Later, when we consider eyespot formation and what are called depen-
dent patterns, we shall derive some approximate analytical results. For central symmetry
patterns, however, we shall rely on numerical simulations of the model system.

Intuitively we can see how the mechanism (3.12), in which a finite amount of mor-
phogen Sy is released from A and P in Figure 3.13(c), can generate a spatial pattern in
gene product (or colour-specific enzyme). The morphogen pulse diffuses and decays as
it spreads across the wing surface, and as it does so it activates the gene G to produce g.
If over a region of the wing S > S;;, then g increases sufficiently from g = 0 to move
towards g3 so that when S finally decreases g continues to move towards g3 rather than
returning to g = 0. The growth in g, governed by (3.12), is not instantaneous and so
the critical Sy, is larger than S, in Figure 3.14(a). The coupling of the two processes,
diffusion and gene transcription, in effect introduces a time lag. Thus as the pulse of
morphogen diffuses across the wing as a quasi-wave (see Figure 3.14(c)), it generates
a domain of permanently nonzero values of g, namely, g3, until along some curve on
the wing, S has decreased sufficiently (S < S;,) so that g returns to g = O rather than
continuing to increase to g = g3. We are interested in determining the switched-on or
activated domain; Kath and Murray (1985) also did this for fast switch kinetics. We now
apply the mechanism to several specific pattern elements.

Central Symmetry Patterns; Scale and Geometry Effects; Comparison with
Experiments

We first consider how the model may apply to central symmetry patterns and specifically
to the experiments of Kuhn and von Engelhardt (1933). We assume that the morpho-
gen S emanates from morphogen sources at A and P on the wing edges, as in Fig-
ure 3.13(c). The morphogen ‘wave’ progresses and decays as it moves across the wing
until the morphogen level S is reduced to the critical concentration Sy, below which the
gene-activation kinetics cannot generate a permanent nonzero product level as described
above. Now relate the spatial boundary between the two steady state gene product levels,
the threshold front, with the determination front of Kuhn and von Engelhardt (1933).
The cells, which manifest the ultimate pigment distribution, are considered to react dif-
ferentially in the vicinity of this threshold front. The idea that cells react differentially
at marked boundaries of morphogen concentrations was also suggested by Meinhardt
(1986) in his model for the early segmentation in the fruit fly Drosophila embryo.

We require the ultimate steady state solution for the gene product g which requires
the solution of the full nonlinear time- and space-dependent problem (3.12) with (3.13)
and the dimensionless form of (3.10). The numerical results below were obtained using
a finite difference scheme. The main parameters that can be varied are the k’s and y. The
qualitative behaviour of the pattern formation mechanism and the critical roles played
by the geometry and scale can best be highlighted by choosing an appropriate set of
values for the parameters and keeping them fixed for all of the calculations. The results
are shown in Figures 3.12 to 3.15. The parameter values did not have to be carefully
selected. In all of the simulations the same amount of morphogen was released at the
sources A and P in the middle of the anterior and posterior wing edges.
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Figure 3.15. Effect of cauterization on the central symmetry pattern. (a)—(c) are from the experimental results
of Kuhn and von Engelhardt (1933) on the moth Ephestia kuhniella during the first day after the pupation:
(a) normal wing, (b) and (c) cauterised wings with the hole as indicated. (d) Idealised model normal wing in
which the ‘determination stream’ has come from morphogen sources at A and P on the anterior and posterior
wing edges: the hatched region represents a steady state nonzero gene product. (e), (f), (g) and (i) are computed
solutions from the model mechanism with cauterised holes as indicated. (h) Effect of cauterization, during
the first day after pupation, on the cross-bands of the forewing of Lymantria dispar. (After Henke 1943)
Simulation ‘experiments’ on the model for comparison; the correspondence is (a)—(d). (b)—(e), (¢)—(f), (g)-
(h). If cauterization removes the determination stream’s source of morphogen at the posterior edge, the pattern
predicted by the model is as shown in (i). Parameter values used in the calculation for (3.12) for the idealised
wing in Figure 3.13(c) for all of (d)—(g), and (i): k| = 1.0 = k3, kp = 2.1,k = 0.1, y = 160 and unit sources
of Satf = 0and 6§ = 0.25 radians, r| = 1, rp = 3. (From Murray 1981b)

Consider first the experiments on the moth Ephestia kuhniella: its wing is, in fact,
quite small, the actual size is about that of the nail on one’s little finger. Figure 3.15(a)
illustrates a normal wing with typical markings while Figures 3.15(b) and (c) show
the results of thermal microcautery (Kuhn and von Engelhardt 1933). Figure 3.15(d) is
the idealised normal wing: the shaded region is the residual nonzero gene product left
behind by the determination wave of morphogen.

When a hole, corresponding to thermal cautery, is inserted in the idealised wing
we assume that the morphogen level in the hole is zero. That is, we set S = 0 on the
hole boundary on the assumption that any morphogen which diffuses into the hole is
destroyed. The numerical results corresponding to the geometry of the experiments are
shown in Figures 3.15(e) and (f), which relate respectively to the experimental results in
Figures 3.15(b) and (c). Figure 3.15(g) is another example with a larger cauterization,
while Figure 3.15(h) is of a comparably cauterised wing of Lymantria dispar (Henke
1943). Figure 3.15(i) is the model’s prediction if cauterization removes the source of
morphogen at the posterior edge of the wing. No such experiments appear to have been
done to establish where the sources of the determination stream are.
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(@) A () A (c) A

Figure 3.16. Some effects of scale on spatial patterns generated by the mechanism (3.12) when morphogen
is released from sources at A and P. (a)—(c) have the same set of parameter values as in Figure 3.15, namely
k1 = 1.0 = k3, kp = 2.1, k = 0.1, with the wing defined by r{ = 1, rp, = 3, 6 = 1.0 radians, for different
domain sizes: (a) y = 2; (b) y = 6; (¢) y = 40. A wing with y = y2(> y}) has linear dimensions /y3/y|
larger than that with y = y;. The shaded region has a nonzero gene product. (d) Psodos coracina and (e)
Clostera curtula are examples of fairly common patterns on moth wings. (From Murray 1981b)

Let us now consider the effect of geometry and scale. Even with such a simple
model the variety of patterns that can be generated is quite impressive. For the same
values for the kinetics parameters k, k1, k2 and k3 in (3.12), Figures 3.16(a)—(c) illus-
trate, for a fixed geometry, some of the effects of scale on the spatial patterns. These,
of course, are qualitatively as we would expect intuitively. As mentioned above, cen-
tral symmetry patterns are particularly common in moth wings. Figures 3.16(d) and (e)
show just two such examples, namely, the chocolate chip (Psodos coracina) and black
mountain (Clostera curtula) moths respectively; compare these with Figures 3.16(a)
and (b).

The effect of geometry is also important and again we can intuitively predict its
general effect with this model when the morphogen is released at the same points on the
wing edges. The patterns illustrated in Figure 3.17 were obtained by simply varying the
angle subtended by the wing edges.

The comparison between the experimental results and the results from solving the
model system’s equations for appropriate domains is encouraging. The solutions gener-
ate a region where the morphogen has effected a switch from a zero to a nonzero steady
state for the gene product g. If the process were repeated with a different gene product
and with a slightly smaller morphogen release it is clear that we could generate a single
sharp band of differentiated cells.

Dependent Patterns

Consider now dependent patterns, which are also very common, in which pigment is
restricted to the vicinity of the veins. The pattern depends on the position in the wing
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Figure 3.17. Simple effects of geometry on the spatial patterns. The morphogen is released in the same way
as for Figure 3.16 with the same k-parameter values and a fixed scale parameter y = 10 withr; = 1,rp =3
taken for all simulations of (3.12). Geometry is changed by simply varying the angle, in radians, of the sector:
(@)0 =1.0;(b) 8 =0.975; (¢c) & = 0.95;(d) 0 = 0.9; (¢) 0 = 0.8; and (f) 6 = 0.5.

of the veins, hence the name for these patterns. Here we consider the morphogen to be
released from the boundary veins of the wing cells and so a nonzero gene product g is
created near the veins and it is this pattern which is reflected by the pigment-generating
cells. If we consider the wing cell to be modelled by the sector of a circle, just as the
wing in the situations discussed above, we now have the morphogen released all along
the cell boundaries except the outer edge. In this case if we consider the wing cell to
be very long so that the problem is quasi-one-dimensional we can derive, given S, an
analytical expression for the width of the gene product spatial pattern.

Consider the one-dimensional problem in which a given amount of morphogen is
released at x = 0. The idealised mathematical problem is defined by

s 92%s
— == — yks,
ot ox2 (3.15)

Sx,00=0,x>0, S0,t)=46@), S(oo,t)=0,

with solution

1 x2

S(x,t):wexp —]/kt—z , t > 0. (316)

This is qualitatively like that sketched in Figure 3.14(c). For a given x the maximum S,
Smax Say, is given at time ¢, where
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which on substitution in (3.16) gives

k 1/2
smax<x>=[ﬁ} CXP(‘@’ where z=(1+4ykx®)'?  (3.18)

Now, from the kinetics mechanism (3.12), Smax = Sy is the level which effects a switch
from g = 0to g = g3 in Figure 3.14(a). Substituting in (3.8) we can calculate the
distance x;;, from the vein where g = g3 and hence, in our model, the domain of a
specific pigmentation. Thus x;j, is the solution of
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An alternative form of the equation for x; is
1/2
S2 7w (zn — 1) 2 -1
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In dimensional terms, from (3.11), the critical distance x;;(cm) is thus given in terms of
the morphogen pulse strength Sy, the diffusion coefficient D(cm?s~!) and the rate con-
stant K (s~1). The role of the kinetics parameters in (3.12) comes into the determination
of the critical S;;. The analytical evaluation of S;;, when the gene-activation kinetics
is very fast is given by Kath and Murray (1986): it is a nontrivial singular pertubation
problem.

Let us now consider dependent patterns with the mechanism operating in a domain
which is an idealised wing cell with a given amount of morphogen released in a pulse
from the bounding veins: refer to Figure 3.18. From the above analysis we expect a
width of the nonzero gene product g on either side of the vein. As in the central sym-
metry patterns we expect geometry and scale to play major roles in the final pattern
obtained for given values of the model parameters, and we can now intuitively predict
the qualitative behaviour of the solutions.

Now apply the model mechanism (3.12) to the idealised wing cell with a given
amount, p, of morphogen released per unit length of the bounding veins (refer also
to Figure 3.13(a)). With the same parameter values as for Figures 3.16 and 3.17 the
equations were again solved using a finite difference scheme with zero flux conditions
along the boundaries after a pulse of morphogen had been released from the three edges
representing the veins. Figures 3.18(a) and (d) show examples of the computed solu-
tions with Figures 3.18(b) and (e) the approximate resulting wing patterns generated
on a full wing. The role of geometry in the patterns is as we would now expect. Fig-
ures 3.15(c) and (f) are specific, but typical, examples of the forewing of Troides hy-



3.3 Butterfly Wing Pattern Formation Mechanism 173

Figure 3.18. Examples of dependent patterns. (a), (d) computed patterns from the mechanism (3.12) for a
wing cell with parameter values: k = 0.1, k; = 1.0 = k3, ko = 2.1, y = 250 with the morphogen source
strength p in the anterior and posterior veins; (a) p = 0.075, (d) p = 0.015, and p = 0 on the cross veins. (b)
and (e) Schematic predicted pattern from the wing cell patterns in (a) and (d) applied to the generalised wing
of Figure 3.13(a): shaded regions have a nonzero gene product g. (¢) and (f) Specific examples of dependent
patterns on the forewing of two Papilionidae: (¢) Troides hypolitus, (f) Troides haliphron.

politus and Troides haliphron respectively. Such dependent patterns are quite common
in the Papilionidae.

Now consider scale effects. Figures 3.19(a) and (b) directly illustrate these sche-
matically when the veins are approximately parallel. Figures 3.19(c) and (d) show ex-
amples of the forewings of Troides prattorum and Iterus zalmoxis. The distance from
the vein of the pigmented pattern depends in a nonlinear way on the parameters and the
amount of morphogen released. If these values are fixed, the distance from the vein is
independent of scale. That is, the mechanism shows that the intravenous strips between
pigmented regions vary according to how large the wing cell is. This is in agreement
with the observations of Schwanwitsch (1924) and the results in Figure 3.19 exemplify
this.

These results are also consistent with the observation of Schwanwitsch (1924) on
Nymphalids and certain other families. He noted that although the width of intravenous
stripes (in our model the region between the veins where g = 0) is species-dependent,
the pigmented regions in the vicinity of the veins are the same size. In several species
the patterns observed in the distal cell (D in Figure 3.13(a)) reflect the existence of the
veins that subsequently atrophy; see Figures 3.18(c) and 3.19(c) of the forewing of the
female Troides prattorum.
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wing cells
{a) * (5)
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Figure 3.19. (a) and (b) Idealised wing cells based on the analytical solution (3.20) for the switched-on
domain. These clearly illustrate the effect of scale. The pattern (unshaded in this case) width is fixed for given
parameter values. (¢) and (d) Examples of dependent patterns from two Papilionidae: (¢) Troides prattorum;
(d) Iterus zalmoxis.

Eyespot or Ocelli Patterns

Eyespot patterns are very common; see, for example, Figure 3.12(a). Brakefield and
French (1995; see other references there) investigated the response to epidermal dam-
age on eyespot development, while Carroll et al. (1994) suggest that a gradient controls
gene expression and their association with eyespot determination in butterfly wings.
Nijhout (1980b) performed transplant experiments on the buckeye butterfly (Precis co-
enia) wherein he moved an incipient eyespot from one position on the wing to another
where normally an eyespot does not form. The result was that an eyespot formed at the
new position. This suggests that there is possibly a source of some morphogen at the
eyespot centre from which the morphogen diffuses outwards and activates the cells to
produce the circular patterns observed. So, once again it seems reasonable to investigate
the application of the above mechanism to some of these results.

We assume that the eyespot centre emits a pulse of morphogen in exactly the same
way as for the central symmetry patterns. The idealised mathematical problem for the
morphogen from the first of (3.12) in plane axisymmetric polar coordinates, with initial
and boundary conditions from (3.10) and (3.13), is

s %S _,dS
— =—+r  — —ykS,
ot ar2 or (3.21)

S(r,00=0,r >0, S(0,1)=68(), S(oo,t)=0.
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The solution is

1 2
S(r.1) = 7—exp |:—ykt _ :—t} L 1>0, (3.22)

which is like the function of time and space sketched in Figure 3.14(c).

As before we can calculate the size of the gene-activated region given the critical
threshold concentration Sy, (> S.) which effects the transition from g = 0 to g = g3 in
Figure 3.14(a). In exactly the same way as we used to obtain (3.20) the maximum Spax
for a given r from (3.22) is

vk .

e?, 2y1/2
2r(z — 1)

Smax = z= (14 ykr
and so the radius of the activated domain, r;, say, is given by the last equation with
Smax = St as

27 (zen — DSt

+1
o n[ vk

} =0, zm=+ykri)/2 (3.23)

Many eyespots have several concentric ring bands of colour. With the above expe-
rience we now know what the patterns will be when we solve the system (3.12) with
conditions that pertain to this eyespot situation. If, instead, we let the mechanism run
twice with slightly different amounts of morphogen released we shall obtain two sep-
arate domains which overlap. Figure 3.20(a) shows the numerical result of such a case
together with the predicted pattern in Figure 3.20(b) if an eyespot is situated in each
distal wing cell; an example of a specific butterfly which exhibits this result is shown in
Figure 3.20(c).

The simple model proposed in this section can clearly generate some of the major
pattern elements observed on lepidopteran wings. As we keep reiterating in this book,
this is not sufficient to say that such a mechanism is that which necessarily occurs. The
evidence from comparison with experiment is, however, suggestive of a diffusion based
model. From the material discussed in detail in Chapter 2 we could also generate such
patterns by appropriately manipulating a reaction diffusion system capable of diffusion-
driven pattern generation. What is required at this stage, if such a model mechanism is
indeed that which operates, is an estimation of parameter values and how they might
be varied under controlled experimental conditions. We thus consider how the model
might apply quantitatively to the experimental results of Nijhout (1980a) who measured
the diameter of a growing eyespot as a function of time; the results are reproduced in
Figure 3.21.

Let us now relate the model analysis to the experiments. The solution for S(r, t) is
given by (3.22). We want the value of r such that S = S;;,. Denote this by R; it is a
function of ¢. From (3.22) with § = S;; we have

1 R?
Sp= ——exp|—ykt — —|. >0
th 4meXp[ 4 (4:)} ~
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(a) Wing cell (b) Predicted (e) Myecalesis maura
ocellus: k=0.3 wing pattern (Satyridae)

(f) Taenaris domitilla
domitilla (Amathusidae)

(g) k=0.15 (h) k=0.1 (i) k=01

Figure 3.20. (a) A patterned eyespot generated within a wing cell by two emissions of morphogen each
with its own gene product. With the same parameter values, the dark region had less morphogen injected
than that with the shaded domain. The k-parameter values are as in Figure 3.12 to Figure 3.16 except for
k = 0.3. (b) The predicted overall wing pattern if an eyespot was situated in each wing cell with (¢) a typical
example (Mycalesis maura). (d) and (e) illustrate the effect of different degradation constants & which result in
coalescing eyespots with (f) an actual example (Taenaris domitilla). (g)—(i) demonstrate the effect of different
geometries.

which gives
R%(t) = —4t[ykt + In(4mtS;p)]. (3.24)

For comparison with the experiments we require the diameter d(= 2R) in dimensional
terms. We consider a single eyespot with the standard length a in the nondimensionali-
sation (3.11) to be the diameter of the control in the experiment. Since we are interested
in the growth of the eyespot to its normal size this means that L = a and hence y = 1.
Thus the time varying diameter d(¢) in Figure 3.21 is simply 2R(#) which, on using
(3.11) and (3.24) gives
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D = 4x10~% cm%s~! D =6x10"1%¢cmZs~!

60

e
<
T

[\
(=)
T

Eyespot diameter (% of control)

1 1 Il ! ! | 1

-1 0 1 2 3 4 ) 6 7
Days after pupation

Figure 3.21. The diameter of a growing eyespot in the buckeye butterfly (Precis coenia) as a function of time
after pupation. The experiments by Nijhout (1980a) were carried out at two different temperatures, 19°C and
29°C. The continuous curves are best fits from the analytical expression (3.25), which is derived from the
simple morphogen diffusion model, (3.21).

47 St D
d(t) = 16Dt {Kt +1n[M“

Soa? (3.25)

= —16Dt[Kt +Int + C],

where C = In[47 Sy, D/(Soaz)] is simply a constant and D(cm2s_1) and 7(sec) are now
dimensional. Note from (3.25) that

d(t) ~0(tInt]'?) as t— 0. (3.26)
The maximum diameter d,, is obtained in the same way as above for the gene-activated

domain size for dependent patterns, specifically (3.20). Here it is given by d,,, the solu-
tion of

12
z—1 Kd>
z+ln<2K>+C=0, Z=(1+4—Dm) . (3.27)

If we now use (3.25) and the experimental points from Figure 3.21, we can de-
termine D, k and C from a best fit analysis. From the point of view of experimental
manipulation it is difficult to predict any variation in the degradation constant K since
we do not know what the morphogen is. There is, however, some information as to how
diffusion coefficients vary with temperature. Thus, the parameter whose value we can
deduce, and which we can potentially use at this stage, is the diffusion coefficient D.
From the experimental results in Figure 3.21 and the best fit with (3.25), we obtained
values of D = 4 x 107 %cm?s™! at 29°C and D = 6 x 10~ %cm?s~! at 19°C. Al-
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though we cannot independently measure the diffusion coefficient of a morphogen that
we cannot yet identify, the order of magnitude of these values and how D varies with
temperature are not unreasonable.

From (3.25) we obtain the velocity of spread, v(t), of the eyespot as dd(t)/dt, and
SO

{[Kt +Int + Cl+1t(K + 1)}

t)=-2D 3.28
v(®) (—D1[Kt +1nt + CJ}1/2 (3-28)
from which we deduce that
Int 1/2
v(t) ~ 2 (—DHT) as 1 — 0. (3.29)

Nijhout (1980a) found the average wavespeed to be 0.27 mm/day at 29°C and 0.12
mm/day at 19°C. With the best fit values of the parameters, (3.28) gives the velocity of
spread as a function of ¢ with (3.29) showing how quick the initial growth rate is. With
the diffusion coefficient estimates deduced above, the ratio of the initial wavespeeds
from (3.29) at 29°C and 19°C is (D290 /D190)'/? = (4 x 1077/6 x 10719)1/2 ~ 2 58,
This compares favorably with the ratio of the average wavespeeds found experimentally,
namely, 0.27/0.12 = 2.25. This adds to the evidence for such a diffusion controlled
pattern formation mechanism as above.’

It is known that temperature affects colour patterns in animals; the colour change
that accompanies seasons is just one example. Etchberger et al. (1993) investigated (ex-
perimentally) the effect of temperature, carbon dioxide, oxygen and maternal influences
on the pigmentation on turtles (specifically Trachemys scripta elegans). They obtained
quantitative results and showed that carbon dioxide levels, for example, had a greater
impact than temperature on the hatchling patterns. They argued that the effects are not
on developmental time but on the actual pattern formation mechanisms. The problem
seems ripe for some interesting modelling.

If mechanisms such as we have discussed in this section are those which operate,
the dimension of the diffusion field of pattern formation is of the order of several mil-
limetres. This is much larger than those found in other embryonic situations. One reason
for assuming they do not occur is that development of pattern via diffusion would, in
general, take too long if distances were larger than a millimetre; over this time enough
growth and development would take place to imply considerable sensitivity in pattern
formation. In pupal wings, however, this is not so, since pattern can develop over a
period of days during which the scale and geometry vary little. With the experience

5Temperature has a marked effect on wing patterns in general. An amateur entomologist who lived near
us in Oxford regularly incubated butterfly pupae found in the woods. He was interested in their patterns
after subjecting them to cold shocks (he simply put them in the fridge for various periods) and developed a
remarkable intuition for what would happen as a consequence. Some years ago he found a pupa lying on the
ground the morning after a freak and very short snowfall in May: the pupa was lying so that the underside
was not touched by the snow. He incubated it and the butterfly (a fratillary) had one normal wing pattern with
the other highly irregular. He was astonished at the reaction he received when he exhibited it at a meeting of
amateur entomologists in London. Instead of fascination as expected there was general anger because it was
not possible for them to acquire such an example.
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from the last few chapters, the original misgiving is no longer valid since if we include
reaction diffusion mechanisms, not only can complex patterns be formed but biochemi-
cal messages can also be transmitted very much faster than pure diffusion. A final point
regarding eyespots is that the positioning of the centres can easily be achieved with reac-
tion diffusion models and the emission of the morphogen triggered by a wave sweeping
over the wing or by nerve activation or a genetic switch; we discuss neural models in
Chapter 12.

It is most likely that several independent mechanisms are operating, possibly at
different stages, to produce the diverse patterns on butterfly wings (Schwanwitsch 1924,
Suffert 1927). It is reasonable to assume, as a first modelling step, that the number of
mechanisms is the same as the number of melanins present. In the case of the Nymphalid
Precis coenia there are four differently coloured melanins (Nijhout 1980b).

With the relatively few pattern elements (in comparison with the vast and varied
number of patterns that exist) in Suffert’s (1927) groundplan, it seems worthwhile to
explore further the scope of pattern formation possibilities of plausible biochemical
diffusion models such as discussed here. Figure 3.22, however, shows a few more of
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Figure 3.22. Photographs of examples of butterfly wing patterns the formation of which has not yet been
modelled. (a) Crenidomimas cocordiae; (b) Hamanumida daedalus; (c) three examples from the genus
Cethosia. Note here the topological similarity of these three patterns from the elongated pattern on the left to
the much flatter form on the right. (Photographs courtesy of Professor H.F. Nijhout)
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the complex wing patterns which have yet to be generated with such reaction diffusion
mechanisms. By introducing anisotropy in the diffusion (that is, diffusion depends on
the direction) it is possible to generate further patterns which are observed, such as the
arrowhead in Figure 3.12(b) and in the last figure (cf. Exercise 10 in Chapter 2).

Perhaps we should turn the pattern formation question around and ask: ‘“What pat-
terns cannot be formed by such simple mechanisms?’” Some of the patterns on fish and
snakes fall into this category. In the next chapter we discuss some of these and the kind
of model modification sufficient to generate them. As a pattern generation problem, but-
terfly wing patterns seem particularly appropriate to study since it appears that pattern
in the wings is developed comparatively late in development and interesting transplant
experiments (Nijhout 1980a) and cautery-induced colour patterns (Nijhout 1985b) are
feasible, as are the colour pattern modifications induced by temperature shocks (see, for
example, Nijhout 1984).

3.4 Modelling Hair Patterns in a Whorl in Acetabularia

The green marine alga Acetabularia, a giant unicellular organism (see the beautiful
photograph in Figure 3.23) is a fascinating plant which constitutes a link in the marine
food chain (Bonotto 1985). The feature of particular interest to us here is its highly
efficient self-regenerative properties which allow for laboratory controlled regulation

Figure 3.23. The marine algae Acetabularia ryukyuensis. (Photograph courtesy of Dr. I. Shihira-Ishikawa)
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of its growth. Acetabularia has been the subject of several meetings; see, for example,
the proceedings edited by Bonotto et al. (1985). In this section we describe a model,
proposed by Goodwin et al. (1985), for the mechanism which controls the periodic hair
spacing in the whorl of a regenerating head of Acetabularia. Experimental evidence is
presented, not only to corroborate the analytical quantitative results of the mechanism,
but more importantly to suggest that the initiation of hairs is controlled by calcium,
possibly one of the elusive morphogens in a developmental situation. Fuller biological
details are given in Goodwin et al. (1984).

The alga consists of a narrow stalk around 4-5 cm long on the top of which is a
round cap about 1 cm across; see Figure 3.24(a). The stalk is a thin cylindrical shell of
cytoplasm. After amputation free calcium, Ca2™, plays a crucial role in the regeneration
of the periodic distribution of the whorl hairs and eventually the cap. There are various
stages in regeneration as schematically shown in Figures 3.24(b)—(d). After amputation
there is an extension of the stalk, then a tip flattening and finally the formation of a
whorl. Further extension of the stalk can take place with formation of other whorls.
Figure 3.24(e) is a schematic cross-section of the stalk at the growth region and is the
relevant spatial domain in our model.

(b) (c) (d)
-
Permeable to Ca?*
~ 0.5mm
Impermeable wall
~ 20 pm < (e)

Figure 3.24. (a) Typical mature Acetabularia. (b)—(d) the various stages in the growth of a whorl: (b) exten-
sion, (c¢) flattening of the tip, (d) formation of the whorl. (e) Transverse cross-section of the growth region of
the stalk: note the typical dimensions.
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Figure 3.25. Experimental results on the effect of external calcium Ca2* in the surrounding medium in the
formation of whorls in Acetabularia after amputation. Note the lower and upper limits below and above which
no regeneration occurs. (From Goodwin et al. 1984)

The model we develop and the mechanism we analyse is specifically concerned
with the spatial pattern which cues the periodic distribution of hairs on a whorl. Experi-
ments (see Goodwin et al. 1984) show that there are definite limits to the concentration
of Ca>* in the external medium, within which whorl formation will take place. Fig-
ure 3.25 shows the experimental results; below about 2 mM external calcium and above
about 60 mM, whorls do not form. The normal value in artificial sea water is 10 mM
Ca*. With about 5 mM only one whorl is produced after which the cap forms.

The experimental results suggest that the rate of movement of calcium from the
external medium through the outer wall of the plant is intimately involved in growth
determination and the initiation of a whorl of hairs. It is for this reason that calcium
is proposed as a true morphogen in Acetabularia. If it is indeed a morphogen then it
should play a role in the distribution of hairs or rather the mean distance between them,
the wavelength of hair distribution. Experiments were conducted to determine the effect
of the external free calcium concentration on the hair wavelength; see Figure 3.25 as
well as Figure 3.28. Analysis of the model mechanism, which we discuss below, also
corroborates the spacing hypothesis.

Let us consider some of the evidence for a reaction diffusion mechanism. First re-
call from Chapter 2 that if we have a spatial structure generated by a Turing-type reac-
tion diffusion system the number of structures is not scale invariant. For example, if we
have a given one-dimensional domain with several waves in morphogen concentration,
a domain twice the size will have twice the number of waves as long as the parame-
ters are kept fixed. This is an intrinsic characteristic of the spatial properties of reaction
diffusion models of the kind discussed in the last chapter. We should perhaps note here
the model reaction diffusion mechanisms proposed by Pate and Othmer (1984) which
are scale invariant with regard to pattern formation. This problem of size invariance has
also been addressed, for example, by Hunding and Sgrensen (1988). Any model can be
made to display size adaption if the parameters vary appropriately.
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There is considerable variability in the number of hairs in a whorl; they vary from
about 5 to 35. Experiments show that for plants maintained under the same conditions
the hair spacing, w say, is almost constant and that the number of hairs is proportional to
the radius of the stalk. The mechanism thus regulates the hair spacing irrespective of the
size of the plant. This relation between scale and pattern number is a property of reaction
diffusion systems as we demonstrated in the last chapter. In fact it is a property of other
pattern formation mechanisms which involve the space variables in a similar way as we
show later in Chapter 6 when we discuss mechanochemical pattern generators, which
are quite different; so such a property is by no means conclusive evidence.

Harrison et al. (1981) showed that the spacing, w, of hairs depends on the ambient
temperature, 7', according to In w oc 1/T. This Arrhenius-type of temperature variation
suggests a chemical reaction kinetics factor, again in keeping with a reaction diffusion
theory. In other words the spacing depends on the kinetics parameters.

The model we now develop is for the generation of the spatial distribution of a mor-
phogen, identified with calcium, which is reflected in the spatial distribution of the hairs
in the whorl. We assume initiation is governed by the overall reactions of two species
u and v, the latter considered to be the concentration of Ca2t, with u the other mor-
phogen, as yet unknown. The spatial domain we consider is the annular cross-section of
the stalk as illustrated in Figure 3.24(e). The available evidence is not sufficient for us
to suggest any specific reaction kinetics for the reaction diffusion system so we choose
the simplest two-species mechanism, the Schnackenberg (1979) system we considered
in some detail in Chapter 7, Volume I, specifically the dimensionless form (2.10). It is

ur = y@—u+vu?)+ Viu=yfu,v)+ Vu, (3.30)
v =y(b— vuz) +dViv = yg(u,v) + dvv, (3.31)

which define f(u, v) and g(u, v) and where a, b, y and d are positive parameters. With
the annular domain, # and v are functions of r, 8 and ¢ with the domain defined by

Ri <r <Ry, 0<6 <2m, (3.32)

where R; and Ry are the dimensionless inside and outside radii of the annulus respec-
tively, and the Laplacian

2 19 1 82

v 42 20
ar2  ror r2062

(3.33)
The scale parameter y is proportional to Ri2 here.

We introduce further nondimensional quantities and redefine the already dimen-
sionless variable r by

r _R()

= 8= R?> = R?y (3.34)
l

and the system (3.30)—(3.32) becomes, on dropping the asterisks for notational conve-
nience,
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%u  10u 1 3%u

_ p2 2
R — vty +a [0 Lo, Lo (3.36)
v = —vu —+-—+=—], .
! a2 ror  r2oae?
with the reaction diffusion domain now given by
1<r<$é, 0<6 <2m (3.37)

Biologically the inner wall of the stalk is impermeable to calcium so we assume
zero flux conditions for both # and v on r = 1. There is a net flux of calcium into
the annulus. However, the intracellular concentration level of calcium is O (10~* mM)
compared with the external level of 1 mM to 100 mM. Thus the influx of calcium
is essentially independent of the internal concentration. The spatial dimensions of the
annulus give values for § of about 1.05 to 1.1 which implies that it is sufficiently thin for
the geometry to be considered quasi-one-dimensional. We can thus reflect the inward
flux of calcium by the source term b in the v (that is, calcium, equation (3.35)). We can
then take zero flux conditions at the outer boundary r = § as well as on r = 1. We are
thus concerned with the system (3.35) and (3.36) in the domain (3.37) with boundary
conditions

ur=v, =0 on r=1,56. (3.38)

In the last chapter we discussed in detail the diffusion-driven spatial patterns gen-
erated by such reaction diffusion mechanisms and obtained the various conditions the
parameters must satisfy. Here we only give a brief sketch of the analysis, which in
principle is the same. We consider small perturbations about the uniform steady state
(uo, vo) of (3.35) and (3.36), namely,

b
—a+b, A 3.39
uo =a+ W= (3.39)
by setting
W= (” - ”0) o Y (r, B)e, (3.40)
v —

where ¥ (r, 0) is an eigenfunction of the Laplacian on the annular domain (3.37) with
zero flux boundary conditions (3.38). That is,

V% +hkyy =0, m-V)¥y=0 on r=1,5, (3.41)

where the possible k are the wavenumber eigenvalues which we must determine. In the
usual way of Chapter 2 we are interested in wavenumbers k such that Re A(k?) > 0.
The only difference between the analysis here and that in the last chapter is the different
analysis required for the eigenvalue problem.
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The Eigenvalue Problem

Since the dimensions of the relevant annular region in Acetabularia implies § ~ 1 we
can neglect the r-variation as a first approximation and the eigenvalue problem is one-
dimensional and periodic in 6 with ¥ = ¥ (0). So in (3.41) the r-variation is ignored
(r ~ 1) and the eigenvalue problem becomes

d2
&y,

102 By =0, y(0)=vQn), ¥ 0) =y @2r) (3.42)

which has solutions
k=n, (@) =a,sinnd + b,cosnd forintegersn > 1, (3.43)
where the a,, and b,, are constants. The exact problem from (3.41) is

Py 1oy 1%y,
L4 4Py =0 3.44
8r2+r3r+r2892+ v (3.44)

with
Yr(1,0) = 4,(8,0) =0
(3.45)
Y, 0) =y 2m), Yo(r,0) = Yo(r,2m).
We solve (3.44) by separation of variables by setting
Y (r,0) = R, (r)(ay, sinné + b, cos nb) (3.46)
which on substituting into (3.44) gives
1 LS
R +r 'R, + | k” — 2 R,=0, R (1)=R, ) =0. (3.47)
The solution is
Ry (r) = Ju(knr)Y, (kn) — J, (k) Yy (), (3.48)

where the J,, and Y,, are the nth order Bessel functions and the eigenvalues k% = kﬁ are
determined by the boundary conditions. The form (3.48) automatically satisfies the first
of (3.45) while the second requires

Jn(kn8) Y, (kn) — J) (k) Yy (kn8) = 0. (3.49)

For each n in the last equation there is an infinity of solutions k,{, j=12,....
These values have been evaluated numerically by Bridge and Angrist (1962). We know,
of course, that as § — 1 the problem becomes one-dimensional and the eigenvalues
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k — n, so we expect k, (8) — n as 8§ — 1. (In fact, this can be shown analytically by
setting § = 1 4 ¢ in (3.49) and carrying out a little asymptotic analysis as ¢ — 0.) This
completes our discussion of the eigenvalue problem.

In the last chapter, specifically Section 2.5, we discussed the role of the dispersion
relation in pattern creation and obtained the Turing space of the parameters wherein
spatial perturbations of specific wavenumbers about the uniform steady state (u, vo)
in (3.39) could be driven unstable. That is, in (3.40), Re A(k?) > O for a range of
wavenumbers. The range of wavenumbers is obtained from the general expressions in
(2.66) in Chapter 2, Section 2.5; there is a slight change in notation, with R? for y used
in (3.35) and (3.36). With the notation here the range is given by

K} <k* < K3

dfu + &) £{(dfu + g0)* — 4d(fugy — fogu)}'?
2d ’

(3.50)

K3, K? = R?

where here, and in the rest of this section, the derivatives are evaluated at the steady
state (ug, vp) given by (3.39). In the quasi-one-dimensional situation with eigenvalue
problem (3.42), the eigenvalues k are simply the positive integers n > 1. From the
last equation and (3.34) the range of spatial patterns which are linearly unstable is thus
proportional to the radius of the annulus R;.

For each eigenvalue k satisfying (3.50) there is a corresponding Re A(k?) > 0 and
among all these (discrete) k’s there is one which gives a maximum ReA = Reiy =
Re )L(k%l). ks is again obtained as in Section 2.5, specifically equation (2.68) which in
the notation here gives

R —foga ]V
2 vou —
kM—d_li(d+1)|: d i| fu+ 8o

(3.51)

—(b+a)2+(d+1)[

d—1 _b—i-a

R? b—a
d

2b(b+a)i|1/2}

on evaluating the derivatives at (1, vo) from (3.39) (or simply getting them from (2.34)).

As we also discussed in Chapter 2, at least in a one-dimensional situation the fastest
growing mode is a good indicator of the ultimate finite amplitude steady state spatial
pattern. That is, the pattern wavelength w in the quasi one-dimensional situation is given
by the dimensionless length w = 27/ kps, with kps from (3.51). If we now choose the
basic length to be the radius 7; of the annulus then in dimensional terms from (3.34) we
see that the dimensional wavenumber ky;4s = kps/r; and so the dimensional wavelength

ri2mw _ 2

rikma  kma

which is independent of the radius r;. Thus, in our model, hair spacing is independent
of the stalk radius. With the experience from Chapter 2 this, of course, is exactly as we
should expect.
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For qualitative comparison with the experimental results in Figure 3.25 we must
consider the effect on the pattern formed as the external calcium concentration varies,
that is, as b varies. The major experimental facts (see Goodwin et al. 1984) are: (i) There
is a range of external calcium concentrations within which whorls will form. That is,
if b is too high or too low no hairs are initiated. (ii) Within this range, the hair spacing
decreases as the calcium concentration increases, quickly at first but then becoming
more gradual. (iii) The amplitude of the pattern decreases to zero as the concentration of
Ca?* approaches the upper and lower limits. We now want to derive relevant quantities
from the model to compare with these basic experimental facts.

We must derive some analytical measure of the amplitude of the pattern which is
formed by the mechanism. In practical terms only a finite amount of time is available
to generate required patterns. In reaction diffusion models the steady state pattern is
obtained, from a mathematical viewpoint, only as ¢ — oo. Linear theory, however,
provides information on the fastest growing mode which generally dominates the pat-
terning, thus giving a good prediction of the final qualitative picture of steady state
morphogen concentrations. It is quite likely, if a morphogen theory obtains, that differ-
entiation to initiate a hair takes place when the morphogen level reaches some threshold
value. So, it is reasonable to suppose that the maximum linear growth rate Re A(k%,[)
gives some indication of the actual morphogen amplitude observed—certainly if Ay =
0 the amplitude must be zero. We thus use Re A(ka‘,,) as our amplitude measure which
we get by substituting kj; from (3.51) into the expression for A (the larger of the two
solutions of (2.23)), namely,

) 12
2 =y (fu + 8v) K + (fu +8v) K 4h(k2,)
M =Y UuT8v d+1 YUu T 8v d=+1 M s

h(k3,) = dkiy — v (@dfu + g)k3y + v (fugo — fogu)-

With the kinetics from (3.35) and (3.36) and kj; from (3.51), a little tedious algebra
gives the maximum growth rate as

A = (k3 = ﬁ {di% + (b +a)* — [2bd(b + a)]1/2} : (3.52)

Consider now the (a, b) Turing space for the system (3.30) and (3.31) given in Fig-
ure 2.12 for various values of the diffusion ratio d. We reproduce one of the curves for
reference in Figure 3.26(a) and relate the parameter b to the external calcium concen-
tration. Referring to Figure 3.26(a) if we consider a fixed a, aj (> a,;) say, then, as we
increase the calcium concentration b from zero, we see that no pattern is formed until
it reaches the lower threshold value bp;,. Further increase in b moves the parameters
into the parameter space for pattern formation. Figure 3.26(b) shows a typical com-
puted pattern obtained numerically in the quasi-one-dimensional situation. This is the
case when the stalk wall is sufficiently thin; that is, § &~ 1 in (3.37), and r-variations in
(3.35) and (3.36) can be neglected. Figure 3.26(c) shows the corresponding pattern on
the annulus where the shaded region is above a concentration threshold. We assume that
when this happens a hair is initiated. If the annular region is wider, that is, § is larger
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Spatial patterns

ag

() (d)

Figure 3.26. (a) Typical Turing space for the mechanism (3.30) and (3.31) for a fixed d. Spatial patterns can
be generated when a and b lie within the region indicated. (b) Computed solution structure for u graphed
relative to the steady state from (3.35)—(3.37) as a function of 6 in the quasi-one-dimensional situation where
8 ~ 1 (that is, we set 9/dr = 0): parameter values a = 0.1, b = 0.9,d =9, R = 3.45 (steady state ug = 1.9,
vg ~ 0.25). (¢) The equivalent pattern on the stalk: shaded regions represent high concentration levels of
Ca%t above a given threshold. (d) As the width of the annular region increases the pattern generated becomes
more two-dimensional and less regular.

(approximately § > 1.2) so that r-variations have to be considered, the spatial pattern
generated takes on a more two-dimensional aspect, an example of which is shown in
Figure 3.26(d); here § = 1.5.

As b increases beyond by, the parameters move out of the Turing space and the
mechanism can no longer create a spatial pattern. This is in keeping with the experimen-
tal fact (i) above and illustrated in the quantitative experimental results in Figure 3.25.
Note from Figure 3.26(a) that this qualitative behaviour only happens if the fixed a is
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A = Am(kly)
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Figure 3.27. Typical computed maximal growth A, from (3.52) as a function of b when a(> a;;) and b lie
within the parameter range giving spatial structure in Figure 3.26(a). A, relates directly to the amplitude of
the steady state standing wave in calcium Ca*t. Compare this form with the experimental results shown in
Figure 3.25: byin, and bmax are equivalent to the 2 mM and 60 mM points respectively.

greater than a,, and is not too large. For a fixed agp < a < a,, we see that as b increases
from zero there are two separate domains where pattern can be generated.

In Figure 3.26(a), if a = aj, for example, the maximum linear growth rate Ay
is zero at b = by and b = by this can be derived analytically from (3.52). For
bmin < b < bmax the growth rate Ay > 0. Using the analytical expression for the
maximal growth rate A7 in (3.52) we computed its variation with b as b took increasing
values from bpin t0 bmax. As discussed above we relate the maximal growth rate with
the amplitude of the resulting pattern; Figure 3.27 displays the results.

Since the experiments also measure the effect on the wavelength w of varying the
external Ca>* concentration we also examine the predicted behaviour of w from the
above analysis as b varies. For fixed a and d, (3.51) gives the dependence of k3; on b
and hence of the pattern wavelength w = 2/ kys. We find from (3.51), with appropriate
a(> ay), that the wavelength decreases with b as we move through the pattern forma-
tion region in Figure 3.26(a). Figure 3.28 illustrates the computed behaviour using the
dimensional wavelength obtained from kj; in (3.51) as compared with the experimental
results from Goodwin et al. (1984). The parameters a, d and R were fitted to give a best
fit, but nevertheless the quantitative comparison is reasonable when b is varied.

The material presented here is an example of how a model mechanism and an exper-
imental programme can be directly related and developed together. The hypothesis that
calcium could be one of the morphogens in a reaction diffusion system was explored
and a specific mechanism suggested which satisfied some of the required conditions
dictated by experiment, such as a window of external calcium concentration where hair
patterns could be formed. Certainly not all reaction diffusion mechanisms exhibit this
behaviour.

We chose a simple two-species mechanism which incorporated key biological facts
and identified one of the morphogens with calcium. The question arises as to what
the other morphogen, u, could be. One candidate proposed was cyclic-AMP (cAMP)
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Figure 3.28. Experimental (X) and theoretical (o) results for the variation of the hair spacing wavelength
(distance in microns (um) between hairs) on a regenerating whorl of Acetabularia as a function of the external
calcium concentration. This relates to the parameter b in the model mechanism (3.35) and (3.36). The bars
show standard deviations from the average distance between hairs on groups of plants and not on individual
hairs. The solid (e) period denotes where whorls were formed but, with extensive gaps where hairs failed to
form, although the mean hair spacing where they formed normally was the same as in plants with complete
whorls, for that calcium concentration. (From Goodwin et al. 1984)

which is important in cellular metabolism. cAMP induces the release of calcium from
mitochondria while calcium inhibits cAMP production. However, the conditions for
spatial structure require d > 1 which means cAMP has to diffuse faster than calcium
which, with cAMP’s larger molecular weight, is not the case. Another candidate is the
proton H since there is some evidence of a close connection between calcium and the
proton pump activity and pH in the morphogenesis of Acetabularia. With the present
state of knowledge, however, the identity of either morphogen must still be speculative.

The formation of a spatial pattern in calcium concentration is viewed as the prepat-
tern for hair initiation. Actual hair growth with its mechanical deformation of the plant
is a subsequent process which uses and reflects the prepattern. It is possible that calcium
is directly coupled to the mechanical properties of the cytoplasm, the shell of the stalk.
Such a coupling could be incorporated into the mechanochemical theory of morphogen-
esis discussed in detail later in Chapter 6. In fact the mechanisms proposed there do not
need a prepattern prior to hair initiation; the whole process takes place simultaneously.

The Need for More Complex Processes

Although in the last chapter we briefly touched on the effect of domain growth on the
patterns generated by reaction diffusion models, it is clear that pattern formation does
not always take place on a static domain. Not only that, zero flux boundary condi-
tions are not always appropriate. These aspects require us to consider pattern formation
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mechanisms on growing domains and the effect of different boundary conditions on
the ultimate patterns formed by a mechanism. Other than the fact that we still do not
know what the patterning mechanisms and the morphogens really are in development,
one of the more important reasons for studying more complex systems theoretically is
that there are a large number of patterns which do not seem to be able to be formed by
reaction diffusion systems other than by unrealistic tinkering with the parameters and so
on at different stages in the pattern formation process. The 13-lined chipmunk with its
lines of spots running longitudinally along the back is an animal coat pattern example.
This specific pattern was obtained by Aragén et al. (1998) in their detailed study of fish
patterns. In the next chapter we consider the effect of growing domains and some of the
naturally occurring complex patterns not discussed here.



4. Pattern Formation on Growing Domains:
Alligators and Snakes

In Chapter 4, Volume I we discussed how sex is determined in the alligator—in the
crocodilia in general—and the possible critical role it has played in their astonishingly
long survival. They also have other remarkable attributes, associated, for example, with
their metabolism, unique physiology and, of course, their awesome predation skills,! all
of which contribute to their survival. In this chapter we discuss spatial patterning prob-
lems specifically associated with the alligator, Alligator mississippiensis. Unlike the
patterning problems we have already discussed those we consider here involve different
aspects of embryonic growth and the effect it has on the actual patterning process. We
study two practical patterning problems for which we have excellent experimental data,
namely, the stripe pattern on the skin and the spatial patterning of teeth primordia (the
precursors of teeth). We shall see that growth plays a crucial role in the developmental
process.

The alligator embryo is a particularly convenient (except from the alligator’s point
of view) embryo to study and manipulate since it does not suffer from the inaccessibil-
ity that mammalian embryos pose during their development. Development takes place
in the egg external to the adult. Extensive studies of the eggshell and the embryonic
membranes (Ferguson 1981a,b,c, 1985) have resulted in the development of techniques
for the semi-shell-less culture and manipulation of the embryo over the whole incuba-
tion period. Because of the egg composition, particularly the calcium kinetics, alligator
embryos develop quite normally in a shell-less culture. Not only that, another character-
istic of the crocodilia is that they exhibit certain mammal-like characteristics which are
important when studying craniofacial development in humans (Ferguson, 1981c,d); we
come back to this point below when we discuss the spatial patterning of teeth primordia.
The experimental data described in this chapter have all come from direct observation of
the embryo at different developmental stages and of the effects of surgical manipulation,
in the case of the teeth studies, by cutting windows in the eggshell and eggshell mem-
brane. It is because of this accessibility that we have been able to relate the theory to
experiment so effectively. With the first topic, namely, the stripe patterning on alligators,
the theory suggested specific experiments which confirmed the theoretical hypothesis.

IFood intake for 7 crocodiles for a month is about 100 Ibs compared to 95 1bs for a large dog. They create
high temperatures for fever treatment. Perhaps less easy to verify is Edward Topsell’s description of how
some people deal with crocodiles: in his Historie of Foure-footed Beastes (1607) he writes, ‘according to
some people you could chase away a crocodile by closing the left eye and staring at it fixedly with the right.”
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In the second, that of the highly regular sequential spatial patterning of teeth primor-
dia, the theory, developed from extant knowledge of the developmental biology, makes
predictions as to the outcome of a series of experiments which may help us to further
understand the underlying biological pattern formation mechanism.

4.1 Stripe Pattern Formation in the Alligator: Experiments

As has been reiterated many times in this book in regard to spatial pattern formation
we simply do not know what the actual mechanism is in the developmental process.
Although we study several possible pattern generating mechanisms such as reaction
diffusion, chemotaxis diffusion and mechanical systems the experimental evidence for
a specific mechanism is still lacking. One of the major drawbacks is that in many situa-
tions we do not know when in development the pattern generating mechanism is oper-
ative; we only observe the results. In the case of the striping on the zebra discussed in
Chapter 3 we deduced that the mechanism was probably operative at a specific time in
development determined by counting the stripes and measuring their size and number
relative to the size of the embryo at that time. However, firm experimental verification
was lacking due to the paucity of data on developing zebra embryos. Because of the
relative ease of embryonic manipulation and reliability of growth data obtainable with
alligator embryos Murray et al. (1990) decided to study the stripe patterning on the al-
ligator to try and determine the time of initiation of the patterning mechanism and to
quantify the effect of size on the stripe pigmentation pattern. It is in part their work that
we describe. We then use the results to show how the theory (Murray 1989) suggested
specific experiments (Deeming and Ferguson 1989a) to resolve a recurring question in
development, namely the role of genetics in pattern determination, as it applies to the
stripe pattern on alligators. An interesting result is that we show that genetics does not
play a role in the detailed stripe formation as had been often stated.

Experimental Results of the Effect of Incubation Temperature on the Number of Stripes
on A. Mississippiensis

Hatchling alligators are dark brown/black (a result of melanin production) with a series
of white stripes down their dorsal side from the nape of the neck to tail tip as typically
shown in Figure 4.1. Individual hatchlings exhibit variation in both the intensity of the
dark regions of the body and in the number of stripes along the body and tail (Deeming
and Ferguson 1989a). Less regular ‘shadow stripes’ often exist on the body sides; these
approximately interdigitate with the principal stripe patterning as seen in Figure 4.1; we
discuss these shadow stripes later. We know from Chapter 4 that incubation tempera-
ture determines sex in alligators with females from eggs incubated at lower temperatures
and males at higher temperatures. Females at 30°C are generally paler and have fewer
white stripes than males, incubated from eggs incubated at 33°C (Deeming and Fergu-
son 1990). During development the pattern is first apparent at stage 23 of development
which corresponds approximately to 41-45 days of incubation; see the detailed facts in
the seminal review by Ferguson (1985). The gestation period is around 65 to 70 days.
In alligators an incubation temperature of 33°C gives rapid differentiation and
growth of the embryo compared to 30°C. For any given day of incubation, or stage
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Figure4.1. Typical stripe pattern on an alligator hatchling. There are generally 8 white stripes from the nape
of the head to the rump with 12 from the rump to tail tip. Note the shadow stripes on the trunk towards the
ventral side and their position relative to the main stripes. This embryo is at stage 25 which is around 51-60
days of gestation. Ruler is in millimetres. (Photograph courtesy of Professor M.W.J. Ferguson)

of development, prior to hatching, embryos at the higher temperature are heavier (Fer-
guson 1985; Deeming and Ferguson 1989b). As pointed out in Chapter 4, Volume I the
optimal temperature for both females and males is in the region of 32°C.

In the first three sections we examine the link between embryo size and the pigmen-
tation pattern exhibited by individual hatchlings and address the important question of
when in gestation the actual pattern generation mechanism is operative. If we are ever
to discover a real biological pattern formation mechanism from experiment it is clearly
essential to know when (and of course where) during development to look for it: it is too
late after we see the pattern. Although there is essentially no mathematics in this part of
the chapter we use mathematical modelling concepts which result in real verifiable (and
already verified) biological implications.

Murray et al. (1990) counted the number of white stripes along the dorsal (top)
side of alligator hatchlings, from the nape of the neck to the tip of the tail; there are no
stripes on the head. The number of stripes on the body (nape to rump) and on the tail
(rump to tail tip) was recorded together with the colour of the tail tip. The total length
of the animal, the nape—rump length and rump-—tail tip length were also measured to the
nearest 0.1 mm at various times during development. Hatchlings from two incubation
temperatures, 30°C and 33°C (which resulted respectively in 100% female and 100%
male hatchlings) were examined (these were identical animals to those examined by
Deeming and Ferguson 1989a).

To investigate the effects of sex on pigmentation pattern (specifically the number of
stripes), hatchlings from eggs of a pulsed ‘shift twice’ experiment (Deeming and Fer-
guson 1988) were analysed. In these ‘shift twice’ experiments eggs were incubated at
33°C, except for days 7 to 14 when they were incubated at 30°C. This incubation treat-
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ment produced 23 male and 5 female hatchlings despite the male-inducing temperature
of 33°C for the rest of the incubation (Deeming and Ferguson 1988). The fact that there
were some females is that sometime during this time period and with this temperature
the sex was determined to be female.

In a second experiment various measurements of embryos, at 30°C and 33°C, were
taken from days 10 to 50 of incubation. These included total length of the animal, nape—
rump length and rump-—tail tip length (Deeming and Ferguson 1989b). The embryos
were assigned a stage of development (Ferguson 1985). Regression estimates were cal-
culated for embryo growth at the two temperatures. Morphometric measurements were
also taken for a third group of embryos incubated for 32, 36, 40, 44, 48 and 52 days.
These embryos were also assigned a stage of development and were examined using
a dissecting microscope for the earliest macroscopic indication of pigmentation pat-
tern.

Samples of skin containing both black and white stripes were removed from the
tails of alligator embryos at stage 28, that is, well after the stripe pattern was evident,
and methods for demonstrating neural and melanistic cells were applied to them.

Temperature clearly affected the pigmentation pattern of hatchling alligators (see
Table 1 in Murray et al. 1990). There was a higher number of stripes on animals in-
cubated at 33°C compared to those incubated at 30°C. Those animals with a white tip
to their tail had, on average, one more stripe than those with a black tip at both tem-
peratures. Generally there are 8 stripes on the body and 12 on the tail. There was no
significant effect of temperature upon hatchling length nor was there any direct rela-
tionship between hatchling size and the number of stripes. The number of stripes was
not sex linked: male hatchlings from eggs incubated at 33°C (30°C between 7 to 14
days) had a mean number of stripes of 19.96 (+/ — 1.15) whereas females from the
same treatment had 20.00 (4-/ — 0.71) stripes.

Regression estimates for the relationship between time and the length of the tail
and the nape—rump length for embryos incubated at 30°C and 33°C are shown in the
following section in Figures 4.3 and 4.4 respectively. For ease of comparison the growth
at the two temperatures is shown in Figure 4.5. Embryos at the higher temperature grew
more rapidly. The time at which a ratio of nape-rump to rump-—tail tip equalled 8/12,
as predicted from the growth curve data, was influenced by temperature: at 30°C this
occurred at 46.5 days and at 33°C at 36.5 days. These times of incubation are similar
to those recorded for stage 23 (Ferguson 1985). Total length of the embryos was also
related to temperature (Figure 4.6(a)). A regression analysis showed that despite being
longer at any given time, embryos at 33°C were equivalent to embryos at 30°C at any
given stage (Figure 4.6(b)).

The time at which pigmentation was apparent in embryos occurred much earlier at
33°C (day 36 compared with day 44 at 30°C). The pattern was also more apparent on
the body of the embryo before that on the tail.

Melanocytes (melanin producing cells) were found to be present in the basal layer
of the epidermis of the alligator embryos although the distribution of both cells and
melanin was different in white and black stripes. In black stripes melanocytes were
abundant and there was a high concentration of melanin. In white stripes melanocytes
were present but rare and although they produced some melanin it was limited to the
cells and their immediate environment. There was a very sharp demarcation between
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the black and white stripe regions of the skin, that is, those with and without melanin;
see Murray et al. (1990) for experimental details and data.

4.2 Modelling Concepts. Determining the Time of Stripe Formation

Although we do not know the actual mechanism the basic concept of essentially all pat-
tern generation models can be couched intuitively in terms of short range activation and
long range inhibition as we point out in Chapter 2. There we discussed in detail reaction-
diffusion-chemotaxis mechanisms and later in the book we introduce other pattern gen-
erator systems, such as neural network models and the Murray—Oster mechanochemical
theory of biological pattern formation. Any of them at this stage of our knowledge of the
detailed biological processes involved could be a candidate mechanism for generating
the stripes on the alligator. However, from the experimental evidence from skin histo-
logical sections given in Murray et al. (1990) and briefly described above there is some
justification in taking (although really by way of example) a cell-chemotaxis-diffusion
sytem in which the cells create their own chemoattractant. How such a mechanism gen-
erates spatial heterogeneity was discussed in detail in Chapter 2 and is dealt with in
much more detail in Chapter 5. When the aggregative effects (chemotaxis) are greater
than the dispersal effects (diffusion), pattern evolves. Of particular relevance here, how-
ever, is the sequential laying down of a simple stripe pattern by a travelling wave as
given in Chapter 2, Section 2.6. The reason for this is that from observation the pattern
of stripes on the alligator embryo appear first at the nape of the neck and progress down
the body in a wavelike manner.

The ability of a model mechanism to generate a specific pattern is no indication
as to its relevance to the biological problem under study. However, different models
usually suggest different experiments. A major drawback in checking or trying out any
theory, is that experimentalists generally do not know when the actual patterning takes
place. In the case of the alligator the actual stripe pattern, as in Figure 4.1, becomes
visually evident around 40 days through the gestation period of approximately 70 days.
It is almost certain that the pattern is laid down much earlier. Thus, before it is possible
to determine what mechanism is actually producing the pattern it is clearly essential to
know when in gestation the mechanism is active.

Pigment deposition may depend on the number of cells present in a region. Three
possible ideas can explain white stripes: either (i) melanocytes are absent, or (ii) all
melanocytes produce melanin to the same extent but the concentration of cells in an
area is too low for the region to look dark, or (iii) the formation of melanin by cells
is dependent on cell number; for example, a threshold in cell number within a certain
area has to be reached before melanin is produced. In alligator embryos, white stripes
appear to be due to a low number of melanocytes in white stripes which do not produce
melanin in large quantities (Murray et al. 1990).

Development generally begins at the anterior end of the embryo; the extent of dif-
ferentiation at the head is always much greater than at the tail. Thus in the process of
melanin deposition it is the head which shows the first significant signs of pigmenta-
tion. The pattern of white stripes is first seen on the body and gradually moves down
the tail.
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Whether or not the skin develops a pigmented patch depends on whether pigment
cells produce melanin in sufficient quantity. The specimen cell-chemotaxis-diffusion
model can certainly produce a series of stripes, or spots, depending on the geometry
and scale, in which the cell concentration is high. The idea then is that at the time the
mechanism is activated to produce pattern the embryo is long and thin, essentially a one-
dimensional domain, and so, if the mechanism starts at one end, the nape of the neck,
stripes are laid down in a sequential manner as illustrated in Figure 4.2(a) via a wave-
like pattern generator which then appears as shown in Figure 4.2(b). This waveform is a
one-dimensional solution (Myerscough amd Murray 1992) of a basic cell-chemotaxis-
diffusion system (in dimensionless form) given in the legend of Figure 4.2(a) with the
parameter values given in the figure. We discuss the model in more detail later in the
chapter. Here n denotes the cells, which diffuse with coefficient D (relative to the diffu-
sion coefficient of the chemoattractant) and which produce their own chemoattractant,

(c) (d)
Figure 4.2. (a) Typical evolution of a steady state pattern in cell density, n, obtained from the cell-
chemotaxis model system of equations given by (4.31) below, namely on/dt = D<a2n/ax2) —

a(0/9x)(n(dc/dx)), dc/dt = (82c/8x2) + (n/n + 1) — ¢, where c is the chemoattractant, with parame-
ter values D = 0.25, ab/p = 2 solved with a small initial # = 0 perturbation at x = 0 about the uniform
steady state n = 1, ¢ = 0.5. The pattern forming wavefront moves to the right leaving behind the regular
wavelike pattern: x = 0 corresponds to the nape of the neck. (From Murray et al. 1990) (b) Proposed evenly
spaced stripe pattern of cell density on the embryo at the time the mechanism generates the pattern. (C) Em-
bryo of Alligator mississippiensis at stage 21 (about 31 days in gestation). This is around the time when the
pattern is laid down. (d) Alligator hatchling showing regular striping. (Photographs courtesy of Professor
M.W. J. Ferguson)
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¢, which also diffuses. The a-term is the chemotaxis contribution which induces the
cells to move up a concentration gradient in c. The cells produce ¢ via the b-term and
¢ degrades with first-order kinetics. The initial conditions consisted of a uniform steady
state cell distribution which was perturbed by a small increase in cell density at one
end, namely, the nape; the wavelike steady state pattern then moves down the back to
the tip of the tail creating a regular heterogeneous stripe pattern in cell density. With
the experimental evidence described above regarding the histological sections we could
argue that all of the cells involved are melanocytes but they exhibit dark stripes only
because of the high density of cells. This is still mainly supposition, however.

Irrespective of the actual mechanism, we hypothesise, with some justification, that
the time it takes the mechanism to generate patterns—the order of a few hours in part
because it is a waveformed pattern—is small compared with the time for significant
embryonic growth. This being the case the mechanism will produce a regular evenly
spaced pattern on the back of the alligator as illustrated in Figure 4.1.

We can go no further with the biological problem, namely, when in development the
pattern was created without recourse to experimental data. With the above hypothesis,
as regards the time required by the mechanism to generate the patterns, all we require
is the time during embryonic development when the head to rump length and the rump
to tail tip length is in the appropriate ratio consistent with the number of stripes on
each as determined from the adult forms. With surprising regularity this ratio is 8:12.
Such growth data for embryos during gestation is rare for any species. Fortunately it
is available in the case of the alligator (Deeming and Ferguson 1990) and presented in
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Figure 4.3. Relative growth of the crown-rump length and the rump to tail tip length in the embryo of
A. mississippiensis at 30°C incubation temperature, which gives 100% females. Time gives days from egg
laying. (From Murray et al. 1990)
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Figure 4.4. Relative growth of the crown-rump length and the rump to tail tip length in the embryo of
A. mississippiensis at 33°C incubation temperatures, which results in 100% males. Time gives days from egg
laying. (From Murray et al. 1990)

a different form by Murray et al. (1990); Figures 4.3 and 4.4 show the relative growth
data needed for our model.

From the results in Figures 4.3 and 4.4 we can immediately read off when in ges-
tation the ratio of the head—rump to rump—tail tip lengths is 8:12; namely, around day
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Figure 4.5. Comparison of the crown-rump length and the rump to tail tip length in the embryos of A. mis-
sissippiensis at two different incubation temperatures, 30°C and 33°C as a function of time from egg laying.

(From Murray et al. 1990)
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Figure 4.6. (@) Total length of the embryo of A. mississippiensis for two different temperatures, 30°C and
33°C, as a function of time from egg laying. (b) The length of the embryo as a function of developmental
stage at 30°C and 33°C.

46.5 in the case of embryos incubated at 30°C while for embryos incubated at 33°C
it is around day 35.5. From an experimental viewpoint this provides an estimate for
the actual time when the mechanism is probably operative and hence focuses, much
more sharply, the experimental search for the actual mechanism. Since development
progresses sequentially, with different mechanisms operating at different times, it is es-
sential to have some firm idea when in development to look. In the case of the alligator
focusing attention on the period just before the pattern is visible is much too late.

4.3 Stripes and Shadow Stripes on the Alligator

As noted above the pigmentation first starts in the head region and then proceeds to-
wards the tail. Thus, the first requirement of the mechanism is to be able to generate
a travelling wave of stripe patterning from the head. Numerical simulation of the cell-
chemotaxis mathematical model above with appropriate parameter values, can generate
such a sequential laying down of a regular stripe pattern; Figure 4.2(a) shows a typical
case with x = 0 corresponding to the head region and the pattern proceeding towards
the tail, that is, in the positive x-direction.

In Figure 4.2(a), the peaked stripe pattern is in cell density; there is a qualita-
tively similar one for the chemoattractant concentration. The observed white stripe we
associate with the troughs in cell density; that is, there are insufficient melanocytes
to produce a pigmented area of any significance. This is in line with the observation
(Table 1 in Murray et al. 1990) that when more stripes can be accommodated the tail
tip is often white. A corollary of this hypothesis is that the default colour of the em-
bryo is the dark pigmented form in that if the pattern formation mechanism were not
activated there would be a uniform cell density over the integument all of which could
become competent to produce melanin, probably lighter than that found between the
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white stripes in the normal situation. This lack of pattern would result in a melanistic
form which is a very rare occurrence (Ferguson 1985).

If we hypothesise that the time it takes the mechanism to generate pattern is small
compared with the time for significant embryonic growth, then the mechanism would
produce a regular evenly spaced pattern on the back of the alligator as illustrated sche-
matically in Figures 4.2(b) and in 4.7(a). On the other hand if the mechanism operates
over a period of several days during which competency of the cells to generate pat-
tern slowly decreases the striping can be less regular. We suggest that these patterns
are the prepatterns for the observed pigmentation. The actual wavelength, that is, the
distance between the stripes, is determined by the parameters. What is striking about
these specific wavelike patterns in Figure 4.2(a) is their sharpness, which is in keeping
with those found on A. mississippiensis. Other mechanisms mentioned above can also
produce similar sequential pattern formation but it is less easy to obtain such sharpness
in the peaks.

It is reasonable to assume that the mechanism is activated during a specific stage
in development. If the parameter values remain fixed, the number of stripes depends
principally on the length of the embryo at that stage in development. A given length
of the embryo can accommodate a specific number of wavelengths, so the longer the
embryo is when the mechanism is operative the greater the number of stripes. Thus the
parameter values and size of the embryo determine the number of stripes.

Let us now relate these mathematical results to the experimental results in the previ-
ous sections. The first point to recall is that a higher temperature accelerates the growth
of the embryo and the time to reach a given stage. So at the higher temperature the em-
bryo is larger when the mechanism is activated. Although temperature can also affect
the parameter values in a pattern generator, we do not expect this to be very significant
with only a 3°C difference; we come back to this point below.

Once the cell pattern has been formed, such as in Figure 4.2 and Figure 4.7(a), a
certain time must elapse for the pigmentation process and hence for the stripes to be-
come visible. Thus the key time in development for stripe patterning must be before

! lateral
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[

Figure4.7. (a) Proposed evenly spaced stripe pattern of cell density on the embryo at the time the mechanism
generates the pattern which we associate with the cell density stripes in Figure 4.2(a). (b) The appearance of
‘shadow stripes’ (cf. Figure 4.1) predicted by the model as a consequence of embryonic lateral growth in the
trunk during the pattern formation process. (From Murray et al. 1990)
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the stripes are visible. There is approximately an eight-day difference between embryos
incubated at the two different temperatures. As also noted above, at a time prior to
the pattern becoming discernible, embryos were significantly larger when incubated at
33°C than those at 30°C. Thus it is in keeping with the above patterning process that
males (eggs incubated at 33°C) should have more stripes than females (30°C incuba-
tion) and that it is simply length and not sex which determines the number of stripes.
As already mentioned the number of genes is limited and to use them up, for example,
in prescribing the precise number and position of stripes on male and female alligator
embryos would be an unbelievably inefficient and unnecessary use.

The theoretical prediction and resulting experimental verification described here
clearly show that the number of stripes is just a question of embryonic length and size
when the mechanism is activated. It is a simply a direct application of the results derived
in Chapter 2 where we showed that the number of stripes in a one-dimensional domain
was directly related to the length of the domain. In other words if, for example, two
stripes can be formed on a domain by a typical pattern formation mechanism, whether
reaction-diffusion, reaction-chemotaxis or mechanical, then four stripes will be formed
if the domain is twice as long.

At the time of pattern formation a stripe (defined as from the front of a white stripe
to the front of the next white stripe) must occur, on the trunk and tail, on average every
L mm where

I — tail length + nape to rump length (at pattern initiation)
N number of stripes at hatching '

Although the size of the stripes at hatching is not uniform, being wider towards
the tail tip, this can be accounted for simply by the very different growth rates of the
trunk and tail during embryogenesis. On the basis that the pattern generation by the
mechanism is relatively fast compared to embryonic growth, and that the mechanism is
activated just prior to stripe visibility, the data in Table 2 of Murray et al. (1990), from
which Figures 4.3 to 4.6 were obtained, show that for embryos incubated at

33°C:Day 32 L = (56.25 4+ 39.50)/20.35 = 4.71 mm,
30°C: Day 40 L = (53.60 4 37.20)/18.55 = 4.89 mm.

The extra 7.75 mm in length, 33°C versus 30°C, at this stage would allow for a
mean of 1.64 (7.75/4.71) more stripes on male embryos. This is qualitatively in line
with the observations on alligator hatchlings reported in Murray et al. (1990).

Note also that the size of the stripe, at formation, on the male is slightly smaller
than on the female. Although this small size variation may not be significant it could be
due to the temperature effect on the model parameters.

Some effects of temperature on pigment pattern, albeit in a very different situa-
tion, were reported by Nijhout (1980a) for the spread of an eyespot on the wing of
the butterfly Precis coenia: the temperature difference in his experiments was 10°C. In
Chapter 3 we investigated this temperature effect using a reaction diffusion model and
saw that the size variation in the wing spot could be accounted for by parameter varia-
tions which were not inconsistent with those to be expected in diffusion coefficients and
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reaction rate constants of possible biochemicals with such a temperature change. The
results of Harrison et al. (1981) on the effect of temperature on hair spacing in regener-
ating Acetabularia, which we also discussed in Chapter 3 tend to lend substance to this
hypothesis: they also used a reaction diffusion model.

Shadow Stripes

We assumed that the time to generate the stripe pattern is fast compared to the time for
significant embryonic growth. If we relax this assumption it implies that the patterning
is taking place on a growing domain. The implication is that the cells remain competent
to secrete chemoattractant, albeit with a decreasing efficiency, but nevertheless with the
ability to create patterns for longer. In this case it means that the size of the integument
wherein the mechanism acts is both longer and, on the trunk particularly, wider. The
mathematical model implies that the type of pattern which will appear when a long thin
domain becomes slightly wider, after the main stripes have been initiated, consists of
less distinct ‘shadow stripes’ positioned between the principal stripes: see Figures 4.1
and 4.7(b). This is as we would expect from our knowledge of the effect of scale and
geometry on pattern (Chapter 2). A further consequence of increasing the time of pat-
tern formation is that since the pattern is initated from the head the density of the stripes
towards the tail is less sharp in colour definition, a feature which is also often observed.
Thus the mechanism, or even just knowledge of how pattern is formed by these pattern
generators, can offer explanations for the more complex patterning typical of A. missis-
sippiensis.

As we commented before, similar patterns can be generated by any of the mod-
els mentioned above, so the conclusions are independent of the actual mechanism in-
volved, as long as it can form the pattern relatively quickly. So, the reaction diffusion
and mechanochemical models are also candidate mechanisms. As also mentioned what
distinguishes one mechanism from another are the experiments each suggests. With
mechanisms which directly involve real biological quantities, such as those used here
and the Murray—Oster mechanochemical models, actual cells are directly involved. It is
considerably easier to manipulate embryonic cell density (a key parameter here) than it
is to manipulate unknown chemicals in a reaction diffusion theory. In general it is easier
to disprove theories which involve cells and tissue directly but in the process of doing
so we generally increase our understanding of the patterning processes. One example of
this comes from the development of cartilage patterns in the vertebrate limb discussed
in detail later in the book.

In summary we have shown that the incubation temperature of A. mississippien-
sis significantly affects the number of stripes on the dorsal side of the hatchling with
incubation at 30°C resulting in fewer stripes than at 33°C. Although we used a pattern
formation mechanism based on the idea that cells secrete a chemoattractant to which the
cells react the evidence for it is certainly not conclusive. All we require of a mechanism
is that it can generate patterns in a similar way and relate similarly to the constraints of
geometry and scale. The time at which the mechanism, which establishes the pattern of
stripes, acts at 33°C is advanced compared to 30°C. Although the stage of development
at which the mechanism is invoked is also earlier at the higher temperature, the time and
developmental stage are combined in such a way that when the mechanism is activated
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the embryo at 33°C is longer than at 30°C and hence more stripes are laid down. The
pattern of stripes is only related to the sex of the animal through temperature; the pattern
is not specifically sex linked. All of the results we have found here are independent of
the detailed pattern formation mechanism. This case study is another example where
the modelling suggested the explanation as to why there is a larger number of stripes
on male alligators as compared with female ones. The experiments described above
were developed to investigate the model’s hypothesis, namely, that it is simply length
and not sex as such, which accounts for the difference. The theoretical predictions were
confirmed.

Stripe Formation on the Juvenile Angelfish (Pomacanthus)

Another example of what might appear to start out as shadow stripes arises with grow-
ing juvenile angelfish (Pomacanthus), an example of which is shown in Figure 4.8. The
small fish initially has three stripes but as it grows it adds to this number by insert-
ing new stripes in between those already there: it is a gradual process which repeats
itself until the fish is fully grown. However, unlike the shadow stripes on the alligator
those on this fish are different in that the interdigitating stripes first appear as faint very
narrow stripes unlike the same size stripes that would appear if it were simply an in-
crease in domain space as the fish grew; this is the explanation put forward by Kondo
and Asai (1995). There have been various attempts at tinkering with reaction diffusion
models but none were able to explain the distinct character of the observed sequential
patterning. Painter et al. (1999) obtained growth rates from extant experiments and con-
cluded that all subepidermal tissue cell types undergo mitosis, including pigment cells.
They proposed a model which included an equation for diffusional and chemotactic cell
movement in which the chemotaxis is modulated by morphogens from an independnt
reaction diffusion system. They show that it is the chemotaxis which produces the slow
growth of the new stripes. The sequential striping they obtained, in two dimensions,

Figure4.8. Typical stripe pattern on the angelfish, Pomacanthus circulatis at age 12 months. The number of
stripes go from 3 at 2 months to 6 at 6 months to 12 at 12 months. (Photograph from the National Aquarium,
Washington D.C. and reproduced with permission)



4.4 Alligator Teeth Primordia Spatial Patterning 205

quantitatively mimics that observed on the angelfish. The patterning challenges on fish
pose different problems to those on animal coats and snakes (discussed below). Aragén
et al. (1998) investigated the role of boundary conditions, domain growth and the cou-
pling of reaction diffusion models on the patterns that can be formed. They compared
their results with the pigmentation patterns on several marine fish.

An interesting article by Denton and Rowe (1998) suggests a very practical use for
the stripes on the backs of mackerel (Scomber scombrus L.) other than just for cam-
ouflage (or being lost in the crowd) as usually thought. They argue that the stripes are
used for precise signalling information about the fish’s movement to neighbours in the
school. There is a thin layer of reflecting platelets which overlies the central parts of the
light and dark stripes on each side of the dorsal surfaces of the fish. Denton and Rowe
(1998) show how these reflecting platelets and the distribution of the body stripes can
greatly facilitate information communication. When the fish changes its orientation or
its velocity with respect to its neighbours there is a change in the patterns of brightness
on the dorsal surfaces. They show convincingly that very slight changes in the roll, yaw
and pitch immediately produce marked shifts in the observed patterns and they suggest
that this is a major role for the stripe arrangement. It is well known that schools of
fish coordinate their movement extremely quickly and this could be the means of doing
1t.

4.4 Spatial Patterning of Teeth Primordiain the Alligator:
Background and Relevance

We have already given several reasons in Volume I for studying the crocodilia in gen-
eral when discussing their remarkably long survivorship. In the previous sections in
this chapter we saw how the study of stripe patterns on the alligator increased our un-
derstanding of the biology. In the case of teeth there are numerous reasons, other than
pedagogical ones, for studying the development of dentition in A. mississippiensis.

The development of teeth primordia in the vertebrate jaw of the alligator (crocodilia
in general) is another example in which a highly regular spatial pattern is formed in a
dynamic way. Cells are coordinated to build each tooth primordium, the precursor of the
actual tooth, which fits into a precise spatial and temporal sequence of teeth primordia.
This process takes place as the jaw is dynamically growing and the interaction between
growth and pattern formation is crucial in determining the final spacing and order of ap-
pearance of each primordium. The final pattern of teeth primordia form the foundation
for the functional dentition.

The evolution of dentition has not come without occasional problems. Congenital
malformations such as cleft lip and palate affect children worldwide and can cause
difficulties in feeding, breathing and speech.? Even now little is known about the details

2Harelip and cleft palate medical problems have been treated (in a fashion) for a long time. Galen (130—
200 AD) mentions them while James Cooke (1614-1688) a dentist in Warwick, England, a French dentist Le
Monier in 1764 and others actually carried out surgery to try and correct the problems: the results were usually
disastrous. Sometimes it involved putting wire ligatures through the jaw to try and correct a cleft palate while
others used lead supports such as were used for George Washington’s false teeth.
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of biological events in craniofacial development® in part hampered by the difficulty
in studying mammalian embryonic development in vivo. Although the alligator is a
reptile it has certain mammalian-like characteristics with regard to its teeth and jaws
and this has allowed experimental observations of certain biological processes to be
made. The ability to perform non-invasive as well as invasive in vivo studies on the
alligator A. mississippiensis lets us look closely at the various stages of embryonic de-
velopment, where palate development and tooth initiation occur simultaneously in the
embryonic jaw. This makes it possible to start investigating the biological mechanisms
by which these normal and abnormal developmental processes occur. The investiga-
tions of the developmental patterning of teeth primordia complement palate studies
and represent an important aspect of craniofacial development. The study of denti-
tion development and palate closure in alligators could help in determining the de-
velopmental process in humans or at least getting clues as to how to prevent such
birth deformities and predicting the effects of prenatal repair of cleft palates in humans
(Ferguson 1981c¢, 1994). With the benefits of fetal wound repair as compared with adult
wound repair (both of which we discuss in later chapters on wound healing) the bene-
fits could be very important. At the basic level therefore their intensive study is easily
justified.

Figure 4.9 shows the relative similarity (as compared with other mammalian jaws)
of alligator and human jaws and their dentition. There are other similarities and of
course many differences. They both have secondary palates, one row of teeth and simi-
lar palate structure but humans are biphydont (two sets during their life) and have three
types of teeth while the alligator is polyphydont (many teeth sets during their life span)
with one type of teeth but different sizes.

Experimental studies by Westergaard and Ferguson (1986, 1987, 1990) detailing
the initiation and spatial patterning of teeth primordia provide a database from which
experimental observations and hypotheses can be incorporated into a theoretical mod-
elling framework. In this chapter we address two fundamental questions on the initiation
and patterning of teeth primordia. First—the perennial question—what are the mecha-
nisms involved in the initiation of an individual primordium? Second, how is the precise
spatial distribution of these teeth primordia determined? Using the available biological
data, we construct a model mechanism for teeth primordia initiation, in this case a re-
action diffusion one but fundamentally different to those we have so far studied. In
Section 4.8 we give the results of extensive simulations and compare them with the
experimental data. We then use the model to predict possible experimental outcomes
which may help to guide further experiment. By gaining a better understanding of pos-
sible mechanisms involved in teeth primordia initiation and how the mechanism actually
achieves this we hope to provide clues to the formation of the human craniofacial birth
defects mentioned above.

3In 1920 the U.S. War Department published some interesting statistics in a report ‘Defects Found in
Drafted Men.” The extensive report lists, among others, the number of draftees with cleft palates and harelips.
They list the relative frequency of each defect state by state. Surprisingly the incidence in Vermont and Maine,
approximately 1.5 per 1000 men, was about three times the U.S. average and half as much again as the third
state in frequency. This was around the height of the eugenics fad and the report was widely studied and used
by those eugenicists seeking confirmation for their loony ideas.
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Alligator

Human

Figure4.9. Visual comparison between human jaw dentition and that of a 13-foot (4-metre) alligator. (From
Ferguson 1981d)

4.5 Biology of Tooth Initiation

Vertebrate teeth vary in size and shape yet all pass through similar stages of develop-
ment. In the vertebrate jaw, there are two primary cell layers: the epithelium, which
is arranged in sheets, and the underlying mesenchyme, a conglomerate of motile cells,
connective tissue and collagen. Figure 4.10 schematically shows the early events in
their initiation. The first sign of developing structure of the tooth organ is the tooth pri-
mordium. The tooth primordium first becomes evident in the formation of a placode,
which is a localised thickening of the oral epithelium. Through a series of complex
epithelial-mesenchymal (dermal) interactions which occur while the jaw is growing,
these clumps of epithelial cells invaginate into the mesenchyme and cause a local ag-
gregation of mesenchymal cells (a papilla), forming a tooth bud. In some vertebrates,
early primordia degenerate into the mesenchyme and are reabsorbed or shed, while for
others even early primordia develop into functioning teeth. Subsequent teeth primordia
form in a similar manner and, as is the case in the alligator, in a highly stable and precise
spatial and temporal sequence, and continue the formation of the set of teeth. A similar
process takes place in feather germ initiation (see Chapter 6). Here we are interested in
the spatial patterning of the placodes as in Figure 4.10(f).

This brings up the subject of tissue interaction and its modelling which we discuss
in Chapter 6. Such models are directly related to tooth formation and are necessarily
complex since the pattern generators in each tissue are coupled and the coupled sys-
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tooth placode
epithelium

mesenchyme

Figure4.10. Schematic scenario for the early developmental events associated with teeth initiation. (a) Cell
layer structure prior to primordium initiation. (b) Condensation in the epithelial layer marks the primordium
position. (C) Invagination into the mesenchyme. (d) The dental papilla in the mesenchyme. (€) Differentiation
of the cells to form dentin and enamel. (From Kulesa 1995)

tem has be investigated as a unit. Relevant to epidermal-dermal/mesenchyme interac-
tion and the creation of placodes and papillae (see Figure 4.10), Cruywagen (1992) and
Cruywagen and Murray (1992) present a tissue interaction model and various caricature
models of the full system and carry out some analysis; Cruywagen (1992) also gives a
thorough exposition of the problem of tissue interaction. A study of tooth formation
through the papillae stage will require a tissue interaction model which will certainly be
very complicated since it involves two complex pattern formation mechanisms interact-
ing.

Since tooth initiation and the formation of the palate are both embryonic events,
experimental investigations of the precise details have been hindered by the inaccessi-
bility of in vivo observation. To understand the mechanisms involved in both processes,
it is necessary to have a detailed study of the stages in development. This requires the
experimentalist to have observation capabilities throughout incubation and a means of
surgical manipulation of the embryo all of which are available when the embryogen-
esis of an animal develops in an external egg. As we mentioned, the experimentalist
can carry out surgical manipulation and detailed observation throughout the whole in-
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cubation period in the case of the alligator (by cutting windows in the eggshell and its
membrane).

These aspects were fully used in the embryological investigation of the reproduc-
tive biology of the crocodilia (Ferguson 1981d), the structure and composition of the
eggshell and embryonic membranes (Ferguson 1981a), the mechanisms of stripe pat-
terning discussed above in this chapter and, more relevant to teeth, in craniofacial stud-
ies of palate and tooth formation (Ferguson 1981c,d, 1988). The crocodilians possess
numerous morphological features which are not characteristic of reptiles in general as
pointed out above and which make them a useful model for comparison to human denti-
tion development. Of all the crocodilians, the alligator possesses the most mammal-like
snout and secondary palate (Ferguson 1981b,c,d).

Spatial and Temporal Sequence of Teeth Primordia

Westergaard and Ferguson (1986, 1987, 1990) experimentally investigated the precise
spatial and temporal initiation sequence of teeth primordia in the alligator A. mississip-
piensis during development. The first tooth primordium, called the dental determinant,
forms in the anterior part of the lower jaw, but it is not the most anterior tooth to form.
Tooth initiation spreads from the dental determinant both forwards and backwards in the
jaw. Interstitial primordia form where space is available and closer to the more mature
of the two neighbours. The precise spacing and order of appearance is shown sche-
matically in Figure 4.11, in a real alligator embryo in Figure 4.13(a) and in adults in
Figure 4.18.

A major conclusion from the experimental studies of Westergaard and Ferguson
(1986, 1987, 1990) is that teeth primordia initiation is directly related to jaw growth
and as such necessitates modelling dynamic pattern formation on a growing domain.

From Westergaard and Ferguson (1986), the early teeth primordia form forward and
backward in the jaw, with interstitial teeth forming in growing spaces between the ear-

Day 16 Day 19
Tooth 1 Tooth 2
posterior anterior

Day 21 Day 22

Teeth 3, Teeth 6,7
4and 5

4
L

<

Figure 4.11. Order and time of appearance of the first seven teeth in the lower jaw of A. mississippiensis.
(Derived from Westergaard and Ferguson 1986) The jaw is about 0.6 mm when Tooth 1 forms and about
3.8 mm by the time Tooth 4 is formed.
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lier primordia. This link between the number of early teeth primordia and jaw growth
led Kulesa and his coworkers (Kulesa 1995, Kulesa et al. 1993, 1996a,b, Kulesa and
Murray 1995, Murray and Kulesa 1996) to investigate this relationship. If we count
the number of teeth which are formed as of each developmental day, we find an un-
mistakable exponential relationship for the early development (Figure 4.12(a)) and a
Gompertz-like growth in the number of teeth primordia over the entire course of incu-
bation (Figure 4.12(b)). This evolution from an exponential to a Gompertz growth is a
common feature of cell growth and has been modelled and explained by Murray and
Frenzen (1986). From this experimental evidence we assume that the early jaw domain
must be growing exponentially at a constant rate for the developmental period with
which we are concerned. We incorporate this in the formulation of the mathematical
model in the following section.

In the early stages of teeth primordia initiation in the jaw quadrant, the first 7
primordia form in an alternating sequence. However, the eighth primordium starts a
non-alternating series which then reverts back to an alternating sequence with tooth
primordium 11. Subsequent primordia formation is complicated by reabsorption of the
previous teeth primordia; tooth 9a forms in the location where the first primordium
was reabsorbed. The spatial sequence of the first several teeth primordia shown in Fig-
ures 4.12 and 4.13 is one of the major modelling challenges. During the full 65-70 day
incubation period, approximately 19 early teeth primordia (reabsorptive group) are re-
absorbed or shed without becoming functional. Seven teeth (transitional group) function
for a short period (less than two weeks) or are sometimes reabsorbed or shed without
becoming functional. The functional group, comprised of 36 teeth, are initiated dur-
ing embryonic life and function for longer periods. From the experimental data (West-
ergaard and Ferguson 1987) for the lower jaw, after the initiation of the seventeenth
primordium, the many remaining placodes form approximately near the spaces where
older primordia have been reabsorbed. That is, jaw growth seems to slow and become
less crucial to the initiation of new primordia. Thus, the role for the early primordia
seems to be to set down a marker for initiation of future primordia.

The initial localised condensation of cells which mark a tooth placode occurs in the
epithelium but the precise signalling mechanism for initiation is not known. Studies of
signalling in tooth initiation have focused on the local occurrence of epidermal growth
factor and its receptors (Thesleff and Partanen 1987, Partanen et al. 1985, Kronmiller et
al. 1991), tissue interactions (Mina and Kollar 1987) and the local expression of home-
obox genes (MacKenzie et al. 1991, 1992). In work on mice, Thesleff and Partanen
(1987) showed that epidermal growth factor caused proliferation of dental epithelium.
Kronmiller et al. (1991) then demonstrated the necessity for the presence of this epider-
mal growth factor during tooth initiation by showing that initiation did not occur when
epidermal growth factor was chemically blocked.

More recent experimental investigations have focused on finding the molecular
mechanisms involved in teeth primordia initiation and formation; for a brief review see
Ferguson (1994). The presence of certain homeobox genes, namely, Msx1 and Msx2,
have been identified as being expressed in the local region of tooth formation (MacKen-
zie et al. 1991, 1992) and these expressions are a result of epithelial-mesenchymal
interactions (Jowett et al. 1993, Vainio et al. 1993). The complete formation of denti-
tion then is a series of processes which are coordinated by signalling and the physical
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Figure4.12. A. mississippiensis. (a) Temporal sequence of first seven teeth primordia in upper (x) vs. lower
(o) jaws (Derived from Westergaard and Ferguson 1986, 1990) Data have been fit with exponential curve:
N(t) = Ngexp(rt). Lower jaw (dashed): Ny = 0.0066, r = 0.3077/day. Upper jaw (solid): Ny = 0.0047,
r = 0.3442/day. (b) Number of teeth primordia N (¢) vs. incubation time ¢ (days) for upper (+) and lower
(o) jaws during the whole gestation period. (Derived from Westergaard and Ferguson 1986, 1987, 1990) Each
data set has been fit with a Gompertz curve: N () = Ny exp[—N, exp(—rt)]. Lower jaw (dashed): Ny = 71.8,
Ny = 8.9, r = 0.068/day. Upper jaw (solid): N1 = 69.6, N = 12.0, r = 0.082/day. (From Kulesa and
Murray 1995)
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(b)

Figure 4.13. (a) The lower right half jaw of A. mississippiensis on day 26 showing the tooth primordia.
The insert shows what a tooth germ (the most prominent) looks like at this time. (From Westergaard and
Ferguson 1986) (b) Upper and lower jaws of young (A) and old (B) adult alligators. The numbers indicate
tooth positions and order. In (A) the dentition is the same 20 functional teeth as at hatching: bar(A) =
5 mm, bar(B) = 20 mm. (From Westergaard and Ferguson 1990. Photographs courtesy of Professor M.W.J.
Ferguson)
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interaction of tissue. A critical and thorough review of the various findings, models and
hypotheses, some dating back to 1894, has been given by Kulesa (1995).

4.6 Modelling Tooth Primordium Initiation: Background

The early embryological investigations of dentition development in reptiles (Rose 1894,
Woerdeman 1919, 1921) form the basis for descriptive models of tooth formation, which
in general fall into either a prepattern or dynamic model category. Prepattern models,
which have been discussed at length in Chapter 2, are characterised by morphogens and
rely on the concept of positional information (Wolpert 1969). To briefly recap, reaction
and diffusion of a morphogen through a tissue creates a concentration heterogeneous
landscape of the morphogen to which the cells react and differentiate accordingly. In
the tooth initiation process, prepattern models hypothesise that a primordium is formed
when cells respond to differences in the morphogen concentration and so the challenge
is to determine the mechanism which produces the appropriate spatial pattern in mor-
phogen concentration. The usual morphogen prepattern models are not dynamic, in the
sense that once the pattern is laid down it cannot be changed by the dynamic behavior,
for example, domain growth, of the system.

Woerdeman’s investigations (1919, 1921) were with the reptiles, Gongylus ocella-
tus and Crocodylus porosus, and his data showed that the first tooth primordium formed
was the most anterior (front) one in the jaw. Subsequent primordia form all along the
jaw. Using these data, Edmund (1960a,b) proposed that the tooth initiation process was
as if a wavelike stimulus passed along the jaw from front to back. When the wave passed
over a predetermined or prepatterned tooth site, a tooth placode was initiated. The stim-
ulus resulted from a chemical transmitter at the front of the jaw. For each passage of
the hypothetical initiating pulse, a row of teeth was formed. This series of waves, called
a ‘Zahnreihe’ (from the German ‘Zahn’, meaning tooth and ‘reihe’ meaning row) was
adopted by Edmund (1960a,b) from the work of Woerdeman (1919) who first described
the phenomenon. The Zahnreihe ‘theory’ was accepted by most investigators at the time
until Osborn (1970, 1971) demonstrated, firstly, that there was no known pattern of tooth
initiation in embryos which fit into the Zahnreihe theory, and secondly, that Edmund
(1960) had actually rearranged Woerdeman’s data (1921) to fit his theories. Although
the Zahnreihe theory has been shown to be incompatible with the experimental data, it
is still widely thought that a chemical wavelike impulse stimulates the initiation of teeth
primordia.

In contrast to traditional prepatterning, dynamic models describe the development
of pattern as self-generating, that is, a dynamic process which takes place and depends
crucially on the dynamic growth of the system. We saw in the above section on shadow
stripes on the alligator how growth played a crucial role. Teeth primordia may continue
to be initiated by morphogen gradients, but with the pattern formation mechanism re-
sponding to the underlying growth of the system. The concept of a dynamic patterning
mechanism has led to the formation of two models: the clone model (Osborn 1978) and
the mechanochemical model (Sneyd et al. 1993).

Osborn (1978) was the first to try and incorporate the dynamics of jaw growth into
a descriptive model for tooth initiation. His clone model postulates that tooth primordia
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are initiated from one or more clones of neural crest cells, situated in the mesenchyme,
just under the epithelium. The pattern of teeth primordia forms as a result of the dy-
namic growth of the clone. In his model, a clone source has edges, called progress
zones, which may expand in either direction, anterior or posterior along the jaw. As
the clone expands, cell divisions give rise to competent tissue setting up a gradient in
cell age. Space becomes available, at the margins of the clone, produced by successive
cell generations. New primordia are initiated when there is sufficient mature tissue and
available space within the expanding clone. Based on experimental evidence (Osborn
1971) that new teeth primordia tend to form closer to the older of two neighbors, Os-
born (1978) suggested that each new primordium generates a zone which inhibits the
initiation of further local primordia. In the model, the total number of primordia formed
in the jaw depends on the size to which the clone grows and the sizes of the inhibitory
zones.

The mechanochemical model by Sneyd et al. (1993) describes how the mechan-
ical movements of cells and related tissue could create the structure and form of the
tooth primordium. The model incorporates both mechanochemical and reaction diffu-
sion mechanisms. The initiation of the dental determinant (the first tooth primordium) is
presented as a process controlled by jaw growth, the age structure of the epithelial cells
in the developing jaw, and the age-dependent production of cellular adhesion molecules
or CAMs (for example, Chuong and Edelman 1985, Obrink 1986) in the dental epithe-
lium. Their numerical simulations predict the initiation of the dental determinant occurs
in the proper spatial position only if CAM concentrations rise quickly in the neighbor-
hood of the forming placode and immediately prior to its development. Thus, unless
CAM production in the jaw anterior increases on a timescale much faster than that of
jaw growth, an incorrect pattern will form. This crucial conclusion, arrived at by simu-
lation of the model, points out the danger of extrapolating results from a model on fixed
domains to pattern formation on growing domains.

There are serious difficulties with all of these theories. The series of detailed inves-
tigations on the embryonic development of the dentition of the lower and upper jaws of
A. mississippiensis (Westergaard and Ferguson 1986, 1987, 1990) provide accurate initi-
ation data from day 1 to 75. The definitive sequences of initiation and replacement were
derived and the development of individual teeth followed through the 65-day incuba-
tion period. These experimental studies were the first to be detailed enough to elucidate
the highly precise dentition patterning during embryonic development and highlight the
inadequacies, both qualitative and quantitative, of all of the above models. From a mod-
elling point of view, the principal findings suggest that initiation of teeth is intimately
related to: (1) jaw growth, (2) the distance between existing teeth and (3) the size and
developmental maturity of the latter.

The experimental results confirm the inadequacies of the Zahnreihe theory and also
led to a rejection (Westergaard and Ferguson 1986) of the clone model (Osborn 1978),
based on the criticism that new teeth do not develop in the sequence suggested by the
growing clone. Osborn (1993) suggested that the teeth, in a jaw quadrant of an alli-
gator embryo, may develop from multiple clones; however, the initial positions and
growth dynamics of each clone are unspecified. The mechanochemical model (Sneyd
et al. 1993), although it produces the dental determinant in the correct position with a
restriction, is primarily useful in showing the necessity of including the growth of the
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jaw domain. Their model also does not address the sequence of subsequent primordia.
Westergaard and Ferguson (1986, 1987, 1990) make it very clear that the spatial pattern
of teeth primordia is not laid down at one time, but is dynamically developing as the
embryonic jaw is growing. Clearly, whatever the pattern forming mechanism for tooth
initiation, it must at least be capable of reproducing the spatial and temporal sequence
of the first few teeth primordia in the alligator from the experimental data. This is not a
trivial challenge for a theoretical model. Based on the biological data, we develop and
analyse in the next four sections such a dynamic model mechanism, which crucially
includes jaw growth, for the initiation and spatial positioning of teeth primordia and
meets the criterion as to the sequential appearance of the primordia in the A. mississip-
piensis.

4.7 Model Mechanism for Alligator Teeth Patterning

The embryonic dentition development in the alligator offers a model system to study
many facets of tooth formation. As we have said we only focus here on the teeth pri-
mordia initiation process. We use the known biological facts as a guide in constructing
a mathematical model mechanism which describes the initiation and spatial patterning
of the teeth primordia. The preliminary goal is to reproduce the observed spatial pattern
of the first seven teeth primordia in the jaw of Alligator mississippiensis; seven because
after this these teeth begin to be reabsorbed (but in a systematic way as we described
above).

We begin by discussing how the biological data let us make certain quantitative as-
sumptions which are part of the model. The seminal experimental work of Westergaard
and Ferguson (1986, 1987, 1990) forms the basis for the development of the model
mechanism. The recent biological investigations and experimental studies in mice sup-
plement the biological database. Although some experimental results have yet to be
shown in alligators, we reasonably assume certain similar characteristics. We attempt to
incorporate as much of the known biological data as possible.

Of crucial importance for the model mechanism, is the incorporation of the physical
growth of the jaw based on the known biological data. The initiation of the first seven
teeth primordia occurs during the first one-third of the incubation period of the alligator.
As noted, the number of teeth primordia seems to follow an exponential (Figure 4.12(a))
relationship for the first several primordia and a Gompertz-type growth (Figure 4.12(b))
for the full set of primordia during incubation.

To begin with we have to quantitatively characterise the growth of the jaw and
then incorporate this into the model system of equations. We then describe how these
chemical based model equations attempt to capture the physical process by which the
biological mechanisms initiate a tooth primordium and the subsequent spatial pattern-
ing of teeth primordia. Since we have considerable experience with such chemically
based systems, namely, reaction diffusion systems from earlier chapters, we shall only
describe briefly how the system forms the heterogeneous spatial patterns which we hy-
pothesise give rise to the cell condensations (the placodes) in the epithelium which mark
the tooth initiation sites.
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Model Assumptions

Although we make certain biological assumptions, the goal of the model is to capture
the essential components of the biological mechanism and as much of the known bi-
ological data as possible. From the experimental work of Westergaard and Ferguson
(1986), a comparison of tooth initiation sequences and positions between left and right
sides of the jaw for both the same and other specimens of A. mississippiensis show no
evidence of significant differences. So, we assume a symmetry in the initiation pro-
cesses between the left and right sides of the jaw. The region in the jaw on which the
primordia form is very thin compared with its length as is evident from Figure 4.13(a) so
we consider that the teeth primordia form along a one-dimensional row. We construct
a line from the posterior (back) of the jaw to the anterior (front) (Figure 4.14). This
posterior—anterior one-dimensional axis is further justified by the experimental results
(Westergaard and Ferguson 1986, 1987, 1990) which show that tooth initiation sites
have very little lateral shift from an imaginary line drawn from posterior to anterior
along the jaw epithelium.

Biologically, it is unknown how the signal to start tooth initiation is switched on. It
is believed that this signal is controlled by neural crest cells in the mesenchyme which
somehow send a message to the epithelium to start condensing.

The cell condensations in the epithelium mark the sites of teeth primordia initiation.
Since this initiating source is also unknown, we make the assumption that there is a
source of chemical at the posterior end of the jaw which starts the initiation process.
How the source is switched on is unspecified, which is in keeping with what we know
about the biology. The role of the chemical source diminishes quickly after the first
tooth primordium is formed.

The experimental identification of certain components involved in tooth initiation
and formation revealed epidermal growth factor, bone morphogenetic protein (BMP-4)
and certain homeobox genes (Msx1 and Msx2). This suggests a chemical mechanism
for the initiation of a primordium, where certain chemical concentrations stimulate an
area of the epithelium to form a placode. So, we consider a reaction diffusion system
but with some very different features from those in earlier chapters.

p— !
anterior posterior
x=10 x=1

Figure 4.14. One-dimensional line approximating the anterior—posterior jaw axis along which teeth primor-
dia form.
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Model Equations

The aim then is to show that the proposed class of mechanisms for the initiation of the
teeth primordia, which we now construct, following Kulesa (1995), Kulesa and Murray
(1995), Murray and Kulesa (1996), and Kulesa et al. (1996a,b), are sufficient to explain
the pattern of tooth sites in A. mississippiensis. To construct a dynamic pattern forma-
tion system, we must incorporate the physical growth of the jaw into a system capable
of forming pattern. To do this, we combine the aspects of a static pattern formation
mechanism, which is mediated by a control chemical, with the physical growth of the
jaw domain. The result is a dynamic patterning mechanism.

Experimental evidence requires that the pattern arises dynamically as a conse-
quence of jaw growth and not as the result of a prepattern of tooth initiation sites and
so is a crucial element in the mechanism. From the experimental evidence of exponen-
tial jaw growth (Figure 4.12(a)), we assume that the jaw length, L = L(¢), grows at a
constant strain rate, r, according to

dL [
= =rL = L) = Lge" 4.1

where, with the nondimensionalisation we use, Lo = 1. The experimental data let us ob-
tain good estimates for the parameters. Basically the growing domain dilutes the chem-
ical concentrations.

Consider the scalar reaction diffusion equation

¢; = Dcgg +yf(c) 4.2)

on a growing domain where D, the diffusion coefficient, and y, the scale factor, are
constants and f(c) is a reaction term, a function of the concentration c. Let

s = quantity of reactant in length / = ¢ = s/1.

Then, in the time interval
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and so (4.2) becomes
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¢t = Dcgg +yf(c) —rc 4.3)

The dilution term is the —rc.

The domain grows at an exponential rate. For ease of numerical simulation of the
model it is easiest to change the variable so that the equations are on a fixed domain.
Here we set

x=Ee"" = ¢ =De e +yf(c) —re, xelx, L], L fixed. 4.4)

The reaction diffusion equation (4.3) on a growing domain becomes a non-autonomous
reaction diffusion equation in a fixed domain with a diffusion coefficient decreasing
exponentially with time.

For the chemical patterning mechanism, we take, by way of example, a basic di-
mensionless reaction diffusion system, namely, (2.32) from Chapter 2, which we studied
in some depth in Sections 2.4 and 2.5. We modify it, guided by the above discussion
of the biology, by combining it with an equation for a chemical ¢, which controls the
substrate u, in a simple inhibitory way to get

u 5 3%u

Ezy[hc—u—i—u v]—l—ﬁ

dv 8%v

LAY A ] R . (4.5)
o1 (o= o]+ ax2

dc Se + 8¢

I -

ot Pox2

Here u(x,t) and v(x, t) represent the respective concentrations of a substrate and an
activator with y the usual scale factor (see Chapter 3), b and & constants, é the assumed
first-order kinetics decay of ¢, d the usual ratio of the activator’s diffusion coefficient to
that of the substrate and p the ratio of diffusion coefficient of c to that of the substrate u.

We assume the source of u is controlled by ¢, an inhibitor related to the epidermal
growth factor, EGF. That is, we assume the existence of an inhibitory substance whose
concentration decreases as the concentration of EGF increases and vice-versa. It comes
from the source at the posterior end of the jaw.

If we now carry out the scale transformation in (4.3) and a nondimensionalisation
to make the domain fixed to be 1 the resulting nondimensionalised equations for the
substrate, u, the activator, v, and the inhibitor, ¢, are, on a scaled domain 0 < x < 1:

du 3%u
P h _ 2 :I _ ( —2rt) — 46
a7 y [ c—u+u-v ru—+ (e 532 4.6)
dv 9%
EAEYY P 2]— d(‘z”)—, 4.7
” y [ u“v rv+d|e 932 “.7)
dc 9%c
e S ( —2”> - 4.8
a7 c—rc+ple 932 4.8)
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Each equation (4.6)—(4.8) has a dilution term, due to jaw growth, and a time-dependent
diffusion coefficient which arises from the coordinate transformation to the scaled do-
main in x. These equations govern the variables on the growing domain of the jaw and
were studied in depth by Kulesa (1995). Relevant boundary conditions are

Uy (0,1) = u,y(1,1) =0 = v, (0, 1) = v, (1, 1), 4.9)
o (1,t) =0, ¢(0,1) =co(t), (4.10)

where co(#) is a decreasing function corresponding to a source term at the posterior end
as discussed above. The condition (4.9) implies zero flux of u and v at either end of
the domain, while for ¢ there is zero flux only at the anterior end (4.10). Recall that we
have taken only half of the jaw to scale to 1 which means that at the anterior end it is
the symmetry condition which gives the condition at x = 1 in (4.10).

From the analyses in Chapter 2, specifically Sections 2.4 and 2.5, for a range of
parameter values and a domain size larger than some minimum, the reaction diffusion
system given by the first two equations of (4.5) with ¢ a constant, is capable of producing
steady state spatial patterns in « and v. By varying one or more of the parameters in these
equations the system can select a stable heterogeneous state or a specific regular spatial
pattern. When the inhibitor, c, in the first of (4.6) is above a threshold value, pattern
formation in u# and v is inhibited. For ¢ below this threshold, the pattern formation
mechanism is switched on, via diffusion-driven instability and a spatial pattern forms
in u and v when the subthreshold portion of the domain is large enough. The interplay
between the parameters and the domain scale is important in determining the specific
pattern formed with certain spaces giving rise to specific patterns; refer specifically to
Figure 4.21 below where the parameter spaces are given specifically for the hump-like
patterns we require here. The analysis there is for ic a constant parameter (equivalent to
the ‘a’ there) and for a fixed domain size. The situation we consider here has a variable
domain and c varies in space and time. It is not easy to carry out an equivalent analysis
in such a case. We can however get an intuitive feel for what is going to happen as we
show below.

The representation of the tooth primordium becoming a source of inhibitor c(x, ) is
strongly suggested by the biology. The experimental studies (Westergaard and Ferguson
1986, 1987, 1990, Osborn 1971) led us to postulate a zone around a newly formed tooth
which inhibits subsequent teeth primordia from forming in the local region. Westergaard
and Ferguson (1986) noted that if a new primordium was forming in between older pri-
mordia, the new primordium would form closer to the older neighbour. Mathematically,
we characterise this zone of inhibition by allowing each new tooth primordium to be-
come a source of chemical growth factor, whose role is to inhibit tooth primordium for-
mation in the local region of a newly formed primordium. We now define a new tooth
site where the substrate, u(x, t), crosses a threshold on a subdomain of 0 < x < 1. This
turns on a new tooth source, ¢;, of ¢ at this site, which simulates a zone of inhibition.
The concentration of this tooth source we model according to logistic growth,

d ~.
2 =k (1 - Ii—’> , @.11)
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where the constants k1, k> > 0 and c(x;, t) = ¢;(¢) for t > t;, where the subscript i
refers to tooth i.

Mathematically these new tooth sources of inhibitor can be thought of as delta
functions in both time, which ‘turn on’ the source when u crosses the threshold, and
space which ‘turn on’ at the position where u crosses the threshold. We define ‘turning
on’ of a tooth source as the rise in the inhibitory chemical c at the tooth site according
to (4.11). These additional tooth sources can be added to the right-hand side of (4.8) in
the form

Z 8(x — xi)H (U — tgheshod) F(t — t;) i = ith tooth, (4.12)
i=1

where 6 (x — x;) is the usual Dirac delta function and H (1 — unreshold) the step function
defined by

o0

1 ifu>0

0 ifu<0’ “.13)

8(x) = 0if x # 0 where /

—00

§(x)dx =1, H(u) = {

but with the added constraint that H(u — u;;) = 1 at any stage it remains 1 even if
u decreases below u;;,. This ensures the new tooth source stays on after it starts. The
funtion F(¢) is the right-hand side of (4.11).

How the Mechanism Works

To get an intuitive idea of how the patterning process(4.6)—(4.8) works, let us consider,
to begin with, the basic system (4.5) where we consider ¢ = a a constant and a domain
of length 1 — L. where L. is determined as we describe below.

ou 2 8%u
. (4.14)
ov [b 2 ]+d82v
— = —u‘v —
a7 ax?

We know from Section 2.4 that with y, b, d and ha in the appropriate parameter domain
there is a minimum length below which no pattern can form and above which it can
with the mode depending on the domain length (and the other parameters, of course).
We also saw that there is a parameter space (with the dimension equal to the number of
parameters) in which patterns can form. It is exactly the same with this model system
except that we cannot determine it analytically as we did in Chapter 2. Examples of two-
dimensional cross-sections of the real parameter space are reproduced in Figure 4.21
below.

Consider now Figure 4.15(a) which schematically shows a hypothetical parameter
space for some group of parameters plotted against another group of parameters and that
there is a subspace in which mode 1-like and another in which mode 2-like patterns will
start to grow in a large enough domain. Now consider Figure 4.15(b) which illustrates
a typical solution of the third equation of (4.5) with a source of ¢ at x = 0 and zero flux
at x = 1. Now as c decreases (because of the —§c term in the equation) there will be
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Figure 4.15. (a) Schematic parameter space for which patterns will grow if the parameters lie in the appro-
priate space and specific dominant patterns if they lie in their respective subspaces. (b) Typical qualitative
solution ¢ of the third equation of the sytem (4.5) with a source at x = 0. (C) Schematic mode 2 solution of
the full system (4.5) for some critical L.

a value of L. such that the average c¢ (or rather, approximately the average) for L, <
x < 1 is such that the system (4.14) can generate a spatial pattern, specifically a mode
2-like pattern as in Figure 4.15(b) if the parameters are in the appropriate subspace. With
¢ = a, a constant, we can certainly calculate what this critical L, will be for the mode
2 pattern to be formed with the methods of Chapter 2. With c(x, ) a solution of its own
reaction diffusion equation (the third of (4.5)) it is considerably less easy since the full
system must be solved. Nevertheless it is intuitively clear for the full system (4.5) that
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for some length L. a mode 2-like solution as in Figure 4.15(b) will start to form and that
u will increase. It is again intuitively clear that a somewhat similar patterning scenario
will occur for the model system (4.6)—(4.8) in a growing domain and that a critical L.
exists for a mode 2-like pattern to start to form in L, < x < 1. All of these behaviours
are confirmed by the numerical simulation of the full system as we see below.

Let us now return to the full model set of equations (4.6)—(4.8) with (4.9) and
(4.10) on the fixed domain 0 < x < 1; recall that it is a fixed domain because of the
scale transformation. We assume there is an initial source of epidermal growth factor,
¢, at the posterior end of the jaw (x = 0). This chemical diffuses through the jaw
epithelium, is degraded and diluted by growth according to (4.8). As the jaw grows,
¢ decreases further towards the anterior end x = 1 until it crosses below the critical
threshold on a sufficiently large subdomain L, < x < 1 to drive the substrate—activator
system unstable (through diffusion-driven instability more or less in the usual way).
The specific mode that starts to grow depends on the parameters. We choose parameter
values such that the single hump (mode 2) spatial pattern is the first unstable mode.
So, when the subdomain, on which ¢ is below the threshold, has grown large enough,
a single mode spatial pattern in # and v will start to grow like the mode 2 pattern in
Figure 4.15(b). Eventually, the substrate concentration, u, crosses an upper threshold
which triggers initiation of a placode (tooth primordium) fixing the spatial position of
tooth 1: this is the dental determinant; see Figure 4.16(a).

As mentioned, the experimental evidence (Westergaard and Ferguson 1986) sug-
gests that the dental determinant and each subsequent tooth primordium become a
source of inhibitor thus simulating an inhibition zone. So, in our model, when u grows
above a certain threshold, we make the location of the peak in u a source of c, the in-
hibitory substance. Mathematically, this is equivalent to an internal boundary condition
at each tooth

c(xi, t) =ci(1) (4.15)

for x = x; and ¢t > t;, where ¢;(¢) is the solution of (4.11). So, with the appearance
of the dental determinant there are now two sources of inhibitor, one at the posterior
end of the jaw and the other at the dental determinant position x;. Now, as the jaw
grows, ¢ eventually drops below the critical threshold in the region between the two
sources and another hump-like pattern in u starts to appear in the posterior end of the
jaw. The second primordium forms in the region where u again crosses the patterning
threshold, and the tooth that is initiated becomes another source of c as illustrated in
Figure 4.16(b). In this way, tooth development proceeds: c(x, t) dips below a threshold,
causing a local pattern to form when the domain size is large enough. In forming the
pattern, u crosses a threshold, and creates a source of ¢, hence another tooth primordium
is created. Subsequent primordia appear in an analogous manner. Based on the tooth
formation scenario in Figure 4.10 the placode, which we assume forms where u crosses
the threshold, induces cell aggregation, the papilla, in the mesenchyme. The exact order
of which comes first, the placode or the papilla is still not generally agreed. At this
stage in our modelling we do not address this question; we consider it in Chapter 6
when discussing the mechanical theory of pattern formation.
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Figure 4.16. (a) Representation of the formation of the first tooth primordium: ¢ = ¢} is the time u = uyy,.
The jaw length at this stage is approximately 0.6 mm. (b) Representation of the formation of the second tooth
primordium: ¢ = #; is the time when u = u;j, again. According to the developmental scenario described
above in Figure 4.10 the placode, initiated by the substrate u, and the cell aggregation in the mesenchyme, the
papilla, appear at the same place.
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It is always helpful, however complicated the equation system, to try and get an
intuitive feel of what the solutions will or could look like.

4.8 Resultsand Comparison with Experimental Data

With the above heuristic scenario we are now ready to simulate the complete model
mechanism and solve for the spatial and temporal sequence of the first seven teeth pri-
mordia; full details of the numerical analysis and discussion of the results are given by
Kulesa (1995) and these and others in Kulesa and Murray (1995), Murray and Kulesa
(1996) and Kulesa et al. (1995, 1996a,b). We first have to estimate a set of model pa-
rameters. Some we can obtain from experiment but others must be determined to ensure
the appropriate spatial pattern in u. We can estimate the crucial growth rate parameter
r from Westergaard and Ferguson (1986, 1990). We can get real biological estimates
for the diffusion coefficient p since it is related to the epidermal growth factor. Since
the degradation constant § is also related to epidermal growth factor we also have es-
timates for it. For the others, we have to use the equations and the ultimate pattern we
require. This was done using a straightforward linear analysis of a simplified form (4.6)
and (4.7), namely the system (4.14). We do not repeat the analysis since it is exactly the
same as that carried out in detail in Chapter 2, Sections 2.4 and 2.5 where we derived the
patterning space for this simplified system. We simply chose the set for the appropriate
mode 2-like pattern in u to be initated when the system was diffusion-driven unstable.
There is a systematic, and simple to use, logical numerical procedure for determining
the parameter set for specific patterns in pattern generator mechanisms in general (Ben-
til and Murray 1991) when it is not possible to do it analytically which is more the norm.
The boundary conditions are given by (4.9) and (4.10) and initial conditions:

u(x,0)=ug=h+>b, vx,0) =vy= c(x,0) =aexp(—kx), (4.16)

(u0)?’

where a and k are positive parameters. A representative continuous function of time for
the source of inhibitor at the anterior end of the jaw, (4.16), was taken as

¢(0,1) = c,(t) = —mtanh(t — f)/g + J, 4.17)

where m, f, g and j are constant parameters: this gives a smooth step function form for
the initial switching on of the patterning process. A small random spatial perturbation
was then introduced to ug and vy and the full nonlinear model system (4.6)—(4.8) solved
numerically for the spatial and temporal sequence of the first seven teeth primordia of
the lower jaw. A finite difference scheme based on the Crank—Nicholson method was
used with Ax = 0.01, At = (Ax)%. All parameter values are given in the legend to
Figure 4.19 where the results are compared with experiment.

Figure 4.17 shows the numerical simulation for u as far as the time of forma-
tion for the first five teeth together with the solution for the inhibitory chemical c.
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Figure4.17. (a—) The computed concentration profiles for the substrate u and the inhibitor ¢ for times up to
tooth formation time #; where i denotes the ith tooth. Tooth 1 is the dental determinant. The spatial positioning
of teeth primordia is given by x;, the positions where u reaches the threshold u;j,. Solutions are given on [0, 1]
but the actual domain size at each time is given by [0, expr¢]. The parameter values for all of the simulations

are given in the legend of Figure 4.19.
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In Figure 4.17(a) the time ¢ is the time u reaches the threshold u,, which initiates a
tooth primordium at x; and this switches on a source of the inhibitor c at this position;
at x1 there is then a zero flux barrier. At this stage a new simulation, with the u, v and ¢
distributions from the first calculation, was started in the two regions 0 < x < x1 and
x1 < x < 1 including the new source of ¢ at x. This simulation was carried through
until ¢ again decreased sufficiently over a large enough region and the spatial pattern in
u again reached u, at time , at some place in one of the domains at a position denoted
x7 thereby fixing the position of the next tooth, tooth 2. The next simulation was then
carried out in a similar way but now in the three regions 0 < x < xp and x3 < x < X
and x; < x < 1 and the position was determined where u next crossed the threshold u,,
at time #3 at position x3. The sequence of simulations was then carried out to determine
the position and time for each tooth primordium position. All of the results shown in
Figure 4.17 are plotted on the domain [0, 1] but the actual domain size is [0, exprt1]
where r is the growth rate parameter of the jaw.

We can represent the results in Figure 4.17 in a different way in Figure 4.18 to make
it clearer where and when the teeth primordia are determined to form as the jaw grows.
In Figure 4.18(a) we show the three-dimensional evolution of the substrate concentra-
tion u as a function of distance along the jaw (normalised to 1) and of time in days.
The dimensionless time in the simulations is related to the actual time in days via the
estimation of the expontial growth rate parameter » from the experimental data repro-
duced graphically in Figure 4.12: values are given in Figure 4.19. Figure 4.18(b) plots
the time of incubation in days against the length of the simulated jaw with the order of
teeth primordia superimposed.

The experimental data (Westergaard and Ferguson 1990) give the sequence of teeth
appearance for both the upper and lower jaw of A. mississippiensis and it was from these
data that Figure 4.12 was obtained. From Figure 4.12(a) we see that the upper jaw varies
slightly for the first several primordia, namely primordia 6 and 7 are in different spatial
locations. When compared to the lower jaw data, it can also be seen (Figure 4.12(a))
that the upper jaw grows at a slightly increased rate. For the simulations described we
used exactly the same parameter set for both the upper and lower jaw except for the
slightly higher growth rate for the upper jaw, specifically r = 0.34/day as compared
with » = 0.31/day. The experimental data also let us directly relate simulation time 7'
to real time ¢ as described in the figure legend.

The numerical simulations, with the parameter sets, for the sequence of teeth in
both the upper and lower jaw are presented in Figure 4.19 together with the experimental
data for comparison. The model mechanism reproduces the correct spatial and temporal
sequence for the first 8 teeth in the lower jaw and the correct sequence for the first 6
teeth in the upper jaw. The results are encouraging.

Kulesa et al. (1996a) also relate the numerical results with the teeth primordia ap-
pearance on the actual jaw; again the agreement is very good. The spatial positions from
the experimental data were obtained from a Cartesian xy-coordinate system attached to
Figure 4.13(a). A line in this figure lying along the teeth primordia, represented by a
parabola f(x), was fit to a curve of the experimental data ((f(x) = b 1x2 + box + bs;
by = —0.256, b, = 0, b3 = 7.28). The numerical spatial positions were then related
by using the length /, of f(x) from x = 0to x = x* (where f(x*) = 0), as the
nondimensional length of the anterior—posterior axis in their simulations.
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Figure 4.18. (a) The simulated concentration profile for the substrate # as a function of time and distance
along the jaw. The positioning of the teeth is determined by the positions in the jaw where u reaches a
threshold value. (b) The jaw length and appearance of the tooth primordia as they relate to the incubation
time in days. All the parameter values are given in the legend of Figure 4.19. (From Kulesa 1995)
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Figure 4.19. Comparison of the numerical versus experimental data for the teeth primordia initiation se-
quence in both the upper and lower half-jaws of A. mississippiensis. Upper jaw: ‘x’ denotes the numerical
data with a solid line: N () = N3 exp(r3¢); N3 = 0.0042, r3 = 0.35/day. The dash-dot line (-—-—- ) and ‘4’
denote the experimental data: N(t) = Ny exp(raqt); Ny = 0.0047, ry = 0.34/day. Lower jaw: ‘x’ denotes
the numerical data with a dashed line (———): N(t) = Njexp(r;t); Ny = 0.012, r; = 0.28/day. The dotted
line (- - -) and ‘o’ denote the experimental data: N (t) = N, exp(rat); N» = 0.0066, rp, = 0.31/day. Time
t (days) was scaled to time T (simulation) using 7 = at + ap; a; = 27.06 and a, = —286.6. The model
parameters are (refer to (4.6)—(4.11), (4.16) and (4.17)): h =1,b=1,d = 150,r = 0.01, p = 0.5, y = 40,
o0 =02,k =03,k =1.0,a =221,k = 0.9 and cy(t) = c(0,1) = —mtanh[(t — f)/g] + j; with
m = 0.65, f =200, g =34, j = 1.5. (From Kulesa et al. 1996a)

4.9 Prediction Experiments

One of the primary benefits of, and justifications for, constructing a theoretical model
mechanism directly related to a real biological problem is the ability to use it as a pre-
dictive tool. Numerical simulation of the model can determine whether the model mech-
anism is capable of reproducing the observed experimental data. Also of importance is
the ability to numerically simulate possible experiment scenarios. These virtual exper-
iments can be conducted computationally and therefore can cover a much wider range
of scenarios in a much shorter time than physical experiment. The simulations can also
allow for changes in parameters and conditions which are possible, sometimes difficult
and sometimes impossible, to reproduce in the laboratory. Results from the model pre-
dictions may help to identify key biological processes which are critical to the behaviour
of the model mechanism and may serve to guide further illuminating experiments. An-
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other reason, of course, for carrying out these virtual experiments is to test some of the
model hypotheses.

Since we have seen that the model can reproduce the major experimental data it is
reasonable to consider a group of intervention experiments which we simulate numeri-
cally to arrive at predicted outcomes of the teeth initiation sequence. We have identified
several different types of feasible laboratory experiments which could be performed on
the embryonic jaw of the alligator. We describe the removal of tooth placodes and re-
placement with sections of oral epithelium and the transplantation of tooth placodes. We
also insert physical barriers in the jaw epithelium which affect the diffusion processes.
Although the model and simulation procedures we have described in this chapter can be
used to mimic several different scenarios, we only show here some of the more inter-
esting prediction results of the simulated primordia initiation sequence. For reference
the normal sequence is illustrated in Figure 4.20(a) for both the upper and lower jaw of
A. mississippiensis.

Primordia Removal and Replacement with Oral Tissue

Let us consider removing the first tooth primordium immediately after it forms (Mur-
ray and Kulesa 1996). This is a test of the existence of an inhibitory growth factor at
the posterior end. Experimentally, we assume that when the cell condensation forms to
mark the first primordium site, the placode is removed and replaced with another sec-
tion of oral epithelium. In the numerical simulations of the model system (4.6)—(4.8),
when u(x, t) crosses the threshold to mark the first tooth site, we do not add a new
tooth source. Instead, we continue the simulation as if the tooth primordium 1, the den-
tal determinant, had been removed. With the given parameter set used in Figure 4.19,
this experiment was simulated. The prediction from the model shows that a new tooth
primordium forms in the same area in which the old primordium was removed: in other
words the old tooth reforms. The inhibitor, c(x, ), is still below the threshold on this
subdomain where the tooth primordium has been removed. The removal and insertion
of oral tissue merely delays the subsequent primordium from forming at this site. A sim-
ilar prediction is made if tooth primordium 2 is removed and new tissue is replaced. The
remainder of the teeth primordia initiation sequence remains unchanged in both cases.
The same holds for the removal of any tooth primordium: the primordium reforms in
the same place. This prediction is what we would expect intuitively.

Primordia Transplantation

Murray and Kulesa (1996) next considered a series of experiments in which a tooth
primordium is transplanted to various sections of the oral epithelium. One of the results
is shown in Figure 4.20 where the dental determinant was transplanted to x = 0.9. We
assume experimentally that when a tooth primordium forms it may be transplanted and
replaced with a section of oral tissue. We began the simulated experiments with the first
tooth primordium to test the importance of the dental determinant.

Once the first tooth primordium forms, we numerically simulate the transplantation
of this placode to different spatial locations of the jaw domain, 0 < x < 1 both anterior
and posterior to its original position. We simulated transplanting the dental determinant
to the positions x = 0.25, 0.5 and 0.9 of the jaw domain 0 < x < 1. The case of trans-
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Day 16

Figure 4.20. (a) Normal sequence of appearance of the first eight teeth primordia in the alligator A. missis-
sippiensis: counting from x = 0, the posterior end of the jaw, the order is 7-3-6-2-8-5-1-4. The size of the
jaw at Day 16 is approximately 0.6 mm while by the time Tooth 4 has formed it is approximately 3.8 mm.
(b) Tooth 1 is transplanted to x = 0.9, that is, anterior to its original position and the subsequent ordering is
changed from the normal as shown to 5-3-6-2-7-4-8-1. When Tooth 1 is transplanted to position x = 0.5 the
altered sequence is 5-3-6-1-4-2-7 while for x = 0.25 it is 1-3-5-2-4. (c) Effect of a barrier inserted at x = 0.9:
the altered sequence is 8-4-7-2-5-1-6-3. When a barrier is inserted at 0.25 the sequence becomes 4-2-3-1-5
while a barrier at 0.5 results in the order 5-2-3-1-4. (From Murray and Kulesa 1996)

planting to x = 0.9 is shown in Figure 4.20(b). In all cases, the numerical simulations
predict that the initiation sequence is altered, again as we should expect. What is less
clear is how it alters the subsequent sequence. The altered sequences when Tooth 1 was
transplanted to x = 0.25 and x = 0.5 are given in the legend of Figure 4.20(b).
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Transplantation of the first tooth primordium to x = 0.9 is perhaps the most reveal-
ing. The numerical simulations predict that after the dental determinant is transplanted,
the subsequent seven teeth primordia all form posteriorly. That is, the domain between
the transplanted placode and the anterior end of the jaw domain, 0.9 < x < 1, does not
grow large enough to support a tooth primordium until at least the next seven primordia
are formed as illustrated in Figure 4.20(b): now Tooth 4 forms posterior to Tooth 1. The
dental determinant is clearly important. The effect of transplanting the dental determi-
nant to positions posterior to the usual position is given in the legend of Figure 4.20(b).
Other numerical prediction experiments can be simulated for the transplantation of dif-
ferent teeth primordia, with the most dramatic changes predicted by the transplants
situated at the extreme ends of the jaw domain.

Barriers in the Jaw

Possibly the simplest way of affecting the initiation sequence may be the placing of
physical barriers in the jaw epithelium. Although barriers are physically invasive the
experimental interference of inserting the barrier into the jaw epithelium may be min-
imised. These barriers create a deterrent to chemical diffusion which in the model mech-
anism plays a crucial role.

Here we placed a barrier at various locations of the domain, 0 < x < 1, using
the initiation of the dental determinant as a reference time of when to insert the barrier.
Both the time and spatial location at which these barriers are placed is again important.
We numerically simulated the placing of a barrier at the positions x = 0.25, 0.5 and 0.9
of the jaw domain. Mathematically, the barrier is represented by an internal zero flux
boundary condition at the tooth site,

ux(xbvt) :Ux(xb» t):Cx()Cb,t)ZO > tb7 (418)

where x = x;, is the position of the barrier and ¢ = 1, is the time of insertion. The most
striking prediction result is again obtained when the near-end (posterior) regions of the
jaw domain are initially affected. The insertion of a physical barrier at x = 0.9 blocks
the effect of the tooth 1 source on the anterior part of the domain, 0.9 < x < 1. This
causes the premature initiation of a tooth primordium (in this case, tooth primordium
3) since the gradient of the epidermal growth factor, c(x, t), crosses the lower threshold
more rapidly on 0.9 < x < 1 as shown in Figure 4.20(c). The results for the first few
teeth when a barrier is inserted at 0.25 and 0.5 are given in the legend of Figure 4.20(c).

Robustness

Before concluding the discussion on teeth formation the question of robustness of the
pattern formation and its timing must be addressed. Kulesa (1995) investigated this
problem in depth and calculated a selection of parameter subspaces for the full model
mechanism (4.6)—(4.8)) with a wide range of parameter values. The parameter set in the
equations consists of &, b, §, p, d and y and so the spatial patterning spatial domain is a
6-dimensional space. In Chapter 2, Section 2.5 we examined in detail the three dimen-
sional parameter space, or Turing space, of what are the first two equations of (4.5) with
¢ = a, a constant. Kulesa’s (1995) initial aim was to see if there was a parameter set
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which gave the correct initiation sequence for the first seven teeth. Figure 4.21(a) shows
a two-dimensional cross-section in the y — d plane for the dominant spatial modes, 7,
which form in # and v: n = 2 corresponds to a single hump as in Figure 4.15.This model
system is clearly quite robust in that the parameter domain for the first seven teeth is
not small. Robustness relates directly to the small random variability in parameters that
generally occur in real developent. If a parameter set is within the 7-range, for example,
in Figure 4.21(b), then small variations in p and § will still give the correct spacing,
unless of course the set is near a bifurcation boundary. It is probably correct to say that
if the parameter space for any spatial pattern formation mechanism is very small it is
highly unlikely to continue to give the same type of pattern with the inevitable small
variations in parameters in the real world.

4.10 Concluding Remarkson Alligator Tooth Spatial Patterning

The two problems associated with the alligator A. mississippiensis that we have dis-
cussed in this chapter are in marked contrast to each other from a modelling point of
view but each highlights what are some basic principles about realistic biological mod-
elling. The discussion on the timing of stripe formation (and the formation of shadow
stripes) did not include any specific model other than a diffusion chemotaxis one for
illustrative purposes. It was the modelling concepts rather than the actual model that
turned out to be useful for the experimentalist. The mathematical analysis, such as it is,
is quite simple. Of course it would be interesting and useful if a specific mechanism,
with reasonable biological justification, could be proposed or one on which it was pos-
sible to carry out biologically possible virtual experiments to try and test its plausibility.
On the other hand in the sections on teeth formation the mechanism proposed was based
on known biological facts about the formation of teeth primordia. It is more like what
is generally needed and not surprisingly is very much more complex.

It is perhaps helpful to recap what the more complex modelling exercise with re-
gard to teeth has achieved and mention some of the other results. Based on the known
biology, we developed a quantitative model mechanism based on a dynamic reaction
diffusion system, which crucially incorporates jaw growth. We showed that the model
mechanism is capable of reproducing the spatial and temporal sequence of the first
seven teeth primordia in the jaw of the alligator and that the results compare well with
experiment.

The robustness of the model to variations in the model parameters was tested by
Kulesa (1995) who showed that there was a significant region in parameter space where
we could maintain the correct sequence of the first seven teeth primordia. The pattern-
ing mechanism is very robust to changes in parameters in that for a wide range of the
patterning parameters, y, b and d, we were able to maintain a single hump spatial pat-
tern in ¥ and v and get the right order of primordial positions. Since this portion of
the mechanism was based on a previously analysed robust system this result was not
unexpected.

The numerical simulations verified the experimental hypothesis that jaw growth is
crucial to the development of the precise spatial and temporal sequence of the teeth pri-
mordia. The variation of the growth rate of the jaw, r, was the most sensitive parameter
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Figure4.21. (a) Two-dimensional y — d parameter space for (4.6)—(4.11) for specific nodes, n, where n = 2
is a single hump. y is the scale parameter and d the ratio of the diffusion coefficient of the substrate u to that of
the activator v. The other parameter values are as in Figure 4.19 except for b = 2.0 which is a representative
b within the range of b considered. Each dot in the figure is a simulation with these parameter values. (b) A
representative p — § parameter space, where p and § are the diffusion coefficient ratio of the inhibitor ¢ to that
of the activator v and the first-order decay rate of ¢ for » = 0.01 (approximately in the middle of the r-range
investigated) and with the other parameters as in Figure 4.19. The numbers are number of teeth primordia
which appear in the correct order. (From Kulesa 1995)
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in obtaining the correct teeth primordia initiation sequence. In the upper jaw simu-
lations, the same model parameters were used: all that was required was an increase
in r—which came from experimental data—to obtain the correct upper jaw sequence,
which is different from the lower jaw.

The model construction involved the incorporation of the physical growth of the
jaw domain into a substrate—activator patterning mechanism. This patterning mecha-
nism was mediated by an inhibitor, c(x, #) and Kulesa (1995) showed that the patterning
mechanism alone, made up of a substrate, activator and inhibitor system, in the absence
of jaw growth, could not produce, without the inhibitor, the correct teeth primordia
initiation sequence. He also showed that the substrate and activator system alone, in-
cluding jaw growth, did not produce the correct initiation sequence. We concluded that
each component, namely, jaw growth and the substrate—activator—inhibitor patterning
mechanism, are necessary for the tooth initiation sequence. Only if all components are
included in a full model mechanism is it capable of producing the first seven teeth pri-
mordia in the precise spatial and temporal sequence.

From the prediction experiments we showed that transplanting a primordium can
significantly alter the initiation sequence. Teeth primordia transplanted to the ends of
the jaw domain cause the most dramatic changes in the spatial ordering of the initiation
sequence. We also investigated the insertion of zero flux physical barriers in the jaw
epithelium and showed how these alter the initiation sequence. Barriers placed at ends
of the jaw domain cause the more significant changes in the spatial ordering of the teeth
primordia.

With more experiments, the mechanisms of teeth primordia initiation may become
more precisely defined, incorporating actual chemical components and more precise
growth data. Molecular level experimental results linking specific gene expression to
biological events in tooth initiation provide further information for the theoretical mod-
elling. New experiments would help to form a more detailed teeth initiation model
mechanism, incorporating tissue interaction, which could use the qualitative results
gained from the modelling here. The analysis of such a model would be very com-
plicated.

Of course we cannot say that the actual biological pattern formation mechanism
for teeth primordia, or even a realistic caricature of it, is of this reaction diffusion genre.
What we can say, though, is that it is highly likely that growth plays a continuous and
essential role in the pattern formed and that each tooth position is almost certainly not
preassigned. The final arbiter of its biological relevance, however, must lie with further
detailed molecular level experiments. We can also say that the interaction between ex-
perimental investigation and theoretical modelling in both topics discussed here resulted
in a better understanding of the underlying biology.

4.11 Pigmentation Pattern Formation on Snakes

Biological Background

Snakes (order: squamata)—reptiles and amphibians in general, in fact—are numerous
and highly diverse in their morphology and physiology. Snakes and lizards exhibit a par-
ticularly rich variety of patterns many of which are specific to snakes. The fascinating,
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and visually beautiful, book by Greene (2000) is a good place to start. He discusses their
evolution, diversity, conservation, biology, venoms, social behaviour and so on. Another
very good book, by Klauber (1998), is more specific and is essentially an encyclopedia
on rattlesnakes.

Even within the same species there is often extreme pattern polymorphism. The
common California king snake Lampropeltis getulus californiae is a very good example
(Zweifel 1981). Pattern anomalies often occur even on an individual snake as illustrated
in Figures 4.22(e) and (f). A browse through any field guide shows not only straight-
forward pattern elements such as lateral and longitudinal stripes and simple spots but

Figure 4.22. Typical snake skin patterns. Those in (@) and (b) are quite regular but even in the simple stripe
pattern in (&) there is some aberration. In (€) and () there is a mixture of the basic stripe patterns. (Photographs
are courtesy of Lloyd Lemke)
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also a wide range of patterns based on various complex pattern elements which are not
found on other animals. Figure 4.22 shows a few snake patterns, both regular and ir-
regular. We saw in the case of butterfly wing patterns discussed in Chapter 3 that the
seemingly complex patterns can be generated by a relatively small number of pattern
elements. On the other hand, many of the common snake patterns do not seem to fall
into any of the usual classes of patterns which can be generated by the usual reaction
diffusion models unless they are modified by different boundary conditions, growing
or changing domains, spatially varying parameters and so on. In the case of spatially
varying parameters it is difficult to relate the results from these models to the biology.

The skin of reptiles is the largest organ in their bodies and poses many interesting
developmental problems (see, for example, the review by Maderson 1985). The skin
essentially consists of an external epidermis with an underlying dermis. Although we
do not know the pattern formation mechanisms we do know that the pattern is fixed in
the dermis. The basic skin pigment pattern remains the same after the periodic replace-
ment of the epidermis—the well-known skin shedding exhibited by snakes and lizards.
Pigment cell precursors, called chromatoblasts, migrate from the neural crest during de-
velopment and more or less distribute themselves uniformly in the dermal skin. As with
animal coat markings, whether or not the skin develops a pigmented patch depends on
whether presumptive pigment cells produce pigment or remain quiescent. Interactions
between these precursor cells and possibly directed movement may result in pigmented
and unpigmented cells gathering in different regions to produce stripes or spots (Bag-
nara and Hadley 1973) as we supposed in the above discussion on alligator stripes. It
is not known when chromatoblasts become committed to producing pigment. From ev-
idence from the studies on alligator development cells may be able to produce pigment
long before it is actually seen. Cells which are committed to pigmentation can also
divide for some time.

Experimental studies of pigment development and the migration of pigment cell
precursors have been largely confined to amphibians, mammals and birds although there
is a large body of work on the crocodilia as we described above. However, little has been
done specifically on skin patterns on reptiles except for the alligator work described
earlier. An underlying assumption there and here is that the basic processes of migration,
division and differentiation will be the same in snakes and other reptiles as in other
animals. Relatively little research has been done on snake embryology (a partial list is
given by Hubert 1985; see also the rest of the edited volume of this series on reptilia
in which this paper appears), ecology and evolutionary biology (the above-mentioned
book by Greene (2000) is the most definitive). As we have noted, of course, extensive
embryological studies have been carried out on alligators (Ferguson 1985, Deeming and
Ferguson 1989a; see also earlier references in these papers).

Hubert and Dufaure (1968) mapped the development of the asp viper (Vipera as-
pis). Pigmentation was first observed on the scales of the body, when the embryo was
about 106 mm long, and extended to the head as development proceeded. The pattern
is almost certainly laid down earlier in development than when it first becomes visible
as was the case with the alligator. Zehr’s (1962) observations of the development of
the common garter snake (Thamnophis sirtalis sirtalis) suggest a similar developmental
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process. He noted that when the pigmentation pattern first appears it is not well formed
but becomes more defined as development proceeds. (A similar progressive develop-
ment of final pattern occurs on many butterfly wing patterns.) Treadwell (1962) noted
that in embryos of the bullsnake (Pituophis melanoleucus sayi) three rows of spots ap-
pear on the sides of the embryo at 29 days and blotches appear on the dorsal midline at
31 days. The timing of developmental events in snakes should be regarded with caution
since the rate of development is significantly affected by the temperature of incubation
of the eggs or the body temperature of the mother in live-bearing species. In the case of
the asp viper, for example, gestation periods from 90 to 110 days have been observed.
In the case of the alligator we were able to get an estimate of when in development
the stripe pattern was laid down; it was well before the pattern was visible. The cell-
chemotaxis-diffusion mechanism considered there is the same as the one we use here.
Recall that histological sections of the skin of the alligator embryo showed that there
were melanocytes present in the white regions between the dark stripes but these did
not appear to produce melanin. We suggested that one possible explanation for the lack
of melanogenesis by these cells is that a threshold density of melanocytes could well
be necessary before melanogenesis can take place. We noted that this could be respon-
sible for the lighter shadow stripes observed on alligator bodies; these shadow stripes
lie towards the ventral side of the body and lie between the distinct darker stripes on
the dorsal side. Similar interdigitating stripes are found on certain fish patterns, specif-
ically angelfish (Pomacanthus) a problem studied by Aragén et al. (1998), Painter et
al. (1999) and Painter (2000). There are thus two potentially important implications
relevant to snake integumental patterns which arise from the alligator studies. One is
that potentially quite different patterns can be generated on an embryo when significant
growth occurs during the patterning process. The other is that presumptive pigment cell
patterns may be generated some time before they start to produce pigment and the pat-
tern becomes discernable.

As in the above Sections 4.1-4.4 we are interested here in the patterns which can
be formed by the mechanism when the integumental domain is growing during the pat-
terning process. We find that the spatially heterogeneous solutions can be quite different
from, and considerably more complex than those obtained by patterning mechanisms in
a fixed domain. It is likely that many of the pattern forming mechanisms involved in em-
bryogenesis are operative on a timescale commensurate with embryonic growth. Maini
and his coworkers (for example, Aragén et al. 1998, Painter et al. 1999, Crampin et al.
1999) made a particular study of the interplay between growth and pattern formation in
the case of reaction diffusion systems.

The surprising novelty and complexity of new patterns which are generated by
this basic system as a consequence of domain growth are likely to occur with all other
pattern forming mechanisms.

At this stage, because of the paucity of morphoglogical data on snake embryology
it is not possible to suggest when in development of the snake embryo the mechanism
is operative. Murray and Myerscough’s (1991) purpose was to suggest how some of the
diverse complex skin patterns on snakes could be generated. This is the usual necessary
first requirement for any potential mechanism.
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4.12 Cdl-Chemotaxis Model Mechanism

The model we consider here involves actual cell movement. Pattern formation mod-
els which directly involve cells are potentially more amenable to related experimental
investigation. There is also some experimental justification from the evidence on pige-
ment cell density variation observed in histological sections which we described above.
Also, Le Douarin (1982) speculated that chemotaxis may be a factor in the migration
of pigment cells into the skin. Heuristically we can see how chemotaxis could well be
responsible for the rounding up and sharpening of spots and stripes. In the model, we
propose that chromatoblasts both respond to and produce their own chemoattractant.
Such a mechanism can promote localisation of differentiated cells in certain regions of
the skin which we associate with the observed patterns on the snake integument. The
cells, as well as responding chemotactically, are assumed to diffuse. It is the interaction
of the cell mitosis, diffusion and chemotaxis which can result in spatial heterogeneity.
The relatively simple mechanism we propose is

on

5 = D,V*n —aV - (nVe)v — rn(N — n), (4.19)
¢ _ Pyl s N (4.20)
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where n and c denote the cell and chemoattractant densities respectively; D, and D,
are their diffusion coefficients. We have taken a simple logistic growth form for the
cell mitotic rate with constant linear mitotic rate r and initial uniform cell density N.
The chemotaxis parameter « is a measure of the strength of the chemotaxis effect. The
parameters S and y are measures, respectively, of the maximum secretion rate of the
chemicals by the cells and how quickly the chemoattractant is naturally degraded; 8 is
the equivalent Michaelis constant associated with the chemoattractant production. This
is the specific model discussed by Oster and Murray (1989) in relation to developmental
constraints. In spite of its relative simplicity it can display remarkably complex spatial
pattern evolution, particularly when varying chemotactic response and growth are al-
lowed to take place during the pattern formation process. We first nondimensionalise
the system by setting

X* =[y/(Des)]'V?X, 1*=yt/s, n*=n/B, c*=yc/S,

4.21)
N*=N/B, D*=D,/D., o*=aS/(yD;), r*=rB/y,

where s is a scale factor. We can think of s = 1 as the basic integument size, carry out the
simulations on a fixed domain size and then increase s to simulate larger integuments.
We used this procedure in the last chapter. With (4.21) the nondimensional equations
become, on omitting the asterisks for notational simplicity,

on
at
%=V2c+s[ " —ci|.
dt 1+n

= DV?n — aV.(nVc) + srn(N — n),
4.22)




4.12 Cell-Chemotaxis Model Mechanism 239

The numerical simulations of these equations (including growth) were carried out
on a simple rectangular domain in which length is considerably longer than the width,
with zero flux of cells and chemoattractant on the boundaries. The detailed numerical
simulations and complex bifurcating pattern sequences which can occur as the param-
eters vary are given in Winters et al. (1990), Myerscough et al. (1990) and Maini et al.
(1991).

The reason we consider a long rectangular domain is that the skin patterns are prob-
ably laid down at a stage when the embryo is already distinctly snake-like; that is, it is
already long and more or less cylindrical, even if it is in a coiled state. Details of the
embryo of the asp viper (Vipera aspis), for example, are given by Hubert and Defaure
(1968) and Hubert (1985). Although it would be more realistic to study the model mech-
anism on the surface of a coiled cylindrical domain the numerical simulation difficulties
were already considerable even on a plane domain. Here we are mainly concerned with
the variety of patterns that the mechanism can generate so we consider the cylindrical
snake integument laid out on a plane. The main features of the patterns on an equivalent
cylindrical surface will be similar. We could, of course, equally well have taken periodic
boundary conditions. Equations (4.22) have one positive homogeneous steady state

N
=N, =—. 4.23
no O=TIN (4.23)
We now linearise about the steady state in the usual way by setting
n=N+4u, c=co+v, |u|l<Kl|v|Kl
to obtain the linear system
ou 5 5
vl DV u —aNV-v —srNu
(4.24)
av 5 u
— =Vu+s|———v
at [(1 + N)? }
with boundary conditions on the boundary d D, of the domain D,
nVu=nVv =0, XedD, 4.25)

where n is the unit outward normal to the boundary of D. Again (as usual) we look for
solutions in the form

m oc explik - X + At]

which on subsituting into (4.24) gives the characteristic polynomial for the dispersion
relation A(k2) as a function of the wavenumber k = | K |:

A2+ (D + D>+ rsN + s]x
(4.26)
+ [Dk* + {rsN + Ds — (sNa) /(1 + N)2}k* + rNs*] = 0.
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The solution with wave vector K now has to satisfy the boundary conditions (4.25). We
follow exactly the same procedure described in detail in Section 2.3 in Chapter 2 to
determine the conditions for spatial instabilities.

With a two-dimensional domain with sides L and L, we consider the wavevector
k = ki, ky, where ky = mm /L, ky, = Im/L with m and [ integers. These forms come
from the zero flux boundary conditions and the linear eigenfunctions cos(mmwx /L, cos
(Imy)/L,y (refer to Section 2.3). So, on this rectangular domain the values of k% which
will generate a pattern are those where 1(k%) > 0, where

2

2
k.k=k2=n2<m 4! > 4.27)

27

We can choose parameters D, a, s, r and N to isolate only one unstable wavevector.
This mode selection is simply a way to force a particular pattern to grow initially. The
wavevector for the isolated mode occurs when A(k2) = 0, that is, when ? satisfies

No

s
Dk* N+Ds — ———
+ |:sr + Ds 1+ N)2

]k2+s2rN =0.

We require that this equation has only one solution for k2, so we further impose the
condition for equal roots; namely,

sNa

2
m] —4Ds*rN = 0. (4.28)

|:er + Ds —

The modulus of the critical wavevector is then given by
k2 = [s*rN/D]V2. (4.29)

By choosing D, s, r and N appropriately, we can find a k> from (4.27) which satisfies
(4.29), and then solve for o from (4.28) (we take the larger root for « so it is positive).
This determines the point in the (N, D, r, s, o) parameter space where mode (4.29) is
isolated. So, solutions of the equations with appropriate parameters are spatially hetero-
geneous.

Note that if we decrease r or N, the critical wavenumber decreases, and so the spac-
ing of the pattern increases, or if decreased enough, the pattern disappears altogether.
This is a prediction of the model which could, in principle, be tested experimentally,
such as experimental manipulations of the base cell density. How the bifurcation to spa-
tially structured solutions can be influenced by experimentally varying parameters of
the system (specifically the cell density) in the case of limb development is discussed in
detail in Chapter 7. There the theory is remarkably accurate in its predictions.

We now suggest that this cell-chemotaxis mechanism (4.19) and (4.20) is a candi-
date mechanism for generating the patterns found on snake skins and that the observed
patterns reflect an underlying spatial pattern in cell density. As mentioned, we do not
know when in development the pattern is formed nor how long it takes to develop as
compared with significant growth in the embryo integument, that is, the relevant spatial
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domain for the equations. The size of the domain is, of course, a significant parameter
as shown in the analysis in Chapter 3. Patterns can start to evolve as one of several pa-
rameters pass through bifurcation values which make the uniform steady state unstable.
In the next section we show some of the patterns that the equation system can produce
and relate them to specific snake patterns.

The simulations were carried out in a totally different way to those obtained for
animal coat patterns and butterfly wing patterns. We assumed that the rate of cell differ-
entiation and the development of the snake embryo are such that the chemotactic system
has come to a steady state, or nearly so, by the time the pigmentation patterns become
fixed. So Murray and Myerscough (1991) solved (4.24) at steady state; that is,

DVn — aV.(nVc) + srn(N —n) =0,

(4.30)
— c] =0.

V2 [ "
c+s
1+n

These equations were solved numerically on a long two-dimensional rectangular
domain using the package ENTWIFE as various parameters were varied; the procedure
is described in some detail in Winters et al. (1990). It is a procedure for following bifur-
cating solutions as parameters vary: here we are mainly concerned with the biological
implications and relevance of the solutions. The package lets one follow different bi-
furcation paths which branch off from different steady state solutions. Some analytical
work on finite amplitude steady state solutions of (4.30), with s = 0, in one space
dimension was done by Grindrod et al. (1989).

4.13 Simple and Complex Snake Pattern Elements

Murray and Myerscough (1991) showed that by altering the values of the mitotic rate
r and chemotactic parameters « they were able to generate a wide range of different
stripe patterns as well as regular spot patterns. Some examples of basic lateral striping
are shown in Figure 4.23(a). Lateral banding is a common pattern element in snakes.*
One example, the bandy-bandy (Vermicella annulata) is illustrated in Figure 4.23(b).
Other examples include the coral snakes, Micrurus species, the banded krait (Bungarus
fasciatus) and the ringed version of Lampropeltis getulus californiae (Figure 4.23(d)).
Lateral striping is what we would now come to expect from the discussion in Chap-
ter 3. What is now more interesting is that the model can also produce longitudinal
stripes parallel to the long edges of the domain as shown in Figure 4.24(a). This type of
striping occurs, for example, in the ribbon snake (Thamnophis sauritus sauritus) as in
Figure 4.24(b), in the garter snake (Thamnophis sirtalis sirtalis) and the four-lined snake
(Elaphe quatuorlineata). What was initially surprising was that for some parameter sets
relatively small changes in domain size or parameter values were sufficient to change
the lateral stripes produced by this model to longitudinal stripes and vice versa: the pat-

4The highly venomous sea snakes typically have these types of stripes. An interesting unrelated feature of
them is that they can come up from very deep depths to the sea surface very quickly but surprisingly do not
get the bends. It is an interesting physiological feature that is still not understood.
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Figure4.23. (a) Computed examples of simple lateral stripe patterns: the arrow denotes increasing cell den-
sity. Parameter values in (4.30) vary for each example except for D = 0.25, N = s = 1: for the first
r = 1.52,a = 12.31, the second r = 1.52,« = 13.4, the third r = 24.4,a« = 118.68 and the fourth
r = 1.52,0 = 29.61. (b) Lateral stripes on the striped snake Vermicella annulata. (C) An example of
sparse narrow stripes on the snake Pseudonaja modesta. (d) Laterally striped Lampropeltis getulus califor-
niae. (From Murray and Myerscough 1991)
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Figure 4.24. (a) A computed solution giving a longitudinal strip: the arrow denotes increasing cell density.
Parameter values for equations (4.30) are: D = 0.25,N = s = 1, r = 389.6, = 1782. (b) The snake
Thamnophis sauritus sauritus generally exhibits longitudinal striping. (¢) Longitudinally striped California
king snake Lampropeltis getulus californiae. (From Murray and Myerscough 1991)

terns are certainly not robust. This has important biological implications in that both
lateral and longitudinal stripes can occur on different individuals of the same species.
This is, for example, the case with the California king snake (Lampropeltis getulus cal-
iforniae), which can be either laterally (Figure 4.23(d)) or longitudinally striped as in
Figure 4.24(c); see also the photograph in Figure 4.22(a).

By an appropriate choice of parameter values we can also generate regular spot and
blotch patterned solutions to equations (4.30) some of which are shown in Figure 4.25.
Regular spots form part of the pattern on many snakes. For example, the Cape mountain
adder (Bitis atropos atropos) displays an alternating semicircular pattern similar to those
generated by this model.

Whether spots or stripes form in this chemotactic model depends on initial con-
ditions, domain shape and size and on the values of the parameters o, D, r and N.
Murray and Myerscough (1991) only considered changes in the chemotactic parameter
o but other parameters can also be used to illustrate the argument. For any particular
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Figure4.25. (a) Solutions of the system (4.30) which give regular spot patterns: the arrow denotes increasing
cell density. Parameter values D = 0.25, N = s = 1, with the following for the three patterns respectively:
r = 2822, = 135.16; r = 28.05,a = 135; r = 1.52, ¢ = 27.06. (b) The regular spot pattern on the
leopard snake Bitis atropos atropos. (From Murray and Myerscough 1991)

initial conditions and domain size, stripes are most likely to form when the chemo-
tactic response « is low (see, for example, the bifurcation diagrams in Maini et al.
1991). From the nondimensionalisation (4.39) this also corresponds to slow production
or rapid diffusion or decay of chemoattractant in the dimensional problem. We can get
some intuitive idea of why this is the case. When the chemotactic response is weak,
cells must be in large regions of high cell density to produce enough chemoattractant
to form a sufficiently steep gradient of chemoattractant concentration. This steep gra-
dient is needed to recruit enough cells to the cluster to balance the logistic loss. For
steep gradients in chemoattractant concentration to exist, a region of low cell density,
where chemoattractant production is low, must be near the region of high cell density.
Thus stripes, consisting of many cells but with regions with few cells nearby, will be
preferred to spots when « is low. When the cells’ chemotactic response is faster, gradi-
ents in chemoattractant concentration do not need to be so steep. Hence fewer cells can
produce enough chemoattractant to recruit other cells to the resulting cluster and these
clusters are more likely to be spots.

There is experimental justification for considering changing the chemotaxis factor,
a, from the work on bacterial patterns, discussed in depth in Chapter 5. Here we have
taken the simplest form of the chemotaxis term in the model equation. In the case of
bacterial patterns the chemotaxis changes significantly during the patterning process
since it depends on the level of the chemoattractant. If chemotaxis is indeed implicated
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in snake pattern formation it is quite possible that the chemotactic response of the cells
will change during the patterning process.

Once steady state patterning has been formed, increasing o may either define the
existing pattern more sharply or, in some cases, lead to qualitative changes, as we de-
scribe below. No cases were found where stripes split into spots although there were
some instances where stripes split into two (see also Maini et al. 1991 and Myerscough
et al. 1990): this happened in the absence of any mitosis. For an established stripe pat-
tern, an increase in chemotactic response, «, gave very sharp, well-defined bands. Such
isolated narrow bands of pigment cells are regularly observed in the ringed brown snake
(Pseudonaja modesta) as illustrated in Figure 4.23(c). For a reaction diffusion mecha-
nism to produce such sharp banding the threshold for pigment production would have
to be very finely tuned. In contrast, with a chemotaxis mechanism all that is required
is that o/ D be large. In the case of a spot pattern increasing « usually leads to sharper
focusing of the cluster although qualitative changes were observed in one case which
we now discuss.

The patterning potential of this seemingly simple model system (albeit nonlinear) is
not restricted to simple elements such as stripes and regular spots. It is not easy, however,
to predict the type of complex patterns which can be obtained. For example, if we take
aregular spot pattern and then solve the equations as the chemotactic component of the
cells’ motion, «, increases but without changing domain shape, the pattern shifts and
changes its type. For sufficiently large o we get a pattern of pairs of spots as shown in
Figure 4.26(a). Such patterns occur, for example, in the leopard snake (Elaphe situla) as
in Figure 4.26(b). This species also exhibits a phase with single spots instead of paired
spots.

A crucial aspect in the development of pattern could be the changing integument
domain as a result of growth during the patterning process. It is because of the growth as-
pect that we discuss snake patterns in this chapter. We found, as we should now expect,
that changing the shape of the domain also produces more complex patterns. Simple
longitudinal growth of a laterally striped domain leads to the formation of additional
stripes between established stripes just as we saw in the case of alligator skin patterns
discussed above. Two examples of patterns obtained when lateral growth of the domain
occurred are shown in Figures 4.27 and 4.28. In the first case, Figure 4.27(a), lateral
growth causes the asymmetric spot pattern to become symmetric as the aggregates of
pigmented cells move into the centre of the domain. This type of centred spot pattern
is very common. Examples include the corn snake (Elaphe guttata) illustrated in Fig-
ure 4.27(b) and various Vipera species. Starting from a slightly different spot pattern
lateral growth can produce diamond patterns as in Figure 4.28(a)(i). If the domain then
becomes slightly narrower a wavy stripe pattern is generated as in Figure 4.28(a)(ii).
Diamond patterns are a characteristic feature of many rattlesnakes, such as the east-
ern diamondback rattlesnake (Crotalus adamanteus) illustrated in Figure 4.28(b). The
horseshoe snake (Coluber hippocrepis) also shows this type of diamond patterning.
Near the tail where the body is narrower the diamond pattern may change to a wavy
stripe as expected from the mathematical analysis, a feature pointed out in Chapter 3
as an example of a developmental constraint. These results suggest that growth of the
domain during the laying down of pigment patterns probably has a crucial role to play
in the ultimate pattern that develops.



246 4. Pattern Formation on Growing Domains: Alligators and Snakes

Figure 4.26. (a) The changing pattern as the chemotactic parameter « is increased giving a paired spot
pattern: the arrow denotes increasing cell density. Parameter values for (4.30): D = 0.25,N =s = L,r =
1.52 with « increasing from o = 19.92 to 63.43. (b) The snake Elaphe situla showing paired spots. (From
Murray and Myerscough 1991)

Chemotaxis was chosen as a plausible initial mechanism in view of its importance
in other developing systems. In Chapter 5 on bacterial patterns there is absolutely no
question as to its direct biological relevance. Further evidence for a mechanism which
directly involves cells comes from the experimental work reported in Murray et al.
(1990) on the alligator and touched on earlier in the chapter.

Although our experience from earlier chapters would lead us to expect a variety of
complex patterns Murray and Myerscough (1991) also found other unexpected patterns,
such as the paired spot pattern and the wavy stripe and diamond patterns often observed
on snakes.

In many snakes and lizards the body pattern continues to the end of the tail with
little alteration, even where the tail is sharply tapered. One example is shown in Fig-
ure 4.27(b) which contrasts with many mammalian patterns where if the tail pattern is
mainly spots these almost always change to lateral stripes as the domain tapers. It is
possible that the aggregative effect of strong chemotaxis means that spots may be able
to form even on tapering domains although further numerical calculations are needed to
confirm this. Ultimately, of course, we expect all spots to become stripes if the domain
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Figure 4.27. (a) The effect of lateral growth of the domain can result in centred spots: the arrow denotes
increasing cell density. Here the domain width is from left to right (i) 1 unit; (ii) 2.7 units. Parameter values
for (4.30) are D = 0.25, N = s = 1,r = 1.52, @ = 20.5. (b) The snake Elaphe guttata typically has centred
spot patterns. (From Murray and Myerscough 1991)

is thin enough during the pattern formation process. Another point, however, is that the
taper in most snakes is considerably more gradual than is found on those animals, such
as the cheetah and leopard, where spots degenerate into stripes just toward the tail tip.

The phenomenological similarities between actual snake patterns and the complex
patterns produced by our chemotactic model is encouraging and provides motivation
for further theoretical investigations and also for further experiments to investigate the
possible roles of chemotaxis, cell density and domain size in pigment pattern formation

This cell-chemotaxis model mechanism for pigment pattern formation is, of course,
like previous models, speculative. Unlike straight reaction diffusion models, however,
it explicitly includes cell motility and cell—cell interaction through a chemical mediator
for which there is considerable biological evidence. We have shown that this relatively
simple model is capable of generating many of the observed simple and complex pig-
ment markings found on a variety of snakes.
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Figure4.28. (@) In this case lateral growth of the domain gives diamond patterns and wavy stripes: the arrow
denotes increasing cell density. Here the domain width is: (i) 1.84 units; (ii) 1.74 units. Parameter values for
(4.30) are: D = 0.25,N = s = 1,r = 38.05,« = 177.7. (b) Examples of diamond patterns on snakes:
(i) Crotalus adamanteus; (ii) Coluber hippocrepis. Note in (ii) the result of tapering on the pattern. (From
Murray and Myerscough 1991)

4.14 Propagating Pattern Generation with the
Cell-Chemotaxis System

In the case of the alligator stripes we noted in Section 4.2 that the stripe pattern appears
to start at the head and move progressively down the back to the tail. We showed in
Section 4.12 that with parameters in the cell-chemotaxis system (4.30) can generate
a variety of spatial patterns if the parameters are in the appropriate parameter space.
Patterns such as given in the above figures can arise from specific initial conditions.
We can see intuitively that if we initiated the perturbation about the steady state at one
edge of the domain it would initiate a spatial patterned solution in that region which
would move progressively along the domain. Myerscough and Murray (1992) studied
this specific problem in the situation in which there is no cell mitosis, that is, r = 0 in
(4.22), and the system is then given by
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They found that if the parameters are in the space which gives rise to a regular striped
pattern then an inital spatial perturbation at one end gives rise to a travelling wave
which leaves behind a steady state spatial pattern of regular stripes. Figure 4.2 shows a
typical evolution of such a pattern for the system (4.30). Using the technique described
in Section 2.6 in Chapter 2 we can obtain analytical estimates for the pattern wavelength
and speed of spread by using asymptotic techniques. We follow in part the work of
Myerscough and Murray (1992) and, in passing, recap the method which we discussed
in general terms in Section 2.6 but with more specific details.

We consider the one-dimensional problem and look at the behaviour of the propa-
gating disturbance close to its leading edge where the pattern is just beginning to form.
At the leading edge the amplitude of the disturbance is small and we suggest that the
behaviour of the pattern is governed by the linearised form of the equations, with the
linear dispersion relation given by (4.24) with r = 0, namely,

a
a—b; = DV?u —aNV>y
(4.32)
v 2 u
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This has solutions of the form given by
[ﬂ oc explik.X + At], (4.33)

where the dispersion relation A(k?) as a function of the wavenumber & is given by the
positive solution of

2 2 2,12 _ sNa 2 _
AT+ (D + Dk +s]k+|:Dk (k= + ) 7(1+N)2}k =0. (4.34)

We can use this linear approximation to write the solutions to (4.32) at the leading edge
as the integral of Fourier modes

n(x,t) = /00 A(k) explikx + A(kz)t] dk, (4.35)

—0o0

where A(k2) is the dispersion relation given by (4.34).

We are interested in the solution for large time and far from the initial disturbance.
As we follow the leading edge of the disturbance as it propagates over the domain,
(4.35) remains valid and we rewrite it as
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n(Vt, t) = /OO A(k) expltg(k)]dk, (4.36)

—00

where A(k?) is obtained from initial conditions for the linear system (which does not
concern us here) and g(k) = ikV + (k%) where V is the finite ‘speed of propagation’
and is the speed of travel of the leading edge. This implies that x and ¢ are of the same
order of magnitude and that the front of the pattern is sufficiently far from the initial
point of disturbance for v to be constant. We now use the method of steepest descents
(see, for example, the book by Murray 1984) to evaluate this integral asymptotically for
large ¢ and hence large x with V = 0(1) to obtain

(k™)

n~

exp [r {ik*V + A(k*z)}] , 4.37)

where F is a function of k& which is not of importance in the following analysis. Here

k* is a saddle point of g(k) in the complex k-plane chosen so that where RI[ik*V +

A(k*2)] > RI[ikV 4+ A(k*)]1|kek, Where K is the set of all k in the plane other than k*.
Saddle points of g(k) are solutions of

s _ vy (4.38)
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From the numerical solutions, typically like those shown in Figure 4.2, we see that the
envelope of the pattern is essentially of constant shape far from the initial perturbation.
So, we therefore impose a restriction on g (k) of the form

RI(g(k*)) = RI[ik*V + A(k**)] = 0. (4.39)

This is a marginal stability hypothesis, which together with (4.38) is sufficient for us to
be able to solve (in principle) for the wavenumber, £*, and the velocity of the patterning
wave, V.

If we consider the pattern in the moving frame of the pattern envelope we see (refer
to Figure 4.2) an oscillating pattern which starts at the leading edge of the envelope.
The frequency of oscillation of this pattern is given by

Q = Im(g(k)). (4.40)

This is the frequency with which nodes are created at the front of the envelope. If peaks
are conserved, that is, peaks do not coalesce, then €2 is also the frequency of oscillation
far from the leading edge in the moving frame of the envelope. Let k' be the wave
number of the pattern far behind the leading edge. We can then write Q = k’'V and so

A k*2
K = RIGY) + Im )

(4.41)

which gives the wavenumber for the final steady state pattern.
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This method depends, of course, on the linear behaviour of the system near the
leading edge of the disturbance. That is, we assume that the equations are only weakly
nonlinear in the vicinity of the leading edge in which case we can write the solutions
in the form of (4.35) as the integral over Fourier modes. However, this weakly nonlin-
ear assumption will not necessarily hold for the nonlinear system (4.31) when solutions
are far from the homogeneous steady state. The method also implicitly assumes that
the behaviour of the solution is governed by events at the leading edge which may not
be strictly true. It is unlikely, therefore, that this approach will give good quantitative
agreement with values of the wavelength w = 27/k’ and V from the computed solu-
tions. We may expect, however, a reasonable qualitative agreement which may be used
to predict V and w.

Analysing the Wave Pattern

Applying this method to the system (4.31) with the dispersion relation A = A(k?) given
by (4.34) is not easy. To solve for k and V we have to substitute for 1(k?) into (4.38)
and (4.39). The equations which result are very complicated because of the form of the
dispersion relation given by (4.34) and we simply cannot extract the necessary infor-
mation analytically. To circumvent this problem and still gain some insight into pattern
initiation via wave propagation Myerscough and Murray (1992) considered a caricature
dispersion relation

KD =TIk —k*), T >0

on which they did a best fit (choosing I" and k(z)) to the exact dispersion relation given by
(4.34). The parameters I" and k(z) govern the steepness of the parabolic approximation
and its intercept on the k’-axis respectively. The caricature is qualitatively similar to
that given by (4.34) in the crucial region where A is positive. Myerscough and Murray
(1992) carried out the detailed analysis (which involves a steepest descent analysis) and
compared their approximate results with those obtained from a numerical solution of
the full nonlinear system (4.31). The comparison was not very close, but importantly
such an anlalytical procedure provides qualitative dependence on the parameters. With
only two parameters we cannot expect an especially close fit and some error arose from
the looseness of the fit regardless of how it was done. What is interesting, however, is
that Myerscough and Murray (1992) showed that the error is not due to the fitting of the
caricature dispersion relation but rather to the linearisation process.

The approximate method implicitly assumes that the speed of spread and the wave-
length of the final pattern is determined by events at the leading edge where linear theory
is applicable. These comparison results suggest that while events at the leading edge are
important in determining w and V, events behind the leading edge, in the nonlinear
regime, have a significant effect in the case of a chemotaxis system. Myerscough and
Murray (1992) suggested how this could come about.

The developing peaks in cell density behind the leading edge generate peaks in
chemoattractant concentration. This concentration gradient then begins to act on the
cells on the leading edge side of the peak inhibiting them from moving forward into the
next peak which is developing at the leading edge. This means that cells which, in a lin-
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ear regime might have joined the newly formed peak, either join the previously formed
cluster of cells or are recruited more slowly to the peak at the leading edge. The first
alternative explains why the solution wavelength is longer than the wavelength found by
the analytical method. The second explains why the solution speed of spread is slower
than found analytically. These effects, caused by cell recruitment by chemotaxis, do not
occur in reaction diffusion systems. Nevertheless this analytical method when applied
to the highly nonlinear problem posed by (4.31) gives a useful estimate of the speed of
propagation of the disturbance and the wavelength of the final pattern provided peaks
do not coalesce behind the leading edge. The only information needed to derive the
estimates is a reasonable approximation to the dispersion relation of the linear system.



5. Bacterial Patterns and Chemotaxis

5.1 Background and Experimental Results

There is an obvious case for studying bacteria. For example, bacteria are responsible for
a large number of diseases and they are responsible for most of the recycling that takes
place. Their use in other areas is clearly going to increase as our understanding of their
complex biology becomes clearer. Here we are interested in how a global pattern in
bacterial populations can arise from local interactions. Under a variety of experimental
conditions numerous strains of bacteria aggregate to form stable (or rather temporarily
stable) macroscopic patterns of surprising complexity but with remarkable regularity. It
is not easy to explain how these patterns are formed solely by experiment, but they can,
however, be explained for the most part, with the use of mathematical models based on
the known biology. It is not possible to discuss all the patterns which have been studied
experimentally so we concentrate on the collection of diverse patterns observed by Berg
and his colleagues (see Budrene and Berg 1991, 1995 and earlier references there) in
the bacteria Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium).

E. coli and S. typhimurium are common bacteria: for example, E. coli is abundant
in the human intestine and S. typhimurium can occur in incompletely cooked poultry
and meat. These bacteria are motile and they move by propelling themselves by means
of long hairlike flagella (Berg 1983). Berg also mapped the movement of a bacterium
over time, and found that the organism’s motion approximates a random walk and so
the usual Fickian diffusion can be used to describe their random motility; their diffusion
coefficient has been measured experimentally.

A key property of many bacteria is that in the presence of certain chemicals they
move preferentially towards higher concentration of the chemical, when it is a chemoat-
tractant, or towards a lower concentration when it is a repellent. The sensitivity to such
gradients often depends on the concentration levels. In the modelling below we shall
be concerned with chemotaxis and the sensitivity issue. The basic concept of chemo-
taxis (and diffusion) was discussed in Chapter 11, Volume I, Section 11.4 and in more
detail in the last chapter. Basically, whether or not a pattern will form depends on the
appropriate interplay between the bacterial populations and the chemical kinetics and
the competition between diffusive dispersal and chemotactic aggregation.

Budrene and Berg (1991, 1995) carried out a series of experimental studies on the
patterns that can be formed by S. typhimurium and E. coli. They showed that a bacterial
colony can form interesting and remarkably regular patterns when they feed on, or are
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exposed to, intermediates of the tricarboxylic acid (TCA) cycle especially succinate and
fumarate. They used two experimental methods which resulted in three pattern forming
mechanisms. The bacteria are placed in a liquid medium in one procedure, and on a
semi-solid substrate (0.24% water agar) in the other. They found one mechanism for
pattern formation in the liquid medium, and two in the semi-solid medium. In all of the
experiments, the bacteria are known to secrete aspartate, a potent chemoattractant.

Liquid Experiments with E. coli and S. typhimurium

These experiments produce relatively simple patterns which appear quickly, on the or-
der of minutes, and last about half an hour before disappearing permanently. Two types
of patterns are observed and are selected according to the initial conditions. The sim-
plest patterns are produced when the liquid medium contains a uniform distribution
of bacteria and a small amount of the TCA cycle intermediate. The bacteria collect in
aggregates of roughly the same size over the entire surface of the liquid, although the
pattern often starts in one general area and spreads from there (Figure 5.1(a)).

In the second type of liquid experiment, the initial density of bacteria is uniform,
and the TCA cycle intermediate is added locally to a particular spot, referred to as the
‘origin.” Subsequently, the bacteria are seen to form aggregates which occur on a ring
centred about the origin, and in a random arrangement inside the ring (Figure 5.1(b)).

Importantly, in these liquid experiments, the patterns are generated on a timescale
which is less than the time required for bacterial reproduction and so proliferation does
not contribute to the pattern formation process. Also, the bacteria are not chemotactic
to any of the chemicals initially placed in the medium, including the stimulant. The
experimentalists (H.C. Berg, personal communication 1994) also confirmed that fluid
dynamic effects are not responsible for the observed patterns.

Semi-Solid Experiments with E. coli and S. typhimurium

The most interesting patterns are observed in the semi-solid experiments and in particu-
lar with E. coli. For these experiments, a high density inoculum of bacteria is placed on a
petri dish which contains a uniform distribution of stimulant in the semi-solid medium,
namely, 0.24% water agar. Here the stimulant also acts as the main food source for the
bacteria, and so the concentrations are much larger than in the liquid experiments. After
two or three days, the population of bacteria has gone through 25-40 generations dur-
ing which time it spreads out from the inoculum, eventually covering the entire surface
of the dish with a stationary pattern of high density aggregates separated by regions of
near zero cell density. Some typical final patterns are shown in Figures 5.2 and 5.3. The
S. typhimurium patterns are concentric rings and are either continuous or spotted while
E. coli patterns are more complex, involving a greater degree of positional symmetry
between individual aggregates. An enormous variety of patterns has been observed, the
most common being sunflower type spirals, radial stripes, radial spots and chevrons.
Using time-lapse videography of the experiments reveals the very different kinematics
by which S. typhimurium and E. coli form their patterns.

The simple S. typhimurium patterns (Figure 5.2) begin with a very low density
bacterial lawn spreading out from the initial inoculum. Some time later, a high density
ring of bacteria appears at some radius less than the radius of the lawn and after another



5.1 Background and Experimental Results 255

Figure 5.1. Bacterial patterns formed by Salmonella typhimurium in liquid medium. (a) A small amount of
TCA was added to a uniform distribution of bacteria. (b) A small amount of TCA was added locally to a
uniform distribution of bacteria. (Unpublished results of H. Berg and E.O. Budrene; photographs were kindly
provided by courtesy of Dr. Howard Berg and Dr. Elena Budrene and reproduced with their permission.)
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Figure5.2. Typical S. typhimurium patterns obtained in semi-solid medium and visualized by scattered light.
Experiments were carried out by Howard Berg and Elena Budrene using the techniques described in Budrene
and Berg (1991). About 104 bacteria were inoculated at the centre of the dish containing 10 ml of soft agar
in succinate. In (@) the rings remain more or less intact while in (b) they break up as described in the text: the
time from inoculation in (@) is 48 hours and in (b), 70 hours. The 1-mm grid on the left of each figure gives
an indication of the scale of the patterns. (From Woodward et al. 1995 where more experimental details and
results are provided)
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Figure5.3. E. coli patterns obtained in semi-solid medium. Note the highly regular patterns. The light regions
represent high density of bacteria. The different patterns (a)—(d) are discussed in the text at several places.
(From Budrene and Berg (1991); photographs courtesy of Dr. Howard Berg and reproduced with permission)

time interval, when the lawn has expanded further, a second high density bacterial ring
appears at some radius larger than that of the first ring. The rings, once they are formed,
are stationary. The rings may remain continuous as in Figure 5.2(a) or break up into a
ring of spots as in Figure 5.2(b). The high density aggregates of bacteria in one ring
have no obvious positional relation to the aggregates in the two neighbouring rings.
The more dramatic patterns exhibited by E. coli, such as those shown in Figure 5.3,
have definite positional relationships between radially and angularly neighbouring ag-
gregates. These relationships seem to be the result of existing aggregates inducing the
formation of subsequent ones (Budrene and Berg 1995). Instead of an initial bacterial
lawn, a swarm ring of highly active motile bacteria forms and expands outwards from
the initial inoculum. The bacterial density in the swarm ring increases until the ring be-
comes unstable and some percentage of the bacteria are left behind as aggregates. These
aggregates remain bright and full of vigorously motile bacteria for a short time, but then
dissolve as the bacteria rejoin the swarm ring. Left behind in the aggregate’s original
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location is a clump of bacteria which, for some unknown reason, are non-motile: it is
these non-motile bacteria that are the markers of the pattern.

It appears that one, or both, of the speed of the swarm ring and the time at which the
dissolution of aggregates occurs, are key elements in the formation of any one pattern. If
the dissolution happens quickly, the aggregates appear to be pulled along by the swarm
ring, and the non-motile bacteria are left behind as a radial streak as in Figures 5.3(c)
and (d). On the other hand if the dissolution happens a little less quickly, the cells from
the dissolved aggregate rejoin the swarm ring and induce the formation of aggregates at
the rejoining locations and this results in a radial spot pattern. If the dissolution happens
even more slowly, the swarm ring becomes unstable before the bacteria from the aggre-
gates have time to rejoin the ring. The ring then tends to form aggregates in between
the locations where aggregates already exist which results in a sunflower spiral type of
pattern.

Remember that, just as in the liquid experiments, none of the chemicals placed in
the petri dish is a chemoattractant. The timescale of these patterns, however, is long
enough to accommodate several generations of E. coli, and so proliferation is important
here. Consumption of stimulant is also non-negligible, especially in the swarm ring
patterns.

Since none of the substrates used are chemoattractants the patterns of E. coli in
Figure 5.3 cannot be explained by some external chemoattractants. Chemoattractants,
however, play a major role since the bacteria themselves produce a potent chemoattrac-
tant, namely, aspartate (Budrene and Berg 1991). Up to this time it had been assumed
that the phenomenon of chemotaxis existed in E. coli and S. typhimurium only to guide
the bacteria towards a food source. It was only in these experiments of Budrene and
Berg (1991, 1995) that evidence was found that the bacteria can produce and secrete a
chemoattractant as a signalling mechanism. This is reminiscent of the slime mould Dic-
tyostelium discoideum where the cells produce the chemical cyclic AMP as a chemotac-
tic aggregative signalling mechanism. In our modelling therefore we focus primarily on
the processes of diffusion and chemotaxis towards an endogenously produced chemoat-
tractant and how they interact to produce the bacterial patterns.

We should remember that all of these patterns are formed on a two-dimensional
domain of the petri dish. With the wide variety of patterns possible it is clear that if the
medium were three-dimensional the pattern complexity would be even greater. It would
be quite an experimental challenge to photograph them. Here we model only the two-
dimensional patterns and show that the models, which reflect the biology, can create the
experimentally observed patterns.

What is clear is that chemotaxis phenomena can give rise to complex and varied
geometric patterns. How these complex geometries form from interactions between in-
dividual bacteria is not easy to determine intuitively from experiments alone.! In cases
such as this, when biological intuition seems unable to provide an adequate explana-
tion, mathematical modelling can play an important, even crucial, role. To understand
the patterns, many questions must be answered, often associated with the fine details
of the biological assumptions and parameter estimates. For example, are diffusion and

1t was for this reason that Howard Berg initially got in touch with me. A consequence of the first joint
modelling attempts (Woodward et al. 1995) generated informative and interesting experimental and biological
questions.
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chemotaxis towards an endogenously produced chemoattractant sufficient to explain the
formation of these patterns? What is the quantitative role of the chemoattractant stim-
ulant and how quickly must it be produced? What other patterns are possible and what
key elements in the experiments should be changed to get them? A review of the biol-
ogy, the modelling and the numerical schemes used to simulate the model equations is
given by Tyson (1996).

Most of the material we consider in detail is based on a series of theoretical studies
of these specific patterns (Woodward et al. 1995, Tyson 1996, Murray et al. 1998, Tyson
et al. 1999). They proposed mathematical models which closely mimic the known biol-
ogy. Woodward et al. (1995)—a collaborative work with the experimentalists Drs. Berg
and Budrene—considered the less complex patterns formed by S. typhimurium and pro-
posed an explanation for the observed self-organization of the bacteria. Ben-Jacob and
his colleagues (Ben-Jacob et al. 1995, 2000; see other references there) have also stud-
ied a variety of bacteria both theoretically and experimentally: many of the patterns
they obtain are also highly complex and dramatic. The patterns depend, of course, on
the parameter values and experimental conditions. In nature, however, bacteria have to
deal with a variety of conditions, both hostile and friendly. To accommodate such envi-
ronmental factors bacteria have developed strategies for dealing with such conditions.
These strategies involve cooperative communication and this affects the type of patterns
they form. Ben-Jacob (1997; see other references there) has investigated the effect of
possible communication processes, such as chemotactic feedback. The consequences
of including such cooperativity in the model chemotactic systems is, as would be ex-
pected, that the spectrum of pattern complexity is even greater. The analytical and ex-
tensive numerical studies of Mimura and his colleagues (see, for example, Mimura and
Tsujikawa 1996, Matsushita et al. 1998, 1999, Mimura et al. 2000 and other references
there) are particularly important in highlighting some of the complex solution behaviour
reaction diffusion chemotaxis systems can exhibit. For example, Mimura et al. (2000)
classify the various pattern classes (five of them) and suggest that, with one exception,
the morphological diversity can be generated by reaction diffusion models. Mimura and
Tsujikawa (1996) considered a diffusion-chemotaxis with population growth and in the
situation of small diffusion and chemotaxis they derived an equation for the time evo-
lution of the aggregating pattern. In this chapter we discuss specific bacterial patterns
obtained with S. typhimurium and E. coli and, very briefly, those exhibited by Bacillus
subtilis which are quite different.

These bacterial patterns are far more elaborate than those observed when chemotac-
tic strains grow on media containing nutrients that are attractants (for example, Agladze
et al. 1993). They also differ from the travelling waves of aggregating cells of the slime
mould Dictyostelium discoideum in that the structures formed by E. coli and S. ty-
phimurium, for example, are only temporally stable.

The spatial pattern potential of chemotaxis has been exploited in a variety of differ-
ent biological contexts. Mathematical models involving chemotaxis (along with reaction
diffusion models (Chapters 2 and 3) and mechanochemical models (Chapters 6 and 7)
are simply part of the general area of integrodifferential equation models for the devel-
opment of spatial patterns. The basic Keller—Segel continuum mechanism for pattern
formation in the slime mould Dictyostelium discoideum was proposed by Keller and
Segel (1970) and was discussed in Chapter 11, Volume I, Section 11.4. A discrete, more
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biologically based, model (as a consequence of the new biological insights found since
then) for the aggregation with appropriate cell signalling is given by Dallon and Othmer
(1997). Othmer and Schaap (1998) give an extensive and thorough review of oscillatory
cyclic AMP signalling in the development of this slime mould. Since the pioneering
work of Keller and Segel (1970, 1971), a considerable amount of modelling effort has
been expended on these patterns such as the work on bacteria by Ben-Jacob et al. (1995)
who had thresholding behaviour in aspartate production and a cell-secreted waste field
in their model. They obtained spatial patterns resembling some of the experimentally
observed E. coli patterns. Brenner et al. (1998) performed a one-dimensional analysis
of a model mechanism for swarm ring formation of E. coli patterns in a semi-solid
medium. They studied the relative importance of the terms in their equations from the
point of view of pattern formation and obtained some analytical results: for example,
they derived an expression for the number of clumps in a given domain in terms of the
model parameters.

Chemotaxis plays an important role in a wide range of practical phenomena such
as in wound healing (see Chapter 10), cancer growth (see Chapter 11) and leukocytes
moving in response to bacterial inflammation (for example, Lauffenburger and Kennedy
1983 and Alt and Lauffenburger 1987). Until recently, relatively little work had been
done where cell populations are not constant; one exception was the travelling wave
model of Kennedy and Aris (1980) where the bacteria reproduce and die as well as
migrate. It appears that the presence of chemotaxis (or haptotaxis, a similar guidance
phenomenon for cells in the mechanical theory of pattern formation discussed in Chap-
ter 6) results in a wider variety of patterns than only reaction and diffusion, for example.
Of course, when significant growth occurs during the patterning process the spectrum
of patterns is even wider.

It is possibly pertinent to note here that the specific patterns formed by many bac-
teria depend sensitively on the parameters and on the conditions that obtain in the ex-
periments, including the initial conditions. As such a potential practical application of
bacterial patterning is as a quantitative measurement of pollution.

5.2 Model Mechanism for E. coli in the Semi-Solid Experiments

Basically we want to construct the biological mechanisms which govern the bacterial
pattern formation processes in the experiments of Budrene and Berg (1991, 1995). We
first consider the model for the semi-solid medium experiment with E. coli. The key
players in the experiment seem to be the bacteria (of course), the chemoattractant (as-
partate) and the stimulant (succinate or fumarate) so we consider the three variables: the
cell density, n, the chemoattractant concentration, ¢, and the stimulant concentration, s.
The bacteria diffuse, move chemotactically up gradients of the chemoattractant, prolif-
erate and become non-motile. The non-motile cells can be thought of as dead, for the
purpose of the model. The chemoattractant diffuses, and is produced and ingested by
the bacteria while the stimulant diffuses and is consumed by the bacteria. To begin with
it is usually helpful to simply write down a word equation for what you think is going
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on.? From the description of the biological processes described in the last section we
suggest the following model consisting of three conservation equations of the form

e - proliferation
rate of change | | diffusion chemotaxis
of cell density, n |~ | ofn + ofntoc +| (growth and death) 6.
of n
rate of change of e .
chemoattractant | — diffusion " production | | uptake (5.2)
. of ¢ of cbyn of cbyn
concentration, ¢
rate O.f change diffusion uptake
of stimulant |= — (5.3)
. of s of s by n
concentration, s

The crucial part of the modelling is how to quantify the individual terms in these
equations. A full discussion of the modelling is given by Tyson (1996) who also es-
timates the various parameters which appear from an extensive literature survey. It is
mainly her work together with that in Tyson et al. (1999) and Murray et al. (1998) that
we discuss here.

Diffusion

The diffusion terms for the chemoattractant and the stimulant in (5.2) and (5.3) are
straightforward. These chemicals diffuse according to simple Fickian diffusion with
diffusion coefficients D, and Dy respectively with estimates (H.C. Berg, personal com-
munication 1993)

D.~ Dy ~9 x 107% em? 571,

All the parameter estimates are gathered together in Table 5.1 below.

We assume that the bacteria as a population also diffuse in a Fickian manner.
The estimation of their diffusion coefficient, D,, however, is less straightforward. In
his book, Berg (1983) gives an expression for the diffusion constant of bacteria de-
rived from the individual motion of the cells and comes up with an estimate of D, =
2 x 107%cm?s~!. Phillips et al. (1994) catalogued values of the diffusion coefficient
reported in the literature over the previous 10 years: the values range from D, =~
1.9 (£0.9) x 10~* cm? s~! at the upper end to D, ~ 1-10 x 1077 cm? s~! at the
lower end. The most recent measurements, however, fall in the range D, ~ 1-3 x
10~% cm? s~!, which corresponds with the theoretical value determined by Berg (1983).

In deciding on the appropriate diffusion coefficient for the model, we must keep
in mind the number of space dimensions for movement which were available to the
bacteria when the measurements were made. In the experiments we model, the depth of
the liquid or agar mixture in the petri dish is of the order of 1.8 mm. When restricted

21t is essential when discussing with experimentalists who have little experience of mathematical mod-
elling.
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to motion through 10-mm capillary arrays, E. coli diffuse with a diffusion coefficient
of 5.2 x 1076 cm? s~!, while through 50-mm capillary arrays, the diffusion coefficient
was found to be 2.6 x 107° cm? s~! (Berg and Turner, 1990). As we would expect,
diffusion through the larger capillaries is slower.

Estimating diffusion coefficients of cells or bacteria, or really anything other than
chemicals, is always a problem (see also Chapters 9, 10, 11, 13, and 14). A variety
of theoretical approaches has been used to estimate diffusion coefficients such as that
by Sherratt et al. (1993b) in their study of eukaryotic cell movement. Ford and Lauf-
fenburger (1991) and Sherratt (1994) developed models beginning with receptor level
kinetics in their analysis to determine the diffusion coefficient of bacteria.

For our purposes, it is not necessary to include such receptor level detail since the
experimentalists believe that the absolute chemoattractant concentration does not affect
the diffusion coefficient of the bacteria. So, we assume the cells diffuse with a constant

diffusion coefficient with a value D,, = 2—4 x 10~%cm? s—1.

Chemotaxis

Chemotaxis, as we saw in Chapter 11, Volume I, involves the directed movement of
organisms up a concentration gradient, and so is like a negative diffusion. However,
whereas diffusion of cells depends only on their density gradient, chemotaxis depends
on the interaction between the cells, the chemoattractant and the chemoattractant gra-
dient. The general form of the chemotaxis term in the conservation equations is the
divergence of the chemotactic flux:

V.-Je=V-[x(n,c)Vel, (5.4)

where J¢ is the chemotactic flux, x (n, ¢) is the chemotaxis response function, as yet
unknown, with n and ¢ the cell density and chemoattractant concentration respectively.
A lot of research has been directed to finding a biologically accurate expression for the
chemotaxis function y (n, ¢). Ford and Lauffenburger (1991) reviewed the main types
of functions tried. As in the case of the diffusion term, forms for x (n, ¢) have been
proposed either by working up from a microscopic description of cell behaviour, or by
curve fitting to macroscopic results from population experiments. A synthesis of the
various approaches suggests that the macroscopic form of Lapidus and Schiller (1976),
namely,

n
ﬂmd—@+dy

where k is a parameter is a good one. This seems to give the best results when compared
to experimental data, in particular the experiments by Dahlquist et al. (1972) which were
designed specifically to pinpoint the functional form of the chemotactic response. Inter-
estingly, the inclusion of all of the receptor level complexity by other researchers did not
give any significant improvement over the results of Lapidus and Schiller (1976). The
main advantage, a significant one of course, of receptor models is that the parameters
can be directly applied to experimentally observable physicochemical properties of the
bacteria. It is not necessary, however, to include such detail in a population study. For
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the modelling and analyses here we are primarily interested in describing the behaviour
of the populations of E. coli and S. typhimurium as a whole, so a macroscopically de-
rived chemotaxis coefficient is most appropriate. Based on the above form, we choose
(Woodward et al. 1995)

kin

Gt ©-3)

x(m,c)=

The parameters k1 and k» can be determined from the experimental results of Dahlquist
etal. (1972) and give ko =5 x 107 Mand k; = 3.9 x 1072 M ecm?s~!.

Cell Proliferation

The proliferation term involves both growth and death of the bacteria. From Budrene
and Berg (1995) cells grow at a constant rate that is affected by the availability of suc-
cinate. In the semi-solid experiments the stimulant, succinate or fumarate, is the main
carbon source (nutrient) for the bacteria whereas in the liquid experiments, nutrient is
provided in other forms and is not limiting. We thus assume a proliferation term of the
form

2

s
11 th and death = & k — , 5.6
cell growth and dea 3n<4k9+s2 n) (5.6)

where the k’s are parameters.

Intuitively this form is a reasonable one to take: it looks like logistic growth with
a carrying capacity which depends on the availability of nutrient, s. When the bacterial
density is below the carrying capacity, the expression (5.6) is positive and the population
of bacteria increases. When 7 is larger than the carrying capacity, the expression is
negative and there is a net decrease in population density. Implied in this form is the
assumption that the death rate per cell is proportional to n; another possibility, but less
plausible perhaps, is simply a constant death rate per cell.

Production and Consumption of Chemoattractant and Stimulant

The model contains one production term (production of chemoattractant), and two con-
sumption terms (uptake of chemoattractant and of stimulant). Due to lack of available
data, we have to rely on intuition to decide what are reasonable forms for the production
and uptake of chemoattractant.

For the nutrient consumption, we expect that nutrient will disappear from the me-
dium at a rate proportional to that at which cells are appearing. Since the linear birth
rate of the cells is taken to be k3kss?/ (ko + s2) this suggests the following form for the
consumption of nutrient by the cells,

S2

nutrient consumption = kgn 5.7

k9+52’

where the k’s are parameters. The consumption form has a sigmoid-like characteristic.
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Chemoattractant consumption by the cells could have a similar sigmoidal character.
However, the chemical is not necessary for growth and so there is likely very little
created during the experiment. So, we simply assume that if a cell comes in contact with
an aspartate molecule, it ingests it, which thus suggests a chemoattractant consumption,
with parameter k7, of the form

chemoattractant consumption = kync. (5.8)

The chemoattractant production term has also not been measured in any great de-
tail. We simply know (H.C. Berg, personal communication 1993) that the amount of
chemoattractant produced increases with nutrient concentration and probably saturates
over time which suggests a saturating function, of which there are many possible forms.
To be specific we choose

n2

chemoattractant production = kss ———,
ke +n

5.9)

where k5 and kg are other parameters. An alternative nonsaturating possibility which is
also plausible is

chemoattractant production = kssn®. (5.10)

In fact both these forms give rise to the required patterns, so further experimentation
is needed to distinguish between them, or to come up with some other function. The
critical characteristic is the behaviour when n is small since there the derivative of the
production function must be positive.

Mathematical Model for Bacterial Pattern Formation in a Semi-Solid Medium

Let us now put these various functional forms into the model word equation system
(5.1)—(5.3) which becomes:

on 5 kin ks>
—=D,V'n—-V|——V k — 5.11
9t n n I:(k2 +C)2 ci| + 3n (k9 + 52 n ( )
0 _ p.vletk "y (5.12)
— = c s——— — kync .

ot ¢ > ke + n? !

s 2 52

— = DgV*s —kgn———, 5.13
Jat sVS Snkg + 52 ( )

where n, c and s are the cell density, the concentration of the chemoattractant and of
the stimulant respectively. There are three diffusion coefficients, three initial values (#,
c and s at + = 0) and nine parameters k in the model. We have estimates for some of
these parameters while others can be estimated with reasonable confidence. There are
several, however, which, with our present knowledge of the biology, we simply do not
know. We discuss parameter estimates below.
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Mathematical Model for Bacterial Pattern Formation in a Liquid Medium

It seems reasonable to assume that the production of chemoattractant and the chemotac-
tic response of the cells are governed by the same functions in both the liquid and semi-
solid experiments. The difference between the two groups of experiments lies more in
the timescale and in the role of the stimulant. As mentioned earlier the cells do not have
time to proliferate over the time course of the liquid experiments, so there is no growth
term in this model. Also, the stimulant is not the main food source for the cells (it is
externally supplied) so consumption of the stimulant is negligible. This shows that the
liquid experiment model is simply a special case of the semi-solid experiment model.
With cell growth, chemoattractant degradation and consumption of stimulant eliminated
we are left with the simpler three-equation model

9 k

P p,V—-v|— v, (5.14)
at (ky + ¢)?

dc n?

— =DV’ +kss —— 5.15
5 eVoc+kss ke T2 (5.15)
as

- = DyV?s (5.16)

which has fewer unknown parameters than the semi-solid mode system. The last equa-
tion is uncoupled from the other equations. In the case of the simplest liquid experiment,
in which the stimulant is uniformly distributed throughout the medium, the third equa-
tion can also be dropped.

Parameter Estimation

As mentioned, we have some of the parameter values and can derive estimates for others
from the available literature; we also have estimates for some parameter combinations.
The product k3k4 is the maximum instantaneous growth rate, which is commonly deter-
mined from the generation time, fg¢p, as

instantaneous growth rate =

Lgen

For the E. coli experiments, the generation time is of the order of 2 hours, giving an
instantaneous growth rate of 0.35/hour. The grouping k3ka/ kg is termed the yield co-
efficient, and is calculated by experimentalists as

weight of bacteria formed

~ weight of substrate consumed

Similarly, the grouping k3k4/k7 is the yield coefficient for the bacteria as a function
of chemoattractant (nitrogen source). The parameters k; and k, are calculated from
measurements of cellular drift velocity and chemotaxis gradients made by Dahlquist et
al. (1972).
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Table 5.1. Dimensional parameter estimates obtained from the literature for use in the E. coli and S. ty-
phimurium model equations (5.11)—(5.16). The other ks are unknown at this stage.

Parameter Value Source
ky 3.9 x 107° M cm?s™! Dahlquist et al. 1972
ko 5x107°M Dahlquist et al. 1972
k3 1.62 x 1072 hr ml~cell ™! Budrene and Berg 1995
ka 3.5 x 108 cells mI~! Budrene and Berg 1995
ko 4 x 1070 M? Budrene and Berg 1995
D, 2 —4x107%m?s~! Berg and Turner 1990; Berg 1983
D, 8.9 x 107 %cm?s~! Berg 1983
D; ~ 9 x 107%cm?s™! Berg 1983
no 108 cells m1~! Budrene and Berg 1991
50 1-3x1073M Budrene and Berg 1995

Budrene and Berg (1995) measured growth rates for their experiments and this let
us get reasonably precise determination of the parameters k4, k9 and k3 by curve fitting.
They also measured the ring radius as a function of time in the semi-solid experiments.
The known parameter estimates are listed in Table 5.1 along with the sources used.
We do not have estimates for the other parameters. However, since we shall analyse
the equation sytems in their nondimensional form it will suffice to have estimates for
certain groupings of the parameters. These are given below in the legends of the figures
of the numerical solutions of the equations.

Intuitive Explanation of the Pattern Formation Mechanism

Before analysing any model of a biological problem it is always instructive to try and see
intuitively what is going to happen in specific circumstances. Remember that the domain
we are interested in is finite, the domain of the experimental petri dish. Consider the full
model (5.11)—(5.13). In (5.13) the uptake term is a sink in a diffusion equation and so as
time tends to infinity, the nutrient concentration, s, tends to zero. This in turn implies,
from (5.11) and (5.12) that eventually cell growth and production of chemoattractant
both tend to zero, while consumption of chemoattractant and death of cells continue. So,
both the cell density and chemoattractant concentration also tend to zero as time tends to
infinity. Thus the only steady state in this model is the one at which (n, ¢, s) = (0, 0, 0)
everywhere. But, of course, this is not the situation we are interested in. What it implies,
though, is that it is not possible to carry out a typical linear analysis with perturbations
about a uniform nonzero steady state. Instead we must look at the dynamic solutions of
the equations.

Now consider the model system for the liquid experiments, equations (5.14)—(5.16).
The last equation implies that eventually the stimulant will be spatially uniform since it
is simply the classical diffusion equation which smooths out all spatial heterogeneities
over time. By inspection there is a uniform steady state (n, ¢, s) = (ng, 0, 0) with no,
the initial concentration of cells, being another parameter which can be varied experi-
mentally. From (5.15) the source term is always positive so ¢ will grow unboundedly.
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In this case, eventually this concentration will be sufficiently high to significantly re-
duce the chemotaxis response in (5.14) and in the end simple diffusion is dominant and
the solutions become time-independent and spatially homogeneous. So, again, with the
liquid experiments, we have to look at the dynamic evolution of the solutions. Here a
perturbation of any one of the steady states ((n, ¢, s) = (ng, 0, 0)) results in a contin-
ually increasing concentration of chemoattractant. To get anything interesting from the
model analyses therefore we have to look for patterns somewhere in that window of time
between perturbation of the uniform initial conditions and saturation of the chemotactic
response.

It is straightforward to see how the physical diffusion-chemotaxis system for the
liquid model (5.14) to (5.16) could give rise to the appearance, and disappearance, of
high density aggregates of cells. At + = 0 the cells begin secreting chemoattractant
and since the cells are randomly distributed, some areas have a higher concentration
of chemoattractant than others. Because of the chemotaxis these groups of higher cell
concentration attract neighbouring cells, thereby increasing the local cell density, and
decreasing it in the surrounding area. The new cells in the clump also produce chemoat-
tractant, increasing the local concentration at a higher rate than it is being increased
by the surrounding lower density cell population. In this way, peaks and troughs in
cell density and chemoattractant concentration are accentuated. This is not the whole
story since diffusion of the cells and the chemicals is also involved and this has a dis-
persive effect which tries to counter the aggregative chemotactic process and smooth
out these peaks and troughs or rather prevent them happening in the first place. It is
then the classical situation of local activation and lateral inhibition and which process
dominates—aggregation or dispersion—depends on the intimate relation between the
various parameters and initial conditions via ng.

5.3 Liquid Phase Model: Intuitive Analysis of Pattern For mation

We saw in the last section in the discussion of the liquid experiments and their model
system that patterns consisting of a random arrangement of spots will probably appear
on a short timescale in the liquid medium experiments but eventually the aggregates
fade and homogeneity again obtains. We suggested that this fading is probably due to
saturation of the chemotactic response. Basically since cellular production of chemoat-
tractant is not countered by any form of chemoattractant degradation (or inhibition), the
amount of chemoattractant in the dish increases continuously. As a result, the chemo-
tactic response eventually saturates, and diffusion takes over.

We also noted that the usual linear analysis about a uniform steady state is not pos-
sible so we have to develop a different analysis to study the pattern formation dynamics.
The method (Tyson et al., 1999) we develop is very much intuitive rather than exact, but
as we shall see it is nevertheless informative and qualitatively predictive and explains
how transient patterns of randomly or circularly arranged spots can appear in a chemo-
taxis model and in experiment. We also give some numerical solutions to compare with
the analytical predictions. For all of the analysis and simulations we assume zero flux
boundary conditions which reflect the experimental situation.
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We start with the simplest model for the liquid experiments which is just the semi-
solid phase model with zero proliferation of cells, zero degradation of chemoattractant
and uniform distribution of stimulant, s, which is neither consumed nor degraded and is
thus just another parameter here. In these circumstances (5.14)—(5.16) become

on 5 n

— =D,Vn—kV-|—vV 5.17
or T [(k2+c)2 C] ©.17)
dc n2

— = D.V%c + kss ——, 5.18
ar c c+ 5sk6+n2 ( )

where n and c are respectively the density of cells and concentration of chemoattractant.

For simplicity the analysis we carry out is for the one-dimensional case where
V2 = 8?/8x%. Although we carry out the analysis for a one-dimensional domain the
results can be extended with only minor changes to two dimensions (like what we did in
Chapter 2 when investigating reaction diffusion pattern formation). We nondimension-
alise the equations by setting

n c K ksso ksso 172
==, v=_— ==, ="t x*= ,
“Tae Tk YT ky ¥ (Dck2> !
D k k
d="" a=—— pu=-2 (5.19)
Dc Dck2 no

which gives, on dropping the asterisks for algebraic simplicity, the nondimensional
equations

du 92u ] u v
i g | — (5.20)
ot 9x2 ax | (1+v)?ox
9 82 2
v_2v ! (5.21)

w o Yt

The quantities ng and so (essentially parameters that can be varied experimentally)
are the average initial cell density and concentration of stimulant respectively. Since the
stimulant s is neither consumed nor degraded w = 1. Also, in the liquid experiments,
since there is neither growth nor death in the cell population we have the conservation
equation

I
/ u(x,t)dx = uol,
0

where u is the average initial nondimensional cell density which is 1 if ng is the initial
uniform density. The dimensionless parameter values, listed in Table 5.2, are calcu-
lated using the dimensional parameter values listed in Table 5.1. The parameter w is
unknown. The initial conditions of the experiment are uniform nonzero cell density and



Table 5.2. Known and estimated values for the variables and dimensionless parameters used

5.3 Liquid Phase Model: Intuitive Analysis

in the study of the E. coli and S. typhimurium liquid medium model (5.20) and (5.21).

Variable Initial Value Parameter Value
ug 1.0 o 80-90
wo 1.0 d 0.25-0.5
Vo 0.0 7 unknown

zero concentration of chemoattractant. We want to find solutions of (5.20) and (5.21)
which are heterogeneous in space and which initially grow and then decay with time.

The nontrivial (that is, ug # 0) spatially independent solution of (5.20) and (5.21)
with initial conditions u(x,0) = 1, v(x,0) =0 is

ulx,t) =1 (5.22)

If we suppose that the initial conditions for (5.20) and (5.21) are small, O(¢), ran-
dom perturbations about the initial cell density, we look for solutions in the form

ux, 1) =1 +8f(t)Ze”‘x, v(x, 1) = t—i—sg(t)Zeikx, (5.23)
k k

n+1

where 0 < ¢ < 1 and the k are the wavenumbers associated with the Fourier series of
the random initial conditions. To approximate the actual experimental situation, where
the initial concentration of chemoattractant is exactly zero, we set g(0) = 0. For illus-
tration we choose f(0) = 1. We look for spatially varying solutions superimposed on
the temporally growing solution.

Since we are looking for solutions on a finite domain with zero flux boundary con-
ditions we have only sinusoidal (cosine) solutions involving only integer modes, m (cf.
Chapter 2, Section 2.4), which are related to the wavenumbers, k, by

m?m?

K= 7 (5.24)
where [ is the dimensionless length of the domain. Substituting (5.23) into (5.20) and
(5.21) and linearising (in ¢) in the usual way we get, for each k, the O(¢e) equations

2
‘“;f) — —dk’F(0) + a(u + 1)2%G(t) (5.25)
dG(r) 2 21
e = RGO+ S F @, (5.26)

where 7 = u+1+1¢ (notethat g = 1,9 = n+1 > 0), F(r) = f(¢) and G(7) = g(¥).
The coefficient of the second term on the right-hand side of (5.25) is the only one which
depends on the chemotaxis parameter o.
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The analytical problem now is how to determine the solution behaviour of F(7)
and G (7). It is clear from (5.25) that as T — oo the coefficient of G(7) tends to zero
and the solution for F(7) reduces to a decaying exponential. Once this happens, the so-
lution of (5.26) also gives a decaying exponential. So, with the solution forms (5.23) the
mechanism accounts for ultimate pattern disappearance with time. Let us now consider
the growth of spatial pattern from the initial disturbance.

For 7 near 1o (that is, t small) we can get more insight by combining (5.25) and
(5.26) into a single second-order differential equation for the amplitude, F(t), of the
cell density pattern, to get

d’F 27 dF 2d 2
ﬁ+[k2(d+l)+—}d—+k2 <dk2+——L2M)F:0. (5.27)
T T T T T

This has an exact solution in terms of confluent hypergeometric functions but it is essen-
tially of zero practical use from the point of view of seeing what the solution behaviour
is, which, after all, is what we want. Instead we use heuristic and qualitative reasoning.
Without it, it would also be difficult to see what was actually going on if we simply
solved the system numerically in the first instance. To begin we assume that the coeffi-
cients of the second-order ordinary differential equation (5.27) change much less rapidly
than the function itself and its derivatives. This lets us compare (5.27) to a second-order
equation with constant coefficients over small intervals of t. Denote the coefficients of
(5.27) by D(t) and N(7) and it becomes

d*F dF
T2 —{-D(r)——l—N(r)F 0, (5.28)
where
) 5 2d 2ap 2 2
N(z) =k° | dk +———2 , D(r):k(d+1)+;. (5.29)
T

As noted, the last term in N(7) is the only one in which the dimensionless parameter
a (the grouping with the chemotaxis parameters) appears. The parameter @ appears
explicitly only in that term as well but it is also contained in the expression for T and so
its effect is not so easily isolated. Note that D(t) is positive for all T > 0, while N (1)
can be positive, negative or zero for t near tp = 1 4 u (that is, where the dimensional
time t = 0). For 7 sufficiently large, N(t) > 0. Let us consider N(r) and D(7) to be
constant for the moment, in which case the solution of (5.28), denoted by F , is formally

F(t) = Lie™" + Lye* ", Ay = % |:—D(t) +./D(1)? — 4N(t)} , (5.30)

where the L’s are constants of integration. Over a small interval of T we can think of
N (7) and D(7) to be approximately constant. Referring to the solution F ,since D(1) >
0V 7, we have Re (A_) < 0V t. The sign of Re (A1), however, can vary depending on
the sign of N (7).
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At this point, we are mainly interested in seeing how the chemotaxis coefficient o
and the wavenumber k (or mode m) alter the solutions. Consider the effect of increasing
«. If o is sufficiently large then N (7) will be negative for small values of 7, including
79. As T increases, N (t) will increase through zero and become positive. The effect on
A4 is to make the real part of the eigenvalue positive for small enough t and negative
for large . The point T = 7 at which A4 passes through zero is the same point at
which N (7) becomes zero. So, for small 7, one component of F is a growing exponen-
tial, while for larger t both exponentials are decaying. We predict therefore, that o has a
destabilising influence; that is, the growth of pattern becomes more likely as « increases
because it makes N (t) more negative for T < 7. We could have predicted the desta-
bilising effects of «, of course, from (5.20); it is the quantification of its destabilising
influence that requires the analysis here.

Recall that the mode m? = k%I /2. For sufficiently large k%, N(7) in (5.29) be-
comes positive for all t, resulting in solutions which are strictly decaying. This leads
us to predict that the lowest frequency modes are the most unstable, and we would not
expect to see modes of frequency larger than

2 2 ap
K _d(1+u)<1+u d) 63D

which is obtained by solving N(tg) = 0. As time increases fewer and fewer modes
remain unstable, and, as T — oo the only unstable modes are those in a diminishing
neighbourhood of 0. We can determine the fastest growing wavenumber, Kgow say, at
any time by simply setting A (k?) = 0 = N(zr) = 0 and solving for k. This gives

2 jau
2 —
Kgrow - ; <E - 1)'

If the approximation of constant coefficients in (5.28) is reasonably valid over small but
finite intervals of 7, then a series of solutions F' computed in sequential intervals At
could give rise to a solution which increases to a maximum and then decreases for all t
afterwards. The increasing phase would occur while A is positive. When we computed
a numerical solution of the equation it confirmed the expected behaviour; Figure 5.4 is
one such simulation for the parameter values given there.

The true location T = ¢ of the maximum value of F(t), Fnax, may be close to
Terit, given analytically by

. . 1 2o puk?
N(Tcrit)=O<:>Tcrit=k_2 —1+,/1+ D

(5.32)

Tyson et al. (1999) compared it with 7. obtained numerically: the comparison is very
close and gets even better as the mode k? (proportional to m?) and parameter « increase.

The difference between 7. and ¢ gives an indication of the size of d*F /d 72 at
Terit- By definition, gy is the time at which d F/dt = 0 and so (5.28) reduces to
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o' F(r) for k. = 1:6 .
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Figure 5.4. The amplitude F(t) for the wavenumber k = 1.6 perturbation of the initial uniform cell density.
From (5.24) and the parameters chosen this is equivalent to the mode m = 5. The other parameter values are:
d=033,a=80,u=1,uy=1,w=1and! = 10. (From Tyson 1996)

d*F

W = —N(terit) F.

Terit

Since the second derivative of a function is negative at a maximum we know that N (t¢it)
is positive. Thus t has already increased past the point where N (t) changes sign, and
Terit gives a minimum estimate for te. Since Tori; and ¢ are reasonably close, this
suggests that N (Tei) may be close to zero. In turn, this indicates that d> F /dt* may be
numerically small at the maximum, Fp,x.

We are thus encouraged to solve (5.28) with the second derivative term omitted. Af-
ter some straightforward algebra we get the solution of the resulting first-order ordinary
differential equation as

auk?—Qdd—1)/d+1)%) 2

2 k
(d + Dk%to +2 [i}w /@D (1)
70

bO =g 12

(5.33)

which satisfies F(tg) = 1(= f(0)). Plots of the first- and second-order equation solu-
tions F(t) and Fi(t) are shown in Figures 5.5 and 5.6.

At first glance we notice the marked difference in the height of the two functions.
Apart from this difference however, the two functions have many similarities. The peaks
occur at approximately the same value of 7, and the peak interval, defined as the time
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Figure5.5. F(t) (solid line) and Fj () (dotted line) plotted together against t for « = 30 and wavenumbers:
(a) k = 1.3, which corresponds to the mode m = 4, (b) k = 2.8, which corresponds to the mode m = 9. The
parameter values are the same as in Figure 5.4. (From Tyson 1996)

during which F(t) > F(1p), is about the same, especially for the lower frequencies,
and the two curves appear to be similarly skewed to the left. Increasing « results in a
large increase in both Finax and Fi,,. . The two solutions are also similar with respect to
the behaviour of the different modes investigated. The larger the value of k2, the earlier
Terit 18 reached, and the shorter the interval over which F or Fj is larger than the initial
value Fp.

If we normalise the data for F(t) and F(7) so that they lie in the interval [0, 1] we
see in Figure 5.6 that the two solutions map almost directly on top of each other. So, the
main difference between the approximate and numerical solutions is simply a scaling
factor. This scaling factor is large, which suggests that the second-order derivative term
is not small outside the neighbourhood of the maximum.

At this stage we have an intuitive understanding of the behaviour of the solutions
F(7) of (5.28). We also have an approximate analytic solution, Fi(t) in (5.33), which
we can use to predict the effect of changing various parameters.

1 : - 1 -
A [\
P } ‘Ill
1 1
05" j {05 / ‘\
0 10 20 30 40 0 5 10 15 20
(a) k=1.3 (b) k=28

Figure 5.6. The solutions F(7) (solid line) and F)(z) (dotted line) plotted against  and normalised to lie
between 0 and 1. (a) k = 1.3, which corresponds to the mode m = 4, (b) k = 2.8, which corresponds to the
mode m = 9. The parameter values are the same as in Figure 5.4. (From Tyson 1996)
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5.4 Interpretation of the Analytical Results
and Numerical Solutions

We are particularly interested in the model’s predictions as regards the number of ag-
gregates which will form, and how long they will be visible, that is, when F(7) is
sufficiently large. If the nonlinear effects are not too strong, we should expect that the
number of aggregates will be determined by the combined effect of the solutions corre-
sponding to the various modes.

Some numerical results are shown in Figure 5.7. Note that there is one wavenumber
(mode) which reaches a higher amplitude than any other. We refer to this wavenumber
as kmax; here kmax = 2.20. Also note that every wavenumber k larger than kpax, ini-
tially has a slightly higher growth rate than kmax. These high frequencies quickly begin
decaying, however, while the amplitude of the kmax pattern is still growing rapidly. We
surmise that the kpax mode could be the first one to dominate the solution of the full
nonlinear system of partial differential equations.

Once the knyax solution begins to decay, solutions corresponding to small wavenum-
bers become largest in decreasing order. The amplitude of each solution with k < kpax
is always in the process of decaying, once it supersedes the next highest mode. Thus
we should see a continuous decrease in wavenumber of the observed pattern as time
t increases, accompanied by a decrease in amplitude. This corresponds to the biologi-
cally observed coalescing of aggregates and eventual dissipation of pattern. Note that
for these figures the wavenumber with the maximum growth is Kgow = 5.47 and so

x 108

O 1 i i —_
] 5 10 15 20 25 30 35 40 45

T

Figure 5.7. F(z) for discrete values of k = mm/l,m = 4 to 9; that is, k = 1.26 to 2.83. The m = 9 curve
decays the fastest, then the m = 8 curve, and so on. The curve corresponding to m = 7 has the highest peak.
The parameter values are: d = 0.33, « = 80, v = 1,ug = 1, w = 1 and / = 10. From (5.31) the maximum
wavenumber K = 10.9. (From Tyson 1996)
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kmax is less than Kgrow by a factor of 2. For all of the numerical solutions observed by
Tyson (1996) and Tyson et al. (1999) in this study kmax Was consistently much less than
K grow -

One-Dimensional Numerical Simulation Results

We can now compare the predictions of the linear theory with the actual solution be-
haviour of the partial differential equations. Zero flux boundary conditions were used
in all the simulations. The initial condition in chemoattractant concentration is zero ev-
erywhere on the domain, and in cell density it is a random perturbation about ug = 1.
Among other numerical checks all of the solutions were checked against the integral
form (5.35) of the conservation of bacteria since there is neither growth nor death in the
liquid model.

A representative time sequence for @ = 80 is shown in Figure 5.8. The sequences
were truncated at the time beyond which little change was observed in the number
of peaks in cell density, and the pattern amplitude simply decreased. The plots in the
left-hand column of each figure are the cell density profiles at various times 7, while
the plots in the right-hand column are the corresponding power spectral densities. The
density axes for the latter plots are restricted to lie above the mean value of the initial
power spectral density, at T = 7. This highlights the pattern modes which grow.

As predicted by (5.32), the power spectral density plots indicate that spatial patterns
of modes higher than K = 10.9 do not grow. Also, the spread of ‘nonzero’ modes
decreases as time increases. In the actual cell density distribution, the pattern observed
initally has many peaks, and the number of these decreases over time. Our prediction
that kmax is the spatial pattern mode which will dominate the solution is off by a factor
of two in these figures. The mode which actually dominates the solution is kpax = 1.1
while the predicted value is 2.2.

Two-Dimensional Numerical Simulation Results

In two dimensions we obtain the same sort of behaviour we found in the one-dimensional
case. Again we started with an initial condition consisting of small random perturbations
about a uniform distribution of cells and patterns consisting of a random arrangement
of spots were generated as shown in Figure 5.8. The surface plot in Figure 5.9 clearly
shows the comparative densities between the aggregates and the regions between them.
The number of spots is large at first and then decreases over time as neighbouring ag-
gregates coalesce. Eventually, all of the spots disappear.

Recall that this is exactly what is observed in the bacterial experiments. To begin
with, bacteria are added to a petri dish containing a uniform concentration of succinate.
The mixture is well stirred, and then allowed to rest. At this point, the state of the solu-
tion in the petri dish is mimicked by the initial condition for our model, namely, small
perturbations of a uniform distribution of cells and succinate. After a short time, of the
order of 20 minutes, the live bacteria aggregate into numerous small clumps which are
very distinct from one another. This behaviour corresponds to the random arrangement
of spots separated by regions of near zero cell density observed in the model solutions.
Experimentally, the bacterial aggregates are seen to join together, forming fewer and
larger clumps. This is also the situation in the mathematical model, and is particularly
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Figure 5.8. Numerical solution in one dimension of the liquid model system of equations (5.20) and (5.21).
Left-hand plots show the bacterial cell density plotted against space at various times, . Right-hand plots
show the corresponding power spectral density functions. Initially the cells are uniformly distributed over the
one-dimensional domain and disturbed with a small perturbation of O(O*I). Parameter values are the same
as for Figure 5.7: d = 0.33, u = 1, ug = 1, wg = 1,/ = 10 and o = 80. (From Tyson 1996)



5.4 Interpretation of Results and Solutions 277

cellsatt=0

(b)
Figure 5.9. (a) Time evolution of two-dimensional cell density patterns arising from a uniform distribution
of stimulant on a square domain. White corresponds to high cell density and black to low cell density. T = 0,
the initial conditions, T = 1, T = 2, v = 3.002. (b) Surface plot of the solution for T = 2 showing the high
density of the aggregates and the low density between them. Parameter values: d, = 0.33, « = 80, © = 1,
ug =1, w =1and ! = 10. (From Tyson 1996)
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clearly seen when the solutions are displayed as a movie with the frames separated by
small time increments. In both the model and experiment, the spots eventually disap-
pear and cannot be induced to re-form. This is again explained by the mathematical
model as a saturation of the chemotactic response, which no longer has any effect as the
production of chemoattractant increases continually.

Nonuniform Distribution of Stimulant

Up to now we have considered the cell density patterns which emerge in response to a
spatially uniform distribution of the stimulant w; the above analysis qualitatively cap-
tures the experimentally observed behaviour in this case. Other patterns however, have
been observed in experiment when the stimulant is added to the medium as a localised
drop as we mentioned. If the model is essentially correct, it should also reproduce these
patterns. This we briefly examine here.

With a nonuniform distribution of stimulant, we have to include diffusion of stim-
ulant in the model. So, the model, given by equations (5.20) and (5.21), has to be
expanded to include the equation for stimulant, namely, the system (5.14)—(5.16) in
dimensionless form. This more general model is therefore

au 2 u

— =dV’u—aV. | ——Vv (5.34)
ot (1+v)?

ov 5 u?

— =V 5.35
at vt wu + u? ( )
Jw

- = d;VZw, (5.36)

where the dimensionless dy = D; /D, (cf. (5.19)). With this formulation, we now re-
quire that the average value of u(X, ) and w(X, ) at all times be equal to 1.

Numerical results from a simulation of this model are shown in Figure 5.10. As
observed experimentally in Figure 5.1, a ring of high cell density develops around the
point where the stimulant was added. Some aggregates form inside the ring (also ob-
served experimentally in Figure 5.1), but these are nowhere near as dense as the ring.
The reason for this is that the ring recruits cells from outside its circumference, and so
the number of cells available to it is much larger than that available to the aggregates in
the centre.

Over time, simulations indicate that the radius of the ring decreases. Eventually the
radius becomes so small that the ring is essentially one spot. It would be interesting to
see if this behaviour is observed experimentally.

Before discussing the modelling of the more complex patterns in the semi-solid
experiments it is perhaps helpful to recap what we have done in the above sections. We
showed how a relatively simple but intuitively revealing analysis explains how evolving
patterns of randomly or circularly arranged spots appear transiently in the chemotaxis
model for the experimental arrangement. The central idea is to consider the rate of
growth of individual modes over small time intervals, and extrapolate from this to the
combined behaviour of all disturbance frequencies. Low mode number perturbations to
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Figure 5.10. Two-dimensional cell density pattern arising from a nonuniform distribution of stimulant on a
square domain. The stimulant was added as a single-humped function at the centre of the domain. Parameter
values are the same as for Figure 5.9. (From Tyson 1996)

the uniform solution are unstable and grow in magnitude, but eventually these stabilize
and decay with the larger mode numbers stabilizing first. This not only agrees quali-
tatively but also to a considerable extent quantitatively, with what is observed experi-
mentally and numerically: clumps form, coalesce into larger aggregates and eventually
disappear.

5.5 Semi-Solid Phase Model M echanism for S. typhimurium

As we discussed in Section 5.1 in the semi-solid experiments, Budrene and Berg (1991)
observed two very different pattern forming mechanisms. With S. fyphimurium a thin
bacterial lawn spreads out from the inoculum, and rings of more concentrated bacteria
form well behind the lawn edge. Each ring may eventually break up into spots, but
usually not until several more rings have formed at larger radii as shown in Figure 5.2.
The second pattern forming mechanism is exhibited by E. coli, and involves first the
formation of an expanding ring of high bacterial density, referred to as a swarm ring.
As this swarm ring expands, it leaves behind smaller aggregates of bacteria, which form
the striking patterns shown in Figure 5.3.

The bacterial lawn well ahead of the S. typhimurium pattern suggests that a spatially
and temporally uniform steady state is first established, and then the pattern forms on it.
As we showed, the model for the semi-solid experiments has no nonzero steady state. If
consumption of nutrient is sufficiently slow, however, we can neglect it and the model
reduces to two equations which admit the necessary steady state. We suppose then,
that in the first pattern formation mechanism, consumption of nutrient is negligible.
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This assumption is further supported by the fact that, experimentally, food is present in
quantities well above the saturation level for the cells.

The second patterning mechanism appears to involve a vigorous nutrient consump-
tion rate (Budrene and Berg 1995). There is little left behind the expanding swarm ring.
In this case, all three equations of the semi-solid model are important.

We start by nondimensionalising the model system of equations (5.11)—(5.13) for
the semi-solid experiments by setting

c N

n 2 2
U=—, v=—, w=—, t"=kmot, V™ =-—""V",
ng %) ko kyng

D Dy k k k
du:_nv dw:_A7 o = 1 ’ 10=_3s 82_47
Dc Dc Dckz k7 no
ko ks _ ke

:k , K = , =
P = kang ok TR

(5.37)

and we obtain the dimensionless model, (with parameter estimates given in Table 5.3)
where for algebraic convenience we have omitted the asterisks,

ou u w?

— =d,V’u—aV.|——V 8 - 5.38
o uvnTd [(1+v)2 ”}+p”(1+w2 ”) (5.38)
v 2 u?

Ezv v—i—ﬂwu_'_uz—uv (5.39)
Jw 2 w?

E:dwv w—xul+w2. (5.40)

Recall that in the S. typhimurium experiments there are two distinct steps in the
pattern forming process in the first of which there is a thin, disk-shaped bacterial lawn,
suggesting that a spatially and temporally uniform steady state is temporarily present.
During the second step a high density cluster of bacteria forms in the shape of a ring
which appears well behind the leading edge of the bacterial lawn, suggesting that the
ring pattern forms on top of the intermediate steady state. Since pattern is still forming
long after the lawn has been established, consumption of nutrient in the lawn must be

Table 5.3. Known dimensionless parameter values calculated
from the dimensional parameter values listed in Table 5.1.

Parameter Value
d, 0.2-0.5
dy 0.8-1.0
o 87

8 35
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negligible. So, we can approximate the full system by neglecting the dynamics of food
consumption. Also, since the concentration of nutrient is large, but the concentration of
cells is small, we can study the simplified two-equation model

du u w
—=d,V’u—avV.-|——V §— — 5.41
a7 VU — o |:(1~|—v)2 v:|+pu< T+ o u) (5.41)
v 5 u?

E:V v—i—,BwM_l_uz—uv. (5.42)

The analysis of these equations is much easier than the analysis in Section 5.3 in that
there is a homogeneous steady state in which both # and v are nonzero. So, we can
use the usual linear analysis to determine whether or not this steady state is unstable
and whether or not spatial patterns are likely to form. We also carried out a thorough
nonlinear analysis some of whose results we discuss below since they are highly relevant
to the specific patterns that are formed.

5.6 Linear Analysisof the Basic Semi-Solid Model

The linear analysis is the same as we discussed at length in Chapter 2 and is now
straightforward. We linearize (5.41) and (5.42) about the nonzero steady state (u*, v*)
given by

. % w u*
, =4 , . 5.43
(™, v") ( T+ w ﬂwu—l—u*z) ( )

It is algebraically simpler in what follows to use general forms for the terms in
the model equations (5.41) and (5.42): w is in effect another parameter here. We thus
consider

u 2
N VU —aV - [ux )Vl + f, v) (5.44)

ot
ov 2
i dyVv + g(u, v), (5.45)

which on comparison with (5.41) and (5.42) define

w
x(v) = m, f(u,v) = pu (Sl—k—w_u>’
u?
g(u,v) = ,Bw'u i —uv. (5.46)

We now linearise the system about the steady state in the usual way by setting

u=u*4+eu;, v=v*4ev, (5.47)
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where 0 < ¢ <« 1. Substituting these into (5.44) and (5.45) we get the linearized
equations

duy

Frie d,V2u — au* x*Viu + fiuyr+ fifu (5.48)
v
3_1‘1 =d,V?v1 + gius + g'vy (5.49)

since f* = 0 and g* = 0. Here the superscript * denotes evaluation at the steady state.
We write the linear system in the vector form

9 (ug _ 25 (U1

3 (v1> =(A+ DV?) (Ul , (5.50)
where the matrices A and D are defined by

fu fv* _ du —Olu* X *

|:gu o | D= 0 4| (5.51)

‘We now look for solutions in the usual way by setting

(Ml) — (C1> e)ul‘-‘rl'kx’ (552)
V] ¢

where K is the wavevector, the ¢’s constants and the dispersion relation A(K), giving the
growth rate, is to be determined. Substituting this into the matrix equation gives

[AI+D|k|2—A] [:;] - [8},

which has nontrivial solutions if and only if the determinant of the coefficient matrix,
| A1 + D|k|> — A| = 0 (recall Chapter 2). So, the dispersion relation A(k?), k? = |k |
is given by the characteristic equation

324 2+ d) = (f + )]
+ |dudok® = (gl +du £+ et x gk + frh = frak] =

with solutions denoted by AT and A~

We are interested in determining pattern modes which have at least one positive
growth rate; that is, at least one solution has RIA > 0 so we focus on the larger of the
two solutions, A, given by

At = %[ b(k%) + VIbKD? = 4c(k2] (5.53)
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where

b(k®) = (dy + d)k* — (fF + &)
c(k?) = dydok* — (dyg" + dy f¥ + au™ x*gHK> + frg — frgr.  (5.54)

Recalling the discussion in Chapter 2, if RIAT is positive (negative) then perturbations
about the steady state will grow (decay). We look for solutions which are stable (AT <
0) to purely temporal perturbations (that is, k% = 0), but unstable (AT > 0) to at least
one spatial mode, which is just like the pure diffusionally driven instability situation for
some nonzero k| and k». Mathematically, we look for a range of parameters such that

AT(0) <0, AT(k* > 0forall k such that 0 < k7 < k? < k3. (5.55)
To satisfy the first of (5.55) we must have

bO) = f; +g, <0, 0= fig, — fJ'gu> (5.56)

Note that these conditions imply that A~ is always negative so we need only focus on
1. Graphically, these conditions yield an inverted parabolic curve for A(k?), which has
its maximum to the right of k> = 0 and so is the most basic dispersion relation which
gives diffusion-chemotaxis-driven instability discussed in detail in Chapter 2. Typical
dispersion relations are shown in Figure 5.11, where by way of example we have shown
how they vary with the parameter j: for 4 small enough there is no range k2, k%.

Dispersion Relation

Figure5.11. The dispersion relation, A(kz) for parameter values dy, = 1.0,d, =0.3,0 =80, =2, u =4,
6,8 and 10,5 = 2, p = 1 and w = 10. The curve corresponding to = 4 is the lowest one.
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We are interested in the intersection of the curve with A = 0 which gives k% and k%.
These correspond to a boundary in parameter space, which from (5.54) is given by the
two solutions k2 of

dydok® — (dyg" + dy fF 4 au* x* g + fFgf — frgf =0. (5.57)

In general, for each set of parameter values there are two, one or zero values of k2 which
satisfy (5.57). At bifurcation, where there is one value, we have

dugy +do fif +au*x*gx

k> = 5.58
¢ Zdudv ( )

and
(dugl +dy £ + au*x*gl)? — Adudy(figl — figlh) =0, (5.59)

where k. is the critical wavenumber. Solving the last equation for « and substituting it
into (5.58) we get the crucial values

"= —(dugy +dv f;)) +2/dudy (8} fif — 85 1) 2 a8 = frgw)
M*X*g; ’ c dudv ’

(5.60)

which give the parameter spaces for diffusion-chemotaxis-driven spatial instability in
terms of the other parameters in the model system via the functions y, f and g, here
defined by (5.46), and their derivatives evaluated at the steady state.

For these results the positive solutions to the quadratic were chosen. Equation (5.60)
defines a critical boundary set in parameter space which separates the two regions of
positive and negative A. The curve (5.59) is the bifurcation where AT = 0 and wave
patterns will neither grow nor decay. A sequence of these curves is shown in Figure 5.12
for various values of . On the upper side of each curve, AT > 0 and all unstable pattern
modes will grow, that is, for all k% <k? < k% obtained from (5.57). We do not know at
this point what patterns to expect, only that spatial patterns are possible. To go further
and determine which patterns will emerge is a nonlinear problem. To date the only
analytical way to determine these is by what is called a weakly nonlinear analysis which
means an anlysis near where the solutions bifurcate from spatial homogeneity to spatial
heterogeneity. Some of the references where this has been done for reaction diffusion
equations were given in Chapter 2. Exactly the same procedures are used in these types
of equations but are just a little more complex. Zhu and Murray (1995) carried out a
nonlinear analysis and evaluated, analytically, the parameter spaces for both reaction
diffusion and diffusion-chemotaxis systems to compare their potential for generating
spatial pattern. As already mentioned, Tyson (1996) used the method to analyze the
specific model equations we have discussed here.

We do not carry out the (rather complicated) nonlinear analysis here (refer to Zhu
and Murray 1995 and Tyson 1996 for a full discussion). Here we just sketch the proce-
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Pattern/no pattern boundary
110 1
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Be

Figure 5.12. The boundary in (e, Bc) parameter space between regions where patterns are possible and
where they are not. For («, 8) pairs above each line patterns are possible (A > 0) while below, they are not.
The parameter values are dy,. = 0.3, dy. = 1.0, o = 4 (uppermost line), to 8 (lowermost line) in steps of
0.5, 8; =2, pc = 0.5 and we = 5. (From Tyson 1996)

dure and give the results. From the linear analysis we first determine in what parameter
regions patterns are possible. The nonlinear analysis gives, in effect, the type of patterns
which will form. The analysis is based on the assumption that the parameters are such
that we are close to the bifurcation curve in parameter space. We develop an asymp-
totic analysis based on one parameter (the one of specific interest), for example, the
chemotaxis parameter «, which is close to its bifurcation value, ¢, on the bifurcation
curve but whose value moves the system into the pattern formation space as it passes
through its critical value. We start with the linear solution to the boundary value prob-
lem; for example, in one dimension it involves a solution including e*® cos kx, where
k is in the unstable range of wavenumbers. On a linear basis this solution will start to
grow exponentially with time with a growth rate ¢*®? with A (k) the dispersion relation.
Intuitively, by examining the undifferentiated terms in the system of equations (5.38)—
(5.40), the solutions can not grow unboundedly. In a weakly nonlinear analysis we first
consider the linear solution to be the solution to the linear boundary value problem with
K = kg; that is, the parameters are such that we are close to the bifurcation curve from
no pattern to pattern. An asymptotic perturbation method is then used to study the solu-
tions in the form where the magnitude (or amplitude) of the solution is a slowly varying
function of time. The conditions under which the amplitude is bounded as t — oo are
determined. This procedure then determines which of the various solution possibilities
will evolve as stable solutions. We give a few more details to further explain the general
procedure when we discuss the forms of the possible linear solutions to the boundary
value problem.
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Linear Boundary Value Problem

A necessary prerequisite for the nonlinear analysis is solving the linear boundary value
problem relevant to the nonlinear analysis. The pattern types which are possible depend
on the number of different wavevectors k allowed by the boundary conditions. From our
point of view we are interested in having the experimental domain tesselated by repeat-
ing patterns. In the numerical simulations a square domain was chosen for numerical
simplicity and so we are interested in square or rectangular tiles giving stripes and spots.
So, each square or rectangular unit is subject to periodic boundary conditions. In gen-
eral, with regular tesselations, we can have squares, stripes, hexagons, and so on as we
discussed in Chapter 2.

Consider the rectangular domain, S, defined by 0 < x < [,0 < y < [, with
the sides denoted by S1:x = 0,0 <y </,, S:x =1,,0 <y <1, 83:y =0,0 <
x < Iy, S4:y =1,,0 < x < I,. The spatial eigenvalue problem with periodic boundary
conditions is then

2 2, Yls, = Vls,
V2y + k2 =0, {WSI il (5.61)

The possible eigensolutions of the partial differential equation (5.61) are
¥ = Acos(k, - X) + Bsin(k, - X), (5.62)

where the k,% are allowable eigenvectors, which we discuss below. Substituting the
boundary conditions in (5.61) into the solutions (5.62) we obtain

cos(ky - (0, y)) = cos(Ky - (Ix, y))
sin(k,, - (x,0)) = cos(k, - (x, Iy))
cos(Ky - (0, y)) = cos(ky - (Iy, y))
sin(ky - (x, 0)) = cos(k, - (x,1}))

which after using some trigonometric identities can be written as
cos(ky y) [1 — cos(kily) ] + sin(ky y) sin(k;ly) = 0
sin(ky y) [1 — cos(k )] — cos(ky y) sin(kil) =0
cos(k; x) [1 — cos(k,%'ly)] + sin(k; x) sin(k,{ly) =0
sin(kx) [1 — cos(kyly) | — cos(krx) sin(kyly) = 0,

(5.63)

where k; = (k;, k;). The general solutions of (5.63) are

[ o _ [2nm/1, _ [2pn/i,
k1_|:2m7'r/ly:|’ kQ—[ 0 ] k3—[2qn/zy]’

where m, n, p and g are all integers.
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We are concerned with parameters such that we are near the bifurcation curve so
we are particularly interested in the solutions k,, which satisfy | k, |> = kf

The number of such solution vectors which equations (5.63) admit depends on the
relationship between I, and /. Suppose kg = (2M/1)? and also that S is square with
sides I, =1, = [. If M = 1 then there are two possible solution vectors:

To _[2n/1
=L =[] 66

If M =5 then there are four possible solution vectors:

[ o _[2-5m/1
kl_[z-swz] kz—[ 0 }

_|2-3n/1 _|2-4n/l1
k3—|:2.47_[/li|, k4—[ ) i| (5.65)

These solution vectors are important in the nonlinear analysis.

5.7 Brief Outline and Results of the Nonlinear Analysis

With the linear analysis we can only determine the small amplitude initial behaviour
of u and v about the uniform steady state when the steady state is driven unstable to
spatially heterogenous perturbations. These spatially inhomogeneous solutions initially
grow exponentially and are clearly not valid for all time. For the class of problems here
we can carry out a nonlinear asymptotic analysis and obtain the solutions to O(¢) (and
in principle to higher orders but the algebra is prohibitive) which are valid for all time.
As mentioned the details of the procedure are given by Zhu and Murray (1995) for sev-
eral pattern formation mechanisms including a diffusion-chemotaxis one. For the more
complex chemotaxis mechanism the analysis has been carried out by Tyson (1996).
Here we sketch the analytical procedure, namely, a multi-scale asymptotic analysis, for
determining small perturbation solutions valid for all time of the system of equations
(5.41) and (5.42) the general forms of which are (5.44) and (5.45). We start by writing

W h=ut+ (suy 4 Pur + Euz + )

ViD= v* + (v 4+ 2o + dv3 + -1 0), (5.66)

u

v
where (u*, v*) is the spatially homogeneous steady state which depends on the model
parameters and which, as we saw in the last section, can be driven unstable as a param-
eter passes through the bifurcation value which results in spatially unstable solutions.
We scale time by writing

T =&t, where ® = ew) + 82wy + -+ -, (5.67)

where the w;, i = 1, 2, ... have to be determined.
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Consider equation (5.44). Substituting the expansions (5.66) and (5.67) into the
individual terms, we get

ou L 0u 2 2 A
— =w—', V‘u=V-<u
ot oT

aV - [ux()Vvl =aV - [@* +a)(x*+ x;0+ %X,j‘vﬁz + ) VD]
= u*x*V?) + (u* X VO + x*Vii) - VD
+ (x5 V@O + XV (@) - VO + -
Fv) =[5+ (o + Fi+ 5 (fory + f)i® + fonyid
F e+ )i+ (5.68)

The first two expressions have linear terms in u, while the last two expressions have
linear, quadratic, cubic and so on with higher-order terms in # and 0; f* = 0 by defini-
tion of the steady state. So (5.44) transforms into another equation with linear, quadratic
and higher-order terms in # and v. Equation (5.45) transforms in an equivalent way. In
general then, (5.44) and (5.45) with (5.67) and (5.68) take the form

0

cba—TGi) = [D*v2+A*]ii+ Q) +CH @) + -, h= (5.69)

—
[SPERNY
| |

and where * denotes evaluatlon at the steady state (u*, v*).

The quantities Au Q(u) and C (u) represent the linear, quadratic and cubic terms
respectively, of the exRanswn of the chemotaxis and reaction functions about the steady
state. The matrices Ai and D were determined above in the linear analysis. We are
interested in situations where the model parameters have particular values such that
A = 0. This occurs when the parameters are defined by (5.60); we call this set a critical
parameter set. Basically, it means the parameter set is sitting on the boundary between
growing spatially heterogeneous solutions and spatially homogeneous solutions.

If we now perturb one of the model parameters a, say, which can be any one of
the parameters in (5.44) and (5.45), about its value in a critical set, the eigenvalue for
temporal growth becomes

oA
Ala) = Mae) + —| Aac+---
da ac
oh Aa, +
= -— a ...
da e ¢

since A(a.) = 0 by definition of the critical parameter a.. We take the perturbation to
be such that

k>
da

dc
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so that the perturbation effect on the solution eMHKT g restricted to a change in the
temporal growth rate A. Then, if the change in a. makes Re(X(a)) positive, the pattern
mode corresponding to kf is predicted to grow according to linear theory. Depending on
the parameters, the result can be a stable or unstable spatially heterogeneous solution.
If this growth is sufficiently slow, we can predict whether or not it will develop into a
temporally stable pattern and furthermore, what the characteristics of the pattern will be
such as spots or stripes. We start by perturbing the steady state model (5.69) about the
critical set. To keep the analysis simple we perturb only one parameter, and to keep
the analysis general we call the parameter a. Tyson (1996) carried out the analysis with
the actual parameters from the model equations and it is her results we give below.
Consider an expansion of the form

a=a.+4=ac+ (eay + *ar+---). (5.70)

Substituting this into (5.69) we get the system
9 - - - -
b (i) = [D*CV2 4 A*C] i+ Q@) + C* (@)
~ 2 e N e
+a [D;Cv + A;C] i+ a0 ()
+ higher-order terms, 5.71)

where the superscript ¢ denotes evaluation at the critical set. The change in the critical
parameter a only occurs in @ and so its effect can be isolated in the analysis.
Substituting the expansions for all of the small variables (), and collecting and
equating terms of like order in ¢, we obtain systems of equations for each order in &.
For notational simplicity, the superscript ¢ is omitted in the result, and for the remainder
of the analysis all parameter values are from a critical set. To show what these equations
look like we just give the O(e) and O(g?) systems although to carry out the nonlinear
analysis it is necessary to also have the O(g?) system which is algebraically extremely
complicated. We do not need them to sketch the procedure. The O(¢) equations are

0 AV + 5 —au*x*V2 + 5 [u uj
[o} [ g a2+t || ” (5-72)
which are linear and define the coefficient matrix as the linear operator L. The order
0(82) equations are

e =wli u1 + a(x*Vuy +u*x Vo) - Vo
V2 oT | v, 0

|:%f;uu% + fu*vulle + %fv*vv%i|

%g:uu% + g,’;uuwl + %gjvvlz
(e —(@u*x"aV+ (£

—a1|: ula ¢ v [“1} (5.73)
(&1)a (&3)a U1
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The analysis, which needs the O (&) equations, requires the solutions of these lin-
ear systems of equations. This was done by Tyson (1996) (and an equivalent analysis
by Zhu and Murray 1995). The algebra is horrendous but necessary to get the uniformly
valid (for all time) solution to O(¢) and to determine which specific patterns will be
stable.

So as to be able to give the results and explain what the nonlinear analysis gives,
we need the solutions to the O(e) system (5.72). To get them we look for solutions in
the form

N
ui g

=Y VA, 5.74
[U1:| 2 14; (5.74)

where
A = a(T)e M 4 Gy (Tye (5.75)

is the sinusoidal part of the solution. Relating this form to (5.62), a;/(T) + ai(T) o B.
Substituting (5.74) into (5.72) we obtain an expression for V 1; to within an arbitrary
constant multiple. This is usually chosen such that the magnitude of the vector is unity
and so

Vi, = [Vl“} - 1 [d“"z’ - gi] (5.76)
@b ? - g2+ g2 b S

Since we only consider critical sets of parameters, we know that |l?1 |2 = kLZ.Vl and so
V1, = VIV

At this stage we do not know a;(7T") and a;(T), the complex amplitudes (which
are functions of 7' the slowly varying time defined by (5.67)) of the O(¢) solution; the
solution amplitude is | ¢;(T") |. The key to the nonlinear analysis is the determination of
the amplitude. So, we have to solve the O(g?) equations. Since these linear equations,
with the same operator L, contain undifferentiated terms on the right-hand side it is
possible to have solutions with secular terms, which are terms which involve expressions
like x sin x which become unbounded for large x.

It is easy to see how secular terms arise if we consider the simple equation for u(x):

u' +u=—su,

where primes denote differentiation with respect to x, 0 < ¢ <« 1 and, to be specific,
let us require u(0) = 1,u’(0) = 0. If we write u = ug + gu; + --- we assume all
the u;,i = 1,2, ... are all O(1). Substituting this into the equation and collecting like
terms in € we get ug(x) = cosx and the equation and boundary conditions for u1, the
O(g) terms, as

ul +uy =sinx, ui(0) =uj(0) =0,
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the solution of which is uj(x) = (1/2)(sinx — x cosx). So, ug + euy + --- is not a
uniformly valid solution since u1(x) is not O (1) for all x because of the x cos x term:
it is the secular term. The asymptotic procedure for obtaining uniformly valid solutions
of this type of equation is pedagogically described in detail in the book on asymptotic
analysis by Murray (1984).

To go back to the above discussion of the O(s2) equations, it turns out that these
do not give rise to secular terms and so the amplitude functions a;(T") and a;(T) remain
undetermined at this order. However, at O(e3) secular terms do appear. It is at this
stage that the equations for the amplitude are determined: they are chosen so that these
secular terms do not occur in the O (&) solutions even though we do not actually find
the solutions at this order. It is the algebra involved in obtaining these equations, known
as the Landau equations, that is so complicated and detailed. The equations crucially
involve the number N in (5.74) which is the number of modes in the solution which
have | k12 | = kf We saw how the solutions and eigenvectors varied with this number in
the discussion of the boundary value problem in the last section.

By way of example, let us suppose N = 2; then Tyson (1996) showed that the
amplitude, or Landau, equations are

dlai ?

— =la P(Xalar >+ Xplaz [*) + Y|a; [ (5.77)
d|a2|2 2 2 2 2

T =laPXsla P+ Xala ) + Y] P, (5.78)

where the X4, Xp and Y are complicated functions of the parameters of the original
system (5.44) and (5.45) (and hence (5.41) and (5.42)). The |a; | and |a> | directly
relate to the A and B in equation (5.62) except that here they are functions of time.
Whether or not a stable spatially heterogeneous solution exists depends on the solutions
of these amplitude equations as ¢ — o00. They are just ordinary differential equations
with constant coefficients. They have the following possible steady state solutions and
their existence depends on the signs of the coefficients,

(1) la>=0, lax > =0
Y
2 2 =0, 2= ——
2) la | laz | X
3 laP=-—" laz > =0 ' G
1 - XA’ a2 -
Y Y
4 a 2:—7, a 2:—7
@ la| Y5 @l ST

The first steady state corresponds to a zero amplitude pattern, or no pattern at all.
The second and third correspond to a zero amplitude in one direction and a nonzero
amplitude in the other, and this gives stripes. The fourth steady state has a nonzero
amplitude in each direction and therefore gives spots. If none of these steady states is
stable, then the analysis does not determine the type of pattern formed. This is referred to
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Table 5.4. Conditions for stability of the patterns possible for the four steady states when the number of
critical wavenumber vectors kj,, is N = 2.

Steady State (| a1 |%, | a2 |?) Pattern Stability Conditions
0,0) none Y <0
0, =Y/ X4) horizontal Y>0
stripes Xp/Xa>1
(=Y/X4,0) vertical Y >0
stripes Xp/Xa>1
Y Y
<— , — > spots Y>0
Xa+Xp Xat+Xp

XA:i:XB <0

as the undetermined region in the parameter plots which we show below. The conditions
for stability of these steady states are summarized in Table 5.4. By computing X4, X
and Y over a given parameter space, we can use Table 5.4 to divide this space into
regions where spots, stripes, no pattern or an undetermined pattern can occur. These
parameter spaces were calculated by Tyson (1996) for the system under study here and
by Zhu and Murray (1995) for a simpler reaction diffusion-chemotaxis system.

5.8 Simulation Results, Parameter Spaces and Basic Patterns

We present in this section some simulations of two models: equations (5.41) and (5.42)
and a moderately simplified version. For these simulations we used initial conditions
which strictly apply to the analysis. That is, the simulations are begun with a small
(order ¢) perturbation of the spatially and temporally unvarying steady state solution,
and a smaller (order &2) perturbation of one of the parameters. Recall that the boundary
conditions are periodic.

The Simplified Model
Consider first the following simplified model of (5.41) and (5.42),

U 1V —a | —" Vol pus — )

—_— = u—auo —F= VUV u —Uu

ar 1+ )2 p

3

8—;’ — V20 + Bu? — uv. (5.80)

This model has only five parameters, and so the parameter space is a little easier to
explore than for equations (5.41) and (5.42). If we take d,, and p to be fixed, then we
can vary § and 8, and determine « from the first of (5.61). Each point in the §, 8 plane
will thus correspond to a critical set of parameters which we can use to determine X 4,
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Pattern Regions
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Figure 5.13. The pattern domain for the simple model (5.80) with d, = 0.25, p = 0.01, x = 1.0 and
wo = 1.0. As B is varied, the corresponding value of « is determined from equation (5.80). The perturbation
parameter is 8. The pattern regions based on the evaluated X 4, X and Y for Table 5.4 give stripes in the
striped (dark) areas and spots in the clear (white) area. (From Tyson 1996)

X p and Y. This approach creates the pattern regions shown in Figure 5.13. On this plot,
curves of constant ¢ are hyperbolas given by

_ Wi+ /pdy)* (1 +6)°

p o é

Numerical solutions were obtained for two sets of parameters: one from the upper
stripes region, and one from the spots region. Simulations were performed on square
domains just large enough to hold one full period of the pattern. This required the choice

2
Kz

c

I =1, =

So, we expected to obtain one stripe for the stripe parameters and one spot for the
spot parameters. These were found, and typical results for the cell density are shown in
Figure 5.14. Each simulation has two plots which indicate the initial conditions and the
steady state pattern.

Note that since the boundary conditions are periodic, the maximum of the spot
or stripe pattern can occur anywhere in the domain. Also, for the stripe pattern, the
orientation of the stripe is not determined from the analysis, since we are working with
a square domain. So, for one set of random initial conditions the stripe will appear
vertical, whereas for another set it will appear horizontal.
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cell density at t =0 cell density at t = 1200

(a)

Figure 5.14. Simulation results from the simple model parameter domain where spots were predicted in
Figure 5.13. Cell density is plotted as an image at + = 0 and at steady state. Cell density profiles are shown
to demonstrate that the pattern has indeed reached a steady state, and the predicted cell density profile is also
shown for comparison. The perturbation was ¢ = 0.1. The times given are in nondimensional units. White
indicates high cell density, black the opposite. The parameter values are: (a) d, = 0.25, « = 1.50, 8 = 0.1,
8§ =150, p = 001, w = 1.0, ug = u* = 15.0, vyg = v* = 1.50, kLZ. =30andly =1y =1 = 3.6276
(domain which can sustain one 27 oscillation), a spot.

The Full Model

We consider now the more biologically accurate model

0 V% — o | —" v |+ pucs w? )

— = u—«o S EEEE— v UO——= — U

or " (1 +v)?2 P w2

31) 2 I/l2

E =V v+,3wm—uv, (581)

which has seven parameters, including w and for which we have experimental estimates
for «, d,, and 8. One of the four remaining parameters can be determined from the
bifurcation condition (5.58). In the simpler model we solved for the critical value of «
given all of the other parameters. Since we know «, however, we would like to fix its
value and solve for one of the unknown parameters. The simplest one to solve for is p,
which is given by

/ _ 82
0= M \/Z ) (5.82)

N
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cell density at ¢t = 400

05

05 1 1.5 2 25 3

cell density at t = 450

Figure 5.14. (continued) (b) and (¢) d, = 0.25, « = 2.25, 8 = 0.2, § = 20.0, p = 0.01, w = 1.0,
ug = u* =20.0,v9 = v* = 4.0,k = 40and [, = ly =1 = 3.1416 (domain which can sustain one
27 oscillation) but a stripe. In (a) and (b) the same seed was used while in (c) a different seed was used for
the random initial conditions. The same amplitude and size of stripe is obtained, but this time it is horizontal
instead of vertical. (From Tyson 1996)

The remaining parameters are u, 8 and w. So, we need to explore the (8, 1), (i, w)
and (B, w) parameter spaces. We are dealing with a four-dimensional parameter space
but it is three-dimensional for given p. At this point we can marginally simplify the
system by setting

B=pw (5.83)

and rewriting the model as
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ou 2 u -

v _

R v 2 —uv. 5.84
ar U+ﬂy,+u2 uv (5.84)

This simplifies the algebra considerably, but still lets us determine the effect of increas-
ing or decreasing w by mapping points (8, 8) to (8, 8) as w increases using (5.81). This
mapping is a sigmoidal curve for each (8, §) pair in the (8, §) plane.

With this formulation the unknown parameters are 8, § and w. If we fix u to be
large compared with u?, we recover the simplified model (5.80) that we just considered.
Surprisingly, 8 does not need to be very much larger than g for this pattern domain to
be recovered. For smaller values of p, the pattern domain is different. An example is
shown in Figure 5.15.

Tyson (1996) carried out simulations for parameters from the stripes, spots and
indeterminate regions and these confirmed the analytical predictions as to which pattern
type will be found in small periodic domains subject to small random perturbations of
the steady state. Interestingly she also found that steady state patterns exist in at least
part of the indeterminate region, where the analysis can not, as yet, predict what patterns
will occur. An explanation for the latter is an interesting analytical problem. Examples
of these patterns are shown in Figure 5.16.

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 oX:] 09 1

8

Figure5.15. The pattern domain for the full model without w. The parameter values are d;, = 0.25, @ = 90.0
and ;1 = 1000.0. As B and § (defined by (5.83))are varied, the corresponding value of p is determined
from equation (5.82). The perturbation parameter is 8. The pattern regions give stripes (I), spots (II) and
indeterminate patterns (III). (From Tyson 1996)
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(c)

Figure 5.16. Simulations of the full equations for parameters in the domains which predict the various pat-
terns. Light regions denote high cell density. In each case the domain chosen can sustain one 27 oscillation.
The perturbation was ¢ = 0.1. The parameter values are d;, = 0.25, @ = 90.0, 8 = 10.0, u = 100.0; then
(a) Stripe: § = 4.6, p = 8.5133, ug = u* = 4.6, vg = v* = 0.3797 and Iy = [, = [ = 1.213; (b) Spot:
§=5.1,p=7797,ug=u* =5.1,v9 = v* = 0.4747 and [, = Iy =1 = 1.177; (c) Indeterminate pattern:
§=55p=7139,up =u* =55,v9 = v* =0.4233 and I, = I, = = 1.159. (From Tyson 1996)

5.9 Numerical Resultswith Initial Conditionsfrom the Experiments

The nonlinear analysis of the semi-solid models we discussed above only applies to
small random perturbations of the uniform positive steady state. The initial conditions
in the experiments are, as described in Section 5.1, completely different. Initially there
is no chemoattractant present, and only a small localised inoculum of cells which is a
relatively large perturbation of the uniform zero steady state. We also have zero flux
boundary conditions on a large domain, rather than periodic boundary conditions on a
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small domain. The bacterial lawn preceding the pattern establishes conditions relevant
to the nonlinear behaviour. So, with the experimental initial conditions we expect to find
rings in the stripes region of the pattern domain, and broken (spotted) rings in the spots
region. Tyson (1996) carried out extensive simulations in both one and two dimensions
with parameters in the various regions which give spots and stripes. Here we give some
of her results and some of those presented by Tyson et al. (1999).

We start with the simplified semi-solid model (5.80) in one dimension. With the
same parameter values as in Figure 5.14 which gave a stripe pattern we again get a
series of concentric rings. In the case of the parameter values which gave a spot pattern
only a few small pulses appeared near the the initial disturbance which slowly decayed.
It seems that the spotted ring patterns obtained experimentally arise either from the
stripes region of the nonlinear analysis pattern domain, or from some pattern region
completely outside the predictions of the nonlinear analysis. In no way did we obtain
the complete patterning scenario from the nonlinear analysis.

Even a cursory investigation of parameter space showed that we need not restrict
ourselves to parameters from the nonlinear analysis to find interesting patterns and how
patterns vary with parameter variation. For example, if we increase the chemotaxis co-
efficient «, the amplitude increases as well as the wavelength of the stripes. A small
increase in nutrient concentration w, increases the propagation speed and causes the
pulses behind the wavefront to decay. Only a slightly larger increase in w makes the
pulses disappear altogether, as the cell density rapidly approaches the uniform positive
steady state. Pulses still form for decreased levels of w, but the pattern propagates more
slowly. The rate of growth, p, affects the pattern in exactly the same way as nutrient con-
centration. A factor of two decrease in chemoattractant production g increases both the
amplitude and the frequency of pulses. The carrying capacity § is directly related to the
amplitude of the pattern and also the length of time it takes to form. The permutations
are endless.

In two dimensions, simulations were run with the parameters which gave stripes
from the nonlinear analysis and the simulation gave concentric rings. The wavelength
of the radial pattern is smaller in two dimensions than that in one dimension, and the
amplitude is about the same. The spacing between rings does not change as the radius
increases as shown in Figure 5.17.

Increasing the chemotaxis parameter from o = 2.25 to « = 5 in two dimensions
we get a series of concentric rings made up of spots. A time sequence of the pattern
is shown in Figure 5.18 together with a surface plot of the solution at t = 70. As
in one dimension, increasing the chemotaxis coefficient increases both the wavelength
and amplitude of the pattern. Importantly we found that nutrient consumption does not
change a spot pattern to a stripe pattern, nor does it change the wavelength.

We now consider the full model system (5.84) which introduces one more param-
eter, namely,  which measures saturation level of chemoattractant production. From
the simple model we found that varying the parameters «, 8, p, § and « can change a
pattern of concentric rings. Basically the full model gives the same patterns found in the
simple model but with certain quantitative differences as we would expect. Trivially, for
the saturation level of chemoattractant production, u, sufficiently large and little con-
sumption of nutrient, the full model essentially reduces to the simple one and behaves
in exactly the same way. More importantly, for parameters which allow more of the
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Figure5.17. Simulation results for the
model system (5.80) with the same
parameters as in Figure 5.14(b) but with
initial conditions like those of the
semi-solid experiments. The parameter
values are: d, = 0.25, « = 2.25, § =0.2,
n=1.0,8 =20.0, p=0.0l,w =1.0,
ug = u™ = 5.0 at the bottom left corner
and vy = 0.0. (From Tyson 1996)

middle and saturating portions of the aspartate production curve to play a part in the
simulations, we also find continuous and spotted rings as shown in Figures 5.19(a) and
(b). Adding consumption of food does not change the nature of the ring pattern, except
to make it gradually disappear from the centre outwards.

Relation of the Simulations to the Experiments

The simulation results compare remarkably well with the experimental results obtained
for S. typhimurium and described in Section 5.1. The pattern is preceded by a bacterial
lawn of low cell density. Each ring forms at a discrete radial distance from the previous
one, and then remains stationary. The spotted rings form first as continuous rings which
subsequently break up into spots. All of these traits obtained from the model mechanism
are characteristic of the S. typhimurium patterns.

If we take the parameter values from Figure 5.19(b) we get

k
k7 = = = 1.6 x 107 ml (cell hr)™!
P
x =x* De .
k7ng

Four rings form in a distance x* = 10 which corresponds to x = 1.4 cm, which is close
to the experimentally observed value of x ~ 1 cm (Woodward et al. 1995).

5.10 Swarm Ring Patternswith the Semi-Solid Phase
Model M echanism

The most dramatic patterns observed by Budrene and Berg (1991) arise from an expand-
ing high-density ring of bacteria called a swarm ring. These patterns were described and
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(b)

Figure 5.18. Simulation results for the model system (5.80) with the same parameters as in Figure 5.16(b)
(and in Figure 5.14) but with initial conditions like those of the semi-solid experiments except that here « = 5.
Again the initial cell density was zero everywhere except for a small inoculum of maximum density 5 at the
origin; the initial chemoattractant concentration was zero everywhere and the initial nutrient concentration
was 1 everywhere. Solutions are shown in time increments of t = 5 from ¢ = 40 to 70. The last figure is a
surface plot of the data presented in the final image when ¢ = 70. (From Tyson 1996)

illustrated in Section 5.1. The initial conditions are a localised inoculum of cells on a
dish containing a uniform distribution of food and no chemoattractant, and the boundary
conditions are zero flux.

Since the patterns begin with a continuous swarm ring, which only later leaves be-
hind a pattern with angular variation, it is natural to study first a travelling wave or pulse
in the one-dimensional version. The initial configuration is a uniform concentration of
food and a dense inoculum of bacteria at one place. There is no chemoattractant present.
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Figure 5.19. (a) Continuous rings obtained from numerical simulation of the full model. Parameter values:
dy =025 0 =70,8 =10.0, x = 250, § = 10.0, p = 0.1, w = 5.0. (b) Spotted rings obtained with
parameter values: d;, = 0.25, « = 30.0, 8 = 10.0, u = 50, § = 10.0, p = 1.0, w = 0.8, ¥ = 0.1. Note the
interdigitation of the spots in successive rings. (C) Surface plot of the spotted ring pattern in (b). (From Tyson
1996)

The simplest swarm ring can form in the absence of chemoattractant production.
As time increases, the bacteria consume the food and diffuse outwards. Those left in
the middle become non-motile. At the outer edge of the diffusing mass of cells, the cell
density is low and the food concentration is high and as a result the cells proliferate,
increasing the local cell density. Meanwhile, at the centre of the spot where the cells
were initially placed, the food has been consumed and its concentration reduced to the
point where cell death dominates. The result is that cell numbers decrease at the location
of the initial inoculum, and increase at the diffusing front. This situation evolves to
produce a travelling pulse.
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The addition of chemoattractant can make the smooth swarm ring unstable. It is
reasonable to suppose that the instability can nucleate more complicated geometries in
one, and even more, so in two dimensions, and in particular can give rise to the spots
observed trailing the swarm ring in experiments.

We studied this phenomenon analytically in detail. We began by looking for one-
dimensional travelling pulse solutions in the simplified version of the model and looked
for solutions in terms of the travelling wave coordinate z = x — ct, where c is pulse
propagation speed which has to be determined. We start with the semi-solid model
equations (5.38)—(5.40) and, writing u(x,t) = U(z), v(x,t) = V(z) and w(x,t) =
W (z), the travelling waveforms of the equations become

U ' w?
" / /

U2
144 Vv’ W——-UV =0
+cV' + B8 U2
4 / W2
dyW W —kU—— =0, 5.85
+c K w2 ( )

where prime denotes differentiation with respect to z. Equations (5.85) can be written
as a first-order system of 6 equations for U, U’, V, V', W, W’ with steady states

w,u’,v, v, w,w) =1(0,0,0,0,0,0) (5.86)
and
w,u’,v,v.,w, W) =(0,0,0,0, Wy, 0). (5.87)

The first is the steady state which exists behind the pulse, while the second is
that which exists in front. Realistic solutions U, V and W must be non-negative and
bounded, and so as we approach the two steady states the eigenvalues must be real so
that there are no oscillations. Linearising equations (5.85) about (5.86) and (5.87) and
solving for the eigenvalues, we find that the first steady state is always a focus. For the
second to be a focus as well, we must have

¢ > cmin = 2/ dupSWo (5.88)

For the Fisher—Kolmogoroff equation, with appropriate initial conditions (namely,
compact support) that we studied in detail in Chapter 13, Volume I we showed that a
stable travelling wave solution evolves with speed cpin. The experiments effectively im-
ply such initial conditions so we suppose that the travelling pulse solution to equations
(5.85) will also travel at or near cpin. Interestingly neither the rate of food consump-
tion, «, nor the chemotaxis coefficient, o, have any effect on cpin; according to the
linear analysis it is purely the kinetics of the diffusing and proliferating bacteria which
determine the pulse speed.
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Stability of the Swarm Ring

Once the swarm ring has formed and starts to expand across the petri dish, it has been
observed experimentally that the ring periodically breaks up, leaving behind a pattern
of spots. This suggests that mathematically we should look for a swarm ring solution
which is locally stable to perturbations in the radial direction and locally unstable to
perturbations in the angular direction.

In the following we sketch how it might be possible to get some stability informa-
tion on these swarm rings. So that the analytical suggestions mimic the experimental
arrangement, we consider a rectangular domain (for analytical convenience), with the
initial inoculum of cells placed along one edge of length /. Perpendicular to that edge
we expect the solution to be a travelling pulse. We rewrite the two-dimensional model
in (x, y,?) coordinates in terms of one travelling pulse coordinate, z, the coordinate
parallel to the front, y, and so the equations (5.38)—(5.40) become

du  du 2u  0u 9 9 u v v
——c—=dy |l —==+—=)-al—, — ) | —— | —, —
ot 9z 9z2  9y? az dy (1+v)2\ 9z dy
w2
+ pu 61+w2—u

ov av 9%v n 9% ny wu?
——c—=—+— — —uv
ot 0z 0z2  9y? w4 u?

Jw ow <Bzw 82w> uw?
w

(5.89)

o o\ o) T Trer

Now suppose that in the z-direction we have a travelling wave solution U(z, y) =
U@),V(z,y) =V(2), W(z,y) = W(z) YV y € [0, ]. Then by definition,

U 92U 9 U k1%
——=dy| — |-l ) | —|—
9z 0z2 9z (1+V)2\ oz
W2
Uls—— —-U
U\ T w2

v 92V wuU?
—— = +8 uv

9z 972 w+U2

oW 2w Uw?
—c— =d, - ) 5.90
8z “’(az2> “Trw? (5.90)

If this solution is stable to perturbations in z, as it is likely to be for some range of
parameters, then we could get some idea of the effect of perturbations perpendicular to
the direction of the wave by looking at spatiotemporal perturbations involving only the
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spatial coordinate y. So as a first attempt at such a stability analysis we could consider
the solutions u, v and w of the form

u(z, y, 1) = U(z) + etk

v(z, v, 1) = V(@) + e R

w(z, y, 1) = W(2) + we 0, (5.91)
where i, v and w are small constants. Substituting these forms into equations (5.89) and

collecting terms of O (i), O(v) and O (w) we would obtain a linear system of equations
of the form

i
Al v |t =, (5.92)
W
where the matrix A is given by
A+ dk* — H H, —pé (]iUWVZ)Z
A= _ﬁM(MZfU‘g)Z +V A+K24+U gL +U2 , (5.93)
w2 2 wUW
K Tow? 0 A+ dwk® + e
where
sW2 v T
H=p|l——-2U —,
e S +°‘[(1+V)2]
Uk? vv' 7
Hy= — 2% — (5.94)
(1+V)? (1+V)3

In the now usual way, nonzero solutions exist for the perturbations u, v and w if and
only if | A| = 0 which gives the characteristic equation for the dispersion relation A.
Setting | A | = 0 we get a cubic equation for A of the form

AW+ AV +BL+C =0, (5.95)

where the A, B and C are functions of the parameters, the wavenumber k and functions
of z via the travelling wave solutions U, V, W and their derivatives. If we suppose,
for the moment that A, B and C are constants, the Routh-Hurwitz conditions (see Ap-
pendix A, Volume 1) which guarantee RI(A) < 0 are

A>0, C>0, AB-C=>0. (5.96)

So, to ensure instability, namely RI(A) > 0O for some k2 # 0 at least one of these
conditions must be violated. We rewrite the coefficient matrix A of (5.93) as
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A+t c4 —c5
c6 A+ —c7 |, (5.97)
+cg 0 A+c3

where the terms which are always negative have a minus sign in front and those which
are clearly positive have a plus sign. With this notation (5.95) then has

A=c|+c2+cs,
B = cicp +c1e3 4+ c203 — cace + c5c8,

C = c1cac3 — c4(cec3 + c7¢8) + csc2c8. (5.98)

Now consider the three necessary conditions for stability. With A, the only term
which can be negative is ¢y, and this can occur only if H; in (5.94) is sufficiently large.
But this depends on z and hence where we are on the travelling wavefront. Similar
arguments apply to the other conditions of stability. It is clear then that whether or not
the travelling wavefront, the swarm ring, is unstable to transverse perturbations depends
on the travelling wave variable z. It would be astonishing if, for at least some z, it
was not possible to violate the conditions (5.96) and hence have R/A > 0 for nonzero
wavenumbers and transverse spatial instabilities which imply the breaking up of the
swarm ring into spots. Since the chemotaxis parameter « appears in Hy and H; it is
clear that once again chemotaxis plays a critical role. A full analysis of the stability of
these swarm rings is a challenging unsolved problem.

Tyson (1996) solved the one-dimensional equations and obtained a single travelling
pulse or a train of two to four travelling pulses from the full model for a variety of
parameter values, and nonnegligible consumption of nutrient. The effect of the model
parameters «, 8, u, 8, p and w on the travelling pattern is analogous to their effect on
the stationary patterns that we discussed above. The wavelength of the pulses in the
pulse train is affected chiefly by the chemotaxis coefficient .

The predicted and numerically computed wavespeeds compare very well. The com-
puted wavespeed was always larger (around 5-10%) than the predicted value, cyip, as it
should be. Since necessarily boundary conditions had to be imposed on a finite domain,
we do not expect the wavespeed to be as small as cpin in our simulations.

Numerical Results for Two-Dimensional Swarm Rings

In two dimensions, we found that the travelling pulse trains become a swarm ring fol-
lowed by one or two rings of spots. The spots arise from inner rings which develop an-
gular instabilities and subsequently break up into spots. Image plots of a well-developed
swarm ring pattern are shown in Figure 5.20 at various times in their development.
This model development and analysis was the first mathematical model of E. coli
and S. typhimurium which yielded a swarm ring spawning spots without assuming any
extraneous biological activity. Woodward et al. (1995) obtained interesting patterns by
assuming the presence of a chemoattracting nutrient. Experiments with S. ryphimurium
have been performed under such circumstances, but in the E. coli experiments no such
nutrient is present. With this model, we have shown that chemotaxis toward the aspar-
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Figure5.20. Swarm ring patterns in S. typhimurium obtained from a numerical simulation of the full system
(5.38)—(5.40): (a) Concentric rings showing transition to a spotted ring pattern. Parameter values: d,, = 0.25,
dy = 08,0 =40, 8 =10,8 =70, p = 1,k = 4.5 x 1073, u = 102. (b) Concentric spotted rings.
Parameter values: dy, = 0.26, dy, = 0.89, = 88.9, 8 =8,8 =7, p = 1,k = 1073, u = 10%. (From Tyson
1996)

tate produced by the cells coupled with consumption of food are sufficient to generate
the experimentally observed behaviour. This is in keeping with the experimentalists’
intuition.

5.11 Branching Patternsin Bacillus subtilis

The patterns we have discussed above are complex, but fairly regular patterns formed by
spots and rings. The bacterium Bacillus subtilis, when inoculated onto a agar medium
which has little nutrient, can exhibit quite different fractal-like patterns not unlike those
found in diffusion-limited aggregation (see, for example, Matsuyama and Matsushita
1993). When the agar is semi-solid, however, the bacterial colonies formed by Bacil-
lus subtilis are dense-branching patterns enclosed by a smooth envelope. The stiffness
of the medium affects the patterns formed. Shigesada and her colleagues (Kawasaki
et al. 1997) have studied this particular bacterium and constructed a relatively simple
reaction diffusion model which captures many of the pattern characteristics found ex-
perimentally: they compare the results with experiments. Here we briefly describe their
model and show some of their results. Although their model is a reaction diffusion one
it is original and fundamentally different to those reaction diffusion systems we have
studied up to now. It highlights, once again, the richness of pattern formation by such
relatively simple systems.

They propose a model consisting of a conservation equation for the bacterial cells
and the nutrient given by

on 5 knb
— =D,V°n—
ot 14+yn

(5.99)
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b _v. pyvey+e—" p b (5.100)
—=V. , = onb, .
ot b 14+yn b

where n and b are the concentration of the nutrient and bacterial cell densities respec-
tively. Here the function knb/(1+ yn), where k and y are constants, is the consumption
rate of the nutrient by the bacteria and 6 (knb/(1 4 yn)) is the growth rate of the cells
with 6 the conversion rate factor. D,, and D), are the diffusion coefficients of the nutrient
and cells respectively. We now motivate the form given for Dy,.

The reasoning behind the form D, = onb is based on the work of Ohgiwara et al.
(1992) who observed the detailed movement of the bacteria and found that the cells did
not move much in the inner region of the expanding colony where the level of nutrient
was low but that they moved vigorously at the periphery of the colony where the nutrient
level is much higher. They also noted that at the outermost front of the colony, where
the cell density is quite low, the cells were again fairly inactive. Kawasaki et al. (1997)
then argued that the bacteria are immobile where either the nutrient n or the bacteria
density b are small. They modelled these effects by taking the bacterial diffusion as
proportional to nb with the proportionality factor o. It was also observed that although
each cell moves in a typical random way some of them exhibit stochastic fluctuations.
They quantified this by setting ¢ = 1 4 A where the parameter A is a measure of the
stochastic fluctuation from the usual random diffusion.

Kawasaki et al. (1997) studied the pattern formation potential of these model equa-
tions in two dimensions subject to initial conditions

n(x,0) = ng, b(x,0) = by(X), (5.101)

where no is the concentration of the initial uniformly distributed nutrient and by (X) is
the initial inoculum of bacteria. Since the nutrient concentration in the experiments is
relatively low the saturation effect, accounted for by the yn term, is negligible so the
consumption of nutrient can be taken as approximately knb, the functional form we use
below.

We nondimensionalise the equations by setting

9\ /2 1 \!/2 D\ /2
n* = (D—) n, b*= (90 ) b, y*= (#’) y (5.102)
n n

9k2 1/4
t* = k(ODy)"/?t, x*:( ) X, (5.103)

D,

with which the model mechanism becomes, using the above consumption approxima-
tion with y = 0, and omitting the asterisks for algebraic simplicity,

on
ot
b
ar

=V?n—nb (5.104)

=V . (onbVb) + nb, (5.105)
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which has only one parameter o, with initial conditions

0 \'"? 1
n(x, 0) = <D_) no =vg, b(X,0)= (0D

n

172
) bo(X) = Bo(X).  (5.106)

n

Kawasaki et al. (1997) solved this system under a variety of different situations
and found that the solutions exhibited a remarkable spectrum of complex patterns. Fig-
ure 5.21 shows some examples.

Kawasaki et al. (1997) also investigated the patterns formed when the stochastic
parameter A = 0. Patterns still form and still give rise to branching-like patterns but
since there is no anisotropy they are much more regular and symmetric. In reality, of
course, the small random perturbations in nutrient and bacterial densities would not
result in such regular patterns as pointed out by Kawasaki et al. (1997).

Although the pattern evolves in two dimensions each tip essentially grows in one
dimension except when they branch. This makes it possible to obtain some approx-
imate analytical results for tip growth, and hence the colony growth, using the one-
dimensional version of the model equations, namely,

on 9%n

—=——nb 5.107

or x| (5.107)

b 0 ob

o = PP <0nba—> + nb. (5.108)
X X

The numerical simulation of these one-dimensional equations gave growth rates which
compared well with those obtained from the two-dimensional equations. They made a
further approximation to the model by substituting ogvob and vob(1 — b/K) for onb
and nb in (5.108) to obtain the scalar equation in b, namely,

ob 0 ob

Here the growth of the bacteria is limited by the nutrient according to a typical logistic
growth where K is the saturating level of the bacteria. If we consider (5.107) and (5.108)
in the absence of diffusion we can add the equations, integrate and with n + b = vg
we get the logistic form db/dt = vob(1 — b/vg) for the bacteria and so we relate K
to vg. The form of (5.109) is then the same as the equation we discussed in detail in
Section 13.4 in Chapter 13, Volume I and which has an exact travelling wave solution
with the wavespeed veolony growth given by

3

1/2
ooV,
Ucolony growth = < ) 0) . (5.110)

This velocity is a very good approximation (a slight overestimate) for the velocity of
colonial growth obtained from (5.107) and (5.108).
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(d)

Figure 5.21. Typical dense-branching bacterial patterns for the Bacillus subtilis model obtained from a nu-
merical simulation of (5.104)—(5.105). The parameter ¢ was perturbed about the mean oq with the random
variable A. Parameter values and times are: (a) op = 1, vy = 1.07,¢ = 396; (b) o9 = 1,v9 = 0.71,¢ =
2828; (c) og = 1,v9 = 0.35,, ¢t = 19233; (d) o¢p = 4, vy = 1.07, ¢ = 127; (&) o9 = 4, v9 = 0.71, 1 = 566,
(f) op = 4, vy = 0.35, 1 = 4525. In real time the pattern is quite dense after about two days. (From Kawasaki
et al. 1997 and reproduced with the permission of Dr. N. Shigesada)
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When the nutrient level is not low the full model (5.99) and (5.100) has to be used
with y # 0. Kawasaki et al. (1997) considered such situations and found that as y
increases the branch width increases and the degree of complexity decreases. Their
way of including a stochastic element is interesting and important since it allows for
some stochasticity without the usual complexities involved in such studies. The concept
clearly has a much wider application such as to many of the models studied in this book.



6. Mechanical Theory for Generating Pattern
and Form in Development

6.1 Introduction, Motivation and Background Biology

In spite of the seemingly endless series of exciting new discoveries in other areas of
biology from mapping the genome to cloning animals the major problems in devel-
opmental biology are still essentially unsolved. In an interesting survey conducted by
the journal Science in 1994 (Barinaga 1994) more than 100 leading developmental bi-
ologists were asked what they thought were the most important unanswered problems
in development and where they thought the biggest breakthroughs would come in the
following five years.

Among the 66 responses, the most important unanswered question was that of how
the body’s specialized organs and tissues are formed. The formation of structure in
embryology is known as morphogenesis. Coming second after morphogenesis was how
the actual mechanisms evolved and how evolution acted on the mechanisms to effect
change and generate new species. What is more, morphogenesis came in second on the
list of areas where rapid progress is expected in the next five years. By a significant
margin the largest number of votes on ‘Development’s greatest unsolved mysteries’
was, ‘What are the molecular mechanisms of morphogenesis?’ Also high up on their
lists was the question, ‘How are patterns established in the early embryo?’

Now, at the start of the 21st century, just over five years after the survey, although
there have indeed been many new discoveries in morphogenesis we still do not know
of any actual mechanism for generating spatial pattern in a developing embryo. The
mechanisms for laying down an animal’s body plan is still unsolved. Of the ‘Dozen hot
areas for the next half decade’ listed in the survey, the mechanisms of morphogenesis
came second on the list. Morphogenesis encompasses pattern formation from the initial
mass of cells to the final body form. There is clearly no need to justify studying possible
mechanisms for generating biological pattern and form. It is, without question, still (and
for the foreseeable future) a central issue in embryology.

Brief Historical Aside

It is interesting to recall a fairly widely held scientific view in the latter half of the
19th century, namely that if we understand the development of one animal then we can
extend this understanding to other animals. This is no different, in a general sense, to the
current view which justifies the intense research into fruit fly development, salamander
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development and so on. A major, highly influential and justly controversial naturalist in
the second half of the 19th and early 20th centuries, Ernst Haeckel (1834—1919),1 drew
anumber of embryos at what he said were parallel developmental stages to indicate their
similarities and help prove, among other things, his theory that “ontogeny recapitulates
phylogeny.” In other words this means that developing organisms pass through their
evolutionary history: for example early embryonic slits for gills in the human embryo
purport to reflect the evolutionary descent from fish. The theory is wrong, of course,
but it is one of Haeckel’s theories for which he is still well known; even now, it is still
not universally discarded. One of his figures is reproduced in Figure 6.1. Haeckel, an
extremely talented technical artist, simply falsified some of the figures. In many cases he
drew the embryos from real specimens but, in some instances, left out crucial elements,
such as limb buds, so that he could say there were no traces of limbs at the stage of
development he was purporting to show.

The fraudulent manipulation by Haeckel was known to many scientists of the time
but since the mid-1990’s there has been a resurgence of interest in Haeckel, not only for
his dishonest manipulation of biological images, but for some of his other ideas, such as
that of a superior race, a view which was warmly embraced by the eugenicists and others
in the first half of the 20th century. In a general article about Haeckel, Gould (2000)
discusses some of the disreputable facts and puts them in a scientific and historical
context: see also the brief article by Richardson and Keuck (2001) and references there.

Pattern generation models are generally grouped together as morphogenetic mod-
els. These models provide the embryologist with possible scenarios as to how pattern is
laid down and how the embryonic form might be created. Although genes of course play
a crucial role in the control of pattern formation, genetics says nothing about the actual
mechanisms involved nor how the vast range of pattern and form that we see evolves
from a homogeneous mass of dividing cells.

Broadly speaking the two prevailing views of pattern generation that have dom-
inated the thinking of embryologists in the past 20 years or so are the long-standing
Turing chemical prepattern approach (that is, the reaction diffusion-chemotaxis mech-
anisms, which we have discussed at length in previous chapters, and the Murray—Oster
mechanochemical approach developed by G.F. Oster and J.D. Murray and their col-
leagues (for example, Odell et al. 1981, Murray et al. 1983, Oster et al. 1983, Murray
and Oster 1984a,b, Lewis and Murray 1991). General descriptions of the mechanical
approach have been given, for example, by Murray and Maini (1986), Oster and Mur-
ray (1989), Murray et al. (1988), Bentil (1991), Cruywagen (1992), Cook (1995) and
Maini (1999). Specific components have also been studied, for example, by Barocas
and Tranquillo (1994, 1997a,b), Barocas et al. (1995), Ferrenq et al. (1997) and Tranqui
and Tracqui (2000). Numerous other references involving the theory and its practical
use will be given at appropriate places in this and the following four chapters.

In this chapter we develop in some detail the Murray—Oster mechanical approach
to biological pattern formation, which, among other things, considers the role that me-
chanical forces play in the process of morphogenetic pattern formation, and apply it to
several specific developmental problems of current widespread interest in embryology.
A clear justification for the need for a mechanical approach to the development of pat-

THaeckel, incidently, coined the word ecology for the discipline as we know it.
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Figure 6.1. Mid-19th century drawings by Ernst Haeckel (1834-1919) of a series of embryos at similar
developmental stages as he wanted to portray them. He was trying to make the point that embryos were fairly
similar at equivalent stages in their development (which they are not, of course).
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tern in cellular terms is inferred from the following quote from Wolpert (1977). ‘It is
clear that the egg contains not a description of the adult, but a program for making it,
and this program may be simpler than the description. Relatively simple cellular forces
can give rise to complex changes in form; it seems simpler to specify how to make
complex shapes than to describe them.’

I feel it is important to make the case irrefutable for the inclusion of forces in
thinking about morphogenetic processes. The following is essentially the preface my
friend and colleague George Oster and I had intended for a book (in the mid-1980s) on
the mechanochemical theory of biological pattern formation. The intention is certainly
not to denigrate other models and mechanisms discussed in detail in the book and which
also have major roles to play, but rather to add perspective to what are fundamental
questions in morphogenesis.

Looking at any time-lapse film of cells or developing embryos perhaps the
one overwhelming impression is the constant motion. Cells move and em-
bryos twitch and jerk about incessantly. Indeed, the very notion of mor-
phogenesis (morphos = shape, genesis = change) implies motions—the
motions that shape the embryo.

All motions require forces to generate them. It is surprising that this fun-
damental law of nature has largely been ignored by embryologists and cell
biologists. Very few books on embryology even mention forces. There may
be good reasons for this, for only recently has it become possible to actually
measure mechanical forces at the cell and tissue level. And what good to
ponder immeasurable quantities while the sirens of chemistry and genetics
beckon with tangible rewards?

However one chooses to ignore mechanics, nevertheless, presiding over
every embryonic twitch and jerk are Newton’s laws. And whatever role
chemistry and genetics play in embryogenesis, they must finally submit
their programs for Newtonian execution. Therefore, we have adopted the
philosophy that, since morphogenesis is—at least proximally—a mechan-
ical event, it is reasonable to start analyses of morphogenetic processes by
examining the forces that produced them, and then, working backwards,
add chemistry and genetics as needed.

Aside from personal prejudices and a certain aesthetic parsimony, we feel
that there is a deeper rationale for viewing morphogenesis from a mechani-
cal perspective. This reason arises from considerations of stability and evo-
lutionary economy.

It is certainly possible to construct an organism by first laying down a
chemical prepattern, and then have the cells execute their internally
programmed instructions for mechanical behaviour (for example, shape
change) according to the chemically specified recipe. In this view, mechan-
ics is simply a slave process to chemistry. Indeed, there is a large number
of biologists who think that embryogenesis works in just this way.

However, building an organism in this way would be a very unreliable and
unstable enterprise. How would it correct for the inevitable chemical and
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mechanical perturbations an embryo must face? Once the chemical prepat-
tern has been laid down, the cells must execute these instructions regardless
of any new contingencies that arise. In the parlance of control theory, the
system is ‘open loop’: there is no feedback from the mechanical state of the
tissue to its chemical state. Such control systems are notoriously unstable,
for they are unable to correct and compensate for external disturbances.
The only protection against disturbances according to this scheme is for
the genetic system to anticipate and code for any possible mechanical or
chemical perturbation. This would obviously place an enormous burden of
complexity on the genetic control system, and it is hard to see how such a
gadget could evolve.

A more reasonable alternative, in our view, is that nature (that is, evolu-
tion) has ‘closed the loop’ so that the mechanical state of a cell or tis-
sue can influence its chemical state. Thus, mechanical disturbances can be
compensated and genetic programs executed reliably without the burden of
overhead programming that an open loop system requires.

In this view, embryogenesis is not primarily a problem in specifying a
chemical prepattern; rather it is a mechanochemical process wherein it is
artificial to separate ‘pattern formation’ from ‘morphogenesis.” The me-
chanics and the chemistry act in concert to create spatial patterns directly,
neither being the slave of the other, but both participating in a coordinated
feedback scheme.

If one accepts this view, then a certain modelling philosophy follows. The
laws of chemical kinetics are remarkably unconfining: with no constraints
on the number of reactions it is easy to design chemical networks that will
accomplish virtually any desired dynamical behaviour. The laws of Newto-
nian mechanics and physical chemistry, however, are not so flexible. They
constrain what is possible quite severely. These constraints are just what is
needed to prune down the mechanisms one might conceive for a particular
embryonic system.

In the mechanochemical models we have adopted this philosophy, and
commenced our analyses of embryogenic phenomena by focusing first on
the mechanical forces which drive the observed behaviour. Then we can
add chemistry in the simplest way consistent with the facts so that the re-
sulting mechanochemical model can stably reproduce the physical pattern.

This is not to say that nature always acts in the simplest possible way: parsi-
mony is a human construct, and evolution is an opportunistic process which
builds on the available materials, not according to any global optimization
scheme. However, when building models, it ill behooves the modeller to
capriciously add complexity when simple mechanisms will do the job.

The best way to decide between competing models is through experiment.
We feel that one of the modeller’s jobs is to present the experimental bi-
ologist with a shopping list of possibilities which are consistent not only
with the observations, but with the known laws of physics and chemistry.

315
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These models will suggest experiments, and guide further model building.
We see modelling and experiment cooperating in a feedback loop—just as
chemistry and mechanics do in our models—the combination being a more
efficient tool for research than either one acting alone.

How complicated should a model be? Consider the task of explaining to
someone how a clock works. It would help, of course, if they understood
the mechanics of gears and levers; however, to understand the clock you
would have to simply describe it: this gear turns that one, and so on.

Now this is not a very satisfactory way to understand a phenomenon; it is
like having a road map with a scale of one mile equals one mile. ‘Under-
standing’ usually involves some simplified conceptual representation that
captures the essential features, but omits the details or secondary phenom-
ena. This is as good a definition as any of what constitutes a model.

Just how simplified a model can be and still retain the salient aspects of the
real world depends not only on the phenomenon, but how the model is to
be used. In these chapters on mechanical aspects of morphogenesis we deal
only with mathematical models; that is, phenomena which can be cast in
the form of equations of a particular type.

Mathematical models can be used to make detailed predictions of the future
behaviour of a system (as we have seen). This can be done only when the
phenomenon is rather simple; for complex systems the number of parame-
ters that must be determined is so large that one is reduced to an exercise
in curve fitting. The models we deal with in this book have a different goal.
We seek to explain phenomena, not simply describe them.

If one’s goal is explanation rather than description then different criteria
must be applied. The most important criterion, in our view, was enunciated
by Einstein: ‘A model should be as simple as possible. But no simpler.’
That is, a model should seek to explain the underlying principles of a phe-
nomenon, but no more. We are not trying to fit data nor make quantitative
predictions. Rather we seek to understand. Thus we ask only that our mod-
els describe qualitative features in the simplest possible way.

Unfortunately, even with this modest (or ambitious) goal, the equations we
deal with are probably more complicated than even most physical scientists
are accustomed to. This is because the phenomena we are attempting to
describe are generally more complex than most physical systems, although
it may reflect our own ineptness in perceiving their underlying simplicity.

The reaction diffusion (and chemotaxis) approach is basically quite different to
the mechanical approach. In the chemical prepattern approach, pattern formation and
morphogenesis take place sequentially. First the chemical concentration pattern is laid
down, then the cells interpret this prepattern and differentiate accordingly. So, in this
approach, morphogenesis is essentially a slave process which is determined once the
chemical pattern has been established. Mechanical shaping of form which occurs during
embryogenesis is not addressed in the chemical theory of morphogenesis. The elusive-
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ness of these chemical morphogens has proved a considerable drawback in the accep-
tance of such a theory of morphogenesis. There is, however, absolutely no doubt that
chemicals play crucially important roles in development.

In the mechanochemical approach, pattern formation and morphogenesis are con-
sidered to go on simultaneously as a single process. The patterning and the form-shaping
movements of the cells and the embryological tissue interact continuously to produce
the observed spatial pattern. Another important aspect of this approach is that the mod-
els associated with it are formulated in terms of measurable quantities such as cell den-
sities, forces, tissue deformation and so on. This focuses attention on the morphogenetic
process itself and in principle is more amenable to experimental investigation. As we
keep repeating, the principal use of any theory is in its predictions and, even though
each theory might be able to create similar patterns, they are mainly distinguished by
the different experiments they suggest. We discuss some of the experiments associated
with the mechanical theory later in this and the next four chapters. The chapters on vas-
culogenesis and dermal wound healing rely heavily on the concepts developed in this
chapter.

A particularly telling point in favour of simultaneous development is that such
mechanisms have the potential for self-correction. Embryonic development is usually a
very stable process with the embryo capable of adjusting to many outside disturbances.
The process whereby a prepattern exists and then morphogenesis takes place is effec-
tively an open loop system. These are potentially unstable processes and make it difficult
for the embryo to make the necessary adjustment to such disturbances as development
proceeds.

In this chapter we discuss morphogenetic processes which involve coordinated
movement or patterning of populations of cells. The two types of early embryonic cells
we are concerned with are fibroblast, or dermal or mesenchymal cells and epidermal,
or epithelial cells. Fibroblast cells are capable of independent movement, due to long
finger-like protrusions called filopodia or lamellapodia which grab onto adhesive sites,
which can be other cells, and pull themselves along (you can think of such a cell as
something like a minute octopus); spatial aggregation patterns in these appear as spatial
variations in cell number density. Fibroblasts can also secrete fibrous material which
helps to make up the extracellular matrix (ECM) tissue within which the cells move.
Epidermal cells, on the other hand, in general do not move but are packed together in
sheets; spatial patterns in their population are manifested by cell deformations. Fig-
ure 6.2 schematically sets out some of the key properties of the two types of cells. A
good description of the types of cells, their movement properties and characteristics
and their role in embryogenesis, is given, for example, in the textbook by Walbot and
Holder (1987). The definitive text exclusively on the cell is by Alberts et al. (1994).
These books are particularly relevant to the material in this chapter.

We first consider mesenchymal (fibroblast) cell pattern formation in early embryo-
genesis. In animal development the basic body plan is more or less laid down in the
first few weeks, such as the first 4 weeks in man, where gestation is about 280 days,
and not much more in the case of a giraffe, for example, which has a gestation period
of nearly 460 days. It is during this crucial early period that we expect pattern and form
generating mechanisms, such as we propose here, to be operative. We saw in Chapter 4
that the alligator embryo looked very much like a small alligator very early in gestation.
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Figure 6.2. Early embryonic cells. Mesenchymal cells are motile, generate large traction forces and can
secrete extracellular matrix which forms part of the tissue within which the cells move. When these cells are
placed on a thin silicon rubber substratum their traction forces deform the rubber sheet; see the photograph in
Figure 6.3. Epithelial cells do not move about but can spread or thicken when subjected to forces; this affects
cell division (see, for example, Folkman and Moscona 1978).

The models we discuss here take into account considerably more biological facts than
most of those we have considered up to now. Not surprisingly this makes the models
more complicated. It is essential, however, for mathematical biologists genuinely con-
cerned with real biology to appreciate the complexity of biology. So, it is appropriate
that we should now discuss the modelling of mechanisms for some of the more complex
but realistic aspects of development of pattern and form and to which experimentalists
can specifically and concretely relate. All of the models we propose in this chapter
are firmly based on macroscopic experimentally measurable variables and on generally
accepted properties of embryonic cells. The preoccupation of many theoreticians and
experimentalists to look for unrealistically simple models is often counterproductive.



6.2 Mechanical Model for Mesenchymal Morphogenesis 319

In the following section we derive a fairly general model and subsequently deduce
simpler versions. This is rather different to the approach we have adopted up to now
and reflects, in part, the complexity of real modelling in embryology and in part on the
assumption that the readers are now more sophisticated in their approach.

We should add here that these models pose numerous challenging mathematical,
both analytical and numerical, and biological modelling problems which have not yet
been investigated in any depth.

6.2 Mechanical Model for M esenchymal Morphogenesis

Several factors affect the movement of embryonic mesenchymal cells. Among these fac-
tors are: (i) convection, whereby cells may be passively carried along on a deforming
substratum; (ii) chemotaxis, whereby a chemical gradient can direct cell motion both up
and down a concentration gradient; (iii) contact guidance, in which the substratum on
which the cells crawl suggests a preferred direction; (iv) contact inhibition by the cells,
whereby a high density of neighbouring cells inhibits motion; (v) haptotaxis, which we
describe below, where the cells move up an adhesive gradient; (vi) diffusion, where
the cells move randomly but generally down a cell density gradient; (vii) galvanotaxis,
where movement from the field generated by electric potentials, which are known to
exist in embryos, provides a preferred direction of motion. These effects are all well
documented from experiment. Haptotaxis can be somewhat more complex than is im-
plied here since chemical processes can be involved. Recently Perumpanani et al. (1998)
showed that ECM-mediated chemotactic movement can actually impede migration.

The model field equations we propose in this section encapsulate key features
which affect cell movement within its extracellular environment. We shall not include
all of the effects just mentioned and others related to chemical influences, but it will be
clear how they can be incorporated and their effect quantified with enough experimental
knowledge. The subsequent analysis of the field equations will show how regular pat-
terned aggregates of cells come about. Later in the chapter we describe several practical
applications of the model, such as the highly organised patterns on skin like the primor-
dia which become feathers and scales and the condensation of cells which mirror the
cartilage pattern in developing limbs and fingerprints.

The basic mechanical model hinges on two key experimentally determined prop-
erties of mesenchymal cells in vivo: (i) cells migrate within a tissue substratum made
up of fibrous extracellular matrix, which we often refer to as the ECM, and other cells
(Hay 1981); (ii) cells can generate large traction forces (Harris et al. 1981, Ferrenq et
al. 1997, Tranqui and Tracqui 2000). Figure 6.3 is a photograph of cells on a thin sili-
cone substratum: the tension and compression lines they generate are clearly seen; see
also Harris et al. (1980). The basic mechanism we shall develop models the mechanical
interaction between the motile cells and the elastic substratum, within which they move.

Mesenchymal cells move by exerting forces on their surroundings, consisting of the
elastic fibrous ECM and the surface of other cells. They use their cellular protrusions,
the filopodia or lamellapodia, which stretch out from the cell in all directions, grip-
ping whatever is available and pulling. The biology of these protrusions is discussed
by Trinkaus (1980); see also the book by Trinkaus (1984) which is useful background
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Figure 6.3. Mesenchymal cells on an elastic substratum. The strong tractions generated deform the substra-
tum and create compression and tension wrinkles. The tension wrinkles can extend several hundreds of cell
diameters. (Photograph courtesy of Albert K. Harris)

reading for morphogenetic modelling. Oster (1984) specifically discusses the mecha-
nism of how an individual cell crawls. As the cells move through the ECM they deform
it by virtue of their traction forces. These deformations in the ECM induce anisotropy
effects which in turn affect the cell motion. The resulting coordination of the various
effects, such as we have just mentioned, result in spatially organised cell aggregations.
The basic model is essentially that proposed by Murray et al. (1983) and Murray and
Oster (1984a,b), with a detailed biological description by Oster et al. (1983).

The model, a continuum one, consists of three equations governing (i) the conser-
vation equation for the cell population density, (ii) the mechanical balance of the forces
between the cells and the ECM, and (iii) the conservation law governing the ECM. Let
n(r,t) and p(r, t) denote respectively the cell density (the number of cells per unit
volume) and ECM density at position I and time ¢. Denote by u(r, ¢) the displacement
vector of the ECM; that is, a material point in the matrix initially at position I undergoes
a displacement to I 4 u. We derive forms for each of these equations in turn.

Cell Conservation Equation

The general form of the conservation equation is (recall Chapter 11, Volume I)

on
— =-V.J+ M, 6.1
= + (6.1)

where J is the flux of cells, that is, the number crossing a unit area in unit time, and M
is the mitotic or cell proliferation rate; the specific form is not important at this stage.
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For simplicity only we take a logistic model for the cell growth, namely, rn(N — n),
where r is the initial proliferative rate and N is the maximum cell density in the absence
of any other effects. We include in J some of the factors mentioned above which affect
cell motion.

Convection

With u(r, ¢) the displacement vector of the ECM, the convective flux contribution J. is

Je=n a7 (6.2)
Here the velocity of deformation of the matrix is du/d¢ and the amount of cells trans-
ported is simply n times this velocity. It is likely that the convective flux is the most
important contribution to cell transport. This form is based on the fact that we do not
consider gross movement of the tissue here; see the discussion on more accurate forms
in Chapter 10.

Random Dispersal

Cells tend to disperse randomly when in a homogeneous isotropic medium. Classical
diffusion (see Chapter 11, Volume I) contributes a flux term — D1 Vn which models the
random motion in which the cells respond to local variations in the cell density and
tend to move down the density gradient. This results in the usual diffusion contribu-
tion D;V?n to the conservation equation and represents local, or short range random
motion.

In developing embryos the cell densities are relatively high and classical diffusion,
which applies to dilute systems is not, perhaps, sufficiently accurate. The long filopodia
extended by the cells can sense density variations beyond their nearest neighbours and
so we must include a nonlocal effect on diffusive dispersal since the cells sense more
distant densities and so respond to neighbouring averages as well. Figure 6.4 schemati-
cally illustrates why this long range sensing could be relevant. This long range diffusion
is probably not very important. The concept, however, is important in at least haptotaxis.

The Laplacian operator acting on a function reflects the difference between the
value of the function at position r and its local average as can be seen on writing it in
its simplest finite difference approximation. Alternatively, the Laplacian can be written
in the form

nav(r’ t) - n(rs t)

2
Vn o« 72

, as R—0, (6.3)

where n,, is the average cell concentration in a sphere of radius R about r defined by

3
Nay(r,t) = g /v n(r +s,1)ds, (6.4)

where V is the volume of the sphere. If the integrand in (6.4) is expanded in a Taylor
series and ng, substituted in (6.3), the proportionality factor is 10/3. Again recall the
full discussion and analysis in Chapter 11, Volume I.
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Short range diffusion Long range diffusion

: . : . - : .

3

x

- : . : : H H =
Cell \ Filopodia /%

Cell
Cell flux = —D;Vn + D, V(V?n)

(a) (b)

Figure 6.4. In (a) the filopodia only sense the immediate neighbouring densities to determine the gradient
(the broken line) and hence disperse in a classical random manner giving a flux of —D{ Vn. With the situation
in (b) the long filopodia can sense not only neighbouring densities but also neighbouring averages which
contribute a long range diffusional flux term DQV(Vzn). This contributes to directed dispersal which is
not necessarily in the same direction as indicated by short range (again denoted by broken lines) diffusion.
Long range diffusion suggests general movement of cells from A to D whereas short range diffusion implies
movement from D to C, B to C and B to A.

Cell lux = -D;Vn

The flux of cells is thus given by
Jp = —D1Vn + DV(V?n), (6.5)

where D1 > 0 is the usual Fickian diffusion coefficient and D, > 0 is the long range
diffusion coefficient. The long range contribution gives rise to a biharmonic term in
(6.1). In the morphogenetic situations we consider, we expect the effect of diffusion to
be relatively small. Nonlocal diffusive dispersal was considered by Othmer (1969); his
work is particularly apposite to the cell situation. Cohen and Murray (1981) derived and
considered a related model in an ecological context.

Recall from Section 11.5 (Chapter 11, Volume I) that this long range diffusion has a
stabilising effect if D, > 0. We can see this immediately if we consider the long range
diffusion equation, obtained by substituting (6.5) into (6.1) and, omitting the mitotic
term M, to get

d
8—’; = -V "]D = D1V2}’l — D2V4n.

We now look for solutions of the form n(r, r) oc exp[it + iK - r], where K is the usual
wave vector. Substituting this into the last equation gives the dispersion relation as A =
—Drk* — D1k?* < 0 for all wavenumbers k(= |K|). Son — 0as ¢ — oo, which implies
n = 0 is stable. If the biharmonic term had D, < 0, n = 0 would be unstable for



6.2 Mechanical Model for Mesenchymal Morphogenesis 323

wavenumbers k2 > — D /D>. The question of what the diffusion contribution should
be can, in fact, be more complicated. We derive other forms in Chapter 10 below.

Haptotaxis or Mechanotaxis

The traction exerted by the cells on the matrix generates gradients in the matrix density
p(r, t). We associate the density of matrix with the density of adhesive sites for the cell
lamellapodia to get a hold of. Cells free to move in an adhesive gradient tend to move
up it since the cells can get a stronger grip on the denser matrix. This results in a net flux
of cells up the gradient which, on the simplest assumption, is proportional to nV p. It is
very similar to chemotaxis (recall Chapter 11, Volume I, Section 11.4). As mentioned,
this can be more complex (Perumpanani et al. 1998). Because of the physical properties
of the matrix and the nonlocal sensing properties of the cells we should also include a
long range effect, similar to that which gave the biharmonic term in (6.5). In this case
the haptotactic flux is given by

In =n(@Vp —aVp), (6.6)
where a; > 0 and a» > 0. There is considerably more justification for including long
range effects here than with long range diffusion.

The cell conservation equation (6.1), with the flux contributions to J from (6.2),
(6.5) and (6.6) with the illustrative logistic form for the mitosis M, becomes

o=

on au o
=—V. ng +V -[D1Vn — D>,V(V<n)]

— diffusion
convection (6.7)

—V.nlaVp — a2V3p] +rn(N —n),

haptotaxis mitosis

where Dy, Dy, ay, az, r and N are positive parameters.

We have not included galvanotaxis nor chemotaxis as such in (6.7) but we can
easily deduce what such contributions in their basic forms could look like. If ¢ is the
electric potential then the galvanotaxis flux can be written as

Jg = gnVo, (6.8)

where the parameter g > 0. If ¢ is the concentration of a chemotactic chemical, a
chemotactic flux can then be of the form

Jc = xnVe,

where x > 0 is the chemotaxis parameter. Another effect which could be important
but which we shall also not include here, is the guidance cues which come from the
directional cues in the ECM. For example, there is experimental evidence that matrix
strain results in aligned fibres which encourages movement along the directions of strain
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as opposed to movement across the strain lines. This effect can be incorporated in the
equation for n by making the diffusion and haptotactic coefficients functions of the
elastic strain tensor (see, for example, Landau and Lifshitz 1970) of the ECM defined
by

e=L(Vu+vu’). 6.9)

In principle the qualitative form of the dependence of, for example, D1 (g) and D;(¢)
on ¢ can be deduced from experiments. We discuss this in depth in Chapter 10 and its
effect on patterning in Chapter 8. In the following, however, we take D1, D3, aj and a3
to be constants.

In (6.7) we modelled the mitotic, or cell proliferation rate, by a simple logistic
growth with linear growth rate r. The detailed form of this term is not critical as long as
it is qualitatively similar. It is now well known from experiment (for example, Folkman
and Moscona 1978) that the mitotic rate is dependent on cell shape. So, within our
continuum framework, r should depend on the displacement U. A brief review of the
ECM and its effect on cell shape, proliferation and differentiation is given by Watt
(1986). At this stage, however, we shall also not include this potentially important effect.

One of the purposes of this section is to show how possible effects can be incor-
porated in the model. Although the conservation equation (6.7) is clearly not the most
general possible, it suffices to show what can be expected in more realistic model mech-
anisms for biological pattern generation.

The analysis of such models lets us compare the various effects as to their pattern
formation potential and hence to come up with the simplest realistic system which can
generate pattern and which is experimentally testable. Simpler systems are discussed
later in Section 6.4. Perhaps we should mention here that only the inclusion of convec-
tion in the cell conservation equation is essential. Intuitively this is what we might have
expected at least as regards transport effects.

Cell-Matrix Mechanical Interaction Equation

The composition of the fibrous extracellular matrix, the ECM, within which the cells
move is complex and moreover, its constituents change as development proceeds. Its
mechanical properties have not yet been well characterised. Here, however, we are in-
terested only in the mechanical interaction between the cells and the matrix. Also the
mechanical deformations are small so, as a reasonable first approximation, we take the
composite material of cells plus matrix to be modelled as a linear, isotropic viscoelastic
continuum with stress tensor o (', t).

The timescale of embryonic motions during development is very long (hours) and
the spatial scale is very small (less than a millimetre or two). We are thus in a very
low Reynolds number regime (cf. Purcell 1977) and so can ignore inertial effects in the
mechanical equation for the cell-ECM interaction. Thus we assume that the traction
forces generated by the cells are in mechanical equilibrium with the elastic restoring
forces developed in the matrix and any external forces present. The mechanical cell-
matrix equation is then (see, for example, Landau and Lifshitz 1970)

V.o 4 pF =0, (6.10)
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where F is the external force acting on the matrix (per unit matrix) and o is the stress
tensor. (This equation applied to a spring loaded with a weight simply says the applied
force is balanced by the elastic force from the extended spring.) We must now model
the various contributions to o and F.

Consider first the stress tensor 0. It consists of contributions from the ECM and the
cells and we write

0 = O0ECM + O cell- (6.11)

The usual expression for a linear viscoelastic material (Landau and Lifshitz 1970) gives
the stress—strain constitutive relation as

oEcM = (18 + w2611+ E'[e + /611,
viscous elastic (6.12)

where E' =E/(1+v), VvV =v/(1-2v).

The subscript ¢ denotes partial differentiation, | is the unit tensor, 1 and p, are the
shear and bulk viscosities of the ECM, ¢ is the strain tensor defined above in (6.9),
0(= V - u) is the dilation and E and v are the Young’s modulus and Poisson ratio
respectively.

The assumption of isotropy is certainly a major one. While the ECM may be
isotropic in the absence of cell tractions (and even this is doubtful) it is probably no
longer isotropic when subjected to cellular forces. Although we do not specifically con-
sider in this chapter a nonisotropic model, we should be aware of the kind of anisotropy
that might be included in a more sophisticated model. When a fibrous material is strained
the fibres tend to align in the directions of the principal stresses and the effective elastic
modulus in the direction of strain increases. With the main macroscopic effect of fibre
alignment being to strengthen the material in the direction of strain we can model this
by making the elastic modulus E an increasing function of the dilation 6, at least for
small 6. It does not of course increase indefinitely since eventually the material would
yield. Figure 6.5 is a typical stress—strain curve. It is possible that v is also a function of
0; here, however, we take it to be constant.

Fibrous materials are also characterised by nonlocal elastic interactions since the
fibres can transmit stress between points in the ECM quite far apart. By arguments
analogous to those which lead to the biharmonic term in the cell conservation equation
(6.7) we should include long range effects in the elastic stress for the composite material.
The anisotropic effect discussed in the last paragraph and this nonlocal effect can be
modelled by writing in place of the elastic contribution in (6.12)

orcMmlelasic = E'(0)[& + B1V%e +/'(6 + f2V30)I],

(6.13)
where E'=E@®)/(1+v), VvV =v/(1—-2v)
and the B’s are parameters which measure long range effects. However at this stage of
modelling it is reasonable to take 81 = > = 0 and E () to be a constant. We consider
anisotropy in detail in Chapter 8 and in even more detail in Chapter 10.
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Stress, ¢

Strain,

R Ty g

Figure 6.5. The effect of straining the extracellular matrix is to align the fibres and stiffen the material. If
we think of a one-dimensional situation the strain from (6.9) is ¢ = du/0x and the dilation 6 = du/dx.
The effective elastic modulus E is the gradient of the stress—strain curve. It increases with strain until the
yield point whereupon it levels off and drops for large enough strains as the material tears. The ECM is in
compression when ¢ < 0 (also & < 0). Because a given amount of material (cells + matrix) cannot be
squeezed to zero, there is a lower limit of ¢ = —1 (also & > —1) where the stress tends to —oo.

Now consider the contribution to the stress tensor from the cell tractions, that is,
o ce11- The more cells there are the greater the traction force. There is, however, experi-
mental evidence indicating cell—-cell contact inhibition with the traction force decreasing
for large enough cell densities. This can be simply modelled by assuming that the cell
traction forces, T(n) per unit mass of matrix, initially increase with n but eventually
decrease with n for large enough n. Here we simply choose

n

— > 6.14
1+ An2 ( )

t(n) =

where t (dyne—cm/gm) is a measure of the traction force generated by a cell and A is a
measure of how the force is reduced because of neighbouring cells; we come back to this
below. Experimental values for 7 are of the order of 1073 dyne/um of cell edge, which
is a very substantial force (Harris et al. 1981). The actual form of the force generated
per cell, that is, 7(n)/n, as a function of cell density can be determined experimentally
as has been done by Ferrenq et al. (1997).

Even though cell traction plays such a central role in pattern formation in devel-
opment it has proved very difficult to quantify the cellular forces involved because of
the complexity of the cell-matrix interactions and the difficulty of separating out the
various mechanical effects in real biological tissue. Ferrenq et al. (1997) describe a new
experimental technique and general approach for quantifying the forces generated by
endothelial cells on an extracellular matrix. They first developed a mathematical model,
based on the Murray—Oster mechanochemical theory described in detail in this chapter,
and in which different forms for the cell generated stress are proposed. They then used
these as the basis for a novel experimental device in which cells are seeded on a biogel
of fibrin (the matrix) held between two holders one of which can move and is attached
to a force sensing device. By comparing the displacement of the gel calculated from the
model expressions with the experimental data recorded from the moving holder they
were able to justify specific expressions for the cell traction stress; they did this for var-
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ious experimental setups. They were then able to compare different plausible analytical
expressions for the cell traction stress with the corresponding force quantification and
to compare the results with experiment and other reported measurements for different
kinds of cells by similar and different experimental devices. They show how experimen-
tally justifiable forms for the cell-gel traction stress can be derived and give estimates
for each of the parameters involved. They found that the expression

Ocel = Ton (N2 — n)l,

where 7 is the cell traction and the parameter N controls the inhibition of cell traction
as the cell density increases was validated by experiments and estimates given for their
values. This paper is an excellent example of genuine interdisciplinary mathematical
biology research with theory and experiment each playing an important role in the out-
come. This interdisciplinary approach was exploited by Tranqui and Tracqui (2000) in
their investigation of mechanical signalling in angiogenesis. They again used the me-
chanical theory with the viscous stress tensor given by (6.12) and the elastic stress tensor
given by (6.13) which includes long range elastic effects.

If the filopodia, with which the cells attach to the ECM, extend beyond their imme-
diate neighbourhood, as they probably do, it is not unreasonable to include a nonlocal
effect analogous to the long range diffusion effect we included in the cell conservation
equation. For our analysis we take the contribution & ¢ to the stress tensor to be

Ocell = ——— (p +yV3p)l, (6.15)

1+ An?
where y > 0 is the measure of the nonlocal long range cell-ECM interactions. The
long range effects here are probably more important than the long range diffusion and
haptotaxis effects in the cell conservation equation.

If the cells are densely packed the nonlocal effect would primarily be between the
cells and in this case a more appropriate form for (6.15) should perhaps be

O cell = 1+A2m+yV%ﬂ (6.16)
There are various possible forms for the cell traction all of which might reasonably be
used. One way of resolving the issue might be to use a molecular method developed
by Sherratt (1993) in his derivation of the actin generated forces involved in embryonic
wound healing; we discuss his technique in Chapter 9.

Finally let us consider the body force F in (6.10). With the applications we have in
mind, and discussed below, the matrix material is attached to a substratum of underlying
tissue (or to the epidermis) by what can perhaps best be described as being similar to guy
ropes. We model these restraining forces as body forces proportional to the density of
the ECM and the displacement of the matrix from its unstrained position and therefore
take

F=—su, (6.17)

where s > 0 is an elastic parameter characterising the substrate attachments.
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In the model we analyse we shall not include all the effects we have discussed but
only those we feel are the more essential at this stage. So, the force equation we take
for the mechanical equilibrium between the cells and the ECM is (to be specific) (6.10),
with (6.11)—(6.17), which gives

V| wigr + uabl + E'€ + vV +tn(l+an>) o +yVip)l | —  spu
—_
viscous elastic cell traction external forces
=0,
(6.18)
where
J— 1= L (6.19)
I S 1=2v ’

Matrix Conservation Equation

The conservation equation for the matrix material, p(r, t), is

dp

a; TV (o) =S5 p.u), (6.20)

where matrix flux is taken to be mainly via convection and S(#n, p, U) is the rate of secre-
tion of matrix by the cells. Secretion and degradation is thought to play a role in certain
situations involving mesenchymal cell organisation, and it certainly does in wound heal-
ing, an important application discussed in Chapter 10. However, on the timescale of cell
motions that we consider here we can neglect this effect and shall henceforth assume
S = 0. Experimental evidence (Hinchliffe and Johnson 1980) indicates that S = 0
during chondrogenesis and pattern formation of skin organ primordia.

Equations (6.7), (6.18) and (6.20) with S = 0 constitute the field equations for
our model pattern formation mechanism for fibroblast cells that we now examine. The
three dependent variables are the density fields n(r,t), p(r,¢) and the displacement
field u(r, t). The model involves 14 parameters, namely, D1, D3, a1, az, v, N, i1, (2,
T, A, ¥, 8, E and v, all of which are in principle measurable and some of which have
been investigated experimentally with others currently under study.

As usual, to assess the relative importance of the various effects, and to simplify
the analysis, we nondimensionalise the equations. We use general length and timescales
L and T, a uniform initial matrix density pp and set

r*:L’ t*:L’ n*:l, u*:E’ ,O*Zﬁ,

L T N L 20
Vi=LV, 6*=6, &'=¢ y'= % r* =rNT, 6.21)
oo SpoL20 4 v) 70N (1 +v)

. A =AN?%, *= ,
E E
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aypoT apol
aj = 17 a; = i i=1,2
(6.21) (continued)
i +v)y «  DiT « _ DoT
wo=—gg e =l Di=m Dy=a

The nondimensionalisation has reduced the 14 parameters to 12 parameter groupings.
Depending on what timescale we are particularly concerned with we can reduce the set
of 12 parameters further. For example, if we choose T as the mitotic time 1/r N, then
* = 1; this means we are interested in the evolution of pattern on the mitotic time scale.
Alternatively we could choose 7' so that y* = 1 or uf = 1fori = 1 ori = 2. Similarly
we can choose a relevant length scale and further reduce the number of groupings.
With the nondimensionalisation (6.21) the model mechanism (6.7), (6.18) and
(6.20), with matrix secretion S = 0 (the effect of a matrix source term S on the subse-
quent analysis is currently under investigation), becomes, on dropping the asterisks for
notational simplicity,

n, = DiVn — DoV — V- [ainVp — aanV(V2p)] = V - (nuy) + rn(1 — n),

(6.22)
{(ms,—l—uﬁ,l)—i—(e—i—v’@l)—i— T 2(,c)—i-)/V2,<))|} = spu, (6.23)
pr + V- (pu) =0. (6.24)

Note that the dimensionless parameters, all of which are positive, are divided into those
associated with the cell properties, namely, ai, az, D1, D>, r, T, A and those related to
the matrix properties, namely, i1, uz, V', y and s.

Although the model system (6.22)—(6.24) is analytically formidable the model’s
conceptual framework is quite clear, as illustrated in Figure 6.6. As we have noted, this

Cell tractions

Cell motion
Cell aggregation Convection ) Deform
patterns Random motion BCM
Contact guidance
Haptotaxis
Guidance
cues Mitosis

Figure 6.6. Conceptual framework for the mechanical models. Cell tractions play a central role in orches-
trating pattern formation.
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model does not include all the effects that might be relevant, such as the effect of matrix
secretion and strain-dependent diffusion and contact guidance. Although later we shall
derive considerably simpler systems we should have some idea of what a model looks
like that incorporates many of the features that biologists might feel are important. As
we also said above, one of the major roles of such modelling and subsequent analysis
is to indicate what features are essential for pattern formation. So, in the initial linear
analysis that follows we retain all of the terms in the model (6.22)—(6.24) and only set
various parameters to zero in the general results to see what effects may be redundant
or dwarfed by others.

6.3 Linear Analysis, Dispersion Relation and
Pattern For mation Potential

To model spatial aspects observed in embryonic development the equation system
(6.22)—(6.24) must admit spatially inhomogeneous solutions. Considering their com-
plexity and with the experience gained from the study of the pattern forming models in
earlier chapters we have little hope, at this stage, of finding useful analytical solutions to
such nonlinear systems. We know, however, that much of the pattern formation poten-
tial is predicted by a linear analysis about uniform steady state solutions. We also now
know that such linear predictions are not infallible and must be backed up by numerical
simulations if finite amplitude structures far from homogeneity are required. (It will be
helpful in the following to recall in detail the material and discussions relating to spatial
pattern formation in Chapter 2, particularly Sections 2.3 to 2.6.)

Before carrying out a linear analysis let us note that one of the applications of this
theory will be to the pattern formation process that accompanies the formation of skin
organ primordia for feathers, scales and teeth, for example; see Section 6.5. The initial
cell aggregations which appear in the dermis, that is, the layer just under the epidermis
on which the scales and feathers start, only differ in cell density from the surrounding
tissue by fairly small amounts. Therefore it is worthwhile from the practical biological
application viewpoint to carry out a detailed linear analysis of the field equations, not
only as a first analytical step to indicate spatial pattern potentialities and guide numerical
work, but also because the patterns themselves may involve solutions that effectively fall
within the linear regime. The latter are often effectively those from a nonlinear theory
close to bifurcation from uniformity. We come back to the biological applications in
more detail below.

The uniform steady state solutions of (6.22)—(6.24) are

n=Uu=p=0; n=1Lu=p=0; n=p=1,u=0. (6.25)

The first two solutions are not relevant as p = 0 is not relevant in the biological sit-
uation. The third solution is relevant (p here is normalised to 1 by the nondimension-
alisation) and the linear stability of this solution is found in the usual way (recall, in
particular, Section 2.3 in Chapter 2) by seeking solutions of the linearised equations
from (6.22)—(6.24). We thus consider n — 1, p — 1 and U to be small and, on substitut-
ing into the nonlinear system and keeping only linear terms inn — 1, p — 1 and U and
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their derivatives, we get the following linear system, where for algebraic convenience
we have written n and p for n — 1 and p — 1 respectively.

ny— DiVn+ DoVin+ a1V —aaVip + 6, +rn =0, (6.26)
V. [(me, 106 + (€ +V01) + (Tin + 12p + nyv2p)|] —su=0, (627
or+0; =0, (6.28)

where

N (=)
=T T aia (6.29)

71

Note thatif . > 1, 7o < 0, A, which is nonnegative, is a measure of the cell-cell contact
inhibition.
We now look for solutions to these linearised equations by setting

(n, p,u) < explot + ik - r], (6.30)

where K is the wavevector and o is the linear growth factor (not to be confused with the
stress tensor). In the usual way (cf. Chapter 2) substitution of (6.30) into (6.26)—(6.28)
gives the dispersion relation o = o (k%) as solutions of the polynomial in o given by
the determinant

o+ Dik? + Dok* +r  —aik? — ark? iko
ikt ikt) —ik’tiy  —opk®> — (1 +v)k?> —s| =0,
0 o iko

where k = |k|. A little algebra gives o (k%) as the solutions of

oluk? o2 +b(k*)o + c(k*)] = 0,
b(k?) = uDok® + (uD1 + yT)k* + (1 + ur — 11 — K% + 5,
c(k?) = yuD2k® + (yui Dy — ©2D2 + Dy — axt))k® (6.31)
+(D1+sDy —t1 Dy +yrir — a1r2)k4
+ (r+sDy — r1:1)k2 +rs.
Here we have set u = ) + w2 and 7y, 1, u and s replace 71 /(1 + V'), 7o/(1 + V),

w/(1+v") and s/(1 + V') respectively. The dispersion relation is the solution of (6.31)
with the largest Reo > 0, so

—b(k?) + (b2 (k?) — dpk’c(k*)}/?

o(k?) = i :

(6.32)
—b(k?)

uk?

o(k?) = if c(k®) =0.
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Spatially heterogeneous solutions of the linear system are characterised by a dis-
persion o (k%) which has Reo (0) < 0 but which exhibits a range of unstable modes
with Reo (k%) > 0 for k? # 0. From (6.31), if k2 = 0, the spatially homogeneous
case, we have b(0) = s > 0 and c(0) = rs > 0 since all the parameters are posi-
tive. So 0 = —c/b < 0 and hence stability obtains. Thus we require conditions for
Reo (k%) > 0 to exist for at least some k% # 0. All the solutions (6.30) with these k’s
are then linearly unstable and grow exponentially with time. In the usual way we expect
these unstable heterogeneous linear solutions will evolve into finite amplitude spatially
structured solutions. Heuristically we see from the nonlinear system (6.22) that such
exponentially growing solutions will not grow unboundedly—the quadratic term in the
logistic growth prevents this. In models where the mitotic rate is not set to zero, the con-
tact inhibition term (6.23) ensures that solutions are bounded. Numerical simulations of
the full system, for example, by Perelson et al. (1986), Bentil (1990) and Cruywagen
(1992) bear this out.

The linearly unstable solutions have a certain predictive ability as to the qualitative
character of the finite amplitude solutions. The predictability again seems to be limited
to only small wavenumbers in a one-dimensional situation. As we saw in Chapters 2
and 3 this was usually, but not always, the case with reaction diffusion systems.

From the dispersion relation (6.32), the only way a solution with Re o (k?) > 0 can
exist is if b(k*) < 0 or c(k*) < 0 or both. Since the only negative terms involve the
traction parameter t, occurring in 71 and 72, a necessary condition for the mechanism
to generate spatially heterogeneous solutions is that the cell traction T > 0. Note from
(6.29) that it is possible that 7o can be negative. It is also clear heuristically from the
mechanism that T must be positive since the cell traction forces are the only contribu-
tion to the aggregative process in the force-balance equation (6.23). So, with T > 0,
sufficient conditions for spatial structured solutions to exist are when the parameters
ensure that b(k%) < 0 and/or ¢(k?) < 0 for some k2 > 0. Because of the central role of
the cell traction we shall use t as the bifurcation parameter. There is also a biological
reason for choosing 7 as the bifurcation parameter. It is known that, in vitro, the traction
generated by a cell can increase with time (for a limited period) typically as illustrated
in Figure 6.7.

Cell traction /7
— [N w N

o
A 4

Time (days)

Figure6.7. Qualitative in vitro behaviour of fibroblast cell traction with time after placing the cells on a dish.
70 is a base value, typically of the order of 1072Nm~! of cell edge.
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Uniform cell density
cell traction 1 < 1T

critical

(a)

Nonuniform cell density
cell traction T > 1

critical

(b)

Increasing cell traction

o S ~~

X

(c)

Figure 6.8. How the mechanical patterning process works. (&) Any perturbation in cell density is smoothed
out because the cell traction is not sufficient to overcome the elastic resistance in the ECM. (b) Once the
cell traction passes through the critical value the homogeneous steady state is linearly unstable and a pattern
forms: the specific pattern that develops depends on the dispersion relation. Here we have assumed it is a
basic mode. (C) Further increase in the cell traction gives rise to more complex patterns, again determined in
general by the dispersion relation.

We can see intuitively how the patterning process works if we use the cell traction
as the bifurcation parameter. Refer to Figure 6.8. In Figure 6.8(a) the cell traction is less
than the critical traction and is not sufficient to overcome the elastic resistance of the
ECM and any heterogeneity in cell density simply smooths out. As the traction increases
it passes through the critical value where the cell generated forces are greater than the
resistance of the ECM and spatial inhomogeneities start to form as in Figure 6.8(b). As
the cell traction increases further we then have to use the dispersion relation to determine
which pattern starts to grow as in Figure 6.8(c). Because of the form of the equations
(recall the discussion in Chapter 2) we also have similar scale and geometry effects with
more complex patterns possible the larger the domain.

We can deduce the qualitative effects of some of the various terms in the model, as
regards their pattern formation potential, by simply looking at the expressions for b(k?)
and ¢(k?). Since we require b or ¢ to be negative before spatial pattern will evolve from
random initial cell densities, we see, for example, that if the tethering, quantified by s,
is increased it tends to stabilise the solutions since it tends to make both b and ¢ more
positive. The long range effect of the cells on the matrix, quantified by the parameter
y, is also a stabilising influence; so also is the viscosity. On the other hand long range
haptotaxis, via ay, is always destabilising. Considerable quantitative information can be
obtained simply from the polynomial coefficients in the dispersion relation. Much of
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it, of course, is intuitively clear. Where the parameters combine, however, further anal-
ysis is necessary to draw biological implications; examples are given in the following
section.

The expressions for o (k?) in (6.32), and b(k?) and c(k?) in (6.31), determine the
domains in parameter space where spatially inhomogeneous linearly unstable solutions
exist. They also give the bifurcation surfaces in parameter space, that is, the surfaces
which separate homogeneous from inhomogeneous solutions. It is algebraically very
complicated to determine these surfaces in general. In any case, because of the dimen-
sionality of the parameter space, it would be of little conceptual help in understanding
the basic features of the pattern formation process. It is more instructive to consider
various special cases whereby we assume one or more of the various factors affecting
cell motion and matrix deformation to be negligible. One result of this is to produce
several much simpler model mechanisms which are all capable of generating spatial
patterns. Which mechanism is most appropriate for a given biological situation must be
determined by the biology.

With the polynomial complexity of b(k?) and c(k?) in the dispersion relation o (k%)
in (6.32) we can expect complex linear growth behaviour. In the following section we
consider some particular models, all of which are capable of generating spatial patterns.
We also display the remarkable variety of dispersion relations which mechanical models
can produce from relatively simple mechanisms.

6.4 Simple Mechanical Models Which Gener ate Spatial Patterns
with Complex Dispersion Relations

In this section we consider some special cases of (6.22)—(6.24) where one or more of the
factors affecting cell motion or the mechanical equilibrium are assumed to be negligible;
each highlights something new. These are deduced by simply setting various parameters
to zero and examining the resultant dispersion relation o (k%) from (6.32). It is not, of
course, a haphazard procedure: we examine the effect on b(k?) and c¢(k?) and determine,
a priori, the likely outcome.

(i) D1 = Dy = a; = a = 0: no cell diffusion and no haptotaxis, r = 0: no cell
division.

From the general model (6.22)—(6.24) the mechanism becomes

n + V- (nu) =0,

{(u]st+u29tl)+(8+v’el)+ 2(p+yV2p)I} = spu, (6.33)

1+ An
pr+ V- (pu) =0.

The implication of the simple conservation equations for n and p is that the cells and
matrix are simply convected by the matrix. As mentioned in Section 6.3 this is thought
to be the major transport process. This is particularly evident in network formation (see
Chapter 8). The one-dimensional version of the model mechanism is
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ny + (nug)y =0,

™
— >+ V/Oxx)] = spu, (6.34)
An

Hlxxr + Uxx + |:1 i i

pr + (pug)x =0,

where we have set u = (ug +u2)/(1+v), 7 = t(1+v'), s = s/(1 +'). This system
linearises to

n +u =0,
Mixxs + Uyy + [T10 + 120 + T1Ypxx ]x = Su, (6.35)
por +u =0,

where, from (6.24) and (6.31),

I (1= 1)
EE N

T - 77
! (1+ )2

with, as we just said, T replacing /(1 +v’).
For the system (6.33) we have from (6.31), c(k?) = 0 and so the dispersion relation
from (6.32) is
—b(k?)
uk? (6.36)
b(k*) = yrik* + (1 — 11 — )k* + .

o(k?) =

The only way we can have Reo > 0, and here, of course, o is real, is if b(kz) < 0 for
some k2 > 0. This requires 71 + 72 > 1 and from the second of (6.36)

— 12
by =5 — AT =DT (6.37)
dyny

In terms of 7, A, y and s this becomes
2 —t(L+ ) 1+ ys+ 0]+ 21+ 0% >0, (6.38)

which implies that spatial patterns will evolve only if
r> 1= 11+21)2 [1 Fys+A) + {1 +ys(l+1)]2 - 1}1/2] . (6.39)

The other root is not relevant since it implies 71 + 72 < 1 and so from (6.36) b(k* >0
for all k. The surface T = 7.(A, y, 5) is the bifurcation surface between spatial homo-
geneity and heterogeneity. In view of the central role of cell traction, and the form of
the traction versus time curve in Figure 6.7, it is natural to take 7 as the bifurcation pa-
rameter. As soon as T increases beyond the critical value 7., the value which first makes
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b(k?) zero, the uniform steady state bifurcates to a spatially unstable state. The natural
groupings are t/(1 + 1)? and ys(1 + 1) and the bifurcation curve 7/(1 + 1)? versus
ys(l + 1) is a particularly simple monotonic one.

When (6.39) is satisfied, the dispersion relation (6.36) is a typical basic dispersion
relation (cf. Figure 2.5(b)) which initiates spatial patterns as illustrated in Figure 6.10(a)
which is given towards the end of this section. All wavenumbers k in the region where
o(k?) > 0 are linearly unstable: here that is the range of k% where b(k%) < 0, which
from (6.36) is given by

k< k* <3

m+n-—Dx{T+n-1)2—4sy}!/?

2 .2

ki ky = s (6.40)
o T TZI(I—A)
T 2T 0+

where 7, y, A and s must satisfy (6.39). There is a fastest growing linear mode which
again predicts, in the one-dimensional model with random initial conditions, the ul-
timate nonlinear spatial pattern (cf. Chapter 2, Section 2.6). Other ways of initiating
the instability results in different preferred modes. We discuss nonlinear aspects of the
models later and present some simulations of a full nonlinear model in the context of a
specific biological application.

Before considering another example, note the form of the cell conservation equa-
tion in (6.35). With no cell mitosis there is no natural cell density which we associated
with the maximum logistic value N in (6.7). Here we can use N (or ng to highlight the
different situation) for the nondimensionalisation in the usual way but now it comes in
as another arbitrary parameter which can be varied. It appears, of course, in several di-
mensionless groupings defined by (6.21) and so offers more potential for experimental
manipulation to test the models. Later we shall describe the results from experiments
when the cell density is reduced. With (6.21), we can thus determine how dimensionless
parameters which involve N vary, and hence predict the outcome, from a pattern for-
mation point of view, by investigating the dispersion relation. All models without any
cell proliferation have this property. Another property of such models is that the final
solution will depend on the initial conditions; that is, as cell density is conserved, dif-
ferent initial conditions (and hence different total cell number) will give rise to different
patterns. However, as the random perturbations are small, the differences in the final so-
Iution will be small. This is biologically realistic since no two patterns are exactly alike.

(i) D = y = 0: no long range diffusion and no cell-ECM interactions. a; =
az = 0: no haptotaxis. » = 0: no cell proliferation.

From the general model (6.22)—(6.24) the cell equation involves diffusion and con-
vection and the model mechanism is now

n, = D1V*n — V- (nuy)

tpnl
1+ An?

V. {(Mlel—i—uz@l)—i—(s—i—v’el)—l— } = spu, (6.41)

pr+ V- (pu) =0,
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From (6.31) and (6.32) the dispersion relation for the system is
—b + [b% — 4uk?c]/?
2uk?

b(k*) = uDik* + (1 — 11 — )k + 35,

o(k?) =

’

(6.42)
c(k*) = D1k (1 — 1) + s].

As noted above, in this model the homogeneous steady state cell density n = N where

N is now simply another parameter.

The critical value of 7, with 71 and 1 defined by (6.29), which makes the minimum
of b(k?) zero is

buin=0 = 1w +1=142usD)"?

(6.43)
= 0=Te=(1+1[3+usD)"’]
and ¢(k?) becomes negative for a range of k* if 75 > 1; that is,
2 (14 1)?
ck’)y <0 = TC:O:IC:ﬁ’ )x;él. (6.44)

(The special case when A = 1 makes 7o = 0 exactly; such specific cases are unlikely
to be of biological interest.) Now, as t increases, whether b or ¢ becomes zero first
depends on other parameter groupings. In the case of the minimum of b becoming zero
first, this occurs at the critical wavenumber which is obtained from the expression for
b(k?) in (6.42) with (6.43) as

o\ /4
[k]b:O:(MDl> . (6.45)

If 7 is such that ¢(k?) becomes zero first, then from (6.42)

ck?) <0 forall k>>

. (6.46)
7 — 1

The linear and nonlinear solution behaviour depend critically on whether b(k?) or c(kz)
becomes zero first, that is, whether t.— is greater or less than 7,—g. Suppose that, as ©
increases from zero, b = 0 first. From the dispersion relation (6.42), o is complex at
7. = tp—o and so for 7 just greater than 7., the solutions

n,p,u~ O(exp[Rea(kl%:Ot + iImU(kl%:O)t + iKp—g - I]). (6.47)

These solutions represent exponentially growing travelling waves and the prediction is
that no steady state finite amplitude solutions will evolve.
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On the other hand if t.—( is reached first then o remains real, at least near the crit-
ical k2, and it would seem that spatial structures would evolve in the usual way. In any
simulation related to a real biological application, a very careful analysis of the disper-
sion relation and the possible parameter values which are to be used is an absolutely
essential part of the process since there can be transitions from normal evolving spatial
patterns through unstable travelling waves to spatial patterning again. With the nonstan-
dard type of partial differential equation we are dealing with such behaviour might be
thought to be an artifact of the numerical simulations.

An even simpler version of this model, which still exhibits spatial structure, has
D = 0. The system in this case is, from (6.41),

ny+V-(u)=0

Tonl
V~{(Mlst+/L29tl)+(£+v’9|)+p72} = spu, (6.48)
14+ Ain

pr+ V- (puy) =0.
Here, from (6.31), ¢(k?) = 0 and

—b(k?)

T b(k*) = (1 — 11 — k> +5.

o(k?) =

So, we require 7 and A to satisfy

(14 1)?
n4+n>1 = T
s (6.49)
k> 0 forall k?>—— .
= ok > ora >2r(1+k)—2—1

The dispersion relation here, and illustrated in Figure 6.11(a) given at the end of this
section, is fundamentally different to that in Figure 6.10(a); there is an infinite range of
unstable wave numbers. That is, perturbations with very large wavenumbers, which cor-
respond to very small wavelengths, are unstable. This is because the version (6.48) of the
model has no long range effects included: such effects tend to smooth out small wave-
length patterns. It is not clear what pattern will evolve from random initial conditions.
The ultimate spatial structure depends intimately on the initial conditions. Asymptotic
analyses are still lacking for systems with such dispersion relations.

(iii) Dy = Dy = 0: no cell diffusion. a; = a = 0: no haptotaxis. u; = ur = 0:
no viscoelastic effects in the ECM.

Here the system (6.22)—(6.24) reduces to

n;+V-(mu) =rn(l —n),
{(£+v9l)+ T (p+yV2p)|} = spu, (6.50)

pr+ V- (pu) =0,
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which, in one space dimension, is

ny + (nus)y = rn(l —n)
[ux + (1 +2n*) "' (o + yorx) ] = spu (6.51)
pr + (pu)x =0,

where again we have incorporated (1 + V') in t and s. The dispersion relation in this
case is, using (6.31) and (6.32),

c(k?)
b(k2)’
b(k®) = yrik* + (1 — 11 — 1)k> + 5,

o(k?) = —

(6.52)

c(kz) = yrlrk4 +r(l— tz)k2 +rs.

Here, as t increases b(k?) becomes zero first, so the bifurcation traction value is given
by 7, where b(k?) = 0. This expression for b(k?) is the same as that in (6.36) and so
the critical . is given by (6.39). Here, however, c(k?) is not identically zero and so the
dispersion relation is quite different as t increases beyond 7. Since 1; = 7(1 — 1) /(1 +
M2if A > 1, c(k?) > 0 for all k> > 0. For the purposes of our discussion however,
we assume A < 1 so that c(kz) can also become negative. Denote the critical 7, when
b(k?) and c(k?) first become zero by tc(b) and rc(c) respectively: here tc(b) < rc(c) . In
this case the o (k?) behaviour as 7 increases is illustrated in Figure 6.9, which exhibits a
fundamentally different dispersion relation to what we have found and discussed before.

First note in Figure 6.9 that the range of unstable wavenumbers is finite and that
there are two bifurcation values for the traction parameter 7. The pattern formation po-
tential of a system with such a dispersion relation is much richer than is possible with
the standard dispersion form in Figure 6.10(a). Linear theory, of course, is not valid
where the linear growth is infinite. So, from an analytical point of view, we must in-
clude other effects which effectively round off the discontinuities in o (k). This in turn
implies the existence of a singular perturbation problem. We do not consider such prob-
lems here but we can see intuitively that such dispersion relations, with large linear
growth rates, imply a ‘fast focusing’ of modes with preferred wavenumbers. For ex-
ample, in Figure 6.9(e) we would expect the modes with wavenumbers at the lower end
of the lower band and the upper end of the upper band to be the dominant modes. Which
mode eventually dominates in the nonlinear theory will depend critically on the initial
conditions.

With large linear growth we can see how necessary it is to have some cell—cell
inhibition in the full nonlinear system. If there is fast focusing there is the possibility of
unlimited growth in, for example, the cell density. This in turn implies the appearance
of spikelike solutions. The effect of the inhibition terms, as measured by the parameter
A, is therefore essential. There are some potentially interesting analytical aspects with
these fast focusing models.
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Figure 6.9. Qualitative variation in the dispersion relation a(kz) in (6.52) for the model system (6.50) (and

(6.51)) as the traction parameter 7 increases. The bifurcation values rc(b) and réc) denote the values of 7

where b(kQ) = 0 and c(kz) = 0 respectively. The wavenumbers of the unstable modes are denoted by the
heavy line on the k2-axis.

It is now clear how to investigate various simpler models derived from the more
complicated basic model (6.22)—(6.24). Other examples are left as exercises.

Figures 6.10 and 6.11 indicate the richness of dispersion relation types which ex-
ist for the class of mechanical models (6.22)—(6.24). Figure 6.10 shows only some of
the dispersion relations which have finite ranges of unstable modes while Figure 6.11
exhibits only some of the possible forms with infinite ranges of unstable modes. A non-
linear analysis in the vicinity of bifurcation to spatial heterogeneity, such as has been
done by Maini and Murray (1988), can be used on the mechanisms which have a dis-
persion relation of the form illustrated in Figure 6.10(a). A nonlinear theory for models
with dispersion relations with an infinite range of unstable modes, such as those in Fig-
ure 6.11, is, as we noted, still lacking as is that for dispersion relations which exhibit
infinite growth modes (Figures 6.10(b),(e)—(g)). Although we anticipate that the pattern
will depend more critically on initial conditions than in the finite range of unstable mode
situations, this has also not been established.

Mechanical models, as we noted above, are also capable of generating travelling
waves: these are indicated by dispersion relations with complex o. Table 6.3 gives ex-
amples of models which admit such solutions.

From a biological application point of view two- and three-dimensional patterns are
naturally of great interest. With the experience gained from the study of the numerous
reaction diffusion chemotaxis and neural models in the book, we expect the simulated
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Figure6.10. Examples of dispersion relations o (kz), obtained from (6.32) with (6.31) for mechanical models
based on the mechanism (6.22)—(6.24). The various forms correspond to the specific conditions listed in
Table 6.1. Realistic models for those with infinite growth must be treated as singular perturbation problems,
with small values for the appropriate parameters in terms which have been omitted so as to make the linear
growth finite although large.

Table6.1. Mechanical models, derived from the basic system (6.22)—(6.24) with positive nonzero parameters
denoted by e, which have dispersion relations with a finite range of unstable wavenumbers. The corresponding
dispersion relation forms are given in Figure 6.10, with A =0, 711 = 1p = 7.
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Figure6.11. Examples of dispersion relations o (kz), obtained from (6.32) with (6.31) for mechanical models
based on the mechanism (6.22)—(6.24), with an infinite range of unstable modes. The conditions listed in
Table 6.2 relate the models to specific forms. In (g) and (h) the imaginary part of o is nonzero.

Table 6.2. Mechanical models, derived from the basic system (6.22)—(6.24) with positive nonzero param-
eters denoted by e, which have dispersion relations with an infinite range of unstable wavenumbers. The
corresponding dispersion relation forms are given in Figure 6.11, withA =0, 71 = 1p = 7.
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Table6.3. Mechanical models, derived from the basic system (6.22)—(6.24) with positive nonzero parameters
denoted by e, which have dispersion relations with a finite range of unstable wavenumbers and which admit
temporal oscillations. The corresponding dispersion relation forms are given in Figure 6.11, with A = 0,
TI=1=rt.

Conditions on t Are
Figure 6.11 Dy D> a; ay r u s y A Algebraically Complicated

(2) o
(h) o

patterns for the full nonlinear models here to reflect some of the qualitative features of
the linearised analysis of the basic model equations (6.26)—(6.28). This is motivation
for looking at possible symmetries in the solutions. We do this by taking the divergence
of the linear force balance equation (6.27) which, with (6.26) and (6.28), gives, using
the identity

dive = grad (divu) — %curl curl u,

ny — D\Vn + DoV +aiVip — axVip + 6, + rn =0, (6.53)
VA[(uby + (1 + )0 + 1in+ 1ap + 11y V2p)] — 56 = 0, (6.54)
o+ 6 =0, (6.55)

where 11 = t/(1 +A), » = (1l — A)/(1 + 2)? and uw = p1 + po. To determine
a reasonably full spectrum of relevant solutions of this set of equations is not trivial.
However, we can look for periodic solutions, which tessellate the plane, for example.
Such solutions (cf. Chapters 2 and 12) satisfy

T(r + mw; + lwy) = T(r), (6.56)

where I' = (n, U, p), m and [ are integers and @ and w; are independent vectors. A
minimum class of such periodic solutions of the linear system (6.53)—(6.55) includes at
least the eigenfunctions of

Vi 4+ k2% =0, (n-V)y =0 for rondB, (6.57)

where N is the unit normal vector on the boundary d B of the domain B. With these
boundary conditions the solutions are periodic. As we saw in Chapter 2, Section 2.4
and Chapter 12 regular plane periodic tessellation has the basic symmetry group of the
hexagon, square (which includes rolls) and thombus solutions given respectively by
equations (2.47), (2.48) and (2.49). For convenience the solutions in polar coordinate
form (r, ¢) are reproduced again here:

Hexagon: Y, 60)= % [cos {kr sin (¢ + %)} + cos {kr sin (¢ - %)}

+ cos [kr sin (¢ - g)” . (6.58)
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Square: v, ¢) = % [cos{kr cos ¢} + cos{kr sin ¢p}] (6.59)
Rhombus: Y(r, ¢;8) = % [cos{kr cos ¢} + cos{kr cos(¢p — §)}], (6.60)

where § is the rhombic angle. Such symmetric solutions are illustrated in Figure 6.12.

Small Strain Approximation: A Caricature Mechanical Model
for Two-Dimensional Patterns

In many embryological situations the strain, cell density and ECM density changes
during the pattern formation process are small. Such assumptions can lead to the linear
model system (6.26)—(6.28). Linear systems, however, pose certain problems regarding
long term stability. We can exploit the small strain approximation to derive a simple
scalar equation model which retains certain key nonlinearities which allow us to carry
out a nonlinear analysis in the two-dimensional situation and obtain stable nonlinear
solutions of biological relevance.

To illustrate this let us consider the nonlinear dimensionless system (6.33), the non-
trivial steady state of which we take as n = p = 1, u = 0. Because of the small strains
we linearise the cell and matrix conservation equations, the first and third of (6.33), to
get

nt+v'ut:O = n;—i—@;:O,
pr+V-Uu=0 = p+6 =0,

Figure6.12. Periodic eigenfunction solutions (6.58)—(6.60) which tessellate the plane. Here the dark regions
represent higher densities.
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since the dilation & = V - u. Integrating with respect to ¢ and using the fact that when
0 =0,n=p=1weget

nr,t)=1—-0(r,t) = p(r,1). (6.61)

Since we consider 8 small, certainly 6 < 1, n and p remain positive, as is necessary of
course.

Because of (6.61) we now replace the external force spu in the force balance equa-
tion, the second of (6.33), by its linear approximation su. Now substitute the linear
forms relating n and p to the dilation from (6.61) into the second of (6.33), take the
divergence of the resulting equation and use the tensor identity

V.g =graddivu — %curl curl u.
This yields the following scalar equation for the dilation 6,
uV20, + V20 + 1V [(1 — 6)> — y(1 —0)V?0] — 56 = 0, (6.62)

where we have incorporated 1 4 V' into redefinitions for w, T and s and for algebraic
simplicity taken A = 0. The effect of A # 0 is simply to introduce a multiplicative term
[1+2A08/(1 + A)] in the square bracket in (6.62) and have t/(1 + 1) in place of t.

Maini and Murray (1988) carried out a nonlinear analysis on the caricature model
(6.62) and obtained roll and hexagonal solutions. The significance of the latter is dis-
cussed in the following section on a biological application to skin organ morphogenesis.

Perhaps it should be mentioned here that the spectrum of spatial patterns possible
with the mechanism (6.22)—(6.24) and its numerous simplifications is orders of mag-
nitude greater than with a reaction diffusion system—even three-species systems. The
implications of a paper by Penrose (1979) are that tensor systems have solutions with
a wider class of singularities than vector systems. Since the cell-matrix equation is a
tensor equation, its solutions should therefore include a wider class of singularities than
reaction diffusion vector systems. Even with the linear system (6.26)—(6.28) there are
many analytical and numerical problems which remain to be investigated.

In the following sections we consider biologically important and widely studied
pattern formation problems using mechanical models of pattern generation. As always
we reiterate that the actual mechanism is not yet known but a mechanical mechanism,
we suggest, is certainly a strong candidate or at least a mechanism which involves some
of the major ingredients.

6.5 Periodic Patternsof Feather Germs

Generation of regular patterns occurs in many situations in early embryogenesis. These
are particularly evident in skin organ morphogenesis such as in the formation of feather
and scale primordia and are widely studied (see, for example, Sengel 1976 and Davidson
1983). Feather formation has much in common with scale formation during early devel-
opment of the primordia. Here we concentrate on feather germ formation with particular
reference to the chick, and fowl in general. Feather primordial structures are distributed
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across the surface of the animal in a characteristic and regular hexagonal fashion. The
application of the Murray—Oster mechanical theory to feather germ primordia was first
put forward by Murray et al. (1983) and Oster et al. (1983) and it is their scenario we
describe here. It was also investigated with a tissue interaction model by Cruywagen et
al. (1992, 2000); we discuss their model in Section 6.10. We first present the biological
background which suggests using a mechanical model.

Vertebrate skin consists essentially of two layers: an epithelial epidermis overlays
a much thicker mesenchymal dermis and is separated from it by a fibrous basal lamina.
The layer of epithelial cells, which in general do not move, can deform as we described
in Section 6.1. Dermal cells are loosely packed and motile and can move around in the
extracellular matrix, the ECM, as we described earlier. The earliest observable develop-
mental stages of feather and scale germs begin the same way. We concentrate here on
the initiation and subsequent appearance of feather rudiments in the dorsal pteryla—the
feather forming region on the chick back.

In the chick the first feather rudiments become visible about 6 days after egg fer-
tilization. Each feather germ, or primordium, consists of a thickening of the epidermis
with one or more layers of columnar cells, called a placode, beneath which is an aggre-
gation of dermal (mesenchymal) cells, called a papilla. Excellent pictures of papillae
and placodes are given by Davidson (1983). The dermal condensations are largely the
result of cell migration, with localised proliferation playing a secondary role. There is
still no general agreement as to whether the placodes form prior to the dermal papillae
or the other way round. There is considerable experimental work going on to determine
the order of appearance or, indeed, whether the interaction between the epidermis and
dermis produces the patterns simultaneously. The dermis seems to determine the spatial
patterning—as shown by epidermal-dermal recombination experiments (Rawles 1963,
Dhouailly 1975). We come back to this below when we describe tissue interaction sys-
tems. The model we discuss here is for the formation of dermal papillae. Subsequent
development, however, is a coordinated process involving both the epidermal and der-
mal layers (Wessells 1977, Sengel 1976, Cruywagen et al. 1992).

Davidson (1983) demonstrates that chick feather primordia appear sequentially. A
central column of dermal cells forms on the dorsal pteryla and subsequently breaks up
into a row of papillae. As the papillae form, tension lines develop joining the cell aggre-
gation centres. With the above mechanical models this is consistent with the cells trying
to align the ECM. Now lateral rows of papillae form sequentially from the central col-
umn outwards—in the ventral direction—but these are interdigitated with the papillae in
the preceding row; see Figures 6.13(a)—(d). These lateral rows spread out from the cen-
tral midline almost like a wave of pattern initiation. Experiments by Davidson (1983)
tend to confirm this wave theory; later we show how these results can be explained by
our model and we present corroborative numerical results.

These observations suggest that it is reasonable first to model the pattern formation
process for the initial row of papillae by a one-dimensional column of cells and look
for the conditions for spatial instability which generate a row of papillae. This is stage
1 and is represented by the sequential process illustrated in Figures 6.13(a)—(d).

We have seen in the previous sections that the mechanical model (6.22)—(6.24),
and simpler models derived from it as in Section 6.4, that as the cell traction parame-
ter T increases beyond some critical value 7. the uniform steady state becomes spatially
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Figure6.13. (a)—(d) These show the predicted sequential breakup of a uniform distribution of mesenchymal
(dermal) motile cells into regular cell condensations with a wavelength determined by the parameters of
the model mechanism (stage 1). These cell aggregations are the primordial papillae for feathers and scales.
(e) Vertical cross-section qualitatively showing the feather germ primordia. The placodes in the epidermis
are underlain by the papillae which create the stress field. (f) Subsequent aggregations form laterally. The
prestressed strain field from the first line of condensations induces a bias so that the neighbouring line of
papillae interdigitate with the first line (stage 2). The resulting periodic array is thus hexagonal, the basic unit
of which is illustrated in (@) (stage 3). (h) The epidermal placode pattern that mirrors the dermal pattern.
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unstable. With the standard basic dispersion relation as in Figure 6.10(a), the mode
(6.30) with a specific wavenumber k., that is, with wavelength 27/ k., first becomes
unstable and a spatial pattern starts to evolve; this generates a regular pattern of dermal
papillae.

Simulations of the one-dimensional version of the full nonlinear mechanical model
(6.22)—(6.24) with negligible long range haptotaxis, ao = 0 and, reflecting the biologi-
cal situation of small cell mitosis, 7 = 0, have been carried out, for example, by Perelson
et al. (1986), Bentil (1990) and Cruywagen (1992). Perelson et al. (1986) particularly
addressed the problem of mode selection in models with many parameters, and pro-
posed a simple scheme for determining parameter sets to isolate and ‘grow’ a specific
wavelength pattern. Bentil and Murray (1991) developed an even simpler and easy to
use scheme for doing this. Figure 6.14(a) shows a typical steady state pattern of cell
aggregations (the papillae), ECM displacement and density variations. As we would
expect intuitively, the cell aggregations are in phase with the ECM density variation p,
and both are out of phase with the ECM displacement u. The reason is that the cell
aggregations pull the matrix towards the areas of higher cell density thus stretching the
matrix between them; Figure 6.13(e) illustrates what is going on physically.

Patterns of the type illustrated in Figure 6.14(a) occur only if the cell traction pa-
rameter is above a certain critical value (see Section 6.4). So, a possible scenario for
the formation of the pattern along the dorsal midline is that there is a wave of initiation
that sweeps down the column and this could be related to tissue age; in this case, in
vitro experiments show that the cell traction parameter increases; refer to Figure 6.7. As
the cells become stronger t passes through the critical value 7, and pattern is initiated.
Note that in the model, one-dimensional pattern develops simultaneously whereas the
experiments suggest sequential development. This is reminiscent of the mode of pattern
formation illustrated in Figure 2.15(d) in Chapter 2.

Let us now consider the formation of the distinctive hexagonal two-dimensional
pattern of papillae. We described above how a wave of pattern initiation seems to spread
out from the dorsal midline. This suggests that the pattern of matrix strains set up by the
initial row of papillae biases the formation of the secondary condensations at positions
displaced from the first line by half a wavelength. Figure 6.14(b) shows the appropriate
numerical simulation based on such a scenario: note how the patterns are out of phase
with those in Figure 6.14(a). If we now look at Figures 6.13(f) and (g) we see how
this scenario generates a regular hexagonal pattern in a sequential way like a wave
emanating from the central dorsal midline.

This ‘wave’ is, however, not a wave in the usual sense since if the dermal layer is
cut along a line parallel to the dorsal midline the wave simply starts up again beyond
the cut ab initio. This is consistent with Davidson’s (1983) experimental observations;
he specifically investigated the qualitative effect on spacing of stretching and cutting the
epidermis.

This quasi-one-dimensional scenario, although suggested by linear theory, was to
a certain extent validated by the nonlinear simulations. A better verification would be
from a simulation of the two-dimensional model. However, using our scenario, it is pos-
sible to make predictions as to the change in wavelength as the experimental parameters
are changed. For example, one version of the models predicts a spacing that increases as
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Figure 6.14. Steady state solutions, for the cell density n, ECM displacement u and ECM density p of the
nonlinear one-dimensional version of the mechanical model (6.22)—(6.24). (a) Periodic boundary conditions
were used and initial conditions were random perturbations about the uniform steady state n = p = 1,
u = 0. (b) Heterogeneous steady state solutions with the initial displacement pattern in (a). Parameter values:
Di=a =y= 1073,1 =0.12, t = 1.65, ¢ = 400, = 1. Note that n and p are in phase and both are out
of phase with u.

the total number of cells N decreases. This agrees with experimental observation (Dr.
Duncan Davidson, personal communication 1983).

One of the most useful aspects of a nondimensional analysis, with resulting nondi-
mensional groupings of the parameters, is that it is possible to assess how different
physical effects, quantified by the parameters in the nondimensionalisation, trade off
against one another. For example, with the nondimensional groupings (6.21) we see
from the definition of the dimensionless traction, namely, T* = tpoN(1 + v)/E, that
with the model (6.22)—(6.24) the effect of a reduction in the cell traction t is the same
as a reduction in the cell density or an increase in the elastic modulus E. To see clearly
the overall equivalence the bifurcation surfaces in parameter space must be considered.
An important caveat in interpreting results from experimental manipulation is that quite
different cell or matrix alterations can produce compensating and thus equivalent re-
sults. Although such a caveat is applicable to any model mechanism it is particularly
apposite to experimentation with mechanical models since the morphogenetic variables
are unquestionably real.



350 6. Mechanical Theory for Generating Pattern and Form

We should perhaps mention here that an alternative model based on a reaction dif-
fusion theory was proposed by Nagorcka (1986), Nagorcka and Mooney (1985) for
the initiation and development of scale and feather primordia, and by Nagorcka and
Mooney (1982) for the formation of hair fibres. See also Nagorcka and Adelson (1999),
who among other things discuss some experimental tests, and other references there.

The modelling here does not cast light on the controversy regarding the order of
formation of placodes and papillae. However, since the traction forces generated by
the dermal cells can be quite large the model lends support to the view that the der-
mis controls the pattern even if it does not initiate it. Current thinking tends towards
the view that initiation requires tissue interaction between the dermis and epidermis.
It is well known that mechanical deformations affect mitosis and so tissue interaction
seems natural with mechanical models; see also the discussion in Oster et al. (1983).
Nagorcka et al. (1987) investigated a tissue interaction mechanism specifically with the
complex patterns of scales in mind. We describe some of these complex patterns and
their model in Section 6.10. Later in the chapter we investigate tissue interacting models
and some of the implications from their study. An experimental paper by Nagawa and
Nakanishi (1987) confirms the importance of mechanical influences of the mesenchyme
on epithelial branching morphology.

6.6 Cartilage Condensationsin Limb Morphogenesis
and Morphogenetic Rules

The vertebrate limb is one of the most widely and easily studied developmental systems
and such studies have played a major role in embryology; see, for example, the book by
Hinchliffe and Johnson (1980), the general paper by Thorogood (1983) and the review
by Tickle (1999), who subscribes to the positional information chemical prepattern sce-
nario, which describes some of the recent biochemical evidence for such an approach.
We shall discuss some evolutionary aspects of limb development in the next chapter.
Here we show how a mechanical model could generate the pattern of cell condensations
which evolve in a developing limb bud and which eventually become cartilage; it was
first put forward by Murray et al. (1983) and Oster et al. (1983). A related mechanoche-
mical model was later proposed by Oster et al. (1985a,b).

The pattern in developing limb buds which determines the final cartilage patterns,
which later ossify into bones, involves aggregations of chondrocyte cells, which are
mesenchymal cells such as we have been considering. The basic evolution of chondro-
cyte patterns takes place sequentially as the limb bud grows, which it does from the
distal end. Figure 6.15 gives an explanation of how, with geometry and scale as bifurca-
tion parameters, chondrogenesis could proceed. The actual sequence of patterns for the
developing chick limb is illustrated in Figure 6.15(c); Figure 6.15(d) is a photograph
of a normal adult limb. The detailed explanation of the process based on a mechanical
mechanism is the following.

As the limb bud grows, through cell proliferation in the apical ectodermal ridge,
which is at the distal end, the cross-section of the tissue domain, which includes the
ECM and mesenchymal cells, is approximately circular but with an elliptical bias. Let
us consider this to be the two-dimensional domain for our mechanical model with zero
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Figure 6.15. (a) The type of axial condensation is influenced by the cross-sectional shape of the limb. Ini-
tially a single condensation, path 1, will be produced (for example, the humerus in (C)). A more elliptical
cross-section allows two aggregations to form with an aerofoil-shaped domain producing unequal condensa-
tions, paths 2 and 3 (for example, the radius and ulna in (C)). In a long thin cylinder the axial condensations
form segmental units, path 4 (for example, the phalanges in (C)). (b) This shows how the mechanical mecha-
nism influences cross-sectional form thereby inducing the required sequence of chondrogenic patterns. As the
cells form the central condensation their tractions deform the limb thus making it more elliptical. At a critical
ellipticity the pattern bifurcates to two condensations. How three condensations are formed is important and
explained in the text; refer also to Figure 6.18(d). (¢) The schematic bifurcation sequence of chondrocyte
(mesenchymal) cell aggregations which presage cartilage formation in the developing chick limb. (d) Photo-
graph of the normal cartilage pattern in the limb of a 10-day chick. (Photograph courtesy of L. Wolpert and
A. Hornbruch)

flux boundary conditions for the cells n and matrix p. The condition for U is an imposed
restraining force which comes from the epidermis—the sleeve of the limb bud. The
dispersion relation for the mechanism with such a domain is reminiscent of that for re-
action diffusion mechanisms with similar geometry, as discussed in detail in Chapter 2,
particularly Section 2.5. Let us suppose that as the cells age the traction increases as in
Figure 6.7 and eventually passes through the critical value 7.. The detailed form of the
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dispersion relation is such that in the appropriate parameter space this first bifurcation
produces a single central aggregation of cells recruited from the surrounding tissue.

The axial cell aggregations are influenced by the cross-sectional shape as shown in
Figure 6.15(a). As the cells condense into a single aggregation they generate a strong
centrally directed stress as in Figure 6.15(b). This radial stress deforms the already
slightly elliptical cross-section to make it even more elliptical. This change in geometry
in turn induces a secondary bifurcation to two condensations because of the changed
flatter geometry of the cross-section. An aerofoil section gives rise to two condensations
of different size as in Figure 6.15(a), path 3: these we associate with, for example, the
radius and ulna in forelimbs as in the photograph in Figure 6.15(d).

We should interject, here, that this behaviour is directly equivalent to the situation
with the patterns generated by reaction diffusion (and chemotaxis) mechanisms as il-
lustrated in Figures 2.14(c) and 2.17. A similar scenario for sequential laying down of
a prepattern for cartilage formation by reaction diffusion models equally applies. How-
ever, what is fundamentally different is that with a mechanical model, the condensation
of cells influences the shape of the domain and can actually induce the sequence of
bifurcations shown in Figure 6.15(c).

After a two-condensation state has been obtained, further growth and flattening can
generate the more distal patterns. By the time the limb bud is sufficiently flat, cell re-
cruitment effectively isolates patterning of the digits. Now subsequent growth induces
longitudinal or segmental bifurcations with more condensations simply fitted in as the
domain, effectively linearly now, increases and we get the simple laying down of seg-
ments, for example, the phalanges in Figure 6.15(c), as predicted by Figure 6.15(a),
path 4.

It is important to reiterate here, that the sequence of cell pattern bifurcations need
not be generated by a changing geometry; it can result from a variation of other param-
eters in the model. Also asymmetric condensations can result from a spatial variation
or asymmetry in a parameter across the limb cross-section. There is well-documented
experimental evidence for asymmetric properties, which, of course, are reflected in the
different bone shapes and sizes in the limb such as the radius and ulna in Figure 6.15(d).
Whatever triggers the bifurcations as we move from the proximal to distal part of the
limb, the natural sequence is from a single condensation, to two condensations and then
to several as in Figure 6.15(c); see also Figure 6.18.

Much of the extensive experimental work on chondrogenesis has been to investi-
gate the chondrogenic patterns which result from tissue grafts. The major work on chick
limbs was initiated and carried out by Lewis Wolpert and his co-workers and it has been
the principal stimulus for much of the current research in this line, on other animals as
well as chicks; see, for example, Wolpert and Hornbruch (1987), Smith and Wolpert
(1981) and the more review-type article by Wolpert and Stein (1984). One set of exper-
iments involves taking a piece of tissue from one part of a limb bud and grafting it onto
another as in Figure 6.16(a). The region from the donor limb is referred as the zone of
polarising activity—the ZPA. This results in the double limb as in Figure 6.16(b).

Consider now the double limb in Figure 6.16(b) in the light of our model and let
us examine how this can arise. Let us be specific and take geometry and scale as the
bifurcation parameters. The effect of the tissue graft is to increase the width of the limb
cross-section by increasing the cell division in the apical ectodermal ridge, the distal
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Figure 6.16. (a) Graft experiments involve taking a small piece of tissue from one limb bud and grafting
it onto another. The effect of such a graft is to induce increased cell proliferation and hence increase the
subsequent size of limb. The result is to induce growth commensurate with a domain in which multiple cell
condensations can be fitted in at each stage of growth and hence result in double limbs. (b) Photograph of
a double limb in a 10-day chick following an anterior graft of tissue from the posterior region, the zone of
polarising activity (ZPA), of another limb as in (a). The grafted tissue creates the appropriate symmetry which
results in a mirror image limb. (From Wolpert and Hornbruch 1987; photograph courtesy of L. Wolpert and
A. Hornbruch) (C) A natural example of a double hand of a Boston man: note the lack of thumb and the mirror
symmetry. (After Walbot and Holder 1987)

edge of the wing bud (Smith and Wolpert 1981). This means that at each stage, after
the graft, the domain is sufficiently wide for a double set of cell condensations to form
and thus generate a double limb as shown in Figure 6.16(b). Not all grafts result in a
double limb. Different double patterns can be obtained, and which depends on where
and when in development the graft is inserted. Figure 6.16(c) shows an example of
a natural double hand. It is not uncommon for people to have six fingers on a hand,
often an inherited trait. (Anne Boleyn, one of Henry VIII's wives had six fingers—
unfortunately she had the wrong appendage cut off!) An experimental prediction of the
model then is that if the limb bud with a graft is geometrically constrained within a scale
commensurate with a single limb, it would not be able to undergo the double bifurcation
sequence necessary for a double limb to form. The book by Walbot and Holder (1987)
gives a good description of such graft experiments and discusses the results in terms of
a positional information approach with, in effect, a chemical prepattern background.

A new model for patterning of limb cartilage development has been presented by
Dillon and Othmer (1999) in which they incorporate the interactions between mor-
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phogens in the ZPA (zone of polarizing activity) and the AER (apical epidermal ridge).
They demonstrate the importance of the interaction and importantly explicitly include
growth. The numerical scheme they develop can be used to explore the effects of various
experimental interventions.

Some interesting experiments have been carried out which show that many of the
results of graft experiments can be achieved by subjecting the limb bud, during devel-
opment, to doses of retinoic acid sequestered in small beads inserted into the limb. The
retinoic acid is slowly released in the tissue. A quantitative analysis of the effects is
given by Tickle et al. (1985); see also Tickle (1999). Disruption of the chondrogenic
process by chemicals and drugs is well known—the thalidomide affair is a tragic ex-
ample. This work highlights one of the important uses of any theory which might help
in unravelling the mechanism involved in chondrogenesis. Until we understand the pro-
cess it is unlikely we shall be able to understand how drugs, chemicals and so on will
disrupt the process during development.

When we look at the cartilage patterns after the initial pattern has been laid down
we see, as in Figure 6.15(c), that there is a gap between the bifurcations, for example,
between the humerus and the radius and ulna. Whether or not there is a gap in cell
condensation as the pattern bifurcates from a single to a double aggregation depends
on the dispersion relation; these are the same possibilities we discussed regarding Fig-
ures 2.17(a) and (b) in Chapter 2. It has been shown from experiment in the case of
cartilage patterning in the developing limb for a large number of animals that the bifur-
cation is a clear branching process as seen in Figure 6.17. In fact, with the mechanical
model the bifurcation is continuous. The separation comes from subsequent recruitment
of cells to form the observed gaps. This bifurcation patterning puts certain constraints
on allowable dispersion relations which, in turn, imply certain constraints which any
model mechanism must satisfy.

Figure 6.17. Longitudinal cross-section through the limb bud of a salamander Ambystoma mexicanum: note
the branching bifurcation of cell condensation. At a later stage the branches of the Y separate from the main
stem through cell recruitment at the ends; these are marked B. A segmental bifurcation can be seen starting
at S. (Photograph courtesy of P. Alberch)
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Morphogenetic Rules for Cartilage Morphogenesis in the Limb

With a completely symmetric geometry and tissue isotropy it is possible to move through
the bifurcation space of parameters from one aggregation, to two, to three and so on.
With reaction diffusion mechanisms, such as we considered in Chapter 2, it is possible
to choose a path in some parameter space to achieve this; refer to Figure 2.14(b) for a
specific example. It is also possible to do this with mechanical models. However, with
the natural anisotropy in embryological tissue such isotropy does not exist. The ques-
tion then arises as to how the pattern sequence from a double to a triple condensation
is effected. We believe that for all practical purposes the process must be that in which
one branch of the double condensation itself undergoes a branching bifurcation while
near the other branch either a focal condensation appears or it undergoes a segmental
bifurcation (see Figure 6.18). Let us now note another experimentally observed fact,
namely, that during chondrogenesis there appears to be little cell division (Hinchliffe
and Johnson 1980). This implies that condensations principally form through recruit-
ment of cells from neighbouring tissue. Thus, as the limb bud grows the pattern bifurca-
tion that takes place following a branching bifurcation is as illustrated in Figure 6.18(c).
Figures 6.18(a) and (b) show the other two basic condensation elements in setting up a
cell condensation pattern in a developing limb.

If we now take the bifurcating pattern elements in Figures 6.18(a)—(c) as the three
allowable types of cell condensations we can see how to construct any limb cartilage
pattern by repeated use of the basic condensation elements in Figures 6.18(a)—(c). Fig-
ure 6.18(e), which is the forelimb of a salamander, is just one example to illustrate the
process. So, even without considering any specific mechanism, we hypothesise an im-
portant set of morphogenetic rules for the patterning sequence of cartilage in the devel-
opment of the vertebrate limb. This hypothesis, encapsulated in the theory put forward
by Murray et al. (1983a) and Oster et al. (1983), was exploited by Oster et al. (1988)
who present extensive experimental evidence for its validity.

In the above discussion we had in mind a mechanical model for pattern forma-
tion in mesenchymal cells. The morphogenetic rules which we deduced equally apply
to reaction diffusion models of pattern formation. In fact we suggest they are model-
independent, or rather any model mechanism for chondrogenic pattern formation must
be capable of generating such a sequence of bifurcating patterns.

Model Predictions and Biological Implications

If we look at the bifurcation in cell condensations in Figure 6.17 we see that the bifur-
cation is continuous, essentially like that shown in Figure 6.18(b). This imposes con-
straints on any proposed model mechanism for cartilage patterning. Let us suppose we
have a pattern formation mechanism which gives rise to a dispersion relation which
varies as shown in Figure 6.19(a) as a parameter changes. If domain size is such a pa-
rameter then the implication for the evolution of the pattern is then illustrated in the
second and third diagrams of Figure 6.19(a). In other words as the limb bud grows the
initial condensation bifurcates as predicted but with a homogeneous region separating
the initial condensation and the Y-bifurcation. If we now consider the dispersion vari-
ation scenario in Figure 6.19(b) the biological implication is that the bifurcation from
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Figure 6.18. (a)—(c) The three basic types of cell condensations which generate cartilage patterns in the de-
veloping vertebrate limb. These are postulated as the morphogenetic rules for cartilage pattern generation for
all vertebrate limbs. (a) Focal condensation, F'; (b) Branching bifurcation, B; (C) Segmentation condensation,
S. (d) Formation of more patterns is by further branching or independent foci. (€) An example of a branching
sequence showing how the cartilage patterns in the limb of a salamander can be built up from a sequence of
F, B and S bifurcations.
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Figure 6.19. When the dispersion relation for a pattern formation mechanism exhibits the characteristics in
(@) as a critical parameter varies, the implication for the subsequent branching is that prior to the Y-bifurcation
there is a region of homogeneity. In (b), on the other hand, the dispersion scenario implies a continuous
bifurcation. These have very specific biological implications for the developing limb.

one to two condensations is continuous. This clearly puts developmental constraints on
the model mechansim.?

Experimental evidence from amphibians suggests that osmotic properties of the
ECM may be important in morphogenesis. Hyaluronate is a principal component of the
ECM and can exist in a swollen osmotic state. As the condensation of chondrocytes
starts the cells secrete an enzyme, hyaluronidase, which degrades the hyaluronate. This
could lead to the osmotic collapse of the matrix thus bringing the cells into close enough
contact to initiate active contractions and thus generate cell aggregations. Cell motility
is probably not important in this scenario. A modification of the mechanical model to
incorporate these chemical aspects and the added forces caused by osmotic pressure
was proposed and analysed by Oster et al. (1985b). They showed that such a mech-
anochemical model would generate similar chondrogenic patterning for the developing
limb.

2Prior to the experiment which produced Figure 6.17 I separately asked two major developmental bi-
ologists with decades of experience and expertise on cartilage patterning in the developing limb what they
thought happened when the humerus bifurcated in the radius and ulna. Does it happen as in Figure 6.19(a) or
(b)? Each of them answered without any hesitation whatsoever and with complete conviction: the first said
that it was, of course, like that shown in Figure 6.19(a) while the second, with equal conviction, said it was as
in Figure 6.19(b) (the correct answer). Interestingly, if you look at the developing limb a short time after the
photograph in Figure 6.17 was taken the condensations have recruited cells from the continuous bifurcating
region in Figure 6.19(b) and created a homogeneous region as in Figure 6.19(a). The first had simply not
looked at the embryonic limb bud during this small window of time.
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A new model for patterning of limb cartilage development has been proposed by
Dillon and Othmer (1999) in which they incorporate the interactions between mor-
phogens in the ZPA (zone of polarizing activity) and the AER (apical epidermal ridge).
They demonstrate the importance of the interaction and importantly explicitly include
growth. The numerical scheme they develop can be used to explore the effects of var-
ious experimental interventions. A general interest article by Riddle and Tabin (1999)
on how limbs develop brings in genetic aspects, which play a major role of course in
controlling the mechanisms.

A major role of theory in morphogenesis is to suggest possible experiments to
distinguish different models each of which can generate the appropriate sequence of
patterns observed in limb chondrogenesis. Mechanical models lend themselves to exper-
imental scrutiny more readily than reaction diffusion models because of the elusiveness
of chemical morphogens. In the next chapter, where further examples are given of the
application of these general rules, we shall see how they introduce developmental con-
straints which lets us make certain practical predictions. It also relevant to the existence
and nonexistence of certain developmental teratologies. We shall describe some of the
experimental results based on these predictions; they have important evolutionary im-
plications regarding vertebrate limb development. These morphogenetic rules constitute
another example of a biologically practical result which arose from specific modelling
concepts but which is model-independent as in the case of alligator striping.

6.7 Embryonic Fingerprint Formation

The study and classification of fingerprint patterns—dermatoglyphics—has a long
history and their widespread use in genetic, clinical, pathological, embryonic, anthro-
pological and forensic studies (not to mention palmistry) has produced an extensive
descriptive literature. Figure 6.20(a) (see also Figure 12.5(c)) is a photograph of a hu-
man fingerprint on which various common traits are marked. The descriptive methods
used may loosely be described as topological, that is, those associated with the study
of properties that are unchanged by continuous deformation (Penrose 1979), and statis-
tical (Sparrow and Sparrow 1985) and depend on the area of application. Topological
methods have been found to be especially efficient for genetic and diagnostic purposes
because ridges appear in their definitive forms during embryogenesis and the basic pat-
terns do not change under continuous deformation during growth (Elsdale and Wasoff
1976, Loesch 1983, Bard 1990).3

In a study of two-dimensional patterns created on a confluent dish of normal fi-
broblasts, and dermatoglyphic patterns of primate palms and soles, Elsdale and Wasoff
(1976) observed that both patterns were characterized by different types of interruptions
or discontinuities in fields of otherwise parallel aligned elements. They concluded that
because the discontinuities were invariant under plastic deformations as well as rigid
motions, topological considerations in addition to analyses of cell behaviour were nec-
essary to understand dermatoglyphic pattern development. However, topological clas-

3The old literature abounds with interesting studies. In one 19th century book the author describes in great
detail the effect on his fingerprints of self-mutilation. When he had used up all his fingers he moved on to his
feet. The results of 40 years of this were completely inconclusive but he had a lot of interesting scars.
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Figure 6.20. (a) Human fingerprint showing some of the typical singularities found such as branching and
triradii; see also Figure 6.22. (b) Sketches of some unusual bifurcation patterns associated with dermato-
glyphic patterning. A common feature is the bifurcation to two or more ridges and ‘melting’ of such ridges to
form a single one. (C) Such bifurcation patterns are known to exist in patients with chromosomal abberations
(Trisomy 21). (Dr. K. de Braganca, personal communication 1991).
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sification adopts systems of rules to quantify features of patterns and is limited since
it ignores much of the geometry and focuses only on fingerprint identification tech-
niques. Others believe that due to the elastic nature of the human skin a combination of
a topological and statistical description is required. It is thought, however, that succes-
sive rolled impressions usually suffer from a degree of relative distortion (translation,
rotation and stretching) and topological systems should be free from the detrimental
effects of plastic distortions caused by changes in physical circumstances under which
sophisticated patterns are formed. Such an approach was successfully adopted by the
National Bureau of Standards in the U.S.A. in the matching of fingerprint patterns: var-
ious comparison algorithms were developed for use on rolled impressions that were
invariably inexpensive to implement (see Sparrow and Sparrow 1985). Since then sev-
eral new more sophisticated pattern recognition computer-oriented techniques are used
in classification.

There has been a number of studies on the development of general ridge patterns
for which tissue culture and microscopy have been used (for example, Cummins and
Midlo 1943, Schaumann and Alter 1976, Green and Thomas 1978, Elsdale and Wasoff
1976, Okajima 1982, Okajima and Newell-Morris 1988 and Bard 1990; see other ref-
erences in these). Observations by Loesch (1983) indicate that in humans, for example,
the development of epidermal ridge patterns seems to start around the third month of
gestation. The ultimate patterns are dependent on the degree of asymmetry and, to a
considerable extent, on pad formation: symmetrical pads produce whorls; asymmetrical
pads produce loops while other forms of pad development lead to arches.

There is little general agreement as to how dermatoglyphic patterns are formed or
what mechanism creates them. As with other skin appendages a key question is whether
the dermis or epidermis alone has the capacity to form a particular type of derivative.
Various grafting experiments (for example, Davidson 1983) support the view that the
dermis and epidermis interact concurrently in the formation of related patterns such as
feather germs. The results of heterospecific recombination of mouse plantar (sole of
the foot) dermis with epidermis from other skin regions, and vice versa (Kollar 1970)
suggest that lack of hair follicles and the appearance of dermatoglyphic patterns may be
determined by the dermis rather than the epidermis.

Experiments by Okajima (1982) led to the development of a method to inspect
dermatoglyphic patterns on the exposed dermis and have confirmed that ridged struc-
tures first appear on the dermis. These ridges appear as a result of opposing movement
of cell masses. A ridge may form from cells ejected from the deeper cell layers. The
shape of the ridge frequently suggests an accumulation of cells in specific regions and
discontinuities could depend on the curvature or geometry of the region. In sequen-
tial photographs (Green and Thomas 1978) short ridges often seem to fuse into longer
ones. Long ridges may undergo uniform lateral displacement, or a local displacement
to produce an arch; see Figure 6.21(a). Sometimes arched ridges curve into whorls,
suggesting that the ‘resistance’ of the two sides of the arch is unequal. The size of the
whorl is determined by the size of the field available for organization, confirming that
the process of dermatoglyphic pattern formation can be divided into two stages: first,
the formation of ridges and second the curving of these ridges into whorls, loops and so
on. Patterns may, therefore, develop by a process of cell movement in the dermis, which
first produces ridges and then curves these ridges into bifurcating patterns of increasing
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Figure 6.21. (a) The development of ridge patterns. The photograph shows numerous left- and right-handed
whorls. The field is frequently divided into regions of different patterns in which triradial lines meet at angles
of approximately 120° relative to each other. (From Green and Thomas 1978; photograph courtesy of Howard
Green) (b) Numerical simulation of a heterogeneous steady state solution of the model system with homo-
geneous boundary conditions on a square domain with a random initial perturbation in cell density. Here the
displacement field associated with the passive movement of the ECM reflects a typical scenario during the
onset of embryonic dermal patterning. Parameter values: t = 1.1, u = u; + up = 0.7, D = 0.002,a; =
0.003,s = 140.0, y =0.02,m =r =0, n; = pu; /2(1 +v'), n; = np = 1.0.
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complexity, ultimately whorls, loops and triradii. Genetic disorders can also produce
unusual patterns as illustrated in Figure 6.20(c).

A particularly challenging aspect of dermatoglyphic patterning, from the modelling
point of view, is not only how normal patterns are generated but also how they form the
unusual ridge bifurcation patterns such as shown in Figure 6.20(b). These bifurcation
patterns are usually associated with some genetic diseases (see, for example, Karev
1986 and Okajima 1982), and are especially known to exist in patients with chromo-
somal abberations (Trisomy 21) (Dr. K. de Braganca, personal communication 1991).
In de Braganca’s studies, abrupt changes of ridge directions (bifurcations) on the der-
mal patterns of the fingertips were noticed. There were cases where two or more ridges
could bifurcate and ‘fuse’ together at a later stage to form a single minutiae as seen in
Figure 6.20(b) and were explained as possible shortening of the phalanges in their de-
velopment. These bifurcation forms suggest that the underlying mechanism could arise
from the mechanical motion of cells on the extracellular matrix, which is constantly
being convected.

Given the possibility that the mechanical motion of cells on the extracellular matrix
generates bifurcation patterns during the onset of embryonic dermatoglyphic patterns,
Daniel Bentil and I (see also Bentil 1990) decided to use the mechanical approach to see
if a mechanical mechanism could create similar dermatoglyphiclike patterns: the full
two-dimensional system involves the stress tensors for the ECM and the cell traction
forces.

Since experimental evidence suggests that the formation of ridges involves a me-
chanical deformation of the dermis and subsequently the epidermis, we investigate a
model for ridge formation based on the mechanical forces associated with the dermis
and the tendency for the epidermis to buckle and fold in line with the dermis. We con-
sider two of the essential processes that occur during cell motion, namely, the spreading
of the extracellular matrix (ECM) with the convection of cells and adhesive sites with
it, and the growth of tissues and cells during dermatoglyphic pattern formation. The full
model we propose for dermatoglyphic patterning includes an ECM source term depen-
dent on cell and matrix densities.We suggest that cell motion and cell traction forces,
together with proliferation, could produce branching patterns on the continuum ECM
substratum and cell density. Migrating cells follow the branching patterns as they are
carried by the tissue matrix. We include a nonlocal (long range) traction term in the
cell-matrix interaction (ECM) equation. As we saw above the inclusion of this nonlo-
cal term ensures stable spatial patterning. With these, using (6.7) with D, = a» = 0,
(6.18) with tn/(1 + xn?) = tn since cell densities are generally small, and (6.20) with
S(n, p,u) = mnp(py — p) with m and pg constants, the model mechanism is then

0
P DYV =V (u) —a1V - nVp+rn(N —n), (6.63)
ot —— ——
diffusion convection haptotaxis mitosis
V| e + bl +E'(€e +V0) +tn(o +yVip)l | —  spu =0, (6.64)
—~—

viscous elastic cell traction external forces
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ap

3 + V- (pu) = mnp(po — p) - (6.65)
t ——— ——

convection matrix secretion

The matrix source term is probably necessary to induce branching.

From the above sections we know that this system, given by (6.63)—(6.65), can
generate a spectrum of complex spatial patterns if the parameters are in the appropriate
ranges. After nondimensionalising the system using (6.21), linearising about the rele-
vant steady state U = 0, n = p = 1 and looking for solutions proportional to Otk X
we get (refer to Section 6.3) the dispersion relation, which is similar to (6.31) but with
an extra contribution because of the matrix secretion term in (6.65) which makes the
characteristic polynomial a cubic, namely,

a(k®)o3 +b(k*)a* + c(kP)o +d(k*) = 0,
a(k?) = pk*,  b(k*) = (uD1 + yOK* + [1 + pu(r +m) — 211k* + 5,
c(k?) = ytDik® + [(1 + mpu — T)D1 + (yr —a)tlk? (6.66)
+r+m+sDy+mur — (r —i—m)t]k2 + (r +m)s,
d(k*) = m[Dik* + (r + sDDK* + 5],
for which o = 0 is not a solution as in Section 6.3. Here a discussion of linear stability
requires using the Routh—Hurwitz conditions for a cubic (see Appendix A, Volume 1).

In this case the steady state is unstable if, for any k> # 0, a(k*) # 0 and the coefficients
in (6.67) satisfy the inequality

H(k?) =

2 2 2 2
A (W) —at dw ] <o. (6.67)

The Routh—Hurwitz condition (6.67) is difficult to use analytically since there are high-
order polynomials in k> and several parameters. So, we backed up our model analysis
with optimization and graphical techniques in the following way. First, we choose the
cell traction, t, as the crucial parameter in the dispersion relation that drives the pattern
formation. If r = 0, then (k%) > 0 and ¢(k?) > 0 for all wavelengths k, and the system
(6.63)—(6.65) cannot generate spatial structures. The critical traction, ., appears in the
form of a quadratic. Second, we used the Logical Parameter Search (LPS) method de-
veloped by Bentil and Murray (1991) to generate parameter sets which gave dispersion
curves we wanted. The LPS method is an online search procedure which scans given
parameter ranges to generate parameter sets satisfying some given logical conditions,
namely, conditions for instability and spatial patterning, and it easily extends to higher-
dimensional problems. To isolate specific integer modes, we chose biologically realistic
parameter ranges (as far as we could with our current knowledge of the biology) for
each of the parameters in question. We set up iterative procedures for the parameter
ranges and evaluated the roots of the dispersion relation by Newton’s method and used
a numerical algorithm to find the roots of equation (6.67) (with an equality sign). The
LPS procedure then checked whether the conditions for instability and, therefore, spatial
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patterning were satisfied at specific modes for various sets of parameter values within
the parameter space. The search was continued until all the parameter ranges had been
examined. This method seemed to be particularly useful in the search for parameter sets
at critical bifurcation values where the cell traction T = ..

In line with linear predictions (Bentil and Murray 1993) any of the generated sets
is guaranteed to give numerical results that exhibit the desired spatially heterogeneous
patterns. The initial conditions consisted of steady state values plus a random pertur-
bation about the steady state cell population. As a first step, we considered square and
rectangular domains as representative domains for palms and soles.

Comparison of Numerical Results with In Vitro Experiments

Here we describe some of the patterns that were obtained from a direct solution of the
model equations in two spatial dimensions and relate them to results of specific in vitro
experiments and actual dermatoglyphic patterns.

As we have seen these dermal mechanical mechanisms can generate spatial patterns
in the dependent variables. We can obtain various vector displacement (strain) fields
that correspond to the magnitude and direction of displacement patterns of cells on the
cell-matrix composite. The displacement vector U represents the direction of preferred
orientation of the cell-matrix tissue in the neighborhood of any point after a random
initial perturbation in cell density. Below we relate our simulation results with specific
experiments.

(i) Development of Curved Ridges from Cultured Human Epidermal Cells. In vitro
experiments by Green and Thomas (1978) show that it is possible to enhance a
serial cultivation of human epidermal keratinocytes by including in the culture
lethally irradiated fibroblasts (usually 3T3 cells). The presence of 3T3 cells in-
duces epidermal cell colonies to grow and eventually fuse to make confluent lay-
ers after about 21 days. At a later stage (between 30 to 40 days) some cells begin
to form thickened ridges which resemble arches, loops and whorls. Thus, cultures
made from disaggregated human epidermal cells grow to a confluent cell layer
followed by the emergence of patterns resembling those of human dermatoglyphs.
Although these are not dermal cells it highlights, among other things, the impor-
tance of cell division in the patterning process. Figure 6.21(a) shows an advanced
ridge pattern of human keratinocytes. For comparison Figure 6.21(b) is a numer-
ical solution of the model system (6.63)—(6.65) for dermal patterning on a square
domain. Here, we suggest that cell movement on the ECM substratum, which is
passively dragged along by convection and the final displacement and strain fields
due to convective and other effects, presages dermal patterning.

(ii) Development of Curved Ridges from Fibroblast Culture. Elsdale and Wasoff (1976)
investigated a way in which densely packed cells organize. A pedagogical discus-
sion has been given by Bard (1990). Normal human diploid lung fibroblasts were
cultured and cell movement and patterning were studied with time-lapse cinemi-
crography. The cells spread and eventually stabilized forming a dense patchwork
of arrays of fibroblasts as confluences were approached. As a result, the confluent
culture formed a patchwork of numerous parallel arrays. The arrays merged at a
confluence where the cells in two adjacent arrays shared the same orientation to
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within about 20°. Merging was inhibited where the orientation differed signifi-
cantly and discontinuities of characteristic forms arose as empty ditches between
raised banks of cells. Experiments by Erickson (1978) complement those of Els-
dale and Wasoff (1976) and indicate that when cells come into contact with each
other at a small angle, only a small portion of the filopodial protrusions are inhib-
ited and neighbouring cells glide along and adhere to each other. At large angles
of contact cells may crawl over each other or move away from each other. The
angle of contact that produces this feature was suggested for different tissues. For
example, a fetal lung fibroblast can realign at an angle of less than 20°. The work
of Edelstein-Keshet and Ermentrout (1990) on the formation of parallel arrays of
cells is pertinent to these studies.

Elsdale and Wasoff (1976) examined fibroblast organization using the tech-
niques of geometric topology. They calculated the topological index of pattern
elements and characterized the geometry of patterns according to their indices.

The article by Penrose (1979) discusses ridge patterns in general and how to
calculate their indices in detail; he gives numerous examples. An important point
to note is that ridge patterns are not vector fields. Suppose, by way of example, we
consider a vector field classical centre or star as in Figures 6.22(a) and (b) (these
are Figures A.1(d) and (f) in Appendix B, Volume 1). First draw a circle round
the singularity, start at a point on this circle and move round it in an anticlockwise
direction. The vector changes direction as we move round, increasing by 27w when
we get back to where we started. The index is given by dividing the angle turned
by 2m. In these two cases the vector has turned through an angle 2w so these
singularities each have an index +1. On the other hand if we consider the saddle
point illustrated in Figure 6.22(c) the angle changes by —2m and so it has an index
—1. A dipole singularity, for example, has an index +2: it is like the juxtaposition
of two singularities like that in Figure 6.22(a). If there is a group of singularities
and you draw a circle round them all the index is then the sum of the indices of
each singularity inside.

Now consider ridge patterns where the lines have no direction as in the singularities
illustrated in Figures 6.22(d) to (f). None of them can occur with vector fields. The
inference (Penrose 1979) is that the ridges are not produced by a field of force or as a
line along which some quantity is constant (like a streamline in incompressible inviscid
fluid flow). Penrose (1979) concluded that these singularities are probably formed by
‘something of a tensor character, such as a stress or strain, or perhaps a curvature of a
surface.” In the case of the model mechanisms we have proposed for fingerprint patterns
this is what we have. The fingerprint shown in Figure 12.5 in Chapter 12 is a particularly
clear example of the double loop singularity shown in Figure 6.22(f).

Let us now consider the singularities in Figures 6.22(d) to (f). If we move round
our circle enclosing the singularity in Figure 6.22(d), for example, it is invariant under a
rotation of 77 and so has an index of +(1/2). In the case of the triradius in Figure 6.22(¢e)
the singularity has index —(1/2) while the multiple situation in Figure 6.22(f) has index
1 =(+1/2) + (+1/2).

The singularities in Figures 6.22(d) and (e) are the simplest type of ridge singular-
ities. Others can essentially be made up of a combination of these: for example, Fig-
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Figure 6.22. Typical vector singularities: (a) Centre: index +1. (b) Star: index +1. (¢) Saddle point: index
—1. (d) Ridge singularity: index +(1/2). (e) Triradial ridge singularity: index —(1/2). (f) Multiple ridge sin-
gularity, namely, two singularities as in (d), has index +1. (g) Solution of the model system of equations for
the displacement field on a rectangular domain with homogeneous boundary conditions. Again the displace-
ment field associated with the passive movement of the ECM is typical of embryonic dermal patterning. The
simulations give patterns that resemble a quadriradius and have a topological index of n = —1. Parameter
values: T = 0.76, © = 1 + up = 0.04, D = 0.08,a; = 0.005, s = 100, m =r = 0.0, y = 0.042,
ni = w1 /20 +v"), = = 1.0.

ure 6.22(f) is made up of two loops. Instead of having these fractional indices and to
distinguish them from vector singularities we can define them as multiples of 7 rather
than 277 and denote them by N. So, the triradius has an index N = —1, the loop has an
index N = +1 and the complex double loop arrangement in Figure 6.22(f) has N = 2.
If we now have a ridge pattern made up of L loops and 7 triradii within a closed domain,
theindex N =L —T.

Penrose (1979) applied these ideas to the normal human hand which has numerous
loops and triradii (as well as other singularities as in Figure 6.22). Now consider the
hand to be a plane with the ridges on the boundary being simple ridge patterns normal
to the boundary except at the fingertips where it is parallel to the tip (that is, there
is no change in angle as we go round the tip). As we move round the boundary of a
single finger it is only in the gap between the fingers that the angle changes, by —. So,
going all the way round the hand N = —(D — 1), where D is the number of digits. If
we consider there are only loop and triradial fingerprint patterns we then obtain, using
N = L — T, the relation between the digits and the singularities as D + L — T = 1
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or for the normal hand, T — L = 4. There are, however, more complex singularities in
normal fingerprints such as illustrated in Figures 6.20 and 6.22.

In Figure 6.22(g) we give a typical solution of the model equations on a rectangular
domain. From a numerical point of view, realignment is influenced by the shape of
the domain. Initially, the cells were randomly distributed on the ECM but after some
time elapsed, the interaction of the cells and matrix produced cell-matrix displacement
fields; these types of patterns are very similar to the experimental patterns of Elsdale
and Wasoff (1976); see also Bard (1990).

As a preliminary step towards understanding the pattern behaviour and formation
of early dermatoglyphic patterns, in this section we focused on displacement fields pro-
duced in the dermal ECM since experimental evidence suggests, as we noted, that
dermatoglyphic patterns are formed on the dermis (Okajima, 1982) and the dermis
transmits morphogenetic messages across the basal lamina to the epithelium.* The me-
chanical model mechanism, (6.63)—(6.65) can generate stable displacement fields that
have similar characteristics to some of the patterns obtained from cultured fibroblasts.
The solutions exhibit features that reaction diffusion model mechanisms, for example,
do not seem to have. It would be interesting to see what quantitative effect cell mitosis
and matrix growth would have on the patterns generated by the model. With our model,
the orientations in the displacement fields can change continuously and in a systematic
manner from point to point within the tissue matrix except at singularities. Elsdale and
Wasoff (1976) pointed out a basic feature that must be present in such continuum mod-
els of cell-matrix generated singularities, namely, that the patterns must be invariant
under rotation through 7 to ensure that they possess the appropriate symmetry.

With regard to the boundary geometry, it would be more realistic to study the model
mechanism on semi-circular and finger-like domains resembling palms and soles of pri-
mates. Other types of boundary conditions and their effect on dermatoglyphic patterning
would also be interesting to investigate.

As a footnote, since the final pattern depends on the initial conditions (which in
vivo always involve a stochastic element) it follows from the material in this chapter
that no two people can have identical fingerprints—not even identical twins.

6.8 Mechanochemical Model for the Epidermis

The models we considered in earlier sections were concerned with internal tissue, the
dermis and mesenchyme. The epithelium, an external tissue of epidermal cells, is an-
other major tissue system in the early embryo which plays an important role in regu-
lating embryogenesis. We briefly alluded to the interaction between the dermis and the
epidermis in the formation of skin organ primordia; recall the discussion on the pattern-
ing of teeth primiordia in Chapter 4. Many major organs rely on tissue interactions so
their importance cannot be overemphasised; see, for example, Nagawa and Nakanishi
(1987) who specifically investigate mechanical effects. As a necessary prerequisite in
understanding dermal-epidermal tissue interactions we must thus have a model for the

4In a discussion about fingerprints with one of the senior police officers in Oxford (who was a specialist
on fingerprints) he told me that one method of identifying a drowned body was by the fingerprints from the
dermis. Apparently if a body is in the water a considerable length of time the epidermis sloughs off leaving
only the dermis which gives an accurate fingerprint of the person when alive.
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epidermis. Here we describe a model for the epithelium. As noted above the cells which
make it up are quite different to the fibroblast cells we considered above. They do not
actively migrate but are arranged in layers or sheets, which can bend and deform during
embryogenesis; see Figure 6.2. During these deformations the cells tend to maintain
contact with their nearest neighbours and importantly, unlike dermal cells, they can-
not generate traction forces under normal conditions. There are noted exceptions, one
of which we shall discuss later in Chapter 9 when we consider a model for epidermal
wound healing.

Odell et al. (1981) modelled the epithelium as a sheet of discrete cells adhering
to a basal lamina. Using a model for the contractile mechanism within the cell they
showed how many morphogenetic movements of epithelial sheets could result from
the mechanical interactions between the constituent cells. Basic to their model was the
mechanochemistry of the cytogel, the interior of the cell, which provides an explanation
for the contractile properties of the cells. The continuum model we describe in this
section was proposed by Murray and Oster (1984a) and is based on the discrete model
of Odell et al. (1981).

A different but related model for epithelial movement was proposed by Mittenthal
and Mazo (1983). They model the epithelium as a fluid elastic shell which allows cell
rearrangement and such spatial heterogeneity creates tensions which can alter the shell
shape.

Some Biological Facts About Cytogel

The cell cytoplasm consists largely of a viscoelastic gel which is a network of macro-
molecular fibres mostly composed of actin linked by myosin crossbridges, the same ele-
ments involved in muscle contraction. This network has a number of complex responses
and is a dynamic structure. The cell can contract actively by regulating the assembling
and disassembling of the cross-linking of the fibres and carry out a variety of shape
changes. When the fibres are strongly linked the cytoplasm tends to gel whereas when
they are weakly linked it solates. Here we focus on just two key mechanical properties
which subsume the complex process into a mechanochemical constitutive relation.

Chemical control of the cell’s contractility, related to the sol—gel transition or de-
gree of actomyosin cross-linking, is mainly due to the local concentration of free cal-
cium in the cytogel. Calcium regulates the activity of the solation and gelation factors
and the contractile machinery. Figure 6.23 gives a cartoon summary of the principal
components of the contractile apparatus although we do not deal with it at this level of
detail.

At low concentration levels calcium encourages cross-linking in the gel and, on a
sliding filament concept (as in muscles), more cross-bridges become operative and this
implies that the fibres tend to shorten and hence become stronger. It is similar to the
increased strength of muscle in a contracted state and a stretched state—you can lift a
much heavier object with your arm bent than with it outstretched. So, as free calcium
concentration goes up the gel first starts to contract actively. If the concentration gets too
high, however, the gel becomes solated (the network begins to break apart) and cannot
support any stress. There is thus a ‘window’ of calcium concentration which is optimal
for contractile activity. Thus the concentration of free calcium and the mechanical forces
associated with the cytogel must be key variables in our mechanical model.
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Figure 6.23. Microscopic description. The
cytogel consists of actin and myosin which
generate the traction forces. Solation and
gelation enzymes control the connectivity
of the gel and thus its viscosity and
elasticity. Although there is a complex of
chemicals involved, in the model, we
consider free calcium to control the activity
of the solation and gelation factors and
hence the contractile apparatus. We model
the macroscopic properties of the cytogel
as a viscoelastic continuum with a
Solation viscosity, an elastic modulus and an active
factors traction force 7.

Gelation
factors

Force Balance Equation for Cytogel Contractility

We model the epithelial sheet of cells as a viscoelastic continuum of cytogel. As with
the model for mesenchymal cells, inertial forces are negligible, so the force balance
mechanical equation can be taken to be

V-(oy +o0g)+ pF=0, (6.68)

where F represents the external body forces per unit density of cytogel, p is the cytogel
density, assumed constant, and the stress is the sum of a viscoelastic stress oy and an
elastic stress o g given by (cf. (6.12))

oy = 1€ + 201,

or=E(1+v) e+ voh+ I 6.69)

elastic actlvs;
stress contraction
stress

where 7 is the contribution of the active cytogel traction to the elastic stress and &, 6,
I, w1, n2, E, v and v’ have the same meaning as in the cell-matrix equation (6.18)
in the dermal model in Section 6.2. Here, however, the nonlinear dependence of the
parameters on the dependent variables is different.

There is a relationship between the two models. In the mesenchymal model we
considered the cell-matrix material as an elastic continuum in which were embedded
motile contractile units, the dermal cells. In the model here the elastic continuum cyto-
gel also has contractile units—the actomyosin cross-bridges. However, we do not need
to account for any motion of these contractile units except for the deformation of the
gel sheet itself. In our model for the epithelium the role of the cells is now played by
the chemical trigger for contraction, namely, the free calcium concentration which we
denote by c(r, t). Thus we model the constitutive parameters (1, (2, E and t in the
stress tensor in (6.69) as given below. In fact, as we did in Section 6.2, we incorporate
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Figure 6.24. Typical nonlinear dependence on the dependent variables of the constitutive parameters in the
stress tensor in (6.69). In (@) and (b) the precipitous drop in the viscosities and actomyosin network elastic
modulus occurs when the gel solates. (C) Actomyosin traction as a function of c.

more generality than we subsequently study, not only for completeness but because the
full model poses interesting and as yet unsolved mathematical problems.

0]

(i)

(iii)

(iv)

Viscosity Parameters 1 and ny. The severing of the gel network effected by the
calcium results in a precipitous drop in the apparent viscosity and so we model
wi(c), i = 1,2 by atypical sigmoidal curve as illustrated in Figure 6.24(a).
Elasticity. A characteristic property of the actomyosin fibrils is that as the amount
of overlap of the actin fibres increases, so does the number of cross-bridges, and
so the fibre gets stronger as it contracts. Also, when a fibrous material is stretched
the fibres tend to align in the direction of the stress and the effective elasticity
increases. This means, as in the full dermal model, that the material is anisotropic.
These are nonlinear effects which we can model by taking the elastic modulus E
as a function of the dilation #. Choosing E(6) as a decreasing function of the
dilation, as illustrated in Figure 6.24(b), is a reasonable form to start with.

Active Traction. The fibrous material of the cytogel starts to generate contrac-
tile forces once the actomyosin machinery is triggered to contract. The onset of
contraction occurs when the free calcium is in the micromolar range. When the
calcium level gets too high the fibrous material can no longer exert any contractile
stress. We thus model the active stress contribution 7 (c) as a function of calcium
as illustrated in Figure 6.24(c).

Body Force. Movement of the epithelial layer is inhibited by its attachment to
the basal lamina, which separates it from the mesenchyme, by restraining tethers,
equivalent to the ‘guy lines’ in the dermal model. We assume this restraining force
per unit of cytogel density, F = su, where s is a factor reflecting the strength of
the attachments and u(r, ¢) is the displacement of a material point of the cytogel.
The form is similar to that used in the dermal model.

We incorporate these effects into the stress tensor (6.69) and the force balance equa-

tion (6.68) for the cytogel which takes the form

V. {ms, 0 + EQ+ )" [e + 0l + t(c)l]} —spu=0. (6.70)
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Figure6.25. (a) Qualitative form of the calcium-stimulated calcium release kinetics function R(c). A release
of calcium can be triggered by an increase of calcium: this is a switch from the zero steady state to ¢ = ¢3.
(b) A strain-induced calcium release, that is, stretch activation, based on the kinetics function R(c) + 6 in
(6.72), if y0 exceeds a certain threshold where 6 is the dilation.

For algebraic simplicity, or rather less complexity, we take the viscosities u;, i =
1, 2 and E to be constant. An analysis including variable viscosities and elastic modulus
would be interesting, particularly on the wave propagation potential of the model.

Conservation Equation for Calcium

We must first describe some of the chemical aspects of the cytogel. Calcium is se-
questered in membranous vesicles dispersed throughout the cytogel. It is released from
the vesicles by an autocatalytic process known as calcium-stimulated calcium release
(CSCR). This means that if the free calcium outside the vesicles exceeds a certain
threshold value it causes the vesicles to release their store of calcium (it is like the
toilet flush principle). We can model this aspect by a threshold kinetics. If we assume
the resequestration of calcium is governed by first-order kinetics, we can combine the
processes in a kinetics function R(c) where

OlC2

Ry =152~

dc, (6.71)

where o, B and § are positive constants. The form of R(c) is typically S-shaped as
shown in Figure 6.25(a): if 488> < «? there are two linearly stable steady states at
¢ = 0 and ¢ = ¢3 and an unstable steady state at ¢ = c».

The release of calcium can also be triggered by straining the cytogel, a phenomenon
known as ‘stretch activation.” We can model this by including in the kinetics R(c) a
term Y6, where y is the release per unit strain and 6 is the dilation. Figure 6.25(b)
shows the effect of such a term and how it can trigger calcium release if it exceeds a
certain threshold strain. (Certain insect flight muscles exhibit this phenomenon in that
stretching induces a contraction by triggering a local calcium release.)

Calcium, of course, also diffuses so we arrive at a model conservation equation for
calcium given by
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dc )
PP = DV~ c+ R(c) + y0
) (6.72)
=DVt -2 54 y0
= 1 + ﬁcz V )

where D is the diffusion coefficient of the calcium. We have already discussed this
equation in detail in Chapter 3, Section 3.3 (cf. also Chapter 6, Exercise 3) and have
shown it gives rise to excitable kinetics. We should emphasise here that the kinetics in
(6.72) is simply a model which captures the qualitative features of the calcium kinetics.
The biochemical details of the process are not yet completely understood.

The mechanochemical model for the cytogel consists of the mechanical equilibrium
equation (6.70), and the calcium conservation equation (6.72). They are coupled through
the calcium-induced traction term t(c) in (6.70) and the strain-activation term y6 in
(6.72). In the subsequent analysis we shall take E(0), the viscosities p;, i = 1,2 and
the density p to be constants.

We nondimensionalise the equations by setting

r*:i, t*Z(St, C*=£, U*_Ea
c3 L
L*(1 5(1
0% =0, s*:w, M;‘:%’ (i=1,2),
(1+v)1(c) R(c) (€7
v)t(c c
E*:B, T*(C*):—, R*(C*):—,
E écs
% ocs % 2 % y " D
= ) = ’ ) D = T’
= PEka v=gs 12

where L is some appropriate characteristic length scale and c3 is the largest zero of
R(c) as in Figure 6.25(b). Substituting these into (6.70) and (6.72) and omitting the
asterisks for notational simplicity, we have the dimensionless equations for the cytogel
continuum as

V{18 + u26 +& +0'601 + (o)} = su,

¢ _ py? ac? 0 = DV2c + R 0 (€79
Frie C+1+,302_C+y = c+ R(c) + y6.

The boundary conditions depend on the biological problem we are considering. These
are typically zero flux conditions for the calcium and periodic or stress-free conditions
for the mechanical equation.

The linear stability of the homogeneous steady state solutions of (6.74), namely,

Uu=6=0, c=c¢, i=1273 (6.75)

where ¢; are the zeros of R(c), can be carried out in the usual way and is left as an
exercise.
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With tissue interactions in mind, we can see how this model can be modified to
incorporate a mechanical influence from the mechanical dermal model. This would ap-
pear as a dermal input in the calcium equation proportional to 6p where 0p is a dilation
contribution from the dermis. If the strain activation parameter y is not sufficiently large
for the steady state ¢ = c3, U = 0 to be unstable for k% > 0, the effect of the dermal
input fp could initiate an epidermal instability since it enhances the 6 term in the cal-
cium equation, the second of (6.74). Inclusion of such a term also changes the possible
steady states since these are now given by

R(c)+6p=0, u=0.

The qualitative effect of 6p, when it is constant, for example, can be easily seen from
Figure 6.25(b); a threshold effect for large enough 6p is evident.

It is clear how tissue interaction is a natural consequence in these mechanical mod-
els. A nonuniform dermal cell distribution can trigger the epithelial sheet to form pla-
codes. This scenario would indicate that the papillae precede the placodes. On the other
hand the epidermal model can also generate spatial patterns on its own and in turn affect
the dermal mechanism by a transferred strain and hence effect dermal patterns. Also the
epidermal model could be triggered to disrupt its uniform state by an influx of calcium
(possibly from a reaction diffusion system). So, at this stage we can draw no conclu-
sions as to the order of appearance of placodes and papillae solely from the study of
these models without further experimental input. However, it is an attractive feature of
the models that tissue interaction between dermis and epidermis can be so naturally
incorporated.

Travelling Wave Solutions of the Cytogel Model

One of the interesting features of the model of Odell et al. (1981) was its ability to
propagate contraction waves in the epithelium. Intuitively we expect the continuum
model here to exhibit similar behaviour. The appearance of contraction waves is a com-
mon phenomenon during embryogenesis; recall the discussion in Section 13.6 on post-
fertilization waves on eggs.

The one-dimensional travelling wave problem can be solved numerically but to de-
termine the solution behaviour as a function of the parameters it is possible to consider
a simplified form of the equations, which retains the key qualitative behaviour but for
which we can obtain analytical solutions.

The one-dimensional version of (6.74) is

UUxxr + Uxx + T/(C)Cx —su=0,
(6.76)
¢t — Dcxy — R(c) — yuy =0,

where i = w1 + uo and where we have incorporated (1+-v’) into the redefined u and s.
We can then look for travelling wave solutions (cf. Chapter 13, Volume I, Section 13.1)

of the form

ulx,t)=Ux), ckx,t)=C(); z=x++ Vi, (6.77)
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where V is the wavespeed; with V > 0 these represent waves travelling to the left.
Substitution into (6.76) gives

uVU"” +U" + 7 (C)C' —sU =0,

(6.78)
VC' — DC" — R(C) —yU' =0,
where R(C) and t(C) are qualitatively as shown in Figures 6.25(a) and 6.24(c) respec-
tively. This system gives a fourth-order phase space the solutions of which would have
to be found numerically for given R(C) and 7(C).

To proceed analytically we can use a technique proposed by Rinzel and Keller
(1973) for waves in the FitzHugh—Nagumo system (cf. Chapter 1, Section 1.6) which in-
volves a piecewise linearization of the nonlinear functions R(C) and 7 (C). This method
retains the key qualitative features of the full nonlinear problem but reduces it to a lin-
ear one with a different linear system for different ranges in z. The procedure involves
patching the solutions together at the region boundaries. Appropriate piecewise linear
forms could be

1(C)=H(C) — H(C — c2),
R(C)=—-C+ H(C — ¢p),

(6.79)

where H(C — c¢p) is the Heaviside function, H = 0if C < cp and H = 1if C > ¢;.
These functional forms preserve the major qualitative feature of the nonlinear forms of
R(c) and the traction force t(c). The analytical and numerical procedures used by Lane
et al. (1987) in a related problem can then be used here; it has not yet been done.

Lane et al. (1987) only investigated travelling wavefronts. Their analytical approach
can be used to consider waveback solutions. It is, in principle, possible to construct
wavepulse solutions; it would be an algebraically formidable problem.

One of the applications of this model was to the post-fertilization waves on verte-
brate eggs which we discussed in some detail in Chapter 13, Volume I, Section 13.6.
There, we were specifically concerned with the calcium waves that swept over the
egg. We noted that these were accompanied by deformation waves and alluded to the
work in this chapter. Lane et al. (1987) took the cytogel model described here in a
spherical geometry, representing the egg’s surface, and investigated surface waves with
post-fertilization waves in mind; see Figure 13.12, Volume L. It is informative to reread
Section 13.6, Volume I in the light of the full mechanochemical cytogel model and the
analysis we have presented in this section.

6.9 Formation of Microvilli

Micrographs of the cellular surface frequently show populations of microvilli, which
are foldings on the cell membrane, arrayed in a regular hexagonal packing as shown in
the photograph in Figure 6.26. Oster et al. (1985a) proposed a modification of the model
in Section 6.8 to explain these patterns and it is their model we now discuss.
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(b)

Figure 6.26. (a) Micrograph of the hexagonal array on a cellular surface after the microvilli (foldings) have
been sheared off. The photograph has been marked to highlight the hexagonal array. (Photograph courtesy
of A.J. Hudspeth) (b) View of a field of microvilli from the cytoplasmic side, the inside of the cell. Note the
bands of aligned actin fibres enclosing the regions of sparse actin density. (Micrograph courtesy of D. Begg)

The model is based on the following sequence of events. First, the cytogel is trig-
gered to contract, probably by an increase in the level of calcium, and as it does so
spatial patterns are formed as a result of the instability of the uniform steady state. They
proposed that the hexagonal patterns observed are essentially the hexagonal periodic
solutions for the tension patterns which are generated. The pattern established in this
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way creates arrays of lacunae, or spaces, which are less dense in actomyosin. At this
stage, osmotic pressure expands these regions outward to initiate the microvilli. One of
the new elements in the model is the inclusion of an osmotic pressure.

The biological assumptions underlying the model are: (i) The subcortical region
beneath the apical membrane of a cell consists largely of an actin-dense gel. (ii) The gel
can contract by a sliding filament mechanism involving myosin cross-bridges linking
the actin fibers as in the above model for the epithelium; see Figure 6.23. We shall show
that these assumptions are sufficient to ensure that an actin sheet will not necessarily
remain spatially homogeneous, but can form a periodic array of actin fibres. This ar-
rangement of actin fibres could be the framework for the extrusion of the microvilli by
osmotic forces.

We should interject here, that Nagawa and Nakanishi (1987) comment that dermal
cells have the highest gel-contraction activity.

Here we briefly describe the model and give only the one-dimensional analysis.
The extension to more dimensions is the same as in the models in earlier sections.
We consider a mechanochemical model for the cytogel which now involves the sol-
gel and calcium kinetics, all of which satisfy conservation equations, and an equation
for the mechanical equilibrium of the various forces which are acting on the gel. The
most important difference with this model, however, is the extra force from the osmotic
pressure; this is fairly ubiquitous during development.

We consider the cytogel to consist of a viscoelastic continuum involving two com-
ponents, the sol, S(x,t), and the gel, G(x, t), whose state is regulated by calcium,
c(x, t). There is a reversible transition from gel to sol. The actomyosin gel is made up of
cross-linked fibrous components while the sol is made up of the non-crosslinked fibres.
The state of cytogel is specified by the sol, gel and calcium concentration distribution
plus the mechanical state of strain, £(= u, (x, t)), of the gel.

We consider the sol, gel and calcium to diffuse, although the diffusion coefficient of
the gel is very much smaller, because of its cross-links, than that of the sol and calcium.
We also reasonably assume there is a convective flux contribution (recall Section 6.2)
to the conservation equations for the gel and sol.

With the experience gained from the study of the previous mechanochemical mod-
els the conservation equations for S, G and c are taken to be

Sol: St + (Suy)y = DsSxx — F(S, G, &), (6.80)
Gel: Gt + (Guy)y = DgGyxx + F (S, G, ¢), (6.81)
Calcium: ¢t = Decyy + R(c, €), (6.82)

where the D’s are diffusion coefficients and R(c, ) is qualitatively similar to the kinet-
ics R(c) in (6.71) plus the strain activation term (cf. Figure 6.25). The specific form of
the kinetics terms in (6.80) and (6.81) reflects the conservation of the sol—gel system: for
example, a loss in sol is directly compensated by a gain in gel. These two equations can
be collapsed into one differential equation and one algebraic: namely, G+S = constant.
The function F (S, G, €) incorporates the details and strain-dependence of the sol-gel
reaction kinetics which we take to be

F(S,G,¢) = ki(e)S — k_(e)G. (6.83)
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(a) (b) Contracted Dilated

Figure6.27. (a) Qualitative form of the gelation rate k4 (¢) and solation rate k—(¢). (b) In the unstressed state
the gel (G) is in chemical equilibrium with the sol (S). When the gel contracts its density goes up and the
chemical equilibrium shifts towards the sol phase, whereas when the gel is dilated the gel density decreases
so that the equilibrium is shifted towards the gel phase. Thus the equilibrium gel fraction is an increasing
function of strain. The size of the arrows indicates the relative rate changes under contraction and dilation.

The schematic forms of the rates, k1 (¢) and k_(¢), are shown in Figure 6.27(a). These
forms are consistent with the sol—gel behaviour in which if the gel is dilated, that is, ¢ in-
creases, its density decreases and the mass action rate of gelation increases. Conversely
when the gel contracts the gel density goes up and the solation rate increases. Thus
the gel concentration may increase with increasing strain; Figure 6.27(b) illustrates the
sol—gel equilibrium states.

In the mechanical force balance the osmotic pressure is a major contributory force
in gel and is a decreasing function of strain. The definition of strain implies ¢ > —1.
(For example, if we consider a strip of gel of unstretched length L and disturbed length
L, the strain is (L — Lg)/Lo: the absolute minimum of L is zero so the minimum strain
is —1.) As ¢ — —1 the osmotic pressure becomes infinitely large (we cannot squeeze a
finite amount of gel into no space), while for large strains the osmotic effects are small.
We thus model the osmotic forces qualitatively by a stress tensor contribution

T
1+e¢

oy =

)

where 7 is a positive parameter.

The elastic forces not only involve the classical linear stress strain law but also,
because of the long strand-like character of the gel, they involve long range effects (cf.
Section 6.2). We model this by a stress tensor

o = GE(e — Béexx),

where E is the elastic modulus and 8 > 0 is a measure of the long range elastic effect;
recall the discussion of long range effects in Section 6.2. The inclusion of G is because
the elastic force acts through the fibres of the gel and so the more gel the stronger the
force. The elastic forces oppose the osmotic pressure.

The contribution from the active contraction of the gel depends on the calcium
concentration and the strain. We model this by



378 6. Mechanical Theory for Generating Pattern and Form

_ Gt(c)
B

OA

where t(c) is a measure of the active traction strength which depends on the cal-
cium concentration ¢, increasing with increasing ¢ for at least low values of c. The
e-dependence is suggested by the fact that the contractile force is smaller if the gel is
dilated, that is, larger €. Again we require the multiplicative G since traction also acts
through the gel fibres.

Finally the gel has an effective viscosity, which results in a viscous force

oy = Gue;,
where u is the viscosity. This force again acts through the gel fibres.
All of the forces are in equilibrium and so we have the continuum mechanical force

balance equation

oy =[og+0g +04a+oy] =0,

L GE( Ber) Gt(c) G
T Txe 2P T T IR (6.84)
— elastic " viscous

osmotic active

stress

Here there are no external body forces restraining the gel. Note that only the osmotic
pressure tends to dilate the gel.

Equations (6.80)—(6.82) and (6.84) together with constitutive relations for
F(S,G,¢) and R(c, ¢) along with appropriate boundary and initial conditions, con-
stitute this mechanochemical model for the cytogel sheet.

Simplified Model System

This system of nonlinear partial differential equations can be analyzed on a linear basis,
similar to what we have now done many times, to demonstrate the pattern formation
potential. This is algebraically quite messy and unduly complicated if we simply wish
to demonstrate the powerful pattern formation capabilities of the mechanism. The full
system also poses a considerable numerical simulation challenge. So, to highlight the
model’s potential we consider a simplified model which retains the major physical fea-
tures.

Suppose that the diffusion timescale of calcium is very much faster than that of the
gel and of the gel’s viscous response (that is, D, > DG, ). Then, from (6.82) we
can take c to be constant (because D, is relatively large). Thus ¢ now appears only as a
parameter and we replace t(c) by 7. If we assume the diffusion coefficients of the sol
and gel are the same, (6.80) and (6.81) imply S+G = Sy, aconstantand so § = Sp—G.

If we integrate the force balance equation (6.84) we get,

Gue; = GEBexx + H(G, &), (6.85)
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where

Gt
l1+e 1+¢2

H(G,¢) = — GE¢g — oy, (6.86)

where the constant stress o is negative, in keeping with the convention we used in
(6.84).

Equation (6.85) is in the form of a ‘reaction diffusion’ equation where the strain,
¢, plays the role of ‘reactant’ with the ‘kinetics’ given by H (G, ¢). The ‘diffusion’
coefficient depends on the gel concentration and the elastic constants £ and .

With § = So — G the gel equation (6.81) becomes

Gt + (Gup)x = ki (e)So — [ky(¢) + k—(€)]G + DG Grx- (6.87)

Now introduce nondimensional quantities

E
G*=E7 8*28, x*=i7 l‘*:t_’
So Vb o
k k_
K= %‘ K = T’”‘ o = ;—% (6.88)
D* — Dgu x i * _ T
BE E’ SoE’

with which (6.85), (6.86) and (6.87) become, on dropping the asterisks for notational
simplicity,

Ge; = Gexy + f(G, 8), G: + (Gup)x = DGy + g(G, 8), (6.89)
where
£(G, ¢) + = 6T _Ge
) = —Of - - )
O T ¥ 1+xe2 (6.90)

8(G. &) = ki (e) — [k (&) + k_ ()]G,

where the qualitative forms of k4 (¢) and k_ (&) are shown in Figure 6.27(a).

The ‘reaction diffusion’ system (6.89) with (6.90) is similar to those studied in
depth in Chapters 1 to 3 and so we already know the wide range of pattern formation
potential. Although in most of these analyses there was no convection, its presence
simply enhances the steady state and wave pattern formation capabilities of the system.
Typical null clines f = 0 and g = 0O are illustrated in Figure 6.28. Note that there is a
nontrivial steady state (g5, G). Note also that the strain ‘reactant’ ¢ can be negative; it
is bounded below by ¢ = —1.

If we linearise the system about the steady state as usual by writing

(w,v) = (G — Gy, & — &) o exp[At + ikx], (6.91)
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: g(G, &) = 0 for the strain-gel ‘reaction
{ diffusion’ system (6.89) with (6.90) with
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and substitute into the linearised system from (6.89), namely,

Gsv = Gyvpx + fow + fev,
(6.92)
wy + G5v; = Dwyy + gow + gev,

where the partial derivatives of f and g are evaluated at the steady state (Gy, &5), we
get the dispersion relation A(k?) as a function of the wavenumber k. It is given by the
roots of

G\ +bkr+dk) =0, (6.93)
where

b(k) = Gs(1 + D)K* — [ f: + Gsg6 — Gs fG1,

d(k) = G, DK* — [Df. + Gygo k> + 1 fegG — fo8e]. o
To get spatially heterogeneous structures we require
Rer(0) <0 = b(0)>0, d0)>0
Rei(k) >0 = bk) <0 >and/or d(k) <0 forsome £k #0. (6:95)
The first of these in terms of the f and g derivatives at the steady state requires
—[fe + G586 — Gs f61 > 0, fegc — fcgs > 0. (6.96)
From Figure 6.28 we see that
Je>0, f6<0. g >0, gc<0, (6.97)

and so (6.96) gives specific conditions on the parameters in f and g in (6.90). For spatial
instability we now require the second set of conditions in (6.95) to hold. Because of the
first of (6.96) it is not possible for b(k) in (6.94) to be negative, so the only possibility
for pattern is if d(k) can become negative. This can happen only if the coefficient of
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k? is negative and the minimum of d(k) is negative. This gives the conditions on the
parameters for spatially unstable modes as

Df. + Gsgg > 0,

(6.98)
(Df: + Gsg6)* — 4G D(fe86 — fcge) > 0,

together with (6.96). The forms of f and g as functions of G and ¢ are such that these
conditions can be satisfied.

From Chapter 2 we know that such reaction diffusion systems can generate a va-
riety of one-dimensional patterns and in two dimensions, hexagonal structures. Al-
though here we have only considered the one-dimensional model, the two-dimensional
space system can indeed generate hexagonal patterns. Another scenario for generating
hexagonal patterns, and one which is, from the viewpoint of generating a regular two-
dimensional pattern, a more stable process, is if the patterns are formed sequentially
as they were in the formation of feather germs in Section 6.5, with each row being
displaced half a wavelength.

Let us now return to the formation of the microvilli and Figure 6.26. The tension
generated by the actomyosin fibres aligns the gel along the directions of stress. Thus
the contracting gel forms a tension structure consisting of aligned fibres in a hexagonal
array. Now between the dense regions the gel is depleted and less able to cope with the
osmotic swelling pressure, which is always present in the cell interior. The suggestion,
as mentioned at the beginning of this section, then is that this pressure pushes the sheet,
at these places, into incipient microvilli, patterns of which are illustrated in Figure 6.26.
These are the steady state patterned solutions of the model mechanism.

6.10 Complex Pattern Formation and Tissue I nteraction Models

In many reptiles and animals there are complex spatial patterns of epidermal scales and
underlying osteoderms, which are bony ossified-like dermal plates, in which there is no
simple one-to-one size correspondence although the patterns are still highly correlated;
Figure 6.29 shows some specific examples. There are also scale patterns whereby a
regular pattern appears to be made up from a superposition of two patterns with different
basic wavelengths as the illustrative examples in Figure 6.30 show.

Numerous epidermal-dermal tissue recombinant studies (for example, Rawles
1963, Dhouailly 1975, Sengel 1976) clearly demonstrate the importance of instructive
interaction between the epithelial and mesenchymal layers during skin pattern forma-
tion. Dhouailly (1975) studied interaction by combining interspecific epidermal and
dermal tissues from three different zoological classes, namely, mammals (mice), birds
(chicks) and reptiles (lizards). The results of her recombination experiments suggest
that messages originating in the dermis influence the patterns formed in the epidermis.
For example, chick dermis explanted with any type of epidermis forms the appendage
specific to the epidermis, but the typical shape, size and distribution are similar to those
seen in feather bud formation.

In Section 6.5 we proposed a mechanical mechanism for generating dermal papillae
and it is also possible to generate the spatial patterns we associate with placodes with
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Figure 6.29. Examples of the different relationship between the osteoderms (bony dermal plates) and the
overlying horny epidermal scales. (After Otto 1908). (a) The dorsal region of the girdle-tailed lizard Zonurus
cordylus. (b) The dorsal caudal (tail) region in the skink (a small lizard) Chalcides (Gongylus) ocellatus of
the family Scincidae. (C) The region near the cloaca (anus) of the apotheker or ‘pharmacist’ skink Scincus
officinalis. (d) The ventral region of the common gecko, Tarentola mauritanica: here we have shaded one of
the large epidermal scales. The small structures are osteoderms. (From Nagorcka et al., 1987)

the model in Section 6.8. Nagorcka (1986) proposed a reaction diffusion mechanism for
the initiation and development of primordia (see also Nagorcka 1988 and Nagorcka and
Mooney 1985, 1992) as well as for the formation of the appendages themselves such as
hair fibres (Nagorcka and Mooney 1982, 1992, Nagorcka and Adelson 1999).

Until tissue interaction models were developed none of the traditional reaction dif-
fusion mechanisms seemed to have the capacity to produce complex spatial patterns
such as illustrated in Figures 6.29 and 6.30. (Making the parameters space-dependent
is not an acceptable way—this is simply putting the pattern in first.) The patterns in
Figure 6.30 may be viewed as a superposition of two patterns whose wavelengths differ
by a factor of at least two as can be seen by comparing the distance between neighbour-
ing small scales denoted A;, and neighbouring large scales denoted by A;.

These complex patterns suggested the need to explore the patterns which can be
formed by an interactive mechanism which combines the mechanisms for the epidermis
and dermis. The work of Nagawa and Nakashini (1987) substantiates this.

Since the early 1990’s there have been several studies in which interaction has been
taken into account. Nagorcka (1986) was the first to propose a tissue interaction mech-
anism to account for the initiation of skin organ primordia. His model consists of a
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Figure 6.30. (a) An example of a feather pattern composed of two basic units, one of small diameter and
one of large diameter, seen in the skin area under the beak of a species of common coot, Fulic atra, after 12
days of incubation. Associated with the pattern are two wavelengths Ay and A;, namely, the distances between
neighbouring small and large feather follicles, respectively. (After Gerber 1939) (b) Typical small and large
scales in the dorsal head region of lizards, here Cyrtodactylus fedschenkoi of the Gekkonidae family. (After
Leviton and Anderson 1984) The regional variation in the arrangement could be quantified by the ratio Ay /A;.
(c) In this example the small and large epidermal scales are in one-to-one correspondence with the underlying
bony scutes (osteoderms) forming the secondary dermal armour in, at least, some species of armadillo, such
as in Dasypus novemcinctus shown here. (d) The bony scutes seen in the carapace of the Glyptodon (after
Romer 1962), an ancestor of the armadillo. (From Nagorcka et al. 1987)
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reaction diffusion system in the epidermis controlled by a chemical switch mechanism
in the dermis. The spatial prepattern in the morphogen concentration set up in the epi-
dermis then serves to provide positional information for epidermal cell patterning and
induces dermal cell condensations. Variations of the model were used, and related mod-
els developed, by Nagorcka and Mooney (for example, 1982, 1985, 1992). Nagorcka et
al. (1987) considered the pattern forming properties of an integrated mechanism con-
sisting of a dermal mechanical cell traction model and a reaction diffusion mechanism
of epidermal origin, which interact with each other. In their model the morphogen con-
centration in the epidermis controls certain mechanical properties in the dermis. In turn,
dermal cells produce a factor which causes morphogen production in the epidermis.
They demonstrated numerically that their tissue interaction model can generate regular
complex spatial patterns similar to those in Figure 6.30 as a single pattern by the inte-
grated mechanism. This was confirmed by a detailed analytical study of a similar system
by Shaw and Murray (1990). In these composite models, each submodel is capable of
generating spatial pattern of any desired wavelength, so if coupled appropriately the
full model can exhibit superposition of patterns with two distinct wavelengths thereby
giving rise to some of the scale patterns on reptiles shown in Figure 6.30.

The dispersion relation of integrated mechanisms can be thought of as involving
two independent dispersion relations, each with a set of unstable wavenumbers but of
different ranges. If the coupling is weak it is reasonable to think of the composite mech-
anism as being unstable to perturbations with wavelengths approximately equal to Ay
and );, which characterise the two mechanisms independently. The patterns obtained
are similar to those in Figure 6.30 provided a large difference exists between the mech-
anisms’ intrinsic wavelengths. The observed patterns may also be produced by any two
mechanisms whose dispersion relations are characterised by two separated ranges of
unstable wavenumbers. The mechanical model gives such dispersion relations; see, for
example, Figure 6.9(e).

Let us consider a general system denoted by F(m) = 0 with m the vector of depen-
dent variables. Suppose there is a uniform steady state m = mq. In the usual way we
look for perturbations about this uniform solution of the linearised system in the form

W =m — my x exp[Ar + ik.X],

where K is the wave vector of the linear disturbances. With this we obtain a characteris-
tic polynomial for X, say P (1) = O the solution of which gives the dispersion relation
A = A(k, p) where p represents the parameter set for the system. If it is possible for
the mechanism to generate spatial patterns we know that for a range of wavenumbers k
and appropriate parameters, ReA > 0, and that these wavenumbers grow exponentially
with time. A typical situation is illustrated in Figure 6.31. These linearly unstable modes
evolve into steady state spatially heterogeneous solutions when the nonlinear contribu-
tions in the mechanism are taken into account. We have seen many such characteristic
polynomials, dispersion relations and parameter spaces where spatially heterogeneous
patterns are generated.

In the basic scenario with a single pattern formation mechanism the pattern can
be a regular tessellation of the plane or, if the domain is large enough, random initial
conditions can evolve to a highly irregular pattern of spots. In one dimension the wave
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Figure 6.31. In the case of mechanical mechanisms one of the bifurcation parameters we used is the cell
traction 7. As the cell traction increases a typical characteristic polynomial, P (1), as a function of A eventually
crosses the axis as in (a) and indicates that a spatially inhomogeneous solution exists for A with a positive real
part as in (b). The dispersion relation, A(K2), gives the range of wavenumbers which are linearly unstable and
in a one-dimensional situation frequently predicts the final steady state solution; it is often the mode with the
fastest linear growth.

k2

length, or rather spectrum of wavelengths of the final pattern, is generally within the
band of unstable wavelengths predicted by the dispersion relation. Let us consider now
the effect of coupling two pattern generators on the understanding that the formation of
skin organ primordia is an interactive process between the dermis and epidermis. Both
tissues are assumed to be capable of generating spatial patterns on their own.

Let us denote the patterning mechanism in the epidermis and dermis respectively by
Fe(mg) = 0 and Fp(mp) = 0. Each mechanism can give rise to a dispersion relation
which indicates pattern formation. Now suppose that a product of each tissue influences
the other. For example, suppose the epidermal mechanism is a reaction diffusion one
and the dermal mechanism a mechanical one. The cell traction in the dermal model
can be affected by a morphogen which diffuses from the epidermis. The influence of
the dermis can be tissue contraction which in turn affects the morphogen production.
We denote the strength of the interactions by the parameters § and I" and represent the
coupled epidermal-dermal system by

Fe(mg,mp;8) =0, Fp(mp,mg;T") =0.

This system has a uniform steady state about which we can carry out a linear analy-
sis which highlights the effect of the tissue interaction. For typical pattern generating
systems, and in particular the one studied by Nagorcka et al. (1987), the characteristic
polynomial for the coupled system is of the form

P(\) = Pp(M)Pe(A) — STI (L) =0, (6.99)

where 7(}) is a polynomial in A and Pp(A) and Pg(A) are the respective characteristic
polynomials of the two tissue mechanisms in isolation. Solutions of this polynomial,
usually of order at least 4, give the dispersion relation for the interaction model. The
strength of the interaction is quantified by the product 6I". Typical characteristic poly-
nomials and corresponding dispersion relations are sketched in Figure 6.32.
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Figure 6.32. (@) Typical composite characteristic polynomial for a tissue interaction model mechanism with
corresponding dispersion relations in (b). Note how an increase in the interaction parameters, § and I, intro-
duces more complex spatial patterns by exciting other A(k) which have linearly unstable modes.

The dominant modes associated with each A; (k) are denoted by k; and the solution
of the linearized system is dominated by

mg —m - j
E ) alex(kl)t+zk1x + aze)»(kz)t+lkzx doen, (6.100)
)

mp —mj,

where Mg (0), mp(0) are the uniform steady states of the coupled system. From this
we see that the solution is a superposition of the several dominant unstable modes in
Figure 6.32 and since growth of those with wavenumbers k; and k3 is larger than that
for k> these suggest that the final patern is a superposition of two patterns with wave-
lengths 27/ k1 and 27 / k3. Numerical simulation of the full nonlinear system studied by
Nagorcka et al. (1987), namely, a reaction diffusion system coupled to a mechanical
system, showed that this is the case when the pattern formation system is near the bifur-
cation from homogeneity to structure. The specific mechanical system they used in the
dermis is a version of the model (6.22)—(6.24), namely,

n; = D1V —aV - (nVp) — V - (nuy),
V- [(uigr + p2b)) + € +V'61) + t(n, V, p)l ] = spu, (6.101)
pr+ V- (pu) =0,

where the traction depends on the morphogen V from the basal layer of the epidermis
and is given by
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1+T(V -V

e (6.102)

t(n,V,p) =tn(p +yVip)
The parameters have the same meaning as in the sections above.
The reaction diffusion system they used in the basal layer of the epidermis is

V, = DyV2V + VW — V + A[l 4+ 8(n — no)],
(6.103)
W, = DwV’W — V2W + B,

where A and B are constants and ng is a steady state solution of (6.101). The § and
I' are measures of the interaction between the two systems. It is this interaction model
which gives a characteristic polynomial of the form (6.99).

Nagorcka et al. (1987) and Shaw and Murray (1990) considered specific situations
such as when é # 0, I' = 0, which implies that the epidermis influences the dermis but
not the other way round, and § = 0, I" # O where the dermis influences the epidermis
but not the other way round. In either of these cases only one model system of equa-
tions has to be solved. They also investigated the case where § # 0,I" # 0 which is
the situation whereby the epidermis and the dermis influence each other. Here the full
interactive system has to be solved.

The result of solving the full integrated system with the parameters used in Fig-
ure 6.33(d) is not very different to that in Figure 6.33(b) where the low frequency
variation in n causes a large change in the spatial pattern of V. The high frequency
variation in V has little effect on the dermal cell concentration n. In these simulations
the wavenumber ky > k;,. On the other hand if the parameters were chosen so that
ky < k, we would expect the change in the variation in V to be small and that in n to
be large.

What these results suggest is that, depending on the relative sizes of the wavenum-
bers of the two mechanisms on their own, we can often neglect the effect of either the
dermis on the epidermis (the situation if k,, is significantly larger than ky) or the other
way round. Nagorcka et al. (1987) exploited this in their two-dimensional simulations
related to the patterns shown in Figures 6.29 and 6.30.

Tissue Interaction Mechanism: Cell Adhesion Molecules (CAMs)

The interaction models we have just discussed are based on various hypotheses of the
detailed biology. We still do not know what the actual process is, not even all the key
elements. Here we describe a different model primarily based on experimental work
by Gallin et al. (1986). They found that disrupting the balance of neural cell adhesion
molecules (N-CAMs) in the chick skin leads to dramatic changes in the patterning of
feather germs. This shows that the epidermis, in turn, can influence patterns in the der-
mis. Not only that, their results appear to implicate cell adhesion molecules (CAMs) in
the signalling process.

Basically there are two possible ways in which instructions can be transmitted be-
tween the mesenchyme and the epithelium. One is via chemical signalling, for example,
paracrine signalling, and the other is via mechanical interaction between the epithelia
and dermal cells which are in direct contact with each other. One or the other or both
could be involved. So, we describe here a very different mechanism which involves
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Figure 6.33. (a) The one-dimensional solution for V (solid line) of the reaction diffusion system (6.103)
is given in (@), (b) and (c) and shows the influence of the forcing by the dermis. The parameter values are
Dy =0.1, Dy = 4.5, A = 0.25, B = 0.75 with fixed boundary values. In (&) there is no dermal influence,
that is, § = 0 while in (b), § = 0.4 and in (c), § = 1.0. The dashed curves show the forcing function
A8 (n—ng). In (d) we show a solution of the integrated system of (6.101)—(6.103) but with a simplified version
of (6.101) and (6.102) with parameter values D{ = 1.0, u1 + pp = 5614, s = 0.22, 7 = 500, » = 0.3. The
interaction parameters are § = 8.0, I' = 0.1. In the simplified version the effect of the matrix density p is
neglected, thatis,« =y =0, p = pg = 1.0 and the p equation is not needed. Again the morphogen V (solid
line) is shown and the quantity Ad(n — ng) (dashed line) but now it is part of the solution. The horizontal axis
is distance in units of the wavelength of V. (From Nagorcka et al. 1987)
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CAMs and is based on the experimental work of Chuong and Edelman (1985). They
suggested that a specific factor produced by the L-CAM positive dermal cells, perhaps
a hormone or peptide, triggers the formation of dermal condensations. This factor could
act as a chemotactic agent and stimulate N-CAM expression to induce N-CAM linked
papillae; this agrees with the results of Gallin et al. (1986). The recombination experi-
ments of Dhouailly (1975) also suggest that a dermally produced signal is involved in
epidermal patterning. Chuong and Edelman (1985) therefore proposed that epidermal
placode formation is induced by a factor produced by the developing dermal conden-
sations. When feather germ formation is completed, the inductive factors are modified
so as to stop dermal aggregation. Since these factors can still be active in neighbouring
tissue, periodic feather germ patterns could thus be formed in a self-propagating way.

Cruywagen and Murray (1992) developed an interacting tissue model described
in detail below which is based on the work of Gallin et al. (1986) and schematically
illustrated in Figure 6.34.

The mechanism involves seven field variables and incorporates elements of reaction
diffusion chemotaxis systems and a mechanical mechanism. The epidermal variables at
position X and time ¢ are:

N (X, t) = epidermal cell density,

u(X, t) = displacement of a material point in the epidermis
which was initially at X,

e(X, t) = concentration of a signal morphogen produced in the
epidermis,

5(X, t) = epidermal concentration of a signal morphogen, received
from the dermis.

Similarly, the variables in the dermis are:

n(X, t) = dermal cell density,

e(X, t) = dermal concentration of a signal morphogen received from
the epidermis,

s(X, t) = dermal concentration of a signal morphogen produced
in the dermis.

Figure 6.34. Schematic tissue interaction model of
Cruywagen and Murray (1992). The dermal cells, n,

A
e produce a morphogen, s, which diffuses to the
. epidermis where it is denoted by §. In the epidermis
Epidermls § increases cell traction which, in turn, causes cell
S SRS aggregation. Similarly ¢, produced by the epidermal
e Dermis cells, N, diffuses to the dermis where it is denoted

by e. In the dermis e acts as a chemoattractant for
dermal cells, causing dermal aggregation.
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Morphogen variables and parameters specific to the epidermal layer are distinguished
from the dermal layer by the hat symbol.

It is helpful to refer to Figure 6.34 which schematically encapsulates the following
scenario. We consider the epithelial sheet to be a two-dimensional, viscoelastic con-
tinuum in equilibrium (recall Section 6.8) and consider the epidermal cells only move
by convection. We assume the epidermal morphogen, é(X, t), secreted by the epidermal
cells diffuses from a high concentration in the epidermis, across the basal lamina, to
the lower concentration in the dermis. There the morphogen, e(X, t), acts as a chemoat-
tractant for dermal cells inducing dermal cell aggregations which form the papillae.
Similarly the morphogen s(X, t) is the signal produced by the dermal cells which then
diffuses through the basal lamina into the epidermal layer. There, the morphogen, repre-
sented by §(X, t), increases cell traction thus causing cell aggregation which eventually
leads to placode formation.

In spite of the seeming simplicity of the schematic interaction mechanism in Fig-
ure 6.34 the model is actually very complicated. We give the full system of equations,
which reflects this qualitative description in part to show that oversimplification can
sometimes ignore crucial aspects. The various parts of the model are based on those
derived above in Sections 6.2 and 6.8 together with reaction diffusion-chemotaxis equa-
tions.

In the epidermis we have

oN au
— =—-V.|N—|,
ot ot

convection

V- | wigr 4 wabhl + E'l(e — BiV3e) + (0 — f2V?0)I]

viscous elastic
T2+ sH U= pu =0, (6.104)
[ — ——
cell traction body forces

3@ A . ) ) .
— =D;Ve+ f(N,§5) — P.(e —e) — vye
81‘ —_—— —— N—— ——

diffusion  production  dermal signal  degradation

5 oA . R A

— =D;Vs+ Py(s—s) — UNs ,
81‘ —— —— N——

diffusion  dermal contribution ~ degradation

where 15@, ﬁv B1, B2, P., Ps, p, T, 7, b, ¢, are constants and the reproduction function
f(N,5) is a function of N and § which increases with N and decreases with §; the
specific form is not crucial. The first and second of (6.104) are versions of (6.7) and
(6.72) with § replacing c in the traction-dependence on the morphogen; we have in-
cluded long range effects in the elastic variables since these could be important. The
third and fourth are typical reaction diffusion equations with terms which are motivated
by the above biological scenario.
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The dermal equations are taken to be

on
— =DV*’1—aV- nVe+rn(ng —n)
81‘ N — —_— ———
diffusion chemotaxis mitosis
B D+ gne) — Pus )~ ONS
— =D,V-s n,e) — Pg(s —s)— VUNs§
a1 S 8 ’, S 2 —— (6.105)
diffusion  production  dermal loss  degradation
de 2 N
— =D, Ve+ P(ée—e) — yne ,
ot —_—— —_—— —~—

diffusion  epidermal signal — metabolism

where D,, Dy, y, v are constants and g(n, e), the detailed form of which is again not
crucial, reflects the production of s; it increases with n. These equations are typical
reaction diffusion equations but with the first including chemotaxis. Again the general
forms are based on the above biological description.

These model equations were solved numerically by Cruywagen and Murray (1992)
(see also Cruywagen 1992) who also carried out a nonlinear analysis on a small strain
version using the concepts described in Section 6.4 which reduce the number of equa-
tions. They also investigated some of the steady state solutions. They used the LPS
method (Bentil and Murray 1991) for isolating appropriate parameter values. We do
not carry out any of the analysis here, but with the usual linear analysis much useful
information can be obtained; it is left as an exercise (an algebraically complicated one).
What comes out of the linear analysis is that the two-way interaction is essential for
spatial patterning. In fact, for the spatial pattern to evolve, the epidermal traction and
the dermal chemotaxis, induced by the signal chemicals, must be large, the respective
cell metabolisms must be low, and the chemical diffusion across the basal lamina must
be fast. The importance of long range elastic restoring forces also proved important in
generating a coherent pattern.

This model was also studied by Cruywagen et al. (1992, 1993, 1994, 2000) who
were interested in seeing whether or not the model could generate sequential pattern-
ing. As we commented on earlier, feather germs appear to spread out from the dorsal
midline. Such patterning was indeed possible. They again used a caricature model. It is
a challenging problem to determine the speed of spread of such a pattern and its wave-
length. The problem is considerably harder than the one we discussed with chemotaxis
waves in Chapter 3. In the other interaction models we mentioned above by Nagorcka
et al. (1987) effectively two separate pattern generators were coupled.

Pattern Robustness and Morphogenesis

A large number of processes are involved in development many of which occur at the
same time and at different levels such as the genetic, the cellular, the tissue and so on.
The amazing fact is that they are so well orchestrated to produce more or less similar
copies of the final animal. The whole process is remarkably robust. We have touched on
this before when discussing parameter spaces for specific patterns, as in Chapter 2, and
the size of the space is one of several indications of the robustness of a mechanism as
we saw in Chapter 4.
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A major problem for single pattern formation models with a finite range of excitable
spatial modes is to generate complex patterns which are effectively made up from a
combination of two (or more) different spatial patterns with different wavelengths. In
the case of many scale patterns, on the integument of the armadillo and many lizards, for
instance, examples of which are shown in Figure 6.30, there is a regular array of large
scales surrounded by small scales. If only one size scale were present a single pattern
generator with the required mode would suffice to form such a pattern for the primordia.
If a single pattern formation mechanism has two more or less equally preferred modes
(as we know can be found in the mechanical models discussed above) then the final
pattern will be dependent on the initial conditions. Given the randomness present in
developing organisms the result would be a random distribution of both scale patterns.

Since the evidence is clear that tissue interaction is crucial in the development of
many organs, such as scale and feather primordia, it seemed appropriate to investigate
the pattern potential of model mechanisms of tissue interaction systems which is exactly
what Nagorcka et al. (1987) did. We saw some of the effects of coupling a reaction diffu-
sion pattern generator with a spatially varying forcing term representing the input from
another pattern generator. This was a caricature model for the coupling of two mecha-
nisms each with a preferred pattern wavelength. The Cruywagen—Murray (1992) model
is a full tissue interaction model system for generating complex but regular patterns of
skin organ primordia. They showed that both mechanisms (one in the epidermis and
one in the dermis) are simultaneously involved in the pattern formation process. Their
model produced regular complex patterns such as those shown above on the integument
of lizards.

The conference proceedings article by Murray (1990) (see also Cruywagen and
Murray 1992) briefly reviewed tissue interaction models from both the biological and
mathematical aspects. They showed how spatial mode selection varies with the strength
of interaction between two mechanisms. When mechanisms are coupled, it would be
reasonable to suppose that the pattern spectrum is larger than that which can be created
by either mechanism on its own. This might also be expected from the simple linear
theory above. A nonlinear analysis (see Shaw and Murray 1990) close to bifurcation
from homogeneity, however, picks out a specific pattern, namely, that with the dominant
linear growth, even though others may be quantitatively close to it from the point of
view of linear theory’s exponential growth. Extensive numerical simulation of the full
nonlinear systems shows unequivocably that the spectrum of possible solutions is very
much restricted: there is a greatly reduced number of excitable modes. This is one of
the most interesting aspects of tissue interaction, namely, that the spectrum of patterns
for the composite mechanism is usually very much less than the sum of the two classes
of individual patterns which can be formed by the individual generators. In fact, as
Murray (1990) pointed out, there seems to be a strong basin of attraction for a specific
and highly restricted subset of the theoretically possible patterns. It is clear that the
nonlinearity and the coupling enhance the strength of the basin of attraction of specific
patterns.

There are important exceptions to the reduction in the number of possible patterns
when typical tissue pattern formation mechanisms are coupled. An obvious one is the
case when neither mechanism can produce a pattern on its own but coupling them to-
gether results in a pattern (Shaw and Murray 1990). The Cruywagen—Murray model is
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another but here the coupling is an intrinsic part of the mechanism and although it is a
tissue interaction model it is essentially one mechanism.

It is well known that in the case of space-independent oscillators coupling results
in phase locking into specific periods. What we have here is a kind of space phase
locking. What we see in this section, and in the papers cited, is that coupling of multiple
modes can break mode symmetry. The coupling of pattern generators, each with its
own basin of attraction, instead of introducing more complexity actually has the effect
of reducing the number of possible patterns. Not only that, the simulations suggest that
these patterns are highly robust, more so than the patterned solutions generated by either
mechanism on its own.

We suggest, therefore, that the dynamic coupling between different mechanisms
significantly reduces the degrees of freedom available to the whole system, thereby
contributing to the robustness of morphogenesis. If this is true, the consequences for
our understanding of developmental and evolutionary processes could be profound.

We believe our conjecture may apply more generally to the coupling of multiple de-
velopmental mechanisms, each of whose eigenfunction modes breaks the symmetries of
the other mechanism. As we saw, coupling distinct mechanisms was useful to introduce
tissue interaction. We also saw that if two linear modes of different systems are simulta-
neously present they span its state space because each amplifies a different eigenvector
of the underlying variables and if simultaneously amplified, should mutually break each
other’s symmetries, just as with nonlinear coupling between two mechanisms. This was
found by Nagorcka et al. (1987), Shaw and Murray (1990), Cruywagen (1992) and
Cruywagen and Murray (1992). When more than one mode is present in the domain,
nonlinear couplings among these modes can lead to a final pattern which is fully in-
dependent of the orientations of the first few modes. In other words, coupling modes
of one system, like the coupling of modes among more than one system, can lead to a
robust morphology from a large basin in state space, and almost certainly, in parame-
ter space. That is, the dynamic coupling of different mechanisms or tissues involved in
development reduces the choices available to the system, because of bias in successive
symmetry-breaking, thereby having a simplifying and stabilising effect. If this is true it
has an extremely important implication on our thinking of how pattern evolves during
embryologenesis and we could hypothesize that this is perhaps another example of a
morphogenetic law such as we discuss in the following chapter.

In conclusion, there can be no doubt that mechanochemical processes are involved
in development. The models we have described here and those in subsequent chapters
represent a very different approach to reaction diffusion processes and the concepts sug-
gest that mechanical forces could be major elements in producing the correct sequence
of tissue patterning and shape changes which are found in the developing embryo. The
models simply reflect the laws of mechanics as applied to tissue cells and their envi-
ronment, and are based on known biological and biochemical facts: importantly the
parameters involved are in principle measurable several of which have already been
estimated.

We should add that these models are still basic systems (even the complex tissue
intereaction model in Figure 6.34), and considerable mathematical analysis is required
to investigate their potential to the full. In turn this will suggest model modifications
in the usual way of realistic biological modelling. The results from the analysis here,
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however, are sufficient to indicate a wealth of wide-ranging patterns and mathemati-
cally challenging problems. The models have been applied realistically to a variety of
morphogenetic problems of current major interest some of which we describe in sub-
sequent chapters. The results and basic ideas have initiated considerable experimental
investigation and new ways of looking at a wide spectrum of embryological problems.

Exercises

1. A mechanical model for pattern formation consists of the following equations for
n(x,t), the cell density, u(x, t), the matrix displacement and p(x, t) the matrix
density,

ny + (nuy)y =0,
Mlyxy + Uxx + TP + Y pxx ]y — spu =0,
or + (pu)x =0,

where u, 7, y and s are positive parameters. Briefly describe what mechanical
effects are included in this model mechanism. Show, from first principles, that the
dispersion relation o (k%) about the uniform nontrivial steady state is given by

yrk4 +(1=20)k* +s
k2 ’

o (k?) =

where k is the wave number.

Sketch the dispersion relation as a function of k> and determine the critical
traction or tractions 7. when the uniform steady state becomes linearly unstable.
Determine the wavelength of the unstable mode at bifurcation to heterogeneity.

Calculate and sketch the space in the (ys, t) plane within which the sys-
tem is linearly unstable. Show that the fastest growing linearly unstable mode has
wavenumber (s/y7)!/4. Thus deduce that for a fixed value of ys the wavelength
of the fastest growing unstable mode is inversely proportional to the root of the
strength of the external tethering.

2. The mechanical model mechanism governing the patterning of dermal cells of den-
sity n in an extracellular matrix of density p, whose displacement is measured by
u, is represented by

ny = Dinyy — Donyyxx —a(npy)y — (nug)yx +rn(l —n),
Mitxxt + Uxx + T[n(p + ypxx)lx = sup,
143 + ()Out)x = 03

where all the parameters are nonnegative. Explain what each term represents phys-
ically.

Show that the trivial steady state is unstable and determine the dispersion rela-
tion o (k2) for the nontrivial steady staten = p = 1, u = 0.
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Sketch the dispersion relation o as a function of k% for various values of 7 in
the situation where viscous effects are negligible. Briefly discuss the implications
from a spatial pattern generating point of view. Now sketch the dispersion relation
when the viscosity parameter 0 < ¢ < 1 and point out any crucial differences with
the u = 0 case.

Consider the dimensionless equations for the cytogel continuum given by

V- {wigr + uabl +& +v'0l + t(0)l} = su,

9 _ pv2e s+ ac 4+ y6 = DV + R(c) + y0
=~ = c —c = c c ,
o1 1+ B2 v 4

where € and 6 are the strain tensor and dilation respectively, U is the cytogel dis-
placement of a material point and c is the concentration of free calcium. The active
traction function t(c) is as illustrated in Figure 6.24 and w1, 2, v/, @, D, y and B
are constants.

Investigate the linear stability of the homogeneous steady state solutions c;,
i = 1,2, 3 and show that the dispersion relation o = & (k?), where here o is the
exponential temporal growth factor and & is the wavenumber of the linear perturba-
tion, is given by

uk*o?> + b(k*o + d(k?) =0,
b(k?) = uDk* + (1 + ' — uRDK> +s,
d(k*) = D(1 +V)k* 4+ [sD + yt/ — (1 +V)R/JK* — sR],

where
w=pi+u, R =R(i), =1, i=1273.

Show that it is possible for the model to generate spatial structures if y is
sufficiently large. Determine the critical wavenumber at bifurcation.



7. Evolution, Morphogenetic L aws,
Developmental Constraints and Teratologies

7.1 Evolution and Morphogenesis

We shall never fully understand the process of evolution until we know how the en-
vironment affects the mechanisms that produce pattern and form in embryogenesis.
Natural selection must act on the developmental programmes to effect change. We re-
quire, therefore, a morphological view of evolution, which goes beyond the traditional
level of observation to a morphological explanation of the observed diversity. Later in
this chapter we shall discuss some specific examples whereby morphogenesis has been
experimentally influenced to produce early embryonic forms, early, that is, from an evo-
lutionary point of view. This chapter has no mathematics per se and is more or less a
stand-alone biological chapter. However, the concepts developed and their practical ap-
plications are firmly based on the models, and their analysis, presented and elaborated
on in earlier chapters, particularly Chapters 2, 3, 4 and 6.

Natural selection is the process of evolution in which there is preferential survival
of those who are best adapted to the environment. There is enormous diversity and
within species such diversity arises from random genetic mutations and recombination.
We must therefore ask why there is not a continuous spectrum of forms, shapes and so
on, even within a single species. The implication is that the development programmes
must be sufficiently robust to withstand a reasonable amount of random input. From the
extensive genetic research on the fruit fly Drosophila, for example, it seems that only a
finite range of mutations is possible, relatively few in fact.

The general belief is that evolution never moves backward, although it might be
difficult to provide a definition of what we mean by direction. If evolution takes place
in which a vertebrate limb moves from being three-toed to four-toed, from a morpho-
logical view of evolution there is no reason, if conditions are appropriate, that there
cannot be a transition ‘back’ from the four-toed to the three-toed variety. From our
study of pattern formation mechanisms this simply means that the sequential bifurca-
tion programme is different. In Section 7.4 we show an example where an experimen-
tally induced change in the parameters of the mechanism of morphogenesis results in
embryonic forms which, with the accepted direction of evolutionary change, means that
evolution has moved backwards.

If we take the development of the vertebrate limb we saw in Section 6.6 in the last
chapter that development was sequential in that the humerus preceded the formation
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of the radius and ulna and these preceded the formation of the subsequent cartilage
patterns such as the phalanges. As a specific example, we argued that the formation of
the humerus could cue the next bifurcation by influencing the geometry of the limb bud.
We also saw how graft experiments could alter the pattern sequence and we showed
how the result was a natural consequence when viewed from a mechanistic viewpoint.

So, intimately associated with the concept of bifurcation programmes, are discrete
events whereby there is a discrete change from one pattern to another as some parameter
passes through a bifurcation value. The possibility of discrete changes in a species as
opposed to gradual changes is at the root of a current controversy in evolution, between
what is called punctuated equilibrium and phyletic gradualism, which has raged for
about the past few decades. (Neo-Darwinism is the term which has been used for punc-
tuated equilibrium.) Put simply, punctuated equilibrium is the view that evolutionary
change, or speciation and morphological diversification, takes place effectively instan-
taneously on geological time, whereas gradualism implies a more gradual evolution to a
new species or a new morphology. The arguments for both come from the fossil records
and different sets of data are used to justify each view—sometimes even the same set of
data is used. Figure 7.1 schematically shows the two extremes.

From a strictly observational approach to the question we would require a much
more extensive fossil record than currently exists, or is ever likely to be. From time
to time newly discovered sites are described which provide fine-scaled palacontologi-
cal resolution of speciation events. For example, Williamson (1981a,b) describes one
of these in northern Kenya for molluscs and uses it to argue for his view of evolution.
Sheldon (1987) gathered fossil data, from sites in mid-Wales, on trilobites (crab-like
marine creatures that vary in size from a few millimetres to tens of centimetres) and on
the basis of his study argues for a gradualist approach. From an historical point of view,
the notion of punctuated equilibrium was very clearly put by Darwin (1873) himself in
the 6th and later editions of his book, On the Origin of Species, in which he said (see
the summary at the end of Chapter XI, p. 139), ‘although each species must have passed

Punctuated Phyletic gradualism

equilibrium <«—— Morphology ———»
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Figure 7.1. Punctuated equilibrium implies that as we move through geological time changes in specia-
tion occur very quickly (on geological time) as compared with stasis, the period between speciation events.
Phyletic gradualism says that speciation and diversification are a gradual evolutionary process.
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through numerous transitional stages, it is probable that the periods, during which each
underwent modification, though many and long as measured by years, have been short
in comparison with the periods during which each remained in an unchanged condi-
tion.” (The corresponding passage in the first edition is in the summary of Chapter X,
p.- 139.)

From our study of pattern formation mechanisms in earlier chapters the controversy
seems artificial. We have seen, particularly from Chapters 2 to 6, 4 and 5 that a slow
variation in a parameter can affect the final pattern in a continuous and discrete way. For
example, consider the mechanism for generating butterfly wing patterns in Section 3.3.
A continuous variation in one of the parameters, when applied, say, to forming a wing
eyespot, results in a continuous variation in the eyespot size. The expression (equation
(3.24), for example) for the radius of the eyespot shows a continuous dependence on the
parameters of the model mechanism. In the laboratory the varying parameter could be
temperature, for example. Such a continuous variation falls clearly within the gradualist
view of evolutionary change.

On the other hand suppose we consider Figures 2.14(b) and (c) which we reproduce
here as Figures 7.2(a) and (b) for convenience. It encapsulates the correspondence be-
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Figure 7.2. (a) Solution space for a reaction diffusion mechanism (system (2.8) in Chapter 2) with domain

size, y, and morphogen diffusion coefficient ratio, d. (b) The spatial patterns in morphogen concentration
with d, y parameter values in the regions indicated in (a). (From Arcuri and Murray 1986)
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tween discrete patterns and two of the mechanism’s dimensionless parameters. Another
example is given by Figure 4.21 in Chapter 4 on the formation of teeth primordia where
again the parameter space indicates abrupt changes in the pattern formed. Although Fig-
ures 7.2 and 4.21 are the bifurcation space for a specific reaction diffusion mechanism
we obtain comparable bifurcation spaces for the mechanochemical models in the last
chapter and other pattern formation mechanisms. In Section 6.6 in the last chapter we
noted that the effect of a tissue graft on the cartilage patterns in the developing limb
was to increase cell proliferation and hence the size of the actual limb bud. Let us, for
illustrative purposes, focus on the development of the vertebrate limb. In Figure 7.2(a),
if we associate cell number with domain size y we see that as y continuously increases
for a fixed d, say, d = 100, we have bifurcation values in y when the pattern changes
abruptly from one pattern in Figure 7.2(b) to another. So, a continuous variation in a
parameter here effects discontinuous changes in the final spatial pattern. This pattern
variation clearly falls within a punctuated equilibrium approach to evolution.

Thus, depending on the mechanism and the specific patterning feature we focus on,
we can have a gradual or discontinuous change in form. So to reiterate our comment
above it is clear that to understand how evolution takes place we must understand the
morphogenetic processes involved.

Although the idea that morphogenesis is important in understanding species diver-
sity goes back to the mid-19th century, it is only relatively recently that it has been
raised again in a more systematic way by, for example, Alberch (1980) and Oster and
Alberch (1982); we briefly describe some of their ideas below. Oster et al. (1988) pre-
sented a detailed study of vertebrate limb morphology, which is based on the notion of
the morphological rules described in the last chapter. The latter paper presents experi-
mental evidence to justify their morphogenetic view of evolutionary change; later in the
chapter we describe their ideas and some of the supporting evidence.

Morphogenesis is a complex dynamic process in which development takes place in
a sequential way with each step following, or bifurcating, from a previous one. Alberch
(1980, 1982), and Oster and Alberch (1982) suggest that development can be viewed
as involving only a small set of rules of cellular and mechanochemical interactions
which, as we have seen from previous chapters, can generate complex morphologies.
Irrespective of the actual mechanisms, they see developmental programmes as increas-
ingly complex interactions between cell populations and their gene activity. Each level
of the patterning process has its own dynamics (mechanism) and it in turn imposes cer-
tain constraints on what is possible. This is clear from our studies on pattern formation
models wherein the parameters must lie in specific regions of parameter space to pro-
duce specific patterns; see, for example, Figure 7.2. Alberch (1982) and Oster and Al-
berch (1982) encapsulate their ideas of a developmental programme and developmental
bifurcations in the diagram shown in Figure 7.3.

If the number or size of the mutations is sufficiently large, or sufficiently close
to a bifurcation boundary, there can be a qualitative change in morphology. From our
knowledge of pattern formation mechanisms, together with Figure 7.3, we can see how
different stability domains correspond to different phenotypes and how certain genetic
mutations can result in a major morphological change and others do not. Not only that,
we can see how transitions between different morphologies are constrained by the topol-
ogy of the parameter domains for a given morphology. For example, a transition be-
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Figure 7.3. A schematic diagram showing how random genetic mutations can be filtered out to produce a
stable phenotype. For example, here random genetic mutations affect the size of the various developmental
parameters. With the parameters in a certain domain, 1 say, the mechanisms create the specific pattern 1 at
the next level up; this is a possible phenotype. Depending on the size of the random mutations we can move
from one parameter domain to another and end up with a different phenotype. There is thus a finite number of
realisable forms. At the next stage selection takes place and the final result is a number (reduced) of realised
phenotypes. (From Oster and Alberch 1982)

tween states 1 and 2 is more likely than between 1 and 5 and furthermore, to move
from 1 to 5 intervening states have to be traversed. An important point to note is that
existing morphological forms depend crucially on the history of their past forms. The
conclusion therefore is that the appearance of novel phenotypic forms is not random,
but can be discontinuous. As Alberch (1980) notes, “We need to view the organism as
an integrated whole, the product of a developmental program and constrained by devel-
opmental and functional interactions. In evolution, selection may decide the winner of
a given game but development non-randomly defines the players.’

Developmental Constraints

In previous chapters we have shown that, for given morphogenetic mechanisms, ge-
ometry and scale impose certain developmental constraints. For example, in Chapter 3,
Section 3.1 we noted that a spotted animal could have a striped tail but not the other
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way round. In the case of pattern formation associated with skin organ primordia, as
discussed in the last chapter, we have mechanical examples which exhibit similar devel-
opmental constraints. Holder (1983) carried out an extensive observational study of 145
hands and feet of four classes of tetrapod vertebrates. He concluded that developmental
constraints were important in the evolution of digit patterns.

Figure 7.4 (refer also to Chapter 4, Figure 4.10) shows some of the key mechanical
steps in the early development of certain skin organs such as feathers, scales and teeth. In
Section 6.6 we addressed the problem of generating cell condensation patterns which we
associated with the papillae. In the model for epithelial sheets, discussed in Section 6.8,
we saw how spatially heterogeneous patterns could be formed and even initiated by the
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Figure 7.4. Key mechanical events in the dermis and epidermis in development of skin organ primordia.
(After Oster and Alberch 1982)
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dermal patterns. Odell et al. (1981) showed how buckling of sheets of discrete cells such
as in Figure 7.4, could arise. From the sequential view of development we might ask
whether it is possible to move onto a different developmental pathway by disrupting
a mechanical event. There is experimental evidence that a transition can be effected
from the scale pathway to the feather pathway, for example, Dhouailly et al. (1980), by
treating the skin organ primordia with retinoic acid. In their experiments feathers were
formed on chick foot scales.

7.2 Evolution and Morphogenetic Rulesin Cartilage Formation
in the Vertebrate Limb

In Section 6.6 in the last chapter we showed how a mechanical model could generate
the cartilage patterns in the vertebrate limb. There we proposed a simple set of general
morphogenetic construction rules for how the major features of limb cartilage patterns
are established. Here we use these results and draw on comparative studies of limb mor-
phology and experimental embryological studies of the developing limb to support our
general theory (which is essentially mechanism-independent) of limb morphogenesis.
We then put the results in an evolutionary context. The following is mainly based on
the work of Oster et al. (1988) which arose from discussions between George Oster, the
late Pere Alberch and myself in 1985.

Since the limb is one of the most morphologically diversified of the vertebrate
organs and one of the more easily studied developmental systems it is not surprising
it is so important in both embryology and evolutionary biology. Coupled with this is a
rich fossil record documenting the evolution of limb diversification (see, for example,
Hinchliffe and Johnson 1980 for a comprehensive biology).

Although morphogenesis appears deterministic on a macroscopic scale, on a mi-
croscopic scale cellular activities during the formation of the limb involve considerable
randomness. Order emerges as an average outcome with some high probability. We ar-
gued in Section 6.6 that some morphogenetic events are extremely unlikely, such as
trifurcations from a single chondrogenic condensation. Mathematically, of course, they
are not strictly forbidden by the pattern formation process, be it mechanochemical or
reaction diffusion, but are highly unlikely since they correspond to a delicate choice of
conditions and parameter tuning. This is an example of a ‘developmental constraint’
although the term ‘developmental bias’ would be more appropriate.

Let us recall the key results in Section 6.6 regarding the ‘morphogenetic rules’ for
limb cartilage patterning. These are summarised in Figures 6.18(a)—(c) the key parts of
which we reproduce for convenience in Figure 7.5.

The morphogenetic process starts with a uniform field of mesenchymal cells from
which a precartilagenous focal condensation of mesenchymal cells forms in the prox-
imal region of the limb bud. With the mechanical model discussed in the last chapter,
this is the outcome of a model involving the cells, the extracellular matrix (ECM) and
its displacement. With the model of Oster et al. (1985a,b), various mechanochemical
processes are also involved. Subsequent differentiation of the mesenchymal cells is in-
timately tied to the process of condensation. It seems that differentiation and cartilage
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(a) (b)

Figure 7.5. Morphogenetic rules: the three basic cell condensation types, namely, a single or focal conden-
sation, F, as in (a), a branching bifurcation, B, as in (b) and a segmental condensation, S, as in (). More
complicated patterns can be built up from a combination of these basic bifurcations; see Figures 7.8, 7.11 (cf.
Figure 6.18(e)) and 7.12.

morphogenesis are frequently interrelated phenomena. An alternative cell-chemotaxis
model with cell differentiation whereby condensation and morphogenesis take place
simultaneously was proposed by Oster and Murray (1989).

There is a zone of recruitment created around the chondrogenic focus. That is, an
aggregation of cells autocatalytically enhances itself while depleting cells in the sur-
rounding tissue. This is effectively setting up a lateral inhibitory field against further
aggregation. Because nearby foci compete for cells this leads to almost cell-free regions
between foci. In other words, a condensation focus establishes a ‘zone of influence’
within which other foci are inhibited from forming.

As the actual cartilagenous element develops, the cells seem to separate into two re-
gions: the outer region consists of flattened cells concentrically arranged, while the cells
in the inner region are rounded. The outer cells differentiate to form the perichondrium
which sheaths the developing bone. As suggested by Archer et al. (1983) and Oster et
al. (1985a,b), the perichondrium constrains the lateral growth of cartilage and forces its
elongation. It also restricts the lateral recruitment of additional cells, so that cells are
added to this initial condensation primarily by adding more mesenchymal cells at the
distal end thus affecting linear growth as illustrated in Figure 7.6, which also shows the
general features of the condensation process.

As we noted in Section 6.6, limb morphogenetic patterns are usually laid down se-
quentially, and not simultaneously over an entire tissue (Hinchliffe and Johnson 1980).
The latter method would be rather unstable. Theoretical models show that sequential
pattern generation is much more stable and reproducible. Recall the simulations asso-
ciated with the formation of animal coat patterns in Chapter 3, Section 3.1, where the
final pattern was dependent on the initial conditions, as compared with the robust for-
mation of hexagonal feather germ and scale arrays in birds, discussed in Section 6.5 in
the last chapter, and the supporting evidence from the model simulations by Perelson et
al. (1986).

Although most of the pattern formation sequence proceeds in a proximo-distal di-
rection, the differentiation of the digital arch (see Figure 7.11) occurs sequentially from
anterior to posterior. The onset of the differentiation of the digital arch is correlated with
the sudden broadening and flattening of the distal region of the limb bud into a pad-
dlelike shape. From the typical dispersion relations for pattern generation mechanisms
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Figure7.6. Schematic illustration of the cell condensation process. (&) Cells aggregate initially into a central
focus. (b) Development of the cartilaginous element restricts cell recruitment to the distal end of the con-
densation. (C) When conditions are appropriate the aggregation undergoes a Y -bifurcation. (After Shubin and
Alberch 1986)

(recall, for example, the detailed discussion in Chapter 2, Section 2.5) such a change in
geometry can initiate independent patterns and is the key to understanding this appar-
ent exception to the sequential development rule. Physically, this means that where the
domain is large enough, an independent aggregation arises and is far enough away from
the other aggregations that it can recruit cells to itself without being dominated by the
attractant powers of its larger neighbours. Of course other model parameters are also
important elements in the ultimate pattern and its sequential generation and initiation.
The key point is that, irrespective of whether reaction diffusion or mechanochemical
models create the chondrogenic condensations, the model parameters, which include
the size and shape of the growing limb bud, are crucially important in controlling pat-
tern. Experimental manipulations clearly confirm this importance.

Alberch and Gale (1983) treated a variety of limb buds with the mitotic inhibitor
colchicine. This chemical reduces the dimensions of the limb by reducing cell prolif-
eration. As we predicted, from our knowledge of pattern generation models and their
dispersion relations, such a reduction in tissue size reduces the number of bifurcation
events, as illustrated in Figure 7.7.

Note that a possibility that cannot be ruled out is that colchicine affects the timing
and number of bifurcations by altering some other developmental parameter, such as
cell traction or motility, in addition to the size of the recruitment domains. This alter-
ation, of course, is still consistent with the theory. At this stage further experiments are
required to differentiate between the various possibilities. The main point is that these
experiments confirm the principle that alterations in developmental parameters (here
tissue size) can change the normal sequence of bifurcation events, with concomitant
changes in limb morphology that are significant.
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Figure7.7. Experimentally induced alterations in the foot of the salamander Ambystoma mexicanum and the
frog Xenopuslaevisthrough treatment of the limb bud with colchicine. () Normal right foot of the salamander
and (b) the treated left foot. (C) Normal right foot of the frog with (d) the treated left foot. (From Alberch and
Gale 1983; photographs courtesy of Dr. Pere Alberch)

Using the basic ideas of cartilage pattern formation in Oster et al. (1983), Shubin
and Alberch (1986) carried out a series of comparative studies with amphibians, rep-
tiles, birds and mammals, and confirmed the hypothesis that tetrapod limb development
consists of iterations of the processes of focal condensation, segmentation and branch-
ing. Furthermore, they showed that the patterns of precartilage cell condensation display
several striking regularities in the formation of the limb pattern. Figure 7.8 presents just
some of these results; other examples are also given in Oster et al. (1988).
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Figure7.8. Comparative examples of the branching and segmentation in cartilage patterning. (@) Amphibian.
The foreleg of the frog Xenopus laevis. (b) Reptile. Forelimb of the salamander Ambystoma mexicanum.
(c) Mammal. Limb of the house mouse Mus musculus. These are all constructed from repetitive use of the
three basic morphogenetic rules displayed in Figure 7.5.
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Figure 7.9. Cartilage patterns obtained after the tissue and cells from the limb buds of a duck and chick
embryo were extracted, mixed together and then repacked into the limb bud sleeves. (From Patou 1973) The
patterns are highly irregular but are still generated by iterations of the basic morphogenetic rules (Figure 7.5).

Condensation, branching and segmentation are intrinsic properties of cartilage form-
ing tissue, although where and when condensation occurs depends on several factors.
The stability and reproducibility of a condensation pattern depends crucially on its se-
quential formation. Patou (1973), in some interesting experiments, removed and disag-
gregated the tissue and cells involved in cartilage formation from the leg buds of duck
and chick embryos. The two populations were then mixed and repacked into the empty
limb bud sleeves. The resulting cartilage patterns were highly abnormal and did not
display the characteristics of either species, as seen from Figure 7.9. In all cases, how-
ever, the condensation patterns were generated by iterations of the three basic processes
of condensation, branching and segmentation, as shown in Figure 7.5. The results sup-
port the theoretical conclusion that branching, segmentation and de novo condensation
events are reflections of the basic cellular properties of cartilage forming tissue.

We now see how the study of pattern formation mechanisms can define more pre-
cisely the notion of a ‘developmental constraint.” The above discussion together with
that in Section 6.6 on limb morphogenesis is only one example. It is based on a pattern
formation sequence for laying down the cell aggregation pattern reflected in the final
limb architecture.

7.3 Teratologies (Monsters)

Our study of theoretical models for pattern formation has shown that there are con-
siderable restrictions as to the possible patterns of chondrogenesis (as well as other
developmental aspects). From the morphogenetic laws described in the last chapter, for
example, it is highly unlikely that a trifurcation is possible, that is, a branching of one
element into three elements, or even one into many. Although subsequent growth may
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present the appearance of a 1-to-3 splitting, the theory suggests that all branchings are
initially binary. This is because a trifurcation is possible only under a very narrow set of
parameter values and conditions. If we include asymmetries it makes it even more un-
likely. Such a delicate combination of requirements almost always leads to an unstable
pattern even with numerical simulations of the model mechanisms.

Alberch (1989) applied this notion of the unlikelihood of trifurcations to other ex-
amples of internal constraints in development. He argued that this is the reason we do
not see any three-headed monsters. There are numerous examples of two-headed snakes
and other reptiles, Siamese twins and so on. Figures 7.10(a)—(c) show the three basic

(e)

Figure7.10. (a)—(d) Typical examples of the three basic types of conjoined twins in humans. The equivalent
forms are fairly common in fish. In (&) the duplication arises from a bifurcation of the body axis while in
(b)—a more common form—it is a consequence of fusing. This can occur through any part of the body. (c)
An example of a fused fragment from the chest region. (From Stockard 1921) (d) The skeleton (19th century)
of a Dicephalus, a young boy, with (€) a 19th century example of a Tricephalus.
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types of conjoined twins. Very few three-headed monsters have been reported, and of
these the veracity is often highly questionable. If we come back to the limited bifur-
cations suggested by the morphogenetic laws above, and specifically that a trifurcation
is highly unlikely, we can see how a three-headed monster can arise, namely, via a bi-
furcation of the body axis such as we see in the skeleton in Figure 7.10(d) followed
by a further bifurcation of one of the branches as seems clear in the example in Fig-
ure 7.10(e).!

The study of monsters—teratology—has a long history. Art (that of Hieronymus
Bosch is a particularly good source) and mythology are replete with splendid monsters
and new morphologies. One mediaeval description of a three-headed human is that it
was born with one head human, the other a wolf’s and the third a bloody mass without
skin. It finally died after it appeared before the city Senate and made a series of dire
predictions! There is a Diirer drawing of a calf with two bodies fused at the single
head while the head of Medusa with its numerous serpents surrounding the head was a
popular theme; the Rubens picture is, of course, well known.

Monsters have fascinated people for a very long time. An early interesting attempt
at monster classification was given by Ambroise Paré in 1573 in his bestiary Monstres et
Marveillles. He thought, for example, that a failure of the right mix of male and female
seed gave rise to monsters. Interspecific seed he thought gave rise to mixed human
and animal forms, such as the centaur. Paré suggested that constrictions of the womb
could give rise to hermaphrodites. He also thought, as was (and still is) common, the
wrath of God played a part. The book by Pallister (1982) discusses Paré’s work and his
classification of monsters.

The mediaeval and later literature abounds with descriptions of an incredible mena-
gerie of reputed monster births which with our current knowledge are totally impossible.
Some, however, are reminiscent of the thalidomide deformities. Again there are very
few references to three-headed monsters (unless one counts those whose head instead
consisted of several horns) but lots with multiple hands and fingers. Some of the more
fanciful births are supposedly by concubines of the various Popes (they couldn’t miss a
chance at a dig at the papacy in England at that time). The literature is fascinating as a
window onto the beliefs of people at the time. One marvelous example is the book by
William Turner, MA (an Oxford graduate), who was the Vicar of Walberton in England
in 1697 when his book came out. This was more than 30 years after the founding of the
Royal Society in London with scientific giants like Newton (personally a rather spiteful
man who incidentally believed his major contribution to knowledge was his writing on
religion). It was the era of long titles; the title of Turner’s book is

‘A Compleat History Of the Most Remarkable Providences, both of Judge-
ment and Mercy, Which have hapned in this Present Age. Extracted From

I This example was found in the mid-1980’s by a colleague (a historian) following a dinner conversation
in my Oxford college. I had commented on the absence of three-headed monsters other than mythical ones
typically found in mediaeval bestiaries. He said that he had seen an example—the one reproduced here. I was
sceptical but added that if it really had existed as a single body with three heads I could predict the general
shape. We agreed that if T got it right (a rough sketch was put in a sealed envelope) I would get the agreed
bottle of wine we bet on it. Having just finished working on these morphogenetic laws it seemed that the only
way it could arise was by an initial bifurcation of the body axis followed by another bifurcation of one of the
bifurcations as indeed it is from this figure. I won the bottle of wine.
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the Best Writers, the Author’s own Observations, and the Numerous Re-
lations sent to him from divers Parts of the Three Kingdoms. To which is
Added, Whatever is Curious in the Works of Nature and Art’ ((London:
Printed for John Dunton at the Raven, in Jewen Street). The author rec-
ommends it ‘as useful to ministers in Furnishing Topicks of Reproof and
Exhortation and to Private Christians for their closets and Families.’

One example he gives of Monstrous Births and Conceptions of Mankind is

‘... aChild, terrible to behold, with flaming and shining Eyes; the Mouth
and Nostrils were like those of an Ox; it had long horns, and a Back Hairy
like a Dog’s It had the Faces of Apes in the Breast where Teats should
stand; it had Cats Eyes under the Navel, fasten’d to the Hypogastrium, and
they looked hideously. It had the Heads of Dogs upon both Elbows, and
at the White-Bones of each Knee, looking forwards. It was Splay-footed
and Splay-handed; the Feet like Swans Feet, and a Tail turn’d upwards,
that crook’d up backwards about half an Ell long. It lived four Hours from
its Birth; and near its Death, it spake thus, Watch for the Lord your God
comes.’

Geoffroy Saint-Hilaire, one of the major scientists of his time, wrote extensively
on the subject of monsters and specifically commented on the absence of three-headed
monsters and produced the definitive work work on teratology in 1836. He also put for-
ward various propositions as to their cause. There is much interesting 19th century liter-
ature on monsters particularly towards the latter half of the century and the beginning of
the 20th. A CIBA symposium in 1947 was specifically concerned with monsters in na-
ture (Hamburger 1947) and art (Born 1947). Hamburger (1947) reproduces illustrations
and photographs of numerous examples including one similar to that in Figure 7.10(c)
known as the Genovese Colloredo in which there is a fragmentary duplication fused in
the chest region: the fragment has a head, one leg and only three fingers on each hand.

Stockard (1921, see other references there) studied teratologies extensively and car-
ried out some of the earliest experiments on fish by treating the embryos with chemicals
such as magnesium chloride. The horrifying teratological effects of thalidomide are well
documented and we have already commented in earlier chapters on the more recent use
of retinoic acid to create limb cartilage teratologies. Stockard (1921) discussed in detail
the incidence of hyperdactyly, that is, where the hands or feet have extra digits particu-
larly in identical twins since, like most double teratologies, they come from a single egg
and not by fusion of two eggs. Hamburger (1947) also describes the incidence of Cy-
clopia (one-eyed monsters) in humans. Stockard (1909) artificially produced one-eyed
monsters using chemicals: magnesium chloride is just one of them.

The history of teratologies from Aristotle to the present day (manifested, for ex-
ample, by the numerous horror films involving mythical monsters) is an ever fascinat-
ing subject. In the 19th century the preservation of skeletons of naturally occurring
teratologies was a particular fascination: Figure 7.10(d) of a young boy is one example.
The skeletons of giants and dwarfs were often coveted and anticipated when the subjects
were still alive. Hamburger (1947) describes the case of Charles Byrne, an Irish giant of
7 feet 8-3/4 inches (2.36 metres). Byrne, who very much did not want his body to end
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up in a museum took various precautions to ensure it would not happen by arranging to
have his corpse sunk in the Irish Channel by fishermen. After he died, however, his wish
was thwarted by a well-known surgeon, John Hunter, who managed to get the body (by
a higher bribe no doubt) and Byrne’s skeleton is now exhibited in the museum of the
Royal College of Surgeons in England.

Teratology highlights some of the most fundamental questions in evolution, namely,
why do we not get certain forms in nature. The developmental process, as we have seen,
embodies various systems of constraint which bias the evolution of the system. We thus
come back to what we have mentioned before, namely, that we must understand the role
of internal, as opposed to external, factors if we are to understand evolution. Alberch
(1989) gives a thorough discussion of this approach and, among other things, puts it
in a historical context. Teratologies, among other things, provide an excellent source
of information on the potential of developmental processes. They also suggest which
monstrosities are possible and which are not. It is interesting that specific morphologies
are found in quite different species suggesting a certain common developmental process
for part of their development.

7.4 Developmental Constraints, Morphogenetic Rulesand the
Consequences for Evolution

Variation and selection are the two basic components of an evolutionary process. Ge-
netic mutations generate novelties in the population, while natural selection is limited
by the amount of variability present although it is usually quite high. There is generally
no direct correspondence between genetic and morphological divergence. This lack of
correspondence suggested looking for constraints on the final phenotype in the map-
ping from genes to phenotypes, such as occurs in developmental processes. We should
remember that genes do not specify patterns or structures; they change the construction
recipe by altering the molecular structures or by regulating other genes that specify cel-
lular behaviour. So, it is well to reiterate what we said at the beginning of the chapter,
namely, that only with an understanding of developmental mechanisms can we address
the central question of how genes can produce ordered anatomical structures.

There is considerable interest in the ro