Programming for Data Science Vectors in R language

Marco Beccuti

Università degli Studi di Torino

Dipartimento di Informatica

October 2021

Vectors in R

- an ordered list of homogeneous elements;
- Vectors are the simplest type of object in R;

There are 3 main types of vectors:

- Numeric vectors;
- Character vectors;
- Logical vectors.
- To create a numeric vector x consisting of 6 numbers, 1.4, $6,23.1,65.43$, 2.7, 55 use:
$>x=c(1.4,6,23.1,65.43,2.7,55)$
or
$>x<-c(1.4,6,23.1,65.43,2.7,55)$
or
$>\operatorname{assign}(" x ", c(1.4,6,23.1,65.43,2.7,55))$

Numeric vectors in R

- To print the contents of x :
$>x$
[1]1.4 623.165 .432 .755
symbol [1] in front of the result is the index of the first element in the vector x.
- To access a particular element of x :
$>x[1]$
[1]1.4
$>x[6]$
[1]55
$>x[c(1,6)]$
[1]1.4 55
$>x[-c(1,5)] \quad$ Operator - means: select all the elements except those
[1]6 23.165 .432 .7

Numeric vectors in R

- To modify a particular vector element:
$>x[2]=5 \quad$ to modify the 2 nd element of x in 5
[1]1.4 523.165 .432 .755
$>x[4]=5$
[1]1.4523.152.755
- To modify more than one vector elements:
$>x[c(2,4)]=c(6,65.43)$
[1]1.4 623.165 .432 .755
$>y=x$
$>y[y<3]=1$
$>y$
[1]1 623.165 .43155

Numeric vectors in R

- A vector can be used to do further assignments:
$>y=c(x, 2,3, x[c(1,3)])$
vector y with 10 entries is created:
$>y$
[1]1.4 623.165 .432 .755231 .423 .1
- Operation are performed on each single element:
$>x / 10$
[1]0.14 0.62 .316 .5430 .275 .5
- Short vectors are "recycled" to match long ones (if it is possible):
$>v=x[c(1,2)]+y \quad x[c(1,2)]$ is repeated 5 times
$>v$
[1]2.8 1224.571 .434 .1613 .492 .829 .1

Numeric vectors in R

- Short vectors are "recycled" to match long ones (if it is possible)
$>v=x+y$

Warning message:

In $x+y$: longer object length is not a multiple of shorter object length

- Some functions take vectors of values and produce results of the same length: sin, cos, tan, asin, acos, atan, log, exp, ...

```
> log(x)
[1]0.3364722 1.7917595 3.1398326 4.1809809 0.9932518 4.0073332
```

- Some functions return a single value:

```
sum, mean, max, min, prod, ...
```

$>$ length (x)
[1] 6
$>\operatorname{sum}(x)$
[1]153.63
$>\operatorname{sum}(x) /$ lenght (x)
[1]25.605
$>$ mean (x)
[1]25.605
$>\max (x)$
[1]65.43
$>\min (x)$
[1]1.4

Numeric vectors in R

- Some special functions are:
sort, cumsum, cumprod, pmax, pmin, range...

```
>x
[1]1.4 6 23.1 65.43 2.7 55
> sort(x)
[1]1.40 2.70 6.00 23.10 55.00 65.43
cumsum(x) cumulative sums
[1]1.407.40 30.50 95.93 98.63153.63
>y=c(2,3,5,6,100,9)
> pmax (x,y) max among 2 or more vector/scalar
[1]2 6 23.165.43 100 55
>pmin}(x,y
[1]1.403562.79
> range(x)
[1]1.40 65.43
```


How to generate sequences in R

- In R it is possible to generate sequences of numbers
- using operator ":"
$>1: 5$
[1]1 2345
- using function seq()
$>\operatorname{seq}(1,5)$
[1]1 2345
$>\operatorname{seq}($ from $=1$, to $=5)$
[1]1 2345
We can also specify a step size (using by=value) or a length (using length=value) for the sequence.
$>\operatorname{seq}(1,5$, by $=0.5)$
[1]11 1.522 .533 .544 .55
$>\operatorname{seq}($ from $=1$, to $=5$, length $=9)$
[1]11.522.5 33.544 .55
- using function rep()
$>\operatorname{rep}(x, 3)$
[1]1.40 6.0023 .1065 .432 .7055 .001 .406 .0023 .1065 .432 .7055 .00
[13]1.40 6.00 23.1065 .432 .7055 .00

Character vector in R

- A string is identify by " "
- A string vector is defined as well as number vector by c() operator $>x=c(" R O M A ", " M I L A N O ", " T O R I N O ")$
- several functions in R to manipulate character vectors.
paste, as.character, is.character, strsplit, substr...
> paste("HOME", "WHILE", "DOG", sep = ": ")
[1]"HOME:WHILE:DOG" Concatenate char vectors
$>x=1: 5$
$>$ is.character (x) test if an object is of type character [1] FALSE
> is.character(as.character (x))
[1] TRUE
> Y = paste("HOME", "WHILE", "DOG", sep = ": ")
$>\operatorname{strsplit}(Y$, split $=" O$ " $) \quad$ split the elements of Y into sub-strings w.r.t split string [[1]]
[1]"H""ME:WHILE:D""G"
$>\operatorname{substr}(Y, 5,10) \quad$ Extract or replace sub-strings in a character vector.
[1]" : WHILE"

Logical vector in R

- A logical vector is a vector whose elements are TRUE, FALSE or NA.
- it is generated by conditions:
$>x$
[1]1.4 623.165 .432 .755
$>$ logic $=x>34$

[1]FALSE FALSE FALSE TRUE FALSE TRUE

It compares each element of x with 34 . It returns a vector the same length as x, with a value TRUE when the condition is met and FALSE when it is not.

- logical operators are $>,>=,<,<=,==,!=, \&, \mid$.

Logical operator

Logical operator

- Operator $==$ can be used on floating-point numbers:
$>\operatorname{sqrt}(2)^{\wedge} 2==2$
[1] FALSE
$>1 / 49 * 49==1$
[1] FALSE
- Computers use finite precision arithmetic so remember that every number you see is an approximation (use options(digits=20)).
- Instead of relying on $==$, use near($)$ in library dplyr :
$>\operatorname{near}\left(\operatorname{sqrt}(2)^{\wedge} 2,2\right)$
[1] TRUE

Factor in R

- A factor is a special type of vector used to a vector of data, usually taking a small number of distinct values. To store in statistical modelling data as factors insures that will be treated not as continuous variables but as categorical variable.
- it is internally stored as a vector of integer values with a corresponding set of character values to use when the factor is displayed (an efficient way);
- Factor's levels is always a character values;
- a factor is created as follows:
$>f=$ factor(rep(c("Control", "Treated"), c(3,4)))
[1]Control Control Control Treated Treated Treated Treated
Levels: Control Treated
- main factor operators:
$>$ levels (f) it returns the levels of a factor
$>\operatorname{summary}(f) \quad$ it returns the frequencies associated with each level
$>\operatorname{str}(f) \quad$ it returns a compact visualization of the factor

Exercises on Vectors

(1) Create a vector x with the following entries:

$$
3411216
$$

Check which elements of x are lower and equal to 2 .
Modify x so that all of the 1 values are changed to 0 values.
(2) Create a vector y containing the elements of x that are greater than 2 ;
(0) Create a sequence of numbers from 1 to 20 in steps of 0.25 and store in k. Change the elements in positions 4 and 5 with values 11 and 12;
(1) Concatenate x and y into a vector called Vec;
(0) Display all objects in the workspace and then remove Vec.

Exercises on Vectors

- Create a vector x with the following entries:

$$
3411216
$$

Check which elements of x are lower and equal to 2 . Modify x so that all of the 1 values are changed to 0 values.
$>x=c(3,4,1,1,2,1,6)$
$>x<=2$
$>x[x==1]=0$

Exercises on Vectors

- Create a vector y containing the elements of x that are greater than 2 ;
$>y=x[x>2]$
$>y$
[1]3 46

Exercises on Vectors

- Create a sequence of numbers from 1 to 20 in steps of 0.25 and store in k. Change the elements in positions 4 and 5 with values 11 and 12
$>k=\operatorname{seq}(1,20$, by $=0.25)$
$>k[c(4,5)]=c(11,12)$

Exercises on Vectors

- Concatenate x and y into a vector called Vec:
$>V e c=c(x, y)$
$>$ Vec
[1]3411216346

Exercises on Vectors

- Display all objects in the workspace and then remove Vec.
$>\mid s()$
[1]"Vec" "x" "y" "z"
$>r m($ Vec $)$
$>r m(l i s t=l s()) \quad$ To remove all variables

