Programming for Data Science
 Matrices and Arrays in R language

Marco Beccuti

Università degli Studi di Torino
Dipartimento di Informatica

October 2021

Matrix in R

- Matrix is an extension of vector to 2 dimensions.
- it has rows and columns;
- it is used for many purposes in statistics.
- To create a matrix 3×2 we can use function matrix:
$>x=\operatorname{rnorm}(6) \quad$ random generation for the normal distribution
$>x$
[1] - $0.17676431 .5306045-0.3806768-0.19504070 .33076760 .8992097$
$>m=\operatorname{matrix}(x$, nrow $=3, n c o l=2)$

	$[, 1]$	$[, 2]$
$[1]$,	-0.1767643	-0.1950407
$[2]$,	1.5306045	0.3307676
$[3]$,	-0.3806768	0.8992097

Matrix in R

- input parameter byrow=TRUE means that the matrix is filled row by row rather than column by column.
$>x$
[1] - $0.17676431 .5306045-0.3806768-0.19504070 .33076760 .8992097$
$>m=$ matrix $(x$, nrow $=3, n c o l=2)$

	$[, 1]$	$[, 2]$
$[1]$,	-0.1767643	-0.1950407
$[2]$,	1.5306045	0.3307676
$[3]$,	-0.3806768	0.8992097

$>m=$ matrix $(x$, nrow $=3$, byrow $=T R U E)$

	$[, 1]$	$[, 2]$
$[1]$,	-0.1767643	1.5306045
$[2]$,	-0.3806768	-0.1950407
$[3]$,	0.3307676	0.8992097

Matrix in R

- Useful functions for matrices include:

```
nrow(), ncol(), t(), rownames(), colnames(),...
```

$>\operatorname{ncol}(m)$
[1]2
$>\operatorname{nrow}(m)$
[1]3
$>t(m)$ transposition function: rows become columns and vice versa).

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	-0.1767643	-0.3806768	0.3307676
$[2]$,	1.5306045	-0.1950407	0.8992097

Matrix in R

- Useful functions for matrices include: nrow($)$, ncol ($), \mathrm{t}()$, rownames () , colnames ()$, \ldots$
$>\operatorname{rownames}(m)=c(" R 1$ ", " $R 2$ ", " $R 3$ ")
$>m$

	$[, 1]$	$[, 2]$
$R 1$	-0.1767643	1.5306045
$R 2$	-0.3806768	-0.1950407
$R 3$	0.3307676	0.8992097

$>\operatorname{colnames}(m)=c($ "C1", "C2")
$>m$

$$
\begin{array}{ll}
C 1 & C 2
\end{array}
$$

$R 1$	-0.1767643	1.5306045
$R 2$	-0.3806768	-0.1950407
$R 3$	0.3307676	0.8992097

Matrix in R

- Vector/Matrix and Vector/Matrix can be merged together by operators: cbind(), rbind

$$
\begin{aligned}
& >x=1: 3 \\
& >y=4: 6 \\
& >\operatorname{cbind}(x, y)
\end{aligned}
$$

	$[, 1]$	$[, 2]$
$[1]$,	1	4
$[2]$,	2	5
$[3]$,	3	6

$>x=1: 3$
$>y=4: 6$
$>\operatorname{rbind}(x, y)$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	2	3
$[2]$,	4	5	6

$>\operatorname{cbind}(y, x)$

	$[, 1]$	$[, 2]$
$[1]$,	4	1
$[2]$,	5	2
$[3]$,	6	3

$>\operatorname{rbind}(y, x)$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	4	5	6
$[2]$,	1	2	3

Matrix in R

- Vector/Matrix and Vector/Matrix can be merged together by operators: cbind(), rbind
- Using cbind() It is not possible combine matrix with different number of rows;
- Using rbind() It is not possible combine matrix with different number of columns;
- Combining vectors with other vectors or matrices, short vectors are "recycled" to match long ones:

>x		
[1]2.1 1.50 .44 .6		
$>y=1: 2$		
$>\operatorname{cbind}(y, x)$		
	$[, 1]$	[, 2]
[1,]	1	2.1
[2,]	2	1.5
[3,]	1	0.4
[4,]	2	4.6

$>x$
[1]2.1 1.50 .44 .67
$>y=1: 2$
$>\operatorname{cbind}(y, x)$
Warning number of rows of result is not a multiple of vector length

Matrix in R

Other functions for matrices include:

- $t(A) \% * \% B$ computes matrix multiplication;

- $\operatorname{diag}(\mathrm{n})$ creates a diagonal matrix with the values in the vector n on the diagonal;
- solve (A, B) solves the equation $a * x=b^{\prime}$ for \times vector;
- eigen (C) computes the eigenvalues and eigenvectors of C (e.g. stability analysis...)

Indexing matrix in R

Given a matrix m as follows:

	$C 1$	$C 2$
$R 1$	-0.1767643	1.5306045
$R 2$	-0.3806768	-0.1950407
$R 3$	0.3307676	0.8992097

- then we can access the value in row 3, column 2 using:
$>m[3,2]$
[1]0.8992097
> m["R3", "C2"]
[1]0.8992097
- to access multiple elements is possible as follows:
$>m[, 2] \quad$ all elements in column 2.
[1]1.5306045-0.19504070.8992097
$>m[3$,$] \quad all elements in row 3$.
[1]0.3307676 0.8992097
$>m[c(1,3), 2] \quad$ elements in column 2 and rows 1 and 3.
[1]1.5306045 0.8992097

Array in R

- An array is an extension of a matrix to more than 2 dimensions;
- Function array() can be used to create arrays:
$>A 1=\operatorname{array}(0, c(2,2,3)) \quad$ create a 3 d-array (dim. $2 \times 2 \times 3$) with all elements 0 .
$>a=\operatorname{rnorm}(50)$
$>A 1=\operatorname{array}(a, c(2,2,3)) \quad$ create a 3 d -array from vector a
- Elements of multi-dimensional array can be indexed as those of a matrix:
$>A 1[2,$,$] \quad Extracts the data in row 2$ of the 3 matrices.
$>A 1[, 3$,$] \quad Extracts the data in column 3$ of the 3 matrices.
$>A 1[,, 1] \quad$ Extracts the first matrix.
$>A 1[1,2,3] \quad$ Extract element in row 1, column 2 and third matrix.

Exercises on Matrices and Arrays

- Create a matrix A with values $10,20,30,50,4,4$ in column 1 , values $1,4,2$, 3,2 , 3 in column 2 and values $15,11,19,5,3,4$ in column 3 ;
- Create a vector B with values $2.5,3.5,1.75$, and combine A and B into a new matrix C using cbind();
- Combine A and B into a new matrix H using rbind();
- Determine the dimensions of C and H using $\operatorname{dim}()$ function;
- Compute the following matrix multiplication:

$$
\left(\begin{array}{ccc}
1 & 4 & 3 \\
0 & -2 & 8
\end{array}\right) \times\left(\begin{array}{cc}
1 & 9 \\
2 & 17 \\
-6 & 3
\end{array}\right)
$$

Exercises on Matrices and Arrays

- Create a matrix A with values $10,20,30,50,4,4$ in column 1 , values $1,4,2$, $3,2,3$ in column 2 and values $15,11,19,5,3,4$ in column 3 ;
$>x=c(10,20,30,50,4,4,1,4,2,3,2,3,15,11,19,5,3,4)$
$>A=\operatorname{matrix}(x$, ncol $=3)$

Exercises on Matrices and Arrays

- Create a vector B with values $2.5,3.5,1.75$, and combine A and B into a new matrix C using cbind();
$>B=c(2.5,3.5,1.75)$
$>C=\operatorname{cbind}(A, B)$

Exercises on Matrices and Arrays

- Combine A and B into a new matrix H using rbind();
$>B=c(2.5,3.5,1.75)$
$>C=\operatorname{rbind}(A, B)$

Exercises on Matrices and Arrays

- Determine the dimensions of C and H using $\operatorname{dim}()$ function;
$>\operatorname{dim}(C)$
[1]6 4
$>\operatorname{dim}(H)$
[1]7 3

Exercises on Matrices and Arrays

- Compute the following matrix multiplication:

$$
\left(\begin{array}{ccc}
1 & 4 & 3 \\
0 & -2 & 8
\end{array}\right) \times\left(\begin{array}{cc}
1 & 9 \\
2 & 17 \\
-6 & 3
\end{array}\right)
$$

$>x=c(1,0,4,-2,3,8)$
$>A=$ matrix $(x$, nrow $=2)$
$>y=c(1,9,2,17,-6,3)$
$>B=\operatorname{matrix}(y$, ncol $=2$, byrow $=T)$
$>A \%$ * $\%$ B

Exercises on Matrices and Arrays

- Solve the following equation system:

$$
S=\left\{\begin{array}{l}
x_{1}+2 x_{2}-2 x_{3}=1 \\
2 x_{1}-x_{2}+x_{3}=3 \\
x_{1}+3 x_{2}+x_{3}=1
\end{array}\right.
$$

Exercises on Matrices and Arrays

- Solve the following equation system:

$$
S=\left\{\begin{array}{l}
x_{1}+2 x_{2}-2 x_{3}=1 \\
2 x_{1}-x_{2}+x_{3}=3 \\
x_{1}+3 x_{2}+x_{3}=1
\end{array}\right.
$$

$>x=c(1,2,-2,2,-1,1,1,3,1)$
$>A=$ matrix $(x$, nrow $=3$, byrow $=T)$
$>B=c(1,3,1)$
$>$ solve (A, B)

