Programming for Data Science Matrices and Arrays in R language

Marco Beccuti

Università degli Studi di Torino Dipartimento di Informatica

October 2021

• Matrix is an extension of vector to 2 dimensions.

- it has rows and columns;
- it is used for many purposes in statistics.
- To create a matrix 3×2 we can use function matrix:

> x = rnorm(6) random generation for the normal distribution

> x

 $[1] - 0.1767643 \ 1.5306045 \ - 0.3806768 \ - 0.1950407 \ 0.3307676 \ 0.8992097$

> m = matrix(x, nrow = 3, ncol = 2)

	[,1]	[,2]
[1,]	-0.1767643	-0.1950407
[2,]	1.5306045	0.3307676
[3,]	-0.3806768	0.8992097

input parameter byrow=TRUE means that the matrix is filled row by row rather than column by column.
 x

```
[1] - 0.1767643 \ 1.5306045 \ - 0.3806768 \ - 0.1950407 \ 0.3307676 \ 0.8992097
> m = matrix(x, nrow = 3, ncol = 2)
                [,1]
                                 [,2]
        -0.1767643
                        -0.1950407
[1,]
[2,]
         1.5306045
                         0.3307676
[3, ]
                          0.8992097
        -0.3806768
> m = matrix(x, nrow = 3, byrow = TRUE)
                [,1]
                                 [,2]
[1,]
        -0.1767643
                          1.5306045
[2, ]
        -0.3806768
                        -0.1950407
[3,]
         0.3307676
                          0.8992097
```

 Useful functions for matrices include: nrow(), ncol(), t(), rownames(), colnames(),... > ncol(m)[1]2 > nrow(m) [1]3 > t(m)transposition function: rows become columns and vice versa). [,1][,2] [,3] -0.1767643 -0.3806768 0.3307676 [1,][2,] 1.5306045 -0.1950407 0.8992097

• Useful functions for matrices include: nrow(), ncol(), t(), rownames(), colnames(),...

> rownames(m) = c("R1", "R2", "R3") > m

	[, 1]	[,2]
R1	-0.1767643	1.5306045
R2	-0.3806768	-0.1950407
R3	0.3307676	0.8992097

$$> colnames(m) = c("C1", "C2")$$

 $> m$

C1	C2
-0.1767643	1.5306045
-0.3806768	-0.1950407
0.3307676	0.8992097
	-0.1767643 -0.3806768

• Vector/Matrix and Vector/Matrix can be merged together by operators: cbind(), rbind

> $x = 1 : 3$ > $y = 4 : 6$ > $cbind(x, y)$		> $x = 1 : 3$ > $y = 4 : 6$ > $rbind(x, y)$				
[1,] [2,] [3,]	[, 1] 1 2 3	[, 2] 4 5 6	[1,] [2,]	[,1] 1 4	[, 2] 2 5	[, 3] 3 6
> cbind (y, x)			> rbind(y,x)			
[1,] [2,] [3,]	[, 1] 4 5 6	[, 2] 1 2 3	[1,] [2,]	[, 1] 4 1	[, 2] 5 2	[, 3] 6 3

- Vector/Matrix and Vector/Matrix can be merged together by operators: cbind(), rbind
- Using cbind() It is not possible combine matrix with different number of rows;
- Using rbind() It is not possible combine matrix with different number of columns;
- Combining vectors with other vectors or matrices, short vectors are "recycled" to match long ones :

```
> x
[1]2.1 1.5 0.4 4.6
> y = 1:2
> cbind(y,x)
         [, 1]
                  [,2]
                  2.1
[1,]
         1
[2, ]
         2
             1.5
[3, ]
         1
                  0.4
         2
[4, ]
                  4.6
```

> x $[1]2.1 \ 1.5 \ 0.4 \ 4.6 \ 7$ > y = 1 : 2> cbind(y, x)Warning number of rows of result is not a multiple of vector length

Other functions for matrices include:

- t(A)% * %B computes matrix multiplication;
- diag(n) creates a diagonal matrix with the values in the vector *n* on the diagonal;
- solve(A,B) solves the equation a * x = b' for x vector;
- eigen(C) computes the eigenvalues and eigenvectors of C (e.g. stability analysis...)

Indexing matrix in R

Given a matrix m as follows:

	C1	C2
R1	-0.1767643	1.5306045
R2	-0.3806768	-0.1950407
R3	0.3307676	0.8992097

• then we can access the value in row 3, column 2 using: > m[3,2][1]0.8992097

```
> m["R3", "C2"]
[1]0.8992097
```

• to access multiple elements is possible as follows:

> m[, 2] all elements in column 2. [1]1.5306045 - 0.1950407 0.8992097

> m[3,] all elements in row 3. [1]0.3307676 0.8992097

> m[c(1,3),2] elements in column 2 and rows 1 and 3. [1]1.5306045 0.8992097

Array in R

- An array is an extension of a matrix to more than 2 dimensions;
- Function array() can be used to create arrays:

> A1 = array(0, c(2, 2, 3)) create a 3d-array (dim. 2×2×3) with all elements 0. > a = rnorm(50) > A1 = array(a, c(2, 2, 3)) create a 3d-array from vector *a*

- Elements of multi-dimensional array can be indexed as those of a matrix:
 - > A1[2, ,] Extracts the data in row 2 of the 3 matrices.
 - > A1[,3,] Extracts the data in column 3 of the 3 matrices.
 - > A1[,,1] Extracts the first matrix.
 - > A1[1,2,3] Extract element in row 1, column 2 and third matrix.

- Create a matrix A with values 10, 20, 30, 50, 4, 4 in column 1, values 1, 4, 2, 3, 2, 3 in column 2 and values 15, 11, 19, 5, 3, 4 in column 3;
- Create a vector B with values 2.5, 3.5, 1.75, and combine A and B into a new matrix C using cbind();
- Combine A and B into a new matrix H using rbind();
- Determine the dimensions of C and H using dim() function;
- Compute the following matrix multiplication:

$$\left(\begin{array}{rrr}1 & 4 & 3\\ 0 & -2 & 8\end{array}\right) \times \left(\begin{array}{rrr}1 & 9\\ 2 & 17\\ -6 & 3\end{array}\right)$$

Create a matrix A with values 10, 20, 30, 50, 4, 4 in column 1, values 1, 4, 2, 3, 2, 3 in column 2 and values 15, 11, 19, 5, 3, 4 in column 3;

> x = c(10, 20, 30, 50, 4, 4, 1, 4, 2, 3, 2, 3, 15, 11, 19, 5, 3, 4)> A = matrix(x, ncol = 3)

• Create a vector B with values 2.5, 3.5, 1.75, and combine A and B into a new matrix C using cbind();

> B = c(2.5, 3.5, 1.75)> C = cbind(A, B)

• Combine A and B into a new matrix H using rbind();

> B = c(2.5, 3.5, 1.75)> C = rbind(A, B)

• Determine the dimensions of C and H using dim() function;

[1]6 4 > *dim*(*H*) [1]7 3

> dim(C)

• Compute the following matrix multiplication:

$$\left(\begin{array}{rrr}1 & 4 & 3\\ 0 & -2 & 8\end{array}\right) \times \left(\begin{array}{rrr}1 & 9\\ 2 & 17\\ -6 & 3\end{array}\right)$$

>
$$x = c(1, 0, 4, -2, 3, 8)$$

> $A = matrix(x, nrow = 2)$
> $y = c(1, 9, 2, 17, -6, 3)$
> $B = matrix(y, ncol = 2, byrow = T)$
> $A\% * \%B$

• Solve the following equation system:

$$S = egin{cases} x_1 + 2x_2 - 2x_3 = 1 \ 2x_1 - x_2 + x_3 = 3 \ x_1 + 3x_2 + x_3 = 1 \end{cases}$$

• Solve the following equation system:

$$S = \begin{cases} x_1 + 2x_2 - 2x_3 = 1\\ 2x_1 - x_2 + x_3 = 3\\ x_1 + 3x_2 + x_3 = 1 \end{cases}$$

$$> x = c(1, 2, -2, 2, -1, 1, 1, 3, 1)$$

 $> A = matrix(x, nrow = 3, byrow = T)$
 $> B = c(1, 3, 1)$
 $> solve(A, B)$