Programming for Data Science Tidy Data in R

Marco Beccuti

Università degli Studi di Torino Dipartimento di Informatica

November 2021

Tidy data

- You can represent the same underlying data in multiple ways;
- The following example shows the same data organized in four different ways;
- Each dataset shows the same values of four variables, country, year, cases, and population. but each dataset organizes the values in a different way: table1

```
#> # A tibble: 6 × 4
#>
        country year cases population
#>
           <chr> <int> <int>
                                  <int>
#> 1 Afghanistan 1999
                         745
                                19987071
#> 2 Afghanistan 2000
                        2666
                               20595360
#> 3
         Brazil
                 1999
                       37737 172006362
#> 4
         Brazil 2000 80488 174504898
#> 5
          China 1999 212258 1272915272
#> 6
          China 2000 213766 1280428583
table2
#> # A tibble: 12 x 4
#>
        country year
                             type
                                      count
#>
           <chr> <int>
                            <chr>
                                      <int>
#> 1 Afahanistan 1999
                           cases
                                        745
#> 2 Afghanistan 1999 population
                                  19987071
#> 3 Afahanistan 2000
                           cases
                                       2666
#> 4 Afghanistan 2000 population 20595360
#> 5
         Brazil 1999
                           cases
                                      37737
         Brazil 1999 population 172006362
#> 6
#> # ... with 6 more rows
```

	# A	tibble: 6 country			
#>		country			
			vear	+-	
#>	*			rate	
		<chr></chr>	<int></int>	<chr></chr>	
#>	1 Aj	fghanistan	1999	745/19987071	
#>	2 Aj	fghanistan	2000	2666/20595360	
#>	3	Brazil	1999	37737/172006362	
#>	4	Brazil	2000	80488/174504898	
#>	5	China	1999	212258/1272915272	
#>	6	China	2000	213766/1280428583	

745 2666

China 212258 213766 #> 3

Brazil 37737 80488

#> 1 Afahanistan

#> 2

#> 3

#> 1 Afahanistan

Brazil

#> 2

`1999`

<int>

China 1272915272 1280428583

19987071

172006362

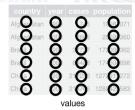
2000

20595366

174504898

<int>

Tidy data


- There are three interrelated rules which make a dataset tidy:
 - Each variable must have its own column;
 - 2 Each observation must have its own row;
 - Sech value must have its own cell.

country	year	cases	population
Afghanstan		15	18.07071
Afghanistan	2000	2666	20:95360
Brazi	1999	31737	172006362
Brazi	2000	8(488	174:04898
China	1999	212258	1272 15272
Chin	20	21 66	1280 8583

variables

observations

Tidy data

• In this example, only *table1* is tidy;

It is the only representation where each column is a variable.

```
table1
#> # 4 tibble: 6 x 4
#>
        country year cases population
#>
           <chr> <int> <int>
                                  <int>
#> 1 Afghanistan 1999
                         745
                               19987071
#> 2 Afghanistan 2000
                        2666
                               20595360
#> 3
         Brazil 1999 37737 172006362
#> 4
         Brazil 2000 80488 174504898
#> 5
         China 1999 212258 1272915272
#> 6
          China 2000 213766 1280428583
table2
#> # A tibble: 12 x 4
#>
        country year
                            type
                                     count
          <chr> <int>
                           <chr>
#>
                                     <int>
#> 1 Afghanistan 1999
                           cases
                                       745
#> 2 Afghanistan 1999 population
                                  19987071
#> 3 Afahanistan 2000
                           cases
                                      2666
#> 4 Afghanistan 2000 population
                                 20595360
#> 5
         Brazil 1999
                           cases
                                     37737
#> 6
         Brazil 1999 population 172006362
#> # ... with 6 more rows
```

table3

#>	#	A tibble: 6	× 3	
#>		country	year	rate
~~	*	<chr></chr>	<int></int>	<chr></chr>
			1999	745/19987071
#>	2	Afghanistan	2000	2666/20595360
#>	3	Brazil	1999	37737/172006362
#>	4	Brazil	2000	80488/174504898
#>	5	China	1999	212258/1272915272
#>	6	China	2000	213766/1280428583

Spread across two tibbles

tal	ьl	e4a # cases			tal	ole	e4b # popula	ation	
#>	#	A tibble: 3	× 3		#>	#	A tibble: 3	× 3	
#>		country	`1999`	2000`	#>		country	`1999`	`2000`
#>	*	<chr></chr>	<int></int>	<int></int>	#>	*	<chr></chr>	<int></int>	<int></int>
#>	1	Afghanistan	745	2666	#>	1	Afghanistan	19987071	20595360
#>	2	Brazil	37737	80488	#>	2	Brazil	172006362	174504898
#>	3	China	212258	213766	#>	3	China	1272915272	1280428583

Spreading and Gathering

- For most real analyses, you will need to do some tidying;
- The first step is always to figure out what the variables and observations are;
- The second step is to resolve one of two common problems:
 - One variable might be spread across multiple columns;
 - One observation might be scattered across multiple rows.
- in *tidyr* package the functions *gather()* and *spread()* can be exploited to fix these problems.

Gathering

- A common problem is a dataset where some of the column names are not names of variables;
- Take *table4a* the column names *1999* and *2000* represent values of the year variable, and each row represents two observations;

table	e4a		
#> #	A tibble: 3	× 3	
#>	country	`1999`	`2000`
#> *	<chr></chr>	<int></int>	<int></int>
#> 1	Afghanistan	745	2666
#> 2	Brazil	37737	80488
#> 3	China	212258	213766

• we need to collect these columns into a new pair of variables.

Gathering

Gathering

- To achieve this task we have to specify three parameters:
 - ▶ The set of columns that represent values, not variables (i.e. 1999 and 2000).
 - The name of the variable whose values form the column names (e.g. year).
 - The name of the variable whose values are spread over the cells (e.g. cases).

> gather(table4a, "1999", "2000", key = "year", value = "cases")

#>	#	A tibble: 6	× 3	
#>		country	уеаг	cases
#>		<chr></chr>	<chr></chr>	<int></int>
#>	1	Afghanistan	1999	745
#>	2	Brazil	1999	37737
#>	3	China	1999	212258
#>	4	Afghanistan	2000	2666
#>	5	Brazil	2000	80488
#>	6	China	2000	213766

Spreading

- Spreading is the opposite of gathering;
- It is used when an observation is scattered across multiple rows;
- For example, each observation is spread across two rows:

table	2				
#> #	A tibble: 12	2 × 4			
#>	country	уеаг	type	count	
#>	<chr></chr>	<int></int>	<chr></chr>	<int></int>	
#> 1	Afghanistan	1999	cases	745	
#> 2	Afghanistan	1999	population	19987071	
#> 3	Afghanistan	2000	cases	2666	
#> 4	Afghanistan	2000	population	20595360	
#> 5	Brazil	1999	cases	37737	

Spreading

• Spreading is the opposite of gathering;

country	year	type	count
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

Spreading

- Spreading is the opposite of gathering;
 - > spread(table2, key = type, value = count)

#>	#	A tibble: 6	× 4		
#>		country	уеаг	cases	population
#>	*	<chr></chr>	<int></int>	<int></int>	<int></int>
#>	1	Afghanistan	1999	745	19987071
#>	2	Afghanistan	2000	2666	20595360
#>	3	Brazil	1999	37737	172006362
#>	4	Brazil	2000	80488	174504898
#>	5	China	1999	212258	1272915272
#>	6	China	2000	213766	1280428583

- it splits one column into multiple columns by separating wherever a separator character appears;
- For instance rate columns contains both cases then it must be split it into two variables. :

tab	ole	:3			
#>	#	A tibble: 6	× 3		
#>		country	уеаг	rate	
#>	*	<chr></chr>	<int></int>	<chr></chr>	
#>	1	Afghanistan	1999	745/19987071	
#>	2	Afghanistan	2000	2666/20595360	
#>	3	Brazil	1999	37737/172006362	
#>	4	Brazil	2000	80488/174504898	
#>	5	China	1999	212258/1272915272	
#>	6	China	2000	213766/1280428583	

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

table3

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

 It splits one column into multiple columns by separating wherever a separator character appears;

> separate(table3, rate, into = c("cases", "population"), sep = "/")

#>	> #	A tibble: 6	× 4			
#>	>	country	year	cases	population	
#>	> *	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	
#>	> 1	Afghanistan	1999	745	19987071	
#>	> 2	Afghanistan	2000	2666	20595360	
#>	> 3	Brazil	1999	37737	172006362	
#>	> 4	Brazil	2000	80488	174504898	
#>	> 5	China	1999	212258	1272915272	
#>	> 6	China	2000	213766	1280428583	

- It splits one column into multiple columns by separating wherever a separator character appears;
- We can ask separate() to try and convert to better types using convert = TRUE:

> separate(table3, rate, into = c("cases", "population"), sep = "/", convert = TRUE)

#>	#	A tibble: 6	× 4			
#>		country	year	cases	population	
#>	*	<chr></chr>	<int></int>	<int></int>	<int></int>	
#>	1	Afghanistan	1999	745	19987071	
#>	2	Afghanistan	2000	2666	20595360	
#>	3	Brazil	1999	37737	172006362	
#>	4	Brazil	2000	80488	174504898	