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Function in R

@ We have already used several examples of functions:

mean(x) sd(x) ggplot(data, ...) Im(y ~ x, ...) ....

@ Functions are typically written if we need to compute the same thing for
several data sets;

@ Functions have a name and a list of arguments or input objects. For
example, the argument to the function mean() is the vector x;

@ Functions can also have a list of output objects returned when the function
is terminated;

@ A function must be written and loaded into R before it can be used.
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A simple function in R
@ A simple function can be constructed as follows:

function_name=function(argl,arg2,...){
commandl
command?2

output

}

@ You can define a function name;

@ The function keyword specified that you are writing a function;

o Inside () you can outline the input objects;

@ The commands occur inside {};

@ The name of whatever output you want goes at the end of the function;

o Comments lines are denoted by #.
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A simple function in R

@ An example:

mysum=function(x,y){

X+y

}

@ This function is called mysum;
@ It has two input arguments, called x,y.

@ Whatever values are passed for x and y their sum will be computed and the
result visualizes on the screen.

@ The function must be loaded into R before being called.
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A simple function in R
How to execute a new function:
@ Write the function in a text editor;

@ Copy the function in the R console.
Type Is() into the console: the function now appears;

o Call the function using:

> mysum(3, 4)

[1]7

> mysum(y = 3,x = 4)

[1]7

> mysum(y = ¢(3,6),x = c(4,4))
[1]7 6

@ Store the result into a variable sumXY:

> sumxy = mysum(3,4)
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How to load a function from a file

e Command source() is used to read the file and execute/load the commands
in the same sequence given in the file.

source(file,echo ...)

file : character string giving the pathname of the file;

echo : if TRUE, each expression is printed after parsing, before
evaluation.
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How to load a function from a file

@ Command source() is used to read the file and execute/load the commands
in the same sequence given in the file.

@ Use a text editor to save the following function in the file "myfunl.r":

myfun=function(x,y,p){
return(k)

}

@ Use command source() to load the function from the file:

> source(” myfunl.r")
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A simple function in R

@ An example:

myfun=function(x,y,p){

k=(x+y)=p
return(k)

}

@ Function myfun has 3 arguments;

@ The command return specifies what the function returns, here the value of k;
> myfun(3,4,7)

> res = myfun(3,4,7) result is stored in res
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A more complex function in R

@ The following function returns several values in the form of a list:

myfunl=function(x){
the.mean = mean(x)
the.sd = sd(x)
the.min = min(x)
the.max = max(x)

return (list(mean = the.mean, stand.dev = the.sd,
minimum = the.min, maximum = the.max))
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A more complex function in R

@ how to call myfunl:
> x = rnorm(10)
> res = myfunl(x)
> res

res
$mean
[1]0.20713
$stand.dev
[1]1.019685
$minimum

[1] - 1.725289
$maximum
[1]2.373015
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Argument Matching in R

How does R know to match arguments?

Argument matching is done in a few different ways:

@ The arguments are matched by their positions. The first supplied argument is
matched to the first formal argument and so on.

> myfun(3,4,7) x=3, y=4 and p=7
@ The arguments are matched by name. A named argument is matched to the
formal argument with the same name:

> myfun(y =4,x =3,p=17) x=3, y=4 and p=7

@ Name matching happens first, then positional matching is used for any
unmatched arguments.
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Argument Matching in R
@ Default values for some/all arguments can be specified:

myfun=function(x,y,p=10){

k=(x+y)xp
return(k)

}

o If a value for the argument p is not specified in the function call, a value of
10 is used.

> | = myfun(3, 4)
>/
[1]70

o If a value for p is specified, that value is used.

> | = myfun(3,4,2)
>/
[1]14
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Exercises on functions

@ Write a function that when passed a number, returns the number squared,
the number cubed, and the square root of the number;

@ Write a function that when passed a numeric vector, prints the value of the
mean and standard deviation to the screen (Hint: use the cat() function in
R.) and creates a histogram of the data;
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Exercises on function

@ Write a function that when passed a number, returns the number squared,
the number cubed, and the square root of the number;
myfun2=function(x){

squared = x x x
cubed = x % x x x
root = sqrt(x)

return (/ist(squared, cube, root))
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Exercises on function

@ Write a function that when passed a numeric vector, prints the value of the
mean and standard deviation to the screen (Hint: use the cat() function in
R.) and creates a histogram of the data;

myfun3=function(x,file="hist.png"){
cat(x,": standard deviation is", sd(x),"\n")
cat(x,":
library(ggplot2)
ggplot(data.frame(x),aes(x)) + geom_histogram()

}

mean is", mean(x),"\n")
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if Statement

o Conditional execution: the if statement has the form:

if (condition){
expr,

}

else {
exprs

}

Condition is evaluated and returns a logical value (i.e. TRUE or FALSE.)
If the condition is evaluated TRUE, expr; is executed , otherwise expr, is
executed.

o Logical operators &&,||,==,! =, >, <, >=, <= are used as the conditions in
the if statement.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 16 /47



if Statement: a simple example

@ The following function gives a demonstration of the use of if ... else:

checkMyfunction=function(number){
if(number! = 1) {
cat(number,"is not one \n")
}
else {

cat(number,"is one \n")

}
}

> checkMyfunction(1)
1is one
> checkMyfunction(2)

2 is not one
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if Statement: a second simple example

@ The following function gives a demonstration of the use of && :

checkBetween=function(number){
if((number >= 1)&&(number <= 10)) {

cat(number,"is between one and ten \n")

}

else {

cat(number,"isn't between one and ten \n")

}
}

> checkBetween(2)
1 is between one and ten
> checkMyfunction(12)

12 isn’t between one and ten
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Nested if Statements

@ The following function gives a demonstration of the use of if ... else if ... else:

checkNum=function(number){
if(number == 0) {
cat(number,"is zero \n")
}
else if(number < 0) {
cat(number,"is negative \n")
}
else{
cat(number,"is positive \n")
}
}
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For loop

@ To loop/iterate through a certain number of repetitions a for loop is used.
Its syntax is:

for (condition){
command_1

command_2

A simple example of a for loop:
MyLoop=function(x){
cumsum = rep(0, length(x))
if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(cumsum)
}
cumsum[1] = x[1]
for(i in 2 : length(x))
cumsum(i] = cumsum[i-1] + x[i]
return(cumsum)
}
Dt 20



For loop

@ You can nest loops. In this cases indenting the code can be useful.
for (condition_1){
command_1
command_2
for(condition_2){
command_1

command_2

}
}

o for loops and multiply nested for loops are generally avoided when possible in
R because they can be quite slow.
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For loop

o Compare using function system.time() the function MyLoop()

MyLoop=function(x){

cumsum = rep(0, length(x))

if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(cumsum)

}

cumsum([1] = x[1]

for(i in 2 : length(x))
cumsum(i] = cumsum[i-1] + x[i]

return(cumsum)

}

and cumsum(). They have a different execution time.

> x = rnorm(1000000)
> system.time(cumsum(x))

> system.time(MyLoop(x))
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While loop

@ While loop can be used if the number of iterations required is not known
beforehand;

@ For example, if loop must continue until a certain condition is met.

@ lts syntax is:

while (condition){
command_1

command_2

The loop continues while condition == TRUE.
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While loop

@ A simple example of a while loop:

MyLoopl=function(x){
cumsum = rep(0, length(x))
if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(cumsum)

}

cumsum[1] = x[1]

=2

while(i <= length(x)){
cumsum|i] = cumsum]i-1] + x[i]
i=i+1

}

return(cumsum)
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next, break, statements

@ The next statement can be used to discontinue one particular iteration of any
loop. Useful if you want a loop to continue even if an error is found (error
checking);

@ The break statement completely terminates a loop. Useful if you want a loop
to end if an error is found.

MyLogNext=function(x){ MyLogNextl=function(x){
for(i in 1 : length(x)){ for(i in 1: length(x)){
if(x[/] <=10) { if(x[/] <=0) {
next break
} }
x[i] = log(x[i]) x[i] = log(x[il)
} }
return(x) return(x)
} }
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next, break, statements

@ The next statement can be used to discontinue one particular iteration of any
loop. Useful if you want a loop to continue even if an error is found (error
checking);

@ The break statement completely terminates a loop. Useful if you want a loop
to end if an error is found.

MyLogNext=function(x){ MyLogNextl=function(x){
for(i in seq_along(x)){ for(i in seq_along(x)){
if(x[/] <=10) { if(x[/] <=0) {
next break
} }
x[i] = log(x[i]) x[i] = log(x[il)
} }
return(x) return(x)
} }
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Exercises on loops and functions

o Create a function find_value(), which takes as input a number b and a vector
m, and returns first occurrence of b in m;

o Create a function find_all_value(), which takes as input a number b and a
matrix m, and returns all the occurrences of b in m;

o Create a function translate(), which takes as input a numeric vector ¢ and

returns a string vector f such that f[i] = "P" iff c[i] > 0 otherwise
fli]="N".
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Exercises on loops and functions

o Create a function find_value(), which takes as input a number b and a vector
m, and returns first occurrence of b in m;

find_value=function(b,m){
if(length(m) < 2) {
cat("m size must be greater 1 \n")
return(-1)
}
ind =1
while(ind <= length(m)){
if (m[ind] == b)
return(ind)
ind = ind +1
}

return(-1)

}
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Exercises on loops and functions

o Create a function find_all_value(), which takes as input a number b and a
matrix m, and returns all the occurrences of b in m;

find_all_value=function(b,m){
f = NULL
for(row in 1 : dim(m)[1]){
for(col in 1 : dim(m)[2]){
if (m[row, col] == b)
if (length(f) == 0)
f = list(c(row, col))
else
f = list(f, c(row, col))
}
}

return(f)

}
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Exercises on loops and functions

o Create a function translate(), which takes as input a numeric vector ¢ and
returns a string vector f such that f[i] = "P" iff c[i] > 0 otherwise
fli] = "N".
translate=function(m){

f = NULL

if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(f)

}

for(ind in 1 : length(m)){

if (m[ind] > 0)

f=c(f,"P")
else
f=c(f,"N")
}
return(f)
}
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How to replace a for loop with apply functions

There are three basic ways to loop over a vector:

@ loop over the elements: for (x in xs)
@ loop over the numeric indices: for (i in seq_along(xs))

@ loop over the names: for (nm in names(xs))

that can be implemented using lapplay/(sapply):

o lapply(xs, function(x) {})
o lapply(seq_along(xs), function(i) {})
@ lapply(names(xs), function(nm) {})

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 31/47



How to replace a for loop with apply functions

The lapply() function takes a function, applies it to each element of the input,
and returns the results in the form of a list.

a [ f(a)
Brad \L
a f(a)
L > —
H— —» —
T L—
]
X lapply(x, f)

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 32/47



How to replace a for loop with apply functions

An example showing the conversion:

NormalLoop=function(x){
for(i in 1: length(x)){
if(x[i] <=0) {
«[i] = abs(x]]) = ?
}
else
x[i] = log(x(i])
}

return(x)

}
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How to replace a for loop with apply functions

An example showing the conversion:

NormalLoop=function(x){ lapply (x, function(x){
for(i in 1: length(x)){ if(x <=0) {
if(x[/] <=0) { x = abs(x)
x[i] = abs(x[i]) <~ }
} else
else x = log(x)
<11 = log(x[1) h
}
return(x)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 34 /47



How to replace a for loop with apply functions
An example showing the conversion:

> x = c(—1,20,4)

> names(x) = c¢("o0","p","0")

NameLoop=function(x){
for(i in 1: length(x)){

if(names(x)[i] == "0") {
x[i] = x[i] + 10 7 =R

) H

else
x[i] = x[i] + 100

}

return(x)

}
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How to replace a for loop with apply functions
An example showing the conversion:

> x = c(—1,20,4)

> names(x) = c¢("o0","p","0")
NameLoop=function(x){ lapply (seq_along(x), function(i){
for(i in1: length(x)){ if(name(x)[i] == "0") {
if(names(x)[i] == "0") { x[i] = x[i] + 10
x[i] = x[i] + 10 <~ }
} else
else x[i] = x[i] + 100
x[i] = x[i] + 100 19
}
return(x)
}
T



How to replace a nested loops with apply functions
An example showing the conversion:

NestedLoop=function(x,y){
el = rep(FALSE, length(x) * length(y))
Shared = matrix(el, nrow = length(x))
for(i in1: length(x)){ @ 7
for(j in 1 : length(y)){ °
if(x[i] == y[]]) {
Shared|i, j] = TRUE)
}
}
}

return(Shared)

}
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How to replace a nested loops with apply functions
An example showing the conversion:

NestedLoop=function(x,y){ sapply(y, function(y){
el = rep(FALSE, length(x) * length(y)) sapply (x, function(x){
Shared = matrix(el, nrow = length(x)) if(x ==y) {
for(i in1: length(x)){ @ return( TRUE)

for(j in 1 : length(y)){ }
if(x[7] == yI1]) | else
Shared(i,j] = TRUE) return(FALSE)
} )
} 1)
}
return(Shared)
}

In this case a better solution is to use outer product:
>outer(x,y,"==")
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Exercises on loops and functions

@ Use DeSolve package to solve the following ODE system between 0 to 10.

dX1
dt
dX2
dt
dX3
dt

Xl(O)
X2(0)
X3(0)

—3x1 + 4x> + 3.5x3
+3x; — 14.5x

+10.5x, — 3.5x3

100
10
1.0

and plot the evolution of xi, x>, x3 over the time.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

39/47



Exercises on loops and functions

@ Use deSolve package to

> install.packages(" deSolve™)

solve the following ODE > library(deSolve)

system between 0 to 10.

dX1
dt
dX2
dt
dX3
dt

X1 (0)
X2(0)
X3(0)

>7/[sode

—3x1 +4x0 + 3.5x3  Isode(y, times, func, ...)
@ y is the initial (state) values for
+3x; — 14.5x the ODE system;

@ time is time sequence for which
+10.5x2 — 3.5x3 output is wanted;

@ func is an R-function that
100 computes the values of the

derivatives in the ODE system.
10

1.0

and plot the evolution of
X1, X2, X3 over the time.
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Exercises on loops and functions

@ Use deSolve package to
solve the following ODE
system between 0 to 10.

% —  _3x 4 4%+ 3.5x
% = 43x — 145%
% — 410.5x — 3.5x
x(0) = 100
x(0) = 10
x(0) = 1.0

and plot the evolution of
X1, X2, X3 over the time.

>y = ¢(100, 10, 1.0)
> times = seq(0,10,0.1)

>funODE=function(t, x, parms){
dx1 = —3%x[1]+4xx[2]+3.5%x[3]
dx2 = 43 # x[1] — 14.5 % x[2]
dx3 = +10.5 % x[2] — 3.5 * x[3]
return(/ist(c(dx1, dx2, dx3)))

>res=lIsode(y,times,funODE,parms=0)

>colnames(res)=c("Time","x1","x2","x3")
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Exercises on loops and functions

@ Use deSolve package to
solve the following ODE
system between 0 to 10.

% = —3x; +4x + 3.5x3 >gp=ggplot(data.frame(res),aes(x=Time))
dxo = 43 £ e >gp-+geom_line(aes(y=x1),color="red")
dt
% —  410.5x — 3.5x3 >gp+geom_line(aes(y=x2),color="blue")
>gp+geom__line(aes(y=x3),color="green"
«(0) = 100 gptg (aes(y=x3) green")
x(0) = 10
x3(0) = 1.0

and plot the evolution of
X1, X2, X3 over the time.
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Exercises on loops and functions

e Find a and 3 which maximize xy(t) 4+ x2(t) with t = 1.

@a
dt
e
dt
)
dt

Xl(O)
XQ(O)
x3(0)

a—x1+4x + Ox3
ax; — 14.5x;

+10.5X2 i 5X3

100
10
1.0

with 10 < o, 8 < 100

You can use GenSA packages: Generalized Simulated Annealing for Global

Optimization. It searches for global minimum of a very complex non-linear

objective function with a very large number of optima
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Exercises on loops and functions

> install.packages(” GenSA™)
> library(GenSA)
>7GenSA

GenSA(par, fn, lower, upper, control = list(), ...)

@ par initial vector values for the components to be optimized,;
@ fn is the function to be minimized;
@ lower, upper bounds for components;

@ control is a list that can be used to control the behavior of the algorithm.
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Exercises on loops and functions

> p0 = ¢(20,20)
> LB = (10, 10)
> UB = ¢(100, 100)

> x0 = ¢(100, 10, 1.0) >funODE=function(t, x, parm){
dx1l =
>ObjF=function(p){ —parm[1] * x[1] + 4 * x[2] + parm[2] * x[3]
Times = seq(from = 0,to =1, by = 0.1) dx2 = +parm[1] * x[1] — 14.5 % x[2]

res = Isode(x0, Times, funODE, parm = p)

last = tail(res, 1)

fn = —1 x (last[2] + last[3])

return(7n) }

dx3 = +10.5 * x[2] — p[2] * x[3]
return(list(c(dx1, dx2, dx3)))

>k=GenSA(p0,0bjF,LB,UB,control=list(max.time=5))
>k.par
>k.value
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Exercises on loops and functions

e Find o and S which maximize x1(t) 4+ x2(t) with t = 1 varying the initial
value for the components (i.e. par vector).

dx
d_f_'l = a—X1+4X2—|-6X3
dx
d_t2 = ax3 —14.5x
dx
d—: = +105X2 - ,8X3
x1(0) = 100
X2(0) = 10
x(0) = 1.0

with 10 < a, 8 < 100
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Exercises on loops and functions

> LB = ¢(10, 10)
> UB = ¢(100, 100)
> x0 = ¢(100, 10, 1.0)

> y0 = lapply(seq_along(1 : 10), function(i){ runif (2,10, 100)})

> s = lapply(y0, function(y0){
GenSA(par = y0, fn = ObjF, upper = UB, lower = LB, control = list(max.time = 5),x0 = x0)

1))
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