Programming for Data Science
Functions in R language

Marco Beccuti
Universita degli Studi di Torino

Dipartimento di Informatica

December 2021

Function in R

@ We have already used several examples of functions:

mean(x) sd(x) ggplot(data, ...) Im(y ~ x, ...)

@ Functions are typically written if we need to compute the same thing for
several data sets;

@ Functions have a name and a list of arguments or input objects. For
example, the argument to the function mean() is the vector x;

@ Functions can also have a list of output objects returned when the function
is terminated;

@ A function must be written and loaded into R before it can be used.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 2/47

A simple function in R
@ A simple function can be constructed as follows:

function_name=function(argl,arg2,...){
commandl
command?2

output

}

@ You can define a function name;

@ The function keyword specified that you are writing a function;

o Inside () you can outline the input objects;

@ The commands occur inside {};

@ The name of whatever output you want goes at the end of the function;

o Comments lines are denoted by #.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 3/47

A simple function in R

@ An example:

mysum=function(x,y){

X+y

}

@ This function is called mysum;
@ It has two input arguments, called x,y.

@ Whatever values are passed for x and y their sum will be computed and the
result visualizes on the screen.

@ The function must be loaded into R before being called.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 4/47

A simple function in R
How to execute a new function:
@ Write the function in a text editor;

@ Copy the function in the R console.
Type Is() into the console: the function now appears;

o Call the function using:

> mysum(3, 4)

[1]7

> mysum(y = 3,x = 4)

[1]7

> mysum(y = ¢(3,6),x = c(4,4))
[1]7 6

@ Store the result into a variable sumXY:

> sumxy = mysum(3,4)

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 5/47

How to load a function from a file

e Command source() is used to read the file and execute/load the commands
in the same sequence given in the file.

source(file,echo ...)

file : character string giving the pathname of the file;

echo : if TRUE, each expression is printed after parsing, before
evaluation.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 6/47

How to load a function from a file

@ Command source() is used to read the file and execute/load the commands
in the same sequence given in the file.

@ Use a text editor to save the following function in the file "myfunl.r":

myfun=function(x,y,p){
return(k)

}

@ Use command source() to load the function from the file:

> source(” myfunl.r")

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 7/47

A simple function in R

@ An example:

myfun=function(x,y,p){

k=(x+y)=p
return(k)

}

@ Function myfun has 3 arguments;

@ The command return specifies what the function returns, here the value of k;
> myfun(3,4,7)

> res = myfun(3,4,7) result is stored in res

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 8/47

A more complex function in R

@ The following function returns several values in the form of a list:

myfunl=function(x){
the.mean = mean(x)
the.sd = sd(x)
the.min = min(x)
the.max = max(x)

return (list(mean = the.mean, stand.dev = the.sd,
minimum = the.min, maximum = the.max))

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 9/47

A more complex function in R

@ how to call myfunl:
> x = rnorm(10)
> res = myfunl(x)
> res

res
$mean
[1]0.20713
$stand.dev
[1]1.019685
$minimum

[1] - 1.725289
$maximum
[1]2.373015

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 10/ 47

Argument Matching in R

How does R know to match arguments?

Argument matching is done in a few different ways:

@ The arguments are matched by their positions. The first supplied argument is
matched to the first formal argument and so on.

> myfun(3,4,7) x=3, y=4 and p=7
@ The arguments are matched by name. A named argument is matched to the
formal argument with the same name:

> myfun(y =4,x =3,p=17) x=3, y=4 and p=7

@ Name matching happens first, then positional matching is used for any
unmatched arguments.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 11/47

Argument Matching in R
@ Default values for some/all arguments can be specified:

myfun=function(x,y,p=10){

k=(x+y)xp
return(k)

}

o If a value for the argument p is not specified in the function call, a value of
10 is used.

> | = myfun(3, 4)
>/
[1]70

o If a value for p is specified, that value is used.

> | = myfun(3,4,2)
>/
[1]14

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 12 /47

Exercises on functions

@ Write a function that when passed a number, returns the number squared,
the number cubed, and the square root of the number;

@ Write a function that when passed a numeric vector, prints the value of the
mean and standard deviation to the screen (Hint: use the cat() function in
R.) and creates a histogram of the data;

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 13 /47

Exercises on function

@ Write a function that when passed a number, returns the number squared,
the number cubed, and the square root of the number;
myfun2=function(x){

squared = x x x
cubed = x % x x x
root = sqrt(x)

return (/ist(squared, cube, root))

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 14 /47

Exercises on function

@ Write a function that when passed a numeric vector, prints the value of the
mean and standard deviation to the screen (Hint: use the cat() function in
R.) and creates a histogram of the data;

myfun3=function(x,file="hist.png"){
cat(x,": standard deviation is", sd(x),"\n")
cat(x,":
library(ggplot2)
ggplot(data.frame(x),aes(x)) + geom_histogram()

}

mean is", mean(x),"\n")

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 15 /47

if Statement

o Conditional execution: the if statement has the form:

if (condition){
expr,

}

else {
exprs

}

Condition is evaluated and returns a logical value (i.e. TRUE or FALSE.)
If the condition is evaluated TRUE, expr; is executed , otherwise expr, is
executed.

o Logical operators &&,||,==,! =, >, <, >=, <= are used as the conditions in
the if statement.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 16 /47

if Statement: a simple example

@ The following function gives a demonstration of the use of if ... else:

checkMyfunction=function(number){
if(number! = 1) {
cat(number,"is not one \n")
}
else {

cat(number,"is one \n")

}
}

> checkMyfunction(1)
1is one
> checkMyfunction(2)

2 is not one

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

17/47

if Statement: a second simple example

@ The following function gives a demonstration of the use of && :

checkBetween=function(number){
if((number >= 1)&&(number <= 10)) {

cat(number,"is between one and ten \n")

}

else {

cat(number,"isn't between one and ten \n")

}
}

> checkBetween(2)
1 is between one and ten
> checkMyfunction(12)

12 isn’t between one and ten

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

18/47

Nested if Statements

@ The following function gives a demonstration of the use of if ... else if ... else:

checkNum=function(number){
if(number == 0) {
cat(number,"is zero \n")
}
else if(number < 0) {
cat(number,"is negative \n")
}
else{
cat(number,"is positive \n")
}
}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 19 /47

For loop

@ To loop/iterate through a certain number of repetitions a for loop is used.
Its syntax is:

for (condition){
command_1

command_2

A simple example of a for loop:
MyLoop=function(x){
cumsum = rep(0, length(x))
if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(cumsum)
}
cumsum[1] = x[1]
for(i in 2 : length(x))
cumsum(i] = cumsum[i-1] + x[i]
return(cumsum)
}
Dt 20

For loop

@ You can nest loops. In this cases indenting the code can be useful.
for (condition_1){
command_1
command_2
for(condition_2){
command_1

command_2

}
}

o for loops and multiply nested for loops are generally avoided when possible in
R because they can be quite slow.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 21/47

For loop

o Compare using function system.time() the function MyLoop()

MyLoop=function(x){

cumsum = rep(0, length(x))

if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(cumsum)

}

cumsum([1] = x[1]

for(i in 2 : length(x))
cumsum(i] = cumsum[i-1] + x[i]

return(cumsum)

}

and cumsum(). They have a different execution time.

> x = rnorm(1000000)
> system.time(cumsum(x))

> system.time(MyLoop(x))

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 22/47

While loop

@ While loop can be used if the number of iterations required is not known
beforehand;

@ For example, if loop must continue until a certain condition is met.

@ lts syntax is:

while (condition){
command_1

command_2

The loop continues while condition == TRUE.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 23 /47

While loop

@ A simple example of a while loop:

MyLoopl=function(x){
cumsum = rep(0, length(x))
if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(cumsum)

}

cumsum[1] = x[1]

=2

while(i <= length(x)){
cumsum|i] = cumsum]i-1] + x[i]
i=i+1

}

return(cumsum)

M. Beccuti PROGRAMMING FOR DATA SCIENCE

next, break, statements

@ The next statement can be used to discontinue one particular iteration of any
loop. Useful if you want a loop to continue even if an error is found (error
checking);

@ The break statement completely terminates a loop. Useful if you want a loop
to end if an error is found.

MyLogNext=function(x){ MyLogNextl=function(x){
for(i in 1 : length(x)){ for(i in 1: length(x)){
if(x[/] <=10) { if(x[/] <=0) {
next break
} }
x[i] = log(x[i]) x[i] = log(x[il)
} }
return(x) return(x)
} }

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 25 /47

next, break, statements

@ The next statement can be used to discontinue one particular iteration of any
loop. Useful if you want a loop to continue even if an error is found (error
checking);

@ The break statement completely terminates a loop. Useful if you want a loop
to end if an error is found.

MyLogNext=function(x){ MyLogNextl=function(x){
for(i in seq_along(x)){ for(i in seq_along(x)){
if(x[/] <=10) { if(x[/] <=0) {
next break
} }
x[i] = log(x[i]) x[i] = log(x[il)
} }
return(x) return(x)
} }

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 26 /47

Exercises on loops and functions

o Create a function find_value(), which takes as input a number b and a vector
m, and returns first occurrence of b in m;

o Create a function find_all_value(), which takes as input a number b and a
matrix m, and returns all the occurrences of b in m;

o Create a function translate(), which takes as input a numeric vector ¢ and

returns a string vector f such that f[i] = "P" iff c[i] > 0 otherwise
fli]="N".

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 27 /47

Exercises on loops and functions

o Create a function find_value(), which takes as input a number b and a vector
m, and returns first occurrence of b in m;

find_value=function(b,m){
if(length(m) < 2) {
cat("m size must be greater 1 \n")
return(-1)
}
ind =1
while(ind <= length(m)){
if (m[ind] == b)
return(ind)
ind = ind +1
}

return(-1)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 28/47

Exercises on loops and functions

o Create a function find_all_value(), which takes as input a number b and a
matrix m, and returns all the occurrences of b in m;

find_all_value=function(b,m){
f = NULL
for(row in 1 : dim(m)[1]){
for(col in 1 : dim(m)[2]){
if (m[row, col] == b)
if (length(f) == 0)
f = list(c(row, col))
else
f = list(f, c(row, col))
}
}

return(f)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 29 /47

Exercises on loops and functions

o Create a function translate(), which takes as input a numeric vector ¢ and
returns a string vector f such that f[i] = "P" iff c[i] > 0 otherwise
fli] = "N".
translate=function(m){

f = NULL

if(!(is.numeric(x))) {
cat(x,"must be numeric \n")
return(f)

}

for(ind in 1 : length(m)){

if (m[ind] > 0)

f=c(f,"P")
else
f=c(f,"N")
}
return(f)
}

December 2021 30/47

How to replace a for loop with apply functions

There are three basic ways to loop over a vector:

@ loop over the elements: for (x in xs)
@ loop over the numeric indices: for (i in seq_along(xs))

@ loop over the names: for (nm in names(xs))

that can be implemented using lapplay/(sapply):

o lapply(xs, function(x) {})
o lapply(seq_along(xs), function(i) {})
@ lapply(names(xs), function(nm) {})

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 31/47

How to replace a for loop with apply functions

The lapply() function takes a function, applies it to each element of the input,
and returns the results in the form of a list.

a [f(a)
Brad \L
a f(a)
L > —
H— —» —
T L—
]
X lapply(x, f)

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 32/47

How to replace a for loop with apply functions

An example showing the conversion:

NormalLoop=function(x){
for(i in 1: length(x)){
if(x[i] <=0) {
«[i] = abs(x]]) = ?
}
else
x[i] = log(x(i])
}

return(x)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 33/47

How to replace a for loop with apply functions

An example showing the conversion:

NormalLoop=function(x){ lapply (x, function(x){
for(i in 1: length(x)){ if(x <=0) {
if(x[/] <=0) { x = abs(x)
x[i] = abs(x[i]) <~ }
} else
else x = log(x)
<11 = log(x[1) h
}
return(x)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 34 /47

How to replace a for loop with apply functions
An example showing the conversion:

> x = c(—1,20,4)

> names(x) = c¢("o0","p","0")

NameLoop=function(x){
for(i in 1: length(x)){

if(names(x)[i] == "0") {
x[i] = x[i] + 10 7 =R

) H

else
x[i] = x[i] + 100

}

return(x)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 35/47

How to replace a for loop with apply functions
An example showing the conversion:

> x = c(—1,20,4)

> names(x) = c¢("o0","p","0")
NameLoop=function(x){ lapply (seq_along(x), function(i){
for(i in1: length(x)){ if(name(x)[i] == "0") {
if(names(x)[i] == "0") { x[i] = x[i] + 10
x[i] = x[i] + 10 <~ }
} else
else x[i] = x[i] + 100
x[i] = x[i] + 100 19
}
return(x)
}
T

How to replace a nested loops with apply functions
An example showing the conversion:

NestedLoop=function(x,y){
el = rep(FALSE, length(x) * length(y))
Shared = matrix(el, nrow = length(x))
for(i in1: length(x)){ @ 7
for(j in 1 : length(y)){ °
if(x[i] == y[]]) {
Shared|i, j] = TRUE)
}
}
}

return(Shared)

}

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

37/47

How to replace a nested loops with apply functions
An example showing the conversion:

NestedLoop=function(x,y){ sapply(y, function(y){
el = rep(FALSE, length(x) * length(y)) sapply (x, function(x){
Shared = matrix(el, nrow = length(x)) if(x ==y) {
for(i in1: length(x)){ @ return(TRUE)

for(j in 1 : length(y)){ }
if(x[7] == yI1]) | else
Shared(i,j] = TRUE) return(FALSE)
})
} 1)
}
return(Shared)
}

In this case a better solution is to use outer product:
>outer(x,y,"==")
December 2021 38/47

Exercises on loops and functions

@ Use DeSolve package to solve the following ODE system between 0 to 10.

dX1
dt
dX2
dt
dX3
dt

Xl(O)
X2(0)
X3(0)

—3x1 + 4x> + 3.5x3
+3x; — 14.5x

+10.5x, — 3.5x3

100
10
1.0

and plot the evolution of xi, x>, x3 over the time.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

39/47

Exercises on loops and functions

@ Use deSolve package to

> install.packages(" deSolve™)

solve the following ODE > library(deSolve)

system between 0 to 10.

dX1
dt
dX2
dt
dX3
dt

X1 (0)
X2(0)
X3(0)

>7/[sode

—3x1 +4x0 + 3.5x3 Isode(y, times, func, ...)
@ y is the initial (state) values for
+3x; — 14.5x the ODE system;

@ time is time sequence for which
+10.5x2 — 3.5x3 output is wanted;

@ func is an R-function that
100 computes the values of the

derivatives in the ODE system.
10

1.0

and plot the evolution of
X1, X2, X3 over the time.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

40 /47

Exercises on loops and functions

@ Use deSolve package to
solve the following ODE
system between 0 to 10.

% — _3x 4 4%+ 3.5x
% = 43x — 145%
% — 410.5x — 3.5x
x(0) = 100
x(0) = 10
x(0) = 1.0

and plot the evolution of
X1, X2, X3 over the time.

>y = ¢(100, 10, 1.0)
> times = seq(0,10,0.1)

>funODE=function(t, x, parms){
dx1 = —3%x[1]+4xx[2]+3.5%x[3]
dx2 = 43 # x[1] — 14.5 % x[2]
dx3 = +10.5 % x[2] — 3.5 * x[3]
return(/ist(c(dx1, dx2, dx3)))

>res=lIsode(y,times,funODE,parms=0)

>colnames(res)=c("Time","x1","x2","x3")

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021

41/47

Exercises on loops and functions

@ Use deSolve package to
solve the following ODE
system between 0 to 10.

% = —3x; +4x + 3.5x3 >gp=ggplot(data.frame(res),aes(x=Time))
dxo = 43 £ e >gp-+geom_line(aes(y=x1),color="red")
dt
% — 410.5x — 3.5x3 >gp+geom_line(aes(y=x2),color="blue")
>gp+geom__line(aes(y=x3),color="green"
«(0) = 100 gptg (aes(y=x3) green")
x(0) = 10
x3(0) = 1.0

and plot the evolution of
X1, X2, X3 over the time.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 42 /47

Exercises on loops and functions

e Find a and 3 which maximize xy(t) 4+ x2(t) with t = 1.

@a
dt
e
dt
)
dt

Xl(O)
XQ(O)
x3(0)

a—x1+4x + Ox3
ax; — 14.5x;

+10.5X2 i 5X3

100
10
1.0

with 10 < o, 8 < 100

You can use GenSA packages: Generalized Simulated Annealing for Global

Optimization. It searches for global minimum of a very complex non-linear

objective function with a very large number of optima

M. Beccuti PROGRAMMING FOR DATA SCIENCE

December 2021

43 /47

Exercises on loops and functions

> install.packages(” GenSA™)
> library(GenSA)
>7GenSA

GenSA(par, fn, lower, upper, control = list(), ...)

@ par initial vector values for the components to be optimized,;
@ fn is the function to be minimized;
@ lower, upper bounds for components;

@ control is a list that can be used to control the behavior of the algorithm.

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 44 /47

Exercises on loops and functions

> p0 = ¢(20,20)
> LB = (10, 10)
> UB = ¢(100, 100)

> x0 = ¢(100, 10, 1.0) >funODE=function(t, x, parm){
dx1l =
>ObjF=function(p){ —parm[1] * x[1] + 4 * x[2] + parm[2] * x[3]
Times = seq(from = 0,to =1, by = 0.1) dx2 = +parm[1] * x[1] — 14.5 % x[2]

res = Isode(x0, Times, funODE, parm = p)

last = tail(res, 1)

fn = —1 x (last[2] + last[3])

return(7n) }

dx3 = +10.5 * x[2] — p[2] * x[3]
return(list(c(dx1, dx2, dx3)))

>k=GenSA(p0,0bjF,LB,UB,control=list(max.time=5))
>k.par
>k.value

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 45 /47

Exercises on loops and functions

e Find o and S which maximize x1(t) 4+ x2(t) with t = 1 varying the initial
value for the components (i.e. par vector).

dx
d_f_'l = a—X1+4X2—|-6X3
dx
d_t2 = ax3 —14.5x
dx
d—: = +105X2 - ,8X3
x1(0) = 100
X2(0) = 10
x(0) = 1.0

with 10 < a, 8 < 100

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 46 / 47

Exercises on loops and functions

> LB = ¢(10, 10)
> UB = ¢(100, 100)
> x0 = ¢(100, 10, 1.0)

> y0 = lapply(seq_along(1 : 10), function(i){ runif (2,10, 100)})

> s = lapply(y0, function(y0){
GenSA(par = y0, fn = ObjF, upper = UB, lower = LB, control = list(max.time = 5),x0 = x0)

1))

M. Beccuti PROGRAMMING FOR DATA SCIENCE December 2021 47 /47

