

Figure 1-11. Logarithmic spiral.
7. A map $\alpha: I \rightarrow R^{3}$ is called a curve of class C^{k} if each of the coordinate functions in the expression $\alpha(t)=(x(t), y(t), z(t))$ has continuous derivatives up to order k. If α is merely continuous, we say that α is of class C^{0}. A curve α is called simple if the map α is one-to-one. Thus, the curve in Example 3 of Sec. 1-2 is not simple.

Let $\alpha: I \rightarrow R^{3}$ be a simple curve of class C^{0}. We say that α has a weak tangent at $t=t_{0} \in I$ if the line determined by $\alpha\left(t_{0}+h\right)$ and $\alpha\left(t_{0}\right)$ has a limit position when $h \rightarrow 0$. We say that α has a strong tangent at $t=t_{0}$ if the line determined by $\alpha\left(t_{0}+h\right)$ and $\alpha\left(t_{0}+k\right)$ has a limit position when $h, k \rightarrow 0$. Show that
a. $\alpha(t)=\left(t^{3}, t^{2}\right), t \in R$, has a weak tangent but not a strong tangent at $t=0$.
*b. If $\alpha: I \rightarrow R^{3}$ is of class C^{1} and regular at $t=t_{0}$, then it has a strong tangent at $t=t_{0}$.
c. The curve given by

$$
\alpha(t)= \begin{cases}\left(t^{2}, t^{2}\right), & t \geq 0 \\ \left(t^{2},-t^{2}\right), & t \leq 0\end{cases}
$$

is of class C^{1} but not of class C^{2}. Draw a sketch of the curve and its tangent vectors.
*8. Let $\alpha: I \rightarrow R^{3}$ be a differentiable curve and let $[a, b] \subset I$ be a closed interval. For every partition

$$
a=t_{0}<t_{1}<\cdots<t_{n}=b
$$

