arc length *s*, since most concepts are defined only in terms of the derivatives of $\alpha(s)$.

It is convenient to set still another convention. Given the curve α parametrized by arc length $s \in (a, b)$, we may consider the curve β defined in (-b, -a) by $\beta(-s) = \alpha(s)$, which has the same trace as the first one but is described in the opposite direction. We say, then, that these two curves differ by a *change of orientation*.

EXERCISES

- 1. Show that the tangent lines to the regular parametrized curve $\alpha(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line y = 0, z = x.
- 2. A circular disk of radius 1 in the plane *xy* rolls without slipping along the *x* axis. The figure described by a point of the circumference of the disk is called a *cycloid* (Fig. 1-7).

Figure 1-7. The cycloid.

- *a. Obtain a parametrized curve α : $R \rightarrow R^2$ the trace of which is the cycloid, and determine its singular points.
- **b.** Compute the arc length of the cycloid corresponding to a complete rotation of the disk.
- **3.** Let 0A = 2a be the diameter of a circle S^1 and 0y and AV be the tangents to S^1 at 0 and A, respectively. A half-line r is drawn from 0 which meets the circle S^1 at C and the line AV at B. On 0B mark off the segment 0p = CB. If we rotate r about 0, the point p will describe a curve called the *cissoid of Diocles*. By taking 0A as the x axis and 0Y as the y axis, prove that
 - a. The trace of

$$\alpha(t) = \left(\frac{2at^2}{1+t^2}, \frac{2at^3}{1+t^2}\right), \qquad t \in \mathbb{R},$$

is the cissoid of Diocles ($t = \tan \theta$; see Fig. 1-8).

- **b.** The origin (0, 0) is a singular point of the cissoid.
- **c.** As $t \to \infty$, $\alpha(t)$ approaches the line x = 2a, and $\alpha'(t) \to 0, 2a$. Thus, as $t \to \infty$, the curve and its tangent approach the line x = 2a; we say that x = 2a is an *asymptote* to the cissoid.
- **4.** Let $\alpha: (0, \pi) \rightarrow R^2$ be given by

$$\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2}\right),$$

where *t* is the angle that the *y* axis makes with the vector $\alpha'(t)$. The trace of α is called the *tractrix* (Fig. 1-9). Show that

Figure 1-8. The cissoid of Diocles.

Figure 1-9. The tractrix.

- **a.** α is a differentiable parametrized curve, regular except at $t = \pi/2$.
- **b.** The length of the segment of the tangent of the tractrix between the point of tangency and the *y* axis is constantly equal to 1.
- **5.** Let $\alpha: (-1, +\infty) \to \mathbb{R}^2$ be given by

$$\alpha(t) = \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3}\right).$$