arc length s, since most concepts are defined only in terms of the derivatives of $\alpha(s)$.

It is convenient to set still another convention. Given the curve α parametrized by arc length $s \in(a, b)$, we may consider the curve β defined in $(-b,-a)$ by $\beta(-s)=\alpha(s)$, which has the same trace as the first one but is described in the opposite direction. We say, then, that these two curves differ by a change of orientation.

EXERCISES

1. Show that the tangent lines to the regular parametrized curve $\alpha(t)=$ $\left(3 t, 3 t^{2}, 2 t^{3}\right)$ make a constant angle with the line $y=0, z=x$.
2. A circular disk of radius 1 in the plane $x y$ rolls without slipping along the x axis. The figure described by a point of the circumference of the disk is called a cycloid (Fig. 1-7).

Figure 1-7. The cycloid.
*a. Obtain a parametrized curve $\alpha: R \rightarrow R^{2}$ the trace of which is the cycloid, and determine its singular points.
b. Compute the arc length of the cycloid corresponding to a complete rotation of the disk.
3. Let $0 A=2 a$ be the diameter of a circle S^{1} and $0 y$ and $A V$ be the tangents to S^{1} at 0 and A, respectively. A half-line r is drawn from 0 which meets the circle S^{1} at C and the line $A V$ at B. On $0 B$ mark off the segment $0 p=C B$. If we rotate r about 0 , the point p will describe a curve called the cissoid of Diocles. By taking $0 A$ as the x axis and $0 Y$ as the y axis, prove that
a. The trace of

$$
\alpha(t)=\left(\frac{2 a t^{2}}{1+t^{2}}, \frac{2 a t^{3}}{1+t^{2}}\right), \quad t \in R
$$

is the cissoid of Diocles $(t=\tan \theta$; see Fig. 1-8).
b. The origin $(0,0)$ is a singular point of the cissoid.
c. As $t \rightarrow \infty, \alpha(t)$ approaches the line $x=2 a$, and $\alpha^{\prime}(t) \rightarrow 0,2 a$. Thus, as $t \rightarrow \infty$, the curve and its tangent approach the line $x=2 a$; we say that $x=2 a$ is an asymptote to the cissoid.
4. Let $\alpha:(0, \pi) \rightarrow R^{2}$ be given by

$$
\alpha(t)=\left(\sin t, \cos t+\log \tan \frac{t}{2}\right)
$$

where t is the angle that the y axis makes with the vector $\alpha^{\prime}(t)$. The trace of α is called the tractrix (Fig. 1-9). Show that

Figure 1-8. The cissoid of Diocles.

Figure 1-9. The tractrix.
a. α is a differentiable parametrized curve, regular except at $t=\pi / 2$.
b. The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1 .
5. Let $\alpha:(-1,+\infty) \rightarrow R^{2}$ be given by

$$
\alpha(t)=\left(\frac{3 a t}{1+t^{3}}, \frac{3 a t^{2}}{1+t^{3}}\right)
$$

