is not a regular surface. Observe that we cannot conclude this from the fact alone that the "natural" parametrization

$$
(x, y) \rightarrow\left(x, y,+\sqrt{x^{2}+y^{2}}\right)
$$

is not differentiable; there could be other parametrizations satisfying Def. 1 .
To show that this is not the case, we use Prop. 3. If $C$ were a regular surface, it would be, in a neighborhood of $(0,0,0) \in C$, the graph of a differentiable function having one of three forms: $y=h(x, z), x=g(y, z), z=f(x, y)$. The two first forms can be discarded by the simple fact that the projections of $C$ over the $x z$ and $y z$ planes are not one-to-one. The last form would have to agree, in a neighborhood of $(0,0,0)$, with $z=+\sqrt{x^{2}+y^{2}}$. Since $z=+\sqrt{x^{2}+y^{2}}$ is not differentiable at $(0,0)$, this is impossible.

Example 6. A parametrization for the torus $T$ of Example 4 can be given by (Fig. 2-9)

$$
\mathbf{x}(u, v)=((r \cos u+a) \cos v,(r \cos u+a) \sin v, r \sin u),
$$

where $0<u<2 \pi, 0<v<2 \pi$.
Condition 1 of Def. 1 is easily checked, and condition 3 reduces to a straightforward computation, which is left as an exercise. Since we know that $T$ is a regular surface, condition 2 is equivalent, by Prop. 4 , to the fact that $\mathbf{x}$ is one-to-one.

To prove that $\mathbf{x}$ is one-to-one, we first observe that $\sin u=z / r$; also, if $\sqrt{x^{2}+y^{2}} \leq a$, then $\pi / 2 \leq u \leq 3 \pi / 2$, and if $\sqrt{x^{2}+y^{2}} \geq a$, then either $0<u \leq \pi / 2$ or $3 \pi / 2 \leq u<2 \pi$. Thus, given ( $x, y, z$ ), this determines $u$, $0<u<2 \pi$, uniquely. By knowing $u, x$, and $y$ we find $\cos v$ and $\sin v$. This determines $v$ uniquely, $0<v<2 \pi$. Thus, $\mathbf{x}$ is one-to-one.

It is easy to see that the torus can be covered by three such coordinate neighborhoods.

## EXERCISES ${ }^{\dagger}$

1. Show that the cylinder $\left\{(x, y, z) \in R^{3} ; x^{2}+y^{2}=1\right\}$ is a regular surface, and find parametrizations whose coordinate neighborhoods cover it.
2. Is the set $\left\{(x, y, z) \in R^{3} ; z=0\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ a regular surface? Is the set $\left\{(x, y, z) \in R^{3} ; z=0\right.$, and $\left.x^{2}+y^{2}<1\right\}$ a regular surface?
3. Show that the two-sheeted cone, with its vertex at the origin, that is, the set $\left\{(x, y, z) \in R^{3} ; x^{2}+y^{2}-z^{2}=0\right\}$, is not a regular surface.

[^0]4. Let $f(x, y, z)=z^{2}$. Prove that 0 is not a regular value of $f$ and yet that $f^{-1}(0)$ is a regular surface.
*5. Let $P=\left\{(x, y, z) \in R^{3} ; x=y\right\}$ (a plane) and let $\mathbf{x}: U \subset R^{2} \rightarrow R^{3}$ be given by
$$
\mathbf{x}(u, v)=(u+v, u+v, u v)
$$
where $U=\left\{(u, v) \in R^{2} ; u>v\right\}$. Clearly, $\mathbf{x}(U) \subset P$. Is $\mathbf{x}$ a parametrization of $P$ ?
6. Give another proof of Prop. 1 by applying Prop. 2 to $h(x, y, z)=$ $f(x, y)-z$.
7. Let $f(x, y, z)=(x+y+z-1)^{2}$.
a. Locate the critical points and critical values of $f$.
b. For what values of $c$ is the set $f(x, y, z)=c$ a regular surface?
c. Answer the questions of parts a and b for the function $f(x, y, z)=$ $x y z^{2}$.
8. Let $\mathbf{x}(u, v)$ be as in Def. 1. Verify that $d \mathbf{x}_{q}: R^{2} \rightarrow R^{3}$ is one-to-one if and only if
$$
\frac{\partial \mathbf{x}}{\partial u} \wedge \frac{\partial \mathbf{x}}{\partial v} \neq 0
$$
9. Let $V$ be an open set in the $x y$ plane. Show that the set
$$
\left\{(x, y, z) \in R^{3} ; z=0 \text { and }(x, y) \in V\right\}
$$
is a regular surface.
10. Let $C$ be a figure " 8 " in the $x y$ plane and let $S$ be the cylindrical surface over $C$ (Fig. 2-11); that is,
$$
S=\left\{(x, y, z) \in R^{3} ;(x, y) \in C\right\}
$$

Is the set $S$ a regular surface?


Figure 2-11


[^0]:    $\dagger$ Those who have omitted the proofs in this section should also omit Exercises 17-19.

