is a continuous function on $\mathbf{x}(U)$. Since $\mathbf{x}(U)$ is connected, the sign of f is constant. If f = -1, we interchange u and v in the parametrization, and the assertion follows.

Proceeding in this manner with all the coordinate neighborhoods, we have that in the intersection of any two of them, say, $\mathbf{x}(u, v)$ and $\bar{\mathbf{x}}(\bar{u}, \bar{v})$, the Jacobian

$$\frac{\partial(u,v)}{\partial(\bar{u},\bar{v})}$$

is certainly positive; otherwise, we would have

$$\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{v}}{|\mathbf{x}_{u} \wedge \mathbf{x}_{v}|} = N(p) = -\frac{\bar{\mathbf{x}}_{\bar{u}} \wedge \bar{\mathbf{x}}_{\bar{v}}}{|\bar{\mathbf{x}}_{\bar{u}} \wedge \bar{\mathbf{x}}_{\bar{v}}|} = -N(p),$$

which is a contradiction. Hence, the given family of coordinate neighborhoods after undergoing certain interchanges of u and v satisfies the conditions of Def. 1, and S is, therefore, orientable. Q.E.D.

Remark. As the proof shows, we need only to require the existence of a *continuous* unit vector field on *S* for *S* to be orientable. Such a vector field will be automatically differentiable.

Example 3. We shall now describe an example of a nonorientable surface, the so-called *Möbius strip*. This surface is obtained (see Fig. 2-31) by considering the circle S^1 given by $x^2 + y^2 = 4$ and the open segment *AB* given in the *yz* plane by y = 2, |z| < 1. We move the center *C* of *AB* along S^1 and turn *AB* about *C* in the *Cz* plane in such a manner that when *C* has passed through an angle *u*, *AB* has rotated by an angle *u*/2. When *c* completes one trip around the circle, *AB* returns to its initial position, with its end points inverted.

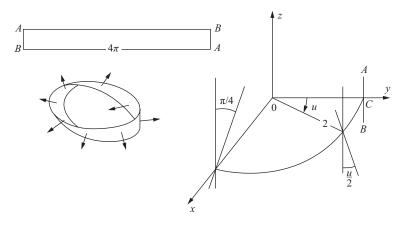


Figure 2-31

From the point of view of differentiability, it is as if we had identified the opposite (vertical) sides of a rectangle giving a twist to the rectangle so that each point of the side *AB* was identified with its symmetric point (Fig. 2-31).

It is geometrically evident that the Möbius strip M is a regular, nonorieotable surface. In fact, if M were orientable, there would exist a differentiable field $N: M \to R^3$ of unit normal vectors. Taking these vectors along the circle $x^2 + y^2 = 4$ we see that after making one trip the vector N returns to its original position as -N, which is a contradiction.

We shall now give an analytic proof of the facts mentioned above.

A system of coordinates $\mathbf{x}: U \to M$ for the Möbius strip is given by

$$\mathbf{x}(u, v) = \left(\left(2 - v \sin \frac{u}{2} \right) \sin u, \left(2 - v \sin \frac{u}{2} \right) \cos u, v \cos \frac{u}{2} \right),$$

where $0 < u < 2\pi$ and -1 < v < 1. The corresponding coordinate neighborhood omits the points of the open interval u = 0. Then by taking the origin of the *u*'s at the *x* axis, we obtain another parametrization $\bar{\mathbf{x}}(\bar{u}, \bar{v})$ given by

$$x = \left\{2 - \bar{v}\sin\left(\frac{\pi}{4} + \frac{\bar{u}}{2}\right)\right\}\cos\bar{u},$$
$$y = -\left\{2 - \bar{v}\sin\left(\frac{\pi}{4} + \frac{\bar{u}}{2}\right)\right\}\sin\bar{u},$$
$$z = \bar{v}\cos\left(\frac{\pi}{4} + \frac{\bar{u}}{2}\right),$$

whose coordinate neighborhood omits the interval $u = \pi/2$. These two coordinate neighborhoods cover the Möbius strip and can be used to show that it is a regular surface.

Observe that the intersection of the two coordinate neighborhoods is not connected but consists of two connected components:

$$W_1 = \left\{ \mathbf{x}(u, v) \colon \frac{\pi}{2} < u < 2\pi \right\},$$
$$W_2 = \left\{ \mathbf{x}(u, v) \colon 0 < u < \frac{\pi}{2} \right\}.$$

The change of coordinates is given by

$$\bar{u} = u - \frac{\pi}{2}$$
 in W_1 ,
 $\bar{v} = v$

and

$$\bar{u} = \frac{3\pi}{2} + u$$
 in W_2 .
$$\bar{v} = -v$$

It follows that

$$\frac{\partial(\bar{u}, \bar{v})}{\partial(u, v)} = 1 > 0 \quad \text{in } W_1$$

and that

$$\frac{\partial(\bar{u},\bar{v})}{\partial(u,v)} = -1 < 0 \quad \text{in } W_2$$

To show that the Möbius strip is nonorientable, we suppose that it is possible to define a differentiable field of unit normal vectors $N: M \to R^3$. Interchanging *u* and *v* if necessary, we can assume that

$$N(p) = \frac{\mathbf{x}_u \wedge \mathbf{x}_v}{|\mathbf{x}_u \wedge \mathbf{x}_v|}$$

for any p in the coordinate neighborhood of $\mathbf{x}(u, v)$. Analogously, we may assume that

$$N(p) = \frac{\bar{\mathbf{x}}_{\bar{u}} \wedge \bar{\mathbf{x}}_{\bar{v}}}{|\bar{\mathbf{x}}_{\bar{u}} \wedge \bar{\mathbf{x}}_{\bar{v}}|}$$

at all points of the coordinate neighborhood of $\bar{\mathbf{x}}(\bar{u}, \bar{v})$. However, the Jacobian of the change of coordinates must be -1 in either W_1 or W_2 (depending on what changes of the type $u \to v, \bar{u} \to \bar{v}$ has to be made). If p is a point of that component of the intersection, then N(p) = -N(p), which is a contradiction.

We have already seen that a surface which is the graph of a differentiable function is orientable. We shall now show that a surface which is the inverse image of a regular value of a differentiable function is also orientable. This is one of the reasons it is relatively difficult to construct examples of nonorientable, regular surfaces in R^3 .

PROPOSITION 2. If a regular surface is given by $S = \{(x, y, z) \in \mathbb{R}^3; f(x, y, z) = a\}$, where $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ is differentiable and a is a regular value of f, then S is orientable.

Proof. Given a point $(x_0, y_0, z_0) = p \in S$, consider the parametrized curve $(x(t), y(t), z(t)), t \in I$, on S passing through p for $t = t_0$. Since the curve is on S, we have

$$f(x(t), y(t), z(t)) = a$$

for all $t \in I$. By differentiating both sides of this expression with respect to t, we see that at $t = t_0$

$$f_x(p)\left(\frac{dx}{dt}\right)_{t_0} + f_y(p)\left(\frac{dy}{dt}\right)_{t_0} + f_z(p)\left(\frac{dz}{dt}\right)_{t_0} = 0.$$

110