$$
A^{\prime}=\iint_{R}\left|N_{u} \wedge N_{v}\right| d u d v
$$

Using Eq. (1), the definition of K, and the above convention, we can write

$$
\begin{equation*}
A^{\prime}=\iint_{R} K\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right| d u d v \tag{12}
\end{equation*}
$$

Going to the limit and denoting also by R the area of the region R, we obtain

$$
\begin{aligned}
\lim _{A \rightarrow 0} \frac{A^{\prime}}{A} & =\lim _{R \rightarrow 0} \frac{A^{\prime} / R}{A / R}=\frac{\lim _{R \rightarrow 0}(1 / R) \iint_{R} K\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right| d u d v}{\lim _{R \rightarrow 0}(1 / R) \iint_{R}\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right| d u d v} \\
& =\frac{K\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right|}{\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right|}=K
\end{aligned}
$$

(notice that we have used the mean value theorem for double integrals), and this proves the proposition.
Q.E.D.

Remark. Comparing the proposition with the expression of the curvature

$$
k=\lim _{s \rightarrow 0} \frac{\sigma}{s}
$$

of a plane curve C at p (here s is the arc length of a small segment of C containing p, and σ is the arc length of its image in the indicatrix of tangents; cf. Exercise 3 of Sec. 1-5), we see that the Gaussian curvature K is the analogue, for surfaces, of the curvature k of plane curves.

EXERCISES

1. Show that at the origin $(0,0,0)$ of the hyperboloid $z=a x y$ we have $K=-a^{2}$ and $H=0$.
*2. Determine the asymptotic curves and the lines of curvature of the helicoid $x=v \cos u, y=v \sin u, z=c u$, and show that its mean curvature is zero.
*3. Determine the asymptotic curves of the catenoid

$$
\mathbf{x}(u, v)=(\cosh v \cos u, \cosh v \sin u, v)
$$

4. Determine the asymptotic curves and the lines of curvature of $z=x y$.
5. Consider the parametrized surface (Enneper's surface)

$$
\mathbf{x}(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right)
$$

and show that
a. The coefficients of the first fundamental form are

$$
E=G=\left(1+u^{2}+v^{2}\right)^{2}, \quad F=0 .
$$

b. The coefficients of the second fundamental form are

$$
e=2, \quad g=-2, \quad f=0
$$

c. The principal curvatures are

$$
k_{1}=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}, \quad k_{2}=-\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}} .
$$

d. The lines of curvature are the coordinate curves.
e. The asymptotic curves are $u+v=$ const., $u-v=$ const.
6. (A Surface with $K \equiv-1$; the Pseudosphere.)
*a. Determine an equation for the plane curve C, which is such that the segment of the tangent line between the point of tangency and some line r in the plane, which does not meet the curve, is constantly equal to 1 (this curve is called the tractrix; see Fig. 1-9).
b. Rotate the tractrix C about the line r; determine if the "surface" of revolution thus obtained (the pseudosphere; see Fig. 3-22) is regular and find out a parametrization in a neighborhood of a regular point.
c. Show that the Gaussian curvature of any regular point of the pseudosphere is -1 .
7. (Surfaces of Revolution with Constant Curvature.) $(\varphi(v) \cos u$, $\varphi(v) \sin u, \psi(v)), \varphi \neq 0$ is given as a surface of revolution with constant Gaussian curvature K. To determine the functions φ and ψ, choose the parameter v in such a way that $\left(\varphi^{\prime}\right)^{2}+\left(\psi^{\prime}\right)^{2}=1$ (geometrically, this means that v is the arc length of the generating curve $(\varphi(v), \psi(v)))$. Show that
a. φ satisfies $\varphi^{\prime \prime}+K \varphi=0$ and ψ is given by $\psi=\int \sqrt{1-\left(\varphi^{\prime}\right)^{2}} d v$; thus, $0<u<2 \pi$, and the domain of v is such that the last integral makes sense.
b. All surfaces of revolution with constant curvature $K=1$ which intersect perpendicularly the plane $x O y$ are given by

$$
\varphi(v)=C \cos v, \quad \psi(v)=\int_{0}^{v} \sqrt{1-C^{2} \sin ^{2} v} d v
$$

where C is a constant $(C=\varphi(0))$. Determine the domain of v and draw a rough sketch of the profile of the surface in the $x z$ plane for
b. The length of the segment of a tangent line to a curve $v=$ const., determined by its point of tangency and the z axis, is constantly equal to 1 . Conclude that the curves $v=$ const. are tractrices (cf. Exercise 6).
13. Let $F: R^{3} \rightarrow R^{3}$ be the map (a similarity) defined by $F(p)=c p$, $p \in R^{3}, c$ a positive constant. Let $S \subset R^{3}$ be a regular surface and set $F(S)=\bar{S}$. Show that \bar{S} is a regular surface, and find formulas relating the Gaussian and mean curvatures, K and H, of S with the Gaussian and mean curvatures, \bar{K} and \bar{H}, of \bar{S}.
14. Consider the surface obtained by rotating the curve $y=x^{3},-1<x<1$, about the line $x=1$. Show that the points obtained by rotation of the origin $(0,0)$ of the curve are planar points of the surface.
*15. Give an example of a surface which has an isolated parabolic point p (that is, no other parabolic point is contained in some neighborhood of p).
*16. Show that a surface which is compact (i.e., it is bounded and closed in R^{3}) has an elliptic point.
17. Define Gaussian curvature for a nonorientable surface. Can you define mean curvature for a nonorientable surface?
18. Show that the Möbius strip of Fig. 3-1 can be parametrized by

$$
\mathbf{x}(u, v)=\left(\left(2-v \sin \frac{u}{2}\right) \sin u,\left(2-v \sin \frac{u}{2}\right) \cos u, v \cos \frac{u}{2}\right)
$$

and that its Gaussian curvature is

$$
K=-\frac{1}{\left\{\frac{1}{4} v^{2}+(2-v \sin (u / 2))^{2}\right\}^{2}}
$$

*19. Obtain the asymptotic curves of the one-sheeted hyperboloid $x^{2}+y^{2}-$ $z^{2}=1$.
20. Determine the umbilical points of the elipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

*21. Let S be a surface with orientation N. Let $V \subset S$ be an open set in S and let $f: V \subset S \rightarrow R$ be any nowhere-zero differentiable function in V. Let v_{1} and v_{2} be two differentiable (tangent) vector fields in V such that at each point of V, v_{1} and v_{2} are orthonormal and $v_{1} \wedge v_{2}=N$.

