18. Use the fact that if $\theta=2 \pi / m$, then

$$
\sigma(\theta)=1+\cos ^{2} \theta+\cdots+\cos ^{2}(m-1) \theta=\frac{m}{2}
$$

which may be proved by observing that

$$
\sigma(\theta)=\frac{1}{4}\left(\sum_{v=-(m-1)}^{v=m-1} e^{2 v i \theta}+2 m+1\right)
$$

and that the expression under the summation sign is the sum of a geometric progression, which yields

$$
\frac{\sin (2 m \theta-\theta)}{\sin \theta}=-1
$$

19. a. Express t and h in the basis $\left\{e_{1}, e_{2}\right\}$ given by the principal directions, and compute $\langle d N(t), h\rangle$.
b. Differentiate $\cos \theta=\langle N, n\rangle$, use that $d N(t)=-k_{n} t+\tau_{g} h$, and observe that $\langle N, b\rangle=\langle h, N\rangle=\sin \theta$, where b is the binormal vector.
20. Let S_{1}, S_{2}, and S_{3} be the surfaces that pass through p. Show that the geodesic torsions of $C_{1}=S_{2} \cap S_{3}$ relative to S_{2} and S_{3} are equal; it will be denoted by τ_{1}. Similarly, τ_{2} denotes the geodesic torsion of $C_{2}=S_{1} \cap S_{3}$ and τ_{3} that of $S_{1} \cap S_{2}$. Use the definition of τ_{g} to show that, since C_{1}, C_{2}, C_{3} are pairwise orthogonal, $\tau_{1}+\tau_{2}=0, \tau_{2}+\tau_{3}=0$, $\tau_{3}+\tau_{1}=0$. It follows that $\tau_{1}=\tau_{2}=\tau_{3}=0$.

SECTION 3-3

2. Asymptotic curves: $u=$ const., $v=$ const. Lines of curvature:

$$
\log \left(v+\sqrt{v^{2}+c^{2}}\right) \pm u=\text { const }
$$

3. $u+v=$ const. $u-v=$ const.
4. a. By taking the line r as the z axis and a normal to r as the x axis, we have that

$$
z^{\prime}=\frac{\sqrt{1-x^{2}}}{x}
$$

By setting $x=\sin \theta$, we obtain

$$
z(\theta)=\int \frac{\cos ^{2} \theta}{\sin \theta} d \theta=\log \tan \frac{\theta}{2}+\cos \theta+C
$$

If $z(\pi / 2)=0$, then $C=0$.

