
Analytic Methods for the Space

Lesson I

CALCULUS OF VARIATION:

AN OVERVIEW

A. Bacciotti, Politecnico di Torino

MASTER in Mathematical and Physical Methods for Space

Sciences, UNITO 2020-21



The basic problem

Let Ω be an open connected subset of R
2. Given:

• a function F(x, p) : R2 → R of class C2 on Ω

• four real numbers t0, t1, x0, x1 with t0 < t1

find a function x = ϕ(t) : [t0, t1] → R of class C1 such that

(∗) ϕ(t0) = x0, ϕ(t1) = x1,

(∗∗) (ϕ(t), ϕ′(t)) ∈ Ω for all t ∈ [t0, t1] and

(∗ ∗ ∗)

∫ t1

t0
F(ϕ(t), ϕ′(t)) dt = min

∫ t1

t0
F(g(t), g′(t)) dt

where the minimum is taken over all the functions

x= g(t) : [t0, t1] → R of class C1 satisfying (∗∗), and the same

endpoints condition as in (∗)



Remarks

♦ Let us denote

J(g(·)) =
∫ t1

t0
F(g(t), g′(t)) dt

J(·) can be thought of as a map C1([t0, t1],R) → R. Maps of

this type (from a space of functions to R) are often called

functionals

♦ A function ϕ(t) where the minimum of J(·) is attained is

called an extremant

♦ The problem is formulated in terms of “absolute minimum”;

it can be equivalently formulated in terms of “absolute

maximum”. The search of absolute minima or maxima of a

functional is generally referred to as an optimization problem

♦ The problem makes sense also for “local minima”, but the

formulation requires some more subtle technical details

♦ The problem can be easily extended to the case F(t, x, p)



The problem above implies two sub-problems:

◦ find conditions for the existence of the minimum

(and possibly, uniqueness)

◦ find some useful characterization of the extremants

In these lessons, we will focus on the second sub-problem; as

far as the first sub-problem is concerned, we limit ourselves to

report the following theorem.

Theorem. Let F(x, p) be everywhere defined and strictly

convex w.r.t. both variables. Then there exists a unique

extremant ϕ(t) minimizing the functional J(·).



The form of the functional J(·) to be minimized seems to be

very peculiar. However, it covers a large number of interesting

problems.

◦ Minimal distance (geodesics). The solution is obvious in a

plane and absence of obstacles, but not on a general surface

◦ Brachistochrone (J. Bernoulli 1696, curve of quickest

descent) The solution is a cycloid

◦ Surface of revolution with minimal area. The solution is a

catenary

◦ Best shape of a rocket (I. Newton 1687, curve of minimum

resistance).

◦ Analytic methods in Mechanics: the principle of minimal

action



A useful characterization of extremant is provided by the

following theorem.

Theorem. Let ϕ(t) be an extremant for J(·), and assume that

it is of class C2. Then, ϕ(t) is a solution of the differential

equation

(1) Fx(x, x
′)−

d

dt

[

Fp(x, x
′)
]

= 0 .

Equation (1) is called the Euler equation

Fx, Fp is a simplified notation for partial derivative



Remarks

♦ Equation (1) plays the same role as Fermat Theorem in the

theory of functions with a finite number of variables. Its

solutions are called extremals of the functional J(·) or

stationary functions. Theorem above states that any

extremant is an extremal function. However, the converse is

false, in general. In other words, equation (1) is a necessary,

but not sufficient condition for our optimization problem.

♦ Euler equation is an ordinary differential equation of second

order. It is “difficult”, since it is in general nonlinear and not in

normal form.

♦ In spite of these intrinsic difficulties, we may expect that it

has a general integral containing two arbitrary constants, which

can be determined in principle, exploiting the endpoints

conditions (∗)

♦ An additional difficulty is that (1) + (∗) constitute a

boundary values problem (not an initial values problem)



♦ By virtue of time-invariance (i.e., F independent of t) the

Euler Equation admits, in general, a first integral

F(x, x′) = Fp(x, x
′)x′ +A

where A is a constant.

This reduced order form of the Euler equation is very useful in

applications



The Hamiltonian formalism

The Hamiltonian formalism allows us to transform the Euler

equation (under restrictive assumptions) into a system of two

equations of first order in normal form.

Let the function p 7→ q = Fp(x, p) be globally invertible w.r.t. p

for each fixed x namely, assume that:

(H) there exists a map q 7→ p = Ψ(x, q) of class C1 such that

for each x, q

q = Fp(x,Ψ(x, q))

Define the Hamiltonian function

H(x, q) = qΨ(x, q)− F(x,Ψ(x, q))



Theorem. Under the assumption (H), a function ϕ(t) is a

solution of the Euler equation (1) if and only if the pair

(ϕ(t), ψ(t)), where

ψ(t) = Fp(ϕ(t), ϕ
′(t)) ,

is a solution of the system

(2)







x′ = Hq(x, q)

q′ = −Hx(x, q)

The variables x, q are called canonic, q is also called the adjoint

variable.

The transformation (x, p) ↔ (x, q) is called Legendre transform

Note that if (ϕ(t), ψ(t)) is a solution of (2),

H(ϕ(t), ψ(t)) = constant



Extensions of the basic problem

• Several variables. If x= (x1, . . . , xn) ∈ Rn, we will have one

Euler equation for each variable xi. Instead of (1), we will have

therefore a system of n ordinary differential equations. The

Hamiltonian function will depend on 2n variables, and (2) will

consist of 2n equations.

• Free endpoints. If one (or more) among the four numbers

t0, t1, x0, x1 is not preassigned, it should be considered as a

unknown. Say for instance that the free variable is t1, and

update our problem: find the minimum of

J(g(·), t1) =

∫ t1

t0
F(g(t), g′(t)) dt

where the minimum is taken over all the functions

x= g(t) : [t0,+∞) → R of class C1 satisfying the endpoints

condition in (∗) for some t1 > t0.



The Euler equation remains valid as a necessary condition for

optimization, but now we have only three constants which are

not enough to determine the general integral.

However, a fourth condition can be determined. In our case:

F(ϕ(t1), ϕ
′(t1))− ϕ′(t1)Fp(ϕ(t1), ϕ

′(t1)) = 0

which must be satisfied by any extremant ϕ(t) : [0, t1] → R at

the final time t1.

Conditions of this type are called transversality conditions



• Problems with constraints. Let n > 1. Sometimes, the search

for the minimum or maximum of the functional J(·) is

restricted to those functions of class C1 satisfying additional

conditions like:

◦















G1(x) = 0

. . .

Gm(x) = 0

(holonomic constraint) or, more generally,

◦















G1(x, x
′) = 0

. . .

Gm(x, x′) = 0

(nonholonomic constraint)

Here, G1, . . . , Gm (m < n) are given functions of class C1.



Examples of constrained problems:

◦ Geodesics on a surface (for instance, a sphere)

◦ Isoperimetric problems (for instance, Dido problem)

◦ Rolling wheel (without sliding)



In the presence of constraints the Euler (system of) equations

is no more a necessary condition.

Necessary conditions for a problem with m constraints can be

obtained (under a suitable independency condition) by

introducing m new variables, called Lagrange multipliers.

Let F̃(x, p, λ) = F(x, p) +
∑m
i=1 λiGi(x, p).

Theorem. Let ϕ(t) = (ϕ1(t), . . . , ϕn(t)) be a constrained

extremant of the given functional J(·). Then, there exists a

function λ(t) = (λ1(t), . . . , λm(t)) : [t0, t1] → Rm of class C1

such that the pair (ϕ(t), λ(t)) is a free extremal of the

functional

J̃(g(·), `(·)) =

∫ t1

t0
F̃ (g(t), g′(t), `(t)) dt



Note that the system of Euler equations for J̃ combines

differential equations of second order, differential equations of

first order (case of nonholonomic constraints) or numerical

(nondifferential) equations (case of holonomic constraints), the

equations of the constraints being incorporated into the system

of Euler equations.


