Corso di Laurea in Matematica - Esame di Geometria 3

Prova scritta del 12 giugno 2018 - versione 1

Cognome	_ Nome
Numero di matricola	
Correzione:	
Esercizio 1	
Listronio 1	
Esercizio 2	
Esercizio 2	
Esercizio 3	
Esercizio 5	
Voto	
VOLO	

Esercizio 1 (9 punti) Siano $I \subset \mathbb{R}$ un intervallo aperto e $\sigma: I \to \mathbb{R}^3$ una curva biregolare. Supponiamo che tutte le rette normali a σ abbiano un punto in comune. Mostrare che il sostegno di σ è contenuto in una circonferenza.

Esercizio 2 (11 punti) Sia $S \subset \mathbb{R}^3$ data da

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 + y^4 + z^4 = 1\}.$$

- (i) Mostrare che S è una superficie regolare e orientabile.
- (ii) Mostrare che l'applicazione $F\colon S\to S^2$ data da F(p)=p/||p|| è un diffeomorfismo tra S e la sfera unitaria.
- (iii) Mostrare che S è compatta e connessa, e calcolare l'integrale su S della curvatura gaussiana.
- (iv) Sia $\sigma \colon \mathbb{R} \to \mathbb{R}^3$ l'applicazione data da $\sigma(t) = g(t)(\cos t, \sin t, 0)$, dove

$$g(t) = ((\cos t)^4 + (\sin t)^4)^{-1/4}$$
.

Mostrare che $\sigma(\mathbb{R}) \subset S$ e calcolare $||\sigma'(\pi/4)||$ e $||(F \circ \sigma)'(\pi/4)||$. F è un'isometria?

Esercizio 3 (11 punti) Sia $S \subset \mathbb{R}^3$ la superficie regolare data da

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 1 - x^2 - y^2\},\$$

e $R \subset S$ la regione regolare

$$R = \{(x, y, z) \in S \mid x \ge 0, \ y \le 0, \ x^2 + y^2 \le 1\}.$$

Orientiamo S in modo tale che il versore normale in (0,0,1) sia (0,0,1) stesso. Sia infine $\omega=y^2dx+(x-y)dz$. Calcolare $\int_R d\omega$ sia direttamente che con il teorema di Stokes.