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EMBEDDABILITY ON FUNCTIONS: ORDER AND CHAOS

RAPHAËL CARROY, YANN PEQUIGNOT, AND ZOLTÁN VIDNYÁNSZKY

Abstract. We study the quasi-order of topological embeddability on defin-
able functions between Polish 0-dimensional spaces.

We consider the descriptive complexity of this quasi-order restricted to the
space of continuous functions. Our main result is the following dichotomy:
the embeddability quasi-order restricted to continuous functions from a given
compact space to another is either an analytic complete quasi-order or a well-
quasi-order.

We also investigate the existence of maximal elements with respect to em-
beddability in a given Baire class. We prove that no Baire class admits a
maximal element, except for the class of continuous functions which admits a
maximum element.
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1. Introduction

We study the quasi-order of (topological) embeddability on definable functions
between Polish spaces. A function f is said to embed into a function g, in symbols
f � g, if there exist topological embeddings σ : dom f → dom g and τ : im f → im g
such that g◦σ = τ ◦f . Since the identity is an embedding and embeddings compose,
embeddability is a reflexive and transitive relation on functions, namely, a quasi-
order.
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This way of comparing functions was first used by Solecki [Sol98], who proved
the existence of a non-σ-continuous Baire class 1 function which is minimal for
embeddability. Several basis results of this sort were later obtained [PS12,CM17b],
therefore confirming the relevance of this quasi-order for the study of definable
functions.

In the first part of this article, we focus specifically on the properties of the
quasi-order of embeddability when restricted to the space C(X,Y ) of continuous
functions between two Polish 0-dimensional spaces X and Y . We endow these
spaces of functions with the topology of compact convergence, which coincides
in this case with the compact-open topology. While this turns C(X,Y ) into a
Polish space if and only if X is locally compact, this choice is briefly discussed in
Section 3.2.

Our first result shows that the embeddability on C(X,Y ) is quite complicated
in most cases, in particular when both X and Y are uncountable. More precisely,
let G denote the Polish space of graphs on N and consider the quasi-order of in-
jective homomorphisms given by G � H if and only if there exists an injective
homomorphism from G to H. Louveau and Rosendal [LR05, Theorem 3.5] showed
that the homomorphism quasi-order on countable graphs is analytic complete, and
their proof also shows that (G,�) is an analytic complete quasi-order. We prove
the following as Theorem 4.13.

Theorem 1.1. Let X and Y be Polish 0-dimensional spaces. If X has infinitely
many nonisolated points and Y is not discrete, then there exists a continuous map
G → C(X,Y ) which reduces � to �.

Next we study the case where C(X,Y ) does not fall into the scope of the above
theorem. Recall that a quasi-order is a well-quasi-order if it is well founded and has
no infinite antichain. Of course an analytic complete quasi-order does not reduce
to a well-quasi-order. In fact, while analytic complete quasi-orders are quite wild,
the well-quasi-orders are very tame and provide a robust notion of hierarchy. In
Section 5, we prove the following result as Theorems 5.7 and 5.8.

Theorem 1.2. Let X and Y be Polish 0-dimensional spaces. If either X is locally
compact with finitely many nonisolated points or Y is discrete, then embeddability
is a well-quasi-order on C(X,Y ).

Our methods unfortunately do not allow us to drop the assumption that X is
locally compact in Theorem 1.2 (see Section 7).

However, combining our two theorems, we obtain a dichotomy for the spaces of
functions C(X,Y ) with X locally compact. In particular, when X is compact, then
C(X,Y ) is Polish and the topology coincides with that of the uniform convergence.
We show that in this case embeddability is an analytic quasi-order (Theorem 3.2).
We therefore obtain the following dichotomy.

Corollary 1.3. Let X and Y be Polish 0-dimensional with X compact. Then
exactly one of the following holds: either the embeddability on C(X,Y ) is analytic
complete or it is a well-quasi-order.

In Section 6, we move our attention to Borel functions on some Polish space and
investigate the existence of maximal elements in Baire classes. Using the universal-
ity property of the Hilbert cube, we notice that the projection p : [0, 1]ω × [0, 1]ω →
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[0, 1]ω is a maximum with respect to embeddability on continuous functions be-
tween Polish spaces. We then proceed to show that the situation is completely
different for the other Baire classes (Theorem 6.10).

Theorem 1.4. Let X,Y be Polish spaces such that X is uncountable and 0-dimen-
sional and |Y | ≥ 2. For every countable ordinal ξ ≥ 1, there is no maximal element
for embeddability among the Baire class ξ functions from X to Y .

2. Preliminaries

2.1. Spaces. Unless otherwise specified, all topological spaces are assumed to be
Polish 0-dimensional. We use variable symbols X,Y, Z for spaces. Our general
reference for the descriptive set theory of these spaces is [Kec12]. For clarity, we
write (xn)n to denote a sequence and omit the index set, which is assumed to be N.
We write xn → x in X to say that the sequence (xn)n converges to x in a space X
and we just write xn → x when the space is clear from the context. Since all of our
spaces are metrizable, a function σ : X → Y is a (topological) embedding if and
only if for every x ∈ X and every sequence (xn)n in X, the following equivalence
holds:

xn → x in X if and only if σ(xn) → σ(x) in Y .

The notation X =
⊔

i∈N Xi stands for the topological sum of a sequence (Xi)i∈N

of spaces, and we take
⋃

i∈N{i} × Xi to be the underlying set. This operation is
functorial, and if we have continuous functions fi : Xi → Y for all i ∈ N, then⊔

i∈N fi denotes the continuous map
⊔

i Xi → Y given by (i, x) �→ fi(x).
If X is a locally compact metrizable space that is not compact, the Alexandrov

compactification, or one-point compactification, of X is obtained by adding a new
point ∞ to X, and consider the topology given by the sets U ⊆ X open in X and
the sets V = {∞} ∪X \ C, where C is compact in X.

We view countable ordinals as topological spaces for the order topology. For
example, ω is homeomorphic to N with the discrete topology, and ω + 1 is homeo-
morphic to the one-point compactification of N.

The ordinal ω2 is homeomorphic to the sum of countably many copies of ω + 1.
Finally, the ordinal ω2 + 1 is homeomorphic to the one-point compactification of
ω2. Throughout the article, we freely identify ω2 with

⊔
n∈N ω+1, and ω2+1 with

the Alexandrov compactification of
⊔

n∈N ω + 1.
We mention here for later use an easy lemma which allows us to glue together

the embeddings.1

Lemma 2.1. Let X be a Polish space. Suppose that F0 and F1 are two closed sets
of X with X = F0 ∪ F1 and F0 ∩ F1 = {z} for some z ∈ X. If σi : Fi → Fi,
i = 0, 1, are two embeddings such that σ0(z) = σ1(z), then σ = σ0 ∪ σ1 : X → Y is
an embedding.

Proof. Let (xn)n be any sequence in X, and let x ∈ X. Let us show that xn → x
iff σ(xn) → σ(x). In a case in which (xn)n is eventually in F0 or F1, this follows
from the fact that σi is an embedding for i = 0, 1. Otherwise, we can partition
(xn)n into two sequences, (x0

n)n ⊆ F0 and (x1
n)n ⊆ F1. Then xn → x iff xi

n → x
for i = 0, 1. So in particular we must have x = z. Hence this is in turn equivalent
to σi(x

i
n) → σ(z) for i = 0, 1, which is finally equivalent to σ(xn) → σ(z). �

1Lemma 2.1 really says that the wedge sum of two embeddings between pointed metrizable
spaces is again an embedding.
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2.2. Quasi-orders. A quasi-order is a transitive reflexive relation ≤Q on some set
Q. As is customary, we henceforth make an abuse of terminology and refer to the
pair (Q,≤Q) simply as Q when there is no danger of confusion.

We say that a quasi-order Q is well founded if every nonempty subset of Q admits
a (not necessarily unique) ≤Q-minimal element. A well-quasi-order, or WQO, is a
well-founded quasi-order that has no infinite antichain, that is, no infinite subset
of pairwise incomparable elements.

For clarity, we restrict our use of the terms “embed” and “embedding” to topo-
logical spaces or functions. Instead of referring to embeddings when dealing with
quasi-orders, we talk about reductions. Given two quasi-orders P and Q, respec-
tively, a reduction from (P,≤P ) to (Q,≤Q) is a map ϕ : P → Q such that
p ≤P p′ ↔ ϕ(p) ≤Q ϕ(p′) for all p, p′ ∈ P . We say that P reduces to Q if
there exists a reduction from P to Q. When P and Q are topological spaces, we
say that (P,≤P ) continuously (resp., Borel) reduces to (Q,≤Q) when a continuous
(resp., Borel) reduction exists.

A subset A of a Polish space X is analytic (or Σ1
1) if it is the projection of a

closed subset of the product ωω×X of X with the Baire space. A quasi-order ≤ on
some Polish space X is analytic if it is analytic as a subset of X ×X. It is analytic
complete if it is analytic and moreover every analytic quasi-order on some Polish
space Borel reduces to it.

Notice that since the quasi-order of equality on N does not reduce to any WQO,
a WQO is never analytic complete.

We make use of the following example of analytic complete quasi-order in Sec-
tion 4. It is defined on (simple) graphs with vertex set N. These can be viewed as
pairs G = (N, E), where the edge relation E is a subset of [N]2, the set of all pairs
of natural numbers. Identifying any graph G = (N, E) with its edge relation E, we

view G as an element of the Polish space 2[N]
2

. This makes the set of graphs on N
a Polish space, and we denote it by G.

An injective homomorphism from G0 = (N, E0) to G1 = (N, E1) is an injective
map h : N → N such that {m,n} ∈ E0 implies that {h(m), h(n)} ∈ E1 for all pairs
{m,n}. We write G0 � G1 when there exists an injective homomorphism from G0

to G1. The proof of [LR05, Theorem 3.5] also gives the following result on which
Section 4 relies.

Theorem 2.2 (Louveau–Rosendal). The quasi-order (G,�) is analytic complete.

2.3. Some Cantor–Bendixson analysis. We make a simple yet quite essential
use of the Cantor–Bendixson analysis throughout the article. We briefly recall here
what we need. We say that a point x in a space X is isolated if {x} is open in X;
otherwise, we say that x is a limit. We let Is(X) denote the set of isolated points
of the space X.

The Cantor–Bendixson sequence of derivatives of a space X is defined induc-
tively by

• CB0(X) = X,
• CBα+1(X) = CBα(X) \ Is(CBα(X)),
• CBα(X) =

⋂
β<α CBβ(X) for cases in which α is a limit.

The Cantor–Bendixson rank of a space X is the smallest ordinal α such that
CBα(X) = CBα+1(X), and we denote it by CB(X). Since we are dealing only with
second countable spaces, this rank will always be countable. Spaces of rank 0 are
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either empty or perfect. The case of countable spaces is of particular interest for
us; in that case, the sequence of Cantor–Bendixson derivatives is eventually empty,
and the last nonempty derivative, if there is one, is always discrete.

The following results are the folklore.

Fact 2.3. We say that a space X is simple if CB(X) = α + 1 for some countable
ordinal α, and CBα(X) is a singleton.

• If σ : X → Y is an embedding between countable spaces, then σ(CBα(X)) ⊆
CBα(Y ) for all countable α.

• Every countable Polish space is a topological sum of countably many simple
spaces.

• If X is compact and countable, then CB(X) = α + 1 for some countable
α, the cardinality of CBα(X) is finite, and X is the topological sum of
|CBα(X)| simple spaces of rank α+ 1.

For the proof, in a slightly more general context, see, for instance, [Car13, Propo-
sition 2.2 and Lemma 2.4].

The following classification of Polish spaces with exactly one limit point2 is used
in Section 4. Here we denote by [ω]2+ the set [ω]2 ∪ {∅} viewed as a subspace of the
Cantor space.

Proposition 2.4. Up to homeomorphism, there are only three Polish spaces with
a single limit point, namely,

ω + 1, ω � (ω + 1) and [ω]2+.

Notice that ω + 1 is compact and ω � (ω + 1) is locally compact, while [ω]2+ is
not locally compact.

Proof. Let X be Polish with a single limit point x∞, and fix a compatible metric
for X. Take a sequence (Un)n∈N of open balls centered at x∞ with vanishing
diameter. Notice that for all n, X \ Un is a countable set of isolated points of X;
hence it is open. Therefore, each Un is actually clopen in X, and so are the sets
Vn = Un \ Un+1. We distinguish three cases.

Suppose first that Vn is finite for all n ∈ N and thus that X is compact. Then
any bijective map h : X → ω + 1 which maps x∞ to ω is a homeomorphism.

Next assume that there is an N ∈ N such that Vn is finite for all n ≥ N , while
X \ UN is infinite. Now X \ UN is clopen in X, and as an infinite discrete space it
is homeomorphic to ω. Since UN falls under the first case, X is homeomorphic to
ω � (ω + 1).

Otherwise, by possibly going to a subsequence of neighborhoods (Un)n∈N, we
can assume that Vn is infinite for all n. Fix an enumeration (xm,n)n∈N of Vm for all
m, and define h : X → [ω]2+ by τ (xm,n) = {m,m+ n} and h(x∞) = ∅. One easily
checks that h is a homeomorphism, as desired. �

3. Embedding functions

3.1. Let us embed them. The following ordering on functions is the main object
of study in this article.

2Or equivalently, separable metrizable spaces with exactly one limit point.
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Definition 3.1. Let f : X → Y and g : X ′ → Y ′ be two functions between
topological spaces. We say that f embeds in g, in symbols f � g, if there exist
embeddings σ : X → X ′ and τ : im f → im g such that τ ◦ f = g ◦ σ. In this case,
we also say that (σ, τ ) embeds f in g.

We start by making a simple but important observation on this definition. If
(σ, τ ) embeds f into g, then the embedding τ : im f → im g is entirely determined
by σ, f , and g through the equation τ (f(x)) = g(σ(x)) for all x ∈ X. In particular,
if (σ, τ ) and (σ, τ ′) both embed f into g, then τ = τ ′. With this in mind, we
sometimes just say that σ embeds f into g if σ is an embedding and there exists a
(unique) embedding τ : im f → im g such that τ ◦ f = g ◦ σ.

Observe that in order for an embedding σ : X → X ′ to embed f into g, it is
necessary that σ reduces the equivalence relation induced by f to that induced by
g, namely, that

∀x0, x1 ∈ X
(
f(x0) = f(x1) ↔ g(σ(x0)) = g(σ(x1))

)
,

in which case, the assignment f(x) �→ g(σ(x)) actually defines an injective function
τ : im f → im g. Hence for σ to embed f into g, it is necessary and sufficient that
moreover this τ is an embedding.

Now given Polish spaces X and Y , we endow the space C(X,Y ) of continuous
functions from X to Y with the topology of compact convergence. This topology
coincides in this case with the compact-open topology (see [Mun00, Theorem 46.8,
p. 285]), which is defined by taking as a subbase sets of the form

SX,Y (C,U) = {f : X → Y | f(C) ⊆ U}
for some compact subset C of X and some open subset U of Y . We recall that if
X is Hausdorff and S is a subbase for the topology of Y , then the sets of the form
SX,Y (C,U), where U belongs to S, already form a subbase for the compact-open
topology of C(X,Y ) [Jac52, Lemma 2.1].

When X is locally compact and Y is Polish, then C(X,Y ) is Polish (see [Kur68,
Theorem 1, p. 93, and Theorem 3, p. 94]), while in the nonlocally compact case this
topology is not even metrizable. We address the existence of a natural topology on
these spaces at the end of this section.

When moreover X is compact, then the topology on C(X,Y ) coincides with the
uniform convergence topology induced by the uniform metric

du(f, g) = sup
x∈X

dY (f(x), g(x)),

where dY is some compatible metric for Y . In this case, C(X,Y ) is Polish [Kec12,
(4.19)], and we show that the quasi-order of embeddability is analytic. Notice that
our general assumption that the spaces are 0-dimensional is actually unnecessary
for this result.

Theorem 3.2. Let X and Y be Polish, with X compact. Then embeddability is an
analytic quasi-order on C(X,Y ).

Proof. We show that the relation E on C(X,X)× C(X,Y )2 given by

(σ, f, g) ∈ E ←→ σ embeds f into g

is Borel. Since f � g iff ∃σ ∈ C(X,X) (σ, f, g) ∈ E, this implies that the relation
f � g is analytic, as desired.
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Fix a countable dense subset D = {dn : n ∈ ω} of X and compatible complete
metrics dX and dY on X and Y , respectively.

First, we observe that for every x, x′ ∈ X and k > 0 the set Dk
x,x′ = {f ∈

C(X,Y ) : dY (f(x), f(x
′)) ≤ 1

k} is closed in C(X,Y ). To see this, let f ∈ C(X,Y ),

with dY (f(x), f(x
′)) ≥ 1

k + ε for some ε > 0. Then for every g ∈ C(X,Y ) with

du(f, g) <
ε
2 , we have dY (g(x), g(x

′)) ≥ dY (f(x), f(x
′)) − 2 · du(f, g) > 1

k . Hence

the complement of Dk
x,x′ is open, as desired.

Next we prove that for all σ ∈ C(X,X), σ is an embedding if and only if

∀k > 0, ∃l > 0, ∀m,n
(
dY (σ(dn), σ(dm)) ≤ 1

l
implies that dX(dn, dm) ≤ 1

k

)
,

which shows that the set of embeddings is Borel in C(X,X). Suppose that σ ∈
C(X,X) is an embedding and therefore admits a continuous inverse σ−1 : im σ →
X. Since X is compact, so is imσ, and hence σ−1 is uniformly continuous. This
shows the forward implication. Conversely, assume that σ ∈ C(X,X) satisfies the
above formula. By compactness of X, it suffices to show that σ is injective. To
this end, assume that σ(x) = σ(x′) and pick two sequences in D with bn → x and
cm → x′. Since both (σ(bn))n and (σ(cm))m converge to σ(x), it follows that the
sequence (σ(b0), σ(c0), σ(b1), σ(c1), . . .) is Cauchy. As σ satisfies the above formula,
it follows that (d0, c0, d1, c1, . . .) is Cauchy too, which implies that x = x′.

Finally, we claim that (σ, f, g) ∈ E if and only if σ is an embedding,

∀k > 0, ∃l > 0, ∀n,m
(
dY (f(dn), f(dm)) ≤ 1

l
→ dY (g ◦ σ(dn), g ◦ σ(dm)) ≤ 1

k

)
and

∀k > 0, ∃l > 0, ∀n,m
(
dY (g ◦ σ(dn), g ◦ σ(dm)) ≤ 1

l
→ dY (f(dn), f(dm)) ≤ 1

k

)
.

This shows that E is Borel. Suppose first that (σ, f, g) ∈ E. Then σ is an embedding
and we have a unique embedding τ : im f → im g ◦ σ such that (σ, τ ) embeds f
into g. Since im f and im g ◦ σ are compact, both τ and its inverse are uniformly
continuous. Moreover as τ (f(x)) = g ◦ σ(x) for all x ∈ X, it follows that the two
above formulas are satisfied.

Conversely, suppose that σ : X → X is an embedding such that the two above
formulas hold with respect to some f and g in C(X,Y ). Notice that in particular,
we have f(dn) = f(dm) iff g ◦ σ(dn) = g ◦ σ(dm) for every m,n ∈ ω. We therefore
have a well defined bijective map τ̃ : f(D) → g ◦ σ(D) given by τ̃(f(d)) = g ◦ σ(d).
Since f(D) is dense in im f and τ̃ is uniformly continuous, it extends to a continuous
map τ : im f → im g ◦σ. Moreover as before, this continuous extension is injective,
and so τ is an embedding. Finally, since τ ◦ f and g ◦ σ are both continuous and
coincide on D, they are equal on X. Therefore, τ is an embedding such that (σ, τ )
embeds f in g, as desired. �

Remark 3.3. WhenX and Y are Polish andX is locally compact, the space C(X,Y )
is Polish. One might therefore be tempted to think that the embeddability relation
is analytic for such spaces as well. However, if we assume only that X is locally
compact in Theorem 3.2, then the conclusion does not hold. There exists a locally
compact Polish space X for which embeddability is not analytic on C(X,X) (see
Section 7).
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We end this subsection by collecting a few basic facts for later use. Observe
that any embedding j : Y → Z induces a map j◦ : C(X,Y ) → C(X,Z) given by
j◦(f) = j ◦ f . It should come as no surprise that this map actually is a continuous
reduction with respect to embeddability on functions.

Proposition 3.4. For all spaces X,Y, Z, if Y embeds in Z, then (C(X,Y ),�)
continuously reduces to (C(X,Z),�).

Proof. Let j : Y → Z be an embedding. Then the induced map j◦ : C(X,Y ) →
C(X,Z) given by j◦(f) = j ◦ f is continuous by [MN06, Theorem 2.2.4.b, p. 18].

Now for any embedding σ : X → X, we show that σ embeds f into g if and only
if σ embeds j◦(f) into j◦(g). Since j is an embedding, we have

∀x0, x1 ∈ X f(x0) = f(x1) ←→ g(σ(x0)) = g(σ(x1))

if and only if

∀x0, x1 ∈ X j◦(f)(x0) = j◦(f)(x1) ←→ j◦(g)(σ(x0)) = j◦(g)(σ(x1)).

Therefore, an embedding σ : X → X induces a injective function τ : im f → im g
such that τ ◦ f = g ◦σ if and only if it induces an injective function τ ′ : im j◦(f) →
im j◦(g) with τ ′ ◦ j◦(f) = j◦(g) ◦σ. Now notice that τ is an embedding just in case
for all sequences (xn)n in X and all x ∈ X, f(xn) → f(x) iff g(σ(xn)) → g(σ(x)).
Since j is an embedding, we see that τ is an embedding exactly when is τ ′ also.
Therefore, f � g iff j◦(f) � j◦(g), so j◦ is a reduction, as desired. �

In Section 4, we will make use of functions which are almost embeddings while
they lack injectivity. Whenever a function ρ : X → Y is not injective, we can
pick distinct points x and x′ in X with ρ(x) = ρ(x′), and therefore the sequence
(x, x′, x, x′, . . .) does not converge while (ρ(x), ρ(x′), ρ(x), ρ(x′), . . .) is actually con-
stant. With this very simple observation in mind, we make the following definition.

Definition 3.5. Let ρ : X → X ′ be a function. We say that a sequence (xn)n in
X is ρ-trivial if the corresponding sequence

(
ρ(xn)

)
n
of images by ρ is ultimately

constant. We say that ρ is a pseudo-embedding if ρ is continuous and for all non-ρ-
trivial sequences (xn)n and all x ∈ X we have

xn → x if and only if ρ(xn) → ρ(x).

Notice that an injective pseudo-embedding is just an embedding. One reason
for considering this weakening of the notion of embedding is that the relation of
embeddability simplifies a little when restricted to such functions.

Proposition 3.6. Let f : X → Y and g : X ′ → Y ′ be two pseudo-embeddings.
Then f � g if and only if there exists an embedding σ : X → X ′ such that f(x) =
f(x′) iff g(σ(x)) = g(σ(x′)) for all x, x′ ∈ X.

Proof. Clearly this is necessary, so let us prove that this actually is sufficient. Let
σ : X → X be an embedding such that f(x) = f(x′) iff g(σ(x)) = g(σ(x′)) for all
x, x′ ∈ X. This ensures that the assignment f(x) �→ g(σ(x)) defines an injective
map τ : im f → im g. To see that this τ is an embedding, take some sequence (xn)n
in X and let x ∈ X, with the aim of showing that

f(xn) → f(x) in Y ←→ g(σ(xn)) → g(σ(x)) in X.

Notice that (xn)n is f -trivial if and only if (σ(xn))n is g-trivial. If (xn)n is f -trivial
and thus (σ(xn))n is g-trivial too, then the sequences on both sides are eventually
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constant and we are done. So suppose that (xn)n is not f -trivial and thus (σ(xn))n
is not g-trivial either. Since f and g are pseudo-embeddings, we see that each side
of the equivalence hold if and only if xn → x, which finishes the proof. �

If ρ : X → Y is a pseudo-embedding and τ : Y → Y is an embedding, then
there is an easy sufficient (and in fact necessary) condition for the existence of an
embedding σ : X → X such that (σ, τ ) is a witness for ρ � ρ.

Proposition 3.7. Let ρ : X → Y be a pseudo-embedding. If τ : Y → Y is an
embedding such that ρ−1(y) embeds in ρ−1(τ (y)) for every y ∈ Y , then there exists
an embedding σ : X → X such that ρ ◦ σ = τ ◦ ρ.

Proof. Pick for every y ∈ im ρ an embedding σy : ρ−1(y) → ρ−1(τ (y)). We show
that σ =

⋃
y∈Y σy is an embedding such that (σ, τ ) embeds ρ in itself. Clearly we

have ρ◦σ = τ ◦ρ. To see that σ is an embedding, let (xn)n be a sequence in X and
x ∈ X. We claim that xn → x iff σ(xn) → σ(x). Observe that (xn)n is ρ-trivial
exactly when (σ(xn))n is. If (xn)n is ρ-trivial with

(
ρ(xn)

)
n
eventually equal to

y, then the claim follows from the fact that σy is an embedding. Otherwise, since
ρ is a pseudo-embedding xn → x iff ρ(xn) → ρ(x), as τ is an embedding, this is
equivalent to τ (ρ(xn)) → τ (ρ(x)). This is in turn equivalent to ρ◦σ(xn) → ρ◦σ(x);
hence using that ρ is a pseudo-embedding once again, we get this to finally be
equivalent to σ(xn) → σ(x). �

3.2. A limitation result on possible topologies for continuous functions.
A natural question arises when we consider spaces of the form C(X,Y ): does there
exist a nice topology on these spaces? More precisely, does there exist a standard
Borel structure on C(X,Y ) so that the evaluation map C(X,Y )×X → Y defined
by (f, x) �→ f(x) is Borel?

We first observe that the answer is affirmative when X is σ-compact. Let X =⋃
n∈ω Kn with compact sets Kn, and identify C(X,Y ) with a subset of the Polish

space
∏

n∈ω C(Kn, Y ) via the injection f �→ (f |Kn
)n. It is enough to notice the

following fact.

Proposition 3.8. The space C(X,Y ) is Borel in
∏

n∈ω C(Kn, Y ).

Proof. Clearly C(X,Y ) is a coanalytic subset of
∏

n∈ω C(Kn, Y ), and we show
that it is also analytic, and hence Borel. Fix metrics dX and dY on X and Y , and
countable dense subsets Di ⊆ Ki. We claim that for every (fi)i ∈

∏
n∈ω C(Kn, Y ),⋃

i∈N fi is the graph of a continuous function if and only if for every n > 0 there is
a sequence (αi)i with αi > 0 such that for every i, j ∈ N if d ∈ Di, d

′ ∈ Dj , and
dX(d, d′) < 1

αi
, then dY (fi(d), fj(d

′)) < 1
n . This definition is analytic, as desired.

Suppose that (fi)i satisfies the above analytic definition. We claim that for all
i, for all x ∈ Ki, and for all N > 0 there exists a δ > 0 such that x′ ∈ Ki′ , and
dX(x, x′) ≤ δ implies that dY (fi(x), fi′(x

′)) < 1
N . This implies that

⋃
i fi is the

graph of a continuous function. Toward a contradiction, suppose that for some i
there are an x ∈ Ki and an N > 0 witnessing the failure of the claim. Using our
assumption for n = 3N , we get a sequence (αi)i witnessing that (fi)i satisfies our
analytic definition. Now by our choice of i, x, and N , there exist i′ and x′ ∈ Ki′

with dX(x, x′) < 1
3αi

and dY (fi(x), fi′(x
′)) ≥ 1

N . By continuity of fi on Ki and

density of Di, there exists a d ∈ Di with dX(x, d) < 1
3·αi

and dY (fi(x), fi(d)) <
1

3N .

Similarly, there is a d′ ∈ Di′ with dX(x′, d′) < 1
3·αi

and dY (fi′(x
′), fi′(d

′)) < 1
3N .
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Hence it follows that dX(d, d′) < 1/αi but dY (fi(d), fi′(d
′)) ≥ 1

3N , which is a
contradiction.

Conversely, assume that f : X → Y is continuous, and fix n > 0. By continuity
of f , for each x ∈ X there exists a δx such that diam(f(B(x, δx))) < 1

n . Fix

i ∈ N, and notice that Ki ⊆
⋃

x∈Ki
B(x, 12 · δx). By compactness, Ki is already

covered by finitely many open balls centered at some (xk)k<m, and we take αi > 0
such that 1

αi
< 1

2 · min{δxk
| k < m}. Then if x ∈ Ki, then for some k < m we

have x ∈ B(xk,
1
2 · δxk

), so in particular B(x, 1
αi
) ⊆ B(xk, δxk

), which implies that

diam(f(B(x, 1
αi
))) < 1

n . �

Therefore, when X is a σ-compact metric space and Y is Polish, there is a
standard Borel structure on C(X,Y ) which makes the evaluation map Borel. We
next show that this fails if X is not σ-compact and 0-dimensional. In particular,
there is no standard Borel structure on C(ωω, ωω) which makes the evaluation map
Borel. As usual, if B ⊆ X × Y , x ∈ X, and y ∈ Y , we denote the horizontal and
vertical sections, that is, the sets {x′ ∈ X : (x′, y) ∈ B} and {y′ ∈ Y : (x, y′) ∈ B},
by By and Bx, respectively.

Theorem 3.9. Let X,Y be 0-dimensional Polish spaces with X non-σ-compact
and |Y | ≥ 2. Then there is no standard Borel structure on C(X,Y ) such that the
map C(X,Y )×X → Y defined by (f, x) �→ f(x) is Borel.

Proof. Suppose toward a contradiction that there is such a structure. First, we re-
duce the problem to X = ωω. By the isomorphism of standard Borel spaces, there
exists a Borel bijection b : ωω → C(X,Y ). As X is not σ-compact, it contains a
closed subspace X ′ homeomorphic to ωω, so let e : ωω → X ′ be such a homeomor-
phism. We define a subset B of ωω × ωω × Y by (r, s, y) ∈ B ←→ b(r)(e(s)) = y.
Then by our assumption, B is a Borel set and of course, for every r ∈ ωω, we have
Br being the graph of a continuous function from ωω to Y . Now as X ′ is a closed
subset of X, every continuous function X ′ → Y extends to a continuous function
X → Y (by [Kur66, Corollary 6c, p. 151], [Kec12, (4.17)]). Consequently, for every
f : ωω → Y continuous, there exists an r such that Br is the graph of f .

Therefore, it is enough to prove that there is no such Borel set B ⊆ ωω×ωω×Y .
Fix a continuous onto map t : Y → 2, and consider the following set:

B′ = {(r, s) ∈ (ωω)2 : (∀y)((r, s, y) ∈ B =⇒ t(y) = 0)}.
We have the following:

• B′ is Borel since (r, s) ∈ B′ ←→ (∃y)((r, s, y) ∈ B =⇒ t(y) = 0);
• for every r, the section B′

r is clopen;
• for every clopen subset C of ωω, there exists an r with B′

r = C.

Without loss of generality, we can suppose that for every clopen set C the set
{r ∈ ωω : B′

r = C} cannot be covered by the union of countably many compact
sets: indeed, instead of B′ we can consider the set B′′ ⊆ ωω × ωω × ωω defined by
(r′, r, s) ∈ B′′ ←→ (r, s) ∈ B′. Then for each clopen C the set {(r′, r) : B′′

(r,r′) = C}
contains a copy of ωω. Identifying (ωω)2 with ωω via a standard homeomorphism
gives the desired set.

Let us denote the usual topology on ωω by τu. Now, every section B′
x is clopen,

and it follows from [Kec12, Theorem 28.7] that there exists a Polish topology τ0 ⊇ τu
on ωω so that B′ is open in (ωω, τ0) × (ωω, τu). Applying this again for (B′)c, we
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can get a 0-dimensional Polish topology τ ⊇ τ0 on ωω such that B′ is clopen in the
product space (ωω, τ )×(ωω, τu). Note that if a subset of ωω is compact with respect
to τ , then it is also compact with respect to τu. Hence, for every clopen C, the set
{x : B′

x = C} cannot be covered by countably many τ -compact sets. Now, since
(ωω, τ ) is 0-dimensional, there exists a σ-compact τ -open set S such that (ωω \S, τ )
is homeomorphic to (ωω, τu), so let us denote such a homeomorphism by h.

Define (x, y) ∈ U ←→ (h(x), y) ∈ B′. Now, U is a clopen subset of (ωω)2

(indeed, it is the preimage of a clopen set under the map (h, id)). For every C
clopen, there exists an r with Ur = C: as S is σ-compact, for any C there is an r
with Br = C such that r �∈ S. This contradicts the fact that there is no universal
clopen set. �

4. Chaos

Our starting point is a general and simple observation about the embeddability
quasi-order on (not necessarily continuous or definable) functions between topolog-
ical spaces.

Definition 4.1 (The function-to-graph map). With every function f : X → Y
between topological spaces we associate a graph Gf = (Vf , Ef ), where Vf = {x ∈
X | x is a limit point} and

{x, y} ∈ Ef ←→ x �= y, and there exist injective sequences

(xn)n and (yn)n in X such that xn → x, yn → y,

and f(xn) = f(yn) for all n ∈ N.

Notice that if (xn)n and (yn)n witness that {x, y} ∈ Ef , then so do (xnk
)k and

(ynk
)k for any strictly increasing sequence (nk)k of natural numbers.

The map f �→ Gf is actually a homomorphism from � to �.

Lemma 4.2. Let f : X → Y and f ′ : X ′ → Y ′ be two functions between topological
spaces. Then f � f ′ implies that Gf � Gf ′ .

Proof. Let (σ, τ ) embed f into f ′. Let us denote by σ̌ : Vf → Vf ′ the restriction
of σ : X → X ′ to the limit points of X. This is well defined and injective since
σ is an embedding, so in particular σ must send any limit point of X to some
limit point of X ′. To see that it is a homomorphism from Gf to Gf ′ , suppose that
{x, y} ∈ Ef . There exist injective sequences (xn)n and (yn)n such that xn → x,
yn → y, and f(xn) = f(yn) for all n ∈ N. As σ is injective and continuous, it
follows that (σ(xn))n and (σ(yn))n are injective sequences converging to σ(x) and
σ(y), respectively. Moreover, f ′(σ(xn)) = τ (f(xn)) = τ (f(yn)) = f ′(σ(yn)) for
every n ∈ N, so {σ(x), σ(y)} ∈ Ef ′ , as desired. �

In this section, we prove that if Y is not discrete and X has infinitely many
limit points, then (G,�) continuously reduces to (C(X,Y ),�). Notice that Y is
not discrete if and only if ω + 1 embeds in Y , so by Proposition 3.4 it is enough to
show that the result holds for C(X,ω+1) when X has infinitely many limit points.

4.1. One special case, or maybe two. We define a homomorphism G �→ fG

from (G,�) to (C(ω2, ω + 1),�). We then show that G is isomorphic to GfG for
every G ∈ G. As f �→ Gf is a homomorphism by Lemma 4.2, it will follow that
G �→ fG is actually a reduction, as desired.
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Remember that we identify ω2 with
⊔

n∈N ω+1. The homomorphism is defined as
follows: each limit point (m,ω) corresponds to the vertex m, and we pick for every
other vertex n a sequence of isolated points converging to (m,ω). If {m,n} is an
edge, then the sequence converging to (m,ω) that we picked for n and the sequence
converging to (n, ω) that we picked for m are mapped to the same converging
sequence in ω+1. Otherwise, they are mapped to disjoint sequences. More formally,
we have the following definition.

Definition 4.3 (The graph-to-function map). Fix bijections 〈−〉0 : N2 → N, 〈−〉1 :
[N]2 → N and 〈−〉2 : 2×N2 → N. For clarity, we write 〈m,n〉1 instead of 〈{m,n}〉1.
Note that if n �= m, then 〈m,n〉0 �= 〈n,m〉0, while 〈m,n〉1 = 〈n,m〉1. For every
vertex m ∈ N, define fG

m : ω + 1 → ω + 1 by

〈n, p〉0 �−→
{
〈0, 〈m,n〉0 , p〉2 if {m,n} /∈ EG,

〈1, 〈m,n〉1 , p〉2 if {m,n} ∈ EG,

ω �−→ ω.

We define fG : ω2 → ω + 1 to be the sum
⊔

n∈N fG
n :

⊔
n∈N ω + 1 → ω + 1.

Clearly each fG
n is continuous, so fG is continuous.

Lemma 4.4. For every G,G′ ∈ G, if G � G′, then fG � fG′
.

Proof. Suppose that σ : N → N is an injective homomorphism from G to G′. Define
σ̌ : ω2 → ω2 by σ̌(m,ω) = (σ(m), ω) for every m ∈ N and

σ̌(m, 〈n, p〉0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(σ(m), 〈σ(n), 2p〉0) if m < n, {m,n} /∈ EG

and {σ(m), σ(n)} ∈ EG′
,

(σ(m), 〈σ(n), 2p+ 1〉0) if n < m, {m,n} /∈ EG

and {σ(m), σ(n)} ∈ EG′
,

(σ(m), 〈σ(n), p〉0) otherwise

for every m,n, p ∈ N. Then define τω+1 −→ ω+1 by τ (ω)=ω, τ 〈1, 〈m,n〉1 , p〉2 =
〈1, 〈σ(m), σ(n)〉1 , p〉2 and

τ (〈0, 〈m,n〉0 , p〉2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈1, 〈σ(m), σ(n)〉1 , 2p〉2 if m < n, {m,n} /∈ EG

and {σ(m), σ(n)} ∈ EG′
,

〈1, 〈σ(m), σ(n)〉1 , 2p+ 1〉2 if n < m, {m,n} /∈ EG

and {σ(m), σ(n)} ∈ EG′
,

〈0, 〈σ(m), σ(n)〉0 , p〉2 otherwise.

One easily checks that (σ̌, τ ) embeds fG into fG′
. �

Lemma 4.5. For every graph G = (N, EG) in G, the map

j : N −→ VfG ,

n �−→ (n, ω),

is an isomorphism of graphs from G to GfG .

Proof. Notice that j : N → VfG is bijective. First, take an edge {m,n} ∈ EG.
Consider the two sequences given by xp = (m, 〈n, p〉0) and yp = (n, 〈m, p〉0), p ∈
N. These sequences are injective and converge, respectively, to j(m) and j(n).
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Moreover, by the definition of fG, we have fG(xp) = fG(yp) for every p ∈ N; hence
{j(m), j(n)} ∈ EfG .

Conversely, suppose that (xp)p and (yp)p are injective sequences in
⊔

n ω + 1
witnessing that {j(m), j(n)} ∈ EfG . Since xp → (m,ω) and yp → (n, ω), we
can assume by simultaneously passing to subsequences that (xp)p ⊆ {m} × ω and
(yp)p ⊆ {n} × ω. In particular, x0 = (m, 〈k, p〉0) and y0 = (n, 〈k′, p′〉0) for some
k, k′, p, p′ ∈ N. But fG(x0) = fG(y0), so by the definition of fG, this is possible
only if p = p′, k′ = m, and k = n. Consequently, {m,n} ∈ EG. �

While the reduction from (G,�) to C(ω2, ω + 1) is simple and illuminating (at
least we hope so), we will actually need a reduction to C(ω2 + 1, ω+1) in order to
derive the general case.

For every G ∈ G, we extend the function fG : ω2 → ω+1 from Definition 4.3 to
a function f̄G : ω2+1 → ω+1, letting f̄G(∞) = ω. Using the definition of fG, one
easily sees that for every finite set F ⊆ ω + 1 of natural numbers, i.e., of isolated
points, the set (f̄G)−1(F ) is clopen in ω2 +1 as a finite set of isolated points. This
clearly implies that f̄G is continuous.

The following lemma simplifies the task of proving that both G �→ fG and
G �→ f̄G actually yield continuous reductions.

Lemma 4.6. The restriction map C(ω2 +1, ω+ 1) → C(ω2, ω+ 1), f �→ f |ω2 is a
continuous one-to-one reduction with respect to embeddability.

Proof. To check the continuity, let K ⊆ ω2 be compact, and let U ⊆ ω+1 be open.
Then K is also compact as a subset of ω2 + 1, so for all f ∈ C(ω2 + 1, ω + 1),

f(K) ⊆ U ←→ f |ω2(K) ⊆ U,

which proves continuity.
It is one to one since ω2 is a dense subset of ω2 + 1, and if two continuous

functions agree on a dense subset, then they are equal.
To see that it is a reduction, notice that if σ′ : ω2+1 → ω2+1 is an embedding,

then necessarily σ′(ω2) = ω2, so it restricts to an embedding σ : ω2 → ω2. More-
over, if σ : ω2 → ω2 is an embedding, then it extends to an embedding σ′ : ω2+1 →
ω2 + 1 by letting σ′(ω2) = ω2. It follows that for every f, g ∈ C(ω2 + 1, ω + 1), σ
embeds f in g if and only if σ′ embeds f |ω2 in g|ω2 . �

Remark 4.7. Notice that the restriction map of Lemma 4.6 is not a topological
embedding of C(ω2+1, ω+1) in C(ω2, ω+1). Indeed, one can check that the direct
image of the open set Sω2+1,ω+1(ω

2 + 1, ω + 1 \ {0}) is not open in C(ω2, ω + 1).

We now conclude our two special cases before attacking the general case.

Proposition 4.8. The maps G �→ fG and G �→ f̄G are continuous reductions from
(G,�) to (C(ω2, ω + 1),�) and (C(ω2 + 1, ω + 1),�), respectively.

Proof. We claim that it only remains to prove the continuity of G �→ f̄G from G
to C(ω2 +1, ω+1) endowed with the compact-open topology in order to conclude.
Assuming this fact for now, notice that for every G ∈ G we have f̄G|ω2 = fG, so by
Lemma 4.6, G �→ f̄G �→ f̄G|ω2 = fG is continuous as a composition of continuous
maps, and it is a reduction by Lemmas 4.2, 4.4, and 4.5. But then by Lemma 4.6,
fG � fH iff f̄G � f̄H for every G,H ∈ G, so it follows that G �→ f̄G is also a
continuous reduction, as desired.
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It remains for us to show thatG �→ f̄G is continuous. Fix compatible ultrametrics
d on ω+1 and dG on the space of graphs. Since ω2+1 is compact, the compact-open
topology coincides with the uniform convergence topology. So it suffices to check
that for every ε > 0 there exists a δ > 0 so that whenever we have dG(G,H) < δ
for graphs G,H, then for every x ∈ ω2 + 1 we have d(f̄G(x), f̄H(x)) < ε.

To this end, fix ε > 0, and notice that the set {k ∈ ω : d(k, ω) ≥ ε} is finite
and that whenever k and k′ do not belong to this set, then d(k, k′) < ε, as d is an
ultrametric. Set

F = {(m, 〈n, p〉0) | ∃i (d(〈i, 〈m,n〉i , p〉2 , ω) ≥ ε)}.
Then F is a finite set of isolated points in ω2 + 1 and F ′ = {{m,n} ∈ [ω]2 |
∃p (m, 〈n, p〉0) ∈ F} is a finite set of pairs. Now we can find δ small enough such that
dG(G,H) < δ ensures that G and H agree on F ′. By the definition of f̄G, this easily
implies that f̄G|F = f̄H |F . Moreover, if x �∈ F , then d(f̄G(x), f̄H(x)) < ε. �

4.2. The general case. Building on the previous section, we show that if X is
Polish 0-dimensional with infinitely many points, then (G,�) continuously reduces
to C(X,ω + 1). To do so, we will find a continuous map π : X → ω2 + 1 such that
G �→ f̄G ◦ π is the desired continuous reduction.

We start by identifying a sufficient condition for a map π : X → ω2 + 1 to yield
such a reduction.

Definition 4.9. Let us say that a pseudo-embedding ρ : X → ω2 + 1 is regular if

(1) |ρ−1({∞})| ≤ 1;
(2) for every m ∈ N, |ρ−1({(m,ω)})| = 1;
(3) for every isolated points y, y′ ∈ ω2+1, ρ−1({y}) �= ∅ and ρ−1({y}) embeds

in ρ−1({y′}).

Lemma 4.10. Suppose that ρ : X → ω2 + 1 is a regular pseudo-embedding. Then
for every G,H ∈ G, we have

G � H if and only if f̄G ◦ ρ � f̄H ◦ ρ.

Proof. Let us start by remarking that for every G ∈ G, the definition of the function
f̄G is such that y is a limit in ω2 + 1 iff f̄G(y) = ω.

We start with the forward implication. Assume that G � H so that there exists
(σ, τ ) which embeds f̄G in f̄H by Proposition 4.8. We need to check that y is
isolated in ω2 + 1 iff σ(y) isolated in ω2 + 1. This is not true for any embedding
σ, but as (σ, τ ) embeds f̄G in f̄H , this follows from our first remark and from the
fact that τ (ω) = ω holds. Moreover, σ being an embedding, it must fix the point ∞
(see Fact 2.3). It therefore follows from our hypotheses on ρ that ρ−1({y}) embeds
in ρ−1({σ(y)}) for all y ∈ ω2 + 1. Since ρ is a pseudo-embedding, it follows from
Proposition 3.7 that there exists some embedding σ̄ such that ρ ◦ σ̄ = σ ◦ ρ. Hence
(σ̄, τ ) embeds f̄G ◦ ρ in f̄H ◦ ρ, as desired.

For the backward implication, assume that (σ̄, τ ) embeds f̄G◦ρ in f̄H ◦ρ for some
G,H ∈ G. Let L = {x ∈ X | ρ(x) is the limit in ω2 + 1}. We start by noticing
that x ∈ L iff σ̄(x) ∈ L for all x ∈ X. By our first remark, we have x ∈ L iff
f̄G ◦ ρ(x) = ω, and something similar for f̄H . So as (σ̄, τ ) embeds f̄G ◦ ρ in f̄H ◦ ρ,
we must have x ∈ L iff σ̄(x) ∈ L.

Notice that as ρ is a regular pseudo-embedding, ρ actually restricts to embedding
from L in the limit points of ω2 + 1. Let x(m,ω) ∈ X denote the unique point with
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ρ(x(m,ω)) = (m,ω), and let x∞ ∈ X be the unique point such that ρ(x∞) = ∞
(if there exists one at all). The set L is equal to either {x(m,ω) | m ∈ N} or to
{x∞} ∪ {x(m,ω) | m ∈ N}. Since σ̄ is restricted to an embedding of L in itself,
it must fix the point x∞ if it exists. In both cases, σ̄ induces an injective map
σ : N → N such that σ̄(x(m,ω)) = x(σ(m),ω) for every m.

Next we prove that this injective map σ : N → N is a homomorphism from
G to H. Assume that n EG m. We claim that whenever (xk)k is an injective
sequence of isolated points in ω2 + 1 converging to (n, ω), then by possibly going
to a subsequence, there exists a sequence (x′

k)k in X with ρ(x′
k) = xk for all k and

such that ρ(σ̄(x′
k))k is injective and converges to (σ(n), ω).

To see this, pick any sequence (x′
k)k in X with ρ(x′

k) = xk. Since ρ is a pseudo-
embedding and (x′

k) is not ρ-trivial, we have x′
k → x(n,ω). Now since ρ(x′

k) = xk is

isolated in ω2+1, so is ρ(σ̄(x′
k)), and by continuity the sequence ρ(σ̄(x′

k))k converges
to the limit point (σ(n), ω). Therefore, by possibly going to a subsequence, we can
assume that ρ(σ̄(x′

k))k is injective, which proves the claim.
Since n EG m, by definition of fG there are injective sequences of isolated points

(xk)k and (yk)k with xk → (n, ω), yk → (m,ω), and f̄G(xk) = f̄G(yk) for all k.
By possibly going simultaneously to subsequences, we use the claim to pick (x′

k)k
and (y′k)k in X such that ρ(x′

k) = xk, ρ(y′k) = yk, and setting x′′
k = ρ ◦ σ̄(x′

k)
and y′′k = ρ ◦ σ̄(y′k)k, (x

′′
k)k and (y′′k )k are injective and converge to (σ(n), ω) and

(σ(m), ω), respectively. Moreover, for all k,

fH(x′′
k) = τ ◦ f̄G ◦ ρ(x′

k) = τ ◦ f̄G ◦ ρ(y′k) = fH(y′′k ).

Therefore, using Lemma 4.5, we see that the two sequences (x′′
k)k and (y′′k )k together

witness that σ(n) EH σ(m) holds. �

If (Cn)n is a sequence of mutually disjoint clopen sets in a space X and x ∈ X,
we write Cn → x if every neighborhood of X contains Cn for all but finitely many
n. Notice that in this case, we have x /∈ Cn for all n, the set F = {x} ∪

⋃
n Cn

is closed in X, and the map ρ : F → ω + 1 is given by ρ(y) = n if y ∈ Cn and if
ρ(x) = ω is a pseudo-embedding.

Lemma 4.11. Let X be an uncountable Polish 0-dimensional space. Then there
exists a regular pseudo-embedding ρ : X → ω2 + 1.

Proof. Fix some compatible metric for X, and recall that a point x ∈ X is a con-
densation point of X if every neighborhood of x is uncountable. Remember that
X is uncountable if an only if the set of condensation points of X is uncount-
able [Kec12, 6.4, p. 32]. We fix some condensation point x∞ of X and define a
sequence (Cm)m∈ω of pairwise disjoint clopen sets such that

(1) each Cm is uncountable,
(2) Cm → x∞, and
(3) X = {x∞} ∪

⋃
m Cm.

To this end, let (Vn)n be a decreasing sequence of clopen neighborhoods of x∞ with
vanishing diameter and V0 = X. We claim that there exists a strictly increasing
sequence (ni)i of indices such that the clopen sets given by C0 = X \ Vn0

and
Ci+1 = Vni

\ Vni+1
for i ≥ 0 are all uncountable. This sequence (Cm) is clearly as

desired. To see this, observe that there exists a condensation point y ∈ V0 such
that y �= x∞, so y /∈ Vn0

for some large enough n0. Then X \Vn0
is uncountable as

a clopen neighborhood of the condensation point y. Next if ni is defined, we can
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apply the same argument inside Vni
to get some ni+1 > ni such that Vni

\ Vni+1
is

uncountable, which completes the induction.
We then pick a condensation point x(m,ω) in Cm for every m and apply the same

construction to Cm and x(m,ω) as we did above for X and x∞. Hence we get for
everym a sequence (Cm,n)n of uncountable clopen sets that partitions Cm\{x(m,ω)}
and satisfies Cm,n → x(m,ω).

We define ρ : X → ω2 + 1 by ρ(x∞) = ∞, ρ(x(m,ω)) = (m,ω) and ρ(x) =
(m,n) if x ∈ Cm,n. Observe that whenever (xn)n in X is not ρ-trivial, ρ(xn)n can
converge only to some limit point y of ω2 + 1, and by construction this happens
if and only if xn → x for the unique point x with ρ(x) = y. Hence ρ is a pseudo-
embedding. To see that it is regular, notice that it clearly satisfies items 1 and 2 of
Definition 4.9. To see condition 3, remember that every 0-dimensional Polish space
embeds in 2ω (see [Kec12, (7.8)]), while 2ω embeds in every uncountable Polish
space [Kec12, (6.5)]. �

Lemma 4.12. Let X be a countable 0-dimensional space with infinitely many limit
points. We can write X as the union of two closed sets F0 and F1 with the following
properties:

(1) There is a regular pseudo-embedding ρ : F0 → ω2 + 1.
(2) F0 ∩ F1 = ρ−1({∞}).

Proof. We start by making the following remark. If x is a limit point which is
isolated in CB1(X), then for every neighborhood U of x there exists a clopen set C
with x ∈ C ⊆ U , C ∩ CB1(X) = {x}, and such that C is homeomorphic to either
ω+1 or [ω]2+. To see the last point, notice that if C is clopen with C∩CB1(X) = {x},
then C is a Polish space with a single limit point, and by Proposition 2.4 it is
homeomorphic to one of the three spaces ω � ω + 1, ω + 1, [ω]2+, and by shrinking
C we can actually make sure that it is homeomorphic to either ω + 1 or [ω]2+.

Since X is countable with infinitely many limit points, CB1(X) is infinite and
countable. It follows that there are infinitely many isolated points in CB1(X), and
we can take an injective sequence (xn)n of isolated points in CB1(X). By going to
a subsequence, we can assume that either (xn)n converges to some x∞ in X or that
no subsequence of (xn)n converges in X.

First, suppose that no subsequence of (xn)n converges in X. Consider mu-
tually disjoint clopen neighborhoods Un of each point xn. Applying our first re-
mark inductively, we get a sequence (Cn)n of mutually disjoint clopen sets with
Cn ∩ CB1(X) = {xn} and vanishing diameters for some compatible metric on X.
Then by possibly going to a subsequence, we can assume that either Cn

∼= ω+1 for
all n or Cn

∼= [ω]2+ for all n. We set F0 =
⋃

n Cn and F1 = X \
⋃

n Cn. Since the Cn

have vanishing diameters and no subsequence of (xn)n converges in X, it follows
that F0 is also closed. We define ρ : F0 → ω2 + 1 as follows. In the first case, we
identify F0 with

⊔
n ω+1 and take ρ to be the inclusion into ω2 +1. In the second

case, notice that the continuous map π : [ω]2+ → ω + 1 given by π({k, l}) = k and
π(∅) = ω is such that |π−1({ω})| = 1 and that π−1({k}) is homeomorphic to ω for
all k. Therefore, identifying F0 with

⊔
n[ω]

2
+, we simply let ρ =

⊔
n π.

Suppose now that xn → x∞. For some compatible metric on X, take mutually
disjoint clopen neighborhoods Un of each xn whose diameters converge to 0. This
last condition ensures that Un → x∞. By applying our first remark and possibly
going to a subsequence, we can find a sequence (Cn)n of clopen sets with Cn ⊆ Un,
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Cn ∩ CB1(X) = {xn}, and either Cn
∼= ω + 1 for all n or Cn

∼= [ω]2+ for all n. We
set F0 = {x∞}∪

⋃
n Cn and F1 = X \

⋃
n Cn. Notice that F0 is closed since each Cn

is clopen and Cn → x∞. In the first case, we can take ρ to be a homeomorphism
from F0 to ω2 + 1. In the second case, let hn : Cn → [ω]2+ be a homeomorphism.
We define ρ : F0 → ω2 + 1 by ρ(x) = (n, π ◦ hn(x)) if x ∈ Cn and ρ(x∞) = ∞.

In all cases, the proof that ρ is a pseudo-embedding is just as in Lemma 4.11.
Whenever (xn)n in F0 is not ρ-trivial, then ρ(xn)n can converge only to some limit
point y of ω2 + 1 and, by construction, this happens if and only if xn → x for the
unique point x in F0 with ρ(x) = y. Moreover, by construction, ρ is regular in all
cases. �

We are now ready to prove the main result of this section.

Theorem 4.13. If X is a Polish 0-dimensional space with infinitely many limit
points and Y is not discrete, then (G,�) continuously reduces to (C(X,Y ),�).

Proof. As Y is not discrete, ω+1 embeds in Y , so by Proposition 3.4 it is enough to
show the result for Y = ω+1. Our continuous reduction G → C(X,ω+1) is given
by G �→ f̄G ◦ π for some well chosen π : X → ω2 + 1. We start by noticing that as
long as π is continuous, then the map C(ω2 + 1, ω + 1) → C(X,ω + 1), f �→ f ◦ π
is continuous. Suppose that K ⊆ X is compact, and suppose that U ⊆ ω + 1
is open. Then the set of f ∈ C(ω2 + 1, ω + 1) such that f(π(K)) ⊆ U is open in
C(ω2+1, ω+1) since π(K) is compact. Since we proved that G �→ f̄G is continuous
in Proposition 4.8, the map G �→ f̄G ◦ π is continuous from G to C(X,ω + 1).

IfX is uncountable, we simply take π to be the regular pseudo-embedding ρ given
by Lemma 4.11, and it follows from Lemma 4.10 that G � H iff f̄G ◦ π � f̄H ◦ π.
So we indeed have a reduction in this case.

If X is countable, Lemma 4.12 allows us to write X as the union of two closed
sets F0 and F1 and grants us with the existence of a regular pseudo-embedding
ρ : F0 → ω2 + 1. Moreover, either F0 ∩ F1 = ∅ or F0 ∩ F1 = {x∞} for the unique
point of F0 such that ρ(x∞) = ∞. We take π : X → ω2 + 1 to be the extension of
ρ which sends every point in F1 to ∞. Notice that π is continuous: if F0 and F1

are disjoint, π is continuous as the topological sum of two continuous functions. In
the other case, the proof is similar to the one we gave for Lemma 2.1.

Let us check that this π indeed yields a reduction from � to �. Suppose that
G � H. By Lemma 4.10, there is some embedding σ̄ : F0 → F0 which embeds
f̄G ◦ ρ in f̄H ◦ ρ. Then we can extend σ̄ to an embedding σ of the whole space X
by letting σ be the identity on F1 (using Lemma 2.1 if F0 and F1 are not disjoint).
Clearly σ embeds f̄G ◦ π in f̄H ◦ π, as desired.

Conversely, assume that σ : X → X embeds f̄G ◦ π in f̄H ◦ π. We claim that
σ is restricted to an embedding σ̄ : F0 → F0. This clearly implies that σ̄ embeds
f̄G ◦ ρ in f̄H ◦ ρ, so G � H by Lemma 4.10. To see the claim, notice that for
I = {x ∈ X | ρ(x) is isolated in ω2 + 1} we have x ∈ I iff σ(x) ∈ I. Moreover, F0

is equal to the closure of I. It follows that x ∈ F0 iff σ(x) ∈ F0, as desired. �
Remark 4.14. As we have seen, the space C(X,Y ) is not Polish in general. There
is, however, another way of looking at the reductions given in Theorem 4.13 by con-
sidering continuous partial functions in the codes. As X and Y are Polish 0-dimen-
sional, they are homeomorphic to the spaces of infinite branch through pruned trees
S and T , respectively. Then every partial continuous function ϕ∗ from X to Y with
Polish domain is coded by some monotone function ϕ : S → T [Kec12, (2.6)]. The
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space of monotone functions from S to T is a closed subset of the Polish space
TS , and hence Polish. Note that the continuous total functions form a coanalytic
subset of this space. It is not hard to see that we can define in a continuous fashion
for every G ∈ G a monotone map ϕG : S → T which codes the continuous function
: X → Y given for G by our reduction.

Corollary 4.15. Let X and Y be Polish 0-dimensional with X compact. If X
has infinitely many limit points and Y is not discrete, then the restriction of the
quasi-order of embeddability to C(X,Y ) is analytic complete.

Proof. We proved in Theorem 3.2 that the quasi-order of embeddability is ana-
lytic on C(X,Y ). By Theorem 4.13, we have a continuous reduction from (G,�)
to (C(X,Y ),�). Hence this follows from the result of Louveau and Rosendal
(Fact 2.2). �

5. Order

We now discuss the other half of the dichotomy and prove that the restriction of
the embeddability quasi-order is in several cases a well-quasi-order. To do so, we
appeal to a technical strengthening of the notion of well-quasi-order called better-
quasi-order (BQO), introduced by Nash-Williams [NW65].

5.1. For a fistful of better-quasi-orders. For the reader’s convenience, we give
here some basic definitions and collect some results on BQOs which are needed in
the sequel. An introduction to the theory is given in [Sim85,Peq17], while further
results can be found, for example, in [Mar94,vMS87,LSR90,CP14].

We let [ω]ω denote the set of infinite subsets of ω with the topology induced by
the topology on 2ω under the identification of a set with its characteristic function.
For X ∈ [ω]ω, we let [X]ω be the set of infinite subsets of X endowed with the
induced topology. If Q is a set, a Q-multi-sequence is a function f with domain
[X0]

ω for some X0 ∈ [ω]ω and range a countable subset of Q. A Q-multi-sequence
f is locally constant if f−1({q}) is open for every q ∈ Q. When ≤Q is a quasi-order
on Q, we say that a Q-multi-sequence f is bad if for all X ∈ dom(f) we have
f(X) �Q f(X+), where X+ = X\{minX}. A quasi-order on Q is a BQO if there
are no bad locally constant Q-multi-sequences.

Recall that a quasi-order Q is WQO if and only if there is no bad sequence in
Q, i.e., no sequence (qn)n with qm � qn whenever m < n. Observe now that any
bad sequence (qn)n in Q induces a locally constant bad Q-multi-sequence given by
f(X) = qminX . Hence every BQO is indeed a WQO. Straightforward applications
of the Galvin–Prikry theorem [GP73] show that every finite sum or finite product
of BQOs (and in particular any finite QO) is a BQO.

We say that a map σ : Q → P is a cohomomorphism if for all p, q in Q, σ(p) ≤P

σ(q) implies that p ≤Q q. Notice that if there exists a cohomomorphism from Q to
P and P is BQO, then Q is a BQO too.

We will use a result due to van Engelen, Miller, and Steel [vMS87], which
establishes a very strong form of Fräıssé’s conjecture and refines the result of
Laver [Lav71]. To state this important result, we need to introduce the follow-
ing strengthening of the BQO property for classes of structures.
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Definition 5.1 ([LSR90]). Let C be a class of structures together with C-morphisms
between them. Assume that all identity maps are C-morphisms, and assume that C-
morphisms are closed under composition.3 Given a QO Q, the class QC of Q-labeled
C-structures is given by

QC = {f | f is a function, dom(f) is a C-structure, im(f) ⊆ Q},
together with the following quasi-order:

f0 ≤ f1 ↔ ∃C-morphism g : dom(f0) → dom(f1)

such that ∀x ∈ dom(f0) f0(x) ≤Q f1(g(x)).

We say that C preserves BQOs if for all BQO Q the class QC is also BQO.

Notice that if C is a class of structures, then the C-morphisms induce a quasi-
order where C ≤ C ′ for two structures C and C ′ in C if and only if there exists a
C-morphism from C to C ′. Of course, if a class C preserves BQOs, then in particular
C is a BQO under this quasi-order, as one easily sees by considering the one-point
BQO.

The class Linc consists of the countable linear orders. Given two linear orders K
and L, a Linc-morphism is an order preserving injection (or equivalently, an order
embedding) from K to L that is continuous with respect to the order topology.

Theorem 5.2 ([vMS87, Theorem 3.5]). The class Linc preserves BQOs.

Remark 5.3. In the same line of research as the results presented in this paper,
Camerlo and Marcone studied the complexity of the quasi-order of embeddability
on the class of Q-labeled linear orders for some countable partial order Q. After
Laver’s [Lav71] proof that this is a BQO when Q is a BQO, Camerlo [Cam05]
proved that it is an analytic complete quasi-order when Q is not WQO. The exact
complexity of embeddability when Q is WQO but not BQO is still unknown, but
see [CM07].

Let us denote by Q the class consisting of the single linear order Q together
with topological embeddings as Q-morphisms. Notice that a map between two lin-
ear orders is order preserving and injective if and only if it is an embedding of
linear orders. Moreover, if j : K → L is an order embedding between linear orders
equipped with the order topology, then the direct image of any open set in K is
relatively open in the range of j. Therefore, any Linc-morphism f : Q → Q is
in particular a topological embedding. We state the following direct corollary of
Theorem 5.2 for later use.

Corollary 5.4. The class Q preserves BQOs.

We denote by P0D the class of Polish 0-dimensional spaces quasi-ordered by
topological embeddability. We recall [Car13, Theorem 1.3] the following.

Theorem 5.5. The quasi-order P0D is a BQO.

In the sequel, if Q is a quasi-order, then we denote by Q� the quasi-order obtained
from Q by adding a new element, 
, which is not comparable to any other element
of Q. Of course, Q is BQO if and only if Q� is BQO.

3A class of structures as understood here corresponds exactly to a concrete category in the
category theory sense.
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5.2. For a few well-quasi-orders more. Since any countable metrizable space is
homeomorphic to a closed subspace of Q (see [Kec12, (7.12)]), we have the following.

Fact 5.6. For every continuous function f with a 0-dimensional Polish domain X
and a countable image, there is an fQ ∈ C(X,Q) with f � fQ and fQ � f .

We first show that when X is discrete, then embeddability is a BQO on C(X,Y ).
Since every continuous function from a discrete space is locally constant, this follows
from the following more general result.

Theorem 5.7. The class LC of locally constant functions with Polish 0-dimen-
sional domain is better-quasi-ordered by topological embeddability.

Proof. Let LCQ denote the class of locally constant functions f : X → Q, where X
is Polish 0-dimensional quasi-ordered by embeddability. By Fact 5.6, it suffices to
show that LCQ is BQO.

We define for every f ∈ LCQ a function Λf : Q → P0D� with the following prop-
erty: whenever τ : Q → Q witnesses Λf ≤ Λg in P0DQ

� , we can find an embedding
σ : X → X such that (σ, τ ) is a witness for f � g. Combining Corollary 5.4 and
Theorem 5.5, we get P0DQ

� to be a BQO. This makes f �→ Λf a cohomomorphism,
which implies that (LCQ,�) is BQO.

Given f : X → Q, let

Λf : Q −→ P0D�,

q �−→
{
f−1({q}) if q ∈ im f,


 otherwise.

Notice that for all q ∈ im f , the set f−1({q}) is a clopen subset of X, and as such,
it is a Polish 0-dimensional space.

Take f : X → Q and g : Y → Q as locally constant, with X and Y Polish
0-dimensional, and suppose that Λf ≤ Λg holds in P0DQ

� , as witnessed by some
embedding τ : Q → Q.

By the role of 
, we have q ∈ im f if and only if τ (q) ∈ im g for all q ∈ Q, so τ
is restricted to an embedding : im f → im g. Moreover, for every q ∈ im f , we can
pick an embedding σq : f−1({q}) → g−1({τ (q)}). As f and g are locally constant,
f−1({q}) is clopen in X and g−1({τ (q)}) is clopen in Y . This easily implies that⋃

q∈im f σq is an embedding of X in Y . As τ ◦ f = g ◦ σ clearly holds, we get f � g

via (τ, σ), as desired. �
Theorem 5.8. If X is a locally compact Polish 0-dimensional space with finitely
many nonisolated points, then (C(X,Y ),�) is a BQO.

Proof. We start by reducing the problem in several steps. Any Polish space with
only finitely many limit points is in particular countable, so any function with such
a domain has a countable image. So once again it is enough to treat the case of
rational valued functions. We prove that topological embeddability on C(X,Q) is
a BQO.

IfD is a discrete space, then every continuous function fromD is locally constant.
Therefore, as in the proof4 of Theorem 5.7, we have map C(D,Q) → P0DQ

� , f �→ Λf

4As D is discrete, any injective function σ : D → D is an embedding, so we do not really

need P0D in this case. We could use ω + 1 instead and let Λf (q) = |f−1({q})| if q ∈ im f , and �

otherwise.
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such that if τ witnesses Λf ≤ Λg in P0DQ
� , then f � g, as witnessed by (σ, τ ) for

some embedding σ : D → D.
We will define a BQO L and associate with every f ∈ C(ω + 1,Q) a function

Γf : Q → L such that if τ witnesses Γf ≤ Γg in LQ, then f � g via (σ, τ ) for
some σ.

Assuming this for now, we show that this enough to conclude. Suppose first
that X has a unique limit point. Applying Proposition 2.4 and using the fact
that X is locally compact, we have X = D � ω + 1 for some (possibly empty)
discrete space D. Consider the map ΓX : C(X,Q) → (P0D� × L)Q given by
ΓX(f)(q) = (Λf0(q),Γf1(q)) for every q ∈ Q, where f0 = f |D and f1 = f |ω+1.
Then, as finite products of BQOs are BQO, (P0D�×L)Q is BQO by Corollary 5.4.
Moreover, ΓX is also a cohomomorphism. To see this, notice that if τ witnesses
ΓX(f) ≤ ΓX(g) in (P0D�×L)Q, then there exist two embeddings σ0 : D → D and
σ1 : ω + 1 → ω + 1 such that (σi, τ ) embeds fi in gi for i = 0, 1. Hence clearly
(σ0 ∪ σ1, τ ) embeds f in g.

Now suppose that X is locally compact with n+1 limit points. Then by Fact 2.3,
X =

⊔
i≤n Xi, where each Xi has a single limit point and is locally compact too.

Consider the map ΓX : C(X,Q) → (
∏

i≤n(P0D� × L))Q given by ΓX(f)(q) =

(ΓXi(fi)(q))i≤n for every q ∈ Q where fi = f |Xi
. As before, (

∏
i≤n(P0D� × L))Q

is BQO, and the proof that ΓX is a cohomomorphism is similar.
We take L to be the disjoint union (ω+1)�ω�{
} quasi-ordered by (i, p) ≤ (j, q)

if and only if i = j and p ≤ q. Then L is BQO as a finite sum of BQOs. Let
f : ω + 1 → Q be continuous. Notice that if q �= f(ω), then by continuity of f the
set f−1({q}) must be finite. Define

Γf : Q −→ L,

q �−→

⎧⎪⎨
⎪⎩
(0, |f−1({q})|) if f(ω) = q,

(1, |f−1({q})|) if f(ω) �= q, but q ∈ im f ,

(2, 
) otherwise.

Suppose that τ : Q → Q is an embedding witnessing Γf ≤ Γg. By the role of

, τ is necessarily restricted to an embedding : im f → im g. Moreover, we must
have τ (f(ω)) = g(ω), and the cardinality of f−1({f(ω)}) is lower or equal to that
of g−1({g(ω)}). Therefore, taking any injection σω : f−1({f(ω)}) → g−1({g(ω)})
with σω(ω) = ω, we have an embedding. Finally, for every q ∈ im f with q �= f(ω),
there is an injection σq : f−1({q}) → g−1({τ (q)}). By taking the union of all of the
σq together with σω, we obtain an injection σ : ω + 1 → ω + 1 such that σ(ω) = ω;
therefore, σ is an embedding. Since clearly g ◦ σ = τ ◦ f , it follows that (σ, τ )
witnesses f � g. �

6. Maximal elements in Baire classes

In this section, we investigate the existence of maximal elements for embeddabil-
ity in the Baire classes. We start by looking at the very specific case of the class of
continuous functions.

6.1. Continuous functions. Consider the Hilbert cube [0, 1]ω, and let proj :
[0, 1]ω × [0, 1]ω → [0, 1]ω be the projection proj(β, γ) = γ.
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Proposition 6.1. The map proj is a maximum for the embeddability quasi-order
on continuous functions between separable metrizable spaces. In particular, it is a
maximum on continuous functions between Polish spaces.

Proof. Let f : X → Y be a continuous function between two separable metriz-
able spaces. The Hilbert cube is universal for separable metrizable spaces ([Kec12,
(4.14)]), so there exist embeddings σ′ : X → [0, 1]ω and τ : Y → [0, 1]ω. Define
σ : X → [0, 1]ω × [0, 1]ω by σ(x) = (σ′(x), τ (f(x)). As f is continuous and X,Y are
separable metrizable, one easily sees that σ is an embedding. Moreover, we have
proj(σ(x)) = τ (f(x)) for all x ∈ X. Hence (σ, τ ) embeds f in proj, as desired. �

We remark that using the universal property of the Baire space (see [Kec12,
(7.8)]), the same argument shows that the corresponding projection proj′ : ωω ×
ωω → ωω is a maximum for embeddability on continuous functions between metriz-
able 0-dimensional spaces.

We briefly mention that while the class of continuous functions admits a max-
imum, the class of discontinuous ones admits a two-element basis. Let us call
d0 : ω + 1 → 2 the characteristic function of {ω}, and let d1 : ω + 1 → ω de-
note the bijection given by d1(ω) = 0 and d1(n) = n+ 1.

Proposition 6.2. Let f : X → Y be any function between separable metrizable
spaces. Then exactly one of the following two holds:

(1) f � proj or
(2) either d0 � f or d1 � f .

Moreover, proj, d0, and d1 form an antichain.

Proof. Let us first note that proj, d0, and d1 are pairwise incomparable. As their
images have distinct cardinalities, we have proj �� d0, proj �� d1, and d1 �� d0. Since
proj is continuous while d0 and d1 are not, it follows that d0 �� proj and d1 �� proj.
Finally, as d1 is injective and d0 is not, we get d0 �� d1.

Since proj is maximal among continuous functions between separable metrizable
spaces by Proposition 6.1, it remains to see that any discontinuous function f :
X → Y between separable metrizable spaces embeds either d0 or d1. So suppose
that f : X → Y is not continuous and take a sequence (xn)n in X such that xn → x
but f(xn) �→ f(x) in Y . By passing to a subsequence, we can assume that for all
n ∈ N we have xn �= x, and since xn → x, by going to a further subsequence we
can also assume that (xn)n is injective. We distinguish two cases. First, suppose
that f takes only finitely many values on (xn)n. Then we can go to a subsequence
on which f is constant and we set τ0 : 2 → Y , τ0(0) = f(x0), and τ0(1) = f(x).
Otherwise, f takes infinitely many values on (xn)n and we can find a subsequence
on which f is injective. In this case, we define τ1 : ω → Y by τ1(0) = f(x) and
τ1(n+ 1) = f(n). In both cases, we let σ : ω + 1 → Y be given by σ(n) = xn and
σ(ω) = x. In the first case, (σ, τ0) embeds d0 in f , and in the second case, (σ, τ1)
embeds d1 in f . �
6.2. Ranks and embeddability. For separable metrizable spaces X and Y and
a countable ordinal ξ ≥ 1, recall that a function f : X → Y is Baire class ξ if
the preimage by f of any open subset of Y is Σ0

ξ+1 in X ([Kec12, 24.3]). We let

Bξ(X,Y ) denote the class of Baire class ξ functions from X to Y , and we simply
write Bξ(X) when X = Y . In contrast with the class of continuous functions, we
prove in this subsection that there are no greatest elements with respect to � in
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the classes of functions Bξ(X,Y ) if 1 ≤ ξ < ω1, if X is an uncountable Polish space
and Y is an arbitrary Polish space with |Y | ≥ 2. Moreover, if X is a 0-dimen-
sional Polish space or a euclidean space, then we further show that there are no
maximal elements in Bξ(X) for 2 ≤ ξ < ω1. This will be proved using a modified
version of the ranks defined on the class B1 by Bourgain [Bou78], Zalcwasser [Zal30],
Gillespie and Hurwicz [GH30], and others, and extensively studied by Kechris and
Louveau [KL90]. The theory of these ranks has been generalized to higher Baire
classes in [EKV16, Kis17, EV17]. Usually these ranks are defined solely for real
valued functions, but in our investigation we define a rank in a more general context
resembling the so-called separation rank of Bourgain.

We fix for the rest of this section two Polish spaces X and Y with X uncountable
and |Y | ≥ 2.

Definition 6.3. If A is aΔ0
ξ+1 subset ofX, then it can be expressed as a transfinite

difference of a countable decreasing sequence of Π0
ξ sets, i.e.,

A =
⋃

η<λ,η even

Fη \ Fη+1,

where Fη ∈ Π0
ξ (see [Kec12, 22.E]). We call the minimal length of such a sequence

the rank of A, and we denote it by ρξ,0(A).
If A1 and A2 are disjoint Π0

ξ+1 sets, they can be separated by a Δ0
ξ+1 set; i.e.,

there is a Δ0
ξ+1 set A so that A1 ⊆ A ⊆ X \ A2. We denote by ρξ,1(A1, A2) the

minimal rank of such a separating set.

From this definition and the Hausdorf–Kuratowski analysis (see [Kec12, Theo-
rem 22.27]), we get the following.

Fact 6.4. For each disjoint A1, A2 ∈ Π0
ξ+1, the rank ρξ,1(A1, A2) < ω1. It is

well known that the rank ρξ,0 is unbounded in ω1 on the class Δ0
ξ+1(X) (see, e.g.,

[EKV16, Theorem 4.3]). Hence for every ordinal α < ω1 taking sets A and X \ A
such that A ∈ Δ0

ξ+1 and ρξ,0(A) > α, we have ρξ,1(A,X \A) > α.

Definition 6.5. Let f ∈ Bξ(X,Y ). Define

ρξ(f) = sup
y1,y2∈Y distinct

ρξ,1(f
−1(y1), f

−1(y2)).

Notice that this definition makes sense: if f ∈ Bξ(X,Y ), then the preimages
f−1(y1), f

−1(y2) are disjoint Π0
ξ+1(X) sets. Moreover, the following easy claims

show that this rank is meaningful on the class Bξ(X,Y ).

Lemma 6.6. If f ∈ Bξ(X,Y ), then ρξ(f) < ω1.

Proof. Let B = {Un : n ∈ ω} be a countable basis in Y . Define

ρ′ξ(f) = sup{ρξ,1(f−1(U), f−1(V )) : U, V ∈ B, U ∩ V = ∅}.

Since f ∈ Bξ(X,Y ), if U ∩ V = ∅, then the sets f−1(U), f−1(V ) are disjoint
Π0

ξ+1(X) sets, so the supremum is taken over a countable set of countable ordinals.

Therefore, ρ′ξ(f) < ω1.

We show that ρξ(f) ≤ ρ′ξ(f), which is enough to prove the claim. Indeed, for

every y1, y2 ∈ Y distinct, there exist U, V ∈ B with U ∩ V = ∅ and y1 ∈ U , y2 ∈ V .
But then if for a Δ0

ξ+1(X) set A we have f−1(U) ⊆ A ⊆ X \ f−1(V ), then of
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course f−1(y1) ⊆ A ⊆ X \ f−1(y2). Thus, by definition, ρξ,1(f
−1(y1), f

−1(y2)) ≤
ρξ,1(f

−1(U), f−1(V )), and in turn ρξ(f) ≤ ρ′ξ(f). �

Lemma 6.7. We have

sup{ρξ(f) | f ∈ Bξ(X,Y )} = ω1,

in fact, the rank of functions with range of cardinality at most 2 is unbounded in
ω1.

Proof. By Fact 6.4, for every α < ω1, there exists a Δ0
ξ+1(X) set A such that

ρξ,1(A,X \A) > α. Choosing y1, y2 ∈ Y distinct and letting

f(x) =

{
y1 if x ∈ A,

y2 otherwise,

we have ρξ(f) = ρξ,1(A,X \A) > α. �

Proposition 6.8. If g ∈ Bξ(X,Y ), f ∈ Bξ(X
′, Y ′), and g � f , then ρξ(g) ≤ ρξ(f).

Proof. Let σ and τ witness the embedding g � f . Let y1, y2 ∈ Y be distinct. It
is enough to prove that ρξ,1(g

−1(y1), g
−1(y2)) ≤ ρξ(f). Since τ is an embedding,

f−1(τ (y1)) and f−1(τ (y2)) are disjoint and there exists a set A ∈ Δ0
ξ+1(X

′) separat-

ing them such that ρξ,0(A) ≤ ρξ(f). Therefore, there exists a sequence (Fη)η<ρξ(f)

of Π0
ξ(X

′) sets with

A =
⋃

η<ρξ(f),η even

Fη \ Fη+1.

Then clearly

σ−1(A) =
⋃

η<ρξ(f),η even

σ−1(Fη) \ σ−1(Fη+1),

and since σ is a topological embedding, the sequence (σ−1(Fη))η<ρξ(f) is a decreas-

ing sequence of Π0
ξ(X) sets, so ρξ,0(σ

−1(A)) ≤ ρξ(f). From τ ◦ g = f ◦ σ, we
get

x ∈ g−1(y1) ←→ τ (g(x)) = τ (y1)

←→ f(σ(x)) = τ (y1) ←→ x ∈ σ−1(f−1(τ (y1))),

so g−1(y1) = σ−1(f−1(τ (y1))). But, since A separates f−1(τ (y1)) and f−1(τ (y2)),
we have σ−1(A) separating σ−1(f−1(τ (y1))) = g−1(y1) and σ−1(f−1(τ (y2))) =
g−1(y2). Thus, ρξ,1(g

−1(y1), g
−1(y2)) ≤ ρξ,0(σ

−1(A)) ≤ ρξ,0(A) ≤ ρξ(f), which
finishes the proof. �

As an immediate corollary, we get the following weaker version of the main
theorem of this section.

Corollary 6.9. There is no �-greatest element among Baire class ξ functions from
X → Y , i.e., f ∈ Bξ(X,Y ) and g � f for every g ∈ Bξ(X,Y ).

Proof. By contradiction, suppose that f is a �-greatest element in Bξ(X,Y ). By
Lemma 6.6, the rank of f is some countable ordinal α. By Lemma 6.7, there exists
a Baire class ξ function g : X → Y whose rank is some countable ordinal β strictly
bigger than α. Now, as f is maximal, we have g � f , so by Proposition 6.8 we have
β ≤ α, which is a contradiction. �
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Now, we are ready to prove the main theorem of this section; it implies in
particular Theorem 1.4.

Theorem 6.10. Let 1 ≤ ξ < ω1, let X,Y be Polish spaces such that there exists
an embedding h : X → X, with |X \ h(X)| = c and h(X) being Δ0

2, and |Y | ≥ 2.
There is no �-maximal function in Bξ(X,Y ). In particular, this is true if X is an
uncountable 0-dimensional Polish space or a euclidean space.

Proof. Let f be an arbitrary function in Bξ(X,Y ). Take a perfect set P ⊆ X\h(X).
As in Lemma 6.7, take a Δ0

ξ+1(P ) set A with ρξ,0(A) > ρξ(f), and define a function

g0 : P → Y by picking two distinct points y1 and y2 in Y and letting g0(x) = y1 if
x ∈ A, and g0(x) = y2 otherwise. Let y ∈ Y be arbitrary, and define

g(x) =

⎧⎪⎨
⎪⎩
g0(x) if x ∈ P ,

f ◦ h−1(x) if x ∈ imh,

y otherwise.

It is easy to see that g is a Baire-ξ function: for an open U ⊆ Y , we have g−1(U)
being the union of at most three sets from the collection h(f−1(U)), P,X \ (P ∪
h(A)), A, P \A. Clearly, using the facts that imh is Δ0

2 and h is a homeomorphism,
we get all of these sets to be Σ0

ξ+1.

On the one hand, g ◦ h = f ◦ h−1 ◦ h = f , so f � g. On the other hand, if a set
B separates g−1(y1) from g−1(y2), then B ∩ P = A. By the fact that P is closed,
intersecting each element of a transfinite sequence of Π0

ξ+1 sets in X with P , we
still get such a sequence with at most the same length. Hence if we can express B
as a union of differences of a sequence of length α, then this gives an expression of
A in P with a union of the differences of a sequence of length at most α. Thus, by
the definition of our rank, ρξ(g) ≥ ρξ,0(A) > ρξ(f). Then by Proposition 6.8, we
get g �� f , so f is not maximal. �

Remark 6.11. It is not hard to see that Theorem 6.10 cannot be extended to ar-
bitrary Polish spaces: let X be a so-called Cook continuum [Coo67]. Then every
continuous nonconstant function from X to X is the identity (see [GO03]). Hence
if we consider the functions from X to X, then the embedding relation trivializes;
that is, g � f if and only if f = g. Thus, every function is maximal.

7. Concluding remarks and open questions

Combining Theorems 4.13, 5.7, and 5.8, we have obtained a dichotomy for the
quasi-order of embeddability on C(X,Y ) when X is locally compact:

(1) either it continuously reduces an analytic complete quasi-order or
(2) it is a better-quasi-order.

First, when X is locally compact and not compact, we do not know in general the
exact complexity of the quasi-order of embeddability on the Polish space C(X,Y ).
While a direct calculation gives a Σ1

2 definition, there are examples where embed-
dability is not analytic. We now briefly explain this fact. Notice that a function
f : X → X is an embedding if and only if f � idX . Hence if � is analytic on
C(X,X), then so is the set of embeddings of X in itself.

Proposition 7.1. The set of embeddings of N � 2ω in itself is coanalytic complete
for the compact-open topology.
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Proof. We give a continuous reduction from the well-founded trees on ω to the set of
embeddings. For any tree T on ω, we define a continuous function fT : ω<ω � 2ω →
ω<ω � 3ω as follows. If s = (s0, . . . , sn) ∈ ω<ω, then fT (s) = s if s /∈ T and
fT (s) = 0s010s11 · · · 0sn12ω if s ∈ T . If α ∈ 2ω, then fT (α) = α. Clearly fT is
continuous and injective for all tree T . Suppose that T has an infinite branch γ.
Then (γ|n)n does not converge in the domain, while fT (γ|n)n converges to some
fT (α) in the range. Hence fT is not an embedding. When T is well founded, then
fT is easily seen to be an embedding.

To see that the map T �→ fT is continuous, notice that any compact subset K
of ω<ω � 2ω contains only finitely many points in ω<ω. Therefore, the condition
fT (K) ⊆ U for some open set U depends only on a finite piece of T . �

It follows that embeddability is not analytic on C(N � 2ω,N � 2ω). Moreover,
if Y is uncountable and not compact, then N � 2ω embeds in Y . Therefore, by
Proposition 3.4, it follows that embeddability is not analytic on C(N�2ω, Y ) either.
By Theorem 4.13, embeddability is a Σ1

1-hard quasi-order, but we do not know its
exact complexity.

Second, we believe that one can drop the local compactness assumption on X in
the above dichotomy. From the proof of Theorem 5.8, it appears that an essential
step in this direction is to prove the following conjecture.

Conjecture 7.2. The quasi-order (C([ω]2+,Q),�) is BQO.

Let us now make a remark on embeddability beyond the case of continuous
functions. A direct application of [vMS87, Theorem 3.3] shows that when X is a
compact 0-dimensional Polish space and Y is finite, the Baire class 1 functions from
X to Y are BQO under embeddability. This begs for us to consider the following
much broader problem.

Question 7.3. If X has only finitely many limit points, or if Y is discrete, are the
Baire class 1 functions from X to Y better-quasi-ordered by embeddability? What
about all Borel functions from X to Y ?

In a different direction, recall that a basis for some upward-closed subset S of a
quasi-order Q is a subset B ⊆ S such that q ∈ S iff ∃b ∈ B b ≤ q. As a matter
of fact, a quasi-order is a well-quasi-order if and only if every upward-closed subset
admits a finite basis. As we proved that embeddability on C(X,Y ) is in most cases
very complicated and far from being a well-quasi-order, this shows the existence of
many upward-closed sets of continuous functions with no finite basis. This contrasts
drastically with the existence of finite bases for some important classes, such as the
discontinuous functions (Proposition 6.2), the functions that are not σ-continuous
with closed witnesses [Sol98,CM17a], the non-σ-continuous functions [PS12], and
the non-Baire class 1 functions [CM17a]. This motivates us to make a conjecture
and formulate a general problem.

Conjecture 7.4. For all α < ω1, the class of functions that are not Baire class α
admit a finite basis for topological embeddability.

Question 7.5. Which classes of functions admit a finite basis?

Finally, the situation described by Proposition 6.2 suggests an even more specific
question.
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Question 7.6. Are there, continuous functions aside, other examples of a class of
functions that both are defined as the downward closure of finitely many functions
with respect to embeddability and whose complements have a finite basis?
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