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Systems biology in a nutshell.
A biological system is a complex system characterized by several interacting
components (i.e. holistic approach);

In Systems Biology mathematical and computational modeling is exploited to
help scientists in the study of biological systems;
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Computational modeling
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What is a model?
It depends on who you are talking:

I Genetist: the mouse family Ts65DN serves as a model for human trisomy 21;

I Chemist: a reaction network, described by dots (for metabolites) and arrows
(for reactions)

I Mathematician/Engineer: the same reaction network can be modeled by a
system of nonlinear ODEs;

Abstract representation of objects or processes
that explains features of these objects or processes.
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What is a model?

Models are only an abstract representations of their biological counterparts;

Nevertheless, models must enable to:
I Elucidate network properties;
I Check the reliability of basic assumptions;
I Uncover lack of knowledge and requirements for clarification;
I Create large repository of current knowledge, formalized in a non ambiguous

way.

Select the right level of abstraction is a complex task!!
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Mathematical Models for biological systems.

Biological systems can be described in mathematical terms, however:

I it can be described through different (mathematical) models;
I the choice of a mathematical model depends on the problem, the purpose, and

the intention of the investigator;
I different models may highlight different aspects of the same instance.
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Mathematical Models for biological systems.

A biological system can be
viewed as a composition of
sub-models with different
time and space scales;

These sub-models can be
parameterized using
different input data.

Challenge:
How to efficiently model and study
biological systems
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How to create a model

for biological systems
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Model Development.

Making the right assumptions:

...The modelling process itself is more important than the model. Discussion between the
experimentalist and the theoretician. Systems Biology is the art of making the right assumptions
in the modelling...

Wolkenhauer, U. Klingmuller, Systems Biology: From a Buzzword to a Life Sciences Approach, BIOforum
Europe 4:22-23, 2004.

Modeling process must be driven by the biological question;

Continuous discussion between biologists and computer scientists is
indispensable.
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Model Development.
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Model Development.

Modeling process is thus an iterative approach:
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Model Development in details

Formulation of the problem;

Research of the available knowledge and data;

Selection of model structure;

Model creation;

Sensitivity analysis/parameter estimation and model calibration;

Model validation.
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Model Development in details

Formulation of the problem:

I Identify the specific questions that shall be answered, along with background,
problem and hypotheses;
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Model Development in details

Research of the available knowledge and data:

I To check and collect quantitative and structural knowledge and data;
I To identify the system components and their interactions;
I To define how the available date can be used to parameterize the model;
I To discover the missing parameters/information.
I . . .
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Model Development in details

Selection of model structure:

I Level of description (atomistic, molecular, cellular, population . . . )
I Deterministic or stochastic model;
I Discrete or continuous variables;
I Static, dynamical, spatio-temporal dynamical;
I . . .
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Model Development in details

Model creation:
I Computational models can take many forms: dynamical systems, statistical

models, differential equations, or game theoretic models;
I Graphical formalisms (e.g. Petri net, Bayes network, dynamic network, . . . )

can be used to make easier the modeling phase.

A + B k1→ C
Ordinary differential equation (ODE) system:

dA(t) = −k1A(t)B(t) dt
dB(t) = −k1A(t)B(t) dt
dC(t) = +k1A(t)B(t) dt
A(0) = 3
B(0) = 4
C(0) = 0
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Model Development in details

Sensitivity Analysis/Parameter estimation:

I To test the dependence of the system behavior on changes of the parameters
I To choice of parameters to be carefully measured and estimated;
I . . .

Model calibration:

I To estimate the missing parameters.
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Model Development in details

Model validation:

I Assessment of the agreement and divergences between experimental results
and model behavior.

M. Beccuti An introduction to Systems Biology. Turin, Italy - Nov. 2019 18 / 49



Modeling approaches
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Different biological systems...
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Different biological systems...
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Different biological systems...
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Different biological systems...
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Different biological systems...
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Different biological systems...
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... require different modeling approaches

interaction-based approaches
I protein-protein interaction network;
I gene regulatory network.

based on graph theory → topological analysis.

constraint-based approaches
I metabolic network.

based on linear algebra and optimization with linear programming → Flux
balance analysis.

mechanism-based approaches
I metabolic pathways;
I signal transduction pathways;
I cell population.

based ordinary/stochastic differential equations, stochastic simulation . . .→
dynamic behavior analysis.
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Different modeling approaches.
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Static, steady-state or dynamic?
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Data requirements VS Computational demand
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Mechanism-based approaches
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Deterministic vs. Stochastic Models
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An example of deterministic model
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An example of stochastic model

Markov Chain (MC): is a stochastic model describing a sequence of possible
events in which the probability of each event depends only on the state
attained in the previous event;

Continuous Time Markov Chain (CTMC): the state transitions may occur at
any time, and the time between transitions is exponentially distributed;

It can be used to compute the probability to be in a system state at time T .
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An example of stochastic model
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An example of stochastic model
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An example of stochastic model
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An example of stochastic model
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Deterministic vs. Stochastic Models

Deterministic models can be solved easier, but they provide only the average
system behavior;

Stochastic models are more computational demanding, but they can capture
the stochastic nature of a biological process.
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Mathematical Graphical formalism
Graphical formalism can be exploited to make easier the modeling phase;

Several graphical formalism were proposed in literature:

a) Boolean network: genes are represented by nodes and the arrows
represent activation and repression;

b) Bayesian network: the value of the output nodes are given by a
probability function that depends on the value of the input nodes;

c) Petri net: places represent substances, transitions represent reactions and
the arrows represent consumption and production;

d) Agent-based model: types of agents, representing different kinds of cells
can move freely and interact within the containing space

e) . . .
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Stochastic Petri Net formalism

Stochastic Petri Net (SPN) is a mathematical graphical formalism;

It is conveniently used for the analysis of complex models of Discrete Event
Dynamic Systems (DEDS);

It allow us to derive qualitative and quantitative properties of the system.
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Stochastic Petri Net formalism

Definition (Stochastic Petri Net)

A stochastic Petri net system is a tuple

N = (P,T , I,O,m0, λ)

where:
P = {pi}1≤i≤n is a finite and non empty set of places;

T = {ti}1≤i≤k is a finite, non empty set of transitions;

I,O : P × T → N are the input, output functions that specify their
multiplicities;

m0 : P → N is a multiset on P representing the initial marking;

λ : T → R gives the firing intensities of the transitions.
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Stochastic Petri Net formalism
It is possible to automatically derive an ODE system from SPN model:

dxpi (ν)
dν =

∑
t∈T

(O(pi , t)− I(pi , t))λ(t)
∏

h:I(ph,t)6=0

xph(ν)I(ph,t)

where xpi (ν) represents the amount of the entity in place pi at time ν with
xpi (0) = m0(pi) assuming Mass Action (MA) law as transition intensity law.

dxS(ν)
dν = −1λ(Inf )SI (1)

dxI(ν)
dν = +1λ(Inf )SI − 1λ(Rec)I

dxR(ν)
dν = +1λ(Rec)I
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Stochastic Petri Net formalism
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Application

A multi-level model for studying ErbB2 breast cancer progression.

ErbB2 is a transmembrane protein, which
belongs to the Epidermal Growth Factor
Receptor family;

20% of breast cancers overexpresses ErbB2;

ErbB2 overexpression disrupts normal cell
control promoting cell division;

ErbB2 is an appropriate target for therapies.

F. Cordero, M. Beccuti, C. Fornari, S. Lanzardo, L. Conti, F. Cavallo, G. Balbo and R. Calogero. Multi-level model for the investigation of
oncoantigen-driven vaccination effect. International Journal BMC Bioinformatics, Volume 14, Suppl. 6, 2013
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Applications
2-level model on the ErbB2 breast cancer progression

Molecular level
it describes the regulation aspects of
cell proliferation assuming the ErbB2
overexpression;

Cell population level

it describes how cell subpopulations
interact during tumor progression
assuming the CSC theory.

Therapies: we study a vaccine on Erb2 and TLR2.
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Applications

Cell population level.
it describes how cell
subpopulations interact
during tumor
progression assuming
the CSC theory.

Molecular level
it describes how cell
subpopulations interact
during tumor
progression assuming
the CSC theory.
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Applications: treatment effects

The tumor exponential growth is strongly delayed.
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Applications: treatment effects
Experiments show that TLR2 is linked to CSC invasinevess, but how do
perturbations on TLR2 affect CSC proliferation?

The TC number decreases, but the growth shape does not change.

F. Cordero, M. Beccuti, C. Fornari, S. Lanzardo, L. Conti, F. Cavallo, G. Balbo and R. Calogero. Multi-level model for the investigation of
oncoantigen-driven vaccination effect. International Journal BMC Bioinformatics, Volume 14, Suppl. 6, 2013
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