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1. Central force fields

In this section we will discuss the main properties of central force fields. We
refer to the books [3], [8], [12] and [15].

1.1. Definitions and examples. Given a continuous map f : (0,+∞) → R
we associate to f the continuous field

F : Rd \ {0} → Rd, F (x) = f(|x|) x
|x|
,

where d = 2 or d = 3. The field F is termed central force field.

 

Figure 1. The changing-sign continuous function f generates a planar field F
that is attractive on the ball of radius 2 and repulsive on the exterior of such ball.
Points with distance 2 from the origin are equilibria.

Being x = x(t) the position of a point particle with unitary mass at time t in
the force field F , Newton’s seconds law is the second order ordinary differential
equation

(1) ẍ = F (x) = f(|x|) x
|x|
.

In a central field, the force acting at x is always parallel to x: the force points
towards the origin if f(|x|) is negative; when f(|x|) is positive, the force has
the same direction of x. The field F is termed attractive if f(r) < 0 for any
r ∈ (0,+∞), it is termed repulsive if f(r) > 0 for any r ∈ (0,+∞).
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Example 1.1 (Newtonian gravitational field). Given a positive constant µ > 0
and the function

f(r) = − µ
r2

the corresponding attractive central force field is the Newtonian gravitational
field

F (x) = − µ

|x|3
x, x ∈ R3 \ {0}.

The system of second order differential equations describing the motion of a
particle moving in a gravitational field generated by a mass fixed at the origin
then is {

ẍi = − µ

(x21+x22+x23)
3
2
xi

i = 1, 2, 3.

The singular set {0} is usually term collision set.

Example 1.2 (α-gravitational field, α > 0). The Newtonian central force field
can be generalized, considering different intensities of the attracting force. This
can be done introducing a parameter α > 0 and defining

fα(r) = − µ

r1+α
.

The corresponding central force field then is

Fα(x) = − µ

|x|2+α
x, x ∈ R3 \ {0}.

Of course, α = 1 corresponds to the Newtonian case. In literature we refer to
the case α ∈ (0, 2) as to the weak-force interaction, while when α ≥ 2 we talk
about strong-force. The role of this parameter is central in the study of the
occurrence of collision in weak (or variational) solutions of this problem.

A (classical) solution of a central force dynamical system (1) is a function
x : I → Rd, d = 2, 3, for some interval I ⊆ R, that admit second order
derivative and such that (1) is satisfied for any t ∈ I.

Example 1.3 (Circular solutions for gravitational fields - Kepler 3rd law). For
any α > 0 let us consider the circular planar trajectories

xρ,ω(t) = ρ (cos(ωt), sin(ωt), 0) ,

where ρ and ω are positive constants.
Since ẍφ,ω = −ω2xφ,ω, it turns out that xφ,ω solves

(2) ẍ(t) = Fα(x(t)), t ∈ R.
if and only if

ω2 =
µ

ρ2+α
that is ω =

√
µρ−

2+α
2 .
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Hence, for any fixed α > 0, we deduce the existence of a 1-parameter family of
planar periodic circular solutions of the α-gravitational field. More precisely,
for any ρ > 0, the circular motion centred at the origin, with radius ρ and
period

T = T (ρ) =
2π

ω
=

2π
√
µ
ρ

2+α
2

solves (2). Let us observe that when α = 1 this fact is the content of Kepler 3rd

law for circular trajectories.

1.2. Basic properties and conserved quantities. Let x : I ⊆ R → Rd,
d = 2, 3, for some interval I ⊂ R, be a solution of (1), then x enjoys the
following symmetry properties:

(P1) for any c ∈ R the function xc(t) := x(t+ c) solves (1) (translation invari-
ance)

(P2) x−(t) := x(−t) solves (1) (time reversibility)
(P3) for any A ∈ O(d)1 xA(t) := Ax(t) solves (1) (isometry invariance).

Futhermore the following result holds.

Proposition 1.4. A central force field is conservative, that is, there exists a C1-
function, termed potential function, U : Rd\{0} → R such that F (x) = ∇U(x).
Furthermore if x : I ⊆ R → Rd, I ⊂ R, is a solution of (1), then the total
energy

h =
1

2
|ẋ(t)|2 − U(x(t))

is constant for any t ∈ I.

Proof. Fix r0 > 0 and define

Ur0(x) :=

∫ |x|
r0

f(s) ds, for any x ∈ Rd \ {0}.

Then the ith partial derivative of U is

∂Ur0
∂xi

(x) = f(|x|) ∂

∂xi
|x| = f(|x|) xi

|x|
= Fi(x), i = 1, 2, 3.

�

Remark 1.5. Since the (family of) potential introduced in the proof of Propo-
sition 1.4 depends just on |x|, with a slight abuse of notation we define

(3) Ur0(r) =

∫ r

r0

f(s) ds, for every r > 0

1Recall that O(d) =
{
A ∈Md(R) : ATA = AAT = Id

}
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and we write equation (1) as

ẍ = U ′r0(|x|)
x

|x|
.

Example 1.6. To the α-gravitational field introduced in Example 1.2 we can
associate the family of potentials

Ur0(r) =
µ

αrα
+ Cα,r0, Cα,r0 = − µ

αrα0
.

In order to select one potential, a natural choice is to require the normalized
condition

lim
r→+∞

U(r) = 0,

that corresponds to consider the potential

U(r) =
µ

αrα
.

The conserved total energy of a solution x for the gravitational field, defined on
I ⊂ R, is

h =
1

2
|ẋ(t)|2 − µ

α|x(t)|α
, t ∈ I.

Fixed the total energy h ∈ R, since the kinetic part of the energy 1
2 |ẋ(t)| is

positive, solutions for the dynamical system (1) with total energy h are neces-
sarily confined to the Hill’s region of level h

Hh :=
{
x ∈ R3 \ {0} : h ≥ −U(x)

}
.

Let us observe that when the boundary of Hh is not empty, a solution touch
such a boundary when its velocity is 0. Furthermore, from Remark 1.5 it follows
that Hill’s regions for a central force field are radial sets.

Example 1.7. Hill’s regions associated to the α-gravitational field are

Hh :=

{
x ∈ R3 \ {0} : h ≥ − µ

α|x|α

}
.

When h ≥ 0, since α and µ are positive, we immediately deduce that Hh =
R3 \ {0}, while when h < 0 orbits are confined to the ball

Hh =

{
x ∈ R3 \ {0} : |x|α ≤ − α

hµ

}
= Br(α,h)(0), r(α, h) =

(
− α

hµ

) 1
α

.

Let us now consider the angular momentum associated to the position vector,
x = x(t), of a particle moving in a central force field, that is the vector

c(t) = x(t) ∧ ẋ(t).

The following result was discover by Kepler, observing the motion of Mars.
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Proposition 1.8. Given a solution of (1) defined on I ⊆ R, there exists a
vector c ∈ R3 such that

c = x(t) ∧ ẋ(t), ∀t ∈ I.

In particular, solutions of (1) describe planar curves.

Proof. Since in a central force field x(t) and ẍ(t) are parallel, it turns out that

ċ(t) = ẋ(t) ∧ ẋ(t) = x(t) ∧ ẍ(t) = 0, ∀t ∈ I,

and the thesis follows. �

Remark 1.9. When c = 0, then the motion x is 1-dimensional: there exists a
unitary vector v ∈ R3 and a function λ : I ⊆ R→ R such that

x(t)

|x(t)|
∈ v and ẋ(t) = λ(t)x(t), ∀t ∈ I.

Now on, without loosing in generality, we will assume that the central force
field F is planar, that is F : R2 \ {0} → R2.

1.3. Sectorial velocity and Kepler’s second law. Given a continuous func-
tion x : I ⊆ R→ R2 \ {0} let us introduce the continuous functions

r : I ⊆ R→ (0,+∞) and ϑ : I ⊆ R→ R

such that

(4) x(t) = r(t) (cosϑ(t), sinϑ(t)) , ∀t ∈ I.

The function r(t) = |x(t)| is uniquely determined, while ϑ(t) is unique up to
2kπ-translations, with k ∈ Z. Assume now that that for some t0, t1 ∈ I such
that t0 < t1, there holds

• ϑ̇(t) > 0 for every t ∈ (t0, t1), and
• ϑ(t1)− ϑ(t0) < 2π,

and consider the set (see Figure 2)

D := {sx(t) : s ∈ [0, 1], t ∈ [t0, t1]} .

Then the following result holds.

Proposition 1.10 (Kepler’s second law for central force fields). Let c be the
conserved angular momentum for a solution x : I ⊆ R → R2 \ {0} of (1) and
let t0, t1, r, ϑ,D as above. Then

Area(D) =
1

2
(t1 − t0)|c|.

Briefly, in equal time the radius vector sweeps out equal areas.



INTRODUCTORY TOPICS IN CELESTIAL MECHANICS 7

 

Figure 2. the area of the region D depend only on the time necessary to the
particle to move from the initial point x(t0) to the final one x(t1) and on the
constant quantity |c|.

Proof. We compute the area of the region D in Figure 2 by means of Gauss-
Green Theorem2. Let γ = γ1 ∪ γ2 ∪ γ3 be the following counter-clockwise
parametrization of the boundary ∂D in polar coordinates:

γ1(t) = x(t) = r(t) (cosϑ(t), sinϑ(t)) , t ∈ [t0, t1]

γ2(t) = (1− t)r(t1) (cosϑ(t1), sinϑ(t1)) , t ∈ [0, 1]

γ3(t) = t r(t0) (cosϑ(t0), sinϑ(t0)) , t ∈ [0, 1].

The segments γ2 and γ3 do not give any contribution to the computation; hence
the surface of D reduces to the integral on γ1(t) = x(t) = (x1(t), x2(t)), that is

Area(D) =

∫ t1

t0

[x1(t)ẋ2(t)− ẋ1(t)x2(t)] dt =

∫ t1

t0

r2(t)ϑ̇(t) dt.

We obtain the thesis as far as we remark that, since ϑ̇(t) > 0,

|c| = r2(t)ϑ̇(t), ∀t ∈ [t0, t1].

�

1.4. The effective potential. Given a solution of (1) in polar coordinate as
in Eq. (4), we introduce the vectors

er(t) =
x(t)

|x(t)|
= (cosϑ(t), sinϑ(t)) eϑ(t) = (− sinϑ(t), cosϑ(t)) .

It turns out that

x(t) = r(t)er, ẋ(t) = ṙ(t)er + r(t)θ̇(t)eϑ

and
ẍ(t) =

(
r̈(t)− r(t)ϑ̇2(t)

)
er +

(
2ṙ(t)θ̇(t) + r(t)ϑ̈(t)

)
eϑ.

2The area of a regular domain D ⊂ R2 whose positive boundary (i.e. the normal vector poits outside the
region) is parametrized by the closed and regular curve γ(t) = (x1(t), x2(t)), t ∈ [a, b] is

Area(D) =
1

2

∫ b

a

[x1(t)ẋ2(t)− ẋ1(t)x2(t)] dt.

(if γ is the justapposition of a finite number of regular curves we just use the additivity of the integral).
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By virtue of Proposition 1.4 and Remark 1.5, Eq. (1) reads

ẍ(t) = U ′(r)er(t).

Comparing with the expression of ẍ(t) already computed we obtain{
r̈(t)− r(t)ϑ̇2(t) = U ′(r)

2ṙ(t)θ̇(t) + r(t)ϑ̈(t) = 0.

Since ϑ̇(t) = |c|
r2(t) , the first line of the system is the second order differential

equation in the scalar variable r(t)

r̈(t) =
|c|2

r3(t)
+ U ′(r(t)).

This equation can be written as the one-dimensional conservative system

(5) r̈(t) = V ′(r(t)),

where

V (r) = U(r)− |c|
2

2r2

is the effective potential of a central force field having potential U .
Summing up: fixed |c| ≥ 0 we can (try to) solve the one-dimensional second
order differential equation (5), then we replace the expression of r(t) in ϑ̇(t) =
|c|
r2(t) and we deduce

ϑ(t) = ϑ0 +

∫ t

t0

|c|
r2(s)

ds.

1.5. The equation of orbits in polar coordinates and Bertrand’s the-
orem. The energy conservation law for Eq. (5) reads

hr =
1

2
ṙ2(t)− V (r), for some hr ∈ R,

comparing this expression with the conservation of energy in the whole system
in polar coordinates, we obtain

h =
1

2
|ẋ(t)|2 − U(|x(t)|)

=
1

2
ṙ2(t) +

1

2
r2(t)ϑ̇2(t)− U(r(t))

=
1

2
ṙ2(t)− V (r(t)) = hr.

Hence

h =
1

2
ṙ2(t)− V (r(t)).
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Assuming r(t) increases (strictly) on some interval [t0, t1] we obtain a first order
equation in the variable r:

ṙ(t) =
√

2 (h+ V (r(t))).

By the assumed monotonicity, the map r : [t0, t1] → [r(t0), r(t1)] is invertible
and we can write t = t(r) with t : [r(t0), r(t1)]→ [t0, t1]. From the conservation
of the angular momentum we compute

ϑ̇(t) =
|c|
r2(t)

=⇒ dϑ

dr
=

|c|/r2√
2 (h+ V (r))

and we obtain the equation of orbits in polar coordinates

ϑ(r) =

∫ r(t1)

r(t0)

|c|/r2√
2 (h+ V (r))

dr.

As already observed when we have introduced the notion of Hill’s region, the
energy relation possibly imposes a bound on the radial variable, indeed

−V (r) ≤ 1

2
ṙ2(t)− V (r) = h.

Inequality −V (r) ≤ h gives one (or more) annular region in the plane 0 ≤
rmin ≤ r ≤ rmax ≤ +∞. If rmax < +∞, then the motion is bounded and takes
place inside the ring between rmin and rmax. Points where r = rmin are called
pericentral, points where and r = rmax are apocentral; each of the ray leading
from the origin to a pericenter or to an apocenter is an axis of symmetry for
the orbit. In general the orbit is not closed and the angle spanned by the piece
of orbit between a pericenter and the consecutive apocenter is given by

Θ =

∫ rmax

rmin

|c|/r2√
2 (h+ V (r))

dr.

Orbits are closed if and only if Θ is commensurable with 2π, that is Θ = 2πmn
for some m,n ∈ N \ 0. If this condition is not satisfied then each orbit is
everywhere dense in the annulus.

Theorem 1.11 (Bertrand’s Theorem). There are only two cases in which all
bounded orbits in a central force field are closed: the Newtonian gravitational
field and the harmonic oscillator field, which are generated by the potentials

U(r) =
µ

r
and U(r) = −kr2, µ, k > 0.

The proof of this result can be found in Arnold’s book [3] in Chapter 2.
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1.6. One-dimentional motions in an attractive central force field. In
this section we describe the motion in a central force field when the angular
momentum is 0; in this case, as already observed in Remark 1.9, the motion is
one-dimentional, hence there exists a unitary vector v such that

x(t) = r(t)v.

Eq. (1) then reads

r̈(t) = f(r(t))

and from the behaviour of its solutions we deduce the behaviour of x(t). The
following result can be applied to the Newtonian gravitational field and to its
α-generalization.

Theorem 1.12. Let x(t) = r(t)v be a 1-dimensional solution of (1) and let
(α, ω) its maximal definition interval. Assume that f(r) < 0 for any r ∈
(0,+∞). Then one of the following situations occur (see Figure 3):

(i) α, ω are both bounded, lim
t→α+

r(t) = lim
t→ω−

r(t) = 0+ and there exists t0 ∈
(α, ω) such that ṙ(t) > 0 on (α, t0), ṙ(t0) = 0 and ṙ(t) < 0 on (α, t0);

(ii) α is bounded, ω = +∞, lim
t→α+

r(t) = 0+, lim
t→+∞

r(t) = +∞ and ṙ(t) > 0 on

(α,+∞);
(iii) α = −∞, ω is bounded, lim

t→−∞
r(t) = +∞, lim

t→ω−
r(t) = 0+ and ṙ(t) < 0 on

(−∞, ω).

(i) (ii) (iii)

 

Figure 3. the behaviour of 1-dimensional orbits in a central force fields is limited
to the three situations described in Theorem 1.12.

Proof. Since x(t) = r(t)v solves (1) the 1-dimensional function r in of class C2

on (α, ω). From the assumption on the sign of f , r̈(t) = f(r(t)) < 0, and ṙ
strictly decreases on (α, ω).
We then have to alternatives
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(a) there exists a unique t0 ∈ (α, ω) such that ṙ(t) > 0 on (α, t0), ṙ(t0) = 0
and ṙ(t) < 0 on (α, t0), or

(b) ṙ(t) has constant sign on (α, ω).

We now claim (i) from alternative (a). Let us focus on [t0, ω); let δ > 0 be such
that t0 + δ < ω and consider t ∈ (t0 + δ, ω), then (since ṙ strictly decreases)

r(t) = r(t0 + δ) +

∫ t

t0+δ

ṙ(s) ds < r(t0 + δ) + ṙ(t0 + δ)(t− t0 + δ).

We infer that ω < +∞ arguing by contradiction; indeed assuming ω = +∞ we
obtain, passing to the limit in the previous inequality

lim
t→+∞

r(t) < r(t0 + δ) + ṙ(t0 + δ) lim
t→+∞

(t− t0 + δ)

which forces r(t) → −∞ (ṙ(t0 + δ) is strictly negative). This is clearly a
contradiction since r is a positive quantity. In order to show that r(t) tends to
0 as t → ω−, we still argue by contradiction: r is monotone decreasing, hence
it admits a limit as t→ ω−. If this limit is l > 0, then (α, ω) should not be the
maximal definition interval of x.
We argue similarly on (α, t0] in order to reach claim (i).

Assume now (b) and in particular that ṙ(t) > 0 on (α, ω). We want to claim
(ii). Once more, ṙ decreases strictly and admits a limit as t→ ω−. Assume by
contradiction that ω < +∞ and take t0 ∈ (α, ω), then the quantity

r(ω) = r(t0) +

∫ ω

t0

ṙ(s) ds

is finite and (α, ω) should not be the maximal definition interval of x. Then
ω = +∞. We now show that r(t) → +∞ as t → +∞. Such limit exists since
ṙ > 0 so that r is monotone; assume that r(t)→ l ∈ (0,+∞) as t→ +∞. Then
there exists a sequence tn → +∞ such that ṙ(tn) = 0 and r̈(tn) → f(l) < 0.

Let t̄ such that r̈(t) < f(l)
2 for any t > t̄; for any tn > t̄ there holds

ṙ(tn) = ṙ(t̄) +

∫ tn

t̄

r̈(s) ds < ṙ(t̄) + (tn − t̄)
f(l)

2
→ −∞ as tn → +∞,

in contradiction with ṙ > 0. We conclude that r(t) → +∞ as t → +∞. With
similar arguments we conclude claim (ii). Claim (iii) is reached in a similar
way. �

Example 1.13. Let us understand the meaning of Theorem 1.12 in the 1-
dimensional Kepler problem; assuming that x(t) = r(t)v, for some unitary
vector v, is a solution on some interval (α, ω), then r solves

r̈(t) = − µ

r2(t)
, t ∈ (α, ω).
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Of course f(r) = −µ/r2 < 0 and the assumptions of Theorem 1.12 are satisfied.
The result of Theorem 1.12 can also be deduced using the conservation of energy

h =
1

2
ṙ2(t)− µ

r(t)

and the Hill’s region for the problem which is determined by the inequality

−µ
r
≤ h.

We refer to Figure 4 where the graph of g(r) = −U(r) = −µ/r is plotted. When
h ≥ 0, the sublevel

g≤h = {r ∈ (0,+∞) : g(r) ≤ h}

is the whole (0,+∞). In this case we have two possible different motions deter-
mined by the sign of ṙ, i.e.

ṙ(t) =

√
2h+ 2

µ

r(t)
or ṙ(t) = −

√
2h+ 2

µ

r(t)
.

From the phase-plane (Figure 4) we understand that the first motion corresponds
to situation (ii), while the second one to situation (iii). When h ≥ 0 we also

deduce that ṙ → ±
√

2h when r → +∞. 

 

Figure 4. From the energy relation we can deduce the phase-plane analysis for
1-dimensional solutions of the Kepler problem.

When h < 0, the sublevel g≤h is the interval (0,−µ/h): motions are in this
case bounded, there exists a unique instant t0 such that ṙ(t0) = 0 and (i) of
Theorem 1.12 is satisfied. In this case the time to moove from 0 to −µ/h can
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be computed by separating variables in the first order differential equation

ṙ(t) =
dr

dt
=

√
2µ

r(t)
+ 2h

which gives the finite (elliptic) integral

t0 − α =

∫ t0

α

dt =

∫ −µ/h
0

dr√
2µ/r + 2h

=

∫ −µ/h
0

√
r√

2(µ+ hr)
dr.

When h = 0, still separating variables in the energy relation, we obtain (still
choosing the branch with ṙ(t) > 0)

t− α =

∫ r(t)

0

√
s√

2µ
ds =

2

3

1√
2µ
r

3
2

hence

r(t) = C(t− α)
2
3 , where C =

(
9

2
µ

) 1
3

.
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2. Kepler’s problem

In this section we will study the so called Kepler problem, that is the dynam-
ical system

(K) ẍ(t) = − µ

|x(t)|2
x(t)

|x(t)|
,

describing the motion of a point particle with unitary mass moving under the
action of an attractive force towards the origin. At the beginning of seventeenth
century, much before the differential formulation of the gravitation law (K),
Kepler formulated three laws that described the motion of a planer around
the Sun, formulating them just by means of empirical observation. These laws
described perfectly the observational data. Even today, with extremely precise
data, these laws are a close first approximation to the truth. They also hold
for various systems of satellites orbiting their primary.

Newton was the first one to explain these laws as a result of the laws of
dynamics and gravitation (K). In this sense Kepler?s laws are a description
of the solutions of a special case the gravitational problem of n point-masses,
termed bodies: in this special situation all the masses but one are so small that
they do not attract each other appreciably, but they are all attracted by the
large mass.

We have already proved that if x is a solution for the Kepler problem then
there are two quantities that are cnserved along the motion: the totalal energy
h = 1

2 |ẋ(t)|2− µ
|x(t)| and the angular momentum c = x(t)∧ ẋ(t). The planarity of

the motion follows from this second conservation. The contents of this section
are mainly inspired from [8] and [12].

2.1. Planar conics and Kepler’s first law. In the following result we pro-
pose a smart description of planar conic with a focal point ot the origin.

Proposition 2.1. Any planar conic with a focal point at 0 consists of a set of
point x ∈ R2 such that

(6) |x|+ 〈e, x〉 = k

for some e ∈ R2 and k ∈ R. Furthermore, an equation of the form (6) is a
conic with a focal point at 0 when

• |e| < 1 and k > 0, in this case it is an ellipse;
• |e| = 1 and k > 0, in this case it is a parabola;
• |e| > 1 and k > 0, in this case it is a branch of hyperbola (the one closer

to 0);
• |e| > 1 and k < 0, in this case it is a branch of hyperbola (the one far

from 0).
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Proof. Let us start considering an (non degenerate) ellipse, E as in Figure 5;
remark that A, O and x are vectors. For some constant C > 0 we have

x ∈ E ⇐⇒ |x|+ |A− x| = C ⇐⇒ |A− x|2 = (C − |x|)2

(observe that C − |x| > 0 so that the second if and only if holds). Hence

x ∈ E ⇐⇒ |x| − 1

C
〈A, x〉 =

C2 − |A|2

2

We conclude defining

e := −A
C
, k :=

C2 − |A|2

2

and observing that |e| < 1 and k > 0 as far as |A| < |x| + |A − x| = C. Of
course it could be that |A| = |x| + |A − x| = C, but in this case the ellipse
reduces to two points, 0 and A).  

Figure 5. An ellipse with a focus at the origin can be described through the
vector e, opposite to the second focus A. The branch of hyperbola with a focus
at O and closer to it can be described via e, a scaling of A.

We now consider a parabola P with focal point at O, as in Figure 6; fixed
a unitary vector v and a constant c > 0, the directrix L is the set of points
w ∈ R2 such that 〈v, w〉 = c. Then

x ∈ P ⇐⇒ dist(x, L) = |x− 0| = |x|
Let L0 be the half-plane determined by L and containing the origin, as in Figure
6; then P ∩ (R2 \ L0) = ∅ and P ⊂ L0. Furthermore

x ∈ L0 =⇒ dist(x, L) = c− 〈x, v〉
hence

x ∈ P ⇐⇒ |x| = c− 〈x, v〉
and we reach the claim with e = v (|e| = 1) and k = c (> 0). We conclude
considering an hyperbola, H with focal points at A and at O. Let HO be the
branch of hyperbola closer to the origin. For some constant C > 0 we have

x ∈ HO ⇐⇒ |x− A| − |x| = C ⇐⇒ |A− x|2 = (C + |x|)2,
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Figure 6. A parabola with a focus at the origin can be described through the
vector e = v, and the directrix L.

hence

x ∈ HO ⇐⇒ |x|+ 1

C
〈A, x〉 =

|A|2 − C2

2C
.

We reach the claim with e = 1
CA and k = |A|2−C2

2C . Rekark that in this case
|e| > 1 and k > 0 both since |A| > |A−x|−|x| = C. Similarely we can consider
the other branch of the hyperbola, HA, characterized by |x| − |x−A| = C. �

Theorem 2.2 (Kepler’s first law). Let x = x(t) be a solution for the Kepler
equation and assume that ita angular momentum does not vanish. Then x
moves on a conic with focal point at the origin.

Proof. Recalling that for every u, v, w ∈ R3 there holds

(u ∧ v) ∧ w = 〈u,w〉v − 〈v, w〉u

we compute

d

dt

(
x

|x|

)
=
ẋ|x| − x

〈
x
|x| , ẋ

〉
|x|2

=
ẋ〈x, x〉 − x〈x, ẋ〉

|x|3
=

(x ∧ ẋ) ∧ x
|x|3

= c ∧
(
−1

µ
ẍ

)
= −1

µ

d

dt
(c ∧ ẋ)

and we deduce the existence of v ∈ R2 such that

µ

(
x

|x|
− v
)

= −c ∧ ẋ.

Projecting this equation on the direction x we obtain

µ

〈
x

|x|
− v, x

〉
= −〈c ∧ ẋ, , x〉,
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hence (recalling that 〈u ∧ v, w〉 = 〈u, v ∧ w〉)
µ (|x|+ 〈−v, x〉) = −〈c, ẋ ∧ x〉 = |c|2,

which is Eq. (6) with e = −v and k = |c|2
µ . �

Remark 2.3 (Classification of the keplerian motion with respect to the energy).
Conservation of energy for the Kepler problem reads

1

2
|ẋ(t)|2 − µ

|x(t)|
= h

From Eq. (17) we have the equality

µ2

∣∣∣∣ x|x| + e

∣∣∣∣2 = |c ∧ ẋ|2.

hence, since c and ẋ are orthogonal,

µ2

(
1 + |e|2 +

2

|x|
〈x, e〉

)
= |c|2|ẋ|2.

Replacing |ẋ(t)|2 = 2µ
|x(t)|+2h and using once more Eq. (6) to deduce the quantity

1
|x|〈x, e〉, we obtain

h =
µ2

2|c|2
(
|e|2 − 1

)
.

we then conclude that:

• |e| < 1 ⇐⇒ h < 0 (ellipse)
• |e| = 1 ⇐⇒ h = 0 (parabola)
• |e| > 1 ⇐⇒ h > 0 (branch of hyperbola)

2.2. Kepler’s third law. In order to prove Kepler’s third Law, that is a re-
lation between the period of a solution describing an ellipse and the major
semi-axis of the ellipse, we need to guarantees that conics (and in particular
ellipses) are completely spanned by solutions of the Kepler problem.

Theorem 2.4 (Global existence). Let x = x(t) be a solution for the Kepler
equation with c 6= 0. Then x is defined for every t ∈ R.

Proof. Kepler equation can be written as{
ẋ(t) = y(t),

ẏ(t) = − µ
|x(t)|3x(t).

From the first Kepler law if x is a solution on I ⊆ R then x(t) belong to a conic
for every t ∈ I, hence x is bounded away from the origin, i.e.

∃ρ > 0 : |x(t)| > ρ, ∀t ∈ I.
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Then {
|ẋ(t)| = |y(t)|,
|ẏ(t)| ≤ µ

ρ3 |x(t)|,

and the function f(x, y) = (y,− µ
|x|3x) is sublinear in (x, y). Classical theory

of o.d.e. guarantees that I = R (see for instance [13, Chapter 4, Theorem
1.6]). �

From the previous result immediately follows that a solution for the Ke-
pler problem covers the entire conic on which it moves. Let us show this
fact in the elliptic case. Let us write the trajectory in polar coordinates
x(t) = r(t) (cosϑ(t), sinϑ(t)). Since c = r2(t)ϑ̇(t)k then ϑ̇(t) has constant
sign and without restriction we assume that ϑ̇(t) > 0, for every t ∈ R, and that

ϑ̇(t) =
|c|
r2(t)

∀t ∈ R.

Since x moves on an ellipse E and, for some R > 0, E ⊂ BR(0), we have

ϑ̇(t) ≥ |c|
R2

∀t ∈ R.

Hence

lim
t→±∞

ϑ(t) = ±∞,

ϑ is surjective on R and we can parametrise the ellipse E with the angle ϑ. To
this aim, let ε ∈ (0, 1) and ω ∈ [0, 2π) be such that

e = ε(cosω, sinω)

hence 〈x(t), e〉 = εr(t) cos(ϑ(t)− ω) and Eq. (6) gives

(7) r(t) =
k

1 + ε cos(ϑ(t)− ω)
=

|c|2/µ
1 + ε cos(ϑ(t)− ω)

,

where we have replaced k = |c|2/µ, as in the proof of the Kepler’s first law.
The map

γ : R→ R2, ϑ 7→ k

1 + ε cos(ϑ(t)− ω)
(cosϑ(t), sinϑ(t))

parametrizes the whole ellipse and, since it is 2π-periodic the particle passes an
infinite number of times through every point of the ellipse.

Before proving the third Kepler’s law let us determine the geometrical ele-
ments of an ellipse with one focus at the origin, eccentricity |e| = ε and polar
equation (7), for some k > 0. We refer to Figure 7. When ϑ = ω then x = P , the
pericenter of the ellipse, that is the point closer to the origin. When ϑ = ω+ π
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then x = A, the apocenter of the ellipse, that is the furthest point from the
origin. Replacing in Eq. (7) these values for ϑ we have

|P − 0| = k

1 + ε
|A− 0| = k

1− ε
so that

a =
k

1− ε2
.

Since

d := |C −O| = a− |P − 0| = εk

1− ε2
= εa

and

|B − 0| = 1

2
(|B − 0|+ |B − F |)

=
1

2
(|P − 0|+ |P − F |) =

1

2
(|P − 0|+ |A−O|) = a

we compute

b =
√

1− ε2 a and ε =
|C −O|

a
.

 

Figure 7. An ellipse with a focus at the origin and eccentricity ε ∈ (0, 1).

We are now ready to prove Kepler’s third law.

Theorem 2.5 (Kepler’s third law). Let x = x(t) be a solution for the Kepler
equation with c 6= 0 and h < 0. Then x is periodic with period

T =
2π
√
µ
a

3
2 ,

where a is the major semi-axes of the ellipse described by x.
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Proof. We have already seen that it is not restrictive to assume that along the
motion ϑ̇(t) ≥ C > 0; hence there exists a unique T > 0 such that ϑ(T ) =
ϑ(0) + 2π. Such T is also a period for

x(t) =
k

1 + ε cos(ϑ(t)− ω)
(cosϑ(t), sinϑ(t))

and finally also for

ẋ(t) = ṙ(t)er + r(t)ϑ̇(t)eϑ = ṙ(t)er +
|c|
r(t)

eϑ

Hence x, as a solution of the Kepler’s problem, is periodic. Let us remark that
T is the minimal period, indeed if T̃ is such that x(T̃ ) = x(0) then for some
N ∈ N, N ≥ 1

ϑ(T̃ ) = ϑ(0) + 2Nπ > ϑ(0) + 2π = ϑ(T ).

Hence, since ϑ is strictly monotone, we infer T̃ > T .
We now compute T . We term a and b respectively the major and the minor

semi-axis of the ellipse E described by x. We have, still using Gauss-Green
theorem (as at page 7) and b =

√
1− ε2 a,

Area(E) = πab =
1

2

∫ T

0

r2(t)ϑ̇(t) dt =
|c|
2
T =⇒ T =

2πab

|c|
=

2πa2
√

1− ε2

|c|

Since a = |c|2
µ(1−ε2) we have the thesis. �

2.3. Kepler’s equation. We now address to the following problem: fixed an
initial position of the planet, can we determine the position of the particle at
time t?

We focus on the case h < 0 and we look for a different parametrization of an
ellipse E , with focus at the origin and major semiaxis a. We refer to Figure 8
and we term eccentric anomaly the angle spanned by the vector P ′ − O with
respect to the C −O; we claim to write vector P as a function of u.

 

Figure 8. An ellipse with a focus at the origin and eccentricity ε ∈ (0, 1).
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Let us consider the maps

T : R2 → R2, (x, y) 7→ (x+ d, y) and L : R2 → R2, (x, y) 7→
(
x,
a

b
y
)
.

Their composition T ◦ L is a bijection between the ellipse E and the circle, C,
centered at the origin and with radius equal to a. We can then consider the
inverse function

(T ◦ L)−1 : C → E , (x, y) 7→
(
x− d, b

a
y

)
and, writing (x, y) ∈ C as x = a cosu, y = a sinu, we have

(T ◦ L)−1(a cosu, a sinu) = (a cosu− d, b sinu)

Being d = εa and b = a
√

1− ε2 we obtain

x(t) = a
(

cosu(t)− ε,
√

1− ε2 sinu(t)
)

and the first derivative

ẋ(t) = a
(
− sinu(t),

√
1− ε2 cosu(t)

)
u̇(t).

Since |c| = |x(t) ∧ ẋ(t)| = x1(1)ẋ2(t) − x2(1)ẋ1(t) is a conserved quantity we
have the first order o.d.e. in the function u = u(t)

u̇(t) =
|c|

a2
√

1− ε2 (1− ε cosu(t))
.

Separating variables and assuming that u(t0) = 0, that is the body os at the
pericenter at t = t0, we obtain

u(t)− ε sinu(t) =
|c|

a2
√

1− ε2
(t− t0).

Recalling that the major semi-axis is a = k/(1− ε2) and k = |c|2/µ, we obtain
the so called Kepler equation

(8) u(t)− ε sinu(t) =

√
µ

a
3
2

(t− t0).

So we haven’t really found a solution for our initial problem, but Eq. (8)
answers to the question: at what time a particle will be at a certain position
(described by u) on the ellipse E?
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2.4. Bessel’s function and Kepler’s equation. Let us go back to our initial
problem: fixed an initial position of the planet, can we determine the position
of the particle at time t? An approximate solution can be computed as long
as the eccentricity is small. Indeed, the inversion of equation (8) provides u as
a function of µ̃t (here, by the sake of simplicity, we assume that t0 = 0), with

µ̃ =
√
µ

a
3
2

as a series in the eccentricity ε. In order to do that, let us obtain from

(8)

u = µ̃t+ ε sinu = µ̃t+ ε sin (µ̃t+ ε sinu)

= µ̃t+ ε sin [µ̃t+ ε sin (µ̃t+ ε sinu)]

and approximate it with a polynomial in ε as ε→ 0

u(t) = µ̃t+ ε sin(µ̃t) +
1

2
ε2 sin(2µ̃t) +

1

8
ε3 (3 sin(3µ̃t)− sin(µ̃t)) +O(ε4).

With this strategy we can of course approximate with a desired accuracy, but
just for small eccentricities.
On the other hand, when ε is not so small, we should find the inverse relation
of (8). Let us start fixing ε ∈ (0, 1) and defining the function fε : R→ R as

fε(u) = u− ε sinu.

This function satisfies

fε(u+ 2π) = fε(u) + 2π, fε(−u) = −fε(u),

and, since f ′(u) = 1− ε cosu > 0, for every u ∈ R, fε is C∞(R) and invertible.
Let Kε : R→ R be the inverse function, that is

ζ = fε(Kε(ζ)) and u = Kε(fε(u)) for every u, ζ ∈ R

The evaluation of the inverse functionKε corresponds to the resolution of Kepler
equation (8) and actually ζ is proportional to the time for the perihelion, that
is

ζ =

√
µ

a
3
2

(t− t0).

Furthermore Kε inherits the properties of fε, that is

Kε(ζ + 2π) = Kε(ζ) + 2π, Kε(−ζ) = −Kε(ζ).

We can then define the odd, C∞ and 2π-periodic function

h(ζ) = Kε(ζ)− ζ,

which can be written by means of Fourier expansions

h(ζ) =
+∞∑
n=1

bn sin(nζ), ζ ∈ R where bn =
2

π

∫ π

0

h(ζ) sin(nζ) dζ.
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Replacing now the expression of h in bn and integrating by parts we obtain

bn =
2

π

∫ π

0

[Kε(ζ)− ζ] sin(nζ) dζ

=
2

nπ

[
(ζ −Kε(ζ)) cos(nζ)

]π
0

+
2

nπ

∫ π

0

[K ′ε(ζ)− 1] cos(nζ) dζ

=
2

nπ

∫ π

0

K ′ε(ζ) cos(nζ) dζ,

being Kε(0) = 0, Kε(π) = π and
∫ π

0 cos(nζ) dζ = 0. Let now implement the
(admissible) variable change in the integral u = Kε(ζ) that means ζ = fε(u) =
u− ε sinu and hence

bn =
2

nπ

∫ π

0

cos[n(u− ε sinu)] du.

We now use the results in Appendix A, in particular Proposition A.1, in order
to write

bn =
2

n
Jn(nε)

obtaining

Kε(ζ) = ζ +
+∞∑
n=1

2

n
Jn(nε) sin(nζ), ζ ∈ R,

that is

(9) u(t) =

√
µ

a
3
2

(t− t0) +
+∞∑
n=1

2

n
Jn(nε) sin

(
n

√
µ

a
3
2

(t− t0)
)
, ζ ∈ R,

By means of this formula we can write the explicit parametrization of an elliptic
orbit with major semi-axis a, eccentricity ε with pass at its perihelion at time
t0

x1(t) = a(cosu(t)− ε) x2(t) = a
√

1− ε2 sinu(t)

where u has the explicit form (9).

 

Figure 9. Elliptic trajectories for the two body problem with h < 0 and m1 < m2.
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2.5. The 2-body problem. We now consider two masses, m1 and m2, that
move on trajectories x1(t) and x2(t) under their mutual gravitational attraction{

ẍ1(t) = Gm2
x2(t)−x1(t)
|x2(t)−x1(t)|3

ẍ2(t) = Gm1
x1(t)−x2(t)
|x2(t)−x1(t)|3

and we immediately remark that the center of mass g = m1x1(t) + m2x2(t)
moves with uniform velocity. We can then fix it, staying in the inertial frame
centered at g, i.e. assuming

(10) x2(t) = −m1

m2
x1(t).

The vector x2(t) − x1(t) can then be written both in terms of x1(t) and x2(t),
indeed

x2(t)− x1(t) = −m1 +m2

m2
x1(t) =

m1 +m2

m1
x2(t)

and the equation of motion are simply Keplerian equations for each one of the
bodies {

ẍ1(t) = −Gµ1
x1(t)
|x1(t)|3

ẍ2(t) = −Gµ2
x2(t)
|x2(t)|3

with µ1 = m3
2

(m1+m2)2 and µ2 = m3
1

(m1+m2)2 . We then conclude that in the inertial

frame centered in the baricenter of the masses, the two bodies move on conics
linked by the relation (10) (see Figure 9). In particular their trajectories are
coplanar.
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3. The N-body problem

The N -body problem consists in the study of the motion of N point particles
(the bodies) in the d-dimensional space, when on each particle act just the
gravitational forces induced by the other N − 1.
In order to formalize this dynamical system, let us introduce the masses of the
bodies

m1, . . . ,mN > 0

and their positions x1(t), . . . , xN(t), which form the vector

x(t) = (x1(t), . . . , xN(t)) ∈ RdN .

The gravitational force that the mass mj acts on the mass mi is

Fij(x) = mimjG
xj − xi
|xj − xi|3

where G is the gravitational constant. Without loosing in generality we now
on assume that G = 1. The total force acting on the i-th mass then is

Fi =
n∑

j 6=i,j=1

Fij

and Newton’s law reads

miẍi(t) = Fi.

Of course, in general Fi is not a central force field. Dividing both sides of the
previous equation by mi, we obtain the N -body dynamical system

(11)

ẍi(t) =
n∑

j 6=i,j=1

mj
xj − xi
|xj − xi|3

i = 1, . . . , n

which is defined when x ∈ RdN \∆ where ∆ is the collision set

∆ =
{
x ∈ RdN : xi = xj for some i 6= j

}
.

From now, we consider d = 3. Introducing the force vector

F (x) = (F1(x), . . . , FN(x)) ∈ R3N

and the diagonal-block matrix of dimension 3N × 3N

M = diag (m1I3, . . . ,mNI3)

we can write system (11) in the more compact form

(12) Mẍ(t) = F (x(t)).



INTRODUCTORY TOPICS IN CELESTIAL MECHANICS 26

Lemma 3.1. The dynamical system (11) is conservative and the C1 scalar
function

(13) V (x) =
∑
i<j

mimj

|xi − xj|
x ∈ R3N \∆

is such that (11) reads

(14) Mẍ(t) = ∇V (x(t)).

Proof. For any k = 1, . . . , n, we have

∂

∂xk
V (x) =

∂

∂xk

∑
i 6=k

mimk

|xi − xk|

 =
∑
i 6=k

mimk
xi − xk
|xi − xk|3

=
∑
i6=k

Fki = Fk.

�

3.1. First integrals. From Lemma 3.1 follows immediately that as far as x :
I ⊂ R→ R3N is a solution of (11) then the total energy is conserved along the
motion x, that is

(15)
1

2
〈Mẋ(t), ẋ(t)〉 − V (x(t)) = h, for any t ∈ I

for some constant h ∈ R. The function

K(p) :=
1

2
〈Mp, p〉, p ∈ R3N

is the kinetic energy, while the potential energy is −V (q), q ∈ R3N \∆. In order
to verify Eq. (15) we compute

d

dt

[
1

2
〈Mẋ(t), ẋ(t)〉 − V (x(t))

]
=

1

2
〈Mẍ(t), ẋ(t)〉+

1

2
〈Mẋ(t), ẍ(t)〉 − 〈∇V (x(t)), ẋ(t)〉

= 〈Mẍ(t), ẋ(t)〉 − 〈∇V (x(t)), ẋ(t)〉
= 〈Mẍ(t)− F (x(t)), ẋ(t)〉

and the last term vanishes, since x solves system (14).
As in the 2-boy problem, the centre of mass moves with constant velocity,

indeed
N∑
i=1

miẍi(t) =
N∑
i=1

Fi =
∑
i6=j

Fij =
∑
i<j

(Fij − Fji) = 0

hence it not restrictive to work in the inertial frame that moves with the centre
of mass, or equivalently, to assume that the centre of mass is fixed at the origin.
Up to now we have then found seven integrals of motions. As for central force
fields, also the angular momentum is conserved. More precisely, let us introduce
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the total angular momentum for a solution x(t)
∑n

i=1 [xi(t) ∧ ẋi(t)]. It turns out
that there exists a constant vector c ∈ R3 such that

c =
n∑
i=1

[xi(t) ∧ ẋi(t)] , for any t.

Indeed

d

dt

n∑
i=1

[xi(t) ∧ ẋi(t)] =
n∑
i=1

[xi(t) ∧ ẍi(t)]

=
n∑
i=1

xi(t) ∧
∑

j 6=i

mimj
xj(t)− xi(t)
|xi(t)− xj(t)|3


=

n∑
i=1

∑
j 6=i

mimj
xi(t) ∧ xj(t)
|xi(t)− xj(t)|3

 = 0

since in the last line appears all pairs of opposite terms. Hence we have found
ten first integrals. Let us observe that as far as we take N ≥ 3, system (14) has
K ≥ 18 degrees of freedom. On the (non) integrability of the N -body problem
we suggest for instance [5, 14, 18, 19, 6].

3.2. Special soutions. In this paragraph we examinate some special classes
of solution for the N -body problem, and precisely we will deal with:

(a) Constant solutions or equilibrium point for the system. These are solu-
tions of (14) in the form

x(t) = x̄ ∈ R3N \∆, for every t ∈ I ⊆ R.

(b) Homographic solutions. We investigate the existence of

λ : I → (0,+∞), A : I → SO(3)3 and x̄ ∈ R3N \∆

such that x(t) = λ(t)A(t)x̄ solves (14), where the matrix A(t) acts on
each component

A(t)x̄ = (A(t)x̄1, . . . , A(t)x̄N).

(b1) Homothetic solutions. When, in situation (b), the matrix function A
is constantly equal to the identity, the motion we are deal with has
the form x(t) = λ(t)x̄, for some

λ : I → (0,+∞) and x̄ ∈ R3N \∆.

3SO(3) is the set of 33 × 3 matrices with determinant equal 1 (rotations in R3). When A ∈ SO(3), there
exists a vector w ∈ R3 such that Aw = w and A acts as a rotation on planes orthogonal to w.
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(b2) Relative equilibria. When, in situation (b), the scalar function λ is
constant, the motion we are deal with has, up to a constant, the form
x(t) = A(t)x̄, for some

A : I → SO(3) and x̄ ∈ R3N \∆.

This classical result is useful to deal with solutions of type (a).

Euler’s Theorem. Let p ∈ R, Ω ⊆ Rd be a conic set and f : Ω → R be a
differentiable function and assume that f is p-homogeneous, that is

(16) f(λx) = λpf(x), for any x ∈ Ω and λ > 0.

Then

〈∇f(x), x〉 = pf(x), for any x ∈ Ω.

Proof. We obtain the thesis differentiating with respect to λ equality (16) and
evalueting the result at λ = 1. �

Corollary 3.2. System (14) does not admit any constant solution.

Proof. By contradiction, assume that there exists a sulution of the form x(t) = x̄
for some x̄ ∈ R3N \∆. Then Mẍ(t) = 0, hence ∇V (x̄) = 0 and 〈∇V (x̄), x̄〉 = 0.
Since V is −1-homogeneous we obtain, applying Euler’s Theorem, −V (x̄). This
is in contradiction with the definition of V given in Eq. (13). �

Let us now investigate the existence of solutions of type (b1). We replace
x(t) = λ(t)x̄ in (14) and we obtain

M(λ̈(t)x̄) = ∇V (λ(t)x̄)

hence

(17) λ̈(t)Mx̄ = [λ(t)]−2∇V (x̄).

In order to find an equation for λ, let us now project both terms of this equation
in the direction of x̄, obtaining

λ̈(t)〈Mx̄, x̄〉 = [λ(t)]−2〈∇V (x̄), x̄〉.

Introducing the moment of inertial of a configuration x ∈ R3N

(18) I(x) :=
1

2
〈Mx, x〉

and using Euler’s Theorem, we deduce that λ satisfies the one-dimensional
Kepler equation

(λ) λ̈(t) = − µ

[λ(t)]2
, where µ =

V (x̄)

2I(x̄)
.
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Remark 3.3. It is not restrictive to assume I(x̄) = 1; indeed, if this is not the
case and I(x̄) 6= 1 we can define

x̃ =
x̄

I(x̄)
, λ̃(t) = I(x̄)λ(t),

and consider the homothetic motion x(t) = λ̃(t)x̃.

In virtue of the previous remark, we assume I(x̄) = 1, and replace the ex-
pression of λ̈(t) in (17) in order to obtain

Mx̄ = −1

µ
∇V (x̄).

Actually, from this equation we understand that the position vector of each
body in a central configuration is opposite to the one of the force acting on it
with a common scale factor (equal to −µ); furthermore the previous equation
can be written as

(x̄) ∇V (x)|x=x̄ − µ∇I(x)|x=x̄,

and the following result follows.

Proposition 3.4. The function x(t) = λ(t)x̄ (as in (b1)) solves Eq. (14) on
I ⊆ R if and only if

(i) λ : I → (0,+∞) solves the one-dimensional Kepler problem (λ) and
(ii) x̄ is a critical point of the potential V constrained to the inertia ellipsoid

E = {x ∈ R3N : I(x) = 1}

Definition 3.5. A configuration x̄ ∈ R3N \ ∆ that is a critical point of the
potential V constrained to the inertia ellipsoid E, V |E , is termed central con-
figuration.

We will investigate the problem of searching central configuration in Section
3.3, while here we give a result for motion of kind (b2).

Theorem 3.6. If the function x(t) = A(t)x̄ (as in (b2)) solves Eq. (14) on
I ⊆ R then

(i) there exists w ∈ R3 such that A(t)w = w, for any t ∈ I and A(t) is a
uniform rotation with rotation axes w;

(ii) x̄ is a planar central configuration and its plane is orthogonal to w.

In particular, x is a planar motion.

The proof of this results follows by a sequence of lemmata. First of all, as in
the homothetic case, let us replace x(t) = A(t)x̄ in (14) and obtain

MÄ(t)x̄ = ∇V (A(t)x̄) = A(t)∇V (x̄)
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or, equivalently,

(19) A−1(t)Ä(t)Mx̄ = ∇V (x̄)

Let us define the matrix

W (t) = A−1(t)Ȧ(t), t ∈ I;

Lemma 3.7. The matrix W (t) satisfies the following properties, for every t ∈ I:

(W1) W (t) is antisymmetric;
(W2) Ẇ (t) +W 2(t) = A−1(t)Ä(t).

Proof. In order to prove (W1), let us make the following computation

A(t)AT (t) = I3 =⇒ d

dt
[A(t)AT (t)] = 03

=⇒ Ȧ(t)AT (t) + A(t)ȦT (t) = 03

=⇒ A−1(t)Ȧ(t) = −ȦT (t)[AT (t)]−1

=⇒ W (t) = A−1(t)Ȧ(t) = −
[
Ȧ(t)A−1(t)

]T
= −W T (t).

With a similar computation we have

d

dt
[A−1(t)A(t)] = 03 =⇒ ˙A−1(t)Ȧ(t) + A−1(t)Ä(t) = 03

=⇒ ˙A−1(t) = −A−1(t)Ȧ(t)A−1(t)

Concerning (W2) we compute

Ẇ (t) = ˙A−1(t)Ȧ(t) + A−1(t)Ä(t)

= −A−1(t)Ȧ(t)A−1(t)Ȧ(t) + A−1(t)Ä(t) = −W 2(t) + A−1(t)Ä(t).

�

From property (W1) we deduce the existence of a vector function w(t) =
(w1(t), w2(t), w3(t)), t ∈ I, such that

W (t) =

 0 −w3(t) w2(t)
w3(t) 0 −w1(t)
−w2(t) w1(t) 0

 .
Lemma 3.8. There exists w ∈ R3 \ {(0, 0, 0)} such that w(t) = w, ∀t ∈ I.

Sketch of the proof After some geometric arguments (see [11, pp.35-37]), Eq.
(19) implies that

∀x ∈ R3, ∃y ∈ R3 : A−1(t)Ä(t)x = y ∀t ∈ I,
hence, by means of (W2) also Ẇ (t)+W 2(t) is constant and from straightforward
computations the thesis follows. �
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Without loosing in generality we can assume that

∃k ∈ R \ {0} : w(t) = (0, 0, k)∀t ∈ I.

Lemma 3.9. Each element of the central configuration x̄ = (x̄1, . . . , x̄N) ∈ R3N ,
belongs to the plane, Z := {(x1, x2, x3) ∈ R3 : x3 = 0}, orthogonal to w.

Proof. From Lemma 3.8 and assertion (W1) of Lemma 3.7 we deduce that

A−1(t)Ä(t) =

−k2 0 0
0 −k2 0
0 0 0

 ∀t ∈ I,

hence, A−1(t)Ä(t)x̄ ∈ Z for every t ∈ I. From Eq. (19) we deduce that
M−1∇V (x̄) ∈ Z, that is

1

mi
∇xiV (x̄) =

∑
j 6=i

mj
x̄j − x̄i
|x̄j − x̄i|3

∈ Z, ∀i = 1, . . . , N.

Let now ` ∈ {1, . . . , N} be such that

max
i=1,...,N

x̄i3 = x̄`3

and consider the third component of the previous equation when i = `∑
j 6=`

mj
x̄j3 − x̄`3
|x̄j3 − x̄`3|3

= 0.

From the choice of the index `, this choice forces

x̄j3 − x̄`3 = 0,

for any choice of index j. This concludes the proof. �

We are ready to prove the main result concerning motions of type (b2).

Proof of Theorem 3.6. Since W = A−1(t)Ȧ(t) for any t ∈ I, the matrix A solves

Ȧ(t) = WA(t), ∀t ∈ I.
In order to have a Cauchy problem that fits with our construction, we fix an
initial condition A(0) = B with B ∈ SO(3) and Bw = w. Indeed x̄ ∈ Z and we
want our motion x(t) = A(t)x̄ to start from a configuration that is (a rotation
of) x̄. It is well known that the unique solution of such Cauchy problem is the
matrix

A(t) = BeWt = B

cos(kt) sin(kt) 0
sin(kt) cos(kt) 0

0 0 1

 .
�

By means of Theorem 3.6 we can consider

x̄ = (x̄1, . . . , x̄N) and A(t) = eibeikt,
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for some b, k ∈ R. Multiplying both sides of Eq. (19) by x̄ we obtain

−2k2 = −∇V (x̄), hence k2 =
1

2
V (x̄).

Summing-up, we have shown that: given a planar central configuration x̄, there
are two solutions associated to it. Such solutions are uniform rotations around
the centre of mass x̄ (the origin) and have angular velocity equal to

k = ±
√

2V (x̄)

2
.

This motions are stationary in a rotating frame centered at the origin, for this
reason are termed relative equilibrium motions.

Let us conclude this section with a result on solutions of kind (b), namely,
homographic solutions.

Theorem 3.10. Assume that the homographic function x(t) = λ(t)A(t)x̄ (as
in (b)) solves Eq. (14) on I ⊆ R and that the matrix-function A is not the
identity matrix at any time. Then the motion x is planar.

By means of the previous result we can assume that x̄ ∈ R2N ≡ CN and the
existence of a function ϕ : I ⊆ R→ C \ {0} such that

ϕ(t)x = λ(t)A(t)x, ∀x ∈ R2, ∀t ∈ I.

An homographic solution has then the form x(t) = ϕ(t)x̄ and the following
equation has to be satisfied

(20) ϕ̈(t)Mx̄ =
ϕ(t)

|ϕ(t)|3
∇V (x̄).

Arguing as at p. 28 we find that the function ϕ has to satisfy the planar two-
dimensional Kepler problem

ϕ̈(t) = −µ ϕ(t)

|ϕ(t)|3
, with µ =

V (x̄)

2I(x̄)
,

while x̄ is necessarily a planar central configuration.

3.3. The search of central configurations. We have already defined a cen-
tral configuration (see Definition 3.5 at p. 29) as a solution x̄ = (x̄1, . . . , x̄N) ∈
R3N of equation (x̄), namely a solution of the central configuration equation

Mx̄ = −2I(x̄)

V (x̄)
∇V (x̄).

Let us remark that given a solution x̄ and any a ∈ R and A ∈ SO(3), then also
ax̄ = (ax̄1, . . . , ax̄N) and Ax̄ = (Ax̄1, . . . , Ax̄N) are solutions; hence it is not
restrictive to assume that I(x̄) = 1 and understand the central configuration
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equation and a constrained optimization problem. A central configuration is a
critical point of V on the inertial ellipsoid

E = {x ∈ R3N : I(x) = 1}.

The next result ensures that, for any distribution of the masses, a central
configuration always exists.

Lemma 3.11. Given m1, . . . ,mN > 0, there exists at least one central config-
uration for the N-body problem with this distribution of the masses.

Proof. We will prove that the constrained function V|E admits a global mini-
mizer. We first observe that E ∩∆ 6= ∅ and

lim
dist(x,∆)→0

V|E(x) = +∞;

We understand V defined also on such points, that is we define V (x) = +∞,
whenever x ∈ E ∩∆. Furthermore there exist points in E which are not in ∆,
let then x̂ ∈ E , x̂ /∈ ∆, and k := 2V (x̂). Consider the set

V >k := {x ∈ E : V (x) > k} .

Of course ∆ ∩ E ⊂ V >k and the set

V ≤k := E \ V >k = {x ∈ E : V (x) ≤ k}

is closed and bounded. Hence that exists x0 ∈ V ≤k such that

min
x∈V ≤k

V (x) = V (x0)

Since x̂ ∈ V ≤k and V (x̂) = k/2 < 2k, then V (x0) ≤ k/2 and x0 does not belong
to the boundary of V ≤k. We conclude that x0 is a critical point of V|E , hence a
central configuration. �

The next result guarantees a certain number of central configurations in which
all the bodies stay on the same line.

Moulton’s Theorem on collinear central configurations. Given N ≥ 3
and N positive masses, m1, . . . ,mN , there exist N ! central configurations for
the 1-dimensional N-body problem, one for each permutation of the indexes.

Proof. We prove the result when N = 3 (in this case the present theorem has
been proved By Euler in 1767 in [7]).
Let x1, x2, x3 ∈ R be the positions of the three bodies on a common line and
consider the inertia ellipsoid

E :=
{

(x1, x2, x3) ∈ R3 : m1x
2
1 +m2x

2
2 +m3x

3
i = 2

}
.
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Figure 10. Left: a central configuration for the 8-body problem with equal
masses. The force acting on a body (red arrow) is opposite to its position. Right:
a big mass is in the centre of the octagon, the situation remains the same.

As we already know, without loosing in generality, we can assume that the three
bodies has the centre of mass at the origin, this means that (x1, x2, x3) belong
to the plane

G :=
{

(x1, x2, x3) ∈ R3 : m1x1 +m2x2 +m3x3 = 0
}
.

Of course, (0, 0, 0) ∈ G and E ∩G is homeomorphic to S1. Let us now consider,
for any i, j ∈ {1, 2, 3} with i < j, the sets

∆ij =
{

(x1, x2, x3) ∈ R3 : xi = xj
}

which are actually three planes containing the origin, distinct from G (indeed
G cointains also non collisional elements). We can then define three couples of
points (see Figure 11)

{Pij, P ′ij} = ∆ij ∩ (G ∩ E), i, j ∈ {1, 2, 3}, i < j.

Let us observe that Pij and P ′ij are antipodal with respect to the origin and

(G ∩ E) \
⋃
i<j

{Pij, P ′ij}
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Figure 11. Construction of the proof of Multon’s Theorem when N = 3.

has six connected components. Arguing as in the proof of Lemma 3.11, we
deduce the existence of a central configuration in each component. We conclude
the proof showing that such central configuration is unique. In order to do that,
we prove that the hessian of the function V|G∩E is positive definite on any central
configuration, hence any critical point must be a minimizer and we deduce its
uniqueness.
In order to compute the hessian of V|G∩E at a central configuration, we define
the auxiliary function

f(x) :=
√
I(x)V (x), x ∈ (R3)3.

Then for any x ∈ E we have that f(x) = V (x) = V|E(x). We now compute

∇f(x) · v =
d

dt
f(x+ tv)|t=0

=
V (x)

2
√
I(x)
∇I(x) · v +

√
I(x)∇V (x) · v
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and

Hf(x)[v, v] =
d

dt
[∇f(x+ tv) · v]|t=0

= − V (x)

4[I(x)]
3
2

(∇I(x) · v)2 +
V (x)

2
√
I(x)

HI(x)[v, v]

+
∇V (x) · v√

I(x)
∇I(x) · v +

√
I(x)HV (x)[v, v].

Choosing x̂ ∈ E (hence I(x̄) = 1) and v ∈ Tx̄E (hence ∇I(x̂) · v = 0) we have

HV|E(x̂)[v, v] = Hf(x̂)[v, v] =
1

2
(Mv · v)V (x̂) +HV (x̂)[v, v]

and, since (Mv · v)V (x̂) > 0, we conclude the proof showing that

HV (x̂)[v, v] ≥ 0,∀v ∈ Tx̂E .
We first observe that for any x ∈ Rn, v ∈ TxRn ≡ Rn it holds

∇V (x) · v =
n∑
i=1

∇xiV (x)vi =
n∑
i=1

∑
j 6=i

mimj
xj − xi
|xj − xi|3

 vi

=
n∑

i<j; i,j=1

mimj
xj − xi
|xj − xi|3

(vi − vj)

= −
n∑

i<j; i,j=1

mimj
xi − xj
|xi − xj|3

(vi − vj),

hence for any x, v, w ∈ Rn

HV (x)[v, w] =
d

dε
[∇V (x+ εw) · v]|ε=0

=
d

dε

[
−

n∑
i<j; i,j=1

mimj
xi − xj + ε(wi − wj)
|xi − xj + ε(wi − wj)|3

(vi − vj)

]
|ε=0

= −
n∑

i<j; i,j=1

mimj
wi − wj
|xi − xj|3

(vi − vj)

+ 3
n∑

i<j; i,j=1

mimj
(xi − xj)(vi − vj)
|xi − xj|5

(xi − xj)(wi − wj)

= 2
n∑

i<j; i,j=1

mimj
wi − wj
|xi − xj|3

(vi − vj)

and the required inequality is proved. �



INTRODUCTORY TOPICS IN CELESTIAL MECHANICS 37

We conclude the section with a simple and interesting result due to J.L.
Lagrange (see [10]) concerning the 3-body problem. In this special case the
3 bodies are necessarily on the same plane, hence the central configuration
equation has 6 unknown. Assuming that the centre of mass is at the origin,
then the left unknown are 4; identifying two configuration when the first a
rotation of the second, the left unknown are just 3. It turns out that the
mutual distances

ρ12 = |x1 − x2|, ρ13 = |x1 − x3|, ρ23 = |x2 − x3|

can be chosen as a set of coordinates for the planar central configurations equa-
tions and we write both the potential V and the moment of inertia I as a
function of ρ = (ρ12, ρ13, ρ23). With a slight abuse of notation we obtain

V (ρ) =
3∑

i<j; i,j=1

mimj

ρij
,

and, introducing M = m1 +m2 +m3,

I(ρ) =
1

2M
(m1m2ρ

2
12 +m1m3ρ

2
13 +m2m3ρ

2
23).

To justify the last identity we observe that

m1m2ρ
2
12 +m1m3ρ

2
13 +m2m3ρ

2
23 =

∑
i<j

mimj|xi − xj|2

=
∑
i<j

mimj(|xi|2 + |xj|2 − 2xi · xj)

= 2MI(x)−
3∑
i=1

(mixi)
3∑
j=1

(mjxj)

= 2MI(x).

Theorem 3.12. When N = 3 and for any choice of m1,m2,m3 > 0, any
non-collinear central configuration is a regular triangle.

Proof. In virtue of what we have observed just before the statement of this
theorem, in order to determine a central configuration for the planar three
body problem we need to find ρ ∈ (R+)3 and λ 6= 0 such that

∇V (ρ) = λ∇I(ρ),

which means

−mimj

ρ2
ij

= λ
1

M
mimjρij, i, j = 1, . . . , 3.

This implies ρ12 = ρ13 = ρ23 =
(
−M

λ

) 1
3 , which is the thesis. �
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Corollary 3.13. When N = 3 and for any choice of the masses, there exist
exactly (up to rotations) five central configurations for the 3-body problem cen-
tered at the origin: three of them are collinear and the other two form a regular
triangle.

** TO DO ** Figura con i due triangoli e i moti omografici .

Remark 3.14. With a proof similar to the one of Theorem 3.12 one can show
that when N = 4 the only non planar central configuration is the tetrahedron.
In spite of the simplicity of these proofs, there are many open problems in the
search of central configurations (see for instance [17, Problem 6] and [16]). The
most struggling one seems to be: is the number of central configurations finite,
up to symmetry? The phrase up to symmetry is important since the set of
central configurations is invariant under rotations, translations and dilations.
This question has a positive answer when N = 3 and we will prove it in the
next pages. When N = 4, it has been recently proved with a computer assisted
proof in [9]; when N = 5 and just in the planar case, it is the subject of the
paper [1].

Remark 3.15. The role of central configuration is not confided to the study of
homothetic and homografic motions. Central configurations are also important
for the study of collisions in the N-body problem. Homothetic motions are ex-
amples of total-collision orbits; at a certain moment, all of the bodies collide
at the center of mass. Although there exist other nonhomothetic total-collision
orbits and all such orbits approach central configurations at collision. More pre-
cisely, if the collapsing configuration is blown-up, say to have moment of inertia
1, then the rescaled configuration approaches the set of central configurations.
For example, in the three-body problem, Siegel showed that every triple collision
solution has asymptotic shape either an equilateral triangle or one of Euler’s
collinear central configuration.
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4. The restricted 3-body problem

In the restricted three-body problem, a body of negligible mass (the planetoid)
moves under the influence of two massive bodies (the primaries) whose masses
are m1 and m2. Having negligible mass, the force that the planetoid exerts on
the primaries may be neglected, and the system can be analysed and therefore
be described in terms of a 2-body motion. If m1,m2 are the masses of the
primaries and x1(t), x2(t) their positions at time t we then have

m1x1(t) = −m2x2(t).

The restricted three-body problem is easier to analyze theoretically than the
full problem. It is of practical interest as well since it accurately describes many
real-world problems. For these reasons, it has occupied an important role in
the historical development of the three-body problem. In the restricted 3-body
problem we are then left to understand the motion of the planetoid under the
gravitational influence of the two primaries, this means to study the differential
equations given by the Newton’s law

(21) ẍ3 =
m1

|x1(t)− x3|3
(x1(t)− x3) +

m2

|x2(t)− x3|3
(x2(t)− x3),

where we have scaled G = 1. Let us remark that (21) is a non-autonomous
second order ordinary differential equation.

A usual assumption is that the two-body motion consists of circular orbits
around the center of mass, and the planetoid is assumed to move in the plane
defined by the circular orbits. We will term this problem the restricted circular
planar 3-body problem (RCP3BP). We furthermore make the not restrictive
assumptions m1 +m2 = 1, or equivalently that

there exists µ ∈
(

0,
1

2

)
such that m1 = 1− µ, m2 = µ.

With these assumptions and fixing the center of mass of the two primaries at
the origin, we can write

x1(t) = −µeit, x2(t) = (1− µ)eit,

and Equation (21) reads

(22) ẍ3 =
1− µ

| − µeit − x3|3
(−µeit − x3) +

µ

|(1− µ)eit − x3|3
(
(1− µ)eit − x3

)
.

We now pass to the rotating system where the two primaries are fixed at

P1 = (−µ, 0), P2 = (1− µ, 0),

and

x1(t) = R(t)

(
−µ
0

)
, x2(t) = R(t)

(
1− µ

0

)
, x3(t) = R(t)z(t),
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where

R(t) =

(
cos t − sin t
sin t cos t

)
.

A stationary solution for the planetoid in the rotating frame corresponds to a
circular motion in the inertial one.

The equation of motion of the planetoid in the rotating frame can be com-
puted obtaining

(23) z̈ + 2Kż = ∇φ(z).

where K =

(
0 −1
1 0

)
and

φ(z) =
1

2
|z|2 +

1− µ
|P1 − z|

+
µ

|P2 − z|
.

The following quantity, the Jacobi’s integral, is constant along solutions

(24) J(t) = 2φ(z(t))− |ż(t)|2.
indeed

d

dt
J(t) = 2 〈∇φ(z), ż〉 − 2 〈ż, z̈〉 = 4 〈ż, Kż〉 = 0.

Furthermore, J allows to define the Hill’s region

(25) Hc =

{
z ∈ R2 : φ(z(t)) ≥ J(t)

2

}
.

4.1. Lagrangian equilibrium points. Let us now determine equilibria for
Eq.(23) imposing ∇φ(z) = 04, that is

(26) z =
1− µ
|z − P1|3

(z − P1) +
µ

|z − P2|3
(z − P2).

Writing this equation in components we have

(27)


x =

1− µ
ρ3

1

(x+ µ) +
µ

ρ3
2

(x+ µ− 1),

y =
1− µ
ρ3

1

y +
µ

ρ3
2

y.

where z = (x, y), P1 = (−µ, 0), and ρi = |z − Pi|, i = 1, 2.
Let us remark that y = 0 solves the second equation; hence replacing in the

first one we get x = h(x), with

(28) h(x) =
1− µ
ρ3

1(x)
(x+ µ) +

µ

ρ3
2(x)

(x+ µ− 1),

4Indeed writing the Eq.(23) as a first order system

ż = w, ẇ = −2Kż +∇φ(z)

its critical or stationary points satisfy w = 0 and ∇φ(z) = 0.
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where, since y = 0,

ρ1(x) = |x+ µ|, ρ2(x) = |x+ µ− 1|.

From a qualitative study of function h (see Figure 12) we infer the existence of
three solutions, for any value of the parameter µ: L1, where the third body stays
between the other two, L2 ed L3. This point are termed collinear equilibria,
indeed the third body stay on the line generated by the two primaries.

 

Figure 12. At the left side the qualitative graph of function h. At the right
side, the 5 equilibria for the RCP3BP: in L1, L2 and L3 the 3 body are in a
collinear configuration. In L4 and L5 the 3 bodies stay on the vertices of a regular
triangle.

Let us now assume that y 6= 0. From Eq. (26) we infer

(29)

(
−1− µ

ρ3
1

− µ

ρ3
2

)
z = −1− µ

ρ3
1

P1 −
µ

ρ3
2

P2.

Since y 6= 0, this equation is equivalent to

(30)


1−

(
1− µ
ρ3

1

+
µ

ρ3
2

)
= 0;

−1− µ
ρ3

1

µ− µ

ρ3
2

(1− µ) = 0.
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From the second equation we obtain ρ1 = ρ2 = ρ; replacing in the first one we
have

(31) 1− 1

ρ3
= 0 ⇐⇒ ρ = 1.

We conclude that when y 6= 0 we obtain two new equilibria in which |z−P1| =
|z − P2| = 1. Since |P1 − P2| = 1, in these equilibria, termed L4 and L5, the
third body forms a regular triangle with the primaries. L4 and L5 are termed
triangular equilibria.

We then conclude that Eq. (23) admits five equilium points (see Figure 12).

4.2. Stability via linearization. Let us now study the stability of the five
Lagrangian points via linearization (see the appendix for a short review). We
write Eq. (23) as a first order system{

ż = w,

ẇ = −2Kw +∇φ(z),

we define u = (z, w) and we linearize the system at Lj that is at uj = (Lj, 0),
j = 1, . . . , 5, obtaining

u̇ = Aju where Aj =


0 0 1 0
0 0 0 1
aj bj 0 2
bj cJ −2 0

 .

The 2× 2 matrix dawn-left is the hessian of φ at uj, φ
′′(Lj), that is

aj = φxx(uj), bj = φxy(uj), cj = φyy(uj).

In order to the test applicability of Hartmann-Grobmann Theorem we compute
the eigenvalues of Aj, which indeed solves

(32) λ4 − (aj + cj − 4)λ2 +
(
ajcj − b2

j

)
= 0.

When λ is a solution of the previous equation, also −λ, λ5 and −λ solve it;
for this reason asymptotic stability is never reached. Furthermore, to avoid
instability you need four eigenvalues with vanishing real part.

In order to determine solutions of (32), we compute the terms of the hessian
of φ. Since ∇φ(z) = z − (1− µ) z−P1

|z−P1|3 − µ
z−P2

|z−P2|3 , we obtain

φ′′(z) = Id2 − (1− µ)
Id2

|z − P1|3
+ 3 (1− µ)

(z − P1)⊗ (z − P1)

|z − P1|5

−µ Id2

|z − P2|3
+ 3µ

(z − P2)⊗ (z − P2)

|z − P2|5
,

5λ̄ is the complex-conjugate to λ.



INTRODUCTORY TOPICS IN CELESTIAL MECHANICS 43

where w ⊗ w =

(
w2

1 w1w2

w1w2 w2
2

)
. Since z − P1 =

(
x+ µ
y

)
and z − P2 =(

x+ µ− 1
y

)
, we have

φxx = 1− 1− µ
ρ3

1

+ 3 (1− µ)
(x+ µ)2

ρ5
1

− µ

ρ3
2

+ 3µ
(x+ µ− 1)2

ρ5
2

,

φxy = φyx = 3 (1− µ)
(x+ µ) y

ρ5
2

,

φyy = 1− 1− µ
ρ3

1

+ 3 (1− µ)
y2

ρ5
1

− µ

ρ3
2

+ 3µ
y2

ρ5
2

.

(33)

Collinear equilibria L1, L2 and L3. In this case y = 0 and

ρ2
1 = (x+ µ)2 ρ2

2 = (x+ µ− 1)2 .

Replacing in (33) we get, for j = 1, 2, 3,

(34)


aj = 1 + 2

(
1−µ
ρ31

+ µ
ρ32

)
> 0;

bj = 0;

cj = 1−
(

1−µ
ρ31

+ µ
ρ32

)
.

It turns out, by some smart geometric remarks, that cj < 0, for j = 1, 2, 3,
hence ajcj < 0 and the quanties

(35) λ2
± =

(aj + cj − 4)±
√

(aj + cj − 4)2 − 4ajcj

2
.

are real. Concerning collinear equilibria we can then conclude that

• since λ2
+ > 0, then two eigenvalues are real with opposite sign

• since λ2
− < 0, then two eigenvalues are purely imaginary numbers.

From the first statement we infer that L1, L2 and L3 are unstable for any choice
of the parameter µ.
Collinear equilibria L4 and L5. In this case ρ1 = ρ2 = 1 and

x+ µ = x+ µ− 1 =
1

2
, y =

√
3

2
.

hence, replacing in (33) we obtain

(36) aj =
3

4
, bj =

3
√

2

4
(2µ− 1) , cj =

9

4
.

Equation (32) reads

λ4 + λ2 +
27

4
µ (1− µ) = 0,
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hence

λ2
± =
−1±

√
1− 27µ (1− µ)

2
.

Studying the function

f(µ) = 1− 27µ(1− µ) on

[
0,

1

2

]
it turns out that f(µ) > 0 on [0, µ∗), while f(µ) < 0 on (µ∗, 1/2], where
µ∗ ∼ 0.0385, hence we conclude that

• if µ ∈ [0, µ∗], then λ2
± are real and negative. In this case the four eigen-

values are purely imaginary, hence the linearization method does not give
any information about the stability of L4 and L5;
• if µ ∈ (µ∗, 1/2], then λ2

± ∈ CrR, hence the four eigenvalues are distinct
complex numbers; two of them have positive real part and the other two
have negative real part. We infer that in this case L4 L5 are unstable.

4.3. Small oscillation near Lagrangian points: an application of the
Lyapunov theorem. In this paragraph we will investigate the presence of
periodic solutions for (23) near a Lagrangian point when the linearized system
admits pairs of purely complex eigenvalues. In order to do that we will use
Lyaponov’s center theorem (a reference for this part is [2]).

4.3.1. Lyapunov center theorem. Assume that a nonlinear system

(37) u̇(t) = f(u(t)), f ∈ C2 (Rn,Rn) ,

admits p = 0 as a singular points, i.e. f(0) = 0. Assume now that the jacobian
matrix

A = f ′(0) = Jf(0)

has a pair of purely complex eigenvalues ±iω0, for some ω0 ∈ R: this is a
necessarely but not sufficient condition to have periodic solution near 0 in the
nonlinear system (see the appendix). In order to make this condition sufficient
we need some further auumptions: this is the content of Lyapunov theorem.

Assume that Eq.(37) admits a first integral6 b : Rn → R at least of class C2

and let us now merge the dynamical system into the one-parameter family

(38) u̇(t) = ψ(µ, u(t)), ψ(µ, u) = f(u) + µ∇b(u), µ ∈ R.

Assuming b of class at least C2, we compute the jacobian matrix at u = 0

Aµ =
∂

∂u
ψ(µ, u)|u=0 = [f ′(u) + µb′′(u)]u=0 = f ′(0) + µB = A+ µB.

6A first integral for (37) is a non-constant function b ∈ C1 (Rn,R) such that if u is a solution for Eq.(37)
defined on the interval I ⊂ R, then there exists c ∈ R such that b(u(t)) = c, for every t ∈ R.
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Where b′′(u) is the hessian of b at u and B = b′′(0). Of course A0 = A = f ′(0).
Let now λ(µ) = (λ1(µ), ..., λn(µ)) be the n-uple of eigenvalues of Aµ with

(39) λ(µ) = α(µ) + iβ(µ) , ∀µ ∈ R,
Since φ is of class C1 it turns out that α, β are both of class C1 (R,Rn). We
consider the following assumptions on the eigenvalues of Aµ

(a) A = A0 is a non-singular matrix that admits a pair of simple and purely
imaginary eigenvalues of the form ±iω0, with ω0 ∈ R;

(b) ikω0 is not an eigenvalue for A, ∀k ∈ Z , k 6= ±1;
(c) α′(0) 6= 0.

Under this assumptions we claim to prove the existence of a family of periodic
solutions of (37) that approaches (in some sense) to the solution u = 0. More
precisely, we will prove the presence of small oscillations near u = 0 in the
following sense.

Definition 4.1. System (37) admits small oscillations near u = 0 if there
exist r > 0, ω : (−r, r) −→ R+ of class C1 and a family of functions (us)s,
s ∈ (−r, r), us : R→ Rn, such that:

• for every s ∈ (−r, r), us is a periodic and non-constant solution of (37)
with period Ts = 2π

ω(s);

• ω(s) −→ ω0 if s −→ 0 (this means, since ω is continuous, to require that
ω(0) = ω0);
• maxt∈[0,Ts] ‖us(t)‖ −→ 0 if s −→ 0.

Here the statement of Lyapunov theorem.

Lyapunov’s Center Theorem. Consider the dynamical system (37), assume
that f(0) = 0 and assumptions (a) e (b) on the jacobian matrix A. Furthermore
assume the existence of a first integral b ∈ C2 (Rn,R) such that b′′(0) is not
singular. Then (37) admits small oscillations near u = 0.

In order to prove Lyapunov theorem we need to preliminary Lemmata. The
first one is a bifurcation result due to Hopf for which we will not provide a
proof.

Lemma 4.2 (Hopf’s Theorem). Consider the family of dynamical systems (38),
where f ∈ C2 (Rn,Rn), b ∈ C3 (Rn,R) and φ(µ, 0) = 0 for every µ ∈ R. If
assumptions (a),(b) and (c) on A = f ′(0) are satisfied, then:
there exist r > 0 and s0 ∈ (−r, r), two functions ω : (−r, r) −→ R and µ :
(−r, r) −→ R both of class C1(−r, r), with ω(s) > 0 for every s, and there
exists a family of periodic functions (us)s s ∈ (−r, r), where us : R −→ Rn,
such that:

i) for every s, us solves (38) with µ = µ(s);
ii) µ(s) −→ 0 and ω(s) −→ ω0 if s −→ s0;
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iii) the functions us have period Ts = 2π
ω(s);

iv) maxt∈[0,Ts] ‖us(t)‖ −→ 0 if s −→ s0.

The second lemma allows to determine periodic solutions for (37) as periodic
solutions for (38) for some µ.

Lemma 4.3. If u is a T -periodic solution of (38), then u is a T -periodic solu-
tion for (37)

Proof. If µ = 0, then the result is trivial. Let u = u(t) be a T -periodic solution
of (38) for some µ 6= 0. Let β(t) = b(u(t)), then

(40) β̇(t) =
d

dt
b(u(t)) = ∇b(u(t)) · u′(t) = ∇b(u(t)) · f(u(t)) + µ | ∇b(u(t)) |2 .

For every ξ ∈ Rn, since f is of class C2, the Cauchy problem

u̇(t) = f(u), u(0) = ξ

admits a unique solution, uξ(t). Since b is a first integral we have

0 =
d

dt
(b(uξ(t))) = ∇b(uξ(t)) · u̇ξ(t) = f(uξ(t)) · ∇b(uξ(t)),

for every t in the domain of uξ. In particular if t = 0 we have

(41) f(ξ) · ∇b(ξ) = 0.

Since the choice of ξ is arbitrary, Eq. (40) reads

β̇(t) = µ | ∇b(u(t)) |2,

hence the fuction β is monotone; for instance, if µ > 0, then β(t) is not-
decreasing. Since u is T -periodic, then β(0) = b(u(0)) = b(u(T )) = β(T ).
Hence, by virtue of the monotonicity of β, we deduce that β is constant and

β̇(t) = µ | ∇b(u(t)) |2≡ 0.

Since µ 6= 0, we have ∇b(u(t)) = 0 hence, from (38) we get that u solves
(37). �

Proof of Lyapunov theorem. By means of Lemma 4.3, we can write the thesis
as riscriviamo la tesi nel modo seguente:
there exists r > 0, two C1 functions ω : (−r, r)toR and µ : (−r, r) → R, with
ω(s) > 0 for every s, and there exists a family of periodic functions (us)s,
s ∈ (−r, r), where us : R→ Rn such that

• for every s, us solves (38) with µ = µ(s);
• µ(s)→ 0, ω(s)→ ω0 as s→ 0;
• for every s, us has period Ts = 2π

ω(s) ;

• maxt∈[0,Ts] ‖us(t)‖ → 0 as s −→ 0.
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We claim to apply Hopf’s theorem with s0 = 0. In order to do that we need to
verify assumptions; first of all we remark that from Eq. (41) and assumption
b ∈ C2, we have

(42) f ′(ξ)y · ∇b(ξ) + f(ξ) · b′′(ξ)y = 0, ∀ξ, y ∈ Rn.

When ξ = 0
Ay · ∇b(0) + f(0) · b′′(0)y = 0, ∀y ∈ Rn;

Since f(0) = 0 and A is not singular we have ∇b(0) = 0, hence

ψ(µ, 0) = f(0) + µ∇b(0) = 0.

We are then left to show assumption (c). Consider Eq. (42). Since f ∈ C1,
f(0) = 0 and b′′ is linear, the map ξ → f(ξ) · b′′(ξ)y is differentiable at ξ = 0
and
d

dt
[f(th) · b′′(th)y]t=0 = [(f ′(th)h) · (b′′(th)y) + f(th) · b′′(h)y]t=0 = (Ah) · (By).

We can then differentiate (42) in ξ = 0, obtaining

f ′′(0)[y, z] · ∇b(0) + Ay ·Bz + Az ·By = 0, ∀y, z ∈ Rn.

Since ∇b(0) = 0, we have

Ay ·Bz + Az ·By = 0, ∀y, z ∈ Rn,

hence, since B is symmetric,

(43) ATB +BA = 0.

By assumption (a) it is not restrictive to write

A =

(
S 0
0 R

)
, where S =

(
0 −ω0

ω0 0

)
and R is such that ±iω0 do not belong to its spectrum (since ±iω0 are simple
eigenvalues for A).
Since B is symmetric, there exist two symmetric matrices U and C, resp. 2× 2
and (n− 2)× (n− 2), such that

B =

(
U M
MT C

)
,

From (43) immediately follows that

SU = US SM = MR.

Since ω0 6= 0 and SU = US, we deduce the existence of a real number δ such
that U = δI2. Let X, Y ∈ Rn−2 be respectively the first and the second line of
M From SM = MR follows that X ed Y solve{

XR + ω0Y = 0,

Y R− ω0X = 0.
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From the second equation X = (ω0)
−1Y R and replacing in the first we have

Y
(
R2 + (ω0)

2I
)

= 0.

Since ±iω0 are not eigenvalues for R, we deduce X = Y = 0; hence M is a null
matrix and B can be written as.

B =

 δ 0 0
0 δ 0
0 0 C

 ,

with δ 6= 0 being B not singular. Hence

A+ µB =

 µδ −ω0 0
−ω0 µδ 0

0 0 R + µC


and the eigenvalues λ(µ) corresponding to λ(0) = iω0 are

λ(µ) = µδ + iω0.

Hence α(µ) = µδ and α′(µ0) = δ 6= 0, which is assumption (c) �

4.3.2. Application to the RPC3BP. We claim to apply Lyapunov Theorem to
the RPC3BP in order to find periodic solution (in the rotating frame) near
Lagrangian equilibrium points.

First of all we need a first integral; with this aim we can consider the Jacobi
integral introduced in (24)

J(t) = 2φ(z(t))− |w(t)|2

where z solves (23) and w = ż. Interpreting J as a function of z and w, its
hessian at Lj j = 1, . . . , 5 is

(44) J ′′(Lj) =

(
2φ′′(Lj) 02

02 −I2

)
,

and it is not singular since

(45) det (J ′′(Lj)) = 4 det (φ′′(Lj))

and by virtue of Eqs. (34) and (36).
In order to verify the assumptions on the the matrices Aj, j = 1, . . . , 5, let us

go back to Section 4.2 at page 42. When j = 1, 2, 3 the matrix Aj has exactly
one pair one purely imaginary eigenvalues, hence Lyapunov theorem can be
applied to the collinear Lagrangian points.

Theorem 4.4 (Small oscillations near L1, L2 and L3). In a neighborhood of
every collinear Lagrangia point L1, L2 and L3, the RPC3BR admits a family of
solution which are periodic in the rotating frame and their period tends to 2π

ωj
,

where ωj is the imaginary part of the (unique) pair of purely complex eigenvalue
of the matrix Aj.



INTRODUCTORY TOPICS IN CELESTIAL MECHANICS 49

Concerning points L4 and L5 we go back to the discussion at page 43. We
proved that if µ ∈ (0, µ∗) (with µ∗ ≈ 0.0385 is the smaller soluton of 27µ(1−µ) =
1) then the four eigenvalues are purely imaginary, we term them

±iω′, ±iω′′ with 0 < ω′ < ω′′.

Indeed we obtained

ω′ =
1

4

√
1−

√
1− 27µ(1− µ) and ω′′ =

1

4

√
1 +

√
1− 27µ(1− µ)

and in particular

(ω′′)2 + (ω′)2 = 1, (ω′′)2(ω′)2 =
27

4
µ(1− µ).

Hence if µ ∈ (0, µ∗) we can apply Lyapunov theorem choosing ω0 = ω′′7.
If we want to apply Lyapunov theorem to the frequence ω′ we need to impose

the further non-resonance condition

ω′′ 6= kω′, k ∈ N, k ≥ 2

that is equivalent to

(46)
27

4
µ(1− µ) 6= µk :=

k2

(1 + k2)2
.

Observe that µk → 0 as k →∞ and

Theorem 4.5 (Small oscillations near L4 and L5). If µ ∈ (0, µ∗), in a neigh-
bourhood of both collinear Lagrangian point L4 and L5 the RPC3BR admits a
family of solution which are periodic in the rotating frame and their period tends
to 2π

ω′′ .
Furthermore if µ 6= µk, then there exists a second family of solution which are

periodic in the rotating frame and their period tends to 2π
ω′ .

7When we choose as primaries Sun-Jupiter or Earth-Moon we have resp. µ ≈ 1/1000 and µ ≈ 1/82 ≈ 0.012,
both smaler then µ∗
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Appendix A. Bessel functions

In this section we propose a brief overview on Bessel functions, for a more
complete treatment we refer to the book [4, Chapter 3].

Let us consider the so called Bessel equation

x2y′′(x) + xy′(x) + (x2 − α2)y(x) = 0, α ∈ R.

The set of its solutions is isomorphic to R2 and we recall here the Frobenius-
Fuchs method to determine them as a power series. Let us assume that

α ∈ N

and look for solution of the form

y(x) =
∞∑
k=0

akx
k+α, for some real sequence (ak)k.

Since, at least formally,

y′(x) =
∞∑
k=0

(k + α)akx
k+α−1, y′′(x) =

∞∑
k=0

(k + α)(k + α− 1)akx
k+α−2,

replacing in the equation we obtain

0 = x2y′′(x) + xy′(x) + (x2 − α2)y(x)

=
∞∑
k=0

(k + α)(k + α− 1)akx
k+α +

∞∑
k=0

(k + α)akx
k+α

+
∞∑
k=0

akx
k+α+2 − α2

∞∑
k=0

akx
k+α

=
∞∑
k=0

[(k + α)2 − α2]akx
k+α +

∞∑
k=0

akx
k+α+2

=
∞∑
k=0

k(k + 2α)akx
k+α +

∞∑
k=0

akx
k+α+2

= 0 · a0 + (1 + 2α)a1 +
∑
k≥2

[(k2 + 2αk)ak + ak−2]x
k+α

Imposing now that every coefficient vanish, we obtain a1 = 0 (since α is a
natural number) and, for every k ≥ 2,

ak = − ak−2

k(2α + k)
, ∀k = 0, 1, 2, . . . .



INTRODUCTORY TOPICS IN CELESTIAL MECHANICS 51

We do not have any restriction on the choice of a0. We then deduce that ak = 0
when k is odd, and, for every j ≥ 1

a2j = − a2j−2

22j(j + α)
= (−1)j

a0 α!

22jj!(j + α)!
.

Choosing now

a0 =
1

2α α!
we have

a2j =
(−1)j

j!(j + α)!

1

22j+α
,

and we obtain the Bessel function of order α ∈ N

Jα(x) =
∞∑
j=0

(−1)j

j!(j + α)!

(x
2

)2j+α

.

For the proof of the next result we refer to the book [4, Chapter 3.3, p.64].

Proposition A.1. For every n ∈ N, the following equality holds

Jn(x) =
1

π

∫ π

0

cos(nu− x sinu) du.
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Appendix B. A very brief recap on linearization method

Let f : Ω ⊆ Rn → Rn be of class C1(Ω) and consider the autonomous
dynamical system

(47) ẋ = f(x).

We will indicate with x(t;x0) the solution of the Cauchy problem associated
to (47) with initial condition x(0) = x0. The point x∗ ∈ Ω is an equilibrium
point is f(x∗) = 0. We can characterize an equilibrium point with respect to
the behaviour of solutions of the dynamical system near it. We say that an
equilibrium x∗ is stable if a solution that starts close to it remain close to it
when the time evolves, i.e.

∀ε > 0 ∃δ > 0 such that

x0 ∈ Ω and |x∗ − x0| < δ =⇒ |x(t;x0)− x∗| < ε,∀t > 0.

An equilibrium x∗ is asymptotically stable if it is stable and

∃r > 0 such that x0 ∈ Ω and |x∗ − x0| < r =⇒ lim
t→0

x(t;x0) = x∗.

An equilibrium x∗ is unstable if it is not stable.
Let now x∗ be an equilibrium point; since f is of class C1 we can write

f(x∗ + η) = Jf(x
∗)η + o(‖η‖), as ‖η‖ → 0,

whre Jf(x
∗) the jacobian matrix of f at x∗. In order to study the behaviour

the solutions near x∗ we replacing x = x+ + η in (47) and obtain

η̇ = Jf(x
∗)η + o(‖η‖) as ‖η‖ → 0.

Neglecting the term o(‖η‖) we obtain the linearized system

(48) η̇ = Aη with A = Jf(x
∗).

We can study stability of the origin for this linear system considering the eigen-
values of the matrix A:

• if there exists at least one eigenvalue with strictly positive real part, then
the origin is unstable;
• if every eigenvalue of A has strictly negative real part, then the origin is

asymptotically stable;
• if every eigenvalue has negative real part then the origin is stable.

The origin (as an equilibrium point of the linearized system (48)) is termed
hyperbolic if every eigenvalue of the matrix A has non-vanishing real part. The
next result state when stability property of the origin are inherited from x∗

(equilibrium point for (47)).
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Theorem B.1 (Hartman-Grobman Theorem). Assume that the origin is an
hyprbolic equilibrium point for the linearized system (48). If the origin is asymp-
totically stable/unstable then x∗ is asymptotically stable/unstable as an equilib-
rium point for (47).
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