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Abstract

Gauge theory is the mathematical equivalent of a wizard’s cauldron.
In go lizard tails (Topology: differential and algebraic), bat wings (Anal-
ysis: real, complex and PDE), and the pulsing heart of a fiery dragon
(Geometry: differential and algebraic). Out comes an amazing, misteri-
ous, landscape made of deep, intoxicating, relationships between far-off
theories. Brace yourself, breath deeply, plunge in. Enjoy.

Remark. No animals were harmed in the writing of these notes. Don’t
forget to send me your corrections.

1 Introduction

Analysis on Rn encounters no difficulties in differentiating vector fields and in
higher-order calculus: everything reduces to repeated derivatives of functions.
Partial derivatives commute, and the concept of constant vector fields leads to
no surprises: constant means constant, no matter what route the vector field
follows within its domain.

The concept of a differentiable structure has the stated goal of extending
analysis to manifolds, but only does half the job: we can differentiate functions
and forms but not vector fields, tensors or sections of vector bundles. In partic-
ular, without additional structure we cannot even define second derivatives of a
function. In this sense, a differentiable structure only provides the foundation
for first-order calculus.

Example 1. Let E →M denote a R-vector bundle of dimension r. By definition
there exists an open covering {Ui} of M and local frames of E|Ui

, thus coordi-
nates. It follows that E|Ui

≃ Ui × Rr. Let gij : Ui ∩ Uj → GL(r,R) denote the
corresponding transition maps. This means that if a section σ has coordinates
si := (si1, . . . , s

i
r)

T over Ui and coordinates sj := (sj1, . . . , s
j
r)

T over Uj , then
si = gij · sj on Ui ∩ Uj .

The naive way of differentiating σ in a given direction X ∈ TpM , which uses
only the differentiable structure on M , would be by positing that the vector
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∇Xσ(p) has coordinates dsi(X) in any Ui. This definition is however well-
posed only if dsi(X) = gij · dsj(X). Substitution on the LHS then leads to
dgij(X) · sj + gij · dsj(X) = gij · dsj(X), for all X and p. This implies that gij
must be constant: this generally does not hold, it is a strong assumption on E.

We summarize as follows. (i) There is no difficulty in defining derivatives
inside a single chart, eg of sections compactly suppported in the chart. Problems
arise with global sections, or if we want to make the definition independent of the
chart. (ii) The naive definition works only for a special class of vector bundles:
we will meet such bundles later on, in the context of flat connections. (iii) In
general, it is instead necessary to neutralize the term dgij via a more complicated
notion of differentiation, encoded in the general notion of “connection”.

Example 2. A function on Rn is convex iff it restricts to a convex function
along lines. This seemingly innocuous notion, closely related to the Hessian of
f , hides the fact that, even on R, a function can change its nature drastically
under reparametrization of the domain or the range: the concave function log x
becomes linear or convex under multiple right-composition with exp, and con-
versely with left-composition. The point is that the notion itself of line changes.
Connections provide a coordinate-free definition of lines (geodesics), eliminat-
ing this ambiguity. In turn, this provides the notion of second derivatives of a
function.

The full goal of analysis on manifolds is thus achieved only after adding a
connection, but connections are not unique so this requires making an extra
choice. Starting from a topological manifold, we thus face two choices: a dif-
ferentiable structure and a connection. Each choice comes with its own moduli
spaces, features, etc., and it is natural to try to make a “best choice”.

Our viewpoint here will be that we have already made the choice of a differ-
entiable structure. Our goal is thus to focus only on the connections compatible
with that choice, describing their properties and providing means to distinguish
them. Along the way we shall discuss the new features that arise in calculus on
manifolds: non-commutativity of derivatives and holonomy groups. This will
help us start to understand which connection might be “best” for our purposes.

Remark. Students generally first encounter connections in the context of Rie-
mannian geometry. This is incongruous given that, as explained above, the
concept lies squarely within the wider realm of differential geometry. It is ex-
plained by the fact that a Riemannian metric induces a canonical connection
on the tangent bundle, uniquely defined by certain properties. This is the Levi-
Civita connection.

Extending analysis to manifolds provides the first, basic, reason for studying
connections. The next step is based on the observation that connections tend
to incorporate important elements of the underlying geometry. We shall discuss
several instances of this principle.
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The simplest instance is perhaps Chern-Weil theory, which shows how to use
connections to construct invariants of vector bundles.

Another is provided by the theory of flat connections and the Narasimhan-
Seshadri theorem, which shows how certain types of connections correspond to
special structures on a vector bundle: local systems and stable holomorphic
structures.

The most sophisticated manifestation of this principle mentioned in these
notes concerns Donaldson’s work on differentiable structures on 4-manifolds. In
this context one considers families (moduli spaces) of connections. It turns out
that certain such moduli spaces contain highly non-trivial information on the
differentiable structure of the underlying manifold. We refer to [?] for a full
account of this.

Further motivation for studying gauge theory comes from the wealth of ap-
plications and ideas which originated there, then produced results also in other
parts of mathematics. The notion of bubbling and the analogies and relation-
ships between gauge theory and calibrated geometry are important examples of
this. We shall only touch upon these topics.

Yet another source of motivation comes from particle physics. The theory of
connections is the mathematical formulation of the theory of gauge fields, hence
its name. We will not investigate this relationship.

2 Foundations

In this section M will refer to a differentiable manifold, generally of dimension
n. K will denote either R or C.

Vector bundles. Recall that a smooth vector bundle over a field K is a
smooth manifold E endowed with a surjective map π : E → M over a smooth
manifold M such that (i) each fibre Ex := π−1(x) has the structure of a
K-vector space of fixed dimension r, (ii) there exists an open cover {Ui} of
M and fibre-preserving diffeomorphisms ϕi : π−1(Ui) → Ui × Kr such that
ϕi ◦ ϕ−1

j : (Ui ∩Uj)×Kr → (Ui ∩Uj)×Kr are isomorphisms on each fibre. We

thus obtain maps gij : Ui ∩Uj → GL(r,K), gij(x) := (ϕi ◦ ϕ−1
j )|x×Kr . The data

{Ui, ϕi} (or, to simplify, just {Ui}) is called a local trivializing atlas, while gij
are called the transition maps.

This definition generates two equivalent points of view on the concept of
“equivalent” vector bundles. The global point of view is that two vector bun-
dles E, E′ over the same M are equivalent if there exists a fibre-preserving
diffeomorphism Λ : E → E′ which covers the identity on M and restricts to an
isomorphism on each fibre. The local point of view is that there exist trivializing
atlases wrt the same open cover {Ui} and maps λi : Ui → GL(r,K) such that
λigij = g′ijλj on Ui ∩ Uj . The maps λi are simply the matrices representing Λ
in terms of the given trivializations.

Every vector bundle admits smooth sections. In general, any section will van-
ish in some points. We are particularly interested in the existence of nowhere-
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vanishing sections, because any such section determines a trivial line sub-bundle,
thus a splitting E = E′ ⊕ R. This generalizes to looking for sections which are
pointwise linearly independent. This is a strictly stronger condition than the
global linear independence of sections. Indeed, the space of global sections is
infinite-dimensional, but there can exist at most r pointwise linearly indepen-
dent sections.

G-vector bundles. The vector bundles above are “naked”, in the sense that
the definition does not include any extra structure. We can incorporate such
structure as follows.

We say that E has structure group G, or is a G-vector bundle, if there exists
a trivializing atlas and an action of G on Kr, ie a homomorphism ρ : G →
GL(n,K), such that, up to identifications, gij ∈ G. We will refer to this as a
G-trivializing atlas. Up to quotienting by the normal subgroup defined by the
kernel, one can assume the homomorphism is injective.

The structure group is typically related to the datum of additional algebraic
structure on E; alternatively, to special properties of E.

Example. Using the standard actions:
(i) If the bundle is real and has a Euclidean metric g we may use the Gram-

Schmidt algorithm to build local orthonormal trivializations. This means that
g is locally identified with the standard Euclidean structure on Rr, so the new
transition maps are in O(r,R): we have achieved a reduction to the structure
group G := O(r,R).

(ii) In the complex Hermitian setting with metric h we analogously obtain
G := U(r).

(iii) The condition G := SL(n,K) implies that the determinant line bundle
associated to E, ie the line bundle whose transition maps are det(gij) : Ui∩Uj →
K, is trivial. We can identify this bundle with top wedge product Λr(E). The
dual line bundle is thus also trivial, so it admits a (non-canonical) global section
Ω: this is a volume form on E.

(iv) The choice G := GL(r,C) ≤ GL(2r,R), obtained via the embedding

A + iB 7→
(
A −B
B A

)
, corresponds to a complex vector bundle structure on

E.

Notice: at this stage E is only acquiring an algebraic structure. We are not
enforcing additional differential properties on this structure such as, in case (iv)
above, that E be holomorphic. We will do this later.

We shall be interested in two types of vector bundle morphisms. AutG(E)
will denote the automorphisms which preserve each fibre and its structure.
Endg(E) will denote the endomorphisms which preserve each fibre and act ac-
cording to the induced action of the Lie algebra g. For example, if G = O(r,R)
then the automorphisms are the fibrewise isometries and the endomorphisms
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are the fibrewise anti-symmetric maps.

Example. Set M := S1. We can build a atlas on M by writing it as the union
of three arcs U1, U2, U3 (the intersection of two arcs would have multiple com-
ponents, thus generating labelling confusion, while using only one open interval
would imply a self-intersection: this, properly speaking, does not constitute a
chart). We can build a R-line bundle E over S1 by using the transition map
Id on two components, the map v 7→ −v on the third. The total space of this
bundle is the Möbius strip. Notice that E⊗E is the trivial R-line bundle. These
are the only line bundles on S1.

Notice that, if r > 1, any Rr-bundle E over S1 admits a non-vanishing
section because Rr \{0} is arc-connected. Iterating this procedure, we find that
E = Rr−1 ⊕ E′, where E′ is possibly non-trivial. The same reasoning shows
that any complex vector bundle on S1 is trivial.

Set M := CPn. The definition CPn := (Cn+1 \ {0})/C∗ generates a tauto-
logical line bundle over M . Each fibre is a complex line in Cn+1, so it has a
canonical Hermitian structure. The corresponding S1-bundle is known as the
Hopf bundle over CPn. The total space of the Hopf bundle is the unit sphere
S2n+1: this corresponds to the fact that CPn can also be obtained as S2n+1/S1.

Frame bundles. There exists an alternative, very efficient, method of dis-
cussing structure groups of vector bundles. It is analogous to defining, for
example, a Euclidean structure on a vector space by choosing the set of or-
thonormal bases. Clearly, such bases must be related by orthogonal changes of
coordinates. This point of view can be expressed in terms of frame bundles;
more generally, of principal fibre bundles. An important ingredient here is the
group action. To explain how it works, we start as follows.

Digression. Let V be a vector space. Given any two bases C, C′, let MC,C′

denote the matrix in GL(n,K) whose columns contain the coordinates of the
vectors of C′ wrt C. This convention leads to the following fact: MC,C′′

=
MC,C′

MC′,C′′
. If we set C = {vi}, C′ = {v′i}, the definition corresponds to the

rule (v1, . . . , vn)M = (v′1, . . . , v
′
n), where multiplication is formally defined in

the usual manner.
We shall be using two group actions on the set of bases (ie homomorphisms

into the group of permutations of all bases). The first is the action of GL(n,K)
defined as follows: C · M := C′, where M = MC,C′

. The choice of writing
the group element on the RHS, rather than on the LHS, is consistent with the
above multiplication rule and is a notationally convenient way of emphasing the
fact that this action corresponds to a group anti-homomorphism (also known
as a right group action). This action is free and transitive, so it defines a 1:1
correspondence between the set of all bases and GL(n,K).

The second is the action of Aut(V ) defined by g · B := {g(v1), . . . , g(vn)}.
This corresponds to a group homomorphism (also known as a left group action).
It is again free and transitive.

5



The two actions are related by the following rule: (g · B) ·M = g · (B ·M),
ie the two actions commute. It expresses the fact that if two bases are related
by M , then the image bases under g are again related by M .

Now assume E → M has structure group G defined, as usual, via an in-
jective ρ. We first want to identify an appropriate frame bundle. Choose a
G-trivializing atlas. We may then consider, for each x ∈ E|Ui

, the subset of
frames of Ex which are identified with some g ·B, where B is the standard frame
of Kr and g ∈ G. The condition gij ∈ G implies that these subsets glue together
to form a fibre bundle P overM . The assumption that ρ is injective implies that
the fibre is diffeomorphic to G, so locally P|Ui

≃ Ui ×G. The above digression
shows how to obtain a right group action of G ≤ GL(r,K), so P is a G-principal
fibre bundle P over M.

In summary: no restriction on the structure group corresponds to working
with the full GL(r,K)-bundle of all frames on E; equivalently, with a generic
bundle E. The restriction of the structure group to G corresponds to the choice
(when it exists) of a G-subbundle of this GL(r,K)-bundle; equivalently, to the
choice of some additional structure on E and of local trivializations which put
this structure in standard form.

An interesting aspect of the principle fibre bundle viewpoint is that it pro-
vides a uniform method for building many other bundles which are geometrically
related to the initial vector bundle: any representation ρ : G→ Aut(V ) defines
an equivalence relation on P × V , (p, v) ∼ (pg, ρ(g−1)v), thus an associated
vector bundle

P ×ρ V := {[p, v]}.

Analogous constructions are possible replacing Aut(V ) with Aut(G), Diff(F )
(where F is any chosen abstract fibre), etc.

In our case, for example, we can recover E as the vector bundle associated
to P via the action ρ : G → GL(r,K) = Aut(Kr), ie E = P ×ρ Kr. In this
setting sections of E are equivalence classes.

Appropriate tensor products of Kr and induced representations yield the
corresponding tensor bundles.

Two other canonical bundles are respectively constructed via the adjoint
actions Ad : G → Aut(G), g · h := ghg−1 and ad : G → Aut(g), defined by
differentiating Ad. When dealing with matrix groups the latter coincides with
g ·X := gXg−1. Let Ad(P ) := P ×AdG, ad(P ) := P ×ad g be the corresponding
adjoint bundles, whose general fibres are isomorphic to G, respectively g. In our
case it turns out that Ad(P ) can be identified with AutG(E) and that ad(P ) can
be identified with the bundle Endg(E). The latter identification, for example,
is via the map

ad(P ) → Endg(E), [p,X]σ := [p, ρ(X)s],

where σ ∈ Ex, elements in ad(P ) are represented by classes of the form [p,X]
with p ∈ Px and X ∈ g, and σ is represented by the element [p, s] ∈ P ×ρ Kr.
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Remark. A second interesting aspect of the principle fibre bundle viewpoint is
that it extends beyond frame bundles, allowing us for example to define Spin-
structures on a manifold.

Remark. It is interesting to compare the transition maps used to generate
a principal fibre bundle with those used for Aut(P ). In the first case, left
multiplication is an element of Diff(G) so the fibres are diffeomorphic to G.
They do not have a Lie group structure but they do admit a right G-action.
In the second case the maps are in Aut(G) so each fibre has a group structure
isomorphic to G, but does not necessarily admit a G-group action.

Notice that only in first case do we obtain a construction of associated vector
bundles. Furthermore, any principal fibre bundle admitting a global section is
trivial. In the second case the identity element in each fibre provides a global
section.

Consider for example the Klein bottle, viewed as a S1-bundle over S1. The
transition map is of the form eiθ 7→ e−iθ. This is a group automorphism so each
fibre has the structure of a Lie group but is not a principal fibre bundle. This
corresponds to the fact that the bundle is not trivial and that the Klein bottle
is not the frame bundle of a Hermitian complex line bundle over S1.

Connections. The most practical definition is that a connection on E is a
linear operator ∇ : Λ0(E) → Λ1(E) satisfying the Leibniz rule ∇(fσ) = df ⊗
σ + f∇σ. This immediately provides us with a way of differentiating sections
of E. In particular we obtain the notion of “constant” sections, better known
as parallel, satisfying the condition ∇σ = 0.

Remark. The fact ∇fXσ = f∇Xσ holds by definition of Λ1(E). This is an
important feature of any reasonable notion of derivatives, and explains, for
example, why Lie derivatives are not to be considered “true derivatives” of
tensors.

Any E admits at least one connection, obtained by gluing together locally
defined trivial connections. Specifically, choose a trivializing atlas {Ui} and
a partition of unity ρi subordinate to this atlas. Recall that, by definition,
for each x ∈ M there is only a finite number of indices for which ρi(x) ̸= 0.
Let ∇i denote the trivial connection, defined on sections over each Ui via the
standard operator d acting on coordinates. Define ∇σ :=

∑
∇i(ρiσ). It is not

immediately clear that, at each point, this is a finite sum. This however follows
from∑

∇i(ρiσ) =
∑

(dρi)σ +
∑

ρi∇iσ = d(
∑

ρi)σ +
∑

ρi∇iσ =
∑

ρi∇iσ.

It is simple to check that this connection has the required properties.
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Remark. The reason this construction works is that the partition functions
allow us to localize any section, thus avoiding the use of transition maps to glue
together locally defined global sections. Of course, this connection depends on
the specific partition of unity.

It is also simple to check that the difference between two connections is a
globally defined tensorial quantity: specifically, it is an element in Λ1(End(E)).
Conversely, any connection can be perturbed by adding an element of this type.
It follows that the space of all connections is an infinite-dimensional affine space
parametrized by Λ1(End(E)).

The above clarifies that the definition allows for a great deal of flexibility
because it allows the appearance of 0-order terms. This is also apparent in
terms of a local trivialization of E, ie a local moving frame B defined on an
open subset U ⊆M . Assume σ has local coordinates s = (s1, . . . , sr)

T , si ∈ K.
The previous reasoning shows that any connection is locally of the form d+ A
for some A ∈ Λ1(End(Kr)).

As usual, for this to make sense it must however satisfy the correct transfor-
mation rules. Let us choose a second local moving frame B′ on U and change
trivialization via matrices Q = Q(x) := MB,B′

(x), so that s = Qs′. In this
coordinate system, ∇σ will have coordinates of the form ds′ + A′s′, and the
requirement is that ds + As = Q(ds′ + A′s′). On the LHS, substitution shows
d(Qs′)+A(Qs′) = Q(ds′ +(Q−1dQ+Q−1AQ)s′), so the transformation rule is
A′ = Q−1dQ+Q−1AQ.

In particular, this applies to the case U := Ui ∩Uj and Q := gij , where {Ui}
is a trivializing atlas for E. We will then write that ∇ is of the form d+Ai. It is
customary to simplify the notation using A rather than Ai. A is also sometimes
used to denote the connection ∇ related to it.

Remark. It may be useful to emphasize that a connection is not a tensorial
object. Specifically, it is not C∞-linear. That said, some types of problems
such as how its expression changes when we change trivialization are common
to both. In particular, it can be important to find trivializations with respect to
which the local expression has better properties. In the context of Riemannian
metrics, for examples, one might be interested in local ON frames. In the context
of connections it can be useful to impose certain differential conditions on A,
such as the “Coulomb gauge” condition used by Uhlenbeck.

Our next job is to understand how to adapt this theory to the context of
vector bundles endowed with a G-structure: we want the connection to be
somehow compatible with the G-invariant subset P of frames on E.

Locally, ie in terms of a G-trivializing atlas, this compatibility condition is
expressed by the requirement Ai ∈ Λ1(Endg(Kr)). Notice that this condition
is preserved when we change trivialization using Q(x) = g(x) ∈ G. Indeed,
given any X ∈ TxM thus dQ(X) ∈ TgG, we may choose gt such that g0 = g,
d
dtgt|t=0 = dQ(X). We then find Q−1dQ(X) = g−1( d

dtgt|t=0) =
d
dt (g

−1gt)|t=0 ∈
g and Q−1Ai(X)Q ∈ g.
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The difference between two compatible connections is an element in the
restricted space Λ1(Endg(E)).

Given any G-structure on E, one can prove that a compatible connection
always exists. When the G-structure corresponds to an algebraic structure on
E, the compatibility condition implies special facts about that structure. We
illustrate both facts via the following example.

Example. Let (E, g) be a vector bundle endowed with a Euclidean metric.
Assume ∇ is compatible with g, in the above sense: this means that, using
local orthonormal frames, ∇ = d + A where A take values in the space o(r)
of anti-symmetric matrices on Rr. Recall that ∇ induces a connection on all
tensor bundles of the form E ⊗ · · · ⊗ E ⊗ E∗ ⊗ · · · ⊗ E∗. In particular,

(∇g)(σ, τ) = d(g(σ, τ))− g(∇σ, τ)− g(σ,∇τ).

With respect to our choice of coordinates, g coincides with the standard struc-
ture on Rr. Using these coordinates to calculate the RHS, we find

d(s · t)− (ds+As) · t− s · (dt+At) = 0,

proving that∇g = 0. In other words, compatibility is equivalent to the condition
that g is parallel.

In the Hermitian setting we analogously find ∇h = 0, while in the case of
SL(r,K)-structures we find ∇Ω = 0, where Ω is any of the global sections of the
determinant line bundle defined above.

Let us now prove that any (E, g) admits a compatible connection. Our
starting point is an orthonormal trivializing atlas. We then consider the previous
construction: ∇σ =

∑
∇i(ρiσ), where ∇i(ρiσ) ≃ d(ρis). We want to prove that

d(g(σ, τ)) = g(∇σ, τ) + g(σ,∇τ).

The first term on the RHS can be written, using local coordinates,

g(
∑

∇i(ρiσ), τ) =
∑

g((dρi)σ, τ) +
∑

ρig(∇iσ, τ) =
∑

ρi(ds · t)

Likewise, the second term can be written
∑
ρi(s · dt). Adding them produces∑

ρid(s · t) =
∑
ρid(g(σ, τ)), as desired.

Remark. Above we have privileged the local point of view based on trivializa-
tions of E. This has the annoying consequence that a connection is obtained by a
collection of local data on the manifold, subject to complicated local transforma-
tion rules. The theory of principal fibre bundles would allow us to alternatively
present connections in terms of global g-valued 1-forms, ie sections of Λ1(P )⊗g.
The price we pay is that these 1-forms live on the principal fibre bundle P rather
than on the manifold, and satisfy certain global transformation rules. In any
case this emphasizes the fact that principal fibre bundles, by encoding all frames
simultaneously, serve to avoid any specific choice of frame as happens when we
work with local trivializations.
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Parallel transport. Choose a point x ∈M , a curve t 7→ γ(t) inM starting at
x, and any vector σ(0) ∈ Ex. The equation ∇γ̇σ = 0 defines a linear first order
system wrt the unknown σ, admitting a unique solution t 7→ σ(t) ∈ Eγ(t): this
is the operation known as parallel transport along γ. When γ is a loop through
x, this construction produces, in a linear fashion, a new vector σ(1) ∈ Ex, ie a
map σ(0) 7→ σ(1). The datum of a connection and a loop through x thus define
an isomorphism of Ex.

It is interesting to understand in detail how this isomorphism arises by look-
ing inside each chart. The simplest case is when the transition maps gij are
constant so that we can choose the trivial connection, defined locally by ∇ ≃ d.
In this case the equation is ds(γ̇) = 0 so, as long as γ stays within a same chart,
moving along γ does not change the coordinates of σ. When it moves into the
transition area, instead, the coordinates get hit by gij , thus change. At the
end of the loop σ re-enters the initial chart but its coordinates have changed
according to the composition of these transformations. This means that, within
that chart, σ itself has changed.

Remark. The above holds true only when γ moves between different transition
regions. As long as γ stays within one chart, or within the intersection of several
transition regions, the co-cycle conditions on E imply that σ does not change.

In the general case the equation is ds(γ̇) + A(γ̇)s = 0, so the coordinates
change not only because of the gij but also because of the equation itself.

The compatibility condition implies that this isomorphism corresponds to
an action of G. Indeed, locally, the parallel condition ds(γ̇) +A(γ̇)s = 0 means
that the variation of the coordinates s is contained in g.

The subgroup of G defined by all such isomorphisms, for all loops γ through
x, is known as the holonomy group of the connection. Up to conjugation it
is independent of the point x. The smaller G is, the stronger control we have
over these isomorphisms. The bottom line is that holonomy is an inevitable
consequence of doing Analysis on (non-trivial) vector bundles. The (usually
necessary) presence of 0-order terms in the connection makes it all the more
unescapable.

Example. It is a standard exercise to check how parallel transport acts on
S2 along a geodesic triangle, when using the Levi-Civita connection wrt the
standard metric.

One reason for interest in parallel transport is that it provides convenient
frames for calculations. Indeed, by applying it to a basis {σ1(x), . . . , σr(x)} we
obtain a parallel basis {σ1, . . . , σr} above γ, thus a local identification of the
fibres Eγ(t)+connection with the standard model Kr+trivial connection.

Achtung! In general an analogous construction of parallel sections or parallel
frames over higher-dimensional submanifolds in M is not possible: this requires
additional conditions on the curvature, as discussed below.
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Curvature. The simplest point of view on curvature is that it measures the
lack of commutativity for second derivatives. We will discuss an alternative
point of view on curvature, in terms of an integrability condition, later on.

With this in mind, given∇, it is tempting to try to define the curvature oper-
ator F∇ ∈ Λ2(End(E)) in the same way as for the Levi-Civita connection, ie set-
ting F∇(X,Y )σ := (∇∇σ)(X,Y )−(∇∇σ)(Y,X) = (∇X∇σ)(Y )−(∇Y ∇σ)(X).
Unfortunately, this definition does not make sense because ∇ does not automat-
ically induce a connection on Λ1(E): this would require a connection also on
TM . We can however define F∇ via the formula that would be a consequence
of that definition, via the Leibniz rule:

F∇(X,Y )σ := ∇X∇Y σ −∇Y ∇Xσ −∇[X,Y ]σ.

One can check that this produces an element F∇ ∈ Λ2(End(E)), as desired.
Specifically, it is a tensor. Clearly, the operation ∇ 7→ F∇ is non-linear on the
space of connections, and of first order wrt A ≃ ∇.

As in the case of parallel transport, local charts help us understand why,
given a connection ∇, the corresponding second derivatives generally do not
commute. A first obstruction might seem to arise if the vector fields do not
have constant coordinates. This however is dealt with via the correction term
∇[X,Y ]. The real reason is apparent from the following calculation.

Once again, the bottom line will be that non-commutativity is an inevitable
consequence of the (usually necessary) presence of 0-order terms in the connec-
tion.

In terms of a local trivialization, ∇Y σ corresponds to Y s+ (Y ⌟A)s, so

∇X∇Y σ ≃ XY s+X((Y ⌟A)s) + (X⌟A)(Y s) + (X⌟A)(Y ⌟A)s

= XY s+ (X(Y ⌟A))s+ (Y ⌟A)(Xs) + (X⌟A)(Y s) + (X⌟A)(Y ⌟A)s

Terms 3+4 are symmetric, so they drop under alternation. Thus

∇X∇Y σ −∇Y ∇Xσ ≃ [X,Y ]s+ (X(Y ⌟A))s− (Y (X⌟A))s+ [A,A](X,Y )s,

where

[A,A](X,Y ) := [X⌟A, Y ⌟A] = (X⌟A) ◦ (Y ⌟A)− (Y ⌟A) ◦ (X⌟A).

We thus see that the non-commutativity of second derivatives is due to dA +
[A,A]. In other words, this calculation provides the local formula

F∇ = dA+ [A,A].

When using local coordinates, we also use the notation FA.
We may extend the above operation to obtain an analogue of the wedge

product for endomorphism-valued 1-forms:

Λ1(Endg(Kr))× Λ1(Endg(Kr)) → Λ2(Endg(Kr)),

[A,B](X,Y ) :=
1

2
([X⌟A, Y ⌟B]− [Y ⌟A,X⌟B]) .
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Changing local trivialization leads to FA′ = Q−1FAQ, which corresponds
to the fact that F∇ is globally well-defined. This calculation uses the fact that
d(Q ◦Q−1) = 0, so

d(Q−1) = −Q−1(dQ)Q−1.

These formulae show that compatibility between the connection and the G-
structure implies F∇ ∈ Λ2(Endg(E)).

Example. Assume E has constant transition functions gij . Consider the con-
nection locally defined by ∇ = d. In this case Ai = 0 so the local formula shows
that F∇ = 0.

If r = 1 then A is a locally defined K-valued 1-form. The formula A′ =
Q−1dQ+Q−1AQ = d logQ+A shows that is not globally defined. Notice that
[A,A] = 0, so FA = dA. Also, FA′ = dA′ = dA so our formula for FA is actually
independent of the local chart used. This confirms that F∇ is a global 2-form
on M . It is clearly closed and, of course, locally exact.

Let us repeat this in the case where E is a U(1)-bundle, ie a complex line
bundle endowed with a Hermitian metric h. In this case g = iR so A ∈ Λ1(iR)
and FA = dA, a locally exact i-valued 2-form on M . We change trivializations
via 1 × 1 matrices Q = eiθ. Thus A′ = A + idθ. The term dθ is closed but
generally not exact because θ can be multi-valued.

Remark. In the language of principal fibre bundles, curvature belongs to the
space Λ2(P ) ⊗ g. Notice the pattern: connections and curvatures, related to
forms on M in the spaces Λi(Endg(E)), lift to forms on P in the simpler spaces
Λi ⊗ g.

Our definition of curvature is very much ad hoc, but it actually fits into
a more general construction. In order to introduce this let us start with a
digression on the exterior differential operator d and on tensor products.

Digression. The vector bundles Λk(M) have the very special property that
they admit an intrinsic linear differential operator d : Λk(M) → Λk+1(M). This
is slightly different from the notion of a connection, which would only require
d : Λk(M) → Λ1⊗Λk(M), but it still satisfies a Leibniz rule wrt the operation ∧.
It can be defined locally; it is then well defined globally thanks to the property
d(ϕ∗α) = ϕ∗(dα).

On another note, let us recall that End(V ) contains distinguished elements
(called simple, elementary or decomposable) of the form v ⊗ α, where v ∈ V ,
α ∈ V ∗. It is clear that not every element in End(V ) is of this form, because such
decomposable elements have kernel of codimension 1. It is also clear however,
via a choice of basis, that such elements generate all others. In order to define
a linear map on End(V ), it thus suffices to define it (in a linear fashion) on
decomposable elements.

The same holds for tensor products of the form V ⊗· · ·⊗V ⊗V ∗⊗· · ·⊗V ∗,
for tensor products of several vector spaces and for tensor products of vector
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bundles over a manifold. In particular, the choice of a local basis for each vector
bundle over a chart Ui shows that any section of the tensor product can be locally
written as a finite C∞-linear combination of decomposable sections. Moreover,
a partition of unity argument shows that it can also be written as a locally finite
C∞-linear combination of global, compactly supported, decomposable sections.
The bottom line is that we can define a linear operator on tensors simply by
defining how it acts on global decomposable sections.

We shall use the above to define a differential operator on Λi(E) = Λi(M)⊗
E. Choose any α ∈ Λi(M) and σ ∈ Λ0(E) and set

d∇(α⊗ σ) := dα⊗ σ + (−1)iα ∧∇σ.

This defines d∇ on decomposable sections. By the above, it induces a linear
operator d∇ : Λi(E) → Λi+1(E).

Notice that d∇ = ∇ on Λ0(E). Furthermore F∇ = d∇◦∇, ie F∇σ = d∇(∇σ).
To check this, it suffices to restrict to the decomposable case ∇σ = α ⊗ τ and
show

∇X(α(Y )τ)−∇Y (α(X)τ)− α([X,Y ])τ = d∇(α⊗ τ)(X,Y ),

which is a simple calculation. This legitimates writing F∇ = d∇ ◦ d∇. This
shows that d∇ ◦ d∇ is generally not zero. However, the Bianchi identity shows
that d∇F∇ = 0, for any connection.

Remark. Our presentation mentions two unexpected consequences of doing
analysis on manifolds via a connection: holonomy and non-commutativity of
derivatives. It turns out that these are two sides of a same coin: the holonomy
group is a Lie group and its Lie algebra is generated by the endomorphisms
defined by curvature, ie of the form FA(X,Y ) ∈ Endg(E).

3 Chern-Weil theory

Chern-Weil theory is perhaps not part of gauge theory, properly understood: it
concerns only connections, the gauge group and the Yang-Mills functional play
no role. However, it is an eye-opener. It provides perhaps the most elementary
indication that connections incorporate fundamental information about the un-
derlying geometry. In this sense it provides a toy model for gauge theory itself.

Characteristic classes. Given M , the basic problem concerning vector bun-
dles is to classify the possible vector bundles over M , up to equivalence. This
requires good ways of detecting non-equivalent vector bundles, thus justifying
the search for invariants. The basic idea is to extract from the data which de-
fines a vector bundle some simpler quantities which can be used to distinguish
non-equivalent bundles. In general, one attempts to package this simplified data
into some recognizable algebraic or geometric form. Some such invariants are
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trivial, such as the rank r of the vector bundle: this is a numerical invariant.
Notice that its pointwise analogue, dimension, provides a complete invariant for
vector spaces. Other invariants are more sophisticated. We are interested in
a class of invariants known as characteristic classes, which take the shape of
cohomology classes on M .

The basic intuition underlying characteristic classes is that they are a mea-
sure of the “twisting” of the vector bundle, as determined by the transition
maps gij . Alternatively, they encode an obstruction to the existence of point-
wise linearly independent sections, as above. In particular, characteristic classes
vanish for trivial bundles.

Characteristic classes vary depending on the choice of coefficients K. In
any case, they are required to obey a certain set of axioms which, one proves,
suffice to uniquely characterize them. For each K there exist several equivalent
definitions, eg in terms of algebraic topology, universal classifying spaces, Chern-
Weil theory, etc. This explains one reason why characteristic classes are so
important: each definition leads to specific relationships and constraints between
topology and the corresponding branch of geometry. The fact that the various
definitions lead to the same objects is due to the fact that they satisfy the
required axioms.

Ad hoc constructions. In order to explain the geometric intuition more
precisely, let us consider the Euler characteristic class of orientable real vector
bundles. We will actually restrict our attention to the simplest case r = 2
following Bott-Tu, page 70. As we will see, this will suffice for several further
purposes and has the advantage of being fairly transparent in regards to the
idea of simplifying the data of the vector bundle so as to extract information on
its twisting.

Let E → M be an orientable rank 2 real vector bundle. Choose a partition
of unity ρi on M subordinate to the trivializing atlas {Ui}, and a Riemannian
metric on E. For each x ∈ Ui we thus obtain coordinates ri, θi on {x}×(R2\{0}).
Let us assume that the trivializing atlas is defined by local ON sections so that
gij = gij(x) ∈ SO(2), and is thus equivalent to angles θij = θij(x). By definition,
on Ui ∩ Uj we obtain the relationship θi = θij + θj . This is the “twisting” we
have been referring to.

Our next task is to package this data into something recognizable. To do so,
notice that another change of atlas leads to the relationship θij + θjk = θik on
Ui∩Uj∩Uk. At this point, however, it is important to pause and remember that
anything we do wrt angles is intrinsically ill-defined: angles are only well-defined
up to multiples of 2π. We can address this problem by taking derivatives, ie
working in terms of 1-forms, again defined on Ui ∩Uj ∩Uk: we then obtain the
“cocycle condition”

dθij + dθjk = dθik.

Now notice that, for any l, the 1-form ρldθil, although a priori defined only
on Ui ∩ Ul, extends smoothly to 0 when we move off the support Ul of ρl.
In particular, it extends to Ui. This implies that ξi := −

∑
ρldθil is a well-
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defined 1-form on Ui. A simple calculation using the cocycle condition and the
fact θij = −θji then shows that dθij = ξj − ξi on Ui ∩ Uj . This implies that
dξi = dξj on Ui∩Uj , so it defines a global 2-form onM . It is clear that this form
is closed, so by general theory (but made clear also from the above) it is locally
exact; however, it is not necessarily globally exact. Its de Rham cohomology
class (usually normalized to 1

2πdξi, leading to integer coefficients) is the Euler
class e(E) ∈ H2(M).

In summary, we have simplified and manipulated the transition data which
defined the vector bundle to obtain a completely different object: a cohomology
class. If two vector bundles are isomorphic, their Euler classses must coincide.

More generally, the Euler class of an orientable real vector bundle E of rank
r is an element e(E) ∈ Hr(M ;Z).

Remark. It is interesting to examine the above construction from the point
of view of Cech cohomology theory. Abstractly, the data {dθij} is an example
of a “Cech 1-cocycle” in the sheaf of 1-forms on M , relative to the given atlas.
The ξi are an example of a “Cech 0-cocyle” for that sheaf. The relation dθij =
ξj − ξi shows that the Cech cohmology class of {dθij} vanishes, so it is not a
useful object. This justifies why we shift our attention to dξi and to a different
cohomology theory.

The construction of ξi is itself interesting. The sheaf of 1-forms is an example
of a “fine sheaf”. In particular it is acyclic, ie the higher cohomology groups
vanish. The construction above is the standard trick to prove this, by explicitly
showing that any cohomology class of degree at least 1 is trivial.

The above construction thus incorporates ideas and mechanisms of sheaf
theory. In the case of complex line bundles this is emphasized by an alternative,
more common, construction of c1(E) in terms of a long exact sequence between
certain sheaf cohomology groups.

The alternative intuition, of characteristic classes as obstructions to the ex-
istence of pointwise linearly independent sections, is perhaps more transparent
from the dual point of view of homology classes. Consider the case E = TM ,
where M is a smooth oriented manifold. A generic section of E, ie a tangent
vector field, vanishes in isolated points. Using appropriate signs, these point
create a 0-dimensional homology class on M which turns out to be independent
of the vector field. Its dual in Hn(M ;Z) is the Euler class of TM . In particular,
this shows that the existence of a nowhere-vanishing vector field implies that
the Euler class vanishes. In order to generalize this in a uniform way to other
homology dimensions it is necessary to use Z2 coefficents. The locus of points
in M where k generic vector fields fail to be linearly independent then defines
a homology class which, dualized, produces the “Stiefel-Whitney classes” in
H∗(M ;Z2).

Now consider complex vector bundles. A complex line bundle E provides a
special case of an orientable rank 2 vector bundle. In this case, the Euler class
is also known as the first Chern class c1(E) ∈ H2(M ;Z). We can define the
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first Chern class of any complex vector bundle to be the first Chern class of the
corresponding complex determinant line bundle.

More generally, given any complex vector bundle E → M , there also exist
higher Chern classes ci(E) ∈ H2i(M ;Z). Chern classes vanish for i > r, and
the i = r case coincides with the Euler class of E.

Once again, in speciific contexts one can sometime describe these classes very
geometrically. Consider the case of c2(E), where E is a complex rank 2 SU(2)-
bundle over S4. In terms of the trivializing atlas given by two hemispheres
intersecting along an open neighbourhood of S3, the transition map can be
reduced to g12 : S3 → SU(2) ≃ S3, and c2(E) ∈ H4(M ;Z) corresponds precisely
to the degree of this map, see [?] p.40. As already mentioned, this coincides
with e(E).

The Chern-Weil construction. It is clear from the examples above that
geometrically intuitive definitions of a characteristic class rely on very ad hoc
constructions. Chern-Weil theory provides a uniform construction for certain
classes of characteristic classes. In this case, information about the bundle is
extracted through an auxiliary choice of a connection on the bundle. More
specifically, via the curvature of this connection.

We will focus on the Chern-Weil construction of Chern classes for a com-
plex vector bundle E → M . Our main goal will be to define the Chern-Weil
homomorphism between algebras

c : I(g) → H∗(M).

This requires the following linear-algebraic digression.

Digression. Given a vector space V , recall the standard correspondence Q↔ φ
between quadratic forms Q and bilinear symmetric forms φ:

Q(v) = φ(v, v), φ(v, w) = 1/2(Q(v + w)−Q(v)−Q(w)).

Some examples:
1. On R = {x}:

Q(x) = x2 ↔ φ(x1, x2) = x1x2.

2. On R2 = {(x, y)}:

Q((x, y)) = x2 ↔ φ((x1, y1), (x2, y2)) = x1x2,

Q((x, y)) = xy ↔ φ((x1, y1), (x2, y2)) = 1/2(x1y2 + x2y1).

More generally, on Rn (using the variable x) there exists a correspondence be-
tween k-homogeneous polynomials p(x) and k-multilinear symmetric functions
p̃(x1, . . . , xk). It can be extended to all vector spaces as follows.

A polynomial on V is a function V → K which, in terms of some basis, can
be expressed as a polynomial of the corresponding coordinates. We say that
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it is k-homogeneous if this is true in terms of the basis. These concepts are
independent of the specific basis.

There exists a 1:1 correspondence between such polynomials and the sym-
metric k-multilinear maps on V . Specifically, the correspondence is given by the
polarization formula

p̃(v1, . . . , vk) :=
(−1)k

k!

k∑
j=1

∑
i1<···<ij

(−1)jp(vi1 + · · ·+ vij ).

We can recover p by restricting to the diagonal: p(v) = p̃(v, . . . , v).
Now let G be a Lie group. Let g denote its Lie algebra. In this case it is

interesting to restrict our attention to ad-invariant functions. We will denote
the algebra generated by homogeneous ad-invariant polynomials by I(g). The
corresponding multilinear maps are also ad-invariant.

We are mostly interested in the case where g is a subalgebra of gl(r,K).
Examples of homogeneous ad-invariant functions are then tr(M), det(M). More
generally, the functions pk = pk(M) determined by the equality det(I+M) = 1+
p1(M)+· · ·+pr(M) are clearly ad-invariant. They are homogeneous polynomials
of degree k and they generate the algebra I(g).

One can check that pk(M) =
∑

I detMI,I , where I is a multi-index of order
k and MI,I is extracted from M by keeping only the rows and columns with
position I. This is clear in the special case where M is diagonal. In particular,
p1(M) = tr(M) and pr(M) = det(M).

Example. Consider p2 = det on gl(2,C). The polarization formula yields

d̃et(M1,M2) =
1

2
(− det(M1)− det(M2) + det(M1 +M2)).

Conversely,

det(M1 +M2) = d̃et(M1 +M2,M1 +M2)

= d̃et(M1,M1) + d̃et(M2,M2) + 2d̃et(M1,M2).

An analogous formula holds for det(M1 + · · ·+Mm).

The reason we are interested in this correspondence is that multilinear maps
are easier to define and compute than polynomials: multilinearity allows us to
focus on how the function acts on elements of a basis. We can apply this as
follows.

Let V be a vector space. Choose a polynomial p of degree k on g. Given any
g-valued s-form on V , we want to apply the polynomial to obtain a K-valued
form on V . We shall do this in two steps.

1. Assume the form is decomposable, ie we can write it as α⊗M ∈ Λs(V )⊗g.
Given that p acts on g in a homogeneous fashion, in order to obtain a well-defined
operation on the tensor product α⊗M we need to perform some operation on
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α which has the same homogeneity. The natural choice is to use the wedge
product. We thus obtain the object cp(α ⊗M) := p(M)αk: it is a ks-form on
V .

2. In general the form will be a linear combination of decomposable forms
α1 ⊗M1, . . . , αm ⊗Mm. In this case we can rely on the multilinearity of p̃, as
follows. Set

cp(

m∑
i=1

αi ⊗Mi) :=
∑
I

p̃(Mi1 , . . . ,Mik)(αi1 ∧ · · · ∧ αik),

where on the RHS we sum over all multi-indices I = (i1, . . . , ik). This can be
computed in terms of p via polarization. We have thus achieved our goal.

To conclude this digression, notice that more generally we can set

cp(

m∑
i=1

α1
i ⊗M1

i , . . . ,

m∑
i=1

αk
i ⊗Mk

i )) :=
∑
I

p̃(M1
i1 , . . . ,M

k
ik
)(α1

i1 ∧ · · · ∧ αk
ik
),

to obtain a map

cp : Λs(V )⊗ g× · · · × Λs(V )⊗ g → Λks(V ).

Coming back to Chern-Weil theory, let E be a G-vector bundle over M .
Choose a ad-invariant homogeneous polynomial p on g. Any local G-basis for E
allows us to identify Ex with Kr, thus Endg(Ex) with g. We can then apply p
to any ϕ ∈ Endg(E): the ad-invariance ensures that the result does not depend
on the choice of G-basis. We will write the result as p(ϕ): it defines a function
on M .

More generally, the above digression shows how to evaluate p on any element
in Λs(M) ⊗ Endg(E), obtaining a ks-form on M . In particular, choose a G-
compatible connection on E and let F∇ ∈ Λ2(Endg(E)) denote its curvature.
The above process produces, for any p of degree k, a form cp(F∇) ∈ Λ2k(M ;C).

The Bianchi identity shows that it is closed, and one can check that changing
the connection implies that it changes by an exact form. The result is that the
corresponding cohomology class [cp(F∇)] ∈ H2k(M ;C) is independent of all
choices. Wrt the variable p we thus obtain the Chern-Weil homomorphism
associated to the bundle E.

Example. We obtain better control over the coeffiicients when G = U(r). In
this case we can normalize the classes cp so as to obtain R-valued forms.

Specifically, set ck := [ i
2π cpk

(F∇)], where pk are the canonical invariant
polynomials defined above. These Chern classes are R-valued. Since pk generate
I(g), the Chern-Weil homomorphism becomes a map c : I(u(r)) → H∗(M ;R).
Notice that any complex bundle admits a Hermitian metric, ie a U(r)-structure,
so R-valued Chern classes are always possible. The choice of metric will however
influence the specific connection used in the construction.
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It is sometimes useful to consider the characteristic classes associated to
other p ∈ I(g). Consider for example the case p(M) := tr(M2), leading to
tr(F 2

∇) ∈ Λ4(M). It has the property that

1

8π2
[tr(F 2

∇)] = c2(E)− 1

2
c1(E)2 ∈ H4(X;R).

This is very relevant to the Yang-Mills functional, defined below, whose inte-
grand is related to the LHS.

Achtung! There is an important, though subtle, difference between characteris-
tic classes provided by Chern-Weil theory and those built using other definitions.
Topological definitions lead to coefficients in Z, while Chern-Weil theory gener-
ally leads to coefficients in R. The relationship between these classes is provided
by the map H∗(M ;Z) → H∗(M ;R), which however is sometimes not injective,
so there is some loss in information. The problem lies in the fact that torsion
classes in H∗(M ;Z) are killed in R. If the topology of M does not allow for tor-
sion classes in cohomology, eg Riemann surfaces, this is no problem. In general,
however, the fact c1(E) = 0 proved via Chern-Weil theory might not imply that
the integral class c1(E) vanishes. In particular, the flatness of a complex line
bundle does not necessarily imply that it is trivial.

Applications. Characteristic classes are the key-stone for achieving a deeper
understanding of various topological constraints on geometry, such as the clas-
sical Poincaré-Hopf and Gauss-Bonnet theorems. These results also serve to
emphasize the power of having multiple viewpoints on characteristic classes.
Let us review them.

Poincaré-Hopf. Recall that, depending on the choice of homology theory,
one can define the Euler characteristic χ(M) of a compact manifold M as the
alternating sums of the ranks of either the singular or the simplicial homology
groups (the latter defined via a triangulation). This number depends only on
the topology of the manifold, not on any additional smooth structure.

The Poincaré-Hopf theorem for a smooth compact oriented manifold M
states that χ(M) coincides with the sum of indices of any vector field on M
with isolated, transverse, zeroes.

The idea of the proof is to first show that the sum of indices is independent of
the particular vector field. This is true because each index (defined as the degree
of an induced map between spheres) coincides with the intersection index of X
with the zero section Z, viewed as submanifolds in TM , so the sum of indices
is the intersection number of X and Z in TM . (Alternatively, integrating the
vector field produces a diffeomorphism, and the sum of indices is the intersection
number of the submanifolds in M ×M defined by the graphs of the identity
map and of this diffeomorphism). We can then tie this number to triangulations
by showing that any triangulation on M induces a vector field with one zero of
index ±1 on each facet of the triangulation. For example, in dimension 2 we
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can find a vector field with a sink for each vertex, a source for each face, and a
saddle for each side. The sum of indices of this specific vector field is thus the
Euler characteristic. (Alternatively, we can use the gradient vector field of any
Morse function and the Morse equality).

We can summarize this using characteristic classes as follows. Recall that
the Euler class e(TM) coincides with the top Stiefel-Whitney class, which is
the dual of the 0-cycle defined by the zeroes of a generic vector field. The sum
of these zeroes is thus

∫
M
e(TM), and the Poincaré-Hopf theorem states that∫

M
e(TM) = χ(M).
The interest in this theorem lies in the fact that, by definition, χ(M) depends

only the on the topology of M , not on any smooth structure. Vector fields and
the Euler class depend instead on the tangent bundle, thus on the smooth
structure. We have thus showed that a certain aspect of any smooth structure
onM is constrained by the topology: S2 cannot have a nowhere-vanishing vector
field, T2 can.

Remark. Intersections can be further formalized as follows. The Thom class of
a rank r oriented vector bundle E is a real cohomology class Θ(E) ∈ Hr(E),
defined by choosing a generator for the compactly supported top-dimensional
cohomology of each fibre, ie a compactly supported volume form on each Ex with
integral 1. An interesting case is when E is the normal bundle of an embedded
oriented submanifold M ⊂ N . In this case one can check that, for any form ω
on N ,

∫
M
ω =

∫
N
ω ∧ Θ(E), which is the formula defining the Poincaré dual

η(M): in other words, the Thom class coincides with the Poincaré dual of the
homology cycle defined by the submanifold. It follows that the Poincaré dual
of the intersection of two submanifolds in N is the wedge product of the Thom
classes of their normal bundles.

For any bundle, it turns out that e(E) := Z∗(Θ(E)), where Z is the zero
section. Thus

∫
M
e(TM) =

∫
M
Z∗(Θ(TM)) =

∫
Z
Θ(TM) =

∫
TM

Θ(TM) ∧
PD(Z) =

∫
TM

PD(Z · Z), where we use the fact that the normal and tangent
bundles of Z in TM are isomorphic. This confirms that

∫
M
e(TM) coincides

with the self-intersection number of Z in TM (more generally, with the inter-
section number of any two vector fields, because they are all homologous).

Gauss-Bonnet. Chern-Weil theory provides a direct path towards an intri-
cate network of relationships between topology and curvature. The classical
Gauss-Bonnet theorem is one of its simplest manifestations.

Given a compact oriented smooth surface M , the theorem states that, for
any metric, the integral of the Gaussian curvature K coincides with 2π χ(M).

This result is very natural from the Chern-Weil theory viewpoint: one shows
that the class e(TM) is represented by the 2-form 1

2πK volg defined using the
given metric on the bundle TM , so 1

2π

∫
M
K volg =

∫
M
e(TM) = χ(M).
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4 Gauge theory: basic ingredients

Up to now we have discussed connections from the point of view of their use
in Analysis, ie in providing a higher-order calculus on manifolds, and in topol-
ogy. In particular, we have highlighted the existence in each context of infinite
possible connections. As already mentioned, in each specific geometric context
it is natural to look for a “best choice”. This is sometimes done algebraically,
as in the Levi-Civita case, by defining a unique connection in terms of extra
properties.

Gauge theory proper begins with a different approach to this problem, based
on the Yang-Mills functional.

Gauge transformations. It is a fact of life that vector bundles have a huge
set of automorphisms. Specifically, the gauge group of E is the infinite-dimensional
Lie group of sections of the bundle Aut(E). This group has a natural left action
on the space of connections on E:

(g · ∇)σ := g(∇(g−1σ)).

Locally, this action follows rules similar to the changes of trivialization seen
above (via the identification g ≃ Q−1):

g ·A = gAg−1 − (dg)g−1, Fg·A = g(FA)g
−1.

We can take compatibility conditions into account by restricting to sections of
AutG(E).

Connections related this way are considered equivalent: anything we do with
them leads to the same result, up to the group action. In other words, the gauge
group generates a huge amount of redundancy within the space of connections.

Achtung! The previous paragraph makes sense only after we have specified
which gauge group we are interested in. Below, we will meet the problem of
fixing a complex gauge group orbit of (partial) connections and a metric, then
looking for a (partial) connection (whose Chern connection is) most compatible
with the metric. In this situation we shall consider equivalent only those con-
nections which are compatible with a same metric, not those which belong to
the same complex orbit.

Geometrically interesting conditions on a connection are also generally pre-
served by the gauge group action, so the natural moduli spaces in this context
are aways infinite-dimensional. We can remedy this fact by quotienting by this
action, ie working on the space of orbits. Given a connection ∇, this is locally
equivalent to restricting one’s attention to a “slice”, ie a submanifold in the
space of connections which is transverse to the group orbit. If we parametrize
the set of all connections via A 7→ ∇+A, a slice can be obtained by restricting
to those A which satisfy a condition similar to the “Coulomb gauge” condition
introduced by Uhlenbeck.
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Remark. Group actions, orbits and slices are omni-present in geometry and
beyond.

In linear algebra, an analogous situation is given by the set of symmetric
bilinear forms on a vector space V , under the action of the group Aut(V ).
Sylvester’s theorem shows that the space of orbits is discrete, classified by the
signature. In this case any transversal slice has dimension 0.

A more geometric example is S2, acted upon by the group of rotations around
the z-axis. In this case the space of orbits is 1-dimensional, and a slice at a point
x ∈ S2 is given by any curve in S2, through x, transverse to the horizontal plane.

An analytic example is provided by Hodge theory on a compact Riemannian
manifold. Here, we consider the space of closed k-forms, acted upon via trans-
lation by the Abelian group of exact forms. De Rham cohomology is the space
of orbits. A slice is provided by the harmonic k-forms, which allow us to change
cohomology class. In this example there also appears an energy functional,
similar to the Yang-Mills functional below. We find the harmonic k-forms by
minimizing this functional within a given cohomology class.

The Yang-Mills functional. In Riemannian geometry one chooses a homol-
ogy class, considers the infinite-dimensional space of all submanifolds represent-
ing that class and the corresponding volume functional. The critical points are
the minimal submanifolds. One may be particularly interested in the stable
critical points, or in volume-minimizing submanifolds.

We now want to set up an analogous framework for studying the infinite-
dimensional space of connections on a vector bundle. We start with the following
digression.

Digression. We shall need a metric on Λ2(Endg(E)). We can obtain it as the
tensor product of metrics on Λ2(M) and on Endg(E), defined as follows.

1. Assume (V, g) is a Euclidean vector space. We obtain a metric on V ⊗
· · · ⊗ V by setting g(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk) := g(v1, w1) . . . g(vk, wk) on
decomposable elements, then extending by linearity. We obtain a metric on
Λk(V ) by setting g(v1∧· · ·∧vk, w1∧· · ·∧wk) := det(g(vi, wj)) on decomposable
elements, then extending by linearity. Dually, we endow V ∗ with the metric such
that V → V ∗, v 7→ g(v, ·) is an isomorphism. We like-wise obtain a metric on
the dual tensor products and k-forms by dualizing the metrics above.

Notice that these definitions clash with certain other conventions. For ex-
ample, if ei is orthonormal, the above implies that ei ∧ ej has length 1 (corre-
sponding to the natural area of the corresponding parallelogram). Like-wise, it
implies volg := e∗1 ∧ · · · ∧ e∗n has length 1. With this choice, standard identifi-
cations such as v ∧ w = 1

2 (v ⊗ w − w ⊗ v) or v ∧ w = v ⊗ w − w ⊗ v are not
isometries.

Applying this construction pointwise we obtain a metric on Λ2(M), where
M is a Riemannian manifold.
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2. We now want a metric on Endg(E). Again we shall define it pointwise,
using a different process which provides good invariance properties.

Let V be a vector space. There exists a canonical symmetric bilinear form
on End(V ) defined by φ(ϕ, ψ) := tr(ϕ ◦ ψ).

In order to understand its signature it is useful to choose a metric on V .
This yields a notion of adjoint operators, thus a metric (ϕ, ψ) 7→ tr(ϕT ◦ ψ).
The two forms coincide on the subspace of selfadjoint endomorphisms and have
opposite sign on the subspace of anti-selfadjoint operators. This shows that our
form φ is non-degenerate, of mixed signature.

Any injective representation G → Aut(V ) leads to a representation g →
End(V ), identifying g with the subspace we have denoted Endg(V ).

We are interested in the signature of the restriction of φ to Endg(V ). Once
again, we can study this via a metric on V . If G is compact, by averaging
wrt the G-action we may assume this metric is G-invariant, ie G acts on V by
isometries. This implies that the derivatives of this action, ie the endomorphisms
in Endg(V ), are anti-selfadjoint. As above, it follows that the restriction of φ is
negative definite.

In summary: when G is compact, −φ provides a canonical invariant metric
on Endg(V ).

Remark. Within the framework of principle fibre bundles we identify Endg(E)
with the bundle ad(P ) = P ×ρ g. In this language our metric can be obtained
starting from the adjoint representation g → End(g), X 7→ [X, ·]. The Jacobi
identity is equivalent to saying that this map is a Lie algebra homomorphism.
In this case the restriction of our form φ coincides, up to identifications, with
the Killing form K(X,Y ) := tr([X, ·]) ◦ [Y, ·]) on g.

In general the restriction of a non-degenerate form may become degenerate
but one can prove that, if G is semi-simple, K (thus the restriction of φ) is
non-degenerate. An argument similar to the above proves that if G is compact
then the Killing form is negative-definite.

Let (M, g) be a compact oriented Riemannian manifold. Let E be a G-vector
bundle over M , where G is compact. Consider the space of all connections on
E compatible with the G-structure. The Yang-Mills functional is defined by

∇ 7→ YM(∇) :=

∫
M

∥F∇∥2 volg,

where ∥F∇∥ is obtained using the metric on the tensor bundle Λ2(Endg(E))
defined as in the digression, above. These choices imply that the Yang-Mills
functional is gauge-invariant wrt to sections of AutG(E).

Remark. The functional is also invariant wrt sections of Aut(E). This action
changes the specific G-structure in question, relating the corresponding spaces
of G-connections. In this sense the functional notices only that the connections
are compatible wrt some G-structure, it doesn’t care which.
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The role of the gauge group is one of the big differences between the theory
of submanifolds, mentioned above, and the theory of connections.

Now recall that on any n-dimensional oriented Euclidean vector space V
there exists a canonical operator ⋆ : Λk(V ) → Λn−k(V ), known as the Hodge
star. It is defined by imposing the condition α ∧ ⋆β = g(α, β) volg. Using the
Hodge star operator we can equivalently write YM(∇) =

∫
M
F∇ ∧ ⋆F∇, where

we hide the role of the norm on Endg(E).
We can linearize the functional at ∇ by choosing A ∈ Λ1(Endg(E)), thus a

new connection ∇+A, and writing

F∇+A(X,Y )σ = (d∇+A)X(d∇+A)Y σ − (d∇+A)Y (d∇+A)Xσ − (d∇+A)[X,Y ]σ.

We then find
F∇+A = F∇ + d∇A+ [A,A],

where, as usual, (d∇A)(X,Y ) = ∇X(Y ⌟A)−∇Y (X⌟A)− [X,Y ]⌟A. Thus

d

dt
YM(∇+ tA)|t=0 = 2

∫
M

(F∇,
d

dt
F∇+tA|t=0) volg = 2

∫
M

(F∇, d∇A) volg,

so the Euler-Lagrange equation is the second order system d∗∇F∇ = 0, where d∗∇
denotes the adjoint operator on 2-forms. This equation should be coupled with
the Bianchi identity d∇F∇ = 0 to obtain ellipticity (modulo the gauge group
action). We will refer to solutions of these equations as Yang-Mills connections.

As usual, one can check that d∗∇ = (−1)n−1 ⋆ d∇⋆. With this formulation
the notion of Yang-Mills connections extends to cases where the functional is
not defined, eg non-compact groups G.

Example. Assume E is a U(1)-line bundle overM . In this case F∇ is an i-valued
2-form and the relevant operator d∇ coincides with the standard operator d. The
Yang-Mills functional is the standard energy functional and ∇ is a Yang-Mills
connection iff its curvature is harmonic in the usual sense.

The gauge group is Abelian. An element g = eiθ, where θ = θ(x), acts on
connections as follows: g · A = g−1dg + g−1Ag = A + idθ. This action is not
trivial on connections, but it induces a trivial action on curvature.

Remark. The above example shows that Yang-Mills theory can be seen as an
extension to higher-rank vector bundles of standard Hodge theory in degree 2.
Like-wise, when E is a trivial line bundle then any connection is of the form
d+A, where A is a global 1-form. In this sense the theory of connections is an
extension to higher-rank, non-trivial, vector bundles of the standard theory of
1-forms.

Remark. The formula above shows what happens to curvature under the per-
turbation ∇ 7→ ∇ + A of a given connection ∇. Is the new connection gauge-
equivalent to the initial one? Our formulae provide an important tool: equiva-
lence implies that, pointwise, their curvature tensors are conjugation-equivalent.
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This shows the relevance of the linear-algebraic problem of understanding the
conjugation classes of endomorphisms on a vector space. In the Abelian case,
eg line bundles, the two curvature tensors must actually coincide.

5 Flat connections

A connection is flat if FA = 0. Notice that this condition is gauge-invariant. Our
interest in such connections stems from the fact that, in the appropriate context,
they are the simplest example of a Yang-Mills connection. Furthermore, they
are clearly absolute minimizers of the functional. The discussion below holds
however for any G and M .

We have already met examples of flat connections on vector bundles with
constant transition maps gij , defined by the choice Ai = 0 (in each chart). It
turns out that, in a certain sense, all examples are of this type. Before explaining
this, a digression.

Digression. Assume given a topological manifold. Recall that one usually asso-
ciates to it its maximal atlas. Charts are related by transition maps which are
homeomorphisms. A differentiable structure is then a subatlas whose transition
maps are diffeomorphisms. It sometimes turns out that one can find several
distinct such subatlases, leading to the notion of exotic structures on the same
topological manifold.

This construction reappears in several other contexts. A similar picture
arises for example in complex geometry: a holomorphic structure is a subatlas
whose transition maps are biholomorphisms.

Now consider a given vector bundle with a maximal trivializing atlas with
smooth transition maps. One can try to extract a trivializing atlas whose tran-
sition maps are constant. This is known as a local system. This is not always
possible: we will see obstructions, below. When it is, it sometimes turns out
that one can do it in several distinct ways. In other words, the same vector
bundle may support several different local systems.

Sheaf theory provides perhaps the best language for this notion, but at the
cost of increased technicalities. We shall avoid it.

Given a G-vector bundle E, flatness has an interesting characterization in
terms of the frame bundle P . As already mentioned, the datum of a connection
translates, in terms of P , into a g-valued 1-form on P with certain properties.
The kernel of this 1-form defines a distribution of n-planes in P , horizontal with
respect to the projection P → M . Flatness corresponds to the Frobenius inte-
grability condition for this distribution: this is related to the fact that curvature
is obtained by differentiating the connection 1-form. Each integral leaf in P , as
x varies in M , defines local parallel frames {σ1, . . . , σr}, ie local sections of P
satisfying ∇σi = 0. This construction has the following features.

1. With respect to such frames, the induced trivialization of E provides an
identification E|Ui

+connection ∇ with the standard model Ui × Kr+standard
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connection d. This means each Ai = 0.
2. If we change trivialization passing from one parallel basis to another, the

parallel condition implies that the transition matrix Q is constant. Analogously,
if we use these local trivializations to build a trivializing atlas the transition
maps gij are constant. The connection thus defines a local system.

To summarize: on any given G-vector bundle E there exists a 1:1 correspon-
dence between flat connections and local systems (compatible with G).

Example. Let E →M be the trivial line bundle. Choose a global non-vanishing
section σ, thus an isomorphism E ≃ M × K. This induces a connection on
E, by identification with the trivial connection d on M × K; equivalently, this
connection can be defined by positing that the parallel sections are those which
are constant multiples of σ. Since d is flat, the connection on E is also flat.
The corresponding local system is given by a trivializing atlas whose transition
maps are gij = Id.

In this context the gauge group is given by non-zero functions, acting by
multiplication. Any two global non-vanishing sections are related in this way,
so the corresponding connections are equivalent. We will refer to connections
built this way as canonical.

Remark. Any connection ∇ on any vector bundle E over S1 is flat for dimen-
sional reasons: F∇ ∈ Λ2(E) = 0.

The existence of local parallel frames, thus charts in which ∇ coincides with
d, can be alternatively proved via repeated applications of parallel transport,
thus avoiding the language of principle fibre bundles. We refer to [?] for details.

The existence of a flat connection, thus of a local system, has topological
consequences on E: Chern-Weil theory shows that all K-valued characteristic
classes vanish.

Example. Any complex vector bundle admitting a flat unitary connection has
vanishing real Chern classes of any order. Recall that, in the case of a complex
line bundle, the vanishing of the integral first Chern class c1(L) = 0 ∈ H2(M ;Z)
implies that L is differentiably trivial. The vanishing of the real first Chern class
is slightly weaker: it implies that the integral class c1(L) is a torsion class, ie
kc1(L) = 0 for some k. This implies that c1(L

k) = 0, so Lk is trivial. Of course,
if H2(M ;Z) has no torsion classes (eg any Riemann surface), then c1(L) = 0 so
L is trivial.

Remark. The strength of the flatness condition is particularly clear in the cat-
egory of complex bundles over complex manifolds: locally constant maps gij
are holomorphic, so a flat connection induces a holomorphic structure on E. It
in an interesting question which holomorphic structures arise this way. This is
related to stability and the Narasimhan-Seshadri theorem, discussed below.
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The above discussion raises the question whether, on a given E (for example
E trivial), there exist non-equivalent flat connections/local systems. To answer
this we need to find further invariants of connections, beyond curvature. This
brings us to the concept of monodromy.

The starting point is provided by the notions of parallel transport and holon-
omy. In general, parallel transport depends heavily on the specific choice of
curve γ. Let us assume, however, that the connection is flat. Any parallel frame
along γ can then be seen as a curve inside one of the integral leaves mentioned
above. Assume γ is a closed curve through x ∈ M , so that parallel transport
generates an isomorphism of Ex. We have already mentioned that this isomor-
phism is generated by concatenating the maps gij encountered as γ moves from
one trivalizing chart to another. Since these maps are locally constant, the
isomorphism is clearly independent of small deformations of γ. One can also
show that it is independent of γ within its homotopy class. We thus obtain a
homomorphism π1(M,x) → G, known as the monodromy representation, whose
image is the holonomy group. The element g, ie automorphism of Ex, associated
to a specific loop γ (better: to its class) is known as the monodromy of that
loop (or class).

Example. The canonical flat connections on a trivial line bundle have trivial
monodromy because the transition maps are trivial.

It turns out that this process can be reversed. The construction is an ex-
tension of the process used in covering space theory by which we write M ≃
M̃/π1(M), where M̃ is the universal cover endowed with the usual monodromy
action of π1(M). Indeed, choose ρ ∈ Hom(π1(M), G). We then obtain an action

γ : M̃ ×Kr → M̃ ×Kr, γ · (x, v) := (γ(x), ρ(γ)(v)),

where γ ∈ π1(M). The quotient E := M̃ ×Kr/π1(M) is a G-vector bundle over
M with constant transition maps, thus a flat connection.

The space Hom(π1(M), G) thus classifies the space of all flat G-vector bun-
dles onM . We will denote by HomE(π1(M), G) the set of representations which
yield the G-bundle E. In this sense, monodromy defines a complete invariant
for flat connections on E.

We may summarize as follows. Given a G-vector bundle E, there exist 1:1
correspondences between (i) equivalence classes of compatible flat connections,
(ii) equivalence classes of compatible local systems, (iii) equivalence classes of
homomorphisms in HomE(π1(M), G). In (i) equivalence is defined in terms of
sections of AutG(E), in (ii) in terms of G-vector bundle isomorphisms, in (iii)
in terms of conjugation by G.

We may think of this as a correspondence between geometric, topological,
and algebraic objects.

Remark. Assume two local frames B, B′ are parallel wrt a flat connection ∇, so
that B′ = B ·Q for some constant Q ∈ G. Then, given any section g of Aut(E),
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gB, gB′ are related by the same matrix Q and are parallel for the connection
g∇g−1. This shows that the monodromy of g∇g−1 coincides with that of ∇.
In this sense monodromy sees only that ∇ is G-compatible, but not wrt which
specific G-structure.

The condition FA = 0 implies that dA : Λi(E) → Λi+1(E) defines a co-chain
complex, so one obtains an analogue of de Rham cohomology for E-valued forms
on M .

Example. We have mentioned that there are only two line bundles over S1.
The trivial line bundle over S1 is obviously flat. Now consider the Möbius
strip. Its description in terms of transition maps shows that these maps are
constant, so it is also flat. We obtain a flat connection by positing that the
frames corresponding to the local sections ±1 over each chart are parallel. In
this case the frame bundle is a connected 2:1 covering of S1. The existence
of these two flat line bundles corresponds to the fact that π1(S1) = Z and
Hom(Z,Z2) = Z2.

Example. Assume E is a complex line bundle over a manifold whose H2(M ;Z)
has no torsion. Then any flat bundle has c1 = 0, so it is trivial. Let G := U(1).
Recall that any two Hermitian metrics on a vector space are isomorphic. The
analogue holds for U(1)-structures on E. We may thus choose E = M × C en-
dowed with the standard Hermitian structure. In this case Hom(π1(M), G) =
HomE(π1(M), G). The existence of non-canonical flat connections depends en-
tirely on this group. Furthermore, since G is Abelian, conjugation acts trivially.

Let us consider three examples of this type.
1. Assume M is a compact surface of genus g. Then, after abelianizing

the fundamental group, Hom(π1(M),U(1)) ≃ Hom(H1(M ;Z),U(1)) ≃ U(1)2g.
This classifies all flat structures on the G-bundle E.

2. Assume M := Rn. Unitary connections on E can be identified with i-
valued 1-forms A ∈ Λ1(Rn), and flat connections can be identified with closed
such 1-forms. We have seen that two such connections A,A′ are gauge-equivalent
if A′ = A+ idθ, for some θ = θ(x). On the other hand, the fact H1(Rn;R) = 0
implies A′−A = idf , for some f : Rn → R. This shows that they are equivalent
with respect to the choice θ := π ◦ f , where π is the standard projection π :
R → S1. In other words, up to gauge equivalence there is a unique flat unitary
connection on the G-bundleE. This corresponds to the fact that π1(Rn) is
trivial, so the only homomorphism π1(Rn) → U(1) is trivial.

3. Assume M := Tn is a n-torus. As before (but dropping the factor i),
flat unitary connections are classified by closed 1-forms A. In this case A = dθ
for some θ precisely when

∫
γ
A ∈ 2πZ for any loop γ: indeed, this assumption

allows us to define θ by integration. This includes (but extends) the case A = df
which leads to θ := π ◦ f as above. It follows that, up to gauge equivalence,
flat connections are classified by H1(Tn;R)/(2πH1(Tn;Z)), which is again a
n-torus. This corresponds to the fact that π1(T

n) = Zn and homomorphisms
Zn → U(1) = S1 are completely defined by the values they give to a basis, thus
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are classified by (S1)n. In Harmonic Analysis the group Hom(Zn,S1) is known
as the Pontrjagin dual of Zn. Summarizing: the moduli space of flat unitary
connections on E is again a n-torus.

Remark. Wemay rephrase the above by observing that any element inH1(Tn;R)
can be represented by a constant 1-form A on Rn. Indeed, these forms are closed
and, although A = df for some linear function on Rn, this f is not well-defined
on Tn so A is not exact on the torus. It follows that, if we write Tn = V/Λ
for some vector space V and lattice Λ, we can choose constant forms in V ∗ as
representatives and identify the moduli space of flat connections with the “dual
torus” V ∗/(2πΛ∗). Here, Λ∗ is defined to be the elements in V ∗ which take
integral values on Λ. Our correspondence thus gives an identification between
the dual torus and the Pontrjagin dual of the fundamental group of Tn. No-
tice that the latter is very different from the Pontrjagin dual of Tn. Indeed,
Hom(S1,S1) = Z so Hom(Tn,S1) = Zn.

A note regarding terminology: just like the canonical identification V = V ∗∗

justifies the term duality between V and V ∗ because it implies that each is
dual to the other, in the same way iterating the above construction provides an
identification V/Λ = V ∗∗/Λ∗∗.

Example. Let M := S1. As mentioned, for dimensional reasons any connection
on any vector bundle must be flat. This corresponds to the statement that any
vector bundle with structure group G over S1 can be trivialized in such a way as
to make the transition maps become constant. Classifying flat connections thus
corresponds to classifying all connections. Furthermore, any complex vector
bundle is trivial. Let us thus assume E is the trivial complex line bundle with the
standard U(1)-structure. As above, we may then conclude that the moduli space
of all unitary connections on the U(1)-vector bundle E is in 1:1 correspondence
with homomorphisms π1(S1) ≃ Z → U(1), so it is isomorphic to U(1).

In this case it is also interesting to study the parallel U(1)-frames in P =
S1 × U(1). Any such frame can be written as σ := eif , for some f = f(θ), not
necessarily periodic. Given a U(1)-connection A = ia, where a ∈ Λ1(S1), the
frame is parallel iff (eif )′+iaeif = 0, ie f ′+a = 0. This shows that f ′ is periodic.
The possible discrepancy between σ(2π) and σ(0) produces the monodromy.
More specifically, we can use σ(2π) ∈ U(1) to classify the connection up to
gauge equivalence. By the Leibniz rule, the other parallel sections are then of
the form λσ, for constant λ ∈ U(1).

Remark. There is an extension of the above theory concerning “projectively
flat connections”, ie those for which F∇ = α ⊗ IdE , where α ∈ Λ2(M). These
connections are classified by homomorphisms from π1(M) into the projectivized
Lie group, eg PGL, see [?].

Holomorphic bundles. Recall that there are two ways to define a holomor-
phic structure on a manifold: via holomorphic charts, or via linear algebra
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and the preliminary concept of an almost-complex structure: an endomorphism
J : TM → TM such that J2 = −Id. The Newlander-Nirenberg theorem pro-
vides the integrability condition relating these two points of view.

This data allows for a holomorphic function theory on M : we say that f is
holomorphic if, in accordance with the Cauchy-Riemann equations, df(JX) =
i df(X), ie df(X + iJX) = 0 for all tangent vectors X. This condition can be
reformulated in terms of the vanishing of a certain part of the operator d, as
follows.

(i) We decompose the complexified vector space TxM ⊗ C by writing

X =
1

2
(X − iJX) +

1

2
(X + iJX).

The splitting ∂x = 1
2 (∂x − i∂y) + 1

2 (∂x + i∂y) is an example of this in local
coordinates.

(ii) Dually, we decompose the space Λ1
x(M)⊗C into the sum of forms which

annihilate these two types of vectors. This is written

Λ1
x(M)⊗ C = Λ1,0

x (M)⊕ Λ0,1
x (M).

(iii) We thus obtain, by projection, a decomposition d = ∂ + ∂̄. Specifically,
∂̄f(X) := 1

2df(X + iJX). A function is holomorphic iff ∂̄f = 0.
A last observation: the fact that partial derivatives (wrt coordinate vector

fields) commute is expressed by the fact d2 = 0. This implies that all complex-
ified partial derivatives commute. In particular, ∂̄2 = 0.

Now choose a complex vector bundle E → M . In order to generalize the
operator ∂̄ to sections, ie to define holomorphic sections, extra data is required: a
holomorphic structure on E. Analogously to the case of holomorphic structures
onM , this can be defined in two ways. The first is elementary: a complex vector
bundle E → M is holomorphic if it admits a trivializing atlas whose transition
maps gij are holomorphic. In this case, given any smooth section σ, we define
∂̄Eσ so that, locally in any trivializing chart Ui, it corresponds to ∂̄si. This
definition is well-posed because, if we change coordinates, ∂̄(gijs

j) = gij ∂̄s
j . In

this sense, holomorphic bundles are the exact analogue of bundles with constant
transition maps, ie local systems.

Remark. A differentiable manifold may support many different holomorphic
structures: such moduli spaces appear already in Riemann surface theory, eg in
the case of complex tori. Analogously, any complex vector bundle on a holo-
morphic manifold may support many different holomorphic structures: again,
moduli spaces. In both cases these can be seen as distinct subatlases of an initial
maximal atlas.

The second way is in terms of (an alternative notion of) connections and an
integrability condition similar to flatness, as follows. We define Λ0,1(E) to be
the space of E-valued 1-forms which annihilate vectors of the form X−iJX. We
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then define a partial connection on E to be an operator ∂̄E : Λ0(E) → Λ0,1(E)
satisfying the Leibniz rule ∂̄E(fσ) = ∂̄f ⊗ σ + f∂̄Eσ. The space of partial
connections is parametrized by Λ0,1(End(E)). The gauge group is given by
sections of the adjoint bundleAd(P ) := P×AdGL(r,C), where P is the GL(r,C)-
principal fibre bundle of linear frames on E.

Exactly as before, a partial connection induces operators ∂̄E : Λ0,i(E) →
Λ0,i+1(E) and a curvature operator ∂̄2E . If ∂̄E is obtained from holomorphic
transition maps, then ∂̄2E = 0: we think of this as a flatness condition for the
connection. In this context, parallel sections are those that are holomorphic.
In the holomorphic case, local examples can be found via any holomorphic
trivializing chart. In general, however, finding parallel sections corresponds
locally to solving equations of the form ∂̄s = −As. In general there is no
guarantee that this equation admits solutions. It turns out that flatness is
the correct integrability condition which allows us to solve equations of this
type. It actually allows us to build local holomorphic frames, thus holomorphic
transition maps gij .

Summarizing: given a complex vector bundle E, there is a 1:1 correspon-
dence between holomorphic structures on E (modulo isomorphisms) and partial
connections on E such that ∂̄2E = 0 (modulo gauge transformations).

Example. When M is a Riemann surface any partial connection automatically
satisfies the flatness condition and thus defines a holomorphic structure on the
underlying bundle. Since partial connections always exist, this means that any
complex vector bundle on M admits a holomorphic structure.

The analogous statement is open on higher-dimensional complex manifolds.1

Connecting connections. We now face the task of understanding the rela-
tionship between the two notions of connection on a same complex vector bundle
E. One direction is simple: given a connection ∇ on E, its (0,1) component
∇0,1 defines a partial connection ∂̄E . Specifically, for any X ∈ TpM ,

(∂̄E)X =
1

2
(∇X + i∇JX).

This map ∇ 7→ ∂̄E := ∇0,1 has good properties. First, it is equivariant with
respect to the gauge group actions. Second, recall that the splitting of Λ1(M)⊗C
induces a splitting of higher-degree forms. In particular,

Λ2(M)⊗ C = Λ2,0(M)⊕ Λ1,1(M)⊕ Λ0,2(M).

In turn, this induces a splitting of the bundle Λ2(M)⊗E. Applying this splitting
to the curvature tensor we find ∂̄2E = F 0,2

∇ . In particular, this shows that if ∇
is flat then E is holomorphic (alternatively, this follows from the fact that ∇
defines a local system, thus holomorphic transition maps).

1See post Complex vector bundles that are not holomorphic, mathoverflow, by D. Panov
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In order to further understand this map, it is useful to introduce the following
notion. Choose a Hermitian metric on E. It then turns out that, given any
partial connection ∂̄E , there exists a unique U(r)-connection ∇ on E whose
(0,1) component coincides with ∂̄E . This ∇ is known as the Chern connection
associated to ∂̄E . We can identify it as follows.

Choose a trivializing atlas wih gij ∈ U(r). Locally, ∂̄E = ∂̄ + A, with
A ∈ Λ0,1(gl(r,C)). Then −Āt ∈ Λ1,0(gl(r,C)) and, for each X, AX−Āt

X ∈ u(r).
The desired connection has the form d+ (A− Āt) = (∂ − Āt) + (∂̄ +A). It has

the property that F 2,0
∇ = F 0,2

∇ , so ∂̄E is integrable iff F∇ is of type (1,1).

Remark. An alternative construction is possible in the special case where ∂̄2E =
0, ie E is holomorphic. For simplicity, let us view it in the case where E is a line
bundle. In this case, in each trivializing chart Ui we choose a holomorphic basis,
ie a non-vanishing section σi. This provides an identification E|Ui

≃ Ui×C such
that σi ≃ 1. Notice that ∇σi = ∇1,0σi + ∂̄Eσi = ∇1,0σi. In local coordinates
this means ∇σi ≃ (∂ +A)1 = A, where A is a 1-form of type (1,0). Our goal is
to find A, assuming ∇h = 0.

Set H := h(σi, σi). The assumption ∇h = 0 implies

dH = h(∇σi, σi) + h(σi,∇σi) ≃ h(A, 1) + h(1, A).

The Hermitian condition means that, on the RHS, the first term is of type (1,0),
the second of type (0,1). Thus, for example, ∂H = h(A, 1) = Ah(1, 1) = AH.
It follows that A = ∂ logH. Its curvature is F∇ = dA = ∂̄∂ logH ∈ Λ1,1, as
expected.

To summarize: given a Hermitian metric on E, the construction of Chern
connections produces a 1:1 correspondence between the space A of all U(r)-
connections on E and the space of all partial connections on E.

Under this correspondence, the curvature of the U(r)-connection is of type
(1,1) iff the partial connection satisfies ∂̄2E = 0, ie it corresponds to a holo-
morphic structure on E. Gauge theory thus provides an interesting way to
study holomorphic structures on a Hermitian vector bundle, by using the space
A1,1 of unitary connections with (1,1) curvature. A key issue, however, is that
one often wants to keep track of which holomorphic structures are equivalent.
Here, equivalence refers to the action of the complex gauge group. On A or
A1,1, however, the natural action is that of the unitary gauge group: the Chern
construction produces a mismatch between the two natural gauge groups.

This observation leads to two different set-ups.

1. Recall that each Hermitian metric on E defines a U(r)-subbundle of
the GL(r,C)-frame bundle, and that the action of the complex gauge group on
the GL(r,C)-frame bundle allows us to move from one subbundle to another;
equivalently, from one Hermitian structure to another.

Now let us fix a Hermitian metric h on E. Choose a partial connection ∂̄E .
Let ∇ denote the Chern connection associated to ∂̄E wrt h. Applying to ∇ an
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element g in the U(r)-gauge group corresponds to finding the Chern connection
g ·∇ associated to the partial connection g ·∂̄E , wrt the same metric h. If instead
we apply to ∇ an element g in the GL(r,C)-gauge group, we obtain the Chern
connection g ·∇ associated to the partial connection g · ∂̄E , wrt the metric g ·h.

To summarize: given a partial connection, this construction produces a com-
plex orbit Ch of unitary connections, wrt varying metrics.

This construction depends strongly on the initial choice of h. If we change the
initial Hermitian metric, the same initial partial connection ∂̄E will determine
a different initial Chern connection ∇, thus a different complex orbit. We thus
obtain a family C = {Ch} of complex orbits of connections on E, parametrized
by the Hermitian metrics on E.

A natural problem in this setting is to look for a metric h such that Ch has
optimal properties. In order to make sense, the properties must be invariant
under the complex gauge group action. For example, the Narasimhan-Seshadri
theorem (discussed below) looks for h such that connections in Ch are flat (more
generally, Hermitian-Yang-Mills).

Remark. Even though we have fixed an initial partial connection, the equiv-
ariance underlying this construction implies that the orbit Ch built using ∂̄E
coincides with the orbit Ch built using g · ∂̄E . In this sense the Narasimhan-
Seshadri theorem concerns an isomorphism class of holomorphic structures on
E, rather than a specific holomorphic structure/partial connection.

2. Fix a metric on E. We can define a new action of the complex gauge group
on A so that (i) it preserves this space, (ii) under the correspondence defined
by the Chern construction it coincides with the natural action of the complex
gauge group on partial connections. By definition this action also preserves the
subspace A1,1, it extends the natural action of the unitary gauge group and it
makes the above correspondence become equivariant.

We emphasize that this construction, detailed for example in [?] Chapter 6,
keeps the Hermitian metric on E fixed.

A natural problem in this setting is to look for (unitary or partial) con-
nections in the given complex gauge orbit which have optimal properties wrt
the given metric. This leads to an alternative formulation of the Narasimhan-
Seshadri theorem.

In summary: the first set-up fixes a connection and looks for a preferred
metric. The second set-up fixes the metric and looks for a preferred connec-
tion. Both set-ups allow us to work within a given complex orbit of partial
connections, ie isomorphism class of holomorphic structures on E. They lead
to formally different, but equivalent, formulations of the Narasimhan-Seshadri
theorem.

Remark. We remark that the metric used for the Yang-Mills functional, based
on the Killing form, is not only U(r)-invariant; it is also GL(r,C)-invariant.
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The functional is thus constant on each Ch, so studying it on C is equivalent to
thinking of it as a functional on the space of Hermitian metrics on E.

The functional is instead not invariant with respect to the other complex
gauge group action defined in point 2, above. Indeed, the theorems described in
the next section can be proved by studying its gradient flow within the complex
orbits.

Example. Let M be a compact Riemann surface of genus g. Let E → M be
the trivial line bundle. We have seen that unitary flat connections are classified
by U(1)2g. We have noted that this classification is independent of the specific
U(1)-structure on M . Now recall that the holomorphic structures on E form
a group, denoted Pic0; a long exact sequence argument shows that Pic0 ≃
H1(O)/H1(M ;Z) ≃ Cg/Z2g ≃ U(1)2g. We can explain this as follows.

Every flat unitary connection induces locally constant, thus holomorphic,
transition maps gij , thus a holomorphic structure on E. Conversely, any such
structure is generated by a flat unitary connection, wrt an appropriate metric.
Indeed, choose a partial connection compatible with the holomorphic structure
and an initial Hermitian metric h. As above, we then obtain a Chern connection
∇ which, in appropriate coordinates, is of the form ∂ + ∂ logH. Its curvature
F∇ is then locally expressed by ∂̄∂ logH. According to Chern-Weil theory, the
fact c1(E) = 0 implies that

∫
M
F∇ = 0. Any other metric is of the form efh.

The curvature of its Chern connection is ∂̄∂H+ ∂̄∂f . One can show that, in this
situation, it is possible to solve the global equation ∂̄∂f = −F∇. The resulting
f is such that the Chern connection of the initial holomorphic structure, wrt
efh, is flat.

We will see below that this is the simplest manifestation of the Narasimhan-
Seshadri theorem.

Remark. In the above example we have followed the first set-up: fixed partial
connection, variable metric.

6 Curvature and stability

In the previous section we discussed a very general relationship between holo-
morphic structures and unitary connections. The last example showed that,
in the special case of trivial bundles over Riemann surfaces, we can refine this
relationship obtaining flat unitary connections. We now want to extend this
discussion to vector bundles of higher rank. This will require the concept of
stability.

Notice that holomorphic vector bundles are more complicated than line bun-
dles in many ways. Some issues are simple: tensor products do not preserve rank
and duality does not define inverses, so they do not form a group. Other issues
are more subtle. In higher dimensions there is no analogue of the relationship
between divisors and holomorphic line bundles. Also, holomorphic subbundles
do not necessarily have complements, leading to the issue of which bundles
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are decomposable, ie can be written as direct sums of holomorphic subbun-
dles. Furthermore, given a holomorphic homomorphism ϕ : E1 → E2 between
holomorphic vector bundles, very roughly speaking (ie, up to rephrasing every-
thing in terms of coherent sheaves so as to define images and manage dimension
jumps) it is generally not true that Im(ϕ) is isomorphic to E1/Ker(ϕ).

These facts lead to a sophisticated theory of holomorphic vector bundles.
Large parts of this theory are independent from gauge theory, which on the sur-
face simply offers an alternative formalism for discussing holomorphic structures
and the concept of equivalence, via the action of the complex gauge group. We
shall review some aspects of holomorphic vector bundle theory below, in partic-
ular pertaining to the concept of stability. It turns out however that stability
is also the key to a much deeper link between the vector bundle theory and
gauge theory (with respect to the group G = U(r)), as described by a body of
results originating with the Narasimhan-Seshadri theorem. Our starting point
for presenting this result is the following question.

We have already understood the flatness condition for a partial connection on
E. Given any Hermitian metric on E, the construction of the Chern connection
leads to the question of characterizing the flatness of this connection.

Of course, we should expect that such flatness depends on the choice of
Hermitian structure. We will see that it also corresponds to a special category
of holomorphic bundles.

Let us restrict our attention to the simplest category: we assume M is a
Riemann surface. A first simplification in this context is the following: the
fact that M has dimension 2 implies the existence of non-zero smooth sections,
so that E ≃ L ⊕ Cr−1 where L is a complex line bundle. This shows that
det(E) ≃ det(L) = L. It follows that, just like complex line bundles, complex
vector bundles are classified by their rank and by c1(E), ie by their degree
deg(E) := c1(E) ·M .

Stability. As already mentioned, the theory of holomorphic vector bundles
rests upon the foundational concept of stability. In turn, this requires the notion
of slope.

Let E → M be a complex vector bundle over a compact Riemann surface.

The slope of E is µ(E) := deg(E)
rk(E) =

∫
M

c1(E)

r .

Slope is a numerical invariant which depends on the topology of E, not on
any additional holomorphic structure. However, the following example shows
that it does control the holomorphic geometry.

Example. Let E be a holomorphic line bundle over a compact Riemann surface
M . The number µ(E) = deg(E) controls the holomorphic geometry of E in
several ways.

First, it coincides with the number of zeroes minus the number of poles of
any non-zero meromorphic section of E. In particular, if deg(E) < 0 then any
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non-zero meromorphic section certainly admits poles, ie there exist no non-zero
holomorphic sections.

Second, it governs the existence of non-zero holomorphic homomorphisms
E1 → E2 between holomorphic line bundles. Indeed, such maps are equivalent
to non-zero holomorphic sections of the line bundle E∗

1 ⊗ E2, thus they can
exist only if deg(E1) ≤ deg(E2): slope is monotone under non-zero holomorphic
homomorphisms.

The role of slope for line bundles is thus analogous to the role of genus in
governing the existence of non-constant holomorphic maps between compact
Riemann surfaces, via the Hurwitz formula.

Example. Any holomorphic homomorphism between holomorphic vector bun-
dles E1, E2 defines a holomorphic section of E∗

1⊗E2, thus a holomorphic section
of the corresponding determinant line bundle.

Let us assume this map is non-zero. It follows that deg(det(E∗
1 ⊗ E2)) ≥ 0.

Now recall that, given two square matrices A, B of order a, b, det(A ⊗ B) =
det(A)b det(B)a. This implies that deg(det(E∗

1 ⊗ E2)) = −deg(E1)rk(E2) +
deg(E2)rk(E1) ≥ 0. It follows that deg(E1)/rk(E1) ≤ deg(E2)/rk(E2): if we
want to mimic the situation for line bundles, the definition of slope is basically
forced upon us.

In particular, the notion of slope provides the formulation of a special con-
straint on holomorphic vector bundles: we say that a holomorphic vector bundle
E over a Riemann surface is stable (respectively semi-stable) if, for any non-
trivial holomorphic subbundle F < E, µ(F ) < µ(E) (respectively µ(F ) ≤
µ(E)).

Stability thus limits the topological type of holomorphic subbundles. Notice:
although slope itself does not detect the holomorphic structure, the holomorphic
structure influences stability by controlling which are the holomorphic subbun-
dles to which the condition applies.

The notion of stability was introduced by Mumford in the ’60s in terms
of Geometric Invariant Theory (GIT). In this context, the main result is that
while moduli spaces of holomorphic bundles are in general not smooth, GIT
shows that stable holomorphic bundles (with fixed rank and degree) do have
smooth moduli spaces. These moduli spaces have a natural complex structure.
They can be compactified to (non-smooth) projective varieties by adding the
semi-stable bundles, modulo a certain notion of “S-equivalence”. The notion
of S-equivalence can be by-passed via the notion of poly-stable bundles: bun-
dles which can be written as a direct sum of stable bundles, all with the same
slope. Such bundles are automatically semi-stable, and each S-equivalence class
of a semi-stable bundle contains a unique poly-stable representative, so Mum-
ford’s compactified moduli space can be identified with the space of poly-stable
bundles.

Example. Any holomorphic line bundle is trivially stable because it admits no
non-trivial subbundles. This corresponds to the fact that the moduli spaces are
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automatically smooth, isomorphic to g-dimensional complex tori.
Any automorphism of a holomorphic line bundle defines a holomorphic sec-

tion of the trivial line bundle E∗ ⊗ E, and is thus constant.

Example. Assume E is a semi-stable holomorphic bundle such that r and deg(E)
are co-prime. It is then automatically stable, for obvious numerical reasons. In
this case, Mumford’s theorem shows that the moduli space of such bundles is a
smooth (compact) projective manifold.

Remark. Semi-stable bundles generally produce singular points in the moduli
space. Unstable bundles would cause the moduli space to be non-Hausdorff.
The simplest manifestation of this is the “jumping phenomenon”, [?]: one can
find holomorphic families of holomorphic vector bundles parametrized by t ∈ ∆,
which are isomorphic for t ̸= 0 but not for t = 0. These two holomorphic bundles
cannot be separated from each other in the moduli space. However, the bundle
corresponding to t = 0 is unstable so it does not belong to Mumford’s moduli
space.

Stable bundles are very rigid: they have only constant automorphisms. This
implies that they are indecomposable, ie cannot be written as direct sum of
non-trivial subbundles: otherwise they would at least admit automorphisms of
the form C∗ × · · · × C∗.

In general, the properties of semi-stable holomorphic vector bundles are
analogous to those of holomorphic line bundles. In particular, one can show
that the existence of a non-zero holomorphic homomorphism between semi-
stable holomorphic bundles E1, E2 implies µ(E1) ≤ µ(E2) (even without the
additional assumption that the induced determinant map is non-zero). Semi-
stable bundles form a category with good properties: for example, if ϕ : E1 → E2

is a holomorphic homomorphism, then (roughly speaking, as above) Ker(ϕ) and
Im(ϕ) are again semi-stable and E1/Ker(ϕ) is isomorphic to Im(ϕ).

Semi-stable bundles admit filtrations via subbundles whose successive quo-
tients are stable. Holomorphic bundles admit filtrations via subbundles whose
successive quotients are semi-stable. In this sense, stable bundles are the build-
ing blocks of holomorphic bundles.

Example. Grothendieck showed that any holomorphic vector bundle on CP1

can be decomposed into the sum of holomorphic line bundles. When r > 1, it
is thus not stable: Mumford’s moduli space is empty.

Remark. Much work has been done studying the topology of Mumford’s moduli
spaces (in particular, the Betti numbers and the ring structure on cohomology).
Another much-studied problem concerns the existence of canonical geometric
structures on these spaces. For example, when G = U(r) or G = SU(r), the
moduli space has a natural Kähler structure. The symplectic structure is actu-
ally independent of the complex structure on M . We refer to [?] for details.
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Flatness and stability. Coming back to our original question, the answer
is provided by the Narasimhan-Seshadri theorem which, in its simplest version,
concerns a degree zero (ie, smoothly trivial) indecomposable holomorphic vector
bundle E over a compact Riemann surfaceM . As mentioned, indecomposability
is a necessary condition for stability.

Theorem 6.1 (Narasimhan-Seshadri, degree zero) Let E be a degree zero
(ie, smoothly trivial) complex vector bundle over a compact Riemann surface.
Assume E is endowed with an indecomposable holomorphic structure.

Then E is stable iff it admits a Hermitian metric whose Chern connection
is flat. This metric is unique.

Remark. We have phrased this statement in terms of Hermitian metrics, ie in
terms of the first set-up, discussed above. The statement fixes the holomorphic
structure, thus an equivalence class of partial connections. Stability and inde-
composability are invariant under the complex gauge group action. As seen,
each initial Hermitian metric h defines a complex orbit Ch of U(r)-connections
on E (wrt varying Hermitian metrics). Flatness of the connections in any such
orbit is also gauge-invariant. The theorem says that the holomorphic bundle
E is stable iff there exists a metric h whose complex orbit Ch consists of flat
connections.

We can alternatively formulate the statement according to the second set-
up. This requires choosing a Hermitian metric h. The statement is then that
the holomorphic bundle E is stable iff the corresponding complex orbit in A1,1

contains a flat U(r)-connection. This connection is unique up to the U(r)-gauge
group action.

The first set-up leads to a “best” metric, the second to a “best” connection.

Example. We have shown above that any holomorphic line bundle is stable.
When it is smoothly trivial over a compact Riemann surface, we have also
shown how to find a Hermitian metric inducing a flat Chern connection. In this
sense, the Narasimhan-Seshadri theorem is the higher-dimensional analogue of
facts already discussed for line bundles.

As seen above, flat Hermitian connections can be classified via their mon-
odromy representations π1(M) → U(r). Not all such representations arise from
stable holomorphic bundles: stability (thus indecomposability) forces the extra
condition that the representation be irreducible, ie does not admit non-trivial
invariant subspaces. We obtain all representations by working in the larger
category of poly-stable bundles.

Corollary 6.2 Let M be a compact Riemann surface. Consider the trivial vec-
tor bundle E := M × Cr. There are 1:1 correspondences between the moduli
space of poly-stable holomorphic structures, flat Chern connections with curva-
ture of type (1,1), and homomorphisms π1(M) → U(r) (up to equivalence).

This correspondence restricts to a correspondence between stable holomorphic
structures, irreducible flat connections and irreducible homomorphisms.
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We can think of the reducible connections, ie connections obtained as direct
sums, as a way of compactifing the moduli space of flat Chern connections in
the same way that poly-stable structures compactify the moduli space of stable
structures.

Curvature and stability, part 1. We now wish to know what is the anal-
ogous statement for non-trivial holomorphic vector bundles. Once again, our
guideline is provided by the case of holomorphic line bundles.

Example. Let E → M be a holomorphic line bundle over a compact Riemann
surface. According to Chern-Weil theory, c1(E) is represented by i

2πF∇, for any
Chern connection ∇ defined by a Hermitian metric on E. Conversely, any real
(1,1) form α in the class c1(E) is an i

2π multiple of the curvature of some such
connection. Indeed, choose one such metric h. Any other metric is of the form
efh, for some f : M → R. Our problem corresponds to solving the equation
i
2π (∂̄∂f + F∇) = α, ie ∂̄∂f = −2πi α − F∇, which indeed has solution because
the RHS has integral 0.

The next question is how to choose a canonical α ∈ c1(E). We can do this
via a Kähler form ω on M . Indeed, if we normalize it so that

∫
M
ω = 1, it pro-

vides a canonical representative for the generator of H2(M ;Z), thus canonical
representatives λω for all other classes in H2(M ;R). Given any holomorphic
line bundle E overM and normalized ω, we obtain a canonical Hermitian metric
h on E by choosing λ ∈ R such that c1(E) = λ[ω], then imposing the condition
that the Chern connection have curvature F∇ = −2πi λω. Notice that (i) all
such ω are conformally equivalent, (ii) the solution h depends on the specific
ω, indeed the condition expresses a certain compatibility between h and ω, (iii)
the specific λ is independent of ω, ie it is determined only by the topology of
E: λ =

∫
M
c1(E) = µ(E).

More generally, given a holomorphic vector bundle E over a Riemann surface
(M,J, ω), a Hermitian-Yang-Mills connection (HYM), or Hermitian-Einstein
connection, is the Chern connnection ∇ on E defined by some metric h such
that F∇ = −2πi λ IdEω, for some λ ∈ R. Taking the trace of the endomor-
phisms and integrating one finds that, necessarily, λ = µ(E). The correspond-
ing metric is a Hermitian-Einstein metric (HE) on E. One can show that if h is
weakly Hermitian-Einstein, in the sense that the equation holds with respect to
a real function λ, then there exists a conformally equivalent h′ = efh which is
Hermitian-Einstein in the usual sense. In particular, this shows that if a HYM
connection exists with respect to a given ω, it exists wrt any other conformally
equivalent ω′. It follows that, in the setting of Riemann surfaces, the existence
depends only on J .

Theorem 6.3 (Narasimhan-Seshadri, general) Let E be an indecompos-
able holomorphic vector bundle over a compact Riemann surface.

Then E is stable iff it admits a metric whose Chern connection is Hermitian-
Yang-Mills (for some, thus any, choice of ω). This metric is unique. The
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corresponding constant coincides with the slope of E.

More generally, given E, there is a 1:1 correspondence between poly-stable holo-
morphic structures, HYM connections with curvature of type (1,1) and homo-
morphisms π1(M) → P U(r).

As for stability, the HYM condition is complex gauge-invariant. We can thus
incorporate the gauge group into the Narasimhan-Seshadri theorem as follows:
an equivalence class of holomorphic structures on E is stable iff there exists a
Hermitian metric h such that all connections in the corresponding class Ch are
HYM.

Remark. The original Narasimhan-Seshadri theorem gave only the correspon-
dence between stability and representations of π1. The gauge-theoretic view-
point was introduced by Atiyah-Bott.

HYM connections are critical points of the YM functional. More specifically,
they are absolute minima. Indeed, given a normalized ω, we can write F∇ =
ω ⊗ A, for some A ∈ Λ0(End(E)). It follows that the YM integrand coincides

with ∥A∥2. Recall the orthogonal decomposition A = A0 + tr(A)
r IdE , where

A0 is trace-free and tr(A) is an imaginary-valued function on M . Notice that
i
2π

∫
M

tr(A)ω =
∫
M
c1(E) = rµ(E). It follows that

YM(∇) =

∫
M

∥A∥2ω =

∫
M

∥A0∥2ω +

∫
M

∥ tr(A)
r

IdE∥2ω

=

∫
M

∥A0∥2ω + r

∫
M

| i tr(A)
r

± 2πµ(E)|2ω

=

∫
M

∥A0∥2ω + r

∫
M

(
i tr(A)

r
− 2πµ(E))2ω + 4π2rµ(E)2

≥ 4π2rµ(E)2.

This absolute minimum is a topological constant. It is attained precisely when
A is trace-free and tr(A) is constant, which implies that ∇ is HYM.

Curvature and stability, part 2. The analogue of the Narasimhan-Seshadri
theorem over higher-dimensional manifolds is known as the Kobayashi-Hitchin
(or Donaldson-Uhlenbeck-Yau) correspondence. It was proven for algebraic
manifolds by Donaldson, for Kähler manifolds by Uhlenbeck-Yau and for Her-
mitian manifolds by Buchdahl and Li-Yau.

The statement for Kähler manifolds requires a generalization of the notion of
slope. Let (M,J, ω) be a compact n-dimensional Kähler manifold (normalized
so that

∫
M
ωn = 1) and E be a rank r complex vector bundle over M .

The slope of E is µ(E) :=
∫
M

c1(E)∧ωn−1

r . It provides a notion of stability
similar to that seen above. Since slope depends only on the class [ω], this holds
also for stability.
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When E is holomorphic, a Hermitain-Yang-Mills connection on E is the
Chern connection ∇ on E defined by some metric h such that F∇ ∧ ωn−1 =
−2πi λ IdEω

n, for some λ ∈ R. Taking the trace of the endomorphisms on both
sides and integrating, we find that necessarily λ = µ(E). The corresponding
metric is a Hermitian-Einstein metric on E.

The Donaldson-Uhlenbeck-Yau theorem states that E is poly-stable iff it
admits a Hermitian-Einstein metric. This metric is unique.

Given the relationship between stability and the algebraic GIT theory, the
theorem shows that the algebraic problem of stability is related to the analytic
problem of the existence of solutions to the Hermitian-Einstein PDE.

The statement of the theorem is obviously analogous to that seen for Rie-
mann surfaces. An additional analogy is the fact that HYM connections are
again absolute minima of the YM functional. We remark that, although the
YM equation is a second order PDE on the connection, the HYM condition is
of first order. As before, the minimum value is determined by the topology of E
(its characteristic classes) and by its slope (and thus depends on [ω]), [?] equa-
tions 4.3.8 and 4.3.29. Finally, as before, while the specific Hermitian-Einstein
metric on E depends on the specific choice of ω, its existence depends only on
the class [ω].

This leads however to a first important difference. The Kähler cone of M is
typically not just a half-line, as for Riemann surfaces. It thus plays a more im-
portant role: changing [ω] might destabilize E, [?]. A second difference concerns
the fact that, in higher dimensions, it is typically harder to compactify both the
moduli space of stable structures and the moduli space of Hermitian-Einstein
connections [?]. We will discuss below the partial role of “bubbling” in this
process.

Remark. Kobayashi [?] develops a general theory of Hermitian-Einstein connec-
tions which is parallel to that of stable bundles. It applies to complex manifolds
in all dimensions using a J-compatible metric g onM , ie the 2-form ω. However,
the fact that a weak Hermitian-Einstein metric can be conformally rescaled to
become Hermitian-Einstein works only for Kähler manifolds.

The notion of weak HYM connections is a metric-dependent variation of the
notion of projectively flat Hermitian connections. If E admits a projectively flat
Hermitian connection then it clearly admits a weak HYM connection for any g.
The converse is generally not true. The problem is that a tensor in Λ1,1 ⊗Ex is
generally not decomposable (unless M is a Riemann surface). The weak HYM
condition expresses a balance between the single terms in the decomposition
which depends on the specific metric g. Changing the metric may affect this
balance. It follows that although projectively flat Hermitian connections can
be classified via homomorphisms π1(M) → P U, this does not apply to HYM
connections.
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7 Digression: topology vs. geometry

Differential geometers and Analysts tend to work at a rather sophisticated level,
potentially forgetting (or ignoring) the topological roots of the concepts they
deal with. The goal of this section is to review the different levels at which one
can work, emphasizing both the new tools that differential geometers use and the
issues involved. Roughly speaking, we shall try to underline the distinction and
relationships between (i) algebraic topology, applied to topological manifolds,
(ii) differential topology, which refines this study to smooth manifolds, and (iii)
differential geometry, which represents a further step in the smooth category by
introducing very different tools and methods, eg connections and analysis.

In passing from the topological to the geometric viewpoint one generally
encounters two issues.

1. It is often natural to trade integer for real coefficients. This has several
consequences.

The most obvious is that, as already mentioned, a Z-module L need not
be free. Torsion elements in integral homology/cohomology groups contain ex-
tra information. The universal coefficient theorem shows that real/complex
(co)homology is equivalent to tensoring the integral (co)homology with K. This
operation kills the torsion elements. There is no solution to this problem. In-
formation is lost forever.

Another consequence is that it hides important aspects of the theory. Indeed,
even if L is free it is a much more rigid object than a vector space. For example,
matrices in GL(n,R), used to classify bases of vector spaces, have non-zero de-
terminant. Matrices in GL(n,Z), used to classify bases of free Z-modules, have
determinant ±1. Likewise, a real bilinear form is completely determined by its
rank and signature. The theory of integral bilinear forms is more elaborate.
Here, rank, signature and non-degeneracy are defined to be those of the corre-
sponding real form but this suffices, for example, only to control the injectivity
of the corresponding map L → Hom(L,Z). Surjectivity of this map requires
the stronger unimodularity condition, ie the matrix representing the integral
form must have determinant ±1, and there exist further invariants such as type
(even/odd). This leads to a more complicated classification.

2. Extra structure such as a differentiable and/or Riemannian structure can
simplify certain definitions and proofs, eg by substituting cohomology classes
with de Rham classes, or de Rham classes with harmonic forms. However, it
shadows the fundamentally topological nature of the object being studied. Dif-
ferent (“exotic”) differentiable structures define different de Rham cohomology
spaces, but they are isomorphic because they correpond to the same cohomology
defined topologically. Likewise, different Riemannian metrics define different
classes of harmonic forms, but they are isomorphic because they correspond to
the same de Rham cohomology classes.

We shall review some of this in greater detail below. In this context, however,
perhaps the most important example to keep in mind is the following.
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Example. Integer coefficients play a vital role concerning the question of pro-
jectivity of a compact Kähler manifold M .

Recall the starting point. Holomorphic maps into CPN are built using holo-
morphic sections of line bundles. This process works if M admits an ample line
bundle L: the embedding is then built using sections of some Lk. The main
issue is thus to furnish a useful characterization of ampleness. This can be done
either in terms of the “Nakai criterion”, or as follows.

Set Hk := Hk(M ;C) and let Hp,q denote Dolbeault cohomology. On a gen-
eral compact complex manifold there is no relationship between these spaces.
However, given a Kähler metric, Hodge theory implies that (i) Hk can be rep-
resented via harmonic k-forms, (ii) any harmonic k-form splits into harmonic
(p,q)-forms, (iii) harmonic (p,q)-forms representHp,q. This leads to embeddings
of Hp,q into Hk. Changing the metric changes the harmonic representants only
by exact forms, so the embeddings are metric-independent. The conclusion is a
metric-independent decomposition Hk = ⊕Hp,q.

Now set Λ := H2(M ;Z) so that V := H2(M ;R) = Λ ⊗ R and H2 =
V ⊗ C = H2,0 ⊕ H1,1 ⊕ H0,2. The complexification process defines a natural
conjugation on H2. The construction above shows that H1,1 and H2,0 ⊕H0,2

are conjugation-invariant, so they are the complexification of subspaces in V .
This leads to a splitting V = V 1,1

R ⊕ (H2,0 ⊕H0,2)R. Since M is Kähler, V 1,1
R

contains an open cone of classes containing positive representants. The crux of
projectivity is whether this cone intersects Λ (more precisely: the torsion-free
part of Λ, viewed as a subset of V ), ie whether M admits a positive closed (1,1)
form whose cohomology class is integral.

Notice: the key point here is that a density argument shows that any cone
which is open in V will intersect Λ, but here we are typically working with a
cone which is open inside a closed subspace of V . Projectivity thus involves a
delicate balance between the complex structure and integral topology.

The final argument is as follows.
1. If M is projective then the Fubini-Study form on CPN pulls back to a

positive closed (1,1) form whose class is integral.
2. Conversely, assume M admits a positive closed (1,1) form whose class is

integral. The first issue is to show that it represents c1(L), for some L. This
is the role of the Lefschetz (1,1) theorem, which characterizes the image of the
map c1 in the exact sequence

· · · → Pic(M) ≃ H1(M ;O∗)
c1→ H2(M ;Z) α→ H2(M ;O) ≃ H0,2(M) → . . .

Exactness shows that Im(c1) = Ker(α), while the decomposition of V shows
that Ker(α) = Λ∩H1,1(M ;R). Any such form thus represents c1(L), for some
holomorphic line bundle L (and is the curvature of the Chern connection of
some h).

The second issue is to show that L is ample. This is achieved via the Kodaira
embedding theorem.

The conclusion is a characterization of projectivity in differential-geometric
terms: M is projective iff it admits a form as above, ie iff it achieves the above
balance between complex structure and integral topology.
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Remark. The above justifies the following definition: L is positive iff c1(L) is
represented by a positive closed (1,1) form (integrality is automatic). Kodaira’s
theorem shows that positivity implies ampleness. The converse is also true,
again by studying the pull-back of the Fubini-Study metric. Positivity thus
provides a differential-geometric characterization of ampleness.

Topological invariants. Algebraic topology provides a hierarchy of invari-
ants for a compact manifold M .

The first level consists of homotopy and (co)homology groups. As mentioned,
for the latter one must take into account the possible presence of torsion. We
will thus write Hk = (Hk)f ⊕ Tor, Hk = (Hk)f ⊕ Tor. The ranks of the
torsion-free parts determine the simplest invariants: numbers.

A second level consists of the algebraic structure on (co)homology. In par-
ticular, when M is oriented and compact we have: the intersection product
∩ : Hi × Hn−i → H0 ≃ Z, the cup product ∪ : Hi × Hn−i → Hn ≃ Z and
Poincare’ duality PD : Hi → Hn−i, which provides an isomorphism which
interweaves the two products: PD([A] ∩ [B]) = PD([A]) ∪ PD([B]).

The two products are integral bilinear forms. When M has dimension
n = 4m one obtains, in particular, a symmetric productH2n×H2n → Z (equiva-
lently, H2n×H2n → Z). The kernel of the induced map H2n → Hom(H2n,Z) =
Hom((H2n)f ,Z) is precisely the torsion part and its restriction to (H2n)f is
unimodular. In particular, the corresponding real form is non-degenerate so its
signature (b+, b−) has the property b2n = b+ + b−.

A third level consists of characteristic classes. These however require a
choice of vector bundle, so at this stage we need to introduce extra structure:
a choice of smooth structure leads to the tangent bundle TM , thus Stiefel-
Whitney (SW), Euler and Pontryagin classes ofM . A further choice of (almost)
complex structure on TM leads to Chern classes.

It turns out that there exists an intricate network of relationships between
characteristic classes, and between these classes and the above bilinear form.
For example, when n = 4, let τ := b+ − b− denote the index of M . The index
theorem shows that τ = 1

3

∫
M
p1(TM). If M has an almost complex structure

one can further write the RHS in terms of Chern numbers.

Example. Using a combination of characteristic classes and complex geometry,
one can show that K3 surfaces have b2 = 22 and signature (3,19).

Characteristic classes are also closely related to specific aspects of the geom-
etry ofM . For example, assumeM is a compact oriented Riemannian manifold.
Recall that SO(n) has two covers: the disconnected group O(n) and the con-
nected, simply connected group Spin(n). Restricting a O(n)-structure on M to
SO(n) corresponds to choosing an orientation: this is possible iff the first SW
class vanishes. Covering the SO(n)-frame bundle with a Spin(n)-bundle is pos-
sible iff the second Stiefel-Whitney class vanishes: this allows the construction
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of “spinor bundles” over M .

Invariants and geometry. Geometric structures and ideas provide new tools
for studying the above objects.

One example is provided by the notion of differential forms, which give a
new way to study cohomology and its algebraic structure via de Rham theory
and the wedge product on forms. Specifically, using coefficients in K, we find
H∗ ≃ H∗

dR and [α]∩ [β] ≃ α∧β. Hodge theory provides further insight by using
a Riemannian metric to find canonical (harmonic) representatives in each class.
Notice however that it does not encode the algebraic structure: the wedge of
harmonic forms is not necessarily harmonic.

Another example is provided by Chern-Weil theory, which provides a differential-
geometric approach to (real) characteristic classes via connections and curva-
ture.

We will now review yet another example, provided by the Hodge star oper-
ator. Since below we shall be mostly interested in the case of 4-manifolds, we
shall restrict the discussion to this setting.

Digression. Let (V, g) be a 4-dimensional oriented Euclidean vector space. Con-
sider the space Λ2(V ). On this space we have two bilinear forms: the induced (R-
valued) metric g(α, β) and the (Λ4-valued) symmetric form α∧β. As usual there
exists an endomorphism, typically denoted ⋆, such that α ∧ β = g(⋆α, β) volg.

The operator ⋆ coincides with the standard Hodge operator on Λ2(V ), gener-
ally defined by α∧⋆β = g(α, β) volg. Indeed, in this dimension dim(Λ2(V )) = 6
and ⋆⋆ = Id. Together with the fact that the Hodge operator is an isometry,
this confirms the claim.

The above also implies that ⋆ satisfies g(α, ⋆β) = g(⋆α, β), ie it is g-symmetric.
It is thus diagonalizable, with eigenvalues ±1. We can also compute that each
eigenspace has dimension 3. In other words, the bilinear form ∧ on Λ2(V ) has
signature (3, 3).

A second feature in this dimension is that if we conformally rescale the metric
g 7→ λ2g on vectors, then the induced metric on 2-forms rescales by λ−4: this
factor is cancelled by the rescaled volume form so the Hodge star operator, and
everything related to it, depends only on the conformal class of the metric.

Now let M be a compact oriented Riemannian 4-manifold. Applying the
above to each cotangent space we obtain a decomposition Λ2(M) = Λ+(M) ⊕
Λ−(M), thus the (infinite-dimensional) spaces of selfdual (SD) and anti-selfdual
(ASD) 2-forms. Using the isomorphism H2 ≃ H2

dR we obtain

[α] ∩ [β] ≃
∫
M

α ∧ β =

∫
M

g(α, ⋆β) volg .

Let H2 denote the space of harmonic 2-forms. Hodge theory shows that H2
dR ≃

H2, so the latter has dimension b2 and a non-degenerate symmetric bilinear
form induced from the previous equation.
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Recall that, in general, the form only provides a decomposition of the vector
space into positive/negative regions, separated by the isotropy cone. In this
case, however, the Hodge operator commutes with the Laplace operator ∆g so
we obtain a splitting H2 = H+ ⊕H−. If α ∈ H+ then

[α] ∩ [α] ≃
∫
M

g(α, α) volg ≥ 0.

Analogously, α ∈ H− implies that [α] ∩ [α] ≤ 0. The metric thus provides
canonical maximal positive/negative subspaces. It follows that b+ = dim(H+),
b− = dim(H−).

Remark. Notice that any closed (A)SD 2-form is automatically harmonic and
that any exact (A)SD 2-form vanishes. It follows that the abstract de Rham
construction of restricting to closed forms and quotienting by the exact ones,
applied to the spaces of (A)SD forms, would again lead to the spaces of harmonic
(A)SD 2-forms.

In the Hermitian setting there exists yet another convenient handle on (A)SD
forms. Let us assume our 4-dimensional vector space V is Hermitian, endowed
with the orientation induced by the complex structure. Set ω := g(J ·, ·). The
space Λ2,0⊕Λ0,2 is conjugation-invariant, so it is the complexification of a space
W of real 2-forms. It turns out that W⊕ < ω > coincides with the space of
SD forms, so (the complexification of) an ASD form α must be of type (1,1).
Furthermore, α ∈ Λ1,1 is ASD iff g(α, ω) = 0. Since ⋆ω = ω, this is equivalent to
the condition α∧ω = 0. The analogue holds for (almost) Hermitian 4-manifolds.

8 ASD connections

Flat connections are defined by a first order condition on the connection, but
trivially satisfy the second order Yang-Mills equations because they provide
examples of absolute minimizers of the YM functional. However, they exist
only when the YM functional can take value 0, which implies strong topological
constraints on E.

Hermitian-Einstein connections follow a similar pattern. In both cases, the
point is that appropriate structures on M (such as a Kähler metric) lead to
algebraic conditions (such as the HE condition) which provide very strong con-
trol over the Yang-Mills equations, allowing us to characterize minimizers alge-
braically and to relate their existence to special properties of E (local systems
or stability). In summary: in appropriate situations, algebra controls analysis.

ASD connections provide yet another instance of this situation. Let E →
M be a vector bundle over a 4-dimensional oriented Riemannian manifold M .
Choose a connection ∇ on E. We can use the splitting of 2-forms on M to
write its curvature as F∇ = F+

∇ + F−
∇ . The connection on E is anti-selfdual if
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F+
∇ = 0, ie if F∇ is an endomorphism-valued ASD 2-form on M . This condition

depends only on the conformal class of the metric on M .
ASD connections are also known as “instantons”. As above, they are de-

fined by a first order condition on the connection and trivially satisfy the YM
equations. Again, this condition has implications on the functional. We can un-
derstand this in the setting of Hermitian bundles by starting from the formula

[tr(F 2
∇)] = 8π2{c2(E)− 1

2
c1(E)2} ∈ H4(X;R).

To simplify, assume G = SU(r) so that c1(E) = 0. Notice that

tr(F 2
∇) = tr(F+

∇ ∧ F+
∇ ) + tr(F−

∇ ∧ F−
∇ ) + 2 tr(F+

∇ ∧ F−
∇ )

F+
∇ ∧ F−

∇ = −F+
∇ ∧ ⋆F−

∇ = −g(F+
∇ , F

−
∇ ) volg = 0.

This shows that∫
M

tr(F+
∇ ∧ F+

∇ ) + tr(F−
∇ ∧ F−

∇ ) = 8π2

∫
M

c2(E).

Using the same metric as in the YM functional, we thus find∫
M

(−∥F+
∇∥2 + ∥F−

∇∥2) volg = 8π2

∫
M

c2(E).

It follows that∫
M

∥F∇∥2 volg =

∫
M

∥F+
∇∥2 volg +

∫
M

∥F−
∇∥2 volg

= 2

∫
M

∥F+
∇∥2 volg −

∫
M

∥F+
∇∥2 volg +

∫
M

∥F−
∇∥2 volg

= 2

∫
M

∥F+
∇∥2 volg +8π2

∫
M

c2(E).

We thus find a topological lower bound for the YM functional:

YM(∇) ≥ 8π2

∫
M

c2(E).

The bound is achieved precisely when F∇ is ASD, proving that these connections
are absolute minimizers.

To summarize: once again, appropriate structures on M (4-dimensional ori-
ented Riemannian) imply strong algebraic control over the Yang-Mills equations.

Remark. The above formula emphasizes the strong relationship between the
YM functional and characteristic classes, based on the fact that they can both
be written in terms of curvature.

Analogous situations arise also for SD connections and for other groups G,
provided one works in terms of the appropriate characteristic class, see Donald-
son 2.1.4.
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Example. The Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction provides a
1:1 correspondence between ASD connections on SU(r)-bundles over R4, whose
curvature has finite energy, and certain algebraic data. A removible singularity
theorem shows that the bundles and connections can be smoothly extended to
S4, endowed with its standard metric. This provides an explicit construction of
all instantons on S4.

The ASD condition is particularly interesting in the case whereM is a Kähler
surface and E is holomorphic. Indeed, recall the Hermitian-Einstein equation

F∇ ∧ ωn−1 = −2πi λ IdEω
n

over a Kähler manifold M . As already seen, when M has complex dimension 1
the case λ = 0 corresponds to flat connections. WhenM has complex dimension
2 the case λ = 0 corresponds instead to the condition F∇ ∧ ω = 0. Since F∇
is Hermitian and E is holomorphic, F∇ is automatically of type (1,1) so the
equation means that F∇ is ASD. As usual in the HE context, the existence of
such connections is related to the stability of E.

Moduli spaces and the geometry of 4-manifolds. It can be shown that
(non-empty) moduli spaces of ASD connections are smooth (for generic con-
formal classes of metrics on M , and except at points where the connection is
reducible) and finite-dimensional (thanks to the existence of a Coulomb gauge,
which makes the equations elliptic). The dimension can be computed via index
formulae. Below, we will discuss how these moduli spaces can be compactified.

The compactified moduli spaces depend on the conformal class of the specific
metric on M , but changing the conformal class generally leads to cobordisms
between the moduli spaces. This feature was used by Donaldson to extract
invariants from these moduli spaces which are independent of the metric. He
then used them to study the intersection form of compact, oriented 4-manifolds.

The main features of the problem come to light already when the manifold
is simply-connected, even though this is an extreme simplification given the
fact that any finitely-presented group can arise as the fundamental group of a
4-manifold.

LetM be a compact, simply-connected, oriented 4-manifold. In this case the
cohomology groups define only one interesting number, b2. The only available
topological invariant is thus the intersection form. The main questions revolve
around the relationship between the abstract classification of integral symmetric
bilinear forms, and the topological or smooth classification of such manifolds:
specifically, the existence and uniqueness of a manifold whose intersection form
coincides with a given abstract form.

One basic difficulty is that (when M is simply connected) one can show
that the intersection form automatically encodes all information obtainable by
characteristic classes so the latter, although defined in terms of the tangent
bundle thus the smooth structure, are actually not able to distinguish different
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smooth structures on the same topological manifold. In other words, the integral
bilinear form encodes all classical invariants.

In the course of the ’80s it eventually turned out that the topological and
smooth categories are actually very different. On the one hand, roughly speak-
ing, Freedman proved a 1:1 relationship between topological manifolds and ab-
stract integral forms. On the other hand Donaldson used the properties of ASD
moduli spaces to show that certain integral forms are not compatible with any
smooth structure.

Donaldson also used gauge theory to introduce new invariants of a given
smooth structure. Roughly speaking, these invariants are created in two steps.
One first chooses a bundle and a Riemannian metric on M so as to create
ASD moduli spaces (which depend only on the conformal class). One then
extracts information from the moduli spaces which depends only on the smooth
structure, not on the conformal class. Donaldson encoded this information in
terms of polynomials defined on the integral groups H2. He then used these
invariants to show that certain integral forms, ie topological manifolds, support
several different smooth structures. The argument is along the following lines.

On the one hand he showed that, in many cases, if a smooth manifold can be
written as a connect sum then these invariants are trivial. On the other hand
he compared some such manifolds to certain Kähler surfaces, noticing that they
have the same intersection form, thus the same topology. For many Kähler
surfaces the Hitchin-Kobayashi correspondence allows one to calculate the ASD
moduli spaces and the invariants in terms of the moduli space of stable bundles.
Donaldson thus managed to show that the invariants of these Kähler surfaces
are non-trivial. Since the invariants are different, the smooth structures must
be different.

In summary, the methods of differential topology were not sufficient to dis-
tinguish the topological and the smooth categories: this required geometry.

9 Bubbling phenomena

Moduli spaces of YM connections are typically not compact. There are two
reasons for this. First, they are invariant under the non-compact group of
gauge transformations. This means that we can hope for compactness only
after quotienting by this action. The second reason is more complicated, and
is generally summed up in the catch-word “bubbling”. This term appears in
several contexts within geometric analysis: the geometries may be very different,
but they are linked by analogous analytic properties. The bottom line is that,
in all cases, even though the spaces in question are not compact, bounded
sequences have special properties so that one can understand fairly precisely
what goes wrong in the limit, thus find a way to compensate. In the best-case
scenario one can build a geometric description of the “boundary” of the space
in question, generated by all possible limits.
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Holomorphic curves. One of the simplest appearances of bubbling occurs
when dealing with holomorphic curves in Kähler manifolds (more generally,
pseudo-holomorphic curves in symplectic manifolds). We attempt to give a
quick presentation in this context.

Our starting point will be smooth maps u : Σ → M between Riemannian
manifolds and the energy functional E(u) := 1

2

∫
Σ
|Du|2 volΣ. An important

property of this functional is that, when dim(Σ) = 2, it depends only on the
conformal class of the metric on Σ. This means that it is well-defined when Σ
is a Riemann surface.

In general, the critical points of E are the harmonic maps. When Σ is a
Riemann surface andM is Kähler (more generally: symplectic with a compatible
almost-complex structure), however, there is a special class of critical points
defined by a different, first-order, equation: indeed, the energy identity

E(u) :=

∫
Σ

|∂̄u|2 volΣ +

∫
Σ

u∗ω,

shows that, within a given homology class of maps, E has a topological lower
bound achieved precisely by the holomorphic curves in that class: analogies
with flat/HE/ASD connections and the Yang-Mills functional should be clear.

In other words, in the geometric context of Kähler/symplectic geometry,
the PDE we are interested in (the CR equations) appear as a special class of
Euler-Lagrange equations. This allows us to rely on Calculus of Variations type
arguments, rather than only on PDE theory, to prove (i) existence of solutions
(see also Hilbert’s 22nd problem) and (ii) compactness of the moduli space of
solutions. In the case in question, it is for example reasonable to hope that
holomorphic curves exist as limits of energy-minimizing sequences. Similarly,
given a sequence of holomorphic curves, one might hope to use energy bounds
to prove the existence of a convergent subsequence. We remark that energy
bounds are particularly natural in this context: a L2 bound on a solution to a
first-order elliptic system automatically implies a L1,2 bound, and this happens
uniformly with respect to sequences.

Notice that, in some cases, energy bounds do immediately lead to existence.
Consider the case of harmonic curves, ie geodesics: a minimizing sequence of
smooth curves admits an energy bound by definition. This leads to a W 1,2

bound, thus a C0,α bound via the Sobolev embedding theorems. Ascoli-Arzelà
then produces a minimizing curve, ie a geodesic (easier arguments also exist,
which do not rely on the Sobolev embedding theorems). In our case, however,
n = 2 happens to be the threshold case where the Sobolev embedding theorems
corresponding to p = 2, which is the case relevant to energy, cease to hold.
Existence results for harmonic surfaces are thus highly non-trivial: the first
are due to Sacks and Uhlenbeck (1981), who worked with perturbed energy
functionals defined in terms of p > 2, obtained solutions as above, then studied
sequences of such solutions for pn → 2. The convergence argument for such
sequences requires very strong, uniform, control over these solutions and all
their derivatives, obtained in the so-called “small energy theorem”.
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Analogous considerations hold for compactness results. It is of course ob-
vious that spaces of continuous maps are generally not compact, even in the
best-case scenarios where the domain/range are compact or the maps have ex-
tra properties. Perhaps the simplest examples are the sequence of continuous
functions xn : [0, 1] → [0, 1], or of holomorphic maps un : CP1 → CP1, z 7→ nz.
Once again, the underlying fact is that C0-bounds do not suffice to enforce
compactness: one needs some control over the derivatives, either pointwise or
integral: one then applies the Ascoli-Arzelà criterion, as above. As already seen,
however, this technique fails for harmonic surfaces. More importantly, conver-
gence in the usual sense is actually false. The point we now need to make is
that it is possible to ensure a suitably modified notion of compactness.

Example. Consider the sequence of holomorphic maps un : CP1 → CP1, z 7→ nz.
We observe the following facts: (i) The pointwise limit is the non-continuous
map which fixes 0 and sends all other points to ∞; in particular, there is no
convergent subsequence in the C0-topology. (ii) Analytically, the problem is
that the derivatives dun are not pointwise bounded, eg in the point 0. The
energy E(un) is however bounded, actually constant: this follows from the
energy identity. (iii) Geometrically, we can interpret the blow-up of dun(0) by
imagining that a small neighbourhood of the fixed point 0 is being stretched
by the maps so as to cover greater and greater parts of the sphere. (iv) There
is a simple way to locally counter-balance this: on any given neighbourhood of
0 we can rescale via w 7→ z := w/n: the composed sequence of local maps is
constantly equal to the identity map, which extends smoothly to the identity
on the sphere.

We conclude as follows. The naive limit is non-continuous and does not
detect the geometry of the sequence. A different limiting object is the pair of
holomorphic maps (∞, Id) defined on the union of two spheres. We view the
constant map ∞ as the smooth extension of the naive limit, on the original
sphere. The new sphere can be thought of as a “bubble” which emerged out of
the point z = 0 on the original sphere (as in the geometric notion of blow-up). If
we imagine the two spheres as being attached by identifying the point z = 0 on
the original sphere with the point w = ∞ on the new sphere, the corresponding
union of the two maps is continuous. Notice that the original sequence, on the
original sphere, converges to the constant map ∞ uniformly away from 0 and
that this constant map has strictly less energy than those in the sequence. The
other map Id exactly compensates for the missing energy.

It turns out that this example is quite general. By the above, if a sequence
of holomorphic maps un from a compact Riemann surface Σ to a Kähler (more
generally, symplectic) manifold M , with bounded energy, does not converge, it
must admit a finite number of sequences zin ∈ Σ along which dun blows up.
Away from the limit points zi the maps converge uniformly to a holomorphic
map with lower energy. The missing energy can be recovered via bubbles at the
points zi. Since each bubble is obtained simply by rescaling, their images are
approximated by the images of un. A geometric formulation of this behaviour
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is achieved by producing a topology on the moduli space of holomorphic maps
such that objects of this sort, ie holomorphic maps from Riemann surfaces with
extra spheres, appear in the boundary of the moduli space.

Two final ingredients needed to form this picture are the conformal invari-
ance of the energy functional and a removable singularity theorem. Since rescal-
ing is a conformal transformation, the former implies that the bubbles have finite
energy. The latter shows both that the limiting holomorphic maps (such as the
constant map ∞ in the example above) can be smoothly extended in each zi,
and that the rescaled maps extend from C to CP1, creating the holomorphic
bubbles.

We remark that parts of this picture hold also for the harmonic map flow
of a surface into a Riemannian manifold. Specifically, singularities at time T
correspond to the formation of harmonic S2 bubbles at isolated points of the
surface. There exists a limiting map uT and in some cases one can prove that
it has removable discontinuities at those points.

YM connections. An analogous picture for YM connections, including for
example threshold Sobolev spaces, conformally invariant functionals, and small
energy and removable singularity theorems, emerged via the work of Uhlenbeck
and Nakajima in the ’80s. A new feature in this case is the action of the
gauge group. As already mentioned it is necessary to work modulo this action.
This is done by using special local trivializations of the bundle: these “Coulomb
gauge” trivializations can be thought of as analogous, on manifolds, to harmonic
coordinates. In particular, they ensure that the relevant equations are elliptic.

Assuming M is compact and we are given a sequence of YM connections
with bounded YM energy, the situation is as follows. When dim(M) = 2, 3,
compactness holds, ie no bubbling occurs. The case dim(M) = 4 corresponds
to the critical threshold case. Here, bubbling occurs in a finite number of points
pi. Specifically, up to gauge transformations and subsequences, any sequence of
YM connections converges C∞-uniformly away from pi, and extends smoothly
in those points to a limiting YM connection. Two issues need to be mentioned:
the bundle corresponding to this limiting connection might not be isomorphic
to the original bundle, and the YM energy of this limit is strictly lower than
the liminf of the YM energies of the original sequence. At each point pi one can
locally rescale the connections, obtaining a YM connection on R4 endowed with
the pull-back bundle which extends to S4: this is the YM bubble. The sum of
energies of the limit connection and of all bubbles produce the expected total
energy.

In the context of ASD connections, limits and bubbles are again ASD.
A similar picture holds when dim(M) > 4 but in this case the set of bubbling

points in M has Hausdorff codimension 4. In this case there is no guarantee
that the limit connection extends over all such points, nor that the rescaled
connections compactify from Rn to Sn: one must thus distinguish between the
true bubbling locus, ie the points where such extensions hold, and singular
points, where either fails.
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Some of these results hold also for sequences of general (not YM) connections
with bounded energy, but in general one obtains weaker convergence results and
no extension theorems.

We note in closing that the notion of bubbling originated in the 1981 Sacks-
Uhlenbeck work. They used the formation of bubbles to prove the existence of
minimal spheres in Riemannian manifolds. Analogously, in the context of gauge
theory on a four-dimensional manifold, Sedlacek used the formation of bubbles
to prove the existence of YM connections on S4.

10 Closing comments

These notes are still a draft. They have been checked, but certainly not checked
enough. The presentation is naive by choice, but at times possibly stupid. I
would be happy for any comments or corrections.

I would have liked to include a section on the relationship between gauge
theory and calibrated geometry, as in the work of Tian or as in the currently-
developing theory of G2 instantons. I would also have liked to discuss the
relevance of dual tori to Mirror Symmetry, including also a presentation of the
dHYM equation. Sadly I have no time (nor competence, nor energy) to do so
at this moment.

References I have either used or might wish to look at in the future include
the following list.

Atiyah and Bott, Yang-Mills equations over Riemann surfaces (article).
Donaldson and Kronheimer, The Geometry of 4-Manifolds (book).
Donaldson, Karen Uhlenbeck and the Calculus of Variations (article, Notices
AMS).
Donaldson, Mathematical uses of gauge theory (article).
Donaldson, Stability of algebraic varieties and Kähler geometry (article).
Parker, What is... a bubble tree (article, Notices AMS).
Schaffhauser, Differential geometry of holomorphic vector bundles on a curve
(article, arxiv).
Kobayashi, Differential geometry of complex vector bundles (book).
Guichard, An Introduction to the Differential Geometry of Flat Bundles and of
Higgs Bundles (article, arxiv).
Greb, Sibley, Toma and Wentworth, Complex algebraic compactifications of the
moduli space of HYM connections on a projective manifold (article, arxiv).
Song and Waldron, https://arxiv.org/abs/2009.07242.
Thaddeus, An introduction to the topology of the moduli space of stable bundles
on a Riemann surface (article).
Itoh and Nakajima, Yang-Mills Connections and Einstein-Hermitian Metrics
(article).
Hu and Li, Variation of the Gieseker and Uhlenbeck compactifications (article).
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Greb, Ross and Toma, Moduli of vector bundles on higher-dimensional base
manifolds - construction and variation (article).
Thomas, Notes on GIT and symplectic reduction for bundles and varieties (ar-
ticle).
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