Corso di Studi in Matematica

GEOMETRIA 2

Prova scritta del 15 febbraio 2017

COGNOME	NOME
CORSO	

Esercizio 1. (6 punti) Sia $Y=\mathbb{R}^2$ e consideriamo la seguente famiglia $\mathcal T$ di sottoinsiemi di Y

$$A \in \mathcal{T} \iff [(x,y) \in A \implies (-x,y) \in A]$$

cioè $A \in \mathcal{T}$ se e solo se A è simmetrico rispetto all'asse y.

- (a) Dimostrare che \mathcal{T} è una topologia su Y.
- (b) Sia $A = \{(x, y) \in Y \mid x = 0\}$. Dimostrare che la topologia indotta da \mathcal{T} sul sottospazio A è la topologia discreta.
- (c) Sia $B = \{(x, y) \in Y \mid y = 0\}$. Dimostrare che la topologia indotta da \mathcal{T} sul sottospazio B **non** è la topologia discreta, e che B non è di Hausdorff.
- (d) Sia $C = \{(x, y) \in Y \mid y = 0 \text{ e } -1 < x < 2\}$. Determinare la chiusura e la parte interna di C in Y.

Esercizio 2. (6 punti) In \mathbb{R}^2 con la topologia euclidea, si considerino i sottospazi:

$$A = \{(x, n) \mid n \in \mathbb{Z}, n \neq 0\} \text{ e } B = \{(x, y) \mid y = \frac{x}{n}, n \in \mathbb{Z}, n \neq 0\}.$$

Si consideri inoltre l'applicazione continua $g:A\to B$ definita da

$$g(x,n) = \left(x, \frac{x}{n}\right).$$

- (1) A è connesso per archi? è chiuso in \mathbb{R}^2 ?
- (2) B è connesso per archi? è chiuso in \mathbb{R}^2 ?
- (3) Sia $C = \{(x,1) \in A \mid -1 < x < 1\}; C$ è aperto in A? g(C) è aperto in B?

Esercizio 3. (6 punti) Sia $D^2=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}$ il disco unitario chiuso e $S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$ il suo bordo.

- (a) Sia $z \in D^2$. Dimostrare che $D^2 \{z\}$ è semplicemente connesso se e solo se $z \in S^1$.
- (b) Utilizzando il punto precedente dimostrare che se $f:D^2\to D^2$ è un omeomorfismo, allora $f(S^1)=S^1.$

Esercizio 4. (4 punti) Sia S la superficie compatta che si ottiene identificando i lati di un poligono secondo la sequenza

$$W = a b c d e a^{-1} b^{-1} c^{-1} d^{-1} e^{-1}$$

Determinare la classe di omeomorfismo di S nella classificazione delle superfici e calcolare la sua caratteristica di Eulero.

Esercizio 5. (5 punti) Sia $A \in M(3 \times 3, \mathbb{C})$ la matrice definita da

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 5 & 0 \\ 2 & -2 & 3 \end{bmatrix}.$$

- (a) Determinare il polinomio minimo $m_A(t)$ e il polinomio caratteristico $c_A(t)$.
- (b) Determinare la forma canonica di Jordan della matrice A.
- (c) Sia $B \in M(3 \times 3, \mathbb{C})$ tale che $m_B(t) = m_A(t)$ e $c_B(t) = c_A(t)$. Dimostrare che le matrici A e B sono simili.

Esercizio 6. (5 punti) Nel piano proiettivo reale, con coordinate omogenee

 $[x_0:x_1:x_2]$, consideriamo la retta r di equazione $x_0-x_1=0$. Determinare tutte le proiettività $f:\mathbb{P}^2(\mathbb{R})\to\mathbb{P}^2(\mathbb{R})$ tali che f(r)=r, f(1:0:0) = (1:0:0), ef(2:1:0) = (2:1:0).

(NOTA BENE: l'insieme r è fissato come insieme e non necessariamente punto per punto)