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spherical spacetimes

Karl Martel and Eric Poisson
Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada

~Received 23 February 2000; accepted 9 October 2000!

The continuation of the Schwarzschild metric across the event horizon is a well-understood problem
discussed in most textbooks on general relativity. Among the most popular coordinate systems that
are regular at the horizon are the Kruskal–Szekeres and Eddington–Finkelstein coordinates. Our
first objective in this paper is to popularize another set of coordinates, the Painleve´–Gullstrand
coordinates. These were first introduced in the 1920s, and have been periodically rediscovered
since; they are especially attractive and pedagogically powerful. Our second objective is to provide
generalizations of these coordinates, first within the specific context of Schwarzschild spacetime,
and then in the context of more general spherical spacetimes. ©2001 American Association of Physics

Teachers.
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I. INTRODUCTION

The difficulties of the Schwarzschild coordinates
(t,r ,u,f) at the event horizon of a nonrotating black hole
provide a vivid illustration of the fact that in general relativ-
ity, the meaning of the coordinates is not independent of the
metric tensorgab . The Schwarzschild spacetime, whose
metric is given by~we use geometrized units, so thatc5G
51!

ds252 f dt21 f 21dr21r 2dV2,
~1.1!f 5122M /r ,

wheredV25du21sin2 udf2, indeed gives one of the sim-
plest examples of the failure of coordinates which have an
obvious interpretation in one region of the spacetime~the
region for whichr @2M !, but not in another~the region for
which r<2M !. Understanding this failure of the ‘‘standard’’
coordinate system is one of the most interesting challenges in
the study of general relativity. Overcoming this obstacle is
one of the most rewarding experiences associated with learn-
ing the theory.

Most textbooks on general relativity1–3 discuss the con-
tinuation of the Schwarzschild solution across the event ho-
rizon, either via the Kruskal–Szekeres~KS! coordinates, or
via the Eddington–Finkelstein~EF! coordinates; both coor-
dinate systems produce a metric that is manifestly regular at
r 52M . The main purpose of this paper is to show that use-
ful alternatives exist. One of them, the Painleve´–Gullstand
~PG! coordinates, are especially simple and attractive, and
we will consider them in detail. We will also generalize them
into a one-parameter family of coordinate systems, and show
that the EF and PG coordinates are members of this family.

In a pedagogical context, the KS coordinates come with
several drawbacks. First, the explicit construction of the KS
coordinates is relatively complicated, and must be carried out
in a fairly long series of steps. Second, the fact thatr is only
implicitly defined in terms of the KS coordinates makes
working with them rather difficult. Third, the manifold cov-
ered by the KS coordinates, with its two copies of each sur-
face r 5constant, is unnecessarily large for most practical
applications; while the extension across the event horizon is
desirable, the presence of another asymptotic region~for

which r @2M ! often is not. While the KS coordinates are not
to be dismissed out of hand—they do play an irreplaceable
role in black-hole physics, and they should never be left out
of a solid education in general relativity—we would advo-
cate, for pedagogical purposes and as a first approach to this
topic, the construction of simpler coordinate systems for ex-
tending the Schwarzschild spacetime across the event hori-
zon.

A useful alternative are the EF coordinates (v,r ,u,f), in
which the metric takes the form

ds252 f dv212dvdr1r 2dV2. ~1.2!

The new time coordinatev is constant on ingoing, radial,
null geodesics~r decreases,u and f are constant!; it is re-
lated to the Schwarzschild timet by v5t1r * , where

r * 5E dr

f
5r 12M lnU r

2M
21U. ~1.3!

The metric of Eq.~1.2! is regular across the event horizon.
While its nondiagonal structure makes it slightly harder to
work with than the metric of Eq.~1.1!, the fact thatr appears
explicitly as one of the coordinates makes it much more
convenient than the KS version of the Schwarzschild metric.
We believe that in a pedagogical context, the Eddington–
Finkelstein coordinates should be introduced before the KS
coordinates.

Our first objective in this article is to popularize another
set of coordinates for Schwarzschild spacetime, and propose
this system as a useful alternative to the EF coordinates.
These are the Painleve´–Gullstrand ~PG4,5! coordinates
(T,r ,u,f). They are constructed and discussed in Sec. II.
Our second objective is to provide generalizations of this
coordinate system. In Sec. III we discuss a one-parameter
family of PG-like coordinates for Schwarzschild spacetime.
To the best of our knowledge this family was first discovered
by Kayll Lake in 1994,6 but a related family of coordinates
was previously discussed by Gautreau and Hoffmann.7–9 We
show in Sec. III that the PG and EF coordinates are both
members of Lake’s family. In Sec. IV we generalize this
family of coordinate systems to other spherical~and static!
spacetimes; equivalent coordinates were constructed, in a
two-dimensional context, by Corley and Jacobson.10 In Sec.
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V we look back at our coordinates, and offer some additional
comments regarding their construction. In the Appendix we
relate these coordinate systems to the KS coordinates, and
provide details regarding the spacetime diagrams of Figs. 1
and 2.

II. PAINLEVE´ –GULLSTRAND COORDINATES

It is often a good strategy, when looking for regular coor-
dinate systems, to anchor the coordinates to a specific family
of freely moving observers.11 We shall employ this strategy

throughout this paper. The following derivation of the PG
coordinates can be found in the book by Robertson and
Noonan.12 Other derivations can be found in Refs. 7, 8, and
13, in which the PG coordinates were independently redis-
covered.

We consider observers which move along ingoing, radial,
timelike geodesics of the Schwarzschild spacetime~r de-
creases,u andf are constant!. It is easy to check that in the
standard coordinates of Eq.~1.1!, the geodesic equations can
be expressed in first-order form as

ṫ5
Ẽ

f
, ṙ 21 f 5Ẽ2, ~2.1!

where an overdot denotes differentiation with respect to the
observer’s proper time, andẼ5E/m is the observer’s~con-
served! energy per unit rest mass.~For a derivation, see
Chap. 11 of Ref. 1, Chap. 25 of Ref. 2, or Chap. 6 of Ref. 3.!
We assume thatṙ ,0, and the energy parameter is related to
the observer’s initial velocityv`—the velocity atr 5`—by

Ẽ5
1

A12v`
2

. ~2.2!

In this section we specialize to the particular family of
observers characterized byẼ51; our observers are all start-
ing at infinity with a zero initial velocity:v`50. For these

observers, the geodesic equations reduce toṫ51/f and ṙ
52A12 f . We notice thatua , the covariant components of
the observer’s four-velocity, whose contravariant compo-
nents are ua5( ṫ , ṙ ,0,0), is given by ua5(21,
2A12 f / f ,0,0). This means thatua is equal to the gradient
of some time functionT:

ua52]aT, ~2.3!

where

T5t1E A12 f

f
dr. ~2.4!

Integration of the second term is elementary, and we obtain

T5t14M S Ar /2M1
1

2
lnUAr /2M21

Ar /2M11
U D . ~2.5!

This shall be our new time coordinate, and (T,r ,u,f) are
nothing but the PG coordinates. It should be clear that the
key to the construction of the PG coordinates is the fact that
the four-velocity can be expressed as in Eq.~2.3!. In Sec. V
we will explain how this equation comes about.

Going back to Eq. ~2.4!, we see that dt5dT
2 f 21A2M /rdr . Substituting this into Eq.~1.1! gives

ds252 f dT212A2M /rdTdr1dr21r 2dV2. ~2.6!

This is the Schwarzschild metric in the PG coordinates. An
equivalent way of expressing this is

ds252dT21~dr1A2M /rdT!21r 2dV2. ~2.7!

This metric is manifestly regular atr 52M , in correspon-
dence with the fact that our observers do not consider this
surface to be in any way special.~The metric is of course still
singular atr 50.) While the metric is now nondiagonal, it
has a remarkably simple form. It is much simpler than the

Fig. 1. SurfacesT5constant in a Kruskal diagram. The vertical and hori-
zontal axes correspond to the Kruskalt and r coordinates, respectively;
these are defined in the Appendix. The thick, diagonal lines represent the
two copies of the surfacer 52M ; the future horizon is oriented at145
degrees, while the past horizon is oriented at245 degrees. The thick, hy-
perbolic line represents the curvature singularity atr 50. The thin lines
represent the surfacesT5constant. From the bottom up we display the
surfacesT522M , T50, T52M , T53M , T54M , T55M , T56M , and
T57M .

Fig. 2. SurfacesT5constant in a Kruskal diagram. The axes and the mean-
ing of the thick lines are explained in the caption of Fig. 1. The eight
bundles of thin lines refer to the same values ofT as in Fig. 1, fromT
522M ~bottom bundle! to T57M ~top bundle!. Within a single bundle,
each of the four lines come with a distinct value of the parameterp. The

solid line corresponds top51, the long-dashed line corresponds top5
3
4,

the short-dashed line corresponds top5
1
2, and the dotted line corresponds

to p5
1
4.
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Kruskal–Szekeres metric, and we believe that it provides a
useful alternative to the Eddington–Finkelstein form of the
metric, Eq.~1.2!.

In Fig. 1 we show several surfacesT5constant in a
Kruskal diagram. The construction is detailed in the Appen-
dix. The diagram makes it clear that the PG coordinates do
not extend inside the past horizon of the Schwarzschild
spacetime—the ‘‘white-hole region’’ is not covered. The rea-
son for this is that our observers fall inward from infinity and
end up crossing thefuture, but not thepast, horizon. By
reversing the motion~choosing the opposite sign forṙ !, we
would obtain alternative coordinates that extend within the
past horizon but do not cover the black-hole region of the
spacetime. While the PG coordinates do not cover the entire
KS manifold, they do cover the two most interesting regions
of the maximally extended Schwarzschild spacetime.

Equations~2.6! and ~2.7! reveal the striking property that
the surfacesT5constant are intrinsically flat: SettingdT
50 returnsds25dr21r 2dV2, which is the metric of flat,
three-dimensional space in spherical polar coordinates. The
information about the spacetime curvature is therefore en-
tirely encoded in the ‘‘shift vector,’’ the off-diagonal com-
ponent of the metric tensor. We consider this aspect of the
PG coordinates to be their most interesting property.

We note that it is possible to construct PG-like coordinates
for the nonspherical Kerr spacetime. This was carried out by
C. Doran in a recent paper.14

III. GENERALIZATION TO OTHER OBSERVERS

It is easy to generalize the preceding construction to other
families of freely moving observers. In this section we con-
sider families such thatẼ is the same for all observers within
the family, but not equal to unity~as in Sec. II!. Each family
is therefore characterized by its unique value of the energy
parameter. We find it convenient to use instead the parameter
p, related to the energy and initial-velocity parameters by

p5
1

Ẽ2
512v`

2 . ~3.1!

We takep to be in the interval 0,p<1, with p51 taking us
back to the PG coordinates.15 To each value ofp in this
interval corresponds a family of observers, and a distinct
coordinate system. We are therefore constructing a one-
parameter family of PG-like coordinates for Schwarzschild
spacetime.

With the geodesic equations now given byṫ51/(Ap f )
and ṙ 52A12p f /Ap, we find thatua is now equal to a
constant times the gradient of a time functionT:

ua52
1

Ap
]aT, ~3.2!

with

T5t1E A12p f

f
dr. ~3.3!

Integration of the second term doesn’t present any essential
difficulties, and we obtain

T5t12M S 12p f

12 f
1 lnU12A12p f

11A12p f
U

2
12p/2

A12p
lnUA12p f2A12p

A12p f1A12p
U D . ~3.4!

This shall be our new time coordinate. In Sec. V we will
return to the question of the origin of Eq.~3.2!.

With dt now equal todT2 f 21A12p f dr, we find that the
Schwarzschild metric takes the form

ds252 f dT212A12p f dTdr1pdr21r 2dV2, ~3.5!

or

ds252
1

p
dT21pS dr1

1

p
A12p f dTD 2

1r 2dV2. ~3.6!

This metric is still regular atr 52M , although it is now
slightly more complicated than the PG form.

In Fig. 2 we show several surfacesT5constant in a
Kruskal diagram, for several values ofp. This construction is
detailed in the Appendix.

In this generalization of the PG coordinates, the surfaces
T5constant are no longer intrinsically flat. The induced met-
ric is now ds25pdr21r 2dV2, and although the factor ofp
in front of dr2 looks innocuous, it is sufficient to produce a
curvature. It may indeed be checked that the Riemann tensor
associated with this metric is nonzero. The only nonvanish-
ing component isRufu

f 52(12p)/p, andRabcdRabcd54(1
2p)2/(pr2)2.

It is instructive to go back to Eq.~3.4! and check that in
the limit p→1, T reduces to the expression of Eq.~2.5!.
~This must be done as a limiting procedure, becauseT is
ambiguous forp51.! Taking the limit gives

lim
p→1

T5t12M S 2

A12 f
1 lnU12A12 f

11A12 f
U D , ~3.7!

which is indeed equivalent to Eq.~2.5!. The PG coordinates
are therefore a member of our one-parameter family.

Another interesting limit isp→0, which corresponds to

Ẽ→`, or v`→1. In this limit, our observers start at infinity
with a velocity nearly equal to the speed of light. Starting
from Eq. ~3.4! we have

lim
p→0

T5t12M S 1

12 f
1 lnU f

12 fU D5t1r * , ~3.8!

where we have compared with Eq.~1.3!. Thus,T5v in the
limit p→0, and our generalized PG coordinates reduce to the
Eddington–Finkelstein coordinates of Eq.~1.2!. This is not
entirely surprising, in view of the fact that our observers
become light-like in this limit. The EF coordinates, therefore,
are also a~limiting! member of our one-parameter family.

We have constructed an interpolating family of coordinate
systems for Schwarzschild spacetime; as the parameterp var-
ies from 1 to 0, the coordinates go smoothly from the
Painlevé–Gullstrand coordinates to the Eddington–
Finkelstein coordinates. This one-parameter family of coor-
dinate systems was first discovered by Kayll Lake,6 but a
related family of coordinates, corresponding top.1, was
previously introduced by Gautreau and Hoffmann.7–9 Lake
obtained the new coordinates by solving the Einstein field
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equations for a vacuum, spherical spacetime in a coordinate
system involvingr and an arbitrary timeT. The intimate
relation between his coordinates and our families of freely
moving observers remained unnoticed by him.

IV. GENERALIZATION TO OTHER SPACETIMES

The coordinates constructed in the previous two sections
can be generalized to other static and spherically symmetric
spacetimes. In the usual Schwarzschild coordinates, we write
the metric as

ds252e2c f dt21 f 21dr21r 2dV2, ~4.1!

where f and c are two arbitrary functions ofr. Under the
stated symmetries, Eq.~4.1! gives the most general form for
the metric. We assume that the spacetime is asymptotically
flat, so thatf→1 andc→0 asr→`. If the spacetime pos-
sesses a regular event horizon atr 5r 0 , then f (r 0)50 andc
must be nonsingular for all values ofrÞ0.

The geodesic equations are now

ṫ5
Ẽ

e2c f
, ṙ 21 f 5e22cẼ2, ~4.2!

where Ẽ is still the conserved energy per unit rest mass.

Reintroductingp51/Ẽ2, we find that the covariant compo-
nents of the four-velocity can be again expressed as in Eq.
~3.2!, with a time functionT now given by

T5t1E Ae22c2p f

f
dr. ~4.3!

The second term can be integrated iff and c are known.
Rewriting the metric of Eq.~4.1! in terms ofdT yields

ds252 f e2cdT212e2cAe22c2p f dTdr1pe2cdr2

1r 2dV2, ~4.4!

or

ds252
1

p
dT21pe2cS dr1

1

p
Ae22c2p f dTD 2

1r 2dV2. ~4.5!

This metric is manifestly regular at an eventual event hori-
zon, at whichf vanishes.

The surfacesT5constant have an induced metric given by
ds25pe2cdr21r 2dV2. Unlessc50 and p51, these sur-
faces are not intrinsically flat.16

V. FINAL COMMENTS

In all the cases considered in Secs. II–IV, the construction
of our coordinate systems relied on the key fact that the
four-velocity could be expressed asua52]aT/Ap, with p a
constant.@This is Eq.~3.2!, and in Sec. II,p was set equal to
unity.# This property is remarkable, and it seems to follow
quite accidentally from the equations of motion. There is of
course no accident, but the point remains that not every four-
velocity vector can be expressed in this form.

A standard theorem of differential geometry~for example,
see Appendix B of Ref. 3! states that forua to admit the
form of Eq.~3.2!, it must satisfy the equationsu;b

a ub50 and
u[a;bug]50, in which a semicolon denotes covariant differ-

entiation and the square brackets indicate complete antisym-
metrization of the indices. The second equation states that
the world lines are everywhere orthogonal to a family of
spacelike hypersurfaces, the surfaces of constantT. This en-
sures that the four-velocity can be expressed asua

52m]aT, for somefunction m(xa). In general, this func-
tion is not a constant, and we do not yet have Eq.~3.2!. For
this we need to impose also the first equation, which states
that the motion is geodesic. When both equations hold, we
find thatm5constant, and this gives us Eq.~3.2!.

In our constructions, we have enforced the geodesic equa-
tion by selecting freely moving observers. By selectingra-
dial observers, we have also enforced the condition that the
geodesics be hypersurface orthogonal. Our strategy for con-
structing coordinate systems is therefore limited to radial,
freely moving observers in static, spherically symmetric
spacetimes; it may not work for more general motions and/or
more general spacetimes.
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APPENDIX A: KRUSKAL DIAGRAMS

The Kruskal diagrams of Figs. 1 and 2 are constructed as
follows.

From the Schwarzschild coordinatest andr we define two
null coordinates,u5t2r * andv5t1r * , wherer * is given
by Eq. ~1.3!. From these we form the null KS coordinates,
V5ev/4M and U57e2u/4M, where the upper sign refers to
the regionr .2M of the Schwarzschild spacetime, while the
lower sign refers tor ,2M . From this we derive the rela-
tions

UV52er /2MS r

2M
21D ~A1!

and

V

U
57et/2M. ~A2!

Timelike and spacelike KS coordinates are then defined by
V5t1r and U5t2r. In our spacetime diagrams, thet
axis runs vertically, while ther axis runs horizontally. The
future horizon is located atU50, and the past horizon is at
V50. The curvature singularity is located atUV51.

We express the time function of Eq.~3.4! as

T5t1r * 1S~r !, ~A3!

whereS(r ) is the function ofr that results when the second
term of Eq.~3.4! is shifted by2r * , as given in Eq.~1.3!;
this function is regular atr 52M . With this definition we
havev5T2S, u5T2S22r * , as well as

V5eT/4Me2S/4M, ~A4!

and

U52er /2M~r /2M21!e2T/4MeS/4M. ~A5!
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The surfacesT5constant give rise to parametric equations of
the formV(r ) andU(r ), which are obtained from Eqs.~A4!
and~A5! by explicitly evaluating the functionS(r ). In these
equations,r can be varied from zero to an arbitrarily large
value without difficulty. The diagrams of Figs. 1 and 2 are
then produced by switching to the coordinatest̄ and r̄ and
plotting the parametric curves.
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