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The standard General Relativity results for precession of particle orbits and for bending of null rays
are derived as special cases of perturbation of a quantity that is conserved in Newtonian physics, the
Runge–Lenz vector. First, this method is applied to give a derivation of these General Relativity
effects for the case of the spherically symmetric Schwarzschild geometry. Then the lowest order
correction due to an angular momentum of the central body is considered. The results obtained are
well known, but the method used is rather more efficient than that found in the standard texts, and
it provides a good occasion to use the Runge–Lenz vector beyond its standard applications in
Newtonian physics. ©1999 American Association of Physics Teachers.

I. INTRODUCTION

Light bending and perihelion precession are the two most
important effects on orbits caused by the General Relativity
corrections to the Newtonian gravitational field of the sun.
The standard derivation treats these two effects in different
ways, without any apparent connection between them. Yet,
in the usual Schwarzschild coordinates they are both due to
the same, single relativistic correction to the Newtonian po-
tential, so it is of some interest to use the same method to
derive both effects.

The key to the present unified treatment is the Runge–
Lenz vector. In Newtonian physics, where the two effects are
absent, this vector is constant and points from the center of
attraction to the orbit’s perihelion.1 Its nonconstancy in Gen-
eral Relativity therefore is a measure of either effect. The
Runge–Lenz vector was established as a useful tool by 1924
at the latest, but it did not become popular until the 1960s.2

Since then a number of papers that exploit its advantages
have graced the pages of this Journal,3 and the results to be
reported here can in essence be found in earlier papers, but
the unified viewpoint vis a vis General Relativity is perhaps
new. In addition the ‘‘magnetic’’ gravitational effects due to
a rotating central body are treated here with this method.

II. GENERAL RELATIVISTIC EQUATIONS OF
MOTION „NO ROTATION …

The motion to be considered is that of a ‘‘test particle’’ of
massm that moves in the space–time exterior to the central
body. If this body is nonrotating and spherically symmetric,
the exterior space–time geometry is described by the
Schwarzschild line element

ds252S 12
2M

r Ddt21
dr2

12
2M

r

1r 2dV2. ~2.1!

Here we have followed the habit of geometers to express all
quantities in ‘‘geometrized’’ units. Thust is a time variable
with dimensions of length, related to the ordinary timeT

and the speed of lightc by t5cT ; and the constantM
5GM/c2 has dimensions of length and is related to the
total gravitational massM of the central body byc and
Newton’s gravitational constantG. The coordinatest, r, u,
and f are one of many equally valid choices for labeling

space–time points, but they can nevertheless be invariantly
characterized.4

In General Relativity the law of motion of a particle inter-
acting only through gravity with the central body is the geo-
desic equation in the geometry~2.1!. As in Newtonian phys-
ics, the law of motion is invariant under rotations and time
translation. These symmetries lead to conservation laws of
energy and angular momentum. When expressed in terms of
the Schwarzschild coordinates of~2.1! and proper time, the
general relativistic conservation law has a form that is very
similar to the corresponding Newtonian law. From that point
on we can therefore calculate as if we were doing Newtonian
physics.5

The geodesic equation is of course a purely geometric
condition, and therefore independent of the test particle’s
massm. Since the conserved energy and angular momentum
are proportional tom, the ‘‘specific’’ quantities,~energy per
unit mass!/c2 and ~angular momentum per unit mass!/c, are
independent ofm. We will use the symbolsE andL for these
specific quantities. Similarly, we will use the symbole for
‘‘specific rest mass,’’ that is,e51 for particles of finite rest
mass, ande50 for photons. A parameter along the geodesic
will be denoted byt. For timelike geodesics~e51! it is the
proper time~converted, liket, to units of length by the factor
c!. For null geodesics~e50! t denotes an affine parameter.6

Thus, along the geodesic we haveds252e dt2. As usual
we can choose the conserved direction ofL to be normal to
the planeu5p/2. The conserved quantities then are7

E5S 12
2M

r D dt

dt
, ~2.2!

L5r 2
df

dt
, ~2.3!

E[
1

2
~E22e!5

1

2 S dr

dt D 2

2
eM

r
1

L2

2r 22
ML2

r 3 . ~2.4!

Except for the presence oft instead of t, Eqs. ~2.3! and
~2.4! are the same as the corresponding Newtonian equations
of motion of a particle of total energy per unit massE in a
potentialV52eM /r 2ML2/r 3 of which the first term rep-
resents the usual Newtonian gravitational potential, and the
second term is a relativistic correction. Thus for particles as
well as for light, the relativistic motion in terms of the time
parametert is the same as the Newtonian motion in New-
tonian timet if the potential is modified by the single term
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2ML2/r 3. We note that no slow motion assumption or other
approximation is involved in this correspondence. If we are
only interested in the orbit equation, then the difference be-
tween t and t does not matter, because either one will be
eliminated in the same way in favor off via Eq. ~2.3!.

III. SECULAR CHANGE OF ORBITS

The Newtonian bound orbits in a 1/r attractive potential
are ellipses, of fixed eccentricity and orientation. These or-
bital parameters are conveniently described by the specific
Runge–Lenz vector,8 which we define as

A5v3L2eMer. ~3.1!

Here all boldface quantities are 3-vectors in Euclidean space,
er denotes a unit vector in ther direction, andL is the vector
~perpendicular to the orbital plane! corresponding to the spe-
cific angular momentum of Eq.~2.3!. The time parameter is
always t so that, for example, the velocity isv5dr /dt, a
dimensionless quantity. WhenA is constant and in the direc-
tion f50, we have

A–r5Ar cosf5L22eMr . ~3.2!

For particles of finite rest mass~e51! andA,M this equa-
tion describes bound orbits that are ellipses with eccentricity
e5A/M , and semimajor axisa5L2/M (12e2) aligned with
the f50 direction. For light rays~e50!, the equation de-
scribes unbound, straight orbits with impact parameterb
5L2/A. Because these orbits are traversed at the speed of
light we haveL/E5b. In either caseA points from the cen-
ter of attraction to the orbit’s perihelion.

We treat the relativistic modificationML2/r 3 of the New-
tonian potential as a perturbation9 and compute the conse-
quent changes in direction ofA. The rate of change ofA is10

dA

dt
5S r 2

]V

]r
2eM D der

dt
5S 3ML2

r 2 D df

dt
ef . ~3.3!

The direction ofA therefore changes with angular velocity

v5
A3Ȧ

A2 5S 3ML2

A2r 2 D df

dt
A3ef . ~3.4!

Assume thatA initially points in the f50 direction and
changes slowly, then its total change when the particle
moves fromf1 to f2 is

Da5E
f1

f2
v dt53ML2E

f1

f2 cosf df

Ar2 . ~3.5!

The shape of the orbit is still approximately elliptical as
per Eq.~3.2! but its orientation changes slowly. We calculate
the lowest order changes due to the General Relativistic cor-
rection inV by substituting the unperturbed orbit~3.2! into
Eq. ~3.5!:

Da5
3M

AL2 E
f1

f2
~A cosf1eM !2 cosf df. ~3.6!

A. Perihelion precession

For a particle in a bound orbit it is customary to find the
angular change of the perihelion during one revolution~in f!
of the particle. BecauseA points to the perihelion, this angle
is given by Eq.~3.6!, whenf22f152p:

Da5
3M

L2 E
0

2p ~A cosf1M !2

A
cosf df

5
6pM2

L2 5
6pM

a~12e2!
5

6pGM

a~12e2!c2 . ~3.7!

This is the usual perihelion formula.

B. Light bending

Here the deflection is also given byDa of Eq. ~3.6!, but f
changes from2p/2 to p/2 with respect to the perihelion
~and of coursee50!:

Da5
3M

L2 E
2p/2

p/2

A cos3 f df

5
4MA

L2 5
4M

b
5

4GM

bc2 . ~3.8!

This is the usual light deflection formula.
That the light deflection should follow from the same

O(1/r 3) correction to the Newtonian effective potential as
the perihelion rotation may be somewhat surprising, because
the deflection is frequently heuristically explained as an ac-
tion of the NewtonianO(1/r ) potential on light. Indeed, an
effective potential fordr/dt would containO(1/r ) terms, but
in the present choice of variables these are absent—
illustrating once again the arbitrary nature of coordinates in a
generally covariant theory.

IV. SLOWLY ROTATING CENTRAL BODIES

If the body is slowly rotating11 in the f direction with
angular momentumT 5c3J/G, the metric~2.1! is modified
by the Lense–Thirring term,12 2(4J/r )sin2 u df dt, and by
a quadrupole term that is proportional toJ2 and describes the
distortion of the body and its gravitational field. Depending
on the stiffness of the body, both terms can have effects of
comparable magnitude on planetary motion. To lowest order,
the effects simply add together. Thus each effect can be
treated separately, and because the quadrupole term contrib-
utes already in the Newtonian approximation as another cor-
rection to the potentialV, it will not be further considered.

Like the quadrupole term, the Lense–Thirring term breaks
the spherical symmetry, so on symmetry grounds onlyL, the
generalized momentum conjugate tof, is conserved. None-
theless, if the body is stiff enough so that only the Lense–
Thirring term is significant~that is, to first order inJ!, the
‘‘total angular momentum’’Q25pu

21cot2 u L2, wherepu is
the generalized momentum conjugate tou, is also
conserved.13 Thus the entire motion can be formulated in
terms of conserved quantities, and one finds that the angular
momentumL precesses around thez direction.14,15However,
we will confine attention to the case when the motion is
confined to the equatorial plane, and the general relativistic
correction is completely described by the behavior ofA. J
and L are then parallel to each other, and normal to the
orbital plane.

A. Equations of motion and Runge–Lenz vector

A LagrangianL for a particle or a light beam moving in
the equatorial plane of the metric
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ds252S 12
2M

r Ddt21
dr2

12
2M

r

1r 2dV22
4J

r
sin2 u df dt ~4.1!

is given by

L5S ds

dt D 2

52S 12
2M

r D ṫ 21
ṙ 2

12
2M

r

1r 2ḟ22
4J

r
ḟ ṫ. ~4.2!

Here the dot indicates differentiation with respect tot. Be-
cause2ds25e dt2 along the trajectory,L is conserved,

L52e. ~4.3!

SinceL is independent oft andf we have further conserved
quantities,

2E5
1

2

]L

] ṫ
52S 12

2M

r
D ṫ2

2J

r
ḟ,

~4.4!
L5

1

2

]L

]ḟ
5r 2ḟ2

2J

r
ṫ.

Here the factor12 is introduced purely as a convention, so the
conserved quantities agree more nearly with the conventional
specific energy and angular momentum.

We solve forṫ and ḟ to first order inJ,

ḟ5
L

r 2 1
2JE

r 3 , ṫ5
E

12
2M

r

2
2JL

r 3 ~4.5!

and substitute into Eq.~4.3! to obtain a ‘‘conservation of
energy’’ in an effective potential,

E22e5 ṙ 22
2eM

r
1

L2

r 22
2ML2

r 3 1
4JLE

r 3 . ~4.6!

The effective potential in this equation contains two non-
Newtonian terms. The first was already encountered in Eq.
~2.4! and causes the ‘‘standard’’ relativistic correction; the
second is due to the Lense–Thirring addition to the metric.16

By including these correction terms we can perform the rest
of the calculation as if we were doing Newtonian physics.

Because in the rotating case there is a difference between
kinematic angular momentum (r 2ḟ) and canonical angular
momentumL, the Runge–Lenz vectorA can be defined in
various ways, but there is no difference in the precession rate
one calculates from them. A convenient choice is

A5v3S L2
2JE

r D2eMer

5S L2

r
2eM Der2 ṙ S L2

2JE

r Def ~4.7!

because it simplifies the equation of motion forA, and still
gives elliptical orbits for anyJ whenA is constant, as in Eq.
~3.2!:

A–er5A cosf5
L2

r
2eM . ~4.8!

The equation of motion forA can be derived from Eqs.~4.5!
and ~4.6!:

Ȧ5S 3ML2

r 2 2
8eMJE

Lr
1

2JE~e2E2!

L D ḟef . ~4.9!

By substituting Eq.~4.9! into Eq.~3.4! and integrating, using
~4.8! for 1/r , we now find that the total change inA when the
particle moves fromf1 to f2 is

Da5E
f1

f2S 3M

AL2 ~A cosf1eM !22
8eMJE

AL3

3~A cosf1eM !1
2JE~e2E2!

AL D cosf df. ~4.10!

B. Perihelion motion

To obtain the perihelion motion we evaluate Eq.~4.10!
over one revolution~f150, f252p! with e51. Since the
particle velocity is nonrelativistic, we may setE51 to the
lowest order:17

Da5
6pM2

L2 2
8pJME

L3

5
6pM

a~12e2!
2

8pJ

M1/2~a~12e2!!3/2

5
G

c2 F GpM

a~12e2!
2

8pI

~GM!1/2~a~12e2!!3/2G . ~4.11!

The first term is the ‘‘standard’’ general relativistic pre-
cession already found in Sec. III, and the second term is due
to the rotation of the central body.18 For nearly circular or-
bits, we can interpret this second term as due to two causes:
one is the rotation inf of the ‘‘locally nonrotating observer’’
that makes the Lense–Thirring term of Eq.~4.2! disappear at
the radius of the particle, an amount 4pJ/aL; the other is
the ‘‘differential rotation’’ due to the 1/r 3 falloff of the sec-
ond non-Newtonian term in the effective potential of Eq.
~4.6!. This contribution causes precession by an amount
212pJ/aL, in the same way as the first non-Newtonian
term causes the ‘‘standard’’ precession.19

C. Light bending

For the effect on light we pute50 in Eq. ~4.10! and inte-
grate fromf52p/2 to p/2 as in Sec. III B,

Da5
3MA

L2

4

3
2

2JE3

AL
25

4M

b
2

4J

b2 5
4G

c2 FM

b
2

I

cb2G .
~4.12!

The effect of the central body’s rotation~J! on both preces-
sion and bending is negative.20 This is the same ‘‘differen-
tial’’ dragging effect that makes a gyroscope in the equato-
rial plane precess in the opposite direction to the central
body’s rotation.14

V. CONCLUSIONS

For nonrotating spherically symmetric central masses we
have seen that the two important general relativistic correc-
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tions to the Newtonian gravitational motion, namely perihe-
lion precession and light bending, follow from the same cor-
rection term in the effective radial potential; and that either
effect can be viewed as a change in the Runge–Lenz vector
associated with the orbit. Because both effects follow by
simple evaluation from one formula@Eq. ~3.6!#, the effort is
only about half that of the usual procedure; moreover it gives
occasion to review and apply the Runge–Lenz vector. We
have shown the extension of this calculation to equatorial
orbits of a rotating body@Eq. ~4.10!#; relativistic corrections
to parabolic and hyperbolic orbits can similarly be evaluated
by this method.

a!Electronic mail: brill@physics.umd.edu
b!Electronic mail: dgoel@wam.umd.edu
1Although our treatment is not confined to the solar system, we use this
term to denote the point of closest approach to the central body because it
seems more familiar~and more etymologically consistent! than the more
correct term, pericenter.

2For a history of the Laplace–Runge–Lenz vector, see H. Goldstein, ‘‘Pre-
history of the Runge–Lenz vector,’’ Am. J. Phys.43 ~8!, 737–738~1975!
and ‘‘More on the prehistory of the Laplace or Runge–Lenz vector,’’44,
1123–1124~1976!.

3See C. E. Aguiar and M. F. Banoso, ‘‘The Runge–Lenz Vector and Per-
turbed Rutherford Scattering,’’ Am. J. Phys.64 ~8!, 1042–1048~1996!,
and the references cited therein.

4For example, 4pr 2 is the area of the spherer 5const,t5const, and]/]t is
the time-like Killing vector that has unit length at infinity. See C. W.
Misner, K. S. Thorne, and J. A. Wheeler,Gravitation ~Freeman, San Fran-
cisco, 1973!.

5As in Newtonian physics, it is customary in general relativity to derive the
equations of motion in the Schwarzschild geometry by using all the con-
servation laws and identifying an effective potential in a radial energy
conservation equation. For the effects we want to calculate we need the
radial accelerationd2r /dt2, so it would be a little more straightforward to
use the radial component of the geodesic equation and the conservation of
angular momentum. But we follow the equivalent, customary route of
finding the radial acceleration from the gradient of the effective potential.

6For the case of light, the affine parametert is defined only up to scale
transformations. The quantitiesE and L are therefore similarly defined
only up to such rescaling in this case. The final, physical results will
contain only ratios of such quantities, and are therefore independent of
rescaling.

7For a derivation see, for example, Bernard F. Schutz,A First Course in
General Relativity~Cambridge U.P., Cambridge, 1985!, p. 275 or the ref-
erence of footnote 4 on p. 656, or Sec. IV of the present paper.

8The Runge–Lenz vector has been defined with various factors ofm by
various authors. OurA is (mc)223 that of Ref. 10, and has the advantage
that it gives a finite value for particles of finite rest massm as well as for
light (m50).

9This meansM /r !1, wherer is a typical orbit radius; it follows if we
assumeM2/L2!1.

10See, for example, H. Goldstein,Classical Mechanics~Addison–Wesley,
Reading, MA, 1980!, 2nd ed.

11We work only to first order inJ; more precisely, we assumeJ&ML and,
as before,M /r;M 2/L2;e!1, so thatJ/r 2;e3/2.

12J. Lense and H. Thirring, ‘‘U¨ ber den Einfluss der Eigenrotation der Zen-
tralkörper auf die Bewegung der Planeten und Monde nach der Einstein-
schen Gravitationstheorie,’’ Phys. Z.19, 156–162~1918!; English trans-
lation in Gen. Relativ. Gravit.16, 711–750~1984!. Also see D. R. Brill
and J. M. Cohen, ‘‘Rotating Masses and Their Effects on Inertial
Frames,’’ Phys. Rev.143, 1011–1015~1966!.

13For the geometrical reason for the conservation ofQ2 see D. Bocaletti and
G. Pucacco, ‘‘Killing Equations in Classical Mechanics,’’ Nuovo Cimento
B 122, 181–212~1997!.

14For a summary of all the relativistic effects on orbits see I. Ciufolini and J.
A. Wheeler,Gravitation and Inertia~Princeton, U.P., Princeton, 1995!.
One of the aims of the Lense–Thirring paper cited in Ref. 12 was to
integrate the equations of motion for orbits of general orientation.

15For a treatment using the Runge–Lenz vector, see L. D. Landau and E. M.
Lifshitz, The Classical Theory of Fields~Pergamon, New York, 1975!, p.
336; S. Weinberg,Gravitation and Cosmology~Wiley, New York, 1972!,
p. 230.

16With our assumptions as spelled out in Ref. 11 the Newtonian terms of the
effective potential are of ordere, both non-Newtonian terms are of order
e2, and typical terms that are neglected areJ2E2/r 4;JEML/r 4;e3,
J2L2/r 6;e4, etc.

17Formally, this follows from theM 2!L2 assumption and requiring bound
orbits.

18The last term in Eq.~4.11! changes sign ifL is antiparallel toJ. Both
terms are of ordere.

19For nonequatorial orbits the first contribution is a precession aboutJ,
whereas the second contribution is a precession aboutL , proportional to
J–L .

20However, the relative contribution ofJ to light bending is less: We have
M /b;e, but J/b2;e3/2.

WORD PROBLEMS

Bennett’s classmates hated word problems. Indeed, they hated math altogether, but they’d
rather have a tooth filled than be forced to sit down and contemplate word problems. Bennett, on
the other hand, placed word problems on a level with Florida’s pecan pie. Word problems were
delicious. He devoured them. He convinced the flabbergasted Mrs. Dixon to give him additional
problems, beyond the assignments, and when she ran out of problems he created them himself.
After school, when the other boys played basketball or loitered behind the Rexall drugstore to
smoke and discuss girls, Bennett went home and up to his room to do word problems.

Alan Lightman,Good Benito~Pantheon Books, New York, 1994!, p. 66.

319 319Am. J. Phys., Vol. 67, No. 4, April 1999 D. R. Brill and D. Goel


