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Light bending and perihelion precession: A unified approach

Dieter R. Brill® and Deepak Goel”
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

(Received 23 December 1997; accepted 27 July 1998

The standard General Relativity results for precession of particle orbits and for bending of null rays
are derived as special cases of perturbation of a quantity that is conserved in Newtonian physics, the
Runge—Lenz vector. First, this method is applied to give a derivation of these General Relativity
effects for the case of the spherically symmetric Schwarzschild geometry. Then the lowest order
correction due to an angular momentum of the central body is considered. The results obtained are
well known, but the method used is rather more efficient than that found in the standard texts, and
it provides a good occasion to use the Runge—Lenz vector beyond its standard applications in
Newtonian physics. ©1999 American Association of Physics Teachers.

[. INTRODUCTION space—time points, but they can nevertheless be invariantly
characterized.

Light bending and perihelion precession are the two most |n General Relativity the law of motion of a particle inter-
important effects on orbits caused by the General Relativityacting only through gravity with the central body is the geo-
corrections to the Newtonian gravitational field of the sun.desic equation in the geometf®.1). As in Newtonian phys-
The standard derivation treats these two effects in differenics, the law of motion is invariant under rotations and time
ways, without any apparent connection between them. Yetranslation. These symmetries lead to conservation laws of
in the usual Schwarzschild coordinates they are both due tenergy and angular momentum. When expressed in terms of
the same, single relativistic correction to the Newtonian pothe Schwarzschild coordinates (F.1) and proper time, the
tential, so it is of some interest to use the same method tgeneral relativistic conservation law has a form that is very
derive both effects. similar to the corresponding Newtonian law. From that point

The key to the present unified treatment is the Runge-on we can therefore calculate as if we were doing Newtonian
Lenz vector. In Newtonian physics, where the two effects argyhysics®
absent, this vector is constant and points from the center of The geodesic equation is of course a purely geometric
attraction to the orbit's periheliohlts nonconstancy in Gen- condition, and therefore independent of the test particle’s
eral Relativity therefore is a measure of either effect. Thanassm. Since the conserved energy and angular momentum
Runge-Lenz vector was established as a useful tool by 1924re proportional tan, the “specific” quantities(energy per
at the latest, but it did not become pOpular until the 19?605.unit masycz and (angu|ar momentum per unit mass are

Since then a number of papers that exploit its advantagggdependent ofn. We will use the symbolg& andL for these
have graced the pages of this Jourhahd the results to be gpecific quantities. Similarly, we will use the symbofor
reported here can in essence be found in earlier papers, bepecific rest mass,” that ise=1 for particles of finite rest
the Un|f|ed V|eWpO|nt VIS a VIS General Relat|V|ty IS perhapSmaSS, an&=0 for photons_ A parameter a|0ng the geodesic
new. Ir_1 addition the “magnetic” gravitation_al effects due to il be denoted byr. For timelike geodesicée=1) it is the

c). For null geodesic$e=0) 7 denotes an affine paramefer.

Thus, along the geodesic we haste’=—e d72. As usual
IIl. GENERAL RELATIVISTIC EQUATIONS OF we can choose the conserved directioridb be normal to
MOTION (NO ROTATION) the planed=m/2. The conserved quantities then ‘are

The motion to be considered is that of a “test particle” of _[1_ ﬂ ﬂ 2.2
massm that moves in the space—time exterior to the central r ) d7’ '
body. If this body is nonrotating and spherically symmetric,

the exterior space—time geometry is described by the L=r2 d_¢ 2.3
Schwarzschild line element dr’ :
2M r? 2 2 2
dszz—(l— ~—|de2+ +r2dQ2. (2.2 oo lip (A7 eM L7 ML
' _M =3 Em9=3la; rtoz s 29

Except for the presence af instead oft, Egs. (2.3) and
Here we have followed the habit of geometers to express all2.4) are the same as the corresponding Newtonian equations
quantities in “geometrized” units. Thusis a time variable of motion of a particle of total energy per unit magsn a
with dimensions of length, related to the ordinary timeé  potential V= —eM/r —ML?/r® of which the first term rep-
and the speed of light by t=c7; and the constanM  resents the usual Newtonian gravitational potential, and the
=G.#/c? has dimensions of length and is related to thesecond term is a relativistic correction. Thus for particles as
total gravitational mass# of the central body byc and  well as for light, the relativistic motion in terms of the time
Newton’s gravitational constar®. The coordinates, r, 6, parameterr is the same as the Newtonian motion in New-
and ¢ are one of many equally valid choices for labeling tonian timet if the potential is modified by the single term
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—ML?/r3. We note that no slow motion assumption or other 3M (27 (A cos¢p+M)? g
——— Ccos¢ do

approximation is involved in this correspondence. If we are  Aa= I A

only interested in the orbit equation, then the difference be- 0

tweent and 7 does not matter, because either one will be 67M?2 67M 67G.

eliminated in the same way in favor ¢f via Eq. (2.3). ST Tai—e) al-e)d 3.7

This is the usual perihelion formula.
[ll. SECULAR CHANGE OF ORBITS

The Newtonian bound orbits in arlattractive potential B. Light bending

are ellipses, of fixed eccentricity and orientation. These or- Here the deflection is also given By of Eq. (3.6), but ¢
bital parameters are conveniently described by the specifisthanges from—=/2 to /2 with respect to the perihelion

Runge—-Lenz vectdtwhich we define as (and of courses=0):
A=vXL—eMe,. (3.2 3M (/2 o
Here all boldface quantities are 3-vectors in Euclidean space, Tz f, 7,,2A cos’ ¢ d

e denotes a unit vector in thredirection, andL is the vector ,
(perpendicular to the orbital planeorresponding to the spe- _ % _ ﬂ _ 4G.7
cific angular momentum of Eq2.3). The time parameter is L? b bc? -
always 7 so that, for example, the velocity is=dr/dr, a
dimensionless quantity. Whekis constant and in the direc-
tion ¢=0, we have

(3.8

This is the usual light deflection formula.

That the light deflection should follow from the same
O(1/r®) correction to the Newtonian effective potential as
A-r=Ar cos¢p=L%—eMr. (3.2  the perihelion rotation may be somewhat surprising, because
the deflection is frequently heuristically explained as an ac-

Eor partlclles of finite rest magg=1) andA<M .th's €aua-  ion of the NewtoniarO(1/r) potential on light. Indeed, an
tion describes bound orbits that are ellipses with eccentrlcn)éffective otential fodr/dt would containO(1/r) terms, but
e=A/M, and semimajor axia=L%/M(1—e?) aligned with P '

R . - : in the present choice of variables these are absent—

the_ ¢=0 direction. For_ light ra_ys(e—_O), _the equation de- illustrating once again the arbitrary nature of coordinates in a
scribes unbound, straight orbits with impact paramdter nerall :
o ) y covariant theory.
=L“/A. Because these orbits are traversed at the speed 8?
light we haveL/E=Db. In either casé\ points from the cen-
ter of attraction to the orbit's perihelion. IV. SLOWLY ROTATING CENTRAL BODIES

We treat the relativistic modificatioM L2/r2 of the New-
tonian potential as a perturbatiband compute the conse-
quent changes in direction &f. The rate of change &% is'®

dA [ oV )der 3ML?
—e -

If the body is slowly rotatin' in the ¢ direction with
angular momentunv=c3J/G, the metric(2.1) is modified
by the Lense—Thirring terrt? — (4J/r)sir? 6 d¢ dt, and by
d_d’ e 33 a quadrupole term that is proportionald®and describes the
dr ¢ ' distortion of the body and its gravitational field. Depending
on the stiffness of the body, both terms can have effects of
_ comparable magnitude on planetary motion. To lowest order,
AxXA [3ML?\ d¢ the effects simply add together. Thus each effect can be
©O="7 _(W) ar AXxey. (3.4  treated separately, and because the quadrupole term contrib-

T . . . .
utes already in the Newtonian approximation as another cor-

Assume thatA initially points in the ¢=0 direction and rection to the potentiaV/, it will not be further considered.
changes slowly, then its total change when the particle Like the quadrupole term, the Lense—Thirring term breaks

_— r — —_—
dr ar dr r2

The direction ofA therefore changes with angular velocity

moves frome, to ¢, is the spherical symmetry, so on symmetry grounds anlghe
4y 42 cos b dob generaliz_ed momentum Qonjugateqbois conserved. None-
Aa:j » dr=3M sz —_— (3.5 theless, if the body is stiff enough so that only the Lense—
é1 #1 Ar Thirring term is significantthat is, to first order inJ), the

“ 12 2 2 H
The shape of the orbit is still approximately elliptical as “fotal angular momentum’'Q?=pj+cof’ 6 L%, wherep, is
per Eq.(3.2) but its orientation changes slowly. We calculate the genersahzed momentum conjugate @ is also
the lowest order changes due to the General Relativistic cofonserved® Thus the entire motion can be formulated in

rection inV by substituting the unperturbed orlé8.2) into terms of conserved quantities, and _one.finclillsltshat the angular
momentunL precesses around taalirection:**>However,

Eqg. (3.5: X ) ; s
3 we will confine attention to the case when the motion is
M (42 confined to the equatorial plane, and the general relativistic
= e— 2 . . . ! .
Aa=12 L} (A cos¢+eM)” cos¢ d¢. (36 correction is completely described by the behaviorof
o v and L are then parallel to each other, and normal to the
A. Perihelion precession orbital plane.

For a particle in a bound orbit it is customary to find the
angular change of the perihelion during one revolutiony)
of the particle. Becaus& points to the perihelion, this angle A Lagrangian¥ for a particle or a light beam moving in
is given by Eq.(3.6), when¢,— ¢ =2 the equatorial plane of the metric

A. Equations of motion and Runge-Lenz vector
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ds?’=—|1 dt? dr’ A.e=A Y M 4.8
= — oM e = cos¢>—T eM. (4.8
r The equation of motion foA can be derived from Eq$4.5
and(4.6):
5 1o 47
+r-dQ _TSIH2 9d¢ dt (41) . 3ML2 8eMJE ZJE(G—EZ) .
A=|——— + be,. (4.9
N r Lr L
is given by
ds|2 oM 5 By substituting Eq(4.9) into Eq.(3.4) and integrating, using
%:<_S> _ _(1_ ey T (4.8) for 1/r, we now find that the total change Mwhen the
dr r 2™ particle moves fromp, to ¢, is
r A f¢z<3M (A cos b eM)? 8eMJE
) 4] .. a= m COS € - AL3
+r2g?— = 4. (4.2 &
2JE(e—E?)
Here the dot indicates differentiation with respectrtBe- X (A Cos¢+eM)+ ————|cos¢ dé.  (4.10
cause—ds’=e d7? along the trajectory is conserved,
F=—e. (4.3  B. Perihelion motion
Since ¢ is independent of and ¢ we have further conserved ~ To obtain the perihelion motion we evaluate E4.10
quantities, over one revolution¢,;=0, ¢,=2) with e=1. Since the
B particle velocity is nonrelativistic, we may set=1 to the
gt M2 lowest ordert’
2 ot r A 6mM? 87IME
a=
107 . 23 “.4 R
== —=r2¢p——1t.
2 9¢ r _ 67M 8mJ
.. . _a(l_eZ) Ml/2(a(1_eZ))3/2
Here the factog is introduced purely as a convention, so the
conserved quantities agree more nearly with the conventional Gl Gr/ 877

specific energy and angular momentum. =— > 7 73] -
We solve fort and ¢ to first order inJ, c”la(l-e) (GM)™a(l-€))
L 2JE E 2IL The first term is the “standard” general relativistic pre-
e — 1 J . _ J 4 cession already found in Sec. Ill, and the second term is due
2 3. 3 (4.5 . .
r r 2M r to the rotation of the central bod§.For nearly circular or-
1- e bits, we can interpret this second term as due to two causes:
_ _ _ _ one is the rotation i of the “locally nonrotating observer”
and substitute into Eq(4.3) to obtain a “conservation of that makes the Lense—Thirring term of E4.2) disappear at

(4.11

energy” in an effective potential, the radius of the particle, an amountrd/aL; the other is
2¢éM L2 2ML2 4JLE the “differential rotation” due to the %P falloff of the sec-
E2—e=r2— — ot (4.6)  ond non-Newtonian term in the effective potential of Eq.

(4.6). This contribution causes precession by an amount

The effective potential in this equation contains two non-—12zJ/aL, in the same way as the first non-Newtonian

Newtonian terms. The first was already encountered in Eqerm causes the “standard” precessfdn.

(2.4 and causes the “standard” relativistic correction; the

second is due to the Lense—Thirring addition to the méfric. C. Light bending

By including these correction terms we can perform the rest

of the calculation as if we were doing Newtonian physics.
Because in the rotating case there is a difference betwe

For the effect on light we pué=0 in Eqg.(4.10 and inte-
Hyate from¢p=—m/2 to #/2 as in Sec. Il B,

kinematic angular momentunt{¢) and canonical angular 3MA4 2JE* 4M 4 4AG[.#% T
momentumL, the Runge—Lenz vectok can be defined in 24~ T2 3~ AL 2 5 b2~ | b b2
various ways, but there is no difference in the precession rate (4.12
one calculates from them. A convenient choice is

The effect of the central body’s rotatiqd) on both preces-
2JE sion and bending is negativ® This is the same “differen-
L- T eMe tial” dragging effect that makes a gyroscope in the equato-
rial plane precess in the opposite direction to the central

body’s rotationt*

A=vX

L? _ 2JE
=(T—eM)e,—r(L—T>e¢ (47)

V. CONCLUSIONS
because it simplifies the equation of motion foy and still

gives elliptical orbits for anyl whenA is constant, as in Eq. For nonrotating spherically symmetric central masses we
(3.2: have seen that the two important general relativistic correc-
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tions to the Newtonian gravitational motion, namely perihe- "For a derivation see, for example, Bernard F. SchatEirst Course in

lion precession and light bending, follow from the same cor- General RelativityCambridge U.P., Cambridge, 193. 275 or the ref-

rection term in the effective radial potential; and that either ,Srénce of footnote 4 on p. 656, or Sec. IV of the present paper.

effect can be viewed as a change in the Runge—Lenz vector' "¢ Runge-Lenz vector has been defined with various factors by

associated with the orbit. Because both effects follow b various authors. OUk is (mc) *x that of Ref. 10, and has the advantage
. . ’ . that it gives a finite value for particles of finite rest masss well as for

simple evaluation from one formul&qg. (3.6)], the effort is light (m=0).

only a_bOUt half t_hat of the usual procedure; moreover it gIVESeThis meansM/r<1, wherer is a typical orbit radius; it follows if we

occasion to review and apply the Runge—Lenz vector. We ggsumevi2/L 2<1.

have shown the extension of this calculation to equatoriai®see, for example, H. GoldsteiGlassical Mechanic¢Addison—Wesley,

orbits of a rotating bodyEq. (4.10]; relativistic corrections  Reading, MA, 198§ 2nd ed.

to parabolic and hyperbolic orbits can similarly be evaluated‘we work only to first order irJ; more precisely, we assundesML and,

by this method. as beforeM/r~M?/L2~ e<1, so that)/r2~¢>2

123, Lense and H. Thirring, “Ber den Einfluss der Eigenrotation der Zen-
3E|ectronic mail: brill@physics.umd.edu tralkorper agf d_ie Bewegung der Planeten und Monde nach der Einstein-
bElectronic mail: dgoel@wam.umd.edu schen Gravitationstheorie,” Phys. 29, 156—162(1918; English trans-

lAlthough our treatment is not confined to the solar system, we use this lation in Gen. Relativ. Gravitl6, 711-750(1984. Also see D. R. Brill
term to denote the point of closest approach to the central body because iahd J. M. Cohen, “Rotating Masses and Their Effects on Inertial
seems more familiafand more etymologically consisterthan the more Frames,” Phys. Revl43 1011-10151966.

correct term, pericenter. 3For the geometrical reason for the conservatio@béfee D. Bocaletti and
2For a history of the Laplace—Runge—Lenz vector, see H. Goldstein, “Pre- G. Pucacco, “Killing Equations in Classical Mechanics,” Nuovo Cimento
history of the Runge—Lenz vector,” Am. J. Phy&3 (8), 737—-738(1975H B 122 181-212(1997.

and “More on the prehistory of the Laplace or Runge—Lenz vectdd,’ YFor a summary of all the relativistic effects on orbits see I. Ciufolini and J.

1123-1124(1976. A. Wheeler, Gravitation and Inertia(Princeton, U.P., Princeton, 1995
%See C. E. Aguiar and M. F. Banoso, “The Runge—Lenz Vector and Per- One of the aims of the Lense—Thirring paper cited in Ref. 12 was to
turbed Rutherford Scattering,” Am. J. Phy&4 (8), 1042-1048(1996, integrate the equations of motion for orbits of general orientation.

Aand the referenc2e§ cited therein. ' 5For a treatment using the Runge—Lenz vector, see L. D. Landau and E. M.
For example, 41 is the area of the sphere= const,t=const, and/ it is Lifshitz, The Classical Theory of Field®ergamon, New York, 1975p.

the time-like Killing vector that has unit length at infinity. See C. W.  335. g WeinbergGravitation and CosmologgWiley, New York, 1972,
Misner, K. S. Thorne, and J. A. Wheel&ravitation (Freeman, San Fran- p. 230.

5cisgo, 1973 o _ N _ 16vith our assumptions as spelled out in Ref. 11 the Newtonian terms of the
As in Newtonian physics, it is customary in general relativity to derive the

. I 4 - effective potential are of ordes, both non-Newtonian terms are of order
equations of motion in the Schwarzschild geometry by using all the con- ¢, and typical terms that are neglected @RE2/ré~JEML/r4~ e
servation laws and identifying an effective potential in a radial energy _,' ., 5 4 ’
conservation equation. For the effects we want to calculate we need th FLAr~e€ ',etc' P . .

radial accelerationr/d+2, so it would be a little more straightforward to  Formally, this follows from the “<L“ assumption and requiring bound
use the radial component of the geodesic equation and the conservation rbits. . L .

angular momentum. But we follow the equivalent, customary route of 'n€ last term in Eq(4.11) changes sign iL is antiparallel toJ. Both
finding the radial acceleration from the gradient of the effective potential. terms are of ordet.

SFor the case of light, the affine parameteis defined only up to scale 1%For nonequatorial orbits the first contribution is a precession aBput
transformations. The quantitie® and L are therefore similarly defined ~ Whereas the second contribution is a precession abpptoportional to
only up to such rescaling in this case. The final, physical results will J-L.

contain only ratios of such quantities, and are therefore independent dfHowever, the relative contribution dfto light bending is less: We have
rescaling. M/b~ e, butJ/b?~ %2

WORD PROBLEMS

Bennett's classmates hated word problems. Indeed, they hated math altogether, but|they'd
rather have a tooth filled than be forced to sit down and contemplate word problems. Bennett, on
the other hand, placed word problems on a level with Florida’'s pecan pie. Word problems|were
delicious. He devoured them. He convinced the flabbergasted Mrs. Dixon to give him additional
problems, beyond the assignments, and when she ran out of problems he created them himself.
After school, when the other boys played basketball or loitered behind the Rexall drugstore to
smoke and discuss girls, Bennett went home and up to his room to do word problems.

Alan Lightman,Good Benito(Pantheon Books, New York, 1994. 66.
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