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Abstract In the Global Positioning System (GPS) the reference frame used for navigation
is an earth-centered, earth-fixed rotating frame, the WGS-84 frame. The time
reference is defined in an underlying earth-centered locally inertial frame, freely
falling with the earth but non-rotating, with a time unit determined by atomic
clocks at rest on earth’s rotating geoid. Therefore GPS receivers must apply
significant Sagnac or Sagnac-like corrections, depending on how information is
processed by the receiver. These corrections can be described either from the
point of view of the local inertial frame, in which light travels with uniform
speed c in all directions, or from the point of view of an earth-centered rotating
frame, in which the Sagnac effect is described by terms in the fundamental scalar
invariant that couple space and time. Such corrections are very important for
comparing time standards world-wide.

1. Introduction
The purpose of the Global Positioning System (GPS) is accurate navigation

on or near earth’s surface. GPS also provides an accurate world-wide clock
synchronization and timing system. Most GPS users are interested in know-
ing their position on earth; the developers of GPS have therefore adopted an
Earth-Centered, Earth-Fixed (ECEF) rotating reference frame as the basis for
navigation. Specifically, in the WGS-84(873) frame, the model earth rotates
about a fixed axis with a defined rotation rate, ωωE = 7.2921151247 × 10−5

rad s−1.[1],[2]
In an inertial frame, a network of self-consistently synchronized clocks can

be established either by transmission of electromagnetic signals that propagate
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with the universal constant speed c (this is called Einstein synchronization),
or by slow transport of portable atomic clocks. On the other hand it is well-
known[3] that in a rotating reference frame, the Sagnac effect prevents a net-
work of self-consistently synchronized clocks from being established by such
processes. This is a significant issue in using timing signals to determine posi-
tion in the GPS. The Sagnac effect can amount to hundreds of nanoseconds; a
timing error of one nanosecond can lead to a navigational error of 30 cm.
To account for the Sagnac effect, a hypothetical non-rotating reference frame

is introduced. Time in this so-called Earth-Centered Inertial (ECI) Frame is
adopted as the basis for GPS time; this is discussed in Section 2. Of course the
earth’s mass encompasses the origin of the ECI frame and has significant grav-
itational effects. To an extremely good approximation in the GPS, however,
gravitational effects can be simply added to other effects arising from special
relativity. In this article gravitational effects will not be considered. Even time
dilation, which is an effect of second order in the small parameter v/c, where v
is the velocity of some clock, will be neglected. I shall confine this discussion
to effects which are of first order (linear) in velocities. The Sagnac effect is
such an effect.
A description of the GPS system, of the signal structure, and the navigation

message, needed to understand how navigation calculations are performed, is
given in Section 3. In comparing synchronization processes in the ECI frame
with those in the ECEF frame, taking into account relativity principles, it be-
comes evident that the Sagnac effect is a manifestation of the relativity of si-
multaneity. Observers in the rotating ECEF frame using Einstein synchroniza-
tion will not agree that clocks in the ECI frame are synchronized, due to the
relative motion. In fact observers in the rotating frame cannot even globally
synchronize their own clocks, due to the rotation. This is discussed in Section
4. Section 5 discusses Sagnac corrections that are necessary when compar-
ing remote clocks on earth by observations of GPS satellites in common-view.
Section 6 introduces the GPS navigation equations and discusses synchroniza-
tion processes from the point of view of the rotating ECEF frame. Section 7
develops implications of the fact that GPS navigation messages provide satel-
lite ephemerides in the ECEF frame.

2. Local Inertial Frames
Einstein’s Principle of Equivalence allows one to discuss frames of refer-

ence which are freely falling in the gravitational fields of external bodies. Suf-
ficiently near the origin of such a freely falling frame, the laws of physics are
the same as they are in an inertial frame; in particular electromagnetic waves
propagate with uniform speed c in all directions when measured with standard
rods and atomic clocks. Such freely falling frames are called locally inertial
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frames. For the GPS, it is very useful to introduce such a frame that is non-
rotating, with its origin fixed at earth’s center, and which falls freely along
with the earth in the gravitational fields of the other solar system bodies. This
is called an Earth-Centered Inertial (ECI) frame.
Clocks in the GPS are synchronized in the ECI frame, in which self - con-

sistency can be achieved. Thus imagine the underlying ECI frame, unattached
to the spin of the earth, but with its origin at the center of the earth. In this
non-rotating frame a fictitious set of standard clocks is introduced, available
anywhere, all of them synchronized by the Einstein synchronization procedure
and running at agreed rates such that synchronization is maintained. These
clocks read the coordinate time t. Next one introduces the rotating earth with a
set of standard clocks distributed around upon it, possibly roving around. One
applies to each of the standard clocks a set of corrections based on the known
positions and motions of the clocks. This generates a “coordinate clock time"
in the earth-fixed, rotating system. This time is such that at each instant the
coordinate clock agrees with a fictitious atomic clock at rest in the local iner-
tial frame, whose position coincides with the earth-based standard clock at that
instant. Thus coordinate time is equivalent to time which would be measured
by standard clocks at rest in the local inertial frame. [4]
In the ECEF frame used in the GPS, the unit of time is the SI second as

realized by the clock ensemble of the U. S. Naval Observatory, and the unit
of length is the SI meter. In summary, the reference frame for navigation is
the rotating WGS-84 frame, but clocks are synchronized in the underlying hy-
pothetical ECI frame with a unit of time defined by clocks (essentially on the
geoid) and a unit of length determined by the defined value of the speed of
light, c = 299792458 m/s.

3. The GPS
The Global Positioning System can be described in terms of three princi-

pal “segments:" a Space Segment, a Control Segment, and a User Segment.
The Space Segment consists essentially of 24 satellites carrying atomic clocks.
(Spare satellites and spare clocks in satellites exist.) There are four satellites
in each of six orbital planes inclined at 55◦ with respect to earth’s equatorial
plane, distributed so that from any point on the earth, four or more satellites
are almost always above the local horizon. Tied to the clocks are navigation
and timing signals that will be discussed below.
The Control Segment is comprised of a number of ground-based monitor-

ing stations which continually gather information from the satellites. These
data are sent to a Master Control Station in Colorado Springs, CO, which ana-
lyzes the constellation and projects the satellite ephemerides and clock behav-
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ior forward for the next few hours. This information is then uploaded into the
satellites for retransmission to users.
The User Segment consists of all users who, by receiving signals transmitted

from the satellites, are able to determine their position, velocity, and the time
on their local clocks.
The timing signals transmitted from each satellite are right circularly polar-

ized. A carrier signal of frequency 1.542 MHz is modulated with a series of
phase reversals; these phase reversals carry information bits from the transmit-
ter to the receiver. Such phase reversals are conceptually important because the
phase of an electromagnetic wave is a relativistic scalar. The phase reversals
correspond to physical points in spacetime at which - for all observers - the
electric and magnetic fields vanish.
The navigation message contained in these bit streams include values of

parameters from which the receiver can compute the satellite’s position in the
rotating ECEF frame, as a function of time of transmission. Also the GPS time
on the satellite clock is indicated by a particular phase reversal in the sequence.
A receiver distinguishes the signal from a particular satellite by comparing the
bit streams, that are unique to each satellite, with bit streams generated by
electronic circuitry within the receiver.
Additional information contained in the messages includes an almanac for

the entire satellite constellation, information about satellite vehicle health, and
information from which Universal Coordinated Time as maintained by the U.
S. Naval Observatory–UTC(USNO)–can be determined.
The GPS is a navigation and timing system that is operated by the United

States Department of Defense (DoD), and therefore has a number of aspects
to it which are classified. Several organizations monitor GPS signals inde-
pendently and provide services from which satellite ephemerides and clock
behavior can be obtained. Accuracies in the neighborhood of 5-10 cm are not
unusual. Carrier phase measurements of the transmitted signals are commonly
done to better than a millimeter.
For purposes of the remainder of this article, I shall think of a signal from

a GPS satellite as containing within itself information about the position and
time of a transmission "event". The position is specified in the rotating ECEF
frame. GPS time is time in an underlying local inertial frame. The signal
propagates with speed c in a straight line in the ECI frame to the receiver, where
it is decoded and its arrival time tR is compared to the time of transmission tT .
The receiver can then form the so-called pseudoranges

ρ = c(tR − tT ). (1.1)

A receiver continually forms such pseudoranges for each satellite being ob-
served. A signal can be imagined abstractly as propagating with speed c from
transmitter to receiver in a straight line in the ECI frame, with position and
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Figure 1.1. Synchronization by transmission of a signal

time of the transmission event “known" by the receiver. Possible clock biases
in the receiver prevent the GPS time of the reception event from being known
a priori.

4. Relativity of Simultaneity
To establish the connection between the Sagnac effect and the relativity of

simultaneity, consider an observer moving with velocity v in the x direction
relative to an inertial frame such as the ECI frame. To be specific, one can
imagine measurements of unprimed quantities such as v and signal velocity
u to be performed in the ECI frame, while primed quantities such as u′ are
measured in the rest frame of the moving observer. Referring to Figure 1.1,
let a signal be travelling with speed components (u′

x, u′
y) (measured in the

moving observer’s frame). The vertical lines represent planes at x′ and x′+dx′.
The signal travels a distance dx′ in the x direction and the moving observer
desires to use this signal to transfer time from clocks in the plane at x′ to
clocks in the plane at x′ + dx′. Here I am neglecting higher-order terms in
the velocity so dx = dx′, there being no appreciable Lorentz contraction. Let
the components of signal speed in the ECI frame be (ux, uy). The well-known
Lorentz transformations for speed include the expression

ux =
u′

x + v

1 + u′
xv
c2

. (1.2)
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The terms in the denominator of this expression arise from the time-component
of the ordinary Lorentz transformation. In particular the second term in the
denominator arises from the relativity of simultaneity, a consequence of the
constancy of the speed of light. We wish to compare the propagation time
of this signal, measured by the moving observer, with the propagation time
measured in the ECI frame. The analysis is performed in the ECI frame.
If the moving observer moves a distance vdt in time dt, then the total dis-

tance travelled by the signal in the x-direction is uxdt, which is comprised of
two contributions: the distance dx, plus the distance vdt required to catch up
to the plane at x′ + dx′. Thus

uxdt = dx + vdt, (1.3)

and therefore the time required is

dt =
dx

ux − v
. (1.4)

But from the expression for the Lorentz transformation of speed, keeping only
terms of linear order in v,

ux − v ≈ u′
x

1 + u′
xv
c2

. (1.5)

and therefore
dt =

dx

u′
x

+
vdx

c2
. (1.6)

The first term in this result is just the time required, in the moving frame, for
the signal to travel from the x′ plane to the x′ + dx′ plane. If the moving
observer ignores the motion relative to the ECI frame, this would be the time
used to synchronize clocks in the x′ + dx′ plane to clocks in the x′ plane. The
second term is the additional time required to synchronize the clocks in the ECI
frame. Note that in this second term, the value of u′

x has cancelled out, so that
the value of the signal speed is irrelevant. The signal could be a light signal
travelling in a fiber of index of refraction n, or it could even be an acoustic
signal. The signal speed could even be variable, the last term would not be
affected.
Consider for example an optical fiber loop of length L and index of refrac-

tion n which by means of a system of pulleys is made to move with speed v
around in a closed circuit, relative to an inertial frame. The circuit itself could
be of any shape, such as a figure 8 or an oval. In such a case it is not useful
to speak of rotation, although Eq. 1.6 applies to the rotational case as well.
Eq. 1.6 applies to each infinitesimal segment of the moving loop, since one
can imagine a sequence of moving reference frames each of which is instan-
taneously at rest with respect to the moving fiber loop and in which Eq. 1.6 is
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valid. If a signal travels around the loop in a direction parallel to the velocity,
then from Eq. 1.6, the total time required for the signal to make one circuit is

∆t+ =
∮

dt =
∮

dx

u′
x

+
vL

c2
, (1.7)

and the time required for the signal to make one circuit in the direction opposite
to the velocity is

∆t− =
∮

dx

u′
x
− vL

c2
, (1.8)

The difference is
∆t = ∆t+ − ∆t− =

2vL

c2
, (1.9)

and for two counterpropagating monochromatic beams this can be converted
into an observable interference fringe shift. If the beams are recombined in the
ECI frame where they have angular frequency ω, then the phase difference will
be

∆φ = ω∆t . (1.10)
The Sagnac effect in a moving fiber loop is independent of the fiber’s index
of refraction or of the shape of the loop. This has been confirmed in recent
experiments.[5]
For example for electrons of energy E = !ω, the phase difference will be

∆φ =
2EvL

!c2
. (1.11)

Interference experiments with electrons have been reported in reference [6],
which also has a comprehensive discussion of the many different points of
view of the Sagnac effect that can be taken.
In the GPS, a decision was made to synchronize GPS clocks in the ECI

reference frame. The above discussion demonstrates that observers on earth, in
the ECEF frame, must apply a “Sagnac" correction (the second term in Eq. 1.6)
to their synchronization processes in order to synchronize their clocks to GPS
time.
The correction can be generalized slightly by noting that the distance dx is

in the same direction as the relative velocity v. If dr is the vector increment
of path in the direction of signal propagation, then the Sagnac correction term
can be written

dtSagnac =
v · dr

c2
. (1.12)

For applications in the GPS, it is useful to describe this correction term an-
other way, in terms of accounting for motion of the receiver during propagation
of signals from transmitters to receivers. Henceforth only signals propagating
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with speed cwill be considered. This assumption also applies to measurements
made locally by the moving observer in the ECEF frame, since at each instant
the measurements of distance and time intervals are the same as they would be
in an inertial frame which instantaneously coincides with the observer in the
ECEF frame and which moves with the instantaneous velocity v of the ECEF
observer. In Eq. 1.3, the velocity v is present to account for the fact that the
signal must catch up to the position at x′ + dx′ which is moving with veloc-
ity v, and to first order in the small quantity v/c leads directly to the Sagnac
correction term in Eqs. 1.3 and 1.12. The Sagnac correction can thus be in-
terpreted as an effect which arises in the ECEF frame when one accounts for
motion of the receiver during propagation of the electromagnetic signal with
speed c.

5. Time Transfer with the GPS
In the GPS navigation is accomplished by means of signals from four or

more satellites, whose arrival times are measured at the location of the receiver.
I now consider one such signal in space, transmitted from satellite position rT

at GPS time tT . Let the receiver position at GPS time tT be rR, and let the
receiver have velocity v in the ECI frame. Let the signal (considered abstractly
as a pulse) arrive at the receiver at time tR. During the time interval ∆t =
tR − tT , the displacement of the receiver is v∆t. Since the signal travels with
speed c, the constancy of the speed of light c implies that

c2(∆t)2 = (rR + v∆t − rT )2 . (1.13)

To simplify the equation, I define

R = rR − rT . (1.14)

Then to leading order in v,

c2(∆t)2 = (R + v∆t)2 ≈ R2 + 2v · R∆t . (1.15)

Taking the square root of both sides of Eq. (1.15) and again expanding to
leading order in v gives

c∆t = R +
v · R∆t

R
. (1.16)

This equation can be solved approximately for ∆t to give

∆t =
R

c
+

v · R
c2

. (1.17)

The second term in Eq. 1.17 is the Sagnac correction term, which arises when
one accounts for motion of the receiver while the signal propagates from trans-
mitter to receiver. This is illustrated in Figure 1.2.
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Figure 1.2. Sagnac correction arising from motion of the ECEF observer.

Suppose that the receiver is fixed to the surface of the earth, at a well-
surveyed location so that the receiver position rR is well known at all times.
The velocity of the receiver will be just that due to rotation of the earth with
angular velocity ωE, so

v = ωE × rR , (1.18)

We take rR to be the vector from earth’s center to the receiver position. Then
the Sagnac correction term can be rewritten as

∆tSagnac =
ωE × rR · R

c2
=

2ωE

c2
·
(

1
2
rR × R

)
. (1.19)

The quantity 2ωE/c2 has the value

2ωE

c2
= 1.6227 × 10−21 s/m2 = 1.6227 × 10−6 ns/km2 . (1.20)

The last factor in Eq. 1.19 can be interpreted as a vector areaA:

A =
1
2
rR × R . (1.21)

The only component ofA which contributes to the Sagnac correction is along
earth’s angular velocity vector ωE, because of the dot product that appears
in the expression. This component is the projection of the area onto a plane
normal to earth’s angular velocity vector. This leads to a simple description
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of the Sagnac correction: ∆tSagnac is 2ωE/c2 time the area swept out by the
electromagnetic pulse as it travels from the GPS transmitter to the receiver,
projected onto earth’s equatorial plane. This is depicted in Figure 1.3, in which
the receiver is on earth’s surface at the tip of the path vectorR.
In the early 1980s clocks in remotely situated timing laboratories were be-

ing compared by using GPS satellites in "common view", that is when one
GPS satellite is observed at the same time by more than one timing laboratory.
In one experiment[7] signals from GPS satellites were utilized in simultane-
ous common view between three pairs of earth timing centers to accomplish
a circumnavigation of the globe. The centers were the National Bureau of
Standards (now the National Institute of Standards and Technology) in Boul-
der, Colorado; Physikalisch-Technische Bundesanstalt in Braunschweig, West
Germany; and Tokyo Astronomical Observatory. A typical geometrical con-
figuration of ground stations and satellites, with the corresponding projected
areas, is illustrated in Figure 1.4. The size of the Sagnac effect calculated
varies from about 240 ns to 350 ns depending on the location of the satellites
at a particular moment. Sufficient data were collected to perform 90 indepen-
dent circumnavigations. As Figure 1.4 shows, when a satellite is eastward of
one timing center and westward of another, one of the Sagnac corrections is
positive and the other is negative, so when computing the difference of times
between the two terrestrial clocks, the Sagnac corrections actually add up in a
positive sense.
The mean value of the residuals over 90 days of observation was 5 ns, less

than 2 percent of the magnitude of the calculated total Sagnac correction. A
significant part of these residuals can be attributed to random noise processes
in the clocks.
Sagnac corrections of the form of Eq. 1.19 are routinely used in comparisons

between distant time standards laboratories on earth.

6. GPS Navigation Equations and the ECEF Frame
The navigation problem in GPS is to determine the position of the receiver

in the ECEF reference frame. A by-product of this process is the accurate de-
termination of GPS time at the receiver. In general neither the position nor
the time is known, so the assumptions used in previous sections regarding the
Sagnac effect are of little use. The principles of position determination and
time transfer in the GPS can be very simply stated. Let there be four synchro-
nized atomic clocks which transmit sharply defined pulses from the positions
rj at times tj , with j = 1, 2, 3, 4 an index labelling the different transmission
events. Suppose that these four signals are received at position r at one and
the same instant t. This is called "time-tagging at the receiver", meaning that
observations of the various signals are made simultaneously at the receiver at
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Figure 1.3. Sagnac correction arising from motion of the ECEF observer.

time t. Then from the principle of the constancy of the speed of light,

c2(t − tj)2 = |r − rj |2 , j = 1, 2, 3, 4. (1.22)

These four equations can be solved for the unknown space-time coordinates
of the reception event, (t, r). The solution will provide the position of the
receiver at the time of the simultaneous reception events, t. No knowledge of
the receiver velocity is needed. The Sagnac effect becomes irrelevant. At most
one can say that because the solution gives the final position and time of the
reception event, the Sagnac effect has been automatically accounted for.
However there are complications from the fact that the navigation equa-

tions, Eqs. 1.22, are valid in the ECI frame, whereas users almost always want
to know their position in the ECEF frame. For discussions of relativity, the par-
ticular choice of ECEF frame is immaterial. Also, the fact the the earth truly
rotates about an axis slightly different from the WGS-84 axis, with a variable
rotation rate, has little consequence for relativity and I shall not go into this
here.
It should be emphasized strongly that the transmitted navigation messages

provide the user only with a function from which the satellite position can be
calculated in the ECEF as a function of the transmission time. Usually the
satellite transmission times tj are unequal, so the coordinate system in which
the satellite positions are specified changes orientation from one measurement
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Figure 1.4. Common-view signals from three satellites provide an Around-the-World Sagnac
experiment.

to the next. Therefore to implement Eqs. (1.22), the receiver must generally
perform a different rotation for each measurement made, into some common
inertial frame, so that Eqs. (1.22) apply. After solving the propagation delay
equations, a final rotation must then be performed into the ECEF to determine
the receiver’s position. This can become exceedingly complicated and confus-
ing. I shall discuss this in a later section.
The purpose of the present discussion is to examine first-order relativistic

effects from the point of view of the ECEF frame. Consider the simplest in-
stance of a transformation from an inertial frame, in which the space-time is
Minkowskian, to a rotating frame of reference. Thus ignoring gravitational
potentials, the metric in an inertial frame in cylindrical coordinates is

−ds2 = −(c dt)2 + dr2 + r2dφ2 + dz2 , (1.23)

and the transformation to a coordinate system {t′, r′,φ′, z′} rotating at the uni-
form angular rate ωE is

t = t′, r = r′, φ = φ′ + ωEt′, z = z′ . (1.24)

This results in the following well-known metric (Langevin metric) in the rotat-
ing frame:

−ds2 = −
(

1 − ω2
Er′2

c2

)
(cdt′)2 + 2ωEr′2dφ′dt′ + (dσ′)2 , (1.25)
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where the abbreviated expression (dσ′)2 = (dr′)2 + (r′dφ′)2 + (dz′)2 for the
square of the coordinate distance has been used.
The time transformation t = t′ in Eqs. (1.24) is a result of the convention to

determine time t′ in the rotating frame in terms of time in the underlying ECI
frame.
Now consider a process in which observers in the rotating frame attempt to

use Einstein synchronization (that is, the principle of the constancy of the speed
of light) to establish a network of synchronized clocks. Light travels along a
null worldline so I may set ds2 = 0 in Eq. (1.25). Also, it is sufficient for
this discussion to keep only terms of first order in the small parameter ωEr′/c.
Then

(cdt′)2 − 2ωEr′2dφ′(cdt′)
c

− (dσ′)2 = 0 , (1.26)

and solving for (cdt′),

cdt′ = dσ′ +
ωEr′2dφ′

c
. (1.27)

The quantity r′2dφ′/2 is just the infinitesimal area dA′
z in the rotating co-

ordinate system swept out by a vector from the rotation axis to the light pulse,
and projected onto a plane parallel to the equatorial plane. Thus the total time
required for light to traverse some path is

∫

path
dt′ =

∫

path

dσ′

c
+

2ωE

c2

∫

path
dA′

z. [ light ] (1.28)

Observers fixed on the earth, who were unaware of earth rotation, would use
just

∫
dσ′/c for synchronizing their clock network. Observers at rest in the un-

derlying inertial frame would say that this leads to significant path-dependent
inconsistencies, which are proportional to the projected area encompassed by
the path. Consider for example a synchronization process which follows earth’s
equator in the eastwards direction. For earth, 2ωE/c2 = 1.6227 × 10−21

s/m2 and the equatorial radius is a1 = 6, 378, 137 m, so the area is πa2
1 =

1.27802 × 1014 m2 . Thus the last term in Eq. (1.28) is

2ωE

c2

∫

path
dA′

z = 207.4 ns. (1.29)

From the underlying inertial frame, this can be regarded as the additional travel
time required by light to catch up to the moving reference point. Simple-
minded use of Einstein synchronization in the rotating frame gives only

∫
dσ′/c,

and thus leads to a significant error. Traversing the equator once eastward, the
last clock in the synchronization path would lag the first clock by 207.4 ns.
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Traversing the equator once westward, the last clock in the synchronization
path would lead the first clock by 207.4 ns.
In an inertial frame a portable clock can be used to disseminate time. The

clock must be moved so slowly that changes in the moving clock’s rate due
to time dilation, relative to a reference clock at rest on earth’s surface, are
extremely small. On the other hand, observers in a rotating frame who attempt
this find that the proper time elapsed on the portable clock is affected by earth’s
rotation rate. Factoring (dt′)2 out of the right side of Eq. (1.25), the proper time
increment dτ on the moving clock is given by

(dτ)2 = (ds/c)2 = dt′2
[
1 −

(
ωEr′

c

)2

− 2ωEr′2dφ′

c2dt′
−
(

dσ′

cdt′

)2
]

.

(1.30)
For a slowly moving clock (dσ′/cdt′)2 << 1 so the last term in brackets in
Eq. (1.30) can be neglected. Also, keeping only first order terms in the small
quantity ωEr′/c,

dτ = dt′ − ωEr′2dφ′

c2
(1.31)

which leads to
∫

path
dt′ =

∫

path
dτ +

2ωe

c2

∫

path
dA′

z. [ portable clock ] (1.32)

This should be compared with Eq. (1.28). Path-dependent discrepancies
in the rotating frame are thus inescapable whether one uses light or portable
clocks to disseminate time, while synchronization in the underlying inertial
frame using either process is self-consistent.
Eqs. 1.28 and 1.32 can be reinterpreted as a means of realizing coordinate

time t′ = t in the rotating frame, if after performing a synchronization pro-
cess appropriate corrections of the form +2ωE

∫
path dA′

z/c
2 are applied. It is

remarkable how many different ways this can be viewed. The different ways
discussed so far in this article include the fact that from the inertial frame it
appears that the reference clock from which the synchronization process starts
is moving, requiring light to traverse a different path than it appears to traverse
in the rotating frame. The Sagnac effect can also be regarded as arising from
the relativity of simultaneity in a Lorentz transformation to a sequence of local
inertial frames co-moving with points on the rotating earth, or as the differ-
ence between proper times of a slowly moving portable clock and a Master
reference clock fixed on earth’s surface.
This was recognized in the early 1980s by the Consultative Committee for

the Definition of the Second and the International Radio Consultative Com-
mittee who formally adopted procedures incorporating such corrections for the
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comparison of time standards located far apart on earth’s surface. For the GPS
it means that synchronization of the entire system of ground-based and orbit-
ing atomic clocks is performed in the local inertial frame, or ECI coordinate
system.

7. Sagnac-like effects due to rotation of the ECEF frame
By design, the ephemerides (positions) of the GPS satellites are broadcast

in such a way that the receiver can compute their positions at the instant of
transmission in the rotating WGS-84 reference frame. For time-tagging at the
receiver, the propagation delays from different satellites can vary from about
67 ms to 86 ms. During this approximately 19 ms transmission time variation,
the ECEF reference frame can rotate more than a microradian and the positions
of the satellites due to this rotation alone can vary by over 30 meters while the
satellites move in inertial space by as much as 60 meters. If this is not carefully
accounted for, unacceptable navigation errors can occur.
It would lead to serious error to assert Eqs. 1.22 were valid in the ECEF

frame. What the receiver must do is rotate the positions of each of the satellites,
that have been computed in the rotating frame, into some chosen ECI frame.
Then Eqs. 1.22 are valid and can be solved in the ECI frame. The resulting
position found in the ECI frame is finally rotated into the WGS-84 frame and
used for navigation.
To illustrate that these rotations give rise to Sagnac-like effects, suppose the

chosen ECI frame instantaneously coincides with the WGS-84 frame at the
instant of arrival of the earliest of the four signals. I denote the GPS time of
arrival of this particular signal by t1, and the position of this particular satellite
at this time as r1. Let the time intervals between the arrival of this signal and
the other three signals be denoted by

∆ti = ti − t1 , i = 1, 2, 3, 4 (1.33)

where for simplicity I have taken ∆t1 = 0. During the time interval ∆ti the
ECEF frame has rotated the amount ωE∆ti. An active rotation of the satellite
position ri(ECEF ) by the amount +ωE∆ti is necessary in order to express
the position of satellite i in the inertial frame in which the position r1 is ex-
pressed. This rotation operation can be expressed as

ri(ECI) = ri(ECEF ) + ωωE × ri(ECEF )∆ti . (1.34)

The navigation equations then become

c2(t − ti)2 = |r − ri(ECEF ) − ωωE × ri(ECEF )∆ti|2 (1.35)

and if I put∆t = t− t1 (no subscript on t) andRi = r− ri(ECEF ) I obtain

c2(∆t − ∆ti)2 = |Ri − ωωE × ri(ECEF )∆ti|2 (1.36)
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Eqs. 1.36 have within them the four unknowns (∆t, r). The position solution
for r will be in the ECI frame chosen for computation. After finding this posi-
tion, the result must then be rotated into the ECEF frame for navigation. Since
the ECEF frame rotates an amount ωE∆t during the time interval∆t, the final
solution for the position in the ECEF frame will be

r(ECEF ) = r − ωωE × r∆t . (1.37)

The size of the correction term in this last equation can easily be estimated,
since ∆t ≈ .015 s and r ≈ 6.4 × 106 m. A typical value will be about 9
meters. Eq. 1.36 can be solved approximately for ∆t by expanding the square
on the right side, keeping only linear terms in ωE , and then taking a square
root, similar to the approximations made in deriving Eq. 1.17. The result is

∆t = ∆ti +
Ri

c
+
ωωE × ri(ECEF ) · Ri

cRi
∆ti . (1.38)

The last term in the above equation is a Sagnac-like correction. I can estimate
its magnitude by substituting in an approximate expression for∆ti:

∆ti ≈
Ri

c
− R1

c
(1.39)

So the correction term becomes, after interchanging dot and cross products,
ωωE · ri(ECEF ) × Ri

c2
(1 − R1/Ri) . (1.40)

Is this really a Sagnac correction? It is linear in the rotational velocity, the
coefficient can be interpreted in terms of an area, and it is relativistic (there is
a factor 1/c2).
In the case of time-tagging at the transmitters, signals are chosen for pro-

cessing which leave the transmitters at some chosen time tT . Then the broad-
cast ephemerides will all be calculated by the receiver in one and the same
ECEF frame. It would then be natural to choose for application of the navi-
gation equations (Eqs. 1.22) an inertial frame which coincides with this ECEF
frame at the instant tT of GPS time. But then the signals do not arrive simul-
taneously at the receiver, and the receiver motion during the interval between
arrival of the first and last signals must be accounted for.
To illustrate the size of the Sagnac-like effects that occur in this situation,

let r denote the receiver position at transmission time tT , and let ri denote the
transmitter position at time tT . Imagine these positions to be expressed in an
inertial frame which coincides instantaneously with the ECEF frame at time
tT . Let ti denote the arrival time at the receiver, of the signal from the ith
satellite. The receiver position at time ti will be modified by earth rotation and
will be

r + ωωE × r(ti − tT ) . (1.41)
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The navigation equations in this inertial reference frame will be

c2(ti − tT )2 = |r + ωωE × r(ti − tT ) − ri|2 (1.42)

Because of the similarity of this equation to Eq. 1.13 it is clear that Sagnac-
like corrections will enter solution of the equations. The times ti are however
known only to within an added constant, because of a possible error or system-
atic bias in the receiver’s clock. If the arrival times actually measured in the
receiver are t′i, then

ti = t′i + b . (1.43)

where b is the receiver clock bias then the navigation equations become

c2(t′i + b − tT )2 = |r + ωωE × r(t′i + b − tT ) − ri|2 (1.44)

and the unknowns are (b, r). Obviously there are many other ways of for-
mulating the problem of accounting for receiver motion. A technical note[8]
discusses these issues in more detail, with numerical examples.

8. Summary
In the GPS, the Sagnac effect arises because the primary reference frame

of interest for navigation is the rotating Earth-Centered, Earth-Fixed frame,
whereas the speed of light is constant in a locally inertial frame, the Earth-
Centered Inertial frame. Additional Sagnac-like effects arise because the satel-
lite ephemerides are broadcast in a form allowing the receiver to compute satel-
lite positions in the ECEF frame. In the case of time-tagging of observations at
the receiver, it is necessary to rotate the satellite positions into a common ECI
reference frame in order apply the principle of the constancy of c. In the rotat-
ing frame of reference the effect appears to arise from a Coriolis-like term in
the fundamental scalar invariant. Whether synchronization procedures are per-
formed by using electromagnetic signals or slowly moving portable clocks, to
leading order the same Sagnac effect arises. The effect is of significant magni-
tude and must be taken into account for accurate navigation. It is also necessary
to apply Sagnac corrections when comparing remote clocks on earth’s surface.
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