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A covariant and invariant theory of navigation in curved space—time with respect to electromagnetic
beacons is written in terms of J. L. Synge’s two-point invariant world function. Explicit equations
are given for navigation in space—time in the vicinity of the Earth in Schwarzschild coordinates and
in rotating coordinates. The restricted problem of determining an observer’s coordinate time when
his or her spatial position is known is also considered. 2801 American Association of Physics Teachers.
[DOI: 10.1119/1.1326078

[. INTRODUCTION tions applied by users of satellite navigation systems, such as
) ) ~ the U.S. Global Positioning Systef@®P9 and the Russian
Curved space-time forms the basis for most classicai|obal Navigation Satellite SysterfGLONASS?* The co-
theories of gravity, such as genera'l relativity. Thgse th‘?o”eérdinates of the four eventsig(x), correspond to particular
are usually based on a metric for four-dimensional i, emissions by the satellites. The emission event coordi-

space—time. Some of the basic concepts used in generap ioq can e extracted from information transmitted by digi-
relativity and related theories are transformation rules fortal codes

tensors, the affine connection, and the relation of the metric Equation (1) is commonly used in two different ways
to proper time along an observer's world line. A useful, bUtFirSt, an observer may receive radio signals from satellites

little-used concept, is that of the world function of space— . . . )
time, as developed by J. L. Synge. The world function is"’md compute his or her space—time coordinatgsxg) in

essentially one-half of the squared measure between twigMS Of four known satellite emission events, ks). The
points in space—time. The utility of the world function comesSecond use of Eq1) is to locate a satellite, which is at an
from the fact that it is closely related to experiments, and thatihknown position {, ,x,) in terms of four ground observa-

it is a type of scalar quantity. Since the world function trans-tions at known coordinates{,x;). For this use, we apply
forms as a kind of scalar, it allows us to formulate geometriche causality conditioig>t,, s=1,...,4. In Eq.(1), the as-
quantities in a covariant way. Hence, the world function is asumption is made that space-time is flat and the speed of
valuable tool for understanding the geometric ideas in metridight ¢ is constant. Furthermore, by using ) we make
theories of gravity, in three-dimensional differential geom-the geometric optics approximation that the wavelength of
etry and tensor analysis, and wherever arbitrary coordinatghe electromagnetic waves is small compared to all physical
systems are used. As an example of the utility of the worlddimensions of the receiver and transmitter systefs.
function, | present its application to the problem of naviga- |n recent years, there have been significant improvements
tion in a curved space-time. This application actually goesn the stability of frequency standards and measurement
beyond a simple pedagogical example because it deals witlachniqued:® Consequently, over satellite-to-ground dis-
the real-world need for precise navigation and time dissemitances, precise measurements should be interpreted within
nation. the framework of a curved space—time the®dry? Further-

Consider the problem of an observer who wants to navimore, the equations for navigation in space—time should be
gate in a curved Space—tlme with reSpeCt to electromagnetvﬁanifesﬂy covariant and also invaridﬁt_

beacons. | use the word navigate to mean that the observer|n this work, | write down a generalization of the naviga-
determines his or her coordinate position and coordinate timgon Eq. (1) for curved space—time and give the detailed

along his or her world line, in some system of space—timequations that must be solved for navigating in the vicinity
coordinates. | assume that the electromagnetic beacons cogf the Earth, both in Schwarzschild coordinates and in rotat-
tinuously broadcast their space—time coordinates and thgg coordinates. I still retain the geometric optics approxima-
this information is imbedded in the emitted electromagnetigjon, however, | take into account deviations from flatness to
signals. Furthermore, | assume that an observer at unknowi}st order in the metric. This means that the flat-space light
coordinates 1,X,) simultaneously receives these signalscones in Eq(1) are replaced by equations for null geodesics.
from four beacons. The observer's navigation problem is torhe required navigation equations are simply expressible in
compute his or her positiornt{,x,) from the four received terms of the world function developed by J. L. Syrt@he

emission event coordinates,(xs), s=1,2,3,4, of the elec- resulting formalism takes into account the delay of electro-

tromagnetic beacons. magnetic signals due to the presence of a gravitational field.

In the case of flat space—time, the observer must solve th€he detailed equations have application to a user who wants
four simultaneous equations to accurately compute his or her coordinate position and
IXg— 2= C2(t,—t)?=0, s=1,.4. (1) time. In general, the world function approach is useful in

applications where high-accuracy measurements must be
Equation(1) contains four invariant statements: Light signalsmade over large distances. An application of recent interest
travel “on the light cone”from each emission event to theis the design of space-based interferometers for precision
observer(see Fig. 1 To resolve the branches of the light sensing and surveillance purpoggs® In some of these de-
cones, the causality conditiobg>ts, for s=1,...,4, must be signs, in order to achieve high-resolution imaging, long base
added. The relations in E€l) are the basic navigation equa- lines (hundreds of kilometejsmust be used between Earth
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dinates of the point$; and P,. The value of the world
function in Eq.(3) is independent of the particular special
parametemn in the sense that under a transformation from
one special parameter to another,u’, given by u=au’
+b, with x'(u)=x'(u(u")), the world function definition in
Eq. (3) has the same forrtwith u replaced byu’).

The world function is a two-point invariant in the sense
that it is invariant under independent transformation of coor-
dinates atP; and atP,. Consequently, the world function
characterizes the space—time. For a given space—time, the
world function between point8; andP, has the same value
independent of the metric-induced coordinates. A simple ex-
ample of the world function is for Minkowski space—time,
which is given by

Q(xy,xh) =37 AX' A, (4)
Fig. 1. Space—time diagram showing tfaf the foup satellites with world
lines S; and S,. Electromagnetic signals are emitted Rt and P,, and where Nii is the Minkowski metric with only nonzero diag-
reach the observer Q. ! AP
onal component$—1, +1, +1, +1), andAx'=(x,—X3), i
=0,1,2,3, whered; andx, are the coordinates of poini;
satellites and their separations may need to be accurate &mdP,, respectively. Up to a sign, the world function gives
within a micrometer or better. To unambiguously and accu-one-half the square of the geometric measure in space—time.
rately define such positions, a curved space—time approadbalculations of the world function for specific space—times
should be used that takes into account the warping of thean be found in Refs. 14, 22—24 and application to Fermi
geometry of space—time due to gravitational effects. coordinates in Syndé and Gambiet al?®
In Sec. Il, | write the generalization of E¢L) in terms of The generalization to a curved space—time of the naviga-
the world function and point out the limitations of navigation tion Eqg. (1) is given by
in curved space—time by electromagnetic beacons. In Sec.
11, I briefly describe the restricted problem of computing an Q(XL,XL):Q s=1,2,3,4, (5)
observer’'s coordinate time if his or her spatial coordinates
are known(a restricted type of navigationin Secs. IV.and \\herexi = (t_,x.) are the coordinates of the emission events
V, | give the detailed equations applicable to navigation in_; N '

the vicinity of the Earth in Schwarzschild coordinates and info™ (_to ’XO)_ are the observer_ cc_)ordmates and _the W(.)rld func-
coordinates that rotate with the Earth. tion is defined by Eq(3). Within the geometric optics ap-
proximation, Eq.(5) forms a natural generalization of the

navigation Eqg.(1). In addition to Eq.(5), the appropriate
Il. NAVIGATION EQUATIONS causality conditiongs>t, or t,>t, for s=1,...,4, must be
The world function was initially introduced into tensor added. The set of relations in E®) are manifestly covariant
calculus by Rusé’® Synge'® Yano and Mutd® and and invariant due to the transformation properties of the
Schouterf! It was further developed and extensively used byworld function under independent space-time coordinate
Synge in applications to problems dealing with measuremeritransformations at poir®®, and atP,.
theory in general relativity? In general, the world function From the definition of the world function, the intrinsic
has received little attention, so | give the following defini- limitations of navigation in a curved space—time are evident:
tion. Consider two pointsP; and P,, in a general space— The world functionQ(P,,P,) must be a single-valued func-
time, connected by a unique geodesic gathiven byx'(u), tion of P, and P,. In general, if two or more geodesics
whereu;<u=u,. A geodesic is defined by a class of specialconnect the point®, and P,, thenQ(Py,P,) will not be
parametersi’ that are related to one another by linear trans-single valued and the set of equations in E5). may have
formationsu’ =au-+b, wherea andb are constants. Here, ~ multiple solutions or no solutions. Such conjugate pofys
is a particular parameter from the class of special parametegndP, are known to occur in applications to planetary orbits
that define the geodesit, and x'(u) satisfy the geodesic and in optics:* However, when the point®, and P, are
equations close together in space and in time and the curvature of
a2 dxd dxk s_pace—time is small, we expect the world _function to be
—+ i_k_ = —o. 2) single va!ueq anq the solution of E(@ to'be' unique. There-
du du du fore, navigation in curved space—time is limited by the pos-
sibility of determining a set of four unique null geodesics
connecting four emission events to one reception event. In
- the case of strong gravitational fields as may exist in the
1 uz dx dx vicinity of a black hole, or when thesatellite radio beacons
Q(Py,P2)= §(u2_ul)f gijﬁ ﬁd“- ©) are at large distances from the observer in a space—time of
h small curvature, navigation by radio beacons may not be
The value of the world function has a geometric meaning: lijpossible in principle. In such cases, one may have to supple-
is one-half the square of the space—time distance betweeanent radio navigation by inertial techniques; see, for ex-
pointsP; andP,. Its value depends only on the eight coor- ample, the discussion by Sed.

The world function betweerP; and P, is defined as the
integral alongl’,
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[ll. COORDINATE TIME AT A KNOWN SPATIAL is the same whem— — w. This term is on the order of 5

POSITION X 10~ s for satellite and Earth angular velocity of rotation

) . arameters appropriate to the GPS. Equat®reads to the
Consider the restricted problem of observers who kno\"Etandard expression for the Sagnac effect when we take the

their spatial position and want to obtain their coordinate ;. ; ; ;
times?PA null geodesic connects the emission and receptiorﬁjlfference of propagation times for clockwisa ) and

events, so the value of the world function is zero, counterclockwise 4T ;) propagation Of. light along the limit
of a sequence of tangents on the perimeter of a cikle,

Q(ts,Xs,t5,%0) =0, (6) —AT_=4A-w/c?, whereA is the included are® 3! Note

where the satellite emission event coordinatesq) and the ~ that the third term in Eq(9) does not contribute to the dif-
observer spatial coordinates are known. Equatiot6) must ~ ference of round-trip imesaT, —AT_, so it is not mea-

be supplemented by the causality conditigrrt,. The ob-  SUrable in a Sagnac experiment. However, this term does
servers obtain their coordinate times by solving E).for contribute to a determination of coordinate time.

to.
As a simple example of the application of E@), con-  IV. NAVIGATION IN THE VICINITY OF THE
sider observers at a known spatial location who want to comEARTH

pute their coordinate times in flat space—time in a rotating

system of coordinates/, by receiving signals from a satel- In the vi_cinity of the Earth, the gravitational potential can
lite at Ps=(ts,ys). | take the transformation from be approximated by
Minkowski coordinates<' to rotating coordinatey' to be GM Re\?
given by ¢(r:0):_T 1-J, T P,(cog0)) |, (10
yO=x°, y1=cos<2x°> xl—sin(gxo)xz, Where Pz(x).= (3x%— 1){2 is the second Legendre polyno-
mial andJ, is the Earth’s quadrupole moment, whose value
® © (7) is approximatelyd,=1.0x 10" . However, for navigation in
y2=sin(—x° 1+ 005<_X0 X2, y3=x3, the vicinity of the Earth, we can negled} since it is three
c c orders of magnitude smaller than the dimensionless coeffi-

The world function is a two-point invariant that characterizescient of the monopole potenti& M/r, which already con-
the space—time, so, in the rotating coordinates its value dodgbutes small corrections to propagation of electromagnetic
not change. Using the world function for Minkowski space—radiation. | also neglect the effects of the rotation of the
time in Eq.(4) and the transformation to rotating coordinatesEarth, which give rise to small terms in the metric of space—
y' in Eq. (7), the world function is given by time gq,, Since these effects are completely negligible at the
present timé! Therefore, the Earth’s gravitational field can
Q(Ps,Po)=0(ts.Xs,t0.Xo) be sufficiently and accurately described using the Schwarzs-

_ _ ntl
=0(ts,Ys to,Yo) child metrié

2GM dr?
= (Yo—y9)? = C¥(to—1t2)%] —ds’= ‘(1_ & )Czdt2+ 1-2GMI/c?r
+(YXVY,)nsi t,—t
(Ys yo) N(w(t, s)) +r2(d02+sin2 0d¢2). (11

+2[ysYo~ (Y (Yorm) Isir(Go(to—ts), (8) | Eq. (11), | neglect the gravitational field of the Sun and
wheren is a unit vector in the direction of the angular ve- Other planets, since the Earth is in free fall and these fields

locity vector w, which | take to be along theaxis. | assume are essentiallyup to tidal termp canceled as a result of the
that the angular velocity of rotation is small, so that the time€duivalence principle.

for light to travel from a satellite af to an observer af, is Using the transformation to rectangular coordinates
small compared to the period of rotationr/. | define the x%=ct, x'=rsinfcosy,
small dimensionless paramet®# w|y,—Ys//c<1. Equation o . 3 (12)
(6) can then be solved fakt=t,—t, by iteration, leading to x“=rsingsing, x°=rcosf,
1 1 and expanding in the small parame®@M/c?r, the metric
CAt=|y,— Y+ E(ys><y0)-w4r ﬁ|yo—ys| for the Schwarzschild space—time can be written to first or-

der as a sum of the Minkowski metrig;; , and the deviation
[(ysXyO)'w]2 from flatness tensadn;; as

Yo~ Ysl? —ds*=g;; dX dx= (7 +h;j)dx dx, (13)
+0(6%. (99  whereh;; is given by

The first term on the right-hand side of E§) divided byc . 2GM[(cdt? (x*¥dx*)?

is the time for light to travel from the emission event at the i dX dX'=—7 —t (14)
satellite, s,ys), to the observer at eventiy(y,), in the ) . o

absence of rotation. The second term is the celebrated SZhe assumption the®M/c?r<1 is a restriction on the re-
gnac effect®3which depends on the sense of rotation ofgion of validity of Eq. (13) to larger compared with the
the coordinategsign of w). The third term is a higher order gravitational radius of the Earth, which is GM/c?
correction that is independent of the sense of rotation, i.e., #=0.88 cm.

+ [wzys'yo_ (Ysr0) (Yo @) ]

317 Am. J. Phys., Vol. 69, No. 3, March 2001 Thomas B. Bahder 317



Following Synge, | approximate the world function for the 2 0g
metric in Eq.(13) by replacing the integrals over the geode- SN+
sicI" by integrals along a straight line, and taking the special ?
parameteu to vary in the range &u<1, which leads t

o1 I
Q(x} ,xh) =5 7;;AX' Ax) + —Ax'Ale h;; du. (15
2 2 o i
| find that explicit evaluation of these integrdlsee Appen-
dix B) leads t3*
c?At?

Xo—Xq| + ———
o=l [X2— X4

N ixvi, GM
Q(x7,X5)= Eniij Ax +?

X log

tan( 0,/2) )
tan( 92/2)

GM
+ c? |X2—X1|(00801—COS6’2), (16) Fig. 2. The spatial geometry of satellite Bt and receiver aPy, with
coordinatests andx, , respectively, showing the anglég and ¢, .

wherecAt=x3—x%, and #; and 6, are defined by

Xa*(X2—Xq)
COS@a—m, a=1,2. (17)

1 2

=, 20
See Appendix C for an estimate of the error in Etf). The 2 ) (20
first term on the right-hand side of E¢l6) is the world
function for Minkowski space—time, given in E). The
second and third terms in E(L6) give the corrections to the cosf,= —1+h?
world function of Minkowski space—time due to the gravita-
tional effects of mas$/. The expression in Eq16) can be
used in Eq.(5) as a basis for navigation, or in E¢p) for where
computing coordinate time in the vicinity of the Earth.

As an example of using the world function in E4.6), | Xs
consider determining the coordinate time of an observer ata 1= (Xs—Xo)°m, (22
known spatial positiorx, in the vicinity of Earth, using stan- s
dard Schwarzschild coordinates. Taking the satellite position

1+1+l 21
I, 215 215)° @D

asxs=Xx,, the observer positior,=x,, and making use of ZZXO'XS 23)
the small paramete® M/(c?|x,— xs|)<1, | solve Eq.(6) by x|
iteration, leading to

GM tan( 642) 13= [%|?—h? (24

CAt=|X,—X¢|+ ?[2 log +c0SfH;—cosb,|.

(18) and taking the limit as— 0. Note that Eqs(18) and(19) are
_ _ o ) ) ) expressed in terms of Schwarzschild spatial coordin@ied
The first term in Eq(18) divided byc is the time for lightto 4o not contain the temporal coordinates satellitex and
propagate fronx, to x,. The second tem,w is the small cor- observerx, , because the Schwarzschild space—time is static,
rection due to the presence of the Earth’s misdistorting e ' the space—time admits a hypersurface orthogonal time-
the space—time in its vicinity. This expression takes into acjie Killing vector field®’

count the delay of the electromagnetic signal in a gravita-

tional field (see, for example, Refs. 35, 1, and 36, and refer-

ences cited thereinFor a satellite directly overhead, where

X, and xgs are collinear with the origin of coordinates, Eq. V. NAVIGATION IN THE VICINITY OF THE

tan 6,/2)

(18) leads to the following result: EARTH IN ROTATING COORDINATES
CAt=|x,—x + 2GM Iogﬁ (19) In practical navigation problems, observers or users of a
° s c? [Xo| ° satellite navigation system are often interested in their

space—time position with respect to the Earth—which de-

R, , , - _fines a rotating coordinate system. To compute an observer
et.ry'sh?v(;n thIII%. Z'PDEf'.rt]ﬁ a trlgpglf by theéhrge pOIntS'space—time position in a rotating system of coordinates, |

ongin a_ » Sa e.| € at-s wi coor_ InateXs, an _0 Server apply the navigation Eq5) in the rotating system. Having

at P, with coordinatest, . From pointP,, draw a linePoM  computed the world function for Schwarzschild space—time

perpendicular t@ P and define its length to be Equation  in Eq. (16) in a “nonrotating” system of coordinates, the

Equation(19) is obtained by considering the spatial geom-

(19 is obtained from Eq(18) by settingf;=6,, 6,= 65, invariant nature of the world function can be used to write
Xs= X1, andx,=X,, using the definitions in Eq17) and the  the world function in a rotating system of coordinatgs,
relations using the transformation in Eq7):
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QX xb)y=0(t; ,yq.to, gation due to the Earth’s mass. Note that the cqefficients
(x1.%2) (ty1.t,y2) of each of the last two terms also dependwnThis repre-

1 i AR GM 1 sents a modification of the Sagnac effect due to the presence

=5myy +taAF+— 2 2 of massM.

27 c - +2AF . . .
[(y2=y2) ] The rotation of the coordinate system leads to a break in

Fz) spherical three-dimensional symmetry. Note that terms two

F1

X[(y2—y1)?+(cAt)*+2AF]log and three on the right-hand side of E9), which are due to
the rotation, have a cylindrical symmetry determined by the
1 1 direction of w, as expected. On the other hand, the last two
W + w terms that depend on the madshave coefficients that have

a constantspherically symmetricterm plus a term that de-

GM GM
_?(|Y1|+|Y2|)+?

X[y1yo—AF], (25  pends on the sense of rotatidinear in ).
where
AF=(y1Xy,)-nsin(wAt) VI. CONCLUSION
wAt . . .
_ ; If an observer simultaneously receives electromagnetic
+ . . . -
2Lyrya=(yrmiyz n)]st( 2 ) 26 signals from four electromagnetic beacons in flat space—

_ ) 12 time, he or she can compute his or her position in space—
Fi=y1:(Y2= Y1) —AF+|y1|[(y2=y1)*+2AF]™, (270 {ime by solving the four light cone equatiof®. This pro-
vy 2 112 cedure is routinely carried out everyday by users of satellite
Fa=y2r(y2my) + AF+Iyall(y2—y)) "+ 2AF ] (28) navigation systems such as GPS and GLONASS. Equation
For navigation in the vicinity of the Earth in rotating co- (1) neglects small effects of gravitational fields on electro-
ordinates, the observer must solve the four simultaneousiagnetic signal propagation. In this work, | have included
equations(5) using the world function in Eq(25). In gen-  these effects in a natural way using the two-point invariant
eral, this must be done numerically. world function developed by J. L. Synge. | have given a
Consider the simpler problem of determining an observsimple covariant and invariant formulation of the navigation
er's coordinate time at a known spatial location. Analytic problem in Eq.(5). An approximation to the world function
results can be obtained in this case. | solve @j.for At  in Schwarzschild coordinates is given in Ed6), and in
=t,—ts using the world function in Eq(25) by defining coordinates that rotate with the Earth in E@5). In the
three small dimensionless parametexs; wAt, s=wly, uture, approximations to the world function may be ob-
—yJ/c, anda=GMaw/c3, and solving forx as a function of tained for the case of the Eddington and Clark metrand
5 by iteration. This leads to Eqg. (5) may serve as the basis for high-accuracy navigation
throughout our solar system.
1 1 I have implicitly used the geometric optics approximation
CAt=|yo—ys|+ E(YSXYO)'O)+ 202 Yo~ Vsl by assuming that electromagnetic radiation propagates along
null geodesics. Furthermore, when navigating inside the

[(YsXYo) @ ]? ) Earth’s atmosphere, or when radiation traverses the atmo-
WJ”U Ys'Yo~ (Vs @) (Yo @) sphere, there is an additional signal delay that is bigger than
° s the effects discussed here and must be taken into account in
GM 1 (YsXYo) tan 6,/2) detail. | have neglected these effects. Consequently, the re-
= = — og sults here are valid for observers in orbit around the Earth
c C YoVl tan(6</2) . ; oit
outside the Earth’s atmosphere. Work is in progress to ex-
GM 1 (YsXyo) tend the world function approach to simultaneously include
t ez 1+ ¢ No-vd (cosfs—cosbo). (29  gravitational and index-of-refractiofatmospherit effects.

The world function approach used here can be applied to
In Eq. (29), | have dropped small terms @(a ), O(a?), areas that require precise definitions of distances over
and O(5%). Equation(29) gives the coordinate time for the satellite-to-ground length scales. A particular application
signal to travel from the source to the observat=t, area of recent interest, where high-accuracy position is re-
—t. Since the propagation tim&t is given in a rotating quired over hundreds of kilometers, is flying satellites in for-
system of coordinates, EqR9) contains the Sagnac effect, mation, for precise sensing and surveillance applications.
modified by the presence of mabk (the Earth. The first ~ 1he high accuracies needed in the definition of satellite po-
term corresponds to the propagation of the electromagneti®itions may require a curved space—time theoretical frame-
signal from the satellite at, to observer ay, in (flat, non- wqu that mcludes gravitational corrections to flat
rotating Minkowski space—time coordinates. The secondMinkowski space—time.

term is the standard Sagnac correction teégwrpressed in

terms of coordinate timethat depends on the sense of rota-

tion o, which appeared in rotating coordinates in vacuumAPPENDIX A: CONVENTIONS AND NOTATION

[see Eqg.(9)]. The third term on the right-hand side of Eq. o _ _
(29) also appears in flat Space_time and, as previous|y men- Where not EXp|ICIt|y stated otherwise, | use the Conventlon
tioned, it does not depend on the sense of the rotation; it ihat Roman indices, such as on space-time coordinates
the same whemw— — w and, hence, does not contribute to take the value$s=0,1,2,3 and Greek indices take values
the Sagnac effect. The last two terms on the right-hand side=1,2,3. Summation is implied over the range of the index
of Eq. (29) are corrections to the coordinate time of propa-when the same index appears in a lower and upper position.
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In some cases, such as Ety), Greek indices’ summation is Now, assume that we have a space—time of small curvature
implied when both indices are in the upper position, such aand expand the integra{v) about the geodesit,
in x*dx®.
If xX' andx'+dx are two events along the world line of I(0)=O(Py, P+ di(v,) (v—00)
an ideal clock, then the square of the proper time interval ' dv °
between these events tbr=ds/c, where the measurds 1d2(v,)
is given in terms of the space-time metric as’ +_—2°(U_UO)2+..._ (C5)
=—gj; dx dx!. | choosey;; to have the signature2. When 2 dv

gij is diagonalized at any given space—time point, the eleTnhe second termgl(v,)/dv, vanishes since this is the defi-

ments can take the form of the Minkowski metric given by nition of a geodesic curve. The error in replacing the integral

700= — 1, 74p= up, and7g,=0. over a geodesic by an integral over a nearby curve can then
be estimated by the third term on the right-hand side of Eq.
(C5H). Using the relations

APPENDIX B: INTEGRALS

sV sU!
Two integrals are needed to explicitly evaluate the world S0 S0 (Co)
function in Eq.(15) (see Ref. 3% u v
fl 1d 1 tan( 91/2)) ® and
—du= 0 , .
o1 U =] Y tan(6,/2) sU'(u,v,)
—— =0, (C7)
8 1 x%xB ou
AXTAX J’o r3 du | find the approximate error is given by
tan(6,/2) } [(v)—Q(Py,Py)
=|X1—Xo|| 09| —=——=-| + cog 1) —cog 65) |, B2
| 1 2| g tar( 02/2) i l) 3 2) ( ) 1 dzl(vo) ,
where 6, and 6, are defined in Eq(17). =3 gz (Vv

= Uy~ Uy)(v—v,)?
SsU' sUI
9ij Sv 5_0

APPENDIX C: ERROR IN APPROXIMATION OF uj
THE WORLD FUNCTION Xf

up

+ Ry v2UPUCVY du,

V=V

o

In Eqg. (16), | use Synge’s approximation to the world
function for the metric in Eq(13), which entails replacing (C8)
the integrals over the geodedidy integrals along a straight \\here the Riemann tensor is given by
line L,

1 dx' dx! jim=Ljmc= Tiiem+ Tl e T ams (C9
Q(P1,P2) =5 (U= ) frgiiﬁ TR the affine connection is
1 dx dx! =329 (9j1 kG j— Gjic)s (C10
~—(u2—u1)j g”——du (Cl) 2 hk Kl Jie!
2 L~ du du and ordinary partial derivatives with respect to the coordi-
| take the straight lind to be given by nates are indicated by gommas. In EG8), | have dropped
i : : terms of ordelO(v —v,)°.
Xp(u)=k(uz—u)xj+k(u—ug)X;, (C2 To estimate the error incurred in E(.5) by approximat-

where u;<u=<u, and k=(u,—u;)~%. The error made in ing the world function integral over a geodesic by an integral
this approximation can be computed as follows. ConsidePV¢" the.strglghtfllne in Eq(C), | cons;ruct. an explicit
two points, P; and P,, connected by a family of curves Parametrization of curves connectifg andP:

x'(u,v), whereu andv are independent parameters. | as-

- ; ) Va—U . [
sume thatP;=x'(u;,v) and P,=x/(u,,v), for all v. It is x(u,v) = ——x{ (u)+ SoXr(u), (C1y
convenient to define the two vector fields _ ° ° _

X o wherex| (u) is given by Eq.(C2) andx}-(u) is a geodesic

u' i—

(C3)  connecting the point®,; and P,. For simplicity, in Eq.
(C11) I am assuming that the parameter0 at P, andu

Note that by constructioV'(u;,v)=V'(u,,v)=0. Further-  —y, at P,. For the geodesic connecting the poifts and
more, assume that a unique geoddsiconnects the points p, | use a series solution of E(R),

P, and P,, and that this geodesic is given by the curve
with a particular value ob =v,, namelyx'(u,v,) for u;
<us<u,. Define the integral

T ou’ v

Xk(u)=x; +

i 1o ok | Y
§+§ij(P1)§§ u
2

1 up S 1 . )
|(v)=§(U2—U1)f g;U'U’ du. (CH —EFEK(Pl)glgk(ui +oen (C12
uy 2
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where fi :Xiz_ Xil_ Using the curve parametrization in Eq. relativistic satellite astrometry. I. A non-perturbative approach to data re-

(C11), and carrying out the required calculations, | find an,
estimate of the error in approximating the world function i owski spa

integral by a straight line, given by E¢C8), to be
[(v)—Q(P1,Py)
1 [(v—v,\? ) )
%ﬂ( Vo ) i Tap(POTL4(P) £2£°¢°¢9+0(3),
(C13

where third-order terms have been dropped, Eb,g{Pl) is
the connection evaluated B . | have takeny,, . andy,p cq
to be of O(1).
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