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A covariant and invariant theory of navigation in curved space–time with respect to electromagnetic
beacons is written in terms of J. L. Synge’s two-point invariant world function. Explicit equations
are given for navigation in space–time in the vicinity of the Earth in Schwarzschild coordinates and
in rotating coordinates. The restricted problem of determining an observer’s coordinate time when
his or her spatial position is known is also considered. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

Curved space–time forms the basis for most classical
theories of gravity, such as general relativity. These theories
are usually based on a metric for four-dimensional
space–time.1 Some of the basic concepts used in general
relativity and related theories are transformation rules for
tensors, the affine connection, and the relation of the metric
to proper time along an observer’s world line. A useful, but
little-used concept, is that of the world function of space–
time, as developed by J. L. Synge. The world function is
essentially one-half of the squared measure between two
points in space–time. The utility of the world function comes
from the fact that it is closely related to experiments, and that
it is a type of scalar quantity. Since the world function trans-
forms as a kind of scalar, it allows us to formulate geometric
quantities in a covariant way. Hence, the world function is a
valuable tool for understanding the geometric ideas in metric
theories of gravity, in three-dimensional differential geom-
etry and tensor analysis, and wherever arbitrary coordinate
systems are used. As an example of the utility of the world
function, I present its application to the problem of naviga-
tion in a curved space–time. This application actually goes
beyond a simple pedagogical example because it deals with
the real-world need for precise navigation and time dissemi-
nation.

Consider the problem of an observer who wants to navi-
gate in a curved space–time with respect to electromagnetic
beacons. I use the word navigate to mean that the observer
determines his or her coordinate position and coordinate time
along his or her world line, in some system of space–time
coordinates. I assume that the electromagnetic beacons con-
tinuously broadcast their space–time coordinates and that
this information is imbedded in the emitted electromagnetic
signals. Furthermore, I assume that an observer at unknown
coordinates (to ,xo) simultaneously receives these signals
from four beacons. The observer’s navigation problem is to
compute his or her position (to ,xo) from the four received
emission event coordinates (ts ,xs), s51,2,3,4, of the elec-
tromagnetic beacons.

In the case of flat space–time, the observer must solve the
four simultaneous equations

uxo2xsu22c2~ to2ts!
250, s51,...,4. ~1!

Equation~1! contains four invariant statements: Light signals
travel ‘‘on the light cone’’from each emission event to the
observer~see Fig. 1!. To resolve the branches of the light
cones, the causality conditionsto.ts , for s51,...,4, must be
added. The relations in Eq.~1! are the basic navigation equa-

tions applied by users of satellite navigation systems, such as
the U.S. Global Positioning System~GPS! and the Russian
Global Navigation Satellite System.~GLONASS!2–4 The co-
ordinates of the four events, (ts ,xs), correspond to particular
radio emissions by the satellites. The emission event coordi-
nates can be extracted from information transmitted by digi-
tal codes.

Equation ~1! is commonly used in two different ways.
First, an observer may receive radio signals from satellites
and compute his or her space–time coordinates (to ,xo) in
terms of four known satellite emission events (ts ,xs). The
second use of Eq.~1! is to locate a satellite, which is at an
unknown position (to ,xo) in terms of four ground observa-
tions at known coordinates (ts ,xs). For this use, we apply
the causality conditionts.to , s51,...,4. In Eq.~1!, the as-
sumption is made that space–time is flat and the speed of
light c is constant. Furthermore, by using Eq.~1! we make
the geometric optics approximation that the wavelength of
the electromagnetic waves is small compared to all physical
dimensions of the receiver and transmitter systems.5,6

In recent years, there have been significant improvements
in the stability of frequency standards and measurement
techniques.7,8 Consequently, over satellite-to-ground dis-
tances, precise measurements should be interpreted within
the framework of a curved space–time theory.9–12 Further-
more, the equations for navigation in space–time should be
manifestly covariant and also invariant.13

In this work, I write down a generalization of the naviga-
tion Eq. ~1! for curved space–time and give the detailed
equations that must be solved for navigating in the vicinity
of the Earth, both in Schwarzschild coordinates and in rotat-
ing coordinates. I still retain the geometric optics approxima-
tion, however, I take into account deviations from flatness to
first order in the metric. This means that the flat-space light
cones in Eq.~1! are replaced by equations for null geodesics.
The required navigation equations are simply expressible in
terms of the world function developed by J. L. Synge.14 The
resulting formalism takes into account the delay of electro-
magnetic signals due to the presence of a gravitational field.
The detailed equations have application to a user who wants
to accurately compute his or her coordinate position and
time. In general, the world function approach is useful in
applications where high-accuracy measurements must be
made over large distances. An application of recent interest
is the design of space-based interferometers for precision
sensing and surveillance purposes.15,16 In some of these de-
signs, in order to achieve high-resolution imaging, long base
lines ~hundreds of kilometers! must be used between Earth
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satellites and their separations may need to be accurate to
within a micrometer or better. To unambiguously and accu-
rately define such positions, a curved space–time approach
should be used that takes into account the warping of the
geometry of space–time due to gravitational effects.

In Sec. II, I write the generalization of Eq.~1! in terms of
the world function and point out the limitations of navigation
in curved space–time by electromagnetic beacons. In Sec.
III, I briefly describe the restricted problem of computing an
observer’s coordinate time if his or her spatial coordinates
are known~a restricted type of navigation!. In Secs. IV and
V, I give the detailed equations applicable to navigation in
the vicinity of the Earth in Schwarzschild coordinates and in
coordinates that rotate with the Earth.

II. NAVIGATION EQUATIONS

The world function was initially introduced into tensor
calculus by Ruse,17,18 Synge,19 Yano and Muto,20 and
Schouten.21 It was further developed and extensively used by
Synge in applications to problems dealing with measurement
theory in general relativity.14 In general, the world function
has received little attention, so I give the following defini-
tion. Consider two points,P1 and P2 , in a general space–
time, connected by a unique geodesic pathG given byxi(u),
whereu1<u<u2 . A geodesic is defined by a class of special
parametersu8 that are related to one another by linear trans-
formationsu85au1b, wherea andb are constants. Here,u
is a particular parameter from the class of special parameters
that define the geodesicG, and xi(u) satisfy the geodesic
equations

d2xi

du2 1G jk
i dxj

du

dxk

du
50. ~2!

The world function betweenP1 and P2 is defined as the
integral alongG,

V~P1 ,P2!5
1

2
~u22u1!E

u1

u2
gi j

dxi

du

dxj

du
du. ~3!

The value of the world function has a geometric meaning: It
is one-half the square of the space–time distance between
pointsP1 andP2 . Its value depends only on the eight coor-

dinates of the pointsP1 and P2 . The value of the world
function in Eq. ~3! is independent of the particular special
parameteru in the sense that under a transformation from
one special parameteru to another,u8, given by u5au8
1b, with xi(u)5xi(u(u8)), the world function definition in
Eq. ~3! has the same form~with u replaced byu8!.

The world function is a two-point invariant in the sense
that it is invariant under independent transformation of coor-
dinates atP1 and atP2 . Consequently, the world function
characterizes the space–time. For a given space–time, the
world function between pointsP1 andP2 has the same value
independent of the metric-induced coordinates. A simple ex-
ample of the world function is for Minkowski space–time,
which is given by

V~x1
i ,x2

j !5 1
2h i j DxiDxj , ~4!

whereh i j is the Minkowski metric with only nonzero diag-
onal components~21, 11, 11, 11!, andDxi5(x2

i 2x1
i ), i

50,1,2,3, wherex1
i andx2

i are the coordinates of pointsP1

andP2 , respectively. Up to a sign, the world function gives
one-half the square of the geometric measure in space–time.
Calculations of the world function for specific space–times
can be found in Refs. 14, 22–24 and application to Fermi
coordinates in Synge14 and Gambiet al.25

The generalization to a curved space–time of the naviga-
tion Eq. ~1! is given by

V~xs
i ,xo

j !50, s51,2,3,4, ~5!

wherexs
i 5(ts ,xs) are the coordinates of the emission events,

xo
i 5(to ,xo) are the observer coordinates and the world func-

tion is defined by Eq.~3!. Within the geometric optics ap-
proximation, Eq.~5! forms a natural generalization of the
navigation Eq.~1!. In addition to Eq.~5!, the appropriate
causality conditionsts.to or to.ts , for s51,...,4, must be
added. The set of relations in Eq.~5! are manifestly covariant
and invariant due to the transformation properties of the
world function under independent space–time coordinate
transformations at pointP1 and atP2 .

From the definition of the world function, the intrinsic
limitations of navigation in a curved space–time are evident:
The world functionV(P1 ,P2) must be a single-valued func-
tion of P1 and P2 . In general, if two or more geodesics
connect the pointsP1 and P2 , thenV(P1 ,P2) will not be
single valued and the set of equations in Eq.~5! may have
multiple solutions or no solutions. Such conjugate pointsP1

andP2 are known to occur in applications to planetary orbits
and in optics.14 However, when the pointsP1 and P2 are
close together in space and in time and the curvature of
space–time is small, we expect the world function to be
single valued and the solution of Eq.~5! to be unique. There-
fore, navigation in curved space–time is limited by the pos-
sibility of determining a set of four unique null geodesics
connecting four emission events to one reception event. In
the case of strong gravitational fields as may exist in the
vicinity of a black hole, or when the~satellite! radio beacons
are at large distances from the observer in a space–time of
small curvature, navigation by radio beacons may not be
possible in principle. In such cases, one may have to supple-
ment radio navigation by inertial techniques; see, for ex-
ample, the discussion by Sedov.26

Fig. 1. Space–time diagram showing two~of the four! satellites with world
lines S1 and S2 . Electromagnetic signals are emitted atP1 and P2 , and
reach the observer atO.
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III. COORDINATE TIME AT A KNOWN SPATIAL
POSITION

Consider the restricted problem of observers who know
their spatial position and want to obtain their coordinate
times.27 A null geodesic connects the emission and reception
events, so the value of the world function is zero,

V~ ts ,xs ,to ,xo!50, ~6!

where the satellite emission event coordinates (ts ,xs) and the
observer spatial coordinatesxo are known. Equation~6! must
be supplemented by the causality conditionto.ts . The ob-
servers obtain their coordinate times by solving Eq.~6! for
to .

As a simple example of the application of Eq.~6!, con-
sider observers at a known spatial location who want to com-
pute their coordinate times in flat space–time in a rotating
system of coordinates,yi , by receiving signals from a satel-
lite at Ps5(ts ,ys). I take the transformation from
Minkowski coordinatesxi to rotating coordinatesyi to be
given by

y05x0, y15cosS v

c
x0D x12sinS v

c
x0D x2,

~7!
y25sinS v

c
x0D x11cosS v

c
x0D x2, y35x3.

The world function is a two-point invariant that characterizes
the space–time, so, in the rotating coordinates its value does
not change. Using the world function for Minkowski space–
time in Eq.~4! and the transformation to rotating coordinates
yi in Eq. ~7!, the world function is given by

V~Ps ,Po!5V~ ts ,xs ,to ,xo!

5V̄~ ts ,ys ,to ,yo!

5 1
2@~yo2ys!

22c2~ to2t2!2#

1~ys3yo!"n sin~v~ to2ts!!

12@ys"yo2~ys"n!~yo"n!#sin2~ 1
2v~ to2ts!!, ~8!

wheren is a unit vector in the direction of the angular ve-
locity vectorv, which I take to be along thez axis. I assume
that the angular velocity of rotation is small, so that the time
for light to travel from a satellite atys to an observer atyo is
small compared to the period of rotation 2p/v. I define the
small dimensionless parameterd5vuyo2ysu/c!1. Equation
~6! can then be solved forDt5to2ts by iteration, leading to

cDt5uyo2ysu1
1

c
~ysÃyo!"v1

1

2c2 uyo2ysu

3H @~ysÃyo!"v#2

uyo2ysu2
1@v2ys"yo2~ys"v!~yo"v!#J

1O~d4!. ~9!

The first term on the right-hand side of Eq.~9! divided byc
is the time for light to travel from the emission event at the
satellite, (ts ,ys), to the observer at event, (to ,yo), in the
absence of rotation. The second term is the celebrated Sa-
gnac effect,28–31 which depends on the sense of rotation of
the coordinates~sign of v!. The third term is a higher order
correction that is independent of the sense of rotation, i.e., it

is the same whenv→2v. This term is on the order of 5
310214s for satellite and Earth angular velocity of rotation
parameters appropriate to the GPS. Equation~9! leads to the
standard expression for the Sagnac effect when we take the
difference of propagation times for clockwise (DT2) and
counterclockwise (DT1) propagation of light along the limit
of a sequence of tangents on the perimeter of a circle,DT1

2DT254A"v/c2, whereA is the included area.28–31 Note
that the third term in Eq.~9! does not contribute to the dif-
ference of round-trip times,DT12DT2 , so it is not mea-
surable in a Sagnac experiment. However, this term does
contribute to a determination of coordinate time.

IV. NAVIGATION IN THE VICINITY OF THE
EARTH

In the vicinity of the Earth, the gravitational potential can
be approximated by32

f~r ,u!52
GM

r F12J2S Re

r D 2

P2~cos~u!!G , ~10!

where P2(x)5(3x221)/2 is the second Legendre polyno-
mial andJ2 is the Earth’s quadrupole moment, whose value
is approximatelyJ251.031023. However, for navigation in
the vicinity of the Earth, we can neglectJ2 since it is three
orders of magnitude smaller than the dimensionless coeffi-
cient of the monopole potentialGM/r , which already con-
tributes small corrections to propagation of electromagnetic
radiation. I also neglect the effects of the rotation of the
Earth, which give rise to small terms in the metric of space—
time g0a , since these effects are completely negligible at the
present time.31 Therefore, the Earth’s gravitational field can
be sufficiently and accurately described using the Schwarzs-
child metric33

2ds252S 12
2GM

c2r D c2 dt21
dr2

122GM/c2r

1r 2~du21sin2 u df2!. ~11!

In Eq. ~11!, I neglect the gravitational field of the Sun and
other planets, since the Earth is in free fall and these fields
are essentially~up to tidal terms! canceled as a result of the
equivalence principle.

Using the transformation to rectangular coordinates

x05ct, x15r sinu cosf,
~12!x25r sinu sinf, x35r cosu,

and expanding in the small parameterGM/c2r , the metric
for the Schwarzschild space–time can be written to first or-
der as a sum of the Minkowski metric,h i j , and the deviation
from flatness tensorhi j as

2ds25gi j dxi dxj5~h i j 1hi j !dxi dxj , ~13!

wherehi j is given by

hi j dxi dxj5
2GM

c2 F ~c dt!2

r
1

~xa dxa!2

r 3 G . ~14!

The assumption thatGM/c2r !1 is a restriction on the re-
gion of validity of Eq. ~13! to large r compared with the
gravitational radius of the Earth, which is 2GM/c2

'0.88 cm.
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Following Synge, I approximate the world function for the
metric in Eq.~13! by replacing the integrals over the geode-
sic G by integrals along a straight line, and taking the special
parameteru to vary in the range 0<u<1, which leads to14

V~x1
i ,x2

j !5
1

2
h i j DxiDxj1

1

2
DxiDxjE

0

1

hi j du. ~15!

I find that explicit evaluation of these integrals~see Appen-
dix B! leads to34

V~x1
i ,x2

j !5
1

2
h i j DxiDxj1

GM

c2 F ux22x1u1
c2Dt2

ux22x1uG
3 logS tan~u1/2!

tan~u2/2! D
1

GM

c2 ux22x1u~cosu12cosu2!, ~16!

wherecDt5x2
02x1

0, andu1 andu2 are defined by

cosua5
xa"~x22x1!

uxauux22x1u
, a51,2. ~17!

See Appendix C for an estimate of the error in Eq.~16!. The
first term on the right-hand side of Eq.~16! is the world
function for Minkowski space–time, given in Eq.~4!. The
second and third terms in Eq.~16! give the corrections to the
world function of Minkowski space–time due to the gravita-
tional effects of massM. The expression in Eq.~16! can be
used in Eq.~5! as a basis for navigation, or in Eq.~6! for
computing coordinate time in the vicinity of the Earth.

As an example of using the world function in Eq.~16!, I
consider determining the coordinate time of an observer at a
known spatial positionxo in the vicinity of Earth, using stan-
dard Schwarzschild coordinates. Taking the satellite position
asxs5x1 , the observer positionxo5x2 , and making use of
the small parameterGM/(c2uxo2xsu)!1, I solve Eq.~6! by
iteration, leading to

cDt5uxo2xsu1
GM

c2 F2 logS tan~us/2!

tan~uo/2! D1cosus2cosuoG .
~18!

The first term in Eq.~18! divided byc is the time for light to
propagate fromxs to xo . The second term is the small cor-
rection due to the presence of the Earth’s massM distorting
the space–time in its vicinity. This expression takes into ac-
count the delay of the electromagnetic signal in a gravita-
tional field ~see, for example, Refs. 35, 1, and 36, and refer-
ences cited therein!. For a satellite directly overhead, where
xo and xs are collinear with the origin of coordinates, Eq.
~18! leads to the following result:

cDt5uxo2xsu1
2GM

c2 log
uxsu
uxou

. ~19!

Equation~19! is obtained by considering the spatial geom-
etry shown in Fig. 2. Define a triangle by the three points:
origin atO, satellite atPs with coordinatesxs , and observer
at Po with coordinatesxo . From pointPo , draw a linePoM
perpendicular toOPs and define its length to beh. Equation
~19! is obtained from Eq.~18! by settingus5u1 , uo5u2 ,
xs5x1 , andxo5x2 , using the definitions in Eq.~17! and the
relations

cosus5211
1

2 S h

l 1
D 2

, ~20!

cosuo5211h2S 1

l 1l 2
1

1

2l 1
2 1

1

2l 2
2D , ~21!

where

l 15~xs2xo!"
xs

uxsu
, ~22!

l 25
xo"xs

uxsu
, ~23!

l 2
25uxou22h2 ~24!

and taking the limit ash→0. Note that Eqs.~18! and~19! are
expressed in terms of Schwarzschild spatial coordinates~and
do not contain the temporal coordinates! of satellitexs and
observerxo , because the Schwarzschild space–time is static,
i.e., the space–time admits a hypersurface orthogonal time-
like Killing vector field.37

V. NAVIGATION IN THE VICINITY OF THE
EARTH IN ROTATING COORDINATES

In practical navigation problems, observers or users of a
satellite navigation system are often interested in their
space–time position with respect to the Earth—which de-
fines a rotating coordinate system. To compute an observer
space–time position in a rotating system of coordinates, I
apply the navigation Eq.~5! in the rotating system. Having
computed the world function for Schwarzschild space–time
in Eq. ~16! in a ‘‘nonrotating’’ system of coordinatesxi , the
invariant nature of the world function can be used to write
the world function in a rotating system of coordinates,yi ,
using the transformation in Eq.~7!:

Fig. 2. The spatial geometry of satellite atPS and receiver atPO , with
coordinatesxs andxo , respectively, showing the anglesus anduo .
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V~x1
i ,x2

j !5Ṽ~ t1 ,y1 ,t2 ,y2!

5
1

2
h i j y

iy j1DF1
GM

c2

1

@~y22y1!212DF#1/2

3@~y22y1!21~cDt !212DF# logS F2

F1
D

2
GM

c2 ~ uy1u1uy2u!1
GM

c2 S 1

uy1u
1

1

uy2u D
3@y1"y22DF#, ~25!

where

DF5~y1Ãy2!"n sin~vDt !

12@y1"y22~y1"n!~y2"n!#sin2S vDt

2 D , ~26!

F15y1"~y22y1!2DF1uy1u@~y22y1!212DF#1/2, ~27!

F25y2"~y22y1!1DF1uy2u@~y22y1!212DF#1/2. ~28!

For navigation in the vicinity of the Earth in rotating co-
ordinates, the observer must solve the four simultaneous
equations~5! using the world function in Eq.~25!. In gen-
eral, this must be done numerically.

Consider the simpler problem of determining an observ-
er’s coordinate time at a known spatial location. Analytic
results can be obtained in this case. I solve Eq.~6! for Dt
5to2ts using the world function in Eq.~25! by defining
three small dimensionless parameters,x5vDt, d5vuyo

2ysu/c, anda5GMv/c3, and solving forx as a function of
d by iteration. This leads to

cDt5uyo2ysu1
1

c
~ysÃyo!"v1

1

2c2 uyo2ysu

3H @~ysÃyo!"v#2

uyo2ysu2
1v2ys"yo2~ys"v!~yo"v!J

1
GM

c2 F21
1

c

~ysÃyo!"v

uyo2ysu
G logS tan~uo/2!

tan~us/2! D
1

GM

c2 F11
1

c

~ysÃyo!"v

uyo2ysu
G~cosus2cosuo!. ~29!

In Eq. ~29!, I have dropped small terms ofO(ad), O(a2),
andO(d4). Equation~29! gives the coordinate time for the
signal to travel from the source to the observer,Dt5to

2ts . Since the propagation timeDt is given in a rotating
system of coordinates, Eq.~29! contains the Sagnac effect,
modified by the presence of massM ~the Earth!. The first
term corresponds to the propagation of the electromagnetic
signal from the satellite atys to observer atyo in ~flat, non-
rotating! Minkowski space–time coordinates. The second
term is the standard Sagnac correction term~expressed in
terms of coordinate time! that depends on the sense of rota-
tion v, which appeared in rotating coordinates in vacuum
@see Eq.~9!#. The third term on the right-hand side of Eq.
~29! also appears in flat space–time and, as previously men-
tioned, it does not depend on the sense of the rotation; it is
the same whenv→2v and, hence, does not contribute to
the Sagnac effect. The last two terms on the right-hand side
of Eq. ~29! are corrections to the coordinate time of propa-

gation due to the Earth’s massM. Note that the coefficients
of each of the last two terms also depend onv. This repre-
sents a modification of the Sagnac effect due to the presence
of massM.

The rotation of the coordinate system leads to a break in
spherical three-dimensional symmetry. Note that terms two
and three on the right-hand side of Eq.~29!, which are due to
the rotation, have a cylindrical symmetry determined by the
direction ofv, as expected. On the other hand, the last two
terms that depend on the massM have coefficients that have
a constant~spherically symmetric! term plus a term that de-
pends on the sense of rotation~linear in v!.

VI. CONCLUSION

If an observer simultaneously receives electromagnetic
signals from four electromagnetic beacons in flat space–
time, he or she can compute his or her position in space–
time by solving the four light cone equations~1!. This pro-
cedure is routinely carried out everyday by users of satellite
navigation systems such as GPS and GLONASS. Equation
~1! neglects small effects of gravitational fields on electro-
magnetic signal propagation. In this work, I have included
these effects in a natural way using the two-point invariant
world function developed by J. L. Synge. I have given a
simple covariant and invariant formulation of the navigation
problem in Eq.~5!. An approximation to the world function
in Schwarzschild coordinates is given in Eq.~16!, and in
coordinates that rotate with the Earth in Eq.~25!. In the
future, approximations to the world function may be ob-
tained for the case of the Eddington and Clark metric38 and
Eq. ~5! may serve as the basis for high-accuracy navigation
throughout our solar system.

I have implicitly used the geometric optics approximation
by assuming that electromagnetic radiation propagates along
null geodesics. Furthermore, when navigating inside the
Earth’s atmosphere, or when radiation traverses the atmo-
sphere, there is an additional signal delay that is bigger than
the effects discussed here and must be taken into account in
detail. I have neglected these effects. Consequently, the re-
sults here are valid for observers in orbit around the Earth
outside the Earth’s atmosphere. Work is in progress to ex-
tend the world function approach to simultaneously include
gravitational and index-of-refraction~atmospheric! effects.

The world function approach used here can be applied to
areas that require precise definitions of distances over
satellite-to-ground length scales. A particular application
area of recent interest, where high-accuracy position is re-
quired over hundreds of kilometers, is flying satellites in for-
mation, for precise sensing and surveillance applications.
The high accuracies needed in the definition of satellite po-
sitions may require a curved space–time theoretical frame-
work that includes gravitational corrections to flat
Minkowski space–time.

APPENDIX A: CONVENTIONS AND NOTATION

Where not explicitly stated otherwise, I use the convention
that Roman indices, such as on space–time coordinatesxi ,
take the valuesi 50,1,2,3 and Greek indices take valuesa
51,2,3. Summation is implied over the range of the index
when the same index appears in a lower and upper position.
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In some cases, such as Eq.~14!, Greek indices’ summation is
implied when both indices are in the upper position, such as
in xa dxa.

If xi and xi1dxi are two events along the world line of
an ideal clock, then the square of the proper time interval
between these events isdt5ds/c, where the measureds
is given in terms of the space–time metric asds2

52gi j dxi dxj . I choosegi j to have the signature12. When
gi j is diagonalized at any given space–time point, the ele-
ments can take the form of the Minkowski metric given by
h00521, hab5dab , andh0a50.

APPENDIX B: INTEGRALS

Two integrals are needed to explicitly evaluate the world
function in Eq.~15! ~see Ref. 34!:

E
0

1 1

r
du5

1

ux12x2u
logS tan~u1/2!

tan~u2/2! D , ~B1!

DxaDxbE
0

1 xaxb

r 3 du

5ux12x2uF logS tan~u1/2!

tan~u2/2! D1cos~u1!2cos~u2!G , ~B2!

whereu1 andu2 are defined in Eq.~17!.

APPENDIX C: ERROR IN APPROXIMATION OF
THE WORLD FUNCTION

In Eq. ~16!, I use Synge’s approximation to the world
function for the metric in Eq.~13!, which entails replacing
the integrals over the geodesicG by integrals along a straight
line L,

V~P1 ,P2!5
1

2
~u22u1!E

G
gi j

dxi

du

dxj

du
du

'
1

2
~u22u1!E

L
gi j

dxi

du

dxj

du
du. ~C1!

I take the straight lineL to be given by

xL
i ~u!5k~u22u!x1

i 1k~u2u1!x2
i , ~C2!

where u1<u<u2 and k5(u22u1)21. The error made in
this approximation can be computed as follows. Consider
two points, P1 and P2 , connected by a family of curves
xi(u,v), whereu and v are independent parameters. I as-
sume thatP15xi(u1 ,v) and P25xi(u2 ,v), for all v. It is
convenient to define the two vector fields

Ui5
]xi

]u
, Vi5

]xi

]v
. ~C3!

Note that by constructionVi(u1 ,v)5Vi(u2 ,v)50. Further-
more, assume that a unique geodesicG connects the points
P1 and P2 , and that this geodesicG is given by the curve
with a particular value ofv5vo , namelyxi(u,vo) for u1

<u<u2 . Define the integral

I ~v !5
1

2
~u22u1!E

u1

u2
gi j U

iU j du. ~C4!

Now, assume that we have a space–time of small curvature
and expand the integralI (v) about the geodesicG,

I ~v !5V~P1 ,P2!1
dI~vo!

dv
~v2vo!

1
1

2

d2I ~vo!

dv2 ~v2vo!21¯ . ~C5!

The second term,dI(vo)/dv, vanishes since this is the defi-
nition of a geodesic curve. The error in replacing the integral
over a geodesic by an integral over a nearby curve can then
be estimated by the third term on the right-hand side of Eq.
~C5!. Using the relations

dVi

du
5

dUi

dv
~C6!

and

dUi~u,vo!

du
50, ~C7!

I find the approximate error is given by

I ~v !2V~P1 ,P2!

'
1

2

d2I ~vo!

dv2 ~v2vo!2

5 1
2~u22u1!~v2vo!2

3E
u1

u2 Fgi j

dUi

dv
dU j

dv
1RabcdV

aUbUcVdG
v5vo

du,

~C8!

where the Riemann tensor is given by

Rjkm
i 5G jm,k

i 2G jk,m
i 1G jm

a Gak
i 2G jk

a Gam
i , ~C9!

the affine connection is

G jk
i 5 1

2g
il ~gjl ,k1gkl, j2gjk,l !, ~C10!

and ordinary partial derivatives with respect to the coordi-
nates are indicated by commas. In Eq.~C8!, I have dropped
terms of orderO(v2vo)3.

To estimate the error incurred in Eq.~15! by approximat-
ing the world function integral over a geodesic by an integral
over the straight line in Eq.~C2!, I construct an explicit
parametrization of curves connectingP1 andP2 :

xi~u,v !5
vo2v

vo
xL

i ~u!1
v
vo

xG
i ~u!, ~C11!

wherexL
i (u) is given by Eq.~C2! and xG

i (u) is a geodesic
connecting the pointsP1 and P2 . For simplicity, in Eq.
~C11! I am assuming that the parameteru50 at P1 and u
5u2 at P2 . For the geodesic connecting the pointsP1 and
P2 , I use a series solution of Eq.~2!,

xG
i ~u!5x1

i 1S j i1
1

2
G jk

i ~P1!j jjkD u

u2

2
1

2
G jk

i ~P1!j jjkS u

u2
D 2

1¯ , ~C12!
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where j i5x2
i 2x1

i . Using the curve parametrization in Eq.
~C11!, and carrying out the required calculations, I find an
estimate of the error in approximating the world function
integral by a straight line, given by Eq.~C8!, to be

I ~v !2V~P1 ,P2!

'
1

24S v2vo

vo
D 2

h i j Gab
i ~P1!Gcd

j ~P1!jajbjcjd1O~3!,

~C13!

where third-order terms have been dropped, andGab
i (P1) is

the connection evaluated atP1 . I have takengab,c andgab,cd

to be ofO(1).

APPENDIX D: NOTE ON ITERATIVE SOLUTION
OF NAVIGATION EQUATIONS

Equation~5! is a set of four nonlinear algebraic equations
for the four coordinates (to ,xo). A simple method of solu-
tion can be applied by linearizing and solving the system by
iteration. Settingxo

j 5xo
j (n)1dxj (n) in Eq. ~5! and expan-

sion to first order indxj (n) gives a linear set of equations for
dxk(n),

Mak
~n!dxk~n!52V~xa

i ,xo
j ~n!!50, a51,2,3,4, ~D1!

wheredxk(n) is the correction to thenth trial valuexo
j (n)

and

Mak
~n!5F ]V~xa

i ,xo
j !

]xo
j G

x
o
j 5x

o
j ~n!

. ~D2!

I start the iteration by making an ansatzxo
j (1) for user

coordinatesxo
j , and solve Eq.~D1! for the first correction,

dxk(1). The improved solution is then taken to bexo
j (2)

5xo
j (1)1dxk(1) and substituted back into Eq.~D1!. Itera-

tion is continued until sufficiently small correctionsdxk(n)
are computed.
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