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Orbits of massless particles in the Schwarzschild metric:
Exact solutions
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The problem of finding all the orbits of test particles in the exterior Schwarzschild black hole metric

has an exact solution in terms of elliptic functions. In this paper, we develop in detail the case of

massless particles, including a derivation of an exact formula for the deflection of light. It is shown

that the mass of the black hole can be determined from a simple relationship between the angular

deflection and the time delay of neighboring light rays. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4866274]

I. INTRODUCTION

Because of its simplicity as well as its historical impor-
tance, the Schwarzschild solution is familiar to anybody who
has studied general relativity. Some of its consequences—
the precession of perihelia and the deflection of light in par-
ticular—helped convince many physicists that Einstein’s
theory was the correct description of relativistic gravitation.

It is therefore somewhat surprising that a complete classi-
fication of the allowed orbits in the Schwarzschild geometry
is conspicuously absent from the standard literature on gen-
eral relativity. This does not mean, of course, that such a
classification is impossible or that it has not been carried out.
Indeed, already in 1917 a remarkable paper by Droste1 pre-
sented exact solutions for the orbits of massive particles in
addition to an independent derivation of the Schwarzschild
metric. In 1931, Hagihara2 published a comprehensive treat-
ment of all trajectories for massive particles based on the
Hamilton-Jacobi equation. The massless case was viewed as
a limit and relegated to a few comments; in particular, no
explicit formulas for the trajectories were presented. Mielnik
and Pleba�nski,3 building on previous work by Darwin4 and
apparently unaware of the papers by Droste or Hagihara,
rederived the complete solution for the massive case in 1962.
These early efforts culminated in the publication of S.
Chandrasekhar’s The Mathematical Theory of Black Holes,5

where the solutions for both massive and massless cases
were given. More recently, �Cade�z and Kostić6 revisited the
problem of lightlike geodesics in order to develop ray-
tracing optics in the Schwarzschild space-time, and M€uller7

discussed the determination of black hole masses by means
of their Einstein rings.

Most of the papers listed above make use of the Weierstrass
elliptic function for their final expressions and, with the
exceptions of Hagihara and Chandrasekhar, make no attempt
to produce visual representations of the rich diversity of tra-
jectories contained in their analytic formulas. Furthermore,
perhaps as a natural corollary of their timid attitude toward
exact solutions, textbooks rarely venture to treat the deflection
of light beyond the weak-field limit of Schwarzschild despite
the fact that the most interesting novel features of relativistic
gravity are known to emerge in the opposite limit. We believe,
however, that exposure to even a minimal qualitative under-
standing of the complex structure of the strong-field orbits is
essential for serious students of general relativity. The purpose
of this paper is to provide that exposure by concentrating on a
classification of the orbits of photons based on the somewhat
simpler Jacobi elliptic functions, with an emphasis on the

visualization of the general answers. We also provide an exact
formula for the deflection of light, and a new method to deter-
mine the mass of a black hole from angular deflection and
time dilation data.

As experimental tests of general relativity move beyond
the linear approximation, exact predictions for simple phe-
nomena such as the deflection of light will become essential
to the discrimination between alternative theories of gravity
and to practical work in astrophysics and cosmology. For
this reason, a substantial amount of effort has been devoted
in recent years to studying the properties of null geodesics in
various geometries, and it is hoped that the present paper
will serve a dual purpose as an introduction to the more
advanced literature. The interested reader wishing to go
beyond the scope of our discussion may find Refs. 5, 8–10,
and references therein, useful. Solutions for Reissner-
Nordstr€om, Kerr, and Kerr-Newman spacetimes can be
found in Chandrasekhar’s book;5 Gibbons and Vyska8

extended the analysis of null geodesics to other spacetimes
and higher dimensions; Hackmann and L€ammerzahl9 give a
complete set of solutions for Schwarzschild anti-de Sitter;
and Hackmann, Hartmann, L€ammerzahl, and Sirimachan10

provide the solutions applicable to a Schwarzschild black
hole pierced by a cosmic string.

II. THE EQUATION OF MOTION FOR MASSLESS

PARTICLES IN THE SCHWARZSCHILD METRIC

The Schwarzschild metric is11–16

ds2 ¼ � 1� RS

r

� �
c2dt2 þ 1� RS

r

� ��1

dr2

þ r2 dh2 þ sin2h d/2
� �

(1)

with RS ¼ 2GM=c2 the Schwarzschild radius. As is intui-
tively clear, the more dramatic deviations from a Newtonian
behavior will emerge if the particles are able to get very
close to RS. For this reason, we shall assume that we are
dealing with a Schwarzschild black hole and will solve the
equations of motion for the exterior region r>RS.

Massless particles follow null geodesics (ds2¼ 0) so that
the proper time interval along the spacetime path is zero. A
convenient way to deal with the lack of a proper time is to
regard the trajectory as a function of an arbitrary affine pa-
rameter k and to view the geodesic as defined by the parallel
transport of the null tangent vector kl ¼ dxl=dk. Written in
terms of the covariant components kl, this condition reads
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dkl

dk
¼ C�

lr k�k
r: (2)

A straightforward computation using the definition of the
Christoffel symbols yields the equivalent form

dkl

dk
¼ 1

2
k�kr @lg�r: (3)

Because the metric g�r is independent of x0¼ ct as well as
x3 ¼ /, this form of the geodesic equation makes the conser-
vation of k0 and k3 evident (a dot indicates a derivative
d/dk):

k0 ¼ g00 k0 ¼ � 1� RS

r

� �
_x0 ¼ constant; (4)

k3 ¼ g33 k3 ¼ r2sin2h _/ ¼ constant: (5)

For l¼ 2, Eq. (3) can be combined with Eq. (5) to prove that
if we orient our coordinate system so that the motion starts
in the plane h¼p/2 with _h ¼ 0, then €h ¼ 0 and the subse-
quent motion must remain in the equatorial plane. The
obvious connection with the restriction coming from angular
momentum conservation in Newtonian mechanics can be
made explicit by considering the quantity ‘ ¼ r� _r, with r
and _r ¼ dr=dk ordinary 3-vectors. The geodesic equation
implies that _‘ ¼ 0, and standard arguments can be used to
conclude again that the orbit is constrained to a plane. From
now on, we shall assume that the coordinate system has been
chosen so that h¼ p/2 specifies that plane (note that this
means that k2¼ 0).

The meaning of k3 ¼ r2 _/ as proportional to the photon’s
angular momentum should be clear. The physical meaning
of k0 is easiest to identify for photons that start out at infinity,
since there the fact that this vector is null reads g�rk�kr ¼ 0,
with g the flat spacetime metric, so kl ¼ �k0ð1; k̂Þ. Because
the photon’s 4-momentum at infinity is pl ¼ ðE=cÞð1; k̂Þ, we
can always adjust the normalization of the affine parameter k
so as to have k0¼�E/c (i.e., kl¼ pl), and the conservation
of k0 then ensures that this interpretation can be maintained
for all later times. An additional advantage of this normaliza-
tion is that the meaning of k3 reverts to a more familiar form.
From Eq. (4), we have dk ¼ c2dt=E as r!1; hence

k3 !
E

c2
r2 d/

dt
(6)

in the same limit. Since p ¼ ðE=cÞk̂ ¼ ðE=c2Þv, the orbital
angular momentum of the photon is L ¼ r� p ¼ k3 ẑ. As
with k0, conservation of k3 means that the identification
k3¼L will hold for all times, and we can rewrite Eqs. (4)
and (5) as

dx0

dk
¼ E=c

1� RS=r
; (7)

d/
dk
¼ L

r2
: (8)

For photons that do not begin (or end) at infinity, we can
simply define k so that k0¼�E/c with E the energy of the
photon at, say, the point of release, so that with an appropri-
ate interpretation of E and L the above relations can always

be used. Substituting into ds2=dk2 ¼ 0 and rearranging we
find

dr

dk

� �2

þ L2

r2
1� RS

r

� �
¼ E

c

� �2

; (9)

or, writing u¼RS/r and u0 ¼ du=d/,

u0 2 þ u2ð1� uÞ ¼ ERS

Lc

� �2

: (10)

The combination of parameters on the right-hand side can be
viewed as (RS/b)2, with b¼Lc/E the impact parameter, or as
(L0/L)2, with L0¼ERS/c a characteristic angular momentum
for the system. Equation (10) will be the springboard for our
derivation of the possible photon orbits in the following sec-
tions. Note that the variable u must lie in the range 0< u< 1
for orbits in the exterior region.

III. THE EFFECTIVE POTENTIAL AND

QUALITATIVE PROPERTIES OF THE ORBITS

In this section, we briefly review, for completeness, some
well-known general properties of the orbits that can be
extracted from an analysis of the effective potential.12–15

In Eq. (9), we let

Veff ¼
RS

r

� �2

1� RS

r

� �
: (11)

This function has the simple shape shown in Fig. 1: it is
always positive for r>RS, tends to zero at infinity, reaches a
maximum at r¼ 3RS/2, at which point Veff ¼ ð2=3

ffiffiffi
3
p
Þ2, and

decreases to zero at r¼RS. The photon can reach a turning
point only if dr/dk¼ 0, i.e. only if the initial conditions are
such that Veff ¼ ðRS=bÞ2 for some r. Since the effective
potential has a maximum, we see that there are no turning
points if b < bcrit � 3

ffiffiffi
3
p

RS=2. In this situation, illustrated by
the top horizontal line in Fig. 1, a photon starting out at infin-
ity would necessarily cross the event horizon and fall into
the black hole. A photon directed outward would eventually
reach infinity. For b¼ bcrit, the photon can settle at the maxi-
mum of Veff and remain in a circular orbit at r¼ 3RS/2 (not
surprisingly, this orbit is unstable). The short horizontal line

Fig. 1. Effective potential and possible trajectories as a function of the

impact parameter b. A trajectory at b¼ bcrit to the left of the maximum of

Veff has been omitted for clarity. The dashed vertical line indicates the posi-

tion of the event horizon.
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to the left of the maximum represents a photon with b> bcrit

(the equivalent condition L > Lcrit � 3
ffiffiffi
3
p

ERS=2c is perhaps
more useful here). If this photon is initially directed away
from the event horizon, it will reach a turning point and fall
into the black hole. If it is directed toward the event horizon
it simply falls in. The bottom horizontal line depicts a photon
with b> bcrit; this photon will reach a minimum value of r
and then recede back to infinity.

Although the details of the motion are not revealed by this
approach, it is nevertheless valuable because it tells us that
the orbits are classified by the value of the impact parameter
relative to the critical impact parameter bcrit (or equivalently,
by the relationship between the angular momentum L and
the critical angular momentum Lcrit). It also shows that there
are no stable bound orbits for photons, since Veff has no min-
ima for finite r.

IV. EXACT SOLUTIONS IN TERMS OF JACOBI

ELLIPTIC FUNCTIONS

We now seek the explicit form of the solutions outlined in
the previous section. Because generic trajectories with L¼ 0
are fairly trivial—see Eq. (9)—we will assume L 6¼ 0 in all
the developments below. Our approach closely follows
Lawden’s17 method for nonrelativistic central potentials.
Lawden gives a very readable, detailed exposition of Jacobi
elliptic functions with many examples from physics. In addi-
tion, a brief summary and properties of Jacobi elliptic func-
tions in the context of the problem of a bead on a hoop
appeared recently in the pages of this journal.18 Numerous
related applications to Newtonian dynamics can be found in
Refs. 19 and 20.

As a first step, write Eq. (10) as

u0 2 ¼ f ðuÞ (12)

with

f ðuÞ ¼ ERS

Lc

� �2

þ u3 � u2: (13)

We notice immediately from Eq. (12) that f(u)� 0 and that
the solutions of f(u)¼ 0 play an important role in determin-
ing the orbits: if f(u) vanishes for some real positive value of
u, Eq. (12) indicates that we either have a circular orbit or a
turning point in a non-circular orbit. As we shall see, no
inflection points arise for photons. The reader is encouraged
at this point to repeat the qualitative analysis in Sec. III in
terms of f(u).

The roots of f(u)¼ 0 are conveniently given in terms of
the quantity

n ¼ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

; (14)

where

x ¼ 3
ffiffiffi
3
p

2

ERS

Lc
¼ bcrit

b
¼ Lcrit

L
; (15)

as

u1 ¼
1

3
1� n2=3 � n�2=3
� �

; (16)

u2 ¼
1

3
1þ e�ip=3 n2=3 þ eip=3 n�2=3
� �

; (17)

u3 ¼
1

3
1þ eip=3 n2=3 þ e�ip=3 n�2=3
� �

: (18)

The right-hand side of Eq. (12) then becomes

f ðuÞ ¼ ðu� u1Þðu� u2Þðu� u3Þ; (19)

which makes it apparent that the allowed orbits are inti-
mately related to the nature of the roots, since f cannot be
negative. For instance, one could in principle imagine a case
where u1> u2> u3> 0. This would make it possible for u to
vary between u2 and u3, proving the existence of a
non-circular bound photon orbit. To decide whether a case
like this is indeed realized (it is not!) and completely charac-
terize the motion, we need to understand the root structure of
f(u). The roots are, in turn, controlled by x, i.e., by the rela-
tionship between the impact parameter b and the critical
impact parameter bcrit (equivalently, between L and Lcrit).
Let us therefore examine the different possibilities that arise
as we vary x.

A. x 5 1 (b 5 bcrit; L 5 Lcrit)

This case is fairly simple: for x¼ 1, we have n¼ 1 and all
the roots are real:

u1 ¼ �
1

3
; (20)

u2 ¼ u3 ¼
2

3
: (21)

The orbit equation (12) reduces to

u0 2 ¼ uþ 1

3

� �
u� 2

3

� �2

: (22)

Recalling that u is positive by definition, we see that u0 ¼ 0
is a physical solution only if u¼ 2/3. This is a circular orbit
with r¼ 3RS/2 that sits at the maximum of the effective
potential in Fig. 1. Perturbing this solution by substituting
u¼ 2/3þ du into Eq. (22) shows immediately that the circu-
lar orbit is unstable.

For u0 6¼ 0, we have two possibilities, u0 ¼ 6ðu� 2=3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ 1=3

p
. The plus (minus) sign indicates outward (inward)

motion for 0< u� 2/3, while the opposite is true for
2/3� u< 1. These differential equations are not difficult to
integrate directly; we find

r ¼ RS

tanh2 ð/� aÞ=2½ � � 1=3
(23)

for 3RS/2� r<1, and

r ¼ RS

coth2 ð/� aÞ=2Þ½ � � 1=3
(24)

for RS< r� 3RS/2. In these solutions, a is an integration
constant that can be determined by imposing initial condi-
tions. Equation (23) represents an in-spiraling motion when
the initial angle /0 > a. For instance, we might start with a
photon at infinity; choosing /0 ¼ 0 for r¼1 requires
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a ¼ ln½ð
ffiffiffi
3
p
� 1Þ=ð

ffiffiffi
3
p
þ 1Þ� � �1:317. As / increases the

hyperbolic tangent approaches 1 and the photon approaches
r¼ 3RS/2 as /!1. This trajectory, which corresponds to
the horizontal line labeled b¼ bcrit in Fig. 1, is shown in Fig.
2. Out-spiraling trajectories are obtained when /0 < a, pro-
vided r> 3RS/2; they reach infinity for /! a� ln
½ð
ffiffiffi
3
p
þ 1Þ=ð

ffiffiffi
3
p
� 1Þ�. Equation (24), on the other hand, was

not included in Fig. 1 to avoid confusion. Given an initial
starting point in its region of validity and an initial angle
/0 > a, this solution gives an out-spiraling photon that ends
at r¼ 3RS/2 as /!1. An example of such an orbit starting
just outside the event horizon is provided in Fig. 3. If /0 < a
with a a large positive number, we get an in-spiraling solu-
tion that starts out near r¼ 3RS/2 and reaches r¼RS as
/! a� 2ln½ð

ffiffiffi
3
p
þ 1Þ=ð

ffiffiffi
3
p
� 1Þ�.

B. x > 1 (b < bcrit; L < Lcrit)

In this case, from Eq. (14) we see that n is again real, but
now 0< n< 1. Equation (16) tells us that the first root is also
real, with �1 < u1 < �1=3, while the other roots are com-
plex conjugates:

u2 ¼
1

6
2þ n�2=3 þ n2=3 þ i

ffiffiffi
3
p

n�2=3 � n2=3
� �� �

¼ u	3:

(25)

The orbit equation (12) can therefore be written as

u0 2 ¼ f ðuÞ ¼ ðu� u1Þðu� u2Þðu� u	2Þ

¼ ðu� u1Þ ðu� Re u2Þ2 þ ðIm u2Þ2
h i

: (26)

We conclude that no turning points exist when x> 1, since
f(u) will never vanish for physical values of u. Indeed, the
last form on the right-hand side of Eq. (26) shows that
f(u)> 0 for negative u1 and 0< u< 1, so all values of r are
allowed: RS< r<1. Thus, when b< bcrit, a photon emitted
toward the central mass will inevitably fall into the black
hole, whereas a photon emitted in the opposite direction will
end up at infinity. The qualitative agreement with the top
horizontal line in Fig. 1 is already apparent.

Equation (26) can now be transformed by standard meth-
ods into a canonical form. Following Lawden,17 we make
the substitution

w ¼ u� q

uþ p
(27)

with

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
n�4=3 þ n4=3 þ 1
� �r

þ 1

3
n�2=3 þ n2=3 � 1
� �

;

(28)

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
n�4=3 þ n4=3 þ 1
� �r

� 1

3
n�2=3 þ n2=3 � 1
� �

:

(29)

Note that p> 4/3, q> 2/3, and p> q. Substitution into Eq.
(26) leads, after some algebra, to

w0 2 ¼ 1

2
ðpþ qÞð1� w2Þð�k2 þ k2w2Þ; (30)

where

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþReu2

pþ q

s
¼ 1ffiffiffi

2
p 1þ

ffiffiffi
3
p

2

n�2=3þ n2=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�4=3þ n4=3þ 1

q
0
@

1
A

1=2

(31)

and �k
2 ¼ 1� k2. The range 0< n< 1 means that k is re-

stricted to the range ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
pp
Þ=2 < k < 1. A final

substitution

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðpþ qÞ

r
/ ¼ 1

3
n�4=3 þ n4=3 þ 1
� �	 
1=4

/ (32)

Fig. 2. An incoming trajectory with b¼ bcrit. The photon starts at infinity

and spirals inward into a circular orbit at r¼ 3RS/2.

Fig. 3. An outgoing trajectory with b¼ bcrit. The photon starts near r¼RS

and spirals outward into a circular orbit at r¼ 3RS/2.
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yields the standard form17,21,22

dw

dw
¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� w2Þð�k2 þ k2w2Þ

q
; (33)

and implies that our solution is

w ¼ 7cnðw; kÞ þ constant; (34)

where cn(w, k) is the cn Jacobi elliptic function of modulus
k. The constant can be absorbed into the definition of the ini-
tial angle, so that, solving for r from Eq. (27) we obtain the
two alternatives

r ¼ RS
1 6 cnðw; kÞ

q 7 p cnðw; kÞ : (35)

As pointed out above, for x> 1 our solutions should include
photon trajectories that could begin or end at infinity. That
Eq. (35) does allow for these possibilities is established by
recalling that p> q [see Eqs. (28) and (29)]. Hence, real sol-
utions to cn(w, k)¼6 q/p exist and r!1 for angles satisfy-
ing either condition. The meaning of the signs is easiest to
understand if we go back to the relationship (27) between w
and u and compute the derivative with respect to /:

dw

d/
¼ pþ q

ðuþ pÞ2
du

d/
: (36)

For incoming (outgoing) photons, du=d/ > 0 ðdu=d/ < 0Þ.
Since both p and q are positive, identical inequalities hold
for dw=d/. A glance at Eq. (33) then tells us that the upper
signs in Eq. (35) describe incoming photons, whereas the
lower signs apply for outgoing photons.

Large values of x are rather uninteresting because they
imply small impact parameters, and a plot of Eq. (35) simply
verifies the intuitive expectation that an incoming photon
will follow an almost straight-line trajectory into the black
hole. As a more compelling example, consider a photon
starting out at infinity and aimed toward the central mass in
such a way that the impact parameter differs only slightly
from the critical value, say, bcrit � b ¼ 10�5 bcrit so that
x� 1þ 10�5. This choice will also serve as a comparison
case to the trajectory in Fig. 2. From Eq. (14), n� 0.99554,
and the remaining parameters needed in the solution

r ¼ RS
1þ cnðw; kÞ

q� p cnðw; kÞ (37)

can be computed from the formulas above with the results
w � ð1þ 2:96� 10�6Þ/, p� 1.333342, q� 0.666669, and
k� 0.9999996. Dropping the constant in Eq. (34) leads to
the convention that the initial angle (at r¼1) is
/0 � 1:316 rad. From Eq. (37), the angle at the point where
the photon crosses the event horizon at r¼RS is
/f � 14:254 rad, and we conclude that the photon makes
slightly over two full turns (relative to the line defined by the
incoming direction) before falling into the black hole. This
trajectory is shown in Fig. 4, which suggests that for impact
parameters close to bcrit the photon tends to circle around
r¼ 3RS/2 before crossing the event horizon. The reader can
verify that this is indeed the case, either by numerical calcu-
lations with x decreasing toward 1, or analytically by taking
the limit of Eq. (37) as b ! bcrit (x ! 1) and using the

property that cn(w, 1)¼ sech w to prove that Eq. (37) reduces
to Eq. (23). The lower signs in Eq. (35) are illustrated in Fig.
5, which shows an outgoing photon emitted from a point
near the event horizon, r¼ 1.001RS, with x¼ 1.000037. The
limit as b! bcrit will in this case take us back to Eq. (24).

C. 0 < x < 1 (bcrit < b < ‘; Lcrit < L < ‘)

In this case, Eq. (14) now yields a complex n, and the
analysis of the roots, Eqs. (16)–(18), is somewhat simplified
if we put

x ¼ cos g ; (38)

Fig. 4. An incoming trajectory with b ¼ ð1� 10�5Þbcrit. The photon starts at

infinity and crosses the event horizon after approximately two turns.

Fig. 5. An outgoing trajectory with b< bcrit. The photon starts at

r¼ 1.001RS with x¼ 1.000037 and eventually reaches infinity.
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with 0< g<p/2 in order to satisfy the bounds 0< x< 1.
Given the impact parameter, g can be readily calculated
from g ¼ cos�1ð3

ffiffiffi
3
p

RS=2bÞ. In terms of g, Eq. (14)
becomes

n ¼ e�ig ; (39)

and all the roots are real numbers:

u1 ¼ �
1

3
2 cos

2g
3

� �
� 1

	 

; (40)

u2 ¼
1

3
2 cos

2gþ p
3

� �
þ 1

	 

; (41)

u3 ¼
1

3
2 cos

2g� p
3

� �
þ 1

	 

: (42)

In this form, it is easy to see that the bounds on g imply the
following bounds on the roots:

� 1

3
< u1 < 0 < u2 <

2

3
< u3 < 1; (43)

for any value of g.
We can now go back to the orbit equation (12). Since the

function f(u) on the right-hand side must be non-negative
and u1 is negative, we need the product (u� u2)(u� u3) to be
non-negative; hence the bounds (43) on the roots allow two
regions of motion for the photons: either u� u3, or
0< u� u2. In other words, either r�RS/u3 or RS/u2� r<1.
The former corresponds to trajectories of the type illustrated
by the short horizontal line to the left of the effective poten-
tial in Fig. 1, whereas the latter gives rise to trajectories of
the type indicated by the line labeled b> bcrit. Note that
r¼RS/u3 and r¼RS/u2 are turning points for these trajecto-
ries, since f(u)¼ 0 for u¼ u3 and u¼ u2.

Explicit formulas for these trajectories can be found as in
the previous section by reducing the orbit equation to a ca-
nonical form. We begin with the case r�RS/u3. Guided by
the standard integral form of some of the elliptic functions
[see Eq. (47)], we use the fact that in the present case u� u3

to introduce a sine squared by means of the substitution

u� u1 ¼
u3 � u1

sin2 v
: (44)

Equation (12) becomes

v0 2 ¼ 1

4
ðu3 � u1Þð1� k2 sin2 vÞ; (45)

with

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u1

u3 � u1

r
: (46)

Legendre’s form for the inverse sn function,17

sn�1ðsin v; kÞ ¼
ðv

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ; (47)

makes it clear that the solution to Eq. (45), when written in
terms of the angle

w ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 � u1

p
/ ; (48)

is

sin v ¼ 6 snðw� a; kÞ; (49)

where a is a constant of integration. Substituting this expres-
sion into Eq. (44) yields the solution

RS

r
¼ u1 þ

u3 � u1

sn2ðw� a; kÞ : (50)

As a concrete example, Fig. 6 shows an outgoing photon
starting out at r¼ 1.0053RS with b¼ 1.0002 bcrit (x� 0.9998,
g� 0.0200). The photon reaches a turning point at
r¼RS/u3� 1.4829 RS and falls inward across the event hori-
zon after approximately 1.5 turns. This type of trajectory is
very interesting because it implies that there are photons that
cannot escape to infinity despite the fact that they were emit-
ted outside the event horizon. The existence of such trajecto-
ries is, of course, already evident from Fig. 1, but only Eq.
(50) can provide the quantitative details of the motion.

Our last case is RS/u2� r<1. Instead of the substitution
(44), the integral form (47) and the present condition
0< u� u2 suggest that we should introduce a sine squared
by means of the alternative

u� u1 ¼ ðu2 � u1Þsin2 v: (51)

Following the same steps as above, we get

RS

r
¼ u1 þ ðu2 � u1Þ sn2ðw� a; kÞ; (52)

where the modulus k and the angle w are once again given
by Eqs. (46) and (48), respectively. This solution encom-
passes the well-known approximate deflection calculations
in the standard textbooks (see Sec. V), in addition to some
less familiar behavior that is on display in the following
figures. Figure 7 shows a photon that comes in from infin-
ity with x¼ 0.9955 (b¼ 1.0045 bcrit), loops around the cen-
tral mass once, and then leaves toward infinity in a

Fig. 6. A photon with b> bcrit starts out at r¼ 1.0053RS with x¼ 0.9998,

bounces off the effective potential, and falls into the black hole.
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direction that is essentially the same as that of the incom-
ing trajectory. A simple measurement of the deflection
angle in the geometrical-optics approximation would
therefore be unable to distinguish this trajectory from one
that experiences no deflection whatsoever, and one would
have to resort to a measurement of, e.g., time delay effects
to detect the presence of the central mass. Figure 8 is simi-
lar to the previous figure, except for the impact parameter;
here x¼ 0.9998 (b¼ 1.0002 bcrit) and we see that the pho-
ton makes an additional half turn and heads back toward
the point of emission. Our final example, Fig. 9, depicts a
photon with x¼ 0.9999966 (b¼ 1.0000034 bcrit). Even
though this photon loops more than twice around the black
hole, to a far-away observer the net deflection would
appear—provided the impact parameter is adjusted appro-
priately—indistinguishable from the value given by the
small-angle approximation. From the knowledge that the
turning points are at r¼RS/u2, the reader can verify that in
these three examples the (coordinate) distance of closest
approach is very nearly r¼ 1.5RS. No incoming photon can
get closer to the event horizon without falling into the
black hole.

V. THE DEFLECTION ANGLE

We have seen in Sec. III that, in agreement with Fig. 1,
there is only one class of trajectories that will allow photons
coming in from asymptotic infinity to approach the central
mass, and then escape to infinity again. These trajectories are
given by Eq. (52), and it is our purpose in this section to de-
velop exact formulas for the deflection angles based on that
solution.

To this end, it will prove convenient to choose the integra-
tion constant a so that / ¼ 0 at periapsis, when r¼RS/u2.
Because for real arguments the Jacobi elliptic function sn(z,
k) goes from zero at z¼ 0 to a maximum of 1 at z¼K, where
K is the complete elliptic integral of the first kind

KðkÞ ¼
ðp=2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ; (53)

and then back to zero at z¼ 2 K in a periodic fashion (the
elliptic functions are actually doubly periodic for complex
arguments), our convention can be incorporated by setting
a¼�K in Eq. (52). The solution now reads

RS

r
¼ u1 þ ðu2 � u1Þ sn2ðwþ K; kÞ: (54)

From the symmetry of the motion about / ¼ 0 it should be
clear that, if /�1 denotes the angle as the photon starts at in-
finity on its way in and /1 the angle as the photon reaches
infinity on its way out, then /�1 ¼ �/1 and the net change
in the angle must be D/ ¼ 2 /1 ¼ 2 j/�1j. Equation (54)
implies that r¼1 will be reached when

w61 þ K ¼ sn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�u1

u2 � u1

r
: (55)

The inverse sn function is multivalued, but our convention
for / restricts the solutions of Eq. (55) to the interval (0,
2 K). It follows that the solution for /�1 must be sought in
the first quarter-period (0, K), whereas /1 will be obtained
if we adopt the solution in the second quarter-period (K,
2 K). Recalling the definition (48) of w and using Eq. (55) to
solve for /�1, we arrive at the exact formula for the angular
change

Fig. 7. A photon with b> bcrit starting out at infinity with x¼ 0.9955.

Fig. 8. A photon with b> bcrit starting out at infinity with x¼ 0.9998.

Fig. 9. A photon with b> bcrit starting out at infinity with x¼ 0.9999966.
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D/ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 � u1
p K � sn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�u1

u2 � u1

r !
: (56)

We have chosen to work with sn�1 in the interval (0, K) for a
very simple practical reason: most of the expansions found
in the published literature as well as in software packages for
sn and sn�1 are given in the first quarter-period. This will
prove helpful next when we try to check our formula against
the well-known result for the deflection of light in the
weak-field limit.

In order to proceed in this direction we require approxima-
tions of all the quantities involved. The weak-field limit is
applicable when the photon remains at large distances from
the central mass at all times, i.e. when rmin¼RS/u2
 RS, or
u2� 1. Equations (38) and (41) then reveal that g� p/2 and
x � 1 are equivalent statements. There are therefore three
alternatives for the expansion of D/; we shall opt for an
expansion in powers of x because the impact parameter is
directly measurable in the flat spacetime at asymptotic infin-
ity. An expansion in powers of u2, on the other hand, would
involve the determination of a coordinate distance in the
curved spacetime near the central mass.

For small x we have

u1 ¼ �
2x

3
ffiffiffi
3
p þ 2x2

27
� 5x3

81
ffiffiffi
3
p þ O x4ð Þ; (57)

u2 ¼
2x

3
ffiffiffi
3
p þ 2x2

27
þ 5x3

81
ffiffiffi
3
p þ O x4ð Þ; (58)

u3 ¼ 1� 4x2

27
þ O x4ð Þ: (59)

Terms up to third order must be kept in the expansion of the
roots if we wish to find the lowest-order correction to the
well-known result d/ ¼ 2RS=b for the deflection angle. The
modulus k and the argument of the sn�1 in Eq. (56) are

k2 ¼ 4x

3
ffiffiffi
3
p � 8x2

27
þ 50x3

81
ffiffiffi
3
p þ O x4ð Þ; (60)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�u1

u2 � u1

r
¼ 1ffiffiffi

2
p � x

6
ffiffiffi
6
p � x2

216
ffiffiffi
2
p � 5x3

144
ffiffiffi
6
p þ O x4ð Þ:

(61)

The small-k expansions of K(k) and sn�1(z, k) can be found in
the literature,17 or developed directly from Eqs. (47) and (53):

KðkÞ ¼ p
2
þ p

8
k2 þ 9p

128
k4 þ 25p

512
k6 þ O k8ð Þ; (62)

sn�1ðz; kÞ ¼ sin�1ðzÞ þ 1

4
k2 sin�1ðzÞ � z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
ph i

þ 3

64
k4 3sin�1ðzÞ � ð3zþ 2z3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
ph i

þ 5

768
k6 15sin�1ðzÞ � ð15zþ 10z3 þ 8z5Þ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

� þ O k8ð Þ:
(63)

Combining Eqs. (57)–(63) and substituting into Eq. (56)
yields

D/ ¼ pþ 4

3
ffiffiffi
3
p xþ 5p

36
x2 þ 128

243
ffiffiffi
3
p x3 þ O x4ð Þ: (64)

The deflection relative to the straight-line motion that light
would follow in empty space is d/ ¼ D/� p. Recalling that
x ¼ 3

ffiffiffi
3
p

RS=2b, we get

d/ � 2
RS

b
þ 15p

16

RS

b

� �2

þ 16

3

RS

b

� �3

; (65)

and the first term on the right-hand side confirms that Eq.
(56) reproduces the standard first-order deflection. The sec-
ond term agrees with the approximate calculation of Epstein
and Shapiro23 within the framework of the PPN formalism
(see also Ref. 24). It is very small under solar-system condi-
tions, amounting to just 10 las for light grazing the Sun.
While this is beyond the accuracy of current observations
(about 1 mas for the ESA’s Hipparcos space astrometry mis-
sion), the ESA’s Gaia mission, launched in December 2013,
is expected to reach an accuracy of about 24 las.25 The third
term is roughly 11 orders of magnitude smaller than the first
term.

A strong-field approximation can also be derived from Eq.
(56). We leave it to the reader to show that, for x! 1,

D/ � ln
432 ð2�

ffiffiffi
3
p
Þ2

1� ð3
ffiffiffi
3
p

RS=2bÞ2

" #
: (66)

Figure 10 shows the monotonic behavior of the deflection d/
obtained from Eq. (56) as a function of the impact parameter.
As b! bcrit ¼ 3

ffiffiffi
3
p

RS=2; d/ increases without bound, indi-
cating a photon that tends to settle into a circular orbit at
r¼ 1.5RS. The solar-system result of 1:7500 is not visible in this
diagram because b/RS� 2.4� 105 for light grazing the Sun.

Photons completing one or more turns must have impact
parameters b ! bcrit. The condition D/ ¼ np, with n� 2,

Fig. 10. The deflection d/ (in radians) implied by Eq. (56) as a function of

the impact parameter b (in units of the Schwarzschild radius).
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allows us to identify photons that continue (seemingly unde-
flected) along the original direction of motion after one full
turn (n¼ 3), two full turns (n¼ 5), and so on; Fig. 7 shows
n� 3. For n even, the same condition singles out photons
that must return to the source without an additional turn
(n¼ 2), with one additional turn (n¼ 4), and so on; Fig. 8
shows n� 4. The appropriate impact parameters are, from
Eq. (66),

bn �
3
ffiffiffi
3
p

RS

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 432 ð2�

ffiffiffi
3
p
Þ2e�np

q : (67)

For half-integer n the photons exit at right angles to the origi-
nal direction of motion.

From a practical point of view, it is important to notice
that the exact formula (56) for D/ implies that a measure-
ment of the angular change can be used to infer the ratio
RS/b only. This is apparent in the approximations (65) and
(66). In the general case, it follows from the observation that
Eq. (56) is a function of the roots, Eqs. (40)–(42), of f(u)¼ 0,
which are, in turn, completely determined by
g ¼ cos�1ð3

ffiffiffi
3
p

RS=2bÞ. Therefore, the elucidation of quanti-
ties such as the impact parameter b, the distance of closest
approach rmin¼RS/u2, or the mass of the black hole require
additional experimental input. As we show next, this infor-
mation can be obtained by measuring the time delay differ-
ence between light rays.

Since this is most likely to be the case in practice, let us
assume that the source and the detector are very far away
from the black hole. From Eqs. (7), (8), and (12),

dx0 ¼ 6
R2

S

b

du

u2ð1� uÞ
ffiffiffiffiffiffiffiffiffi
f ðuÞ

p (68)

and the total time delay Dx0 is twice the delay from the
source to periapsis

Dx0 ¼ 2
R2

S

b

ðu2

0

du

u2ð1� uÞ
ffiffiffiffiffiffiffiffiffi
f ðuÞ

p : (69)

While it is possible to write down an expression for Dx0 in
terms of elliptic functions, the answer is very cumbersome
and, fortunately, unnecessary for our purposes. An experi-
mentally more useful quantity is the rate of change @Dx0/@b,
since two light rays that are known to originate simultane-
ously at the source can only differ in their time delays and
deflection angles if they have different impact parameters. A
fairly straightforward computation using Eqs. (41) and (69)
and g ¼ cos�1ð3

ffiffiffi
3
p

RS=2bÞ shows that

@Dx0

@b
¼ b

@D/
@b

; (70)

with

D/ ¼ 2

ð/ðrminÞ

0

d/ ¼ 2

ðu2

0

duffiffiffiffiffiffiffiffiffi
f ðuÞ

p (71)

the angular change of Eq. (56). Thus, if we can independ-
ently ascertain that two light rays deflected by a single black
hole were produced simultaneously at the source, Eq. (70)
tells us that the impact parameter b can be found by

computing the ratio of the observed difference in their time
delays to the difference in angular changes. A plot of d/
against b can then be constructed and the black hole mass
determined by a best fit of the angular deflection data to the
exact prediction of Eq. (56) (see Fig. 10).

As a check of Eq. (70), consider the approximation of Eq.
(64) for large impact parameters. Our formula yields

@Dx0

@b
� �2

RS

b
� 15p

8

RS

b

� �2

� 16
RS

b

� �3

; (72)

and the first term is easily verified to be in agreement with
the Shapiro time delay.

A small impact parameter (b ! bcrit) approximation fol-
lows from Eq. (66); we find the simple result

@Dx0

@b
� �3

ffiffiffi
3
p RS

db
; (73)

with db � b� bcrit such that db/bcrit� 1.

VI. CONCLUSION

In this article, we have developed a complete classification
of the orbits of massless particles around a Schwarzschild
black hole. These exact solutions led, in turn, to an exact
formula for the deflection angle. When expanded in a power
series in RS/b, our formula not only reproduces the known
first- and second-order terms but also allows for a fairly sim-
ple computation of higher-order corrections. When com-
bined with a similar exact expression for the time delay, the
deflection angle formula leads to a new method for the deter-
mination of black hole masses that does not rely on the pres-
ence of a companion. A related but different method has
been proposed by M€uller.7

As pointed out in the Introduction, a classification of the
orbits of massless particles was given by Chandrasekhar
almost exactly thirty years ago. A brief summary of the dif-
ferences between his approach and the one presented in this
paper might be helpful to the reader.

(i) Chandrasekhar uses a mathematical classification of
the orbits, that is, a classification based entirely on the
roots of a cubic in 1/r. In this paper, we approached
the problem from the point of view of the impact pa-
rameter, a familiar physical quantity that is directly
accessible in observational astronomy.

(ii) Chandrasekhar’s solutions are given in parametric
form (rðvÞ; /ðvÞ), which is convenient for some
applications. However, since v appears in the argu-
ment of the incomplete elliptic integral of the first
kind, inverting to obtain rð/Þ is not trivial (see, e.g.,
Cadez and Kostic6). The solutions in this paper
directly give rð/Þ in terms of Jacobi elliptic functions
without going through an intermediate parametric
form.

(iii) Chandrasekhar’s solutions are also functions of the
coordinate perihelion distance, a quantity that cannot
be measured directly. Our solutions provide a practi-
cal way to compute the perihelion distance using as
input the measurable impact parameter.

(iv) Chandrasekhar gives four plots that help visualize the
behavior of the solutions. Unfortunately, his three
most interesting figures are labeled either by the
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coordinate perihelion distance, or by an imaginary ec-
centricity. We hope that Figs. 2–9 in this paper, which
are based on the initial position and impact parameter
of the photon, will provide additional insights into the
qualitative behavior of the trajectories.
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