22.5 Stokes' Theorem

Let M be an oriented manifold of dimension n with boundary ∂M . We give ∂M the boundary orientation.

Theorem 22.8 (Stokes' theorem). For any (n-1)-form ω with compact support on the oriented n-dimensional manifold M,

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Proof. Choose an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ for M in which each U_{α} is diffeomorphic to either \mathbb{R}^n or \mathbb{H}^n via an orientation-preserving diffeomorphism. This is possible since any open disk is diffeomorphic to \mathbb{R}^n (see Problem 1.4). Let $\{\rho_{\alpha}\}$ be a C^{∞} partition of unity subordinate to $\{U_{\alpha}\}$. As we showed in the preceding section, the (n-1)-form $\rho_{\alpha}\omega$ has compact support in U_{α} .

Suppose Stokes' theorem holds for \mathbb{R}^n and for \mathbb{H}^n . Then it holds for all the charts U_α in our atlas, which are diffeomorphic to \mathbb{R}^n or \mathbb{H}^n . Also, note that

$$(\partial M) \cap U_{\alpha} = \partial U_{\alpha}$$
.

Therefore,

$$\begin{split} \int_{\partial M} \omega &= \int_{\partial M} \sum_{\alpha} \rho_{\alpha} \omega \qquad \left(\sum_{\alpha} \rho_{\alpha} = 1 \right) \\ &= \sum_{\alpha} \int_{\partial M} \rho_{\alpha} \omega \qquad \left(\sum_{\alpha} \rho_{\alpha} \omega \text{ is a finite sum by Problem 18.5} \right) \\ &= \sum_{\alpha} \int_{\partial U_{\alpha}} \rho_{\alpha} \omega \qquad (\text{supp } \rho_{\alpha} \omega \text{ is contained in } U_{\alpha}) \\ &= \sum_{\alpha} \int_{U_{\alpha}} d(\rho_{\alpha} \omega) \qquad (\text{Stokes' theorem for } U_{\alpha}) \\ &= \sum_{\alpha} \int_{M} d(\rho_{\alpha} \omega) \qquad (\text{supp } d(\rho_{\alpha} \omega) \subset U_{\alpha}) \\ &= \int_{M} d(\sum_{\alpha} \rho_{\alpha} \omega) \qquad (\rho_{\alpha} \omega \equiv 0 \text{ for all but finitely many } \alpha) \\ &= \int_{M} d\omega. \end{split}$$

Thus, it suffices to prove Stokes' theorem for \mathbb{R}^n and for \mathbb{H}^n . We will give a proof only for \mathbb{H}^2 , as the general case is similar.

Proof of Stokes' theorem for the upper half-plane \mathbb{H}^2 . Let x, y be the coordinates on \mathbb{H}^2 . Then the standard orientation on \mathbb{H}^2 is given by $dx \wedge dy$, and the boundary orientation on $\partial \mathbb{H}^2$ is given by dx.

The form ω is a linear combination

$$\omega = f(x, y) dx + g(x, y) dy \tag{22.7}$$

for C^{∞} functions f, g with compact support in \mathbb{H}^2 . Since the supports of f and g are compact, we may choose a real number a > 0 large enough so that the supports of f and g are contained in the interior of the square $[-a, a] \times [-a, a]$. We will use the notation f_x , f_y to denote the partial derivatives of f with respect to f and f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of the square f are contained in the interior of the square f and f are contained in the interior of the square f and f are contained in the interior of f are contained in the interior of f and f are contained in the interior of f and f are contained in the square f and f are contained in the interior of f and f are contained in the interior of f and f are contained in the square f and f are contained in the square f and f are contained in the interior of f and f are contained in the contained in the square f are contained in the contained in the square f are contained in the contained in the contained in f and f are contained in the contained in the contained in the contained in the contained in f and f are contained in f and f are contained in f and f are contained in f and

$$d\omega = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy = (g_x - f_y) dx \wedge dy,$$

and

$$\int_{\mathbb{H}^{2}} d\omega = \int_{\mathbb{H}^{2}} g_{x} |dx \, dy| - \int_{\mathbb{H}^{2}} f_{y} |dx \, dy|$$

$$= \int_{0}^{\infty} \int_{-\infty}^{\infty} g_{x} |dx \, dy| - \int_{-\infty}^{\infty} \int_{0}^{\infty} f_{y} |dy \, dx|$$

$$= \int_{0}^{a} \int_{-a}^{a} g_{x} |dx \, dy| - \int_{-a}^{a} \int_{0}^{a} f_{y} |dy \, dx|. \tag{22.8}$$

In this expression,

$$\int_{-a}^{a} g_x(x, y) dx = g(x, y) \Big]_{x=-a}^{a} = 0$$

because supp g lies in the interior of $[-a, a] \times [-a, a]$. Similarly,

$$\int_0^a f_y(x, y) \, dy = f(x, y) \Big|_{y=0}^a = -f(x, 0)$$

because f(x, a) = 0. Thus, (22.8) becomes

$$\int_{\mathbb{H}^2} d\omega = \int_{-a}^a f(x, 0) dx.$$

On the other hand, $\partial \mathbb{H}^2$ is the x-axis and dy = 0 on $\partial \mathbb{H}^2$. It follows from (22.7) that $\omega = f(x,0) dx$ when restricted to $\partial \mathbb{H}^2$ and

$$\int_{\partial \mathbb{H}^2} \omega = \int_{-a}^a f(x,0) \, dx.$$

This proves Stokes' theorem for the upper half-plane.