Homework 4

Exercise 1. Let $T \in \mathscr{D}'(\Omega)$ and $\beta \in \mathbb{N}_0^n$. Define $\partial^{\beta}T : \mathscr{D}(\Omega) \to \mathbb{C}$ by

 $(\partial^{\beta}T)(\phi) = (-1)^{|\beta|}T(\partial^{\beta}\phi), \qquad \phi \in \mathscr{D}(\Omega).$

Show that $\partial^{\beta}T$ is a distribution in $\mathscr{D}'(\Omega)$.

Exercise 2. Let $a \in \mathscr{C}^{\infty}(\mathbb{R})$ e $T \in \mathscr{D}'(\mathbb{R})$. Show that

$$(aT)' = a'T + aT$$

as distributions.

Hint: Apply both sides to an arbitrary test function ϕ .

Exercise 3. Let $g(x) = e^x$ and $\mathbb{R}_+ = (0, +\infty)$. Find a linear map

$$T \mapsto T \circ g : \mathscr{D}'(\mathbb{R}_+) \to \mathscr{D}'(\mathbb{R})$$

such that $T_f \circ g = T_{f \circ g}$ for every regular distribution $T_f \in \mathscr{D}'(\mathbb{R}_+)$. **Hint:** Show that one can write $T_{f \circ g}(\phi)$ in the form $T_f(A(\phi))$ with a suitable operator A.

Exercise 4. Prove Theorem 1.14. **Hint:** Proceed similarly to Example 1.13, writing $\int_{-\infty}^{+\infty}$ as the sum of $\int_{-\infty}^{x_0}$ and $\int_{x_0}^{+\infty}$.

Exercise 5. On \mathbb{R} consider the first order differential operator A defined by

Ay(x) = ay'(x) + by(x) (a, b arbitrary fixed numbers with $a \neq 0$).

Let $v \in \mathscr{C}^{\infty}(\mathbb{R})$ be the unique function with av' + bv = 0 on \mathbb{R} and v(0) = 1/a. Use Theorem 1.14 for showing that the regular distribution T_u with density

$$u(x) = \begin{cases} v(x) & : x > 0\\ 0 & : x < 0 \end{cases}$$

is a fundamental solution of A, i.e., $AT_u = \delta$. Determine v(x) explicitly.