Homework 4

Exercise 1. Let $T \in \mathcal{D}'(\Omega)$ and $\beta \in \mathbb{N}_0^n$. Define $\partial^{\beta}T : \mathcal{D}(\Omega) \to \mathbb{C}$ by

$$
(\partial^{\beta}T)(\phi) = (-1)^{|\beta|}T(\partial^{\beta}\phi), \qquad \phi \in \mathscr{D}(\Omega).
$$

Show that $\partial^{\beta}T$ is a distribution in $\mathscr{D}'(\Omega)$.

Exercise 2. Let $a \in \mathscr{C}^{\infty}(\mathbb{R})$ e $T \in \mathscr{D}'(\mathbb{R})$. Show that

$$
(aT)' = a'T + aT'
$$

as distributions.

Hint: Apply both sides to an arbitrary test function ϕ .

Exercise 3. Let $g(x) = e^x$ and $\mathbb{R}_+ = (0, +\infty)$. Find a linear map

$$
T \mapsto T \circ g : \mathscr{D}'(\mathbb{R}_+) \to \mathscr{D}'(\mathbb{R})
$$

such that $T_f \circ g = T_{f \circ g}$ for every regular distribution $T_f \in \mathscr{D}'(\mathbb{R}_+).$ **Hint:** Show that one can write $T_{f \circ g}(\phi)$ in the form $T_f(A(\phi))$ with a suitable operator A.

Exercise 4. Prove Theorem 1.14. $\frac{1}{2}$ Hint: Proceed similarly to Example 1.13, writing $\int_{0}^{+\infty}$ −∞ as the sum of $\int_{0}^{x_0}$ −∞ and $\int^{+\infty}$ $\overline{x_0}$.

Exercise 5. On $\mathbb R$ consider the first order differential operator A defined by

 $Ay(x) = ay'(x) + by(x)$ (a, b arbitrary fixed numbers with $a \neq 0$).

Let $v \in \mathscr{C}^{\infty}(\mathbb{R})$ be the unique function with $av' + bv = 0$ on \mathbb{R} and $v(0) = 1/a$. Use Theorem 1.14 for showing that the regular distribution T_u with density

$$
u(x) = \begin{cases} v(x) & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}
$$

is a fundamental solution of A, i.e., $AT_u = \delta$. Determine $v(x)$ explicitely.