Analysis (SDS – UNITO, 23/24) Weekly mix #5

S. Ivan Trapasso

Exercise 1

Consider the set

$$C = \{ f \in L^2[-1,1] : f(t) = f(-t) \text{ a.e. in } [-1,1] \}.$$

- (a) Prove that C is a closed linear subspace of $L^{2}[-1,1]$.
- (b) Determine the explicit form of the orthogonal projection $P_C: L^2[-1, 1] \to C$.
- (c) Determine C^{\perp} .
- (d) Compute the distance between $f(t) = t^2 + 1 + \sin(2\pi t)$ and C.

Exercise 2

Let H be a Hilbert space and $\emptyset \neq V \subsetneq H$ be a closed linear subspace of H. Let P_V be the corresponding orthogonal projection.

- (a) Find the eigenvalues of P_V and determine the spectrum.
- (b) Discuss sufficient conditions on V implying that P_V is a compact operator.

Exercise 3

Let H be a Hilbert space and $(e_n)_{n \in \mathbb{N}}$ be an orthonormal basis of H. Let $T \in \mathcal{B}(H)$ be such that

$$\sum_{n\in\mathbb{N}} \|Te_n\|_H^2 < +\infty.$$

Prove that T is a compact operator.

Exercise 4 (Spectral properties of the shifts)

Let $x = (x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$ and consider the operators $S_r, S_l \in \mathcal{B}(\ell^2(\mathbb{N}))$ defined by

$$S_r x = S_r(x_1, x_2, \dots, x_n, \dots) \coloneqq (0, x_1, x_2, \dots, x_{n-1}, \dots)$$

 $S_l x = S_l(x_1, x_2, \dots, x_n, \dots) \coloneqq (x_2, x_3, \dots, x_{n+1}, \dots).$

(a) Compute the norms $||S_r||_{\mathcal{B}}$ and $||S_l||_{\mathcal{B}}$.

- (b) Discuss whether S_r, S_l are compact operators.
- (c) Find $EV(S_r)$ and $\sigma(S_r)$. Determine the eigenspaces, if any.
- (d) Find $EV(S_l)$ and $\sigma(S_l)$. Determine the eigenspaces, if any.
- (e) Find the adjoint operators S_r^* and S_l^* .

Exercise 5

Consider the operator

$$T: L^2(0,1) \to L^2(0,1), \qquad Tf(x) \coloneqq \int_0^x f(t)dt.$$

- (a) Prove that $T \in \mathcal{B}(L^2(0,1))$.
- (b) Prove that T is a compact operator.
- (c) Find EV(T) and $\sigma(T)$.
- (d) Find the adjoint operator T^* .