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Introduction

A new book in logic? Do we need another logic textbook? Considering the
enormous amount of time and energy invested, the author of a math textbook
in any subject X may not give the most unbiased answer to the question “do
we need a new textbook in X?”. Yet I feel that there are sound reasons to
justify the existence of a book like this one, so let me elaborate a bit.

This book is aimed at advanced undergraduates or beginning graduate
students in mathematics that want to learn the basics of the subject. It is
different from most other logic textbooks in that it is geared towards the
general mathematical public, rather than towards would-be logicians. In
the first chapters we strive to present applications to various problems in
mathematics, rather than proving results in logic, while this approach is
reversed in the last chapters.

For the reader

These notes grew out of several logic courses that I have taught at my
University for the last decade. Keep in mind that this is work-in-progress
so some parts are reasonably polished, while other are still in a rough form.
Those sections that can (should) be skipped on first read are marked with an
asterisk.

Clearly these notes owe a great debt to many classic logic textbooks, like
the ones by Shoenfield, Mendelson, Hinman, . . .
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Feedback

I greatly appreciate any feed-back, criticism, suggestions, etc. If you want
to point-out a typo, or a more substantial mathematical shortcoming, you
should send me back an annotated .pfd file, rather than a message saying that
“on page n, line k, the symbol such-and-such. . . ” as the incriminated part
might have moved somewhere else, or might have been removed completely.

Change history

Every now and then I will post a new version of this book. Here I list all the
main changes for each release—obviously some typos are removed (and some
other are, unfortunately, added) but there is no point in referring to each of
them.

July 16, 2019: initial release.
: the old Chapter III is split into two chapters. The content of the current

Chapters I–IV has been revised the most.



Preliminaries

We collect here some of the basic notions that the reader is supposed to know.

Sets and functions

By x ∈ A we mean that the object x belongs to the set A, or is an element
of A. The collection of all x that enjoy property P is denoted by {x | P (x)}.
If every element of A belongs to B then A is contained in B, and we write
A ⊆ B; this does not forbid that A and B be the same set—if instead we
want that A and B be distinct we write A ⊂ B. The empty set is denoted
by ∅. The set of all subsets of A is P(A)

def
= {X | X ⊆ A} and it is calle

the powerset of A.
The union of two sets A and B is the set A ∪B of the objects that are

in A or in B, the intersection is the set A ∩ B of the objects that are in
both A and B, the difference is the set A \B of the objects that are in A
but not in B, the symmetric difference is the set A△B of the objects
that are in A ∪ B but not in A ∩ B. The intersection of the family of
sets {Ai | i ∈ I}, written as

⋂
i∈I Ai or also

⋂
{Ai | i ∈ I} is the collection

of all objects that belong to every Ai; analogously, the union of the family
{Ai | i ∈ I} is the set of all items that belong to some Ai, and it is denoted
by
⋃

i∈I Ai or by
⋃
{Ai | i ∈ I}. The cartesian product of two sets A and

B is the set A × B of all ordered pairs (a, b) with a ∈ A and b ∈ B. The
disjoint union A⊎B of two sets A, B is ({0}×A)∪ ({1}×B). The disjoint
union ⊎i∈IAi of the sets Ai is

⋃
i∈I({i} ×Ai).

A (binary) relation is a collection of ordered pairs; if f ⊆ A×B is a
relation such that for every a ∈ A there is a unique b ∈ B such that (a, b) ∈ f ,
we shall say that f is a function from A to B, and we shall write f : A→ B.

ix



x Preliminaries

Suppose f : A → B. If a ∈ A, the unique b ∈ B such that (a, b) ∈ f is
denoted by f(a), and ran(f) is the set of all b ∈ B such that b = f(a) for some
a ∈ A. If A0 ⊆ A we write f ↾ A0 for the restriction of f to the set A0, and
f [A0]

def
= {f(x) | x ∈ A0}. If B0 ⊆ B, then f−1[B0]

def
= {x ∈ A | f(x) ∈ B0}.

A partial function from A to B is an f : A′ → B with A′ ⊆ A.
When we want to stress that a (partial) function f from A to B is a sub-
set of the cartesian product A × B, we will consider its graph Gr(f) =
{(a, b) ∈ A×B | (a, b) ∈ f}; in any case, there is no difference between a
function and its graph.

The set of all functions from A to B is denoted by AB or by BA. (The
two notations are equivalent: the former is useful in set theory, but the latter
is more common in other areas of mathematics.) We say that f ∈ BA is
injective if f(a1) ̸= f(a2) for all choices of distinct a1, a2 ∈ A; f is surjective if
for all b ∈ B there is an a ∈ A such that f(a) = b; f is bijective if it is injective
and surjective. Sometimes the notation f : A ↣ B will be used to say that
f is injective, while f : A ↠ B means that it is surjective. The identity
function on a set A is the map idA : A → A defined by idA(a) = a for all
a ∈ A. If B ⊆ A, the characteristic function of B in A is χA

B : A→ {0, 1}
defined by χA

B(x) = 1 if and only if x ∈ B.
The elements of A0×A1 can be identified with the functions with domain

{0, 1} and such that f(i) ∈ Ai. This suggests to define the cartesian
product of a family of sets Ai, with i ∈ I, as

"i∈IAi = {f | f is a function, dom(f) = I, and ∀i ∈ I (f(i) ∈ Ai)}.

If E is an equivalence relation on a set A, then [a]E
def
= {b ∈ A |

(a, b) ∈ E} is the equivalence class of the element a ∈ A; when E is clear
from the context, we simply write [a]. The quotient set A/E is the set of
all [a]E with a ∈ A.

The notation for the number systems is standard: N is the set of all
natural numbers (including 0), Z is the set of all integers (positive, negative,
or null), Q is the set of all rational numbers, R is the set of all real numbers, C
is the set of all complex numbers. The symbol R+ is for the set of all positive
reals, that is strictly bigger than 0; similarly R− is for the set of all negative
reals, strictly smaller than 0. More generally, let R<a = {x ∈ R | x < a} and
R>a = {x ∈ R | x > a}, and similarly when < is replaced by ≤. A similar
notational convention applies when R is replaced by N, Z or Q. If a, b, c are
integers, we shall say that a and b are congruent modulo c, in symbols a ≡ b
mod c, if a− b is divisible by c. The ring of the integers modulo c is denoted
by Z/cZ or by Z(c).

A set is finite if it is in bijection with the set {0, . . . , n− 1} for some
n ∈ N; when n = 0 then the set is ∅, the empty set. A set which is not finite
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is said to be infinite. A set is countable if it is finite, or in bijection with
N, otherwise it is uncountable.

Algebra

A semigroup is a set S ̸= ∅ with an associative binary operation ∗. If a
semigroup S has an element e such that a∗e = e∗a = a for all a ∈ S we have
a monoid; the element e is unique, and it is called the neutral element and
it is denoted by 1. A group is a monoid where every element has an inverse,
that is for any x ∈ S there is y ∈ S such that x ∗ y = y ∗ x = 1 . The inverse
of x is unique and it denoted by x−1. A group is commutative or abelian
if ∗ is commutative; in this case we often adopt the additive notation + for
the binary operation, −x is for the inverse (the opposite) and 0 is the neutral
element.

A rng is a set R ̸= ∅ with two binary operations + and · such that: (R,+)
is an abelian group, (R, ·) is a semigroup, and multiplication is distributive
with respect to addition. If (R, ·) is a monoid we say that R is a ring.1 A rng
is commutative if the operation · is commutative. An integral domain
is a commutative rng without zero-divisors, that is if x · y = 0 then x = 0
or y = 0. A skew-field or division ring is a ring R such that 0 ̸= 1 and
such that every non-zero element has an inverse. A commutative skew-field
is a field. The characteristic of a ring is the smallest n > 0 such that
1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0, if such an n exists, otherwise we say that the characteristic

is 0. In the case of integral domains (and in particular in the case of fields),
if the characteristic is n > 0 then n is prime. If R is a rng, then R[X] is the
rng of polynomials with coefficients in R. A field k is algebraically closed
if every non-zero polynomial of k[X] has a root in k. A complex number
is algebraic if it is the root of a polynomial of Q[X]—equivalently, it is
root of a polynomial of Z[X]. A complex number that it is not algebraic is
transcendental. The set of algebraic numbers is an algebraically closed
field Q, and it is the smallest algebraically closed field of characteristic zero.

A vector space on a field k is an abelian group ⟨V,+,0⟩ together with
a map k × V → V , (r,v) 7→ rv called scalar multiplication, satisfying the
following identities, for all r, s ∈ k and all u,v ∈ V :

r(u+ v) = ru+ rv (r + s)u = ru+ su

(r · s)u = r(su) 1ku = u.

Elements of V are called vectors, elements of k are called scalars. A set X ⊆
V is linearly dependent if there are v1, . . . ,vn ∈ X and scalars r1, . . . , rn ∈ k
such that (r1, . . . , rn) ̸= (0k, . . . , 0k) and

∑n
i=1 rivi = 0. Otherwise X is

1Many books use ring and unitary ring instead of rng and ring.
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linearly independent. We say that X ⊆ V is a set of generators for V , if
every v ∈ V can be written as linear combination v =

∑n
i=1 rivi, for some

v1, . . . ,vn ∈ X and r1, . . . , rn ∈ k. A vector space is finitely generated if
it has a finite set of generators. A basis of a vector space V is a linearly
independent set of generators of V .

Topology

A topological space is a set X endowed with a family T ⊆P(X) containing
∅ and X, and closed under finite intersections and arbitrary unions. The
family T is called a topology and its elements are called open sets. If
x ∈ V ⊆ X and if there is U ∈ T such that x ∈ U ⊆ V then V is a
neighborhood of x. A topological space is first-countable if every x ∈ X
has a neighborhood system {Vn | n ∈ N} such that every neighborhood of x
contains a Vn. We say that x ∈ X is an isolated point if {x} is open. The
complement of an open set is closed. The spaces X where the only sets that
are simultaneously open and closed are ∅ and X are said to be connected;
otherwise they are disconnected.

For Y ⊆ X the interior of Y and the closure of Y are, respectively, the
largest open set contained in Y and the smallest closed set containing Y , that
is Int(Y ) =

⋃
{U ⊆ Y | U ∈ T} and Cl(Y ) =

⋂
{C ⊇ Y | X \ C ∈ T}. The

frontier of Y is Fr(Y ) = Cl(Y ) \ Int(Y ). We say that Y ⊆ X is dense in X
if Cl(Y ) = X. A space admitting a countable dense subset is separable.

The topology induced by X on Y ⊆ X is {Y ∩ U | U ∈ T} and Y
endowed with this topology is a subspace of X. A map between topological
spaces is continuous if the preimage of an open set is open—the inclusion
map between a subspace and a space is continuous.

We say that B ⊆ P(X) is a base or a basis for a topology T on
X if every U ∈ T is of the form

⋃
A for some A ⊆ B. For all S ⊆ P(X)

the family S∩ = {A1 ∩ · · · ∩An | A1, . . . , An ∈ S} ∪ {X} is a base for the
topology Ŝ = {

⋃
i∈I Bi | {Bi | i ∈ I} ⊆ S∩} on X, and we say that S is a

subbase for this topology. If a topological space has a countable base then
it is second countable.

A topological space (X,T) is T0 if distinct points have distinct neighbor-
hood families, that is if x ̸= y then either there is an U ∈ T such that x ∈ U
and y /∈ U or else there is V ∈ T such that y ∈ V and x /∈ V . A topological
space is T1 if distinct points can be separated by open sets, that is if x ≠ y
there are U, V ∈ T such that x ∈ U , y /∈ U , y ∈ V , and x /∈ V ; equivalently:
{x} is closed, for all x ∈ X. A topological space is T2 or Hausdorff if
distinct points can be separated by disjoint open sets, that is if x ≠ y then
there are U, V ∈ T such that x ∈ U and y ∈ V and U ∩ V = ∅. A topological
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space is regular if a point x and a closed set C can be separated by disjoint
open sets, that is if x /∈ C then there are U, V ∈ T such that x ∈ U and
C ⊆ V and U ∩ V = ∅; equivalently: for all x ∈ U with U open, there is an
open set V such that x ∈ V ⊆ Cl(V ) ⊆ U . A topological space is T3 if it is
regular and T2 or, equivalently, regular and T0.

Let X be a topological space. A open covering of Y ⊆ X is a family
{Ai | i ∈ I} of open sets such that Y ⊆

⋃
i∈I Ai. A topological space

X is compact if every open covering {Ai | i ∈ I} of X admits a finite
subcovering, that is there is a finite I0 ⊆ I such that X =

⋃
i∈I0 Ai;

equivalently, X is compact if every family C = {Ci | i ∈ I} of closed subsets
of X has the finite intersection property, that is if Ci1 ∩ · · · ∩ Cin ̸= ∅
for all i1, . . . , in ∈ I, then

⋂
i∈I Ci ̸= ∅. If B is a base for the topology of X,

then X is compact if and only if every covering consisting of sets in B has a
finite subcovering.

A metric space is a set X endowed with a distance or metric, that is
a function d : X ×X → [0;+∞) satisfying: d(x, y) = 0 ⇔ x = y, d(x, y) =
d(y, x) and d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X. If the first bi-
implication is weakened to d(x, x) = 0, the resulting function is a pseudo-
distance or pseudo-metric, and the resulting object is a pseudo-metric
space. If (X, d) is a pseudo-metric space, then (X̃, d̃) is a metric space,
where X̃ = X/∼ and ∼ is the equivalence relation x ∼ y ⇔ d(x, y) = 0, and
d̃([x], [y]) = d(x, y). Given a (pseudo-)metric space, the open ball with
center x ∈ X and radius r > 0 is the set B(x; r) = {y ∈ X | d(x, y) < r},
while the closed ball B(x; r)cl has the same definition, with ≤ in place of <.

A pseudo-metric space is a topological space, taking as a subbase the
family of open balls. The topology thus obtained is T0 if and only if d is a
metric, and in this case the space is Hausdorff, T3, and first countable. A
separable metric space is second countable: if D is a countable dense subset,
take {B(x; q) | x ∈ D ∧ q ∈ Q+} as a base.

A sequence (xn)n in a metric space (X, d) converges to x ∈ X if for every
ε > 0 there is N such that for all n > N we have that d(xn, x) < ε. We say
that (xn)n is a Cauchy sequence if for every ε > 0 there is N such that
for all n,m > N we have that d(xn, xm) < ε. A metric space is complete
if every Cauchy sequence converges in X, and in this case the metric is
complete.





Chapter I

Introduction to
mathematical logic

The purpose of this chapter is to familiarize the reader with the basic aspects
of mathematical logic, using examples from various parts of mathematics.
The focus is not so much on proving theorems, but rather on how logic can
be used to formalize various problems, and how this formalization process
helps us to better understand the mathematical problem at hand. In some
sense, the present chapter provides the basic training that will handsomely
reward the student in the later chapters—the reader who feels already at ease
with the arguments presented here, can safely jump to the later chapters.

1. Axiomatic systems

Mathematics differs from other scientific disciplines in the method employed
to establish new results. It is neither sufficient nor, in most cases, necessary
to conduct measurements, experiments, or simulations. No experiment
can decide whether

√
2 is a rational number, since both Q and R \ Q are

dense in the real line.1 To assert that
√
2 is not a rational number, it is

mandatory to show that there are no non-zero integers n and m such that
n2 = 2m2. Sometimes examples provide hints about the truth or falsehood of
a conjecture. For example, it has been verified that in the decimal expansion
of π up to 3×107 decimals, the digits, the pairs of digits, the triplets of digits,
etc. are uniformly distributed [Bai88], and these computations corroborate
the conjecture that π is a normal number, that is every string of digits of
length k appears with frequency 10−k, in the limit. But these calculations

1See the observations in [Sha03, pp. 6–7].
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2 I. Introduction to mathematical logic

cannot guarantee the validity of the (still open) conjecture that π is normal.
In some cases, numerical evidence can be misleading.

• Fermat conjectured that all numbers of the form 22
n
+ 1 were prime, after

having checked this for n ≤ 4, but Euler refuted this conjecture by showing
that 22

5
+ 1 = 4292967297 = 641× 6700417.

• The property P (n) defined by “n2 − 79n + 1601 is prime” is true for
1 ≤ n < 80 but false for n = 80 since 802 − 79× 80 + 1601 = 1681 = 412.
• Pell’s equation is x2−ky2 = 1, with k > 1 a natural number. By a theorem

of Lagrange’s this equation has infinitely many integer solutions if k is not
a square. In particular there are infinitely many n > 0 such that 991n2 +1
is a square, yet the first such integer is 12055735790331359447442538767 ≈
1029. Thus numerical evidence would have suggested the false conjecture
“991n2 + 1 is never a square, for all n > 0”.
• Littlewood proved that π(x)− Li(x) changes sign infinitely often, where
π(x) is the number of primes ≤ x and Li(x) =

∫ x
2

dt
ln(t) . But numerical

evidence suggests that π(x) < Li(x) for all x; in fact the least x such that
π(x) > Li(x) is huge—it is conjectured that the size of such x is 10316.

The preceding examples, drawn from number theory, show that numerical
evidence can be of little use in pure mathematics. The next two examples,
drawn from combinatorics, further corroborate this point.2

Example 1.1. The pure base b representation of n, where b, n > 1 are
natural numbers, is defined as follows. First write n as sum of powers of
b, then repeat this procedure for the exponents, and the exponents of the
exponents, . . . until all digits in the representation are less or equal than b.
For example the pure base b representation of n = 1931 when b = 2 is

1931 = 22
2+1+2 + 22

2+1+1 + 22
2+1

+ 22
2+2+1 + 22+1 + 2 + 1

Let Fb(n) be the number so defined: represent n in pure base b, replace
every b in such representation with b+ 1, compute the resulting number and
subtract 1. For each n define the sequence Gk(n) as follows: G0(n) = n and
Gk+1 = Fk+2(Gk(n)). Thus Gk(n) = Fk+1(Fk(. . . F2(n) . . . )). The numbers
Gk(n) grow extremely quickly as k increases, even when n is very small,
so one would expect that the sequence (Gk(n))k diverges to infinity for all
sufficiently large n. Yet Goodstein proved that for any n there is a k such
that Gk(n) = 0. The function g : N → N assigning to each n the least k
such that Gk(n) = 0 grows at an incredible speed, dwarfing any function
encountered in ordinary mathematics.

Example 1.2. Consider the following game, in which Hercules battles against
the hydra, a multiple-headed serpentine monster with an amazing regenerating

2Examples 1.1 and 1.2 will be studied in Section 13.J.
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Figure 1. A hydra

property: each time a head is chopped off, several new heads spring from
the wounded neck. Mathematically a hydra is a finite tree (Section 3.D.4),
i.e. a collection of segments each joining two nodes, such that each node is
connected by a unique path to a specific node called the root; the nodes
other than the root that are connected to a single node are called heads. (See
Figure 1, where the root is depicted by , a node by , a head by .) The
rules of the game are as follows. At stage n ≥ 1 Hercules chops off a head
of the hydra. If the head was immediately above the root, then the hydra
suffers in silence. If instead the head is immediately above a node x that is
not the root, then from the node immediately below x the hydra sprouts n
brand new copies of the part of the hydra above it. Here are the first three
rounds of a run of the game starting with the hydra of Figure 1—the head
that Hercules cuts at a given round is denoted by † and the new nodes and
heads that the hydra generates after the amputation are drawn in light grey
colour and dotted lines.

†

† †

The remarkable fact is that no matter how big the original hydra is, Hercules
will end up killing it, regardless of the strategy he follows.

The main activity of a mathematician is to prove theorems. A proof is an
argument that allows us to reach a desired conclusion, starting from certain
initial assumptions. The initial assumptions are called axioms or postulates,
and are different, depending on the area of mathematics considered. The
results obtained by means of proofs are called theorems and they must
be deduced in a rigorous fashion from the axioms, without any appeal to
extraneous principles. For example, we cannot establish a new result in
Euclidean geometry by using arguments based on our geometric intuition, or
on results from other parts of mathematics. Proofs are strings of statements,
each one being an axiom, or being obtained from preceding statements using
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the logical axioms and rules. These axioms and rules, as it will be
explained in Section 6.A and more extensively in Chapter VII, are the same
for all mathematical theories.

Let us see some examples of axiomatization in mathematics.
Geometry. Euclid in the III century B.C. developed geometry starting from
some undefined notions (point, line, plane, etc.) and by five axioms, known
as Euclid’s postulates. This axiomatic system, known as Euclidean geometry,
was presented by Euclid in his monumental opus, the Elements. For many
centuries this book was the epitome of mathematical rigor, and it was only
in the nineteenth century that its logical underpinnings were placed under
scrutiny by Hilbert.
Arithmetic and Analysis. In the second half of the nineteenth century, the
foundations of analysis were recast in rigorous form. This endeavor, known
as arithmetization of analysis, culminated with the work of Weierstraß.
The elementary properties of natural numbers can be derived from axioms
introduced by Dedekind and Peano at the end of the nineteenth century.
This axiomatic system is known as Peano arithmetic (Section 12.D).
Sets. Also set theory, invented by Dedekind and Cantor at the end of the
nineteenth century, can (in fact: must) be developed from axioms. The most
common among the axiomatizations of set theory is due to Zermelo and
Frænkel.
Algebra and Topology. The axiomatic method is a staple feature of algebra
and topology—groups, rings, fields, and topological spaces are defined from
axioms and their properties are proved from general principles, rather than
by looking at specific examples.

The examples above are quite different, but can be partitioned into two
big camps:

• classical axiomatizations (Euclidean geometry, Peano’s arithmetic, and
axiomatic set theory) aiming to describe certain specific mathematical
entities (the plane and the three dimensional space, the natural numbers,
the universe of sets);

• modern axiomatizations (algebraic and topological structures, . . . ) aiming
to characterize families of objects up to isomorphism.

This distinction is only apparent, since every first-order theory3 belongs to
the second group, that is to say: none of the axiomatic theories described
above can capture up to isomorphism a single mathematical structure.

3First-order theories will be officially defined on page 57.
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2. Symbols

If you browse through a calculus book you will see different kind of symbols.

• The letters x, y, z, . . . usually denote arbitrary real numbers.
• Other letters denote specific real numbers—for example π = 3.14159 . . .

and e = 2.71828 . . ..
• The symbols +, · denote the operations of sum and product, and these are

specific functions from pairs of reals to reals.
• The symbol < denotes the order relation, that is a specific subset of R2.

The meaning of symbols may vary from one subject to another—e.g. in an
algebra book the symbol + is typically used to denote the operation in an
abelian group, and the symbol 1 is used for the identity in a group, written in
a multiplicative notation. The only symbol whose meaning everybody agrees
upon is the equality symbol = stating that the object written on the lefthand
side coincides with the one written on the righthand side.

There are certain expressions that occur in every mathematical text:

“not” “or” “and” “if . . . then . . . ” “. . . if and only if . . . ”

and

“for every x . . . ” “there is an x such that . . . ”.

In order to state in a succinct manner the above expressions, we introduce
the logical connectives

¬ ∨ ∧ ⇒ ⇔

and the quantifiers
∀ ∃.

Connectives and quantifiers are called logical constants, and have the
following meaning.

• ¬ is the negation and it is used to assert the contrary of the statement it
is applied to.
• ∨ is the disjunction and corresponds to the inclusive or: this or that or

maybe both.
• ∧ is the conjunction, and it is used to assert that two facts holds simulta-

neously. Also the particles “but” and “whereas” are conjunctions, to which
we attach an adversative connotation. Yet, in mathematics the meaning of
“A but B” or of “A whereas B” is the same as “A and B” and hence they
are rendered as “A ∧ B”.
• ⇒ is the implication corresponding to the expression “if. . . then . . . ”.

When in mathematics we state that “if A then B”, we are stating that the
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only problematic case is when the premise A holds while the consequence B
does not hold. In particular, if the premise is false, then the implication is
arguably true. For example, if in a calculus book we see (x > 0)⇒ (x = y2

for some y > 0), we agree that this implication holds, since either x is
positive and hence it has a positive square root, or else it is negative or
null and the result holds vacuously. An implication does not entail any
causality between the premise and the consequence—the only meaning of
A ⇒ B is that it cannot be the case that A holds but B does not. The
expressions “whenever A then B” or “in order to have A it is necessary that
B” mean that “if A then B” and hence will be written as A ⇒ B, while
“in order to have A it is sufficient to have B” means that A holds when
B holds, that is B ⇒ A. Let us stress that an implication A ⇒ B and
its converse B ⇒ A have completely different meanings, although math
freshmen tend to confuse the two notions.

• ⇔ is the bi-implication and corresponds to the expression “if and only if”.
When asserting that “A if and only if B” we mean that “if A then B, and
if B then A”. Often in mathematics “A if and only if B” is rendered, in a
more ornate fashion, by “a necessary and sufficient condition for A, is B”.

• ∃ is the existential quantifier. The expression ∃xA reads: “there is an x
such that A”, or “A holds, for some x” and states that there is at least one
item that enjoys property A.

• ∀ is the universal quantifier. The expression ∀xA reads: “for every x
property A holds”, or “A holds, for all x” and states that every item enjoys
property A.

Remark 2.1. Our notation is fairly standard, but far from being universally
accepted. While the disjunction is almost always denoted by ∨, it is not
uncommon to see & and ∼ for conjunction and negation. The symbols→ and
↔ are common choices for the implication and bi-implication—the rationale
for us to adopt ⇒ (and hence ⇔) is that → is already used for the functional
notation. Quantifiers are almost always denoted by ∀ and ∃, but ! and

!

are sometimes used. Older books employ ⊃ and ≡ for the implication and
bi-implication, and (x) and ∃x instead of ∀x and ∃x, but it is safe to say that
these notations are quite obsolete.

2.A. The meaning of logical constants. It is useful to introduce a specific
notation to discuss logical rules. The expression

A1 A2 . . . An

B

says that “B follows from A1, . . . ,An”.
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2.A.1. Connectives. In order to show that A ∧ B it is enough to prove both
A and B, in symbols

A B
A ∧ B

.

Conversely, from A ∧ B we can infer both A and B, that is

(2.1) A ∧ B
A and A ∧ B

B .

The connective ∧ is commutative, in the sense that asserting A∧B is equivalent
to asserting B ∧A: if we assume A ∧ B first we infer B and then A, whence
B ∧ A; similarly B ∧ A entails A ∧ B. It is associative, as the meaning of
(A ∧ B) ∧ C is the same as A ∧ (B ∧ C).

Given A, we can weaken our result by asserting A ∨ B, with B arbitrary.
Similarly, from B one gets A ∨ B, for any A. Therefore

A
A ∨ B

and B
A ∨ B

.

From A ∨ B one cannot conclude that A or that B (Example 2.2). On the
other hand, knowing A ∨ B and the negation of either A or B, allows us to
deduce the other statement, that is

(2.2) A ∨ B ¬A
B and A ∨ B ¬B

A .

The connective ∨ is commutative and associative, meaning that A ∨ B is like
saying B ∨A, and that (A ∨ B) ∨ C is like saying A ∨ (B ∨ C).

Suppose A holds: we cannot infer ¬A, otherwise a contradiction would
arise, so we conclude that ¬¬A holds. Conversely assume ¬¬A: if A does
not hold, then ¬A would follow, whence a contradiction. Summarizing: the
rule of double negation states that from A we deduce ¬¬A, and conversely:

(2.3) A
¬¬A and ¬¬A

A .

The argument above is an example of a proof by contradiction: in order to
derive A from given assumptions, it is enough to add ¬A to these assumptions
and obtain a contradiction, i.e. a statement of the form B ∧ ¬B. Similarly, in
order to prove ¬A from some given assumptions, it is enough to prove that
A together with said assumptions yields a contradiction, and use rule (2.3).

We can now prove De Morgan’s laws, that is
A ∧ B

¬(¬A ∨ ¬B) and A ∨ B
¬(¬A ∧ ¬B) .

Proof. Suppose A ∧ B and, towards a contradiction, assume ¬A ∨ ¬B. By
rule (2.1) we obtain A from A∧B and applying the double negation rule (2.3)
¬¬A is derived. Thus, applying rule (2.2) to ¬A ∨ ¬B, ¬B is derived. Since
B follows from A ∧ B by rule (2.1), a contradiction is reached, and we can
conclude that ¬ (¬A ∨ ¬B) as required.
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The other logical law, that is ¬(¬A ∧ ¬B) follows from A ∨ B, is proved
in a similar fashion. □

By De Morgan’s laws ∧ and ∨ are definable one from the other using ¬,
so we could use just one of these two connectives, if we wished so.

Example 2.2. Consider the statements:

A : π+ e /∈ Q, B : π · e /∈ Q,

where Q is the field of algebraic numbers. In other words A asserts “π+ e
is transcendental” and B asserts “π · e is transcendental”. Since e,π are the
only solutions of the equation x2 − (π + e) · x + π · e = 0 and both are
transcendental numbers, then π+ e ∈ Q and π · e ∈ Q cannot both be true,
that is ¬ (¬A ∧ ¬B), and by De Morgan’s law we can assert that A ∨ B. To
this day, the transcendence of e + π and e · π are open problems, i.e. there is
no proof of either A or B.4

Example 2.3. Let P be the set of all primes, and let

W =
{
p ∈ P | p2 | (2p−1 − 1)

}
.

Consider the following statements:

A : W is infinite, B : P \W is infinite.

Since P is infinite, at least one amongst W and P \W is infinite, that is
A ∨ B is true. The only known primes in W are 1093 and 3511, and it is not
known whether there are infinitely many primes not in W . In other words:
both A and B are open.

Remarks 2.4. (a) Several experts in number theory believe that both W
and P \W are infinite.

(b) If p < 1093 is prime, then 2p−1 − 1 is not divisible by p2, so numerical
evidence would have led us to believe that W = ∅, that is p2 ∤ 2p−1 − 1
for all primes. This could be added to the list of examples on page 2.

From what we said about implication, asserting ¬(A⇒ B) means that
A holds while B does not hold. Thus it is equivalent to saying that A ∧ ¬B
which, by De Morgan’s laws, is equivalent to ¬(¬A∨B). We have thus verified
that ¬(A⇒ B) is equivalent to ¬(¬A ∨ B), that is A⇒ B is equivalent to
¬A ∨ B, in symbols

A⇒ B
¬A ∨ B

and ¬A ∨ B
A⇒ B

.

4The received opinion among number theorists is that both problems have affirmative answer,
that is both A and B are true, hence A ∧ B holds.
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The rule (2.2) can be recast for implication as: from A⇒ B and A we can
infer B. This rule is called Modus Ponens:

(MP) A⇒ B A
B .

Using the double negation rule (2.3) it is easy to check that
A⇒ B
¬B⇒ ¬A .

¬B ⇒ ¬A is called the contrapositive of A ⇒ B. The connective ⇒
is neither commutative, nor associative, as the meaning of A ⇒ B and
B⇒ A is completely different, and so is the meaning of (A⇒ B)⇒ C and
A⇒ (B⇒ C). Observe that A⇒ (B⇒ C) means that assuming A and B,
we can infer C, and hence it is equivalent to (A ∧ B)⇒ C.

The bi-conditional ⇔ is the conjunction of two implications, in symbols
A⇔ B
A⇒ B

and A⇔ B
B⇒ A

and
A⇒ B B⇒ A

A⇔ B
.

The bi-conditional is easily seen to be commutative, that is A ⇔ B and
B⇔ A have the same meaning. It can be shown that ⇔ is associative, but
the verification of this is postponed to Exercise 3.40. The statement “A if and
only if B if and only if C” is rendered by (A⇔ B)∧ (B⇔ C). In many books
(including this one) there are multi-lined formulæ in which the connectives
⇒ and ⇔ are treated like the symbols ≤ and =, so that from

A1 ⇒ A2

⇔ A3
(2.4)

we infer that A1 ⇒ A3. The argument described in the diagram (2.4) is
formalized as (A1 ⇒ A2) ∧ (A2 ⇔ A3), which indeed yields A1 ⇒ A3.

There are a few more connectives that occasionally appear in a mathe-
matical text.

• The exclusive disjunction (corresponding to the latin aut, and usually
dubbed in computer science as xor) is A ·∨ B meaning “either A or B, but
not both”, or equivalently: “exactly one between A and B holds”. Observe
that A ·∨ B is equivalent to (A ∨ B) ∧ ¬(A ∧ B), and also to ¬(A ⇔ B).
The connective ·∨ is commutative and associative.
• Sheffer’ stroke defined by A | B if and only if “it is not the case that

both A and B hold”, and Peirce’s arrow defined by A ↑ B if and only if
“neither A nor B”. Thus A | B has the same meaning as ¬ (A ∧ B), while
A ↑B has the same meaning as ¬ (A ∨ B), and for this reason in computer
science | and ↑ are called nand and nor.5

5The connectives | and ↑ are named after the logicians Sheffer and Peirce.



10 I. Introduction to mathematical logic

• The majority connective M(A,B,C) stating “at least two among A, B,
C, hold”.

All connectives seen so far, except ¬ and the majority connective, are binary,
meaning they operate on two propositions. (The majority connective is
ternary, while ¬ is unary). All these can be written using ¬,∨,∧; in fact this
applies to any k-ary connective—see Section 3.C.1.
2.A.2. Quantifiers. When we write statements like ∃xA or ∀xA we implicitly
mean that A asserts some property of x. For example, if A is the equation
x2 + x = 0, the expression ∃xA says that the equation admits a solution—
which is true in every field. Instead ∀xA says that every number is a
solution of A—which is true in just one field, Z(2). If A does not say
anything about x, the meaning of ∃xA and of ∀xA is exactly that of A—for
example ∃x∃y

(
y2 + y = 0

)
and ∀x∃y

(
y2 + y = 0

)
are both equivalent to

∃y
(
y2 + y = 0

)
. Negating ∀xA means that not every x enjoys property A,

that is to say: there is at least one x for which we can assert ¬A. Conversely,
denying ∃xA means that it is not the case that there is an x such that A,
that is: ¬A must hold for all x. In symbols

¬∀xA
∃x¬A and ¬∃xA

∀x¬A .

When writing ∀x∀yA we mean that no matter how x and y are chosen, A
holds, and this is the same thing as saying ∀y∀xA. Similarly ∃x∃yA has the
same meaning of ∃y∃xA. Thus

∃x∃yA
∃y∃xA

and ∀x∀yA
∀y∀xA

.

Suppose ∃x∀yA holds: thus there is x̄ such that for all y it is true that A.
Therefore given an arbitrary y we can always find an x such that A: just
pick x̄. In other words,

∃x∀yA
∀y∃xA

.

This rule cannot be reversed: from ∀y∃xA we cannot conclude ∃x∀yA—to
see this consider the statements ∀y∃x(y < x) and ∃x∀y(y < x) in N.

The existential quantifier distributes over disjunction, in the following
sense: saying “there is an x such that A or there is an x such that B” is the
same as saying “there is an x such that A or B”, in symbols

(∃xA) ∨ (∃xB)
∃x(A ∨ B)

and ∃x(A ∨ B)

(∃xA) ∨ (∃xB)
.

For the existential quantifier and conjunction we have just one rule: if “there
is an x such that A and B” then “there is an x such that A, and there is an x
such that B”, that is

∃x(A ∧ B)

(∃xA) ∧ (∃xB)
.
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The converse is false: there are even numbers, and there are odd numbers,
but no number can be even and odd. Similarly, the universal quantifier
distributes with respect to conjunction

(∀xA) ∧ (∀xB)
∀x (A ∧ B)

and ∀x (A ∧ B)

(∀xA) ∧ (∀xB)
,

but only partially with respect to disjunction
(∀xA) ∨ (∀xB)
∀x (A ∨ B)

.

This analogy between existential quantification and disjunction on one hand,
and universal quantification and conjunction on the other, is not that surpris-
ing, since quantifiers can be seen as generalized conjunctions and disjunctions:
saying that ∃xP (x) holds in N is tantamount to P (0) ∨ P (1) ∨ P (2) ∨ . . .,
while asserting ∀xP (x) in N is tantamount to P (0) ∧ P (1) ∧ P (2) ∧ . . ..

In order to assert ∃xA we do not require to exhibit a witness x that
satisfies A. For example, to show ∃xA it is possible to argue by contradiction,
that is to say: show that ∀x¬A yields a contradiction. Many results in
number theory are of this kind—it is shown that there must be a number
that enjoys a certain property, but often it is not even possible to establish
an upper bound for such integer. The following example gives an existential
statement where it is not easy to determine the witness.

Example 2.5. The statement ∃x (P (x)⇒ ∀yP (y)) is always true, regardless
of the meaning of P .6

To check this we proceed by cases.

• Property P holds of every individual, that is ∀yP (y). Then by properties
of implication P (x) ⇒ ∀yP (y) holds, hence any individual witnesses
∃x (P (x)⇒ ∀yP (y)).
• There is an individual a that does not satisfy P : then a witnesses that
∃x(P (x) ⇒ ∀yP (y)), since it falsifies P (x) and hence the implication
P (x)⇒ ∀yP (y) is true.

Therefore ∃x (P (x)⇒ ∀yP (y)) holds true in every case.

Example 2.6. The Möbius function µ : N → {−1, 0, 1} is defined by
µ(0) = µ(1) = 0 and

µ(n) =


0 if p2 | n for some prime p,

1 if n = p1 · · · pk with p1 < · · · < pk prime and k even,

−1 if n = p1 · · · pk with p1 < · · · < pk prime and k odd.

6The student might want to apply this to the case when P (x) says that x successfully passes
the final test in a given class.
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It is known that

(2.5) |
∑n

k=1 µ(k)| >
√
n,

for infinitely many ns, so in particular ∃x (|
∑x

k=1 µ(k)| >
√
x). On the other

hand, no explicit example of a number satisfying (2.5) is known: the least
such n lies in the interval (1014; e1.59·1040).7

There are situations where it is known that the witness of an existential
quantification ∃xA appears in a finite list of individuals a1, . . . , ak, although
we are not able to determine which one is the witness, i.e. we are not able to
pin-down a number i such that ai satisfies A.

Example 2.7. Consider the following game in which Alice and Bob take
turns and eat a chocolate bar of size n × m. If each square of the bar is
identified with its coordinate (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m, then the
rules of the game are:

• at any round Alice plays first, and each player picks a square (i, j) still
present on the bar and removes that and all the squares that lie above or
to the right of it, i.e. all (i′, j′) with i ≤ i′ and j ≤ j′;
• the player that picks the last square (1, 1) in the lower left corner loses.

If the chocolate bar is of size 1× 1 it has just one square so Alice, the first
player, loses right away. Let us see a run of the game on a bar of size 4× 3.
Alice starts by picking (3, 3) removing thus two squares, and Bob responds
by chipping away the square (4, 2). In the second round Alice picks (3, 1)
removing three squares, and Bob responds by removing (2, 3). In the third
round Alice and Bob choose (1, 3) and (2, 2), respectively, while in the fourth
round Alice chooses (2, 1) and Bob (1, 2). Here is the picture of the first four
rounds with denoting Alice’s moves, and denoting Bob’s moves.

As Alice is the next to move, and must pick the last square, she loses.
A strategy for either player is a set of instructions telling how to respond

to the opponent’s moves. A strategy for a player is winning if any run of the
game according to such strategy guarantees victory for the player.

Proposition. If (n,m) ̸= (1, 1) Bob does not have a winning strategy in the
game of size n×m.

7This example further corroborates what was said on page 1: sometimes numerical evidence
is misleading.
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Proof. Towards a contradiction, suppose Σ is a winning strategy for Bob
in the game of size n×m, with (n,m) ̸= (1, 1). We will pit Σ against itself
by constructing two runs of the game in which the roles of Alice and Bob
are reversed, and show that this leads to a contradiction. As first move, say
Alice picks the square (n,m) in the upper right corner. Then Σ tells Bob how
to respond to Alice’s first move, and the key observation is that the squares
removed after the first inning could be seen as a legal move for the first player
(that is: Alice) in another run of the game. Then Σ can respond to this move
as well, and this move can be used by Alice on the original board. Here is a
picture: the main game is the one played on the board on the left, while the
side board is on the right, in which Alice’s and Bob’s moves are denoted by

and respectively

Thus on the left board Alice plays (4, 3) and Bob (using Σ) responds (4, 2);
on the right board Alice plays (4, 2) and Bob (again using Σ) responds (3, 1).
In the next inning, Alice can play (3, 1) on the left board, and Bob responds
by playing, say (2, 2); then Alice can play (2, 2) on the right board, and Bob
will respond according to Σ:

After finitely many moves the two games come to an end, and Bob, having
played according to Σ, should be the winner in both runs of the game. But
the roles and the moves of Alice and Bob are exchanged in the two games,
so Bob wins the game on the left board if and only if he loses the game on
the right board. A contradiction is reached, so our assumption about the
existence of a winning strategy for Bob must be rejected. □

The game lasts a finite number of moves, so by a brute-force analysis8 of
all possible moves and runs of the game, one can argue that one (and only
one) of the two players has a winning strategy, and therefore Alice must have
a winning strategy in any game except the one of size 1× 1. Thus we have
proved that if (n,m) ̸= (1, 1)

∃Σ (Σ is a winning strategy for Alice in the game of size n×m)

but we have no idea as to what such strategy might be.

8For a more elegant, complete argument see ??.
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Example 2.8. The statement

A : ∃x∃y (x and y are irrational and xy is rational)

is true. In fact if
B :

√
2

√
2 ∈ Q

is true, then take x = y =
√
2; if instead ¬B is true, then take x =

√
2
√
2 and

y =
√
2.

Example 2.8 highlights another proof technique: the proof-by-cases
method asserts that if A follows from B and from ¬B, then A is proved,

B⇒ A ¬B⇒ A
A

.

The statement B is called conditional assumption.

Remark 2.9. Deciding whether n satisfies the inequality (2.5) is a problem
that can be solved, at least in principle, in a mechanical way. Therefore to
determine the least n satisfying (2.5) it is enough to check the finite list of all
possible candidates. But when numbers become too large, as in Example 2.6,
the computational obstacles become insurmountable.

Example 2.8 illustrates the opposite situation: it is known that the pair
witnessing A can be taken to be either (

√
2,
√
2) or else (

√
2
√
2
,
√
2), but

since determining whether a number of the form ab is rational or not is a
non-trivial matter, the argument above does not allow us to decide whether
B or ¬B holds.

2.B. Formalization. Using the logical constants it is possible to recast in
symbolic form the mathematical statements written in the natural language—
this translation procedure is called formalization and the symbolic ex-
pressions obtained this way are called formulæ. Formulæ will be properly
introduced in Section 3.A, for the time being we will just look at some exam-
ples. The simplest are the atomic formulæ, and correspond to statements that
cannot be further analyzed using the logical constants. They are either of the
form a = b or else of the form P (a1, . . . , an), where the letter P stands for
an n-ary predicate, that is an elementary statement about items a1, . . . , an.
When P is a binary (i.e. 2-ary) predicate, we often write a1 P a2 instead of
P (a1, a2).

A unary predicate is used to describe properties of objects: for example,
working in the complex field, we might want to consider the property of
“being a transcendental number”. Binary predicates are used to describe
binary relations (orderings, equivalences). Predicates of arity n, for n ≥ 3,
occurring in geometry are the ternary predicate of collinearity, and the 4-ary
predicate for complanarity.
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An interesting example of ternary relation is given by the so-called
circular orders. The interval [0; 1) can be identified with the unitary circle
S1 via the map f(x) = e2πix, and the ordering on [0; 1) yields a direction
of rotation (counter-clockwise) on S1, which is captured by the relation
B(x, y, z) defined by “going from x to z you pass through y”. Therefore if
a ≤ b ≤ c are in [0; 1), then B(f(a), f(b), f(c)), but also B(f(b), f(c), f(a))
and B(f(c), f(a), f(b)).

Theorems in elementary mathematics can be stated without quantifiers,
or by adding a stack of universal quantifiers at the beginning of the statement,
for example:

• “the commutative and associative properties hold for ·” can be formalized as
(x ·y = y ·x)∧((x ·y) ·z = x ·(y ·z)), or as ∀x∀y∀z

(
(x ·y = y ·x)∧((x ·y) ·z =

x · (y · z))
)
, or also as ∀x∀y(x · y = y · x) ∧ ∀x∀y∀z((x · y) · z = x · (y · z)),

• “a triangle is equilateral if and only if all angles are the same” can be
formalized as T (x) ⇒ (L(x)⇔ A(x)) or as ∀x (T (x) ⇒ (L(x)⇔ A(x))),
where T is the predicate “being a triangle”, L is the predicate “being a
polygon with equal sides ” and A is the predicate “being a polygon with
equal internal angles”. We added parentheses around the bi-implication
to highlight that the main connective is an implication: if x is a triangle,
then . . . ,

• “the product of two numbers is zero if and only if at least one of them is
zero” can be formalized as x · y = 0⇔ (x = 0 ∨ y = 0), or as ∀x∀y(x · y =
0⇔ (x = 0 ∨ y = 0)).

In the second example the indefinite article “a” means “any”. Formalizing a
statement requires to know which symbols we are entitled to use, and the
environment to which the statement refers—e.g. some set endowed with a
binary operation, the set of all polygons endowed with suitable predicates, the
set of all integers with multiplication and with a distinguished element. These
environments are called structures, and will be introduced in Section 3.C.
For the time being we gloss over this issue and naively assume that the
environment will be clear from the context.

If we want to express more advanced concepts, alternations of quantifiers
must be used. For example ∀x(x ≠ 0 ⇒ ∃y(x · y = 1)) formalizes “a non-zero
element has an inverse”, a statement that holds true in every field. The
expression x ̸= 0 is an abbreviation of ¬(x = 0)—more generally a ̸= b stands
for ¬(a = b).

In the preceding example, expressions of the form

every x such that P (x) (. . . )
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mean: “given an x, if P (x) then (. . . )” whence the use of ⇒ in the formal-
ization. Using ∧ instead of ⇒ would yield a formula saying that “every x
enjoys property P and (. . . )”, a completely different sentence! For example
∀x(x ̸= 0 ∧ ∃y(x · y = 1)) says that “every x is non-zero and has an inverse”,
a statement false in every field, since it fails when x is 0.

Expressions like

there is an x such that P (x) for which (. . . )

are formalized as
∃x (P (x) ∧ (. . . )) .

In particular the expression ∃x > 0(. . . ) is an abbreviation of ∃x(x > 0∧(. . . )),
and not of ∃x(x > 0⇒ (. . . )). Denying a statement of the form

every x such that P (x) (. . . )

amounts to saying:

there is an x such that P (x) and not (. . . ).

In fact, by properties of quantifiers ¬∀x (P (x)⇒ (. . . )) is equivalent to
∃x¬ (P (x)⇒ (. . . )) and since P (x) ⇒ (. . . ) means that ¬P (x) ∨ (. . . ), by
De Morgan’s laws we get ∃x (¬¬P (x) ∧ ¬(. . . )) and hence ∃x (P (x) ∧ ¬(. . . )).
Similarly, denying a statement of the form

there is an x such that P (x) and (. . . )

means that

for all x such that P (x) it is not true that (. . . ),

in other words: ¬∃x (P (x) ∧ (. . . )) is equivalent to ∀x (P (x)⇒ ¬(. . . )).
A statement of the form

(2.6) there is a unique x such that P (x)

means that “there is an x such that P (x) and every other y that has property
P is the same as x”, that is

∃x (P (x) ∧ ∀y (P (y)⇒ y = x)) ,

or, equivalently,
∃x (P (x) ∧ ∀y (y ̸= x⇒ ¬P (y))) .

Another equivalent way of writing the statement above is “P (x) for some x,
and any two objects satisfying P must coincide”, that is

∃xP (x) ∧ ∀x∀y (P (x) ∧ P (y)⇒ x = y) .
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(Asserting only ∀x∀y (P (x) ∧ P (y)⇒ x = y) is not enough, since property P
could be always false, thus, vacuously, two elements satisfying P coincide!)
A further way to formalize (2.6) is

∃x∀y (P (y)⇔ x = y)

that is “there is an x such that P (y) if and only if y = x, for every y”. We
write

∃!xP (x)

for anyone of the formulæ above. Thus ∃! is not a new quantifier, it is just
an abbreviation.

Statements like “P (x), for all sufficiently large x” are formalized as

∃y∀x (y < x⇒ P (x)) .

When talking of natural numbers, the statement above is often formulated as
“for all but finitely many x, P (x) holds”, while the statement “for infinitely
many x, P (x) holds” is rendered as

∀y∃x (y < x ∧ P (x)) .

2.C. Examples of formalizations.
2.C.1. Given function symbols f and g, the statement “f ◦ g has a fixed
point” is formalized as ∃x (f(g(x)) = x), or as ∃x∃y (f(x) = y ∧ g(y) = x).
2.C.2. Given a unary predicate symbol P , the statement “there are at least
three elements such that P ” is formalized as

∃x1∃x2∃x3 (P (x1) ∧ P (x2) ∧ P (x3) ∧ x1 ̸= x2 ∧ x2 ̸= x3 ∧ x1 ̸= x3) ,

while “there are at most three elements such that P ” is equivalent to the
negation of “there are at least four elements such that P ” and hence it is
formalized as

∀x1∀x2∀x3∀x4
(
P (x1) ∧ P (x2) ∧ P (x3) ∧ P (x4)⇒

x1 = x2 ∨ x1 = x3 ∨ x1 = x4 ∨ x2 = x3 ∨ x2 = x4 ∨ x3 = x4
)
.

For the sake of brevity we shall write the conjunctions φ1 ∧ · · · ∧φn and the
disjunctions φ1 ∨ · · · ∨φn as∧

1≤i≤n

φi and
∨

1≤i≤n

φi,

while the blocks of quantifiers (of the same kind) ∀x1 . . . ∀xn and ∃x1 . . . ∃xn
are written as ∀x1, . . . , xn and ∃x1, . . . , xn. Therefore the formula above is
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written as ∀x1, . . . , x4
(∧

1≤i≤4 P (xi) ⇒
∨

1≤i<j≤4 xi = xj

)
. For n ≥ 1 the

formulæ

∃x1, . . . , xn
( ∧
1≤i≤n

P (xi) ∧
∧

1≤i<j≤n

xi ̸= xj

)
∀x1, . . . , xn+1

( ∧
1≤i≤n+1

P (xi)⇒
∨

1≤i<j≤n+1

xi = xj

)
formalize, respectively, the sentences “there are at least n elements such that
P holds” and “there are at most n elements such that P holds”; for ease of
notation they are abbreviated as

∃≥nxP (x) and ∃≤nxP (x),

while ∃=nxP (x) stands for ∃≥nxP (x) ∧ ∃≤nxP (x). It is useful to introduce
a notation for certain formulæ:

(ε≥n) ∃x1, . . . , xn
(∧

1≤i<j≤n xi ̸= xj

)
formalizes the statement “there are at least n elements”,

(ε≤n) ∀x1, . . . , xn+1

(∨
1≤i<j≤n+1 xi = xj

)
formalizes the statement “there are at most n elements” and

(εn) ε≤n ∧ ε≥n.

formalizes the statement “there are exactly n elements”. These definition are
meant for n ≥ 2. When n = 1 let

∃x1 (x1 = x1) ,(ε≥1)
∀x1, x2 (x1 = x2) ,(ε≤1)
ε≤1 ∧ ε≥1.(ε1)

Since ∃x1 (x1 = x1) is trivially true, ε≤1 and ε1 are equivalent.
2.C.3. Consider a phrase like: “between two rationals there is an irrational,
and conversely” or more generally, a phrase like “between two elements that
have property P there is an element with property Q, and conversely”. Here
“conversely” means that “between two elements that have property Q there is
an element with property P ”. In order to formalize it, we need two unary
predicates P and Q and the symbol < for the ordering:

∀x∀y ((x < y ∧ P (x) ∧ P (y))⇒ ∃z (x < z ∧ z < y ∧Q(z)))

∧ ∀x∀y ((x < y ∧Q(x) ∧Q(y))⇒ ∃z (x < z ∧ z < y ∧ P (z))) .
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2.C.4. A celebrated theorem of Euclid’s says that there are infinitely many
prime numbers, that is

∀x∃y (x < y ∧ Pr(y))

where Pr is the unary predicate “being a prime number”. If we want to
formalize this statement using only the divisibility relation, | (besides the
ordering relation), we translate Pr(y) into

1 < y ∧ ∀z (z | y ⇒ z = 1 ∨ z = y)

and hence Euclid’s theorem becomes

∀x∃y (x < y ∧ 1 < y ∧ ∀z (z | y ⇒ z = 1 ∨ z = y)) .

We have eliminated the predicate Pr, but we have introduced the constant
1. To get rid of it, observe that 1 is the only natural number that divides
every natural number, that is ∃!u∀w(u | w), thus Euclid’s theorem can be
formalized as

∃u∀w
(
u | w ∧ ∀x∃y

(
x < y ∧ u < y ∧ ∀z (z | y ⇒ z = u ∨ z = y)

))
.

Since z | y if and only if ∃v (v · z = y), it is possible to formalize everything
using the ordering and multiplication (Exercise 2.10).
2.C.5. Distinct natural numbers x and y can have the same prime factors,
but if we consider also x+ 1, x+ 2, . . . , x+ k and y + 1, y + 2, . . . , y + k with
k sufficiently large, it is possible to find a prime p that divides exactly one
among the x+ i and y + i, for i ≤ k. The Erdős-Woods conjecture says
that there is a universal k. In other words:

There is an integer k > 0 such that every integer x is
completely determined by the primes that divide x, x +
1, . . . , x+ k

The formalization of this conjecture is

∃k ∀x, y
[
x ̸= y ⇒ ∃i, p (i ≤ k ∧ Pr(p) ∧ (p | (x+ i)⇔ p ∤ (y + i)))

]
.

The symbol Pr can be eliminated as in the preceding example, while the
inequality i ≤ k can be reformulated as ∃z (i+ z = k).
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Exercises

Exercise 2.10. Formalize Euclid’s theorem on prime numbers using only
multiplication · and the order relation <.

Exercise 2.11. Formalize the following sentences on natural numbers, using
the given symbols:

(i) Bertrand’s postulate: for every n > 1 there is at least a prime
between n and 2n, using the ordering <, the sum +, the constant 1,
and the divisibility relation |. Do the same using + and |.

(ii) Legendre’s conjecture: for all n > 1 there is a prime between n2 and
(n+ 1)2, using <, 1, and multiplication ·. Do the same using < and ·.

(iii) The twin primes conjecture: there are infinitely many primes of the
form p, p+ 2, using < and the divisibility relation |.

(iv) Goldbach’s conjecture: every even number larger than two is the
sum of two primes, using <, the constant 2, addition +, and |. Do the
same using + and |.

(v) Vinogradov’s theorem: every sufficiently large odd number is sum of
three (not necessarily distinct) primes, using <, +, and |. Do the same
using + and |.

(vi) “Every sufficiently large natural number is sum of at most four cubes”,
using <, +, and ·. Do the same using + and ·.

(vii) Fermat’s last theorem: no cube is the sum of two cubes, no fourth
power is sum of two fourth powers, and so on, using <, 2, + and the
exponential function xy. Do the same using + and xy.

(viii) Dirichlet’s theorem: if a and b are relatively prime, the there are
infinitely many primes congruent to a modulo b, using <, + and ·. Do
the same using + and ·.

(ix) The Green-Tao theorem: the set of primes contains arbitrarily long
arithmetic progressions, using <, +, and ·. Do the same using + and ·.

(x) Beal’s conjecture: if a, b, c, x, y, z are natural numbers such that
ax + by = cz, with a, b, c > 1 and x, y, z > 2, then a, b and c have a
common prime factor, using <, 1, +, · and xy. Do the same using +, ·
and xy.

Exercise 2.12. (i) Formalize the following sentences, using the symbol f :
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• f is injective,
• f is surjective,
• f is bijective,

• f ◦ f is the identity,
• the fibers of f have size at most

three.

(ii) If f, g : A×A→ A, let ‹f, g› : A×A→ A×A be the function defined
by (a1, a2) 7→ (f(a1, a2), g(a1, a2)). Repeat part (i) with ‹f, g› instead
of f , using the symbols f and g.

Exercise 2.13. Formalize the following statement:

among six persons, there are at least three that either are acquainted
with each other, or else that mutually unfamiliar

using the predicates A(x, y) to express the fact that x and y know each other,
and U(x, y) to express the fact that x and y do not know each other. (Clearly
it is possible to use just one of the two predicates A,U and define the other
by negation.)

Exercise 2.14. Let f be a real variable function of one real variable. Using
the symbols f , +, ·, |·|, and <, formalize the statements: “f is continuous”
and “f is differentiable”. Repeat the exercise using only f , +, and ·.

Exercise 2.15. Let f : R2 → R. Using the symbols f , +, ·, x0 and y0
formalize the implicit function theorem:

If f is continuously differentiable in (x0, y0) and ∂f/∂y does not
vanish in (x0, y0), then there is an open neighborhood U of x0 and
an open neighborhood V of y0 such that for every x ∈ U there is
exactly one y ∈ V such that f(x, y) = 0.

Exercise 2.16. Formalize the following statements:

(i) there is a line passing through two points;

(ii) there is exactly one line passing through two distinct points;

(iii) there is exactly one plane passing through three non-collinear points;

using the unary predicates P (x), Q(x), R(x) for “x is a point”, “x is a line”,
“x is a plane” and the binary predicate L(x, y) for “x lies on y”.
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Notes and remarks

The fact that Euler’s constant e is transcendental was proved in 1873 by Hermite, and that π is
transcendental was proved in 1882 by von Lindeman—see Example 2.2. The prime numbers p that
satisfy p2 | (2p−1 − 1) (Example 2.3) are called Wieferich’s primes, from the mathematician
that first defined and studied them in 1909.

Example 2.6 illustrates how theorems can contradict opinions based upon experiments and
numerical simulations. Stieltjes conjectured nel 1885 in a letter to Hermite and Mertens that
∀n (

∣∣∑n
k=1 µ(k)

∣∣ < √
n), and this became known as Mertens’ conjecture. This conjecture was

refuted in [OtR85]. The function µ is named after Möbius.

Example 2.8 is a showcase for the power and simplicity of non-constructive arguments, and
for the method of proof-by-cases, that is the proof of a statement B from an additional assumption
A, and from its negation ¬A, on whose validity we know little. Truth be told, the existence of
irrational numbers whose exponential is rational follows immediately from the following result
proved in 1934 by Gelfond and independently by Schneider: if a ≠ 0, 1 is algebraic and b is
irrational, then ab is transcendental. (The statement of this theorem was the seventh on Hilbert’s
celebrated 1900 list of open problems in mathematics.) Therefore statement A in Example 2.8
is false. The proof-by-cases method has been employed many times in number theory using as a
conditional assumption one of the most important open problems in mathematics, the generalized
Riemann hypothesis [IR90, pp. 358–361].

The Erdős-Woods conjecture was formulated by Erdős and studied by Woods [Woo81] in
connection with interesting problems in logic (see page 288). Not much is known on this conjecture,
except that follows from the abc conjecture (Example 3.4) and that k ̸= 1, since the pairs (2, 3) and
(8, 9) have the same prime factors; it is not known if k ̸= 2. For further information see [Guy04,
B29].

The statements in Exercise 2.11 are either open problems or important theorems in number
theory. Bertrand’s postulate was conjectured in 1845 by Bertrand and proved in 1850 by Chebyshev.
Vinogradov proved in 1937 the theorem named after him. (Note that Goldbach’s conjecture implies
this result.) The theorems in (viii) and (ix) were proved by Dirichlet in 1837, and by Green and
Tao in 2004.

The conjectures of Legendre, Goldbach, the twin prime conjecture, Beal’s conjecture, and
part (vi) of Exercise 2.11 are open. The first two conjectures are named after the mathematicians
that formulated them, Goldbach and Legendre, while Beal’s conjecture was introduced in1993 by
Beal9 and, independently, by Granville. Part (vi) of Exercise 2.11 becomes a theorem if seven
cubes, rather than four cubes are considered—see Notes and Remarks on page 69.

Fermat around 1637 wrote in the margins of Diophantus’ Arithmetica book:

I found a truly marvelous proof that it is impossible to separate a cube into two cubes,
or a fourth power into two fourth powers, or in general, any power higher than the
second, into two like powers. This margin is too narrow to contain this proof.10

Fermat never gave a proof of this statement (although he gave a proof in the case of exponent 4)
which became known as Fermat’s last theorem—Exercise 2.11 part (vii). In the following years
this became one of the best known open problems in mathematics, and it was finally solved in
1995 by Wiles and Taylor, finally reaching the status of theorem.

9Andrew Beal is tycoon from Texas with a knack for number theory, and has offered $100.000
for a proof or disproof of his conjecture. On the other hand, Italian tycoons (from Brianza, or
elsewhere) seem to have different kind of hobbies.

10Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et
generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est
dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.
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The statement in Exercise 2.13 is a particular case of a result in graph theory known as
Ramsey’s Theorem (see page 258), which can be stated as follows: for every n there is an m > n

such that given m persons, there are at least n of them that know each other, or that they don’t
know each other.

Exercises 2.15 and 2.16 are from [PD11].

3. Languages

3.A. Symbols, terms, and formulæ.
Symbols. A first-order language L is made up of the following items:

• the parentheses ( and ) ,
• the symbols ¬, ∧, ∨, ⇒, ⇔, ∃, ∀, and ≖,
• an infinite list of symbols v0, v1, v2, . . . called variables. The letters
x, y, z, . . ., possibly decorated with indices, stand for a generic variable vn,
• constant symbols, usually denoted by c, d, e, . . .,
• function symbols, usually denoted by f, g, h, . . .,
• predicate symbols, usually denoted by P,Q,R, . . ..

Every function or predicate symbol has a positive integer attached to it,
called its arity—symbols of arity 1, 2 and 3 are called, respectively, unary,
binary, and ternary symbols. Constant, function, and predicate symbols are
dubbed non-logical symbols, and characterize the language in question. For
the time being we shall assume that there are finitely many such symbols;
for a different examples see Section 9.B.3.
Terms. The set of terms of L is inductively defined as follows:

• a variable is a term,
• a constant symbol is a term,
• an expression of the form f(t1, . . . , tn) is a term, where f is an n-ary func-

tion symbol and t1, . . . , tn are terms called the sub-terms of f(t1, . . . , tn).

Remark 3.1. The careful reader might have noticed that f(t1, . . . , tn) con-
tains the comma (which is not present in the official list of symbols) to parse
the terms ti. This is purely for typographical reasons, to visually delimit
the objects, and the correct way would be to write f(t1 . . . tn) rather than
f(t1, . . . , tn). This move implicitly assumes that the ensuing expressions
can be unambiguously read: if an L-term can be read as f(t1 . . . tn) and as
g(u1 . . . um) then n = m, f = g and ti = ui for i = 1, . . . , n. In Section 23
a result asserting the unique readability of expressions will be proved, so,
in principle, we could dispense with commas, and even parentheses. But at
the beginning of an exposition of mathematical logic, a slightly redundant
notation is preferable to an exceedingly terse one.
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h(f(h(x, z, g(f(c), y))), g(x, f(g(z, y))), f(h(f(z), h(y, c, x), z)))
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Figure 2. The syntactic tree of the term described in (3.1) and its
simplified form.

A term t is a finite sequence of symbols (obtained following a well-
established protocol), but can be better visualized by means of its syntactic
tree11 where the root is labelled by t and the other nodes are labelled by the
terms that t is made of. For example the syntactic tree of the term

(3.1) h(f(h(x, z, g(f(c), y))), g(x, f(g(z, y))), f(h(f(z), h(y, c, x), z))),

where c is a constant symbol and f , g and h are function symbols of arity 1,
2, and 3, is the object described in the upper part of Figure 2. The terminal
nodes, i.e. those that have no nodes below them, are labelled with variables
or constant symbols, and are highlighted with a thicker frame. We could
simplify the notation by putting in every non-terminal node the function
symbol used to build such term. This way the syntactic tree can be drawn
as in the lower part of Figure 2. The nodes of the syntactic tree of t are

11The botany of logic (and of computer science) is a tad peculiar, since trees grow downwards.
Maybe roots would be a more appropriate name, but then we would need a different name to
denote the top-most node.
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the sub-terms t. Observe that parentheses are not needed for describing a
syntactic tree, corroborating Remark 3.1.

Notation. When f is a binary function symbol, the infix notation t1 f t2
rather than the prefix notation f(t1, t2) is preferred. In particular we shall
write t1 + t2 and t1 · t2 instead of +(t1, t2) and ·(t1, t2).

When f is a binary function symbol, the expression t1 f . . . f tn is
ambiguous, since its meaning depend on where the parentheses are placed.
For example, the possible meaning of t1 f t2 f t3 are two: t1 f (t2 f t3) and
(t1 f t2) f t3. For this reason we make the following:

Convention. When writing t1 f . . . f tn it is understood that we associate on
the right, that is t1f (t2f (. . . (tn−1f tn) . . . )). In particular t1+ · · ·+tn stands
for t1+(· · ·+(tn−1+ tn) · · · ) and t1 · · · · · tn stands for t1 · (· · · · (tn−1 · tn) · · · ).
We will use the following shorthand

nt instead of t+ · · ·+ t︸ ︷︷ ︸
n

and tn instead of t · · · · · t︸ ︷︷ ︸
n

.

Finally, when f is a unary function symbol and t is a term,

f (n)(t) denotes the term f(. . . f︸ ︷︷ ︸
n times

(t) . . . ).

A measure of complexity for terms is a function from the set of all terms
taking values in the natural numbers, such that the number assigned to a
term t is larger than the numbers assigned to the terms that t is made of.
There are two natural complexity measures for a term t:

• lh(t), the length (including parentheses) of the string t, and
• ht(t), the height of t, that is the length of the longest path in the syntactic

tree of t starting from the root and arriving to a terminal node, counting
from zero.

It is customary to count from zero when computing the height, therefore if t
is the term described in (3.1) on page 24, then lh(t) = 48 and ht(t) = 5.

Complexity measures are useful for proving results by induction on the
set of terms. In order to show that every term enjoys property P, it is enough
to check that P holds for all terms with minimal complexity (base case) and
that if P holds for all terms of complexity less than that of t, then also t has
property P.

The expression t(x1, . . . , xn) means that the variables occurring in t are
among x1, . . . , xn. (We do not require that every xi occurs in t.) In alge-
bra, when f(X1, . . . , Xn) denotes a polynomial in the variables X1, . . . , Xn,
and if g1, . . . , gn are polynomials, then f(g1, . . . , gn) is the polynomial f
where X1, . . . , Xn have been replaced by g1, . . . , gn. Similarly, given terms
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t(x1, . . . , xn) and s1, . . . , sn, then t[s1/x1, . . . , sn/xn] is the term obtained
by replacing si in place of xi . When the variables are clear from the con-
text, we may write t(s1, . . . , sn). Before we move on, we need to check that
t[s1/x1, . . . , sn/xn] is indeed a term.

Lemma 3.2. If s1, . . . , sn, t(x1, . . . , xn) are terms, then t[s1/x1, . . . , sn/xn]
is a term.

Proof. We proceed by induction on ht(t). If ht(t) = 0 then t is either a
constant c, and therefore t[s1/x1, . . . , sn/xn] is c, or else it is xi, and therefore
t[s1/x1, . . . , sn/xn] is si. If ht(t) > 0, then t is f(u1, . . . , uk) where u1, . . . , uk
are terms of height < ht(t), and any variable occurring in one of them is
among x1, . . . , xn. By inductive assumption, every uj [s1/x1, . . . , sn/xn] is a
term, and so is

f(u1[s1/x1, . . . , sn/xn], . . . , uk[s1/x1, . . . , sn/xn])

which is t[s1/x1, . . . , sn/xn]. □

The syntactic tree of t[s1/x1, . . . , sn/xn] is obtained from the syntactic
tree of t by attaching to the terminal nodes labelled with x1, . . . , xn the
syntactic trees of s1, . . . , sn.

It is important that the swapping of x1, . . . , xn with s1, . . . , sn hap-
pens simultaneously: if t is f(x1, x2) and s1, s2 are x2, x1 respectively, then
t[s1/x1, s2/x2] is f(x2, x1), while (t[s1/x1])[s2/x2] is f(x1, x1). A term is
closed if it contains no variables, i.e. it is built from constant and function
symbols. (If the language has no constant symbols, there are no closed terms.)
Formulæ. An atomic formula is an expression of the form

P (t1, . . . , tn) or t1 ≖ t2

where t1, t2, . . . , tn are terms and P is an n-ary predicate symbol.

Remark 3.3. On the meaning of the symbol ≖. The atomic formula t1 ≖ t2
says t1 and t2 denote the same as the object, while t1 = t2 means that the
term (i.e. the string of symbols) t1 is the same as the term t2. For example, in
the language with two binary function symbols + and · we write the atomic
formula (x + y) · (x + y) ≖ (x · x) + ((x · y) + ((y · x) + (y · y))), although
the two term (x+ y) · (x+ y) and (x · x) + ((x · y) + ((y · x) + (y · y))) are
distinct. These kind of distinctions are crucial in computer science: these
two terms are different programs that compute the same function. Although
the distinction between ≖ and = avoids ambiguities, in order to keep the
notation simple we will often write “t is s” rather than “t = s”. For the time
being, the reader can safely consider ≖ to be tantamount to =, but telling
apart the two notions will be important in Section 9.E. Notice though that
in the formalizations of Section 2 we should have used ≖ instead of =.
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The set of formulæ is defined inductively by the following clauses:

• an atomic formula is a formula,
• if φ is a formula, then (¬φ) is a formula,
• if φ and ψ are formulæ, then (φ ∧ ψ), (φ ∨ ψ), (φ⇒ ψ), and (φ⇔ ψ)

are formulæ,
• if φ is a formula and x is a variable, then ∃xφ and ∀xφ are formulæ.

The Greek lower case letters φ, ψ, and χ, will range on formulæ.12 A formula
of the form (¬φ) is called a negation; similarly, a formula of the form (φ∧ψ),
(φ∨ψ), (φ⇒ ψ), (φ⇔ ψ), ∃xφ and ∀xφ is called conjunction, disjunction,
implication, bi-implication, existential formula, and universal formula,
respectively.

Conventions. (i) For the sake of readability, parentheses will be sup-
pressed whenever this move does not cause ambiguity. For example, we
shall write φ∧ψ, φ∨ψ, φ⇒ ψ and φ⇔ ψ instead of (φ∧ψ), (φ∨ψ),
. . . ; but if we need to take negation of any of these formulæ parentheses
shall be reinstated. We shall follow the convention that ∧ and ∨ bind
more tightly than ⇒ and ⇔, and that ¬ binds more tightly than any
other connective. Therefore φ ∧ψ⇒ χ and ¬φ ∨ψ are shorthand for
((φ ∧ψ)⇒ χ) and ((¬φ) ∨ψ), respectively. In analogy with the case
of terms, if ⊙ is a binary connective (that is: it is not ¬) we shall write
φ1 ⊙ · · · ⊙φn rather than φ1 ⊙ (φ2 ⊙ (· · · ⊙φn) . . . ).

(ii) If P is a binary relation symbol, the infix notation t1 P t2 will generally
be preferred to the prefix notation P (t1, t2). In particular, we shall write
s < t instead of <(s, t).

(iii) The formula ¬(t1 ≖ t2) is written as t1 ̸≖ t2.

The sub-formulæ of φ are φ and the formulæ used in the construction
of φ. A sub-formula of φ different from φ is a proper sub-formula. In
other words:

• if φ is atomic, then it has no proper sub-formulæ,
• if φ is ¬ψ, then its proper sub-formulæ are ψ and all of the proper

sub-formulæ of ψ,
• if φ is ψ⊙ χ with ⊙ a binary connective, then its proper sub-formulæ are:
ψ, χ, the proper sub-formulæ of ψ and the proper sub-formulæ of χ,
• if φ is ∃xψ or ∀xψ, then the proper sub-formulæ of φ are ψ and all proper

sub-formulæ of ψ.

12Sometimes upper case Roman letters like A,B,C, . . . will be used to denote formulæ, a
practice that was already implicitly followed in Section 2.A.
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∃x∀y (P (x, y)⇒ Q(x))⇒ ∀zR(z) ∨ S(z)

∃x∀y(P (x, y)⇒ Q(x))

∀y (P (x, y)⇒ Q(x))

P (x, y)⇒ Q(x)

P (x, y) Q(x)

∀zR(z) ∨ S(z)

∀zR(z)

R(z)

S(z)

⇒

∃x

∀y

⇒

P (x, y) Q(x)

∨

∀z

R(z)

S(z)

Figure 3. The syntactic tree of the formula ∃x∀y (P (x, y) ⇒ Q(x)) ⇒
∀zR(z) ∨ S(z) and its simplified version.

For example, the proper sub-formulæ of

(3.2) ∃x∀y (P (x, y)⇒ Q(x))⇒ ∀zR(z) ∨ S(z)

are ∃x∀y (P (x, y)⇒ Q(x)), ∀zR(z)∨S(z) and all of their proper sub-formulæ.
Therefore the complete list of all sub-formulæ of (3.2) is:

∃x∀y(P (x, y)⇒ Q(x)) ∀zR(z) ∨ S(z)

∀y(P (x, y)⇒ Q(x)) ∀zR(z)

P (x, y)⇒ Q(x) R(z)

P (x, y) S(z)

Q(x)

Just like the terms, also formulæ can be described by means of trees: the
syntactic tree of the formula (3.2) and its simplified version are shown in
Figure 3. The nodes of the syntactic tree of φ are the sub-formulæ of φ.
Also in this case we have two competing notions of complexity: the length
and the height, defined in the same way it was done for terms on page 25.

3.B. More on formalization. In the preceding pages we have seen some
examples of statements formalizable in a given language L, but we will
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often encounter statements that are not formalizable in L, although they
might be formalizable in a stronger language. In mathematics one often uses
expressions involving quantifiers that turn out not to be formulæ according to
our official definition, thus we must learn how to distinguish official formulæ
from impostors, which will be called pseudo-formulæ. These are simply
abbreviations, symbolic shorthand of mathematical statements written in
natural language. For example x · y cannot be rendered as

x+ · · ·+ x︸ ︷︷ ︸
y

when x, y are natural numbers: the expression above is not a term, since its
length is not some fixed integer, but varies with y. (Naturally, an expression
of the kind x · 3 can be written as x+ (x+ x), which is a term.) Similarly, in
Exercise 2.11(vii) the exponentiation cannot be rendered by

xy ≖ x · · ·x︸ ︷︷ ︸
y

since the right-hand side is not a term. As we shall see in Section 11.B,
exponentiation can be written using only addition and multiplication, but
this result is far from trivial. In general, expressions containing ellipsis mean
trouble for formalization. For example,

Waring’s problem. For all k > 1 there is an n such that every natural
number is the sum of n-many numbers that are powers of exponent k.

is usually formalized as

(3.3) ∀k > 1∃n∀x∃y1, . . . , yn
(
x ≖ yk1 + · · ·+ ykn

)
.

The expression above, although perfectly acceptable in everyday usage, is a
pseudo-formula, since the number of quantifiers in the block ∃y1, . . . , yn is
not fixed once and for all. This does not mean that there is something wrong
or questionable in (3.3)—it simply means that it is not a formula according
to our official definition. It doesn’t mean either that Waring’s problem is
not formalizable as a first-order formula in the language with addition and
multiplication—see Exercise 11.52.

In some cases it might not be obvious how to formalize a statement in a
given language.

Example 3.4. The abc conjecture says that for every ε > 0 there is a
constant κε such that if a, b, c are coprime and c = a+ b, then c ≤ κεd

(1+ε),
where d is the product of the distinct prime factors of a, b and c.

At first sight the formalization of this statement in the language of
arithmetic seems unlikely because of the real numbers ε and d(1+ε). On the
other hand ε can be taken to be arbitrarily small, say of the form 1/n, while
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κε must be sufficiently large so that the inequality c ≤ κεd
(1+ε) becomes

cn ≤ mdn+1. Thus the abc conjecture is formalizable as:

∀n ∃m ∀a, b, c, d
(
n > 0 ∧

d is the product of the distinct prime factors of a, b and c

∧ a, b, c are coprime ∧ c ≖ a+ b ⇒ cn ≤ mdn+1
)
,

where d is the product of the distinct prime factors of a, b and c can be ren-
dered as

∀p
(
Pr(p)⇒ p2 ∤ d ∧ (p | d⇔ p | a ∨ p | b ∨ p | c)

)
and a, b, c are coprime can be rendered as

¬∃p [Pr(p) ∧ ((p | a ∧ p | b) ∨ (p | a ∧ p | c) ∨ (p | b ∧ p | c))] .

We can get dispense with the symbols 0, <, | and Pr by using their defini-
tions in terms of addition and multiplication, and by what we said above,
exponentiation can be scraped as well.

3.C. Structures and validity. First-order formulæ are used, implicitly
or explicitly, throughout mathematics as they are handy tools for studying
algebraic or ordered structures. In order to talk of the properties of a structure,
we need a suitable language—for example, in order to define the notion of
semigroup we start from a non-empty set S endowed with a binary associative
operation ∗ such that

(3.4) ∀x, y, z ∈ S ((x ∗ y) ∗ z = x ∗ (y ∗ z))

Examples of semigroups are: the natural numbers N with the addition
operation +, the set Mn,n(R) of all n × n matrices on a rng R with the
operation of matrix-product, and the set F of all functions from a set X to
itself with the composition operation ◦. The expression (3.4) is a pseudo-
formula, since we have followed the usual habit of binding quantified elements
to some set, diverting from our official definition of formula. In mathematical
logic we start from a language (in this case containing only the binary
operation symbol ∗) and say that the formula

(3.5) ∀x, y, z ((x ∗ y) ∗ z ≖ x ∗ (y ∗ z))

is true in the structures (N,+), (Mn,n(R), ·), (F, ◦), . . . . In other words:
the binary symbol ∗ is understood from time to time to denote a different
operation, depending on the chosen structure.

Our goal is to

Find a procedure to check whether a formula is true in a structure.
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First of all notice that some formulæ are true in every structure, regardless of
the meaning we give to the symbols of the language—such formulæ are said
to be valid. At the other end of the spectrum we have the unsatisfiable
formulæ which are false in every structure. In other words: a formula is
unsatisfiable if and only if its negation is valid. For example, if P and f are
n-ary predicate and function symbols, then the formulæ

(3.6)

x ≖ x

x ≖ y ⇒ y ≖ x

x ≖ y ∧ y ≖ z ⇒ x ≖ z

x1 ≖ y1 ∧ · · · ∧ xn ≖ yn ⇒ (P (x1, . . . , xn)⇔ P (y1, . . . , yn))

x1 ≖ y1 ∧ · · · ∧ xn ≖ yn ⇒ f(x1, . . . , xn) ≖ f(y1, . . . , yn)

are valid, since we have agreed that ≖ stands for equality relation. On the
other hand the formula

∀x, y (x · y ≖ y · x)
is satisfiable (that is to say: not unsatisfiable) but not valid, since it is either
true or false depending whether · denotes an operation that is commutative
or not. Similarly ∀x, y (x < y ⇒ ∃z (x < z ∧ z < y)) is a statement true in
the rationals or in the reals, but false in the integers, thus it is a satisfiable
formula, but not a valid one. In order to establish a procedure to check
whether a formula is true in a structure, we must begin to examine the atomic
formulæ. But even this case is problematic. For example, to check whether
x < y is true in an ordered set (M,�) we must give a value to the variables
x and y. By contrast, there are formulæ with free variables whose truth or
falsity is not an issue.

Example 3.5. The formula ¬(x < y) ∨ (x < y) is true in any structure
(M,�), regardless of the value assigned to the variables.

In fact if the variables x, y are given values a, b ∈ M , then the formula
holds in (M,�) if either a �̸ b or else a � b, and this is obviously true
independently of what a, b and � are.

Arguing as above, any formula of the form φ ⇒ φ or ¬φ ∨ φ is valid,
regardless of what φ says.
3.C.1. Tautologies. From the examples above we can see as certain formulæ
are true by virtue of the meaning of the connectives. In order to study
these validities, we must analyze how a formula is built from the atomic,
the existential, and the universal ones. As the meaning of ∀xφ is the same
as ¬∃x¬φ, we may replace the universal quantifiers with its existential
quantifiers and negations so that the formula we are considering does not
contain the symbol ∀. A formula φ is Boolean combination13 of formulæ

13The reason for the attribute Boolean will become clear in the next sections.
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A1, . . . ,An if φ is obtained from these without using quantifiers. If the
Ai’s are atomic or existential (that is: they are not Boolean combination
of sub-formulæ), then A1, . . . ,An are the primitive components of φ. In
other words, they occur as those nodes in the syntactic tree of φ above which
no formula is quantified. For example the formula φ in (3.2) on page 28 is
first re-written as ∃x¬∃y¬ (P (x, y)⇒ Q(x))⇒ ¬∃z¬R(z)∨ S(z), so that its
primitive sub-formulæ are

∃x¬∃y¬ (P (x, y)⇒ Q(x))
A

∃z¬R(z)
B

S(z)
C

and hence φ can be written as A⇒ ¬B ∨ C.
If arbitrarily truth vales are assigned to the primitive sub-formulæ,

the truth value of the formula is computed by means of the properties
of connectives: if S is the set of all atomic or existential formulæ then any
v : S → {true, false} can be extended to the collection of all formulæ by
requiring that v(¬φ) = true just in case v(φ) = false, v(φ ∧ψ) = true just
in case v(φ) = v(ψ) = true, etc. This construction can be stated in a general
form.

Definition 3.6. Let S be a non-empty set of propositional letters. Let
Prop0(S) = {(A) | A ∈ S}, and let

Propn+1(S) = Propn(S) ∪ {(¬P) | P ∈ Propn(S)} ∪
{(P⊙Q) | P,Q ∈ Propn(S),⊙ a binary connective}

so that Prop0(S) ⊂ Prop1(S) ⊂ Prop2(S) ⊂ . . . . The set of all propositions
over S is

Prop(S) =
⋃

n Propn(S).

The set Prop(S) can be seen as the collection of all closed terms of a
language such that every A ∈ S is a constant symbol and with the connectives
construed as function symbols, and with the convention that each term must
start and end with a parenthesis. Thus ht(P), the height of P, is the least n
such that P ∈ Propn(S); equivalently it is the height of the syntactic tree of P
construed as a term. It is not hard to see (Exercise 3.39) that if ht(P) = n+1,
then either P = (¬Q) for some unique Q of height n, or else P = (Q⊙R) for
a unique choice of ⊙,Q,R, and such that max(ht(Q),ht(R)) = n; we call ¬
and ⊙ the main connective of P.

Remarks 3.7. (a) In order to simplify the notation, we follow the conven-
tion adopted for formulæ and drop parentheses whenever possible. In
particular we write A ∈ Prop0(S), rather than (A) ∈ Prop0(S). Thus
with a minor blurring of vision we may assume that S ⊆ Prop(S).
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(b) If L is a first-order language and S is the set of L-formulæ that are
atomic or existential, then Prop(S) can be construed as the set of all
L-formulæ.

(c) A proposition over S is a finite string of symbols, so if P ∈ Prop(S)
then P ∈ Prop(S′) for some finite S′ ⊆ S. If P ∈ Prop({A1, . . . ,An})
then any letter of S present in P is among A1, . . . ,An, but this does not
imply that each these propositional letters appears in P.

A valuation is a function v : S → {0, 1} where 0 represents falsehood and
1 represents truth. Every valuation v can be extended to a map from Prop(S)
to {0, 1} by abiding by the meaning of the logical constants—Section 2.A.

Lemma 3.8. Every v : S → {0, 1} can be extended to a unique v̄ : Prop(S)→
{0, 1} such that

v̄(¬P) = 1− v̄(P)

v̄(P ∧Q) = min{v̄(P), v̄(Q)} = v̄(P) · v̄(Q)

v̄(P ∨Q) = max{v̄(P), v̄(Q)}
v̄(P⇒ Q) = 1− (v̄(P) · (1− v̄(Q)))

v̄(P⇔ Q) = v̄(P) + v̄(Q) + 1 (mod 2)

v̄(P ·∨Q) = v̄(P) + v̄(Q) (mod 2).

Proof. It is enough to construct v̄n : Propn(S) → {0, 1} satisfying the
conditions above and such that v̄0 = v and v̄n+1 extends v̄n. Suppose
P ∈ Propn+1(S). If P ∈ Propn(S) then v̄n+1(P) = v̄n(P), so we may assume
that P ∈ Propn+1(S) \ Propn(S). Then P is either ¬Q for some unique
Q ∈ Propn(S) or else it is of the form Q⊙ R with ⊙ and Q,R ∈ Propn(S)
uniquely determined. Then the conditions above force the definition of
v̄n+1(P). □

For notational ease, we use the same letter v to denote both the function
S → {0, 1} and its extension Prop(S)→ {0, 1}.

Definition 3.9. A proposition P is a tautology if v(P) = 1 for all v; it is a
propositional contradiction if v(P) = 0 for all v. We say that

• P is tautologically equivalent to Q if v(P) = v(Q) for all valuations v,
• P is a tautological consequence of Γ, a collection of propositions if for

all valuations v such that v(Q) = 1 with Q ∈ Γ, we have that v(P) = 1.

Table 1 lists some of the most common tautologies—two are named after
the logicians who discovered them, other carry their a latin name from the
Middle Ages. Two propositions P and Q are tautologically equivalent just in
case P⇔ Q is a tautology. If Γ is a finite collection of propositions Q1, . . . ,Qn,
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(A⇒ B) ∨ (B⇒ A) Dummet’s law
((A⇒ B)⇒ A)⇒ A Peirce’s law
¬A⇒ A⇒ B ex falso quodlibet
A⇒ B⇒ A
(¬A⇒ A)⇒ A
A ∧ (A ∨ B)⇔ A
A ∨ (A ∧ B)⇔ A
((A⇒ B) ∧ (C⇒ D))⇒ (A ∧ C⇒ B ∧D)
((A⇒ B) ∧ (C⇒ D))⇒ (A ∨ C⇒ B ∨D)
(A⇒ B)⇒ (A ∧ C)⇒ B
(A⇒ B)⇒ A⇒ B ∨ C
(¬B⇒ ¬A)⇒ (¬B⇒ A)⇒ B reductio ad absurdum
(C⇒ A)⇒ (C⇒ B)⇒ C⇒ (A ∧ B)
(A⇒ C)⇒ (B⇒ C)⇒ (A ∨ B)⇒ C.

Table 1. Some tautologies

then P is tautological consequence of Γ just in case (Q1 ∧ · · · ∧Qn)⇒ P is a
tautology. Equivalently: if v (Q1 ∧ · · · ∧Qn) ≤ v(P) for any v.

Rather than working with valuations, it is often more handy to look at the
truth tables. The truth table of P ∈ Prop({A1, . . . ,An}) has n+ 1-many
columns labelled with A1, A2, . . . ,An,P, and 2n-many rows—one for each
valuation of A1, . . . ,An—and the corresponding truth value of P.

A1 A2 . . . An P

0 0 . . . 0 i1

0 0 . . . 1 i2
...

...
...

...

1 1 . . . 1 i2n

Connectives are described by truth tables: the one for negation is

A ¬A
0 1

1 0
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while those of the binary connectives are

A B A ∨ B A ∧ B A⇒ B A⇔ B A ·∨ B

0 0 0 0 1 1 0

1 0 1 0 0 0 1

0 1 1 0 1 0 1

1 1 1 1 1 1 0

The truth table of P encodes v(P) for any valuation v of A1, . . . ,An. Equiva-
lently it can be seen as a function fP : {0, 1}n → {0, 1} that maps (i1, . . . , in)
to the value v(P) when v(Ak) = ik, k = 1, . . . , n.

Observe that P is a tautology if and only if the column corresponding to
P does not contain 0, that is fP is identically equal to 1.

If P ∈ Prop({A1, . . . ,An}) and Q1, . . . ,Qn ∈ Prop({B1, . . . ,Bm}), then

P[Q1/A1, . . . ,Qn/An]

is the element of Prop({B1, . . . ,Bm}) obtained from P by replacing each
occurrence of Ai with Qi, where i = 1, . . . , n. (That P[Q1/A1, . . . ,Qn/An] is
indeed a proposition is a consequence of Lemma 3.2.)

Proposition 3.10. With the notation above, fP[Q1/A1,...,Qn/An] is the compo-
sition of fP and fQ1 , . . . , fQn, that is for all x⃗ ∈ {0, 1}m

fP[Q1/A1,...,Qn/An](x⃗) = fP(fQ1(x⃗), . . . , fQn(x⃗)).

Proof. By induction on k, the height of P. If k = 0 then P is Ai for some
1 ≤ i ≤ n, so P[Q1/A1, . . . ,Qn/An] is Qi, and the result follows at once. So
suppose k = l + 1 and that the result holds for l. If P is ¬P0 then P0 is of
height l, so

fP[Q1/A1,...,Qn/An](x⃗) = 1− fP0[Q1/A1,...,Qn/An](x⃗)

= 1− fP0(fQ1(x⃗), . . . , fQn(x⃗))

= fP(fQ1(x⃗), . . . , fQn(x⃗)).

So we may assume that P is P0 ⊙ P1 with ⊙ a binary connective, and that
at least one among P0,P1 is of height l. For the sake of definiteness, suppose
⊙ is ∧ and let Ri be Pi[Q1/A1, . . . ,Qn/An]. Then

fP[Q1/A1,...,Qn/An](x⃗) = min(fR0(x⃗), fR0(x⃗))

= min(fP0(fQ1(x⃗), . . . , fQn(x⃗)), fP1(fQ1(x⃗), . . . , fQn(x⃗)))

= fP(fQ1(x⃗), . . . , fQn(x⃗)).

The argument for the other connectives is similar. □

Corollary 3.11. If Q1, . . . ,Qn ∈ Prop(S) and P ∈ Prop({A1, . . . ,An}) is a
tautology, then so is P[Q1/A1, . . . ,Qn/An].
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Remarks 3.12. (a) While the notion of equivalence of formulæ was intro-
duced in an informal way—two formulæ are equivalent if they assert the
same thing—the notion of tautological equivalence is a genuine mathe-
matical notion.14 The definition of logical equivalence (formalizing the
intuitive idea of equivalence between formulæ) will be introduced in
Chapter VII.

(b) If every connective can be expressed using connectives from some fixed
list, such list will be said to be an adequate set of connectives. In
other words: in order to define the set of propositions we could have
restrained ourselves to connectives from the given list. Since A ∨ B and
A ∧ B are tautologically equivalent to ¬(¬A ∧ ¬B) and to ¬(¬A ∨ ¬B),
respectively, it follows that {¬,∧} and {¬,∨} are adequate sets of
connectives.

Suppose that P ∈ Prop({A1, . . . ,An}). Since B ⇒ C is tautologically
equivalent to ¬B ∨ C and since B⇔ C is tautologically equivalent to (¬B ∨
C) ∧ (¬C ∨ B) then P can be transformed into a tautologically equivalent
proposition containing the same letters A1, . . . ,An and only the connectives
¬, ∨ and ∧. By repeated applications of De Morgan’s laws, and by the double
negation rule, this formula can be further transformed so that the negation
symbol ¬ appears only in front of the propositional letters A1, . . . ,An. Finally,
by repeated application of the distributivity laws between conjunction and
disjunction, P can be turned into a disjunction

D1 ∨ · · · ∨Dm

where each Di is a conjunction

Ci,1 ∧ · · · ∧ Ci,ki

where each Ci,j is either an Ai, or the negation of an Ai. Such a proposition is
said to be in disjunctive normal form. If P is a propositional contradiction,
then it is tautologically equivalent to (¬A1 ∧A1) ∨ · · · ∨ (¬An ∧An). Exer-
cise 3.46 shows how to use truth tables to compute the disjunctive normal
form of a proposition.

Let’s go back to first-order logic. An L-formula φ is a tautology if it
is of the form P[ψ1/A1, . . . ,ψn/An] where ψ1, . . . ,ψn are sub-formulæ of φ
and P ∈ Prop({A1, . . . ,An}) is a tautology in the sense of Definition 3.9.
Arguing as in Example 3.5 any formula which is a tautology is valid, but
the converse is not true. For example x ≖ x, or more generally the formulæ
in (3.6) on page 31, is valid, but v(x ≖ x) could be 0 for suitable v.

14The algebraic aspect of the notion of tautological equivalence is analyzed in Section 7.F.
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3.C.2. Free and bound variables. Every formula contains a finite number
of variables and every time a variable shows up in a formula we have an
occurrence of the variable in the formula. For example the variable z
occurs three times in ∃x∀y (P (x, y)⇒ Q(x)) ⇒ ∀zR(z) ∨ S(z): in the first
two occurrences z is mute, since ∀zR(z) has the same meaning of ∀uR(u),
that is every item enjoys property R, while the third occurrence asserts that
z enjoys property S. Occurrences of the first kind are called bound, those
of the second kind are called free. The free occurrences of a variable v in
a formula φ are those in the terminal nodes of the syntactic tree (i.e. the
atomic subformulæ of φ) such that there is no node above them labelled
with ∃v or ∀v. Using boldface letters to highlight bound occurrences, we
have ∃x∀y (P (x,y)⇒ Q(x)) ⇒ ∀zR(z) ∨ S(z) as one can easily see from
the syntactic tree of this formula on page 28.

Definition 3.13. Let φ be a formula and x a variable.

• If φ is atomic then every occurrence of x in φ is free.
• If φ is of the form ¬ψ, the free occurrences of x in φ are exactly those of
x in ψ.
• If φ is of the form ψ⊙χ, where⊙ is a binary connective, the free occurrences

of x in φ are exactly those of x in ψ and those of x in χ.
• Suppose φ is of the form ∃yψ or ∀yψ. If y is the variable x, then all

occurrences of x in φ are bound. If instead y is a variable different from
x, then the free occurrences of x in φ are exactly those of x in ψ.

The variable x occurs freely in φ (equivalently: x is a free variable of φ)
if there is at least a free occurrence of x in φ. In analogy with what was
done for terms on page 25, the notation

φ(x1, . . . , xn)

is used to highlight that the variables that occur freely in φ are among the
x1, . . . , xn. (We do not require that every x1, . . . , xn occurs freely, or occurs
at all, in φ; it is perfectly possible that the formula contains no free variable,
or no variable at all.) A sentence or closed formula is a formula without
free variables. The universal closure of a formula φ is the formula φ∀

obtained by universally quantifying all free variables of φ; if instead all free
variables are existentially quantified the existential closure φ∃ is obtained.
3.C.3. Substitutability. A term can replace a variable in an other term (see
p. 26), or in a formula. If t1, . . . , tn are terms, the expression

φ[t1/x1, . . . , tn/xn]

obtained by replacing all occurrences of xi in φ with ti, need not be a formula:
for example if φ is ∃x(x < y) ∧ x ≖ y and c is a constant, then φ[c/x] is
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∃c(c < y) ∧ c ≖ y which is not a formula, since quantifiers can be applied
only to variables. We will write

φLt1/x1, . . . , tn/xnM

for the formula obtained by replacing all free occurrences of xi in φ with ti,
(i = 1, . . . , n). If one of these variables, for example x1, does not occur free in
φ, then the formula becomes φLt2/x2, . . . , tn/xnM, and hence the definition is
of interest when every x1, . . . , xn occurs free in φ. In this case the formula φ
asserts something about items x1, . . . , xn and φLt1/x1, . . . , tn/xnM should say
the same thing about t1, . . . , tn. In order to be sure that this will be the case,
it is important that no variable of a ti will be bound after the substitution is
performed. If this does not happen, the meaning of φLt1/x1, . . . , tn/xnM could
change drastically: for example, working in the realm of natural numbers,
the formula

(3.7) ∃y (2 · y + 1 ≖ x)

says that x is odd, ∃y(2 · y + 1 ≖ z + 2) says that z + 2 is odd, but
∃y(2 · y + 1 ≖ w + y) says that w is not zero! A term t is substitutable for
x in φ if none of the variables of t is bound by a quantifier in φLt/xM. In
particular, if x does not occur free in φ or t is a closed term (i.e. it contains
no variables), then t is substitutable for x in φ.

The formulæ

∃z (2 · z + 1 ≖ x) , ∃w (2 · w + 1 ≖ x) , ∃u (2 · u+ 1 ≖ x) , . . .

obtained by changing everywhere y with a new variable, are called variants
of the formula (3.7), and they all state that x is odd. The only exception
is when y is replaced by x, since ∃x (2 · x+ 1 ≖ x) does not say that x is
odd. This is similar to what happens in calculus: when f is integrable the
expressions

∫ 1
0 f(x, y) dy and

∫ 1
0 f(x, z) dz are completely equivalent, and

denote a real function of x, while
∫ 1
0 f(x, x) dx is a real number. In general,

a variant of φ(x1, . . . , xn) is a formula φ′(x1, . . . , xn) with the same free
variables, and it is obtained by swapping some bound variables with other
variables so that no free occurrence of xi in φ turns out to be bound in φ′.

This algorithm is completely general, and allows us to define the substitu-
tion operation in general: given a formula φ(x1, . . . , xn) and terms t1, . . . , tn,
construct a variant φ′ of φ so that none of the variables that are bound in
φ′ is one of x1, . . . , xn or appears in some ti (so that the terms t1, . . . , tn are
substitutable for x1, . . . , xn in φ′). Then the formula φ′Lt1/x1, . . . , tn/xnM is
defined to be φ′[t1/x1, . . . , tn/xn].

Convention. Whenever there is no danger of confusion φ(t1, . . . , tn) stands
for φ′[t1/x1, . . . , tn/xn] where φ′ is a variant of φ in which none of the
variables with bound occurrence is one of x1, . . . , xn or appears in some ti.
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This convention is particularly handy when φ has just one free variable,
and the term is another variable. For example if φ(x) is x ̸≖ 1∧∀y∀z(y · z =
x⇒ y ≖ 1∨z ≖ z) saying that “x is prime”, then φ(y) is y ̸≖ 1∧∀w∀z(w ·z =
y ⇒ w ≖ 1 ∨ z ≖ z) and says that “y is prime”.

If x does not occur free in φ, then φ is equivalent to both ∃xφ and ∀xφ—
for example ∃x (y2 − 3y + 2 ≖ 0) and ∀x (y2 − 3y + 2 ≖ 0) are equivalent
to y2 − 3y + 2 ≖ 0. The notion of free/bound variable allows to prove the
manipulations on quantifiers that were informally introduced on page 10.
Recall that

∀x (φ ∧ψ) ⇔ ∀xφ ∧ ∀xψ, ∃x (φ ∨ψ) ⇔ ∃xφ ∨ ∃xψ,
∀xφ ∨ ∀xψ ⇒ ∀x (φ ∨ψ) , ∃x (φ ∧ψ) ⇒ ∃xφ ∧ ∃xψ,

are valid formulæ and that the last two implications cannot be turned into
bi-implications. Suppose now that x does not occur free in φ: if φ ∧ ∃xψ
holds, then the x about which we are predicating ψ is mute in φ, and it
follows that ∃x (φ ∧ψ). Similarly, from ∀x (φ ∨ψ) it follows that φ ∨ ∀xψ.

Therefore if x does not occur free in φ, the formulæ

φ ∧ ∃xψ ⇔ ∃x (φ ∧ψ) and φ ∨ ∀xψ ⇔ ∀x (φ ∨ψ)

are valid, and since φ is equivalent to ∃xφ and to ∀xφ, then

∀xφ ∨ ∀xψ ⇔ ∀x (φ ∨ψ) and ∃xφ ∧ ∃xψ ⇔ ∃x (φ ∧ψ)

are valid. For example, consider the formula

∃x
(
x2 − 3x+ 2 ≖ 0

)
∧ ∃x

(
x2 + x− 12 ≖ 0

)
asserting that the two equations of second degree have a root. This formula
(that is true when x varies on the reals) is equivalent to the formula

∃x
(
x2 − 3x+ 2 ≖ 0 ∧ ∃x

(
x2 + x− 12 ≖ 0

))
and to the formula

∃x
(
∃x
(
x2 − 3x+ 2 ≖ 0

)
∧ x2 + x− 12 ≖ 0

)
.

If we wanted to modify this last formula by moving outside the innermost
quantifier, we should first of all replace ∃x

(
x2 − 3x+ 2 ≖ 0

)
with its variant

∃y
(
y2 − 3y + 2 ≖ 0

)
, thus obtaining

∃x∃y
(
(y2 − 3y + 2 ≖ 0) ∧ (x2 + x− 12 ≖ 0)

)
.

Had we not changed this variable, we would commit an offence and obtain the
formula ∃x∃x((x2 − 3x+ 2 ≖ 0) ∧ (x2 + x− 12 ≖ 0)) which is equivalent to
∃x
(
(x2 − 3x+ 2 ≖ 0) ∧ (x2 + x− 12 ≖ 0)

)
asserting that the two equations

have a common root (which is false when x varies on the reals).
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3.C.4. Prenex form. The above equivalences are very useful to transform a
formula φ(x1, . . . , xn) into an equivalent one φ′(x1, . . . , xn) having the same
free variables and in prenex form, that is of the form

Q1y1Q2y2 . . .Qmymψ,

where the Qis are quantifiers and ψ is open, that is to say: quantifier-free.
The block of quantifiers Q1y1Q2y2 . . .Qmym is the prefix, and ψ is the
matrix of the formula.

Warning. If a formula is not open, it does not mean that it is closed, and
conversely.

Let us show how to obtain a prenex formula equivalent to (3.2) on page 28

∃x∀y (¬P (x, y) ∨Q(x))⇒ ∀zR(z) ∨ S(z).

Firstly turn the implication into a disjunction ¬(∃x∀y(¬P (x, y) ∨Q(x))) ∨
∀zR(z) ∨ S(z), then turn ¬(∃x∀y(¬P (x, y) ∨ Q(x))) into ∀x∃y(P (x, y) ∧
¬Q(x)), and ∀zR(z) into ∀wR(w), so that we get

∀x∃y (P (x, y) ∧ ¬Q(x)) ∨ ∀wR(w) ∨ S(z)

thus ∀wR(w) ∨ S(z) becomes ∀w (R(w) ∨ S(z)), whence

∀x∃y (P (x, y) ∧ ¬Q(x)) ∨ ∀w (R(w) ∨ S(z))

and finally, since (P (x, y) ∧ ¬Q(x)) ∨ ∀w(R(w) ∨ S(z)) is equivalent to
∀w((P (x, y) ∧ ¬Q(x)) ∨R(w) ∨ S(z)) we obtain

∀x∃y∀w ((P (x, y) ∧ ¬Q(x)) ∨R(w) ∨ S(z)) .

This example suggests the following algorithm to construct a prenex
formula φ′(x1, . . . , xn) from φ(x1, . . . , xn):

Step 1: transform all implications A⇒ B into ¬A∨B and all bi-implications
A⇔ B into (¬A ∨ B) ∧ (¬B ∨A),

Step 2: by De Morgan’s laws, the double negation rule, and the transforma-
tion on quantifiers of Section 2, move the negation symbols inside,
down to the level of atomic sub-formulæ,

Step 3: repeatedly apply the following operation: transform all sub-formulæ
of the form (QxA)⊙ (Q′yB) where Q,Q′ are quantifiers and ⊙ is ∨
or ∧, into QzQ′w (ALz/xM⊙ BLw/yM) where z is substitutable in A
for x and does not occur free in B, and w is substitutable in B for y
and does not occur free in A.

A prenex form formula equivalent to a given formula is far from being
unique—for example in Step 3 we could transform (QxA) ⊙ (Q′yB) into
Q′wQz (ALz/xM⊙ BLw/yM). In particular

∀w∀x∃y ((P (x, y) ∧ ¬Q(x)) ∨R(w) ∨ S(z))
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is a prenex formula equivalent to (3.2).
If ∀xφ ⇒ ψ or ∃xφ ⇒ ψ are turned into prenex form, and x does not

occur free in ψ, then ∃x (φ⇒ ψ) and ∀x (φ⇒ ψ) are obtained. In other
words: if B does not mention x, a statement like

if A holds for some x, then B

is equivalent to
for all x, if A holds of x then B.

For example the statement “if y is a square, then it is bigger or equal
than zero” is formalized as ∃x (y ≖ x · x) ⇒ y ≥ 0 or equivalently as
∀x (y ≖ x · x ⇒ y ≥ 0). The other equivalence between

if A is true for all x, then B

and
there is an x such that: if A is true of x then B

is more surprising (naively one would have expected that ∀xφ⇒ ψ should
be equivalent to ∀x (φ⇒ ψ)) and shows that carless use of quantifiers in
natural language is prone to errors. For example, consider the following
statement of set theory:15 two sets are equal if they have the same elements.
It is formalized as ∀x∀y (∀z (z ∈ x⇔ z ∈ y)⇒ x ≖ y), that, in prenex form,
becomes

∀x∀y∃z ((z ∈ x⇔ z ∈ y)⇒ x ≖ y) ,

which reads: given two sets x and y there is an element z such that: if z
belongs to x if and only if z belongs to y, then x and y coincide. What is this
z? To find out, it is enough to take the contrapositive of what is inside the
parentheses, that is

∀x∀y∃z (x ̸≖ y ⇒ ((z ∈ x ∧ z /∈ y) ∨ (z ∈ y ∧ z /∈ x)))

which reads: given two sets x and y there is an element z such that: if x
and y are distinct, then z belongs to one of the two sets but not to the other.
Therefore, given two sets x and y it is enough to choose a z that belongs to
one of the two sets but not the other, if x and y are distinct, or z arbitrary
when x and y are the same.

It is possible to prove the results on formulæ in prenex form by induction
on the length of the prefix: one shows that a certain property P holds for all
quantifier free formulæ, and that if P holds for a certain φ, then it holds for
∃xφ and for ∀xφ. Since every formula is equivalent to a prenex formula, this
technique can be used for proving that a property P holds for all formulæ.

The length of the prefix is a measure of complexity for formulæ in prenex
form, just like the notion of length and height seen at the end of Section 3.A.

15This is known as the axiom of extensionality—see Chapter V, p. 369–370.
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In many situations it is more convenient to use yet another measure of
complexity, based on alternation of blocks of quantifiers in the prefix:

• if the prefix is just one block of universal quantifiers, it is a ∀-formula; if
the prefix is just one block of existential quantifiers, it is a ∃-formula,

• if the prefix is a block of universal quantifiers followed by a block of
existential quantifiers, it is a ∀∃-formula; if the prefix is block of existential
quantifier followed by a block of universal quantifiers, it is a ∃∀-formula,

• if the prefix is a block of universal quantifiers, followed by a block of
existential quantifiers, followed by a block of universal quantifiers, it is a
∀∃∀-formula; if the prefix is block of existential quantifiers followed by a
block of universal quantifiers, followed by a block of universal quantifiers,
it is a ∃∀∃-formula,

and so on. The negation of a ∀-formula is equivalent to a ∃-formula, and
conversely; the negation of a ∀∃-formula is equivalent to a ∃∀-formula, and
conversely; etc.

3.D. First-order structures. A finitary function or operation on a set
M is a function f : Mn → M , with n ∈ N. The integer n is the ariety of
the operation. When n = 0 then Mn = {∅} so f can be identified with a
specific element of M . An algebraic structure is a set M ̸= ∅ with a bunch
of operations. Groups, rngs, . . . can be construed as algebraic structures.
A relational structure is a set M ̸= ∅ with a bunch of relations R ⊆Mn,
with n ∈ N \ {0}. Also in this case the integer n is called the ariety of
the relation. A function/relation with arity 1, 2, 3 is called a unary, binary,
ternary function/relation.

We pause to review some well-known facts about relational structures of
the form (M,R) with R ⊆ M ×M . Most of these facts are standard—the
only reason to present them now is to fix the notation and terminology.
3.D.1. Binary relations. A binary relation R on M is

reflexive: if ∀x ∈M ((x, x) ∈ R);

irreflexive: if ∀x ∈M ((x, x) /∈ R);

symmetric: if ∀x, y ∈M ((x, y) ∈ R⇒ (y, x) ∈ R);

asymmetric: if ∀x, y ∈M ((x, y) ∈ R⇒ (y, x) /∈ R);

antisymmetric: if ∀x, y ∈M ((x, y) ∈ R ∧ (y, x) ∈ R ⇒ x = y);

transitive: if ∀x, y, z ∈M ((x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R);

total: if ∀x, y ∈M ((x, y) ∈ R ∨ x = y ∨ (y, x) ∈ R),

free: if ∀x, y ∈M (x ̸= y ⇒ (x, y) /∈ R ∧ (y, x) /∈ R).
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v1

v2

v3

v4

v5

Figure 4. A finite graph.

An X ⊆M is independent for R if R ∩X ×X is free; it is connected for
R if R ∩X ×X is total.

The inverse or converse of R is the binary relation R−1

R−1 =
{
(b, a) ∈M2 | (a, b) ∈ R

}
.

If R is reflexive (or: irreflexive, symmetric, asymmetric, antisymmetric,
transitive, total, free) then so is R−1. If R is a family of binary relations
on M , and every R ∈ R is reflexive (or: irreflexive, symmetric, asymmetric,
antisymmetric, transitive, total, free) then so is⋂

R = {(a, b) ∈M2 | ∀R ∈ R ((a, b) ∈ R)}.

If every R ∈ R is reflexive (or: irreflexive, symmetric, total, free) then so is⋃
R = {(a, b) ∈M2 | ∃R ∈ R ((a, b) ∈ R)}

but need not be antisymmetric, asymmetric or transitive, even if each R ∈ R

is so.
The transitive closure of R ⊆ M2 is the smallest transitive binary

relation containing R, that is⋂
{S ⊆M2 | R ⊆ S ∧ S transitive}.

3.D.2. Graphs. A graph is a non-empty set V whose elements, called ver-
tices, are variously connected.16 A vertex is never connected to itself and if
two vertices are connected, then the connection is unique. The connections
are called edges. Formally a graph is a pair (V,E) where V ̸= ∅ is the set of
vertices and E is a subset of

{{v, w} | v, w ∈ V ∧ v ̸= w} .

Two vertices of a graph v and w are connected if {v, w} is an edge, and
conversely {v, w} ∈ E means that v and w are connected by an edge. The set
E of unordered pairs of vertices can be identified with the symmetric subset

16This concepts should not be confused with the notion of graph of a function Gr(f).
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of V × V \ {(v, v) | v ∈ V } given by R = {(v, w) | {v, w} ∈ E}, so a graph is
simply a structure (V,R) with R an irreflexive, symmetric relation.

Finite graphs (that is: graphs whose set of vertices is finite) can be
drawn as points on the plane joined by (possibly curved) lines: the points
represent vertices, the lines represent the edges. The degree of a vertex
v is the number of vertices connected to v by an edge. Figure 4 shows a
graph whose vertices v1, v2, v3 are mutually connected, v4 is connected only
to v3, and v5 is not connected to any other vertex, that is it is an isolated
vertex. In other words, it is the graph (V,E) with V = {v1, v2, v3, v4, v5}
and E = {{v1, v2} , {v1, v3} , {v2, v3} , {v3, v4}}. The vertices v1 and v2 have
degree 2, the vertex v3 has degree 3, the vertex v4 has degree 1, and the
vertex v5 has degree 0.

An n-cycle (n ≥ 3) in a graph is a finite sequence of distinct vertices
v1, . . . , vn such that vi is connected to vi+1 and vn is connected to v1. A cycle
is an n-cycle for some n, and a graph is acyclic if it does not contain cycles.
A k-path from v to w is a finite sequence of vertices

v = z0, z1, . . . , zk = w

such that every zi is connected to zi+1 and k ≥ 1. A path is a k-path for
some k. A graph is connected if every pair of vertices is connected by a
path; otherwise it is disconnected—the graph in Figure 4 is disconnected,
since v5 is isolated.
3.D.3. Directed graphs. If in the definition of graph we assume that links
between vertices posses a direction, and that a vertex may be linked with
itself, we obtain the notion of directed graph or digraph. Formally a
directed graph is a non-empty set of vertices V together with R ⊆ V × V a
family of oriented edges, and every binary relation R on a non-empty set V
can be seen as a directed graph. Thus a directed graphs is just any relational
structure (V,R) with R ⊆ V 2. For example, if V = {v1, v2, v3, v4, v5} and

R = {(v1, v1), (v1, v2), (v1, v3), (v2, v1), (v2, v3), (v3, v2), (v3, v3), (v4, v3)} ,
then the directed graph (V,R) is shown in Figure 5. Note that the vertices
v1, v2 are linked in both directions, and so are the vertices v2, v3.

v1

v2

v3

v4

v5

Figure 5. A finite directed graph.
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3.D.4. Ordered sets. A reflexive and transitive relation R ⊆M2 is a preorder
or quasi-order, and the resulting structure (M,R) is called a preordered set
or quasi-ordered set. A symmetric preorder is an equivalence relation,
an antisymmetric preorder is an order or ordering. An ordered set is a
structure (M,R) with R ⊆M2 an order. We will often blur the distinction
between the relation and the structure and say that (M,R) is a (pre)order,
rather than a (pre)ordered set. The strict part of a relation R is R\R−1, the
strict part of a preorder is a strict preorder and the strict part of an order is
a strict order. This terminology is a bit unfortunate, since a strict (pre)order
is not a (pre)order, but this wording has become standard. It is customary
(but not compulsory) to use the symbols ≤, ⪯, ⊴, . . . for (pre)orders, <, ≺,
◁, . . . for strict (pre)orders, and ∼, ≈, ≡, . . . for equivalence relations. If R
is a preorder on M , then R∩R−1 is an equivalence relation, and the relation
≤ on the quotient M/R ∩R−1 defined by

[a] ≤ [b] ⇔ a R b

is an order, called the order induced by the preorder R.
If (M,≤) and (N,⪯) are preordered sets, a function f : M → N such

that a ≤ b⇒ f(a) ⪯ f(b) for all a, b ∈M is said to be monotone or isotone
or order preserving; if instead a ≤ b ⇒ f(b) ⪯ f(a) then f is antitone
or order reversing. If < and ≺ are strict orders on M and N , then f is
increasing if and only if a < b⇒ f(a) ≺ f(b) for all a, b ∈M ; by abuse of
language, a function between ordered sets is said to be increasing, if it is such
when considering the strict orders associated. If (M,≤) is an ordered set, a
function f : M →M is progressive or inflationary if and only if a ≤ f(a)
for all a ∈M ; it is idempotent if and only if f(f(a)) = f(a) for all a ∈M .

Let (M,≤) be an ordered set and let a, b, c ∈M . Then

• c is an upper bound of a, b if a ≤ c and b ≤ c. Dually, c is an lower
bound of a, b if c ≤ a and c ≤ b.

• c is the least upper bound of a, b, in symbols sup(a, b), if it is an upper
bound of a, b, and c ≤ c′ for any upper bound c′ of a, b. Dually c is the
greatest lower bound of a, b in symbols inf(a, b) or a⋏ b, if it is a lower
bound of a, b, and c′ ≤ c for any lower bound c′ of a, b.

An ordered set (M,≤) is

• upward directed if any two elements have an upper bound, and down-
ward directed if any two elements have a lower bound;

• an upper semi-lattice if sup(a, b) exists for any two a, b ∈ M , and a
lower semi-lattice if inf(a, b) exists for any two a, b ∈M ;

• a lattice if it is simultaneously an upper and lower semi-lattice;
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• linear or total if ≤ is total on M , that is to say: a ≤ b or b ≤ a for all
a, b ∈M .

A linear order is a lattice, and an upper/lower semi-lattice is upward/downward
directed, but none of the implications can be reversed. For example looking
at the orders of Figure 6, we see that the first is a lattice, while the second is
upward and downward directed but not a lattice, and the third is a tree and
a lower semi-lattice, but not a lattice. Observe that if in the second order
the maximum element is removed, the resulting order is not upward directed;
similarly if the minimum is removed the resulting order will not be downward
directed.

If (M,≤) is an ordered set then a is a predecessor of b, or, equivalently,
that b is a successor of a if a < b, where < is the strict part of ≤; if moreover
there is no c ∈M such that a ≤ c ≤ b then a is an immediate predecessor
of b, and b is an immediate successor of a. (If ≤ is linear, the immediate
predecessor and immediate successor of an element are unique, if they exist.)
The covering relation induced by ≤ is the relation ◀ on M defined by

a ◀ b ⇔ a is an immediate predecessor of b.

Observe that a ◀ b ⇒ a < b, and that if M is finite, then < is the transitive
closure of ◀.

A subset of an ordered set (M,≤) is a chain if it is linearly ordered by
≤. For a < b the intervals of endpoints a and b are

(a; b) = {c ∈M | a < c < b} [a; b] = {c ∈M | a ≤ c ≤ b}
(a; b] = {c ∈M | a < c ≤ b} [a; b) = {c ∈M | a ≤ c < b}.

A finite order can be visually described by its directed graph, or by the
directed graph of its covering relation. For example, a linear order with three
elements is represented by

or

Moreover we can use undirected graphs if we agree to draw smaller elements
below the larger ones, so the preceding linear order becomes

Such drawings are called Hasse diagrams.
A finite tree is a finite order with a least element called the root and

such that for every element there is a unique path from the root to it. Finite
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Figure 6. Examples of finite orders

linear orders and the hydras of Example 1.2 are finite trees, while any order
containing a diamond-shaped order as suborder is not a tree.

Remarks 3.14. (a) Syntactic trees are related to, but different from, finite
trees: a syntactic tree is a finite tree (drawn upside down) but with an
ordering of the leaves sprouting from a node. The syntactic tree of the
term f(x, y) must keep track of the fact that f is the root and that the
inputs are x and y in that specific order.

(b) A connected, acyclic graph is called a combinatorial tree. The Hasse
diagram of a finite tree is a finite combinatorial tree. Conversely, any
finite combinatorial tree with a distinguished vertex (acting as root)
yields a finite tree.

3.D.5. Calculus of relations*. The collection P(M×M) of all binary relations
on some fixed non-empty set M can be seen as a structure. It is ordered
under inclusion, and being a power-set we have the usual Boolean operations:
given R,S we can construct new binary relations by means of the usual
set-theoretic operations R ∪ S, R ∩ S, R∁ = M2 \R, . . . . As we are looking
at relations rather than just sets we can define new operations such as R−1

and the composition of R and S

R | S def
= {(x, y) ∈M2 | ∃z ∈M ((x, z) ∈ R ∧ (z, y) ∈ S)}.

Observe that if R and S are functions from M to itself, then the composition
of R and S as relations is their composition as functions in the reverse order,
that is R | S = S ◦R. The notion of R † S, the sum of R and S, is obtained
by dualizing the definition of composition, swapping ∃ with ∀ and ∧ with ∨

R † S def
= {(x, y) ∈M2 | ∀z ∈M ((x, z) ∈ R ∨ (z, y) ∈ S)}.

As in the case of functions, for all R ⊆M2

R | id = id | R = R

where id = idM = {(x, x) | x ∈M} is the identity relation. For the sum we
have an analogous identity, namely

R † id∁ = id∁ †R = R.
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R | S = (R∁ † S∁)∁ R † S = (R∁ | S∁)∁

(R | S) | T = R | (S | T ) (R † S) † T = R † (S † T )
(R ∪ S) | T = (R | T ) ∪ (S | T ) R | (S ∪ T ) = (R | S) ∪ (R | T )
(R ∩ S) † T = (R † T ) ∩ (S † T ) R † (S ∩ T ) = (R † S) ∩ (R † T )

R | id = R = id | R R † id∁ = R = id∁ †R
(R−1)−1 = R (R | S)−1 = S−1 | R−1

(R ∪ S)−1 = R−1 ∪ S−1 (R ∩ S)−1 = R−1 ∩ S−1

Table 2. Some laws of calculus of relations

The language of calculus of relations L is meant for studying the
structure

(P(M ×M),∪,∩, |, †, ∁,−1, id).

It has four binary function symbols ∪,∩, |, †, two unary function symbols
∁,−1, and a constant symbol id. In order to keep the number of parentheses to
a minimum we convene that the unary operations have the priority over the
binary ones, and that | and † bind more than ∪,∩. In other words R∪S | T ∁

is shorthand for R ∪ (S | (T ∁)). The operations R \ S and R△S can be
recast as R ∩ S∁ and (R ∩ S∁) ∪ (S ∩R∁), respectively.

Observe that R ⊆ S if and only if one of the following holds:

R ∪ S = S, R ∩ S = R, R∁ ∪ S = M ×M, R ∩ S∁ = ∅

where ∅ and M ×M are shorthand of id ∩ id∁ and id ∪ id∁. Therefore any
formula t(x1, . . . , xn) ⊆ s(x1, . . . , xn) with t, s terms of L can be reformulated
as an identity t′(x1, . . . , xn) ≖ s′(x1, . . . , xn) for suitable terms t′, s′.

Besides the De Morgan identities for ∪,∩, ∁ there are laws governing the
operations |, †,−1 and their interactions with the set-theoretic operations.
Some of these laws are collected in Table 2—the first one illustrates a duality
between the operations | and †, showing that one can be defined from the
other, so L is redundant.

The next law of the calculus of relations can be used to prove many other
laws—see Section 7.M.

Proposition 3.15. R−1 | (R | S)∁ ⊆ S∁.

Proof. Suppose (x, y) ∈ R−1 | (R | S)∁. Then there is z such that (x, z) ∈
R−1 and (z, y) /∈ R | S, so that (z, x) ∈ R and (z, w) ∈ R∁ or (w, y) ∈ S∁,
for any w. The last clause when w = x yields (z, x) ∈ R∁ or (x, y) ∈ S∁: the
first is impossible, so the second must hold. This proves that (x, y) ∈ R−1 |
(R | S)∁ ⇒ (x, y) ∈ S∁. □

Observe that a binary relation R on M is
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reflexive: if and only if id ⊆ R,

irreflexive: if and only if R ⊆ id∁,

symmetric: if and only if R−1 ⊆ R,

asymmetric: if and only if R−1 ∩R = ∅,
antisymmetric: if and only if R ∩R−1 ⊆ id,

transitive: if and only if R | R ⊆ R,

total: if and only if R ∪R−1 ∪ id = M ×M

free: if and only if R ∪R−1 ⊆ id.

As R ⊆ S ⇒ R−1 ⊆ S−1 and (R−1)−1 = R, symmetry for R can be written
as R−1 = R.

It is possible to characterize properties of relations in terms of identities
(or inequalities using ⊆) in the language L. For example R is a preorder
on M if and only if R is reflexive and transitive, which is the same thing
as saying id ⊆ R and R | R ⊆ R. These two inclusions can be rewritten as
id ∪R = R and (R | R) ∪R = R, so

R is a preorder if and only if (id ∪R) ∩ ((R | R) ∪R) = R.

The trick here is that R is contained in A
def
= id∪R and B

def
= (R | R)∪R, so

id∪R = R and (R | R)∪R = R hold simultaneously if and only if A∩B = R.
There are other ways to turn a conjunction of two identities into a single
identity. For example, one transforms these identities as

• t1 ≖ ∅ and t2 ≖ ∅ and then merge them into t1 ∪ t2 = ∅, or else

• t1 ≖ M2 and t2 ≖ M2 and then merge them into t1 ∩ t2 = M2.

Using these tricks, properties of a relation R (like: being an order, equivalence
relation, a graph, . . . ) can be stated as an identity of terms of L involving
only the variable R—see Exercise 3.49.

3.E. Finite sequences. If A is a set then

A<N = {s | ∃n ∈ N (s : {0, . . . , n− 1} → A)}

is the set of all finite sequences or strings from A. The values s(i) are
often denoted with si and we write

⟨s0, . . . , sn−1⟩

to denote an element s of A, where n = lh(s) is the length of s. When
n = 0 we obtain the empty sequence ⟨⟩. (Computer scientists often write A∗

instead of A<N and ε instead of ⟨⟩.) The concatenation of s, t ∈ A<N is



50 I. Introduction to mathematical logic

the string s⌢t obtained by listing the elements of s first, and then those of t.
In other words if s = ⟨s0, . . . , sn−1⟩ and t = ⟨t0, . . . , tm−1⟩ then

s⌢t = ⟨s0, . . . , sn−1, t0, . . . , tm−1⟩

is a sequence of length n+m. The operation of concatenation is associative,
and since ⟨⟩⌢s = s⌢⟨⟩ it follows that A<N is a monoid.

For any a ∈ A we write

(3.8) a(n) = ⟨a, . . . , a︸ ︷︷ ︸
n times

⟩.

Thus a(0) = ⟨⟩ is the empty string, and with a minor blurring of vision we can
identify an element a ∈ A with ⟨a⟩, a sequence of length 1. In fact if there is
no danger of confusion we forgo the angular brackets so that for a, b ∈ A the
finite sequence ⟨a, b, a, a, a, b, a, b, b⟩ is written as abaaababb or aba(3)bab(2).
Similarly we often write st instead of s⌢t.

If A = {a} is a singleton, then A<N = {a(n) | n ∈ N} with the operation
of concatenation is isomorphic to (N,+). If A has at least two elements a, b
then (A<N,⌢) is not abelian, since ab ̸= ba.

Definition 3.16. If t, s ∈ A<N and t = u⌢s⌢v for some u, v, then s occurs
in t, in symbols s ⊑ t. If in the definition above u = ⟨⟩ then s is an initial
segment or prefix of t, in symbols s ⊑i t, and if v = ⟨⟩ then s is a final
segment of t, in symbols s ⊑f t.

It is immediate to check that the relations in Definition 3.16 are orderings
on A<N. As the elements of A<N are functions from a finite initial segment
of N into A, then s ⊑i t if and only if s ⊆ t.
3.E.1. Another look at terms and formulæ. Terms and formulæ are defined
by an inductive construction that can be cast in terms of finite sequences.

Definition 3.17. Let S be a non-empty set of symbols, and let a : S → N be
any function. The set of terms on (S, a) is Term(S, a) =

⋃
n∈NTermn(S, a)

where Termn = Termn(S, a) is defined inductively by

Term0 = {⟨s⟩ | s ∈ S ∧ a(s) = 0}
Termn+1 = {⟨s, t1, . . . , tk⟩ | s ∈ S ∧ a(s) = k ∧ t1, . . . , tk ∈ Termn}.

The least n such that t belongs to Termn is called the height of the term t.

Given a first order language L, let S be the set of all variables, and all
constant and function symbols of L, and let s : S → N be the arity function,
that is a(f) = k if f is a k-ary function symbol, and c(x) = a(c) = 0 for all
variables x and all constant symbols c. Thus the L-term f(x, g(c)) can be
identified with ⟨f, x, ⟨g, ⟨c⟩⟩⟩ where a(f) = 2, a(g) = 1, and a(x) = a(c) = 0.
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If every s ∈ S such that a(s) = 0 is a finite sequence, then the elements
of Term0(S, a) would be of the form ⟨⟨x1, . . . , xn⟩⟩ for suitable x1, . . . , xn,
making the definition of term of height 0 unreasonably baroque. For this
reason we stipulate the following

Convention 3.18. If a : S → N and every s ∈ S with a(s) = 0 is a finite
sequence, then Term0(S, a) is {s | s ∈ S ∧ a(s) = 0}.

An atomic L-formula can be seen as a finite sequence, either of the form
⟨≖, s, t⟩ with s, t L-terms, or else of the form ⟨R, t1, . . . , tn⟩ with R an n-ary
relation symbol and L-terms t1, . . . , tn. The collection of L-formulæ can be
seen as Term(S, a) where S is the set of all atomic formulæ, connectives, and
symbols ∃x, ∀x, for any variable x, and a : S → N is defined by

• a(φ) = 0 if φ is an atomic formula,
• a(¬) = 1 and a(⊙) = 2 for any binary connective ⊙,
• a(∃x) = a(∀x) = 1, for any x.

Thus the formula in (3.2) can be written (following Convention 3.18) as

⟨⇒, ⟨∃x, ⟨∀y, ⟨⇒, ⟨P, x, y⟩, ⟨Q, x⟩⟩⟩⟩, ⟨∨, ⟨∀z, ⟨R, z⟩⟩, ⟨S, z⟩⟩⟩.

The advantage of writing L-terms and L-formulæ this way is that we can avoid
(, ) completely, and the syntactic tree can be obtained in a straightforward
way.

3.F. Satisfaction of sentences. The notion of first-order structure
is obtained by merging the two notions of algebraic/relational structure,
as in the case of ordered groups (Section 9.A.2). Suppose L has predicate
symbols P,Q, . . ., function symbols f, g, . . ., and constant symbols c, d, . . ..
An L-structure

M = (M,PM, QM, . . . , fM, gM, . . . , cM, dM, . . . )

consists of:

• a non-empty set M , called the universe or domain of M,
• subsets PM ⊆Mn, QM ⊆Mk, . . . where n is the arity of the symbol P ,
k is the arity of the symbol Q, . . .
• operations fM, gM, . . . on M of the same arity as the symbols f, g, . . .,
• some specified elements cM, dM, . . . of M , one for each constant symbol of

the language L.

Remark 3.19. This maxim “a mathematician should never be enslaved by
her/his own notational conventions” applies also to us. In particular:
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• It is customary to use the same letter with different fonts (calligraphic vs.
roman) to distinguish the structure from its underlying universe, but there
will be times when this convention is ignored.

• Structures are often identified with their universe, as happens in other
parts of mathematics—in algebra one says “given a group G” rather than
“given a group G = (G, ∗)”.
• For the seek of readability, we might use the letter M (or its calligraphic

counterpart M) as subscript rather than superscript and write cM , ∗M ,
+M , PM . . . for the specified elements, operations, and relations of the
structure.

If M is an L-structure and x1, . . . , xn are the variables occurring in a
term t, the function induced by t is the n-ary function

tM : Mn →M

mapping (a1, . . . , an) ∈Mn to the element tM(a1, . . . , an) obtained by replac-
ing the function and constant symbols with the corresponding functions and
constants of M. For example the term17 t(x, y, z) given by x·(y ·y)+((x·y)+1)
in the language of rings defines a polynomial function R3 → R in every ring
R, mapping (a, b, c) ∈ R3 to ab2 + ab+ 1R ∈ R.

Definition 3.20. Given an L-sentence σ, consider the pseudo-formula σM

obtained by replacing the symbols P,Q, . . . , f, g, . . . , c, d, . . . with the relations
PM, QM, . . ., functions fM, gM, . . ., and elements cM, dM, · · · ∈ M , and by
bounding all quantifiers to M . We will say that M satisfies σ, in symbols

M ⊨ σ

if σM is true in M. If this is not the case, we write M ̸⊨ σ.

Observe that

the expression. . . amounts to saying that. . .
M ⊨ ¬σ M ̸⊨ σ,
M ⊨ σ ∧ τ M ⊨ σ and M ⊨ τ,
M ⊨ σ ∨ τ M ⊨ σ or M ⊨ τ,
M ⊨ σ⇒ τ if M ⊨ σ then M ⊨ τ,
M ⊨ σ⇔ τ M ⊨ σ if and only if M ⊨ τ.

Example 3.21. Let L be the language with only one binary predicate symbol
R, and let M = (M,RM) be an L-structure. Then M is a preordered set if

17Recall the convention on page 25 according to which the variables in t(x, y, z) are among
the x, y, z.
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and only if M satisfies the sentences

∀x (x R x)(3.9a)
∀x, y, z (x R y ∧ y R z ⇒ x R z)(3.9b)

which is to say that ∀x ∈M
(
(x, x) ∈ RM

)
and ∀x, y, z ∈M

(
(x, y) ∈ RM ∧

(y, z) ∈ RM ⇒ (x, z) ∈ RM
)
. If moreover M satisfies

(3.9c) ∀x, y (x R y ∧ y R x⇒ x ≖ y)

that is ∀x, y ∈M
(
(x, y) ∈ RM∧(y, x) ∈ RM ⇒ x = y

)
, then M is an ordered

set. If M satisfies (3.9a), (3.9b) and

(3.9d) ∀x, y (x R y ⇒ y R x)

which is to say that ∀x, y ∈M
(
(x, y) ∈ RM ⇒ (y, x) ∈ RM

)
, then M is a

non-empty set endowed with an equivalence relation.
Although this language L is suitable for axiomatizing orders, equivalence

relations, graphs, digraphs, . . . , when dealing with (pre)orders it is customary
to use the symbol ≤ rather than R, and denote the language by LOrdr.

Example 3.22. The language LGrps for groups has a symbol · for the binary
operation, a symbol f for a unary operation, and a constant symbol 1. In
order to conform with standard mathematical notation, we shall write x−1

instead of f(x). Atomic formulæ are of the form t1 ≖ t2, with t1 and t2 terms.
A structure for this language consists of a set M together with a specified
element 1M , a binary operation (x, y) 7→ x ·M y, and a unary operation
x 7→ x−1M . We say that M is a group if it satisfies the axioms

∀x, y, z (x · (y · z) ≖ (x · y) · z)(3.10a)
∀x (x · 1 ≖ x ∧ 1 · x ≖ x)(3.10b)

∀x
(
x · x−1 ≖ 1 ∧ x−1 · x ≖ 1

)
.(3.10c)

Example 3.23. The language LORings for ordered fields, has one binary
relation symbol <, two binary function symbols + and ·, one symbol for a
unary functiom −, and two constant symbols 0 and 1. A structure for this
language is a non-empty set M and two (not necessarily distinct) elements
0M and 1M , two (not necessarily distinct) binary operations +M and ·M , a
unary operation −M , and a binary relation <M . In general M will not be
an ordered field—to enforce this we require that M satisfies the axioms for
abelian groups

∀x, y, z ((x+ y) + z ≖ x+ (y + z))(3.11a)
∀x, y (x+ y ≖ y + x)(3.11b)
∀x (x+ 0 ≖ x)(3.11c)
∀x (x+ (−x) ≖ 0) ,(3.11d)
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those for rings

∀x, y, z ((x · y) · z ≖ x · (y · z))(3.12a)
∀x (x · 1 ≖ x ∧ 1 · x ≖ x)(3.12b)

∀x, y, z ((x+ y) · z ≖ (x · z) + (y · z)) ,(3.12c)

the axiom for commutativity of the product

(3.13) ∀x, y (x · y ≖ y · x) ,

the axioms for fields

0 ̸≖ 1(3.14a)
∀x (x ̸≖ 0⇒ ∃y (x · y ≖ 1)) ,(3.14b)

and the axioms for total orders

¬∃x (x < x)(3.15a)
∀x, y, z (x < y ∧ y < z ⇒ x < z)(3.15b)
∀x, y (x < y ∨ x ≖ y ∨ y < x) .(3.15c)

Finally we must have axioms guaranteeing compatibility of the ordering with
the algebraic operations:

∀x, y, z (x < y ⇒ x+ z < y + z)(3.16a)
∀x, y (0 < x ∧ 0 < y ⇒ 0 < x · y) .(3.16b)

Example 3.24. Let LConc be the language with a binary function symbol ∗
and three constant symbols 0,1, ε. Let A be a set with at least two elements
a, b. The set of all finite strings from A can be construed as an L-structure
M = (A<N, ∗M,0M,1M, εM) with s ∗M t = s⌢t, 0M = ⟨a⟩, 1M = ⟨b⟩, and
εM = ⟨⟩, satisfying the set of sentences TConc consisting of: the axioms for
monoids (∀x, y, z (x ∗ (y ∗ z) ≖ (x ∗ y) ∗ z) and ∀x (x ∗ ε ≖ x ∧ ε ∗ x ≖ x))
together with

¬∃x, y (x ̸≖ ε ∧ y ̸≖ ε ∧ (0 ≖ x ∗ y ∨ 1 ≖ x ∗ y))
0 ̸≖ 1

stating that 0 and 1 are distinct sequences that cannot be factored into
smaller items, and

∀x, y, z, w (x ∗ y ≖ z ∗ w ⇒
∃u ((x ∗ u ≖ z ∧ y ≖ u ∗ w) ∨ (z ∗ u ≖ x ∧ w ≖ u ∗ y)))

asserting that if a sequence is factored in two different ways x ∗ y and z ∗ w,
then either x is an initial segment of z and w is a final segment of y, or z is
an initial segment of x and y is a final segment of w (see Definition 3.16).
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If M satisfies every σ in some set of sentences Σ, we say that M is a
model of Σ, in symbols

M ⊨ Σ.

Since a structure satisfies a conjunction if and only if it satisfies all formulæ
that compose such conjunction, saying that M is a model of a finite set of
sentences {σ1, . . . ,σn} amounts to saying that M ⊨

∧
1≤i≤n σi.

To recap, we have seen a few first-order languages tailored to study certain
classes of mathematical structures:

• LOrdr has a binary predicate symbol ≤. A structure for this language is
a preorderd set if it satisfies TpOrdr, that is the axioms (3.9a) and (3.9b).
An ordered set is an LOrdr-structure satisfying TOrdr, obtained by adding
axiom (3.9c) to TpOrdr.
• LGrps has a binary function symbol ·, a unary operation symbol −1, and a

constant symbol 1. A structure for such language is a group if and only
if it satisfies TGrps, the set of all sentences (3.10). Replacing ·,−1, 1 with
+,−, 0 the language LAbGr is obtained. A structure for this language is
an abelian group if and only if it satisfies the set TAbGr consisting of the
sentences (3.11).
• The language LRngs is obtained adding the binary function symbol · to
LAbGr. An LRngs-structure is a rng if it satisfies the set TRngs obtained
by adding the sentences (3.12a) and (3.12c) to TAbGr, it is a commutative
rng if it satisfies TCRings, obtained by adding the sentence (3.13) to TRngs.
The language LRings is obtained by adding a new constant symbol 1; a
structure for this language is a ring if it satisfies the set TRings given by
TRngs together with (3.12b). If we also add (3.13) we obtain the set of
sentences TCRings, whose models are exactly the commutative rings, and
if the sentences (3.14) are added, we obtain the set TFlds, whose models
are the fields. Adding a binary relation symbol <, the language LORings
is obtained. An ordered field is an LORings-structure satisfying the set
of axioms TOFlds, obtained by adding the sentences (3.15) and (3.16) to
TFlds.

Remarks 3.25. (a) If M ⊨ Σ and Σ is an infinite set of sentences, for
example Σ = {σn | n ∈ N}, we are tempted to say that M satisfies the
infinite conjunction

∧
n∈N σn. We should however virtuously resist this

temptation, since
∧

n∈N σn is not a formula of a first-order language.
There are formal systems, the so-called infinitary logics, where we
are allowed to take infinite conjunction and disjunction of formulæ, but
these are more advanced topics that will not be covered in this book.

(b) Whenever we are assessing whether a sentence σ is true in a structure
M, quantifications take place on the elements of M , not on subsets
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of M . This restriction is the quintessence of first-order logic. To be
able to quantify also on subsets of a structure, a new list of variables
for subsets and a symbol ∈ to tell when an element belongs to a set
must be introduced, and the satisfaction relation must be modified to
take into accounts the two levels of quantification (on elements, and
on subsets). The resulting system is known as second-order logic.
More ambitiously, it is possible to define third-order logic, with three
levels for quantification (elements, subsets, families of subsets) or more
generally nth-order logic, with the expected definition. Higher-order
logics, i.e. nth-order logic for n > 1, have an expressive power which
is much stronger than first-order logic. However, as often happens in
mathematics, the quest for extreme generality runs against the depth of
the results, and in this book, like in most textbooks, we will focus on
first-order logic.

We say that a sentence τ is a logical consequence of a set of sentences
Σ (of the same language), or that τ follows logically from Σ, in symbols

Σ |= τ

if and only if M ⊨ Σ implies that M ⊨ τ, for every L-structure M. When
Σ = {σ} is a singleton, it will be identified with its unique element, and we
write σ |= τ. Equivalently: τ is logical consequence of σ just in case σ⇒ τ

is a valid sentence. Two sentences σ and τ are logically equivalent if one
is logical consequences of the other, that is:

σ |= τ and τ |= σ.

Equivalently: σ⇔ τ is a valid sentence.

Warning. The satisfaction relation should not be confused with the notion
of logical consequence! These are distinct concepts, albeit the symbols are
similar. Satisfaction (⊨) is a relation between an L-structure and a sentence
(or a set of sentences), while logical consequence (|=) is a relation between a
set of sentences and a single sentence. In most textbooks these two notions
are denoted with the same symbol, but in order to help the reader in telling
these two notions apart, we adopt two slightly different glyphs.

Let us see how the notion of logical consequence is related to that of
tautological consequence (Definition 3.9).

Example 3.26. Recall from Section 3.C.1 that given a non-empty set S
of propositional letters, Prop(S) is the set of all propositions over S. The
language LS has a 1-ary relation symbol U and a constant symbol Å for each
A ∈ S. To each proposition P ∈ Prop(S) we assign a sentence σP of LS as
follows: to each propositional letter A ∈ S associate the sentence σA given
by U(Å), and then extend this map by P ∨Q 7→ σP ∨ σQ, ¬P 7→ ¬σP, etc.
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A valuation v : S → {0, 1} can be seen as an LS-structure Mv. The
universe of M = Mv is S, and UM = {A ∈ S | v(A) = 1}, and ÅM = A, that
is

Mv = (S, {A ∈ S | v(A) = 1},A)A∈S .

Conversely, each LS-structure M = (M,UM, ÅM)A∈S yields the valuation

vM(A) = 1 ⇔ ÅM ∈ UM.

A simple induction on the height of formulæ shows that

v(P) = 1 ⇔ Mv ⊨ σP and M ⊨ σP ⇔ vM(P) = 1.

Thus valuations of S correspond to LS-structures, and for this reason they
are often called models for propositional calculus. Therefore we say that:

(i) v : S → {0, 1} satisfies Γ ⊆ Prop(S) or is a model of Γ, in symbols v ⊨ Γ,
if ∀P ∈ Γ (v(P) = 1);

(ii) if Γ ⊆ Prop(S), then P is tautological consequence of Γ, in symbols
Γ |= P, if and only if every model of Γ is a model of P;

(iii) if P |= Q and Q |= P, then P and Q are tautologically equivalent, that
is v(P) = v(Q), for every v.

Definition 3.27. (i) An L-theory is a set T of L-sentences, and L is the
language of T . A first-order theory is an L-theory, for some first-order
language L.

(ii) A set of axioms for an L-theory T is an L-theory T ′ such that for all
L-sentences σ

T ′ |= σ if and only if T |= σ.

The expressions “theory” and “set of sentences” are completely equivalent,
but the former is particularly handy when speaking of first-order axiomati-
zations of mathematical objects. Thus we shall speak of first-order theory
of abelian groups, first-order theory of rings, first-order theory of fields, . . .
to denote the theories that have as a system of axioms TAbGr, TRngs, TFlds
. . . . On the other hand, expressions like abelian group theory, ring theory,
field theory, . . . , are used to denote certain areas of mathematics.

Remark 3.28. Part (ii) of Definition 3.27 looks a bit silly, since any theory is
a set of axioms for itself. On the other hand, a set of axioms for T need not be
a subset of T . For example, the sentences: associativity of products (3.10a),
∀x∀y∃z (x · z ≖ y), and ∀x∀y∃z (z · x ≖ y) form a set of axioms for TGrps.

Definition 3.29. Let T be an L-theory. We say that T is satisfiable if
it has a model, that is to say: there is an L-structure M such that M ⊨ T .
Otherwise T is unsatisfiable.
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Let us pause for an example. Recall from page 18 the sentences εn
asserting that the universe has exactly n elements. The non-abelian groups
are exactly the models of Σ = TGrps ∪ {∃x∃y(x · y ̸≖ y · x)}, so Σ ∪ {ε5} is
unsatisfiable, as every group of order 5 is abelian, and Σ ∪ {ε6} is satisfiable
as there is a non-abelian group of order 6.

Proposition 3.30. If Σ ∪ {τ} is a set of L-sentences, then

Σ |= τ if and only if Σ ∪ {¬τ} is unsatisfiable.

Proof. Suppose Σ ∪ {¬τ} is not satisfiable, and let M be a model of Σ.
Then M ̸⊨ ¬τ, since otherwise M would witness satisfiability of Σ ∪ {¬τ}, so
M ⊨ τ. As M is arbitrary, it follows that Σ |= τ. The other implication is
immediate. □

Definition 3.31. Fix a language L.

(i) An L-theory T is complete if it is satisfiable and either T |= σ or else
T |= ¬σ, for every L-sentence σ.

(ii) Two L-structures M and M′ are elementarily equivalent if they
satisfy the same L-sentences.

(iii) The theory of an L-structure M is the set of all sentences σ such
that M ⊨ σ.

Proposition 3.32. If T is a satisfiable theory, then the following are equiva-
lent:

(a) T is complete,
(b) T is an axiom system for the theory of some L-structure,
(c) two models of T are elementarily equivalent.

Proof. (a)⇒(b) Let M be a model of T and let σ be an L-sentence: by
definition of complete theory it follows that T |= σ if and only if M ⊨
σ. Therefore the sentences true in M are exactly those that are logical
consequences of T , that is to say: T is a set of axioms for the theory of M.

(b)⇒(c) Suppose T is an axiom system for the theory of M, that is to
say: T |= σ if and only if M ⊨ σ, for all L-sentences σ. Suppose N ⊨ T : if
M ⊨ σ then T |= σ and hence N ⊨ σ; if M ̸⊨ σ then M ⊨ ¬σ and therefore
T |= ¬σ whence N ⊨ ¬σ and thus N ̸⊨ σ. Thus a model N of T satisfies the
same sentences of the model M, and hence two models of T satisfy the same
sentences.

(c)⇒(a) We prove the contrapositive: if T is satisfiable but T ̸|= σ and
T ̸|= ¬σ then there are M and M′ models of T such that M ⊨ σ and M′ ⊨ ¬σ.
In particular M and M′ do not satisfy the same sentences. □
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3.G. Truth sets. We have seen what it means for a sentence to be true
in a structure, but what about formulæ that are not sentences? Some of
these formulæ (e.g. a tautology or a formula as in (3.6) on page 31) have
been shown to be true in all structures, and hence their negations are always
false. But, in general, a formula φ(x1, . . . , xn) defines a set of n-tuples of
elements of the structure that, when set in place of the variables x1, . . . , xn,
make φ true in the structure. More to the point: given an L-structure M

and a formula φ(x1, . . . , xn) of L, the truth set of φ in M is the set

Tφ = TM
φ(x1,...,xn)

of the n-tuples of elements of M that satisfy the formula φ(x1, . . . , xn). For
notational ease, we write

M ⊨ φ[a1, . . . , an]

instead of (a1, . . . , an) ∈ TM
φ(x1,...,xn)

. If TM
φ(x1,...,xn)

= Mn then we shall say
that φ is true in M. When φ is a sentence, this terminology agrees with
our previous definition, since

TM
φ(x1,...,xn)

= Mn if and only if M ⊨ φ

TM
φ(x1,...,xn)

= ∅ if and only if M ⊨ ¬φ.

For notational ease when σ is a sentence set

TM
σ = 1 if and only if M ⊨ σ

TM
σ = 0 if and only if M ⊨ ¬σ.

Therefore M and N are elementarily equivalent if and only if TM
σ = TN

σ for
all sentences σ.

Examples 3.33. (A) If φ(x1, . . . , xn) is valid then Tφ = Mn, if it is un-
satisfiable then Tφ = ∅,

(B) the truth set in N of ∃y (y + y ≖ x) is the set of even numbers,
(C) the truth set in N of 1 < x ∧ ∀y (∃z(z · y ≖ x)⇒ y ≖ 1 ∨ y ≖ x) is the

set of prime numbers,
(D) the truth set of x2 < 1 in N is the singleton {0}, while in R it is the

open interval (−1; 1),
(E) the truth set in R of y ≖ x2 − 3x+ 2 is a parabola, that is a subset of

R2,
(F) the truth set of x2 + y2 ≖ 0 in R is the singleton {(0, 0)} ⊆ R2, while in

C it is the union of the two lines in C2 of equation x = iy and x = −iy,
(G) if φ(x1, x2) is x1 ≖ x2, then Tφ(x1,x2) is the diagonal of M2,
(H) if φ(x1, . . . , xn) is P (x1, . . . , xn) where P is an n-ary predicate symbol

of L, then Tφ(x1,...,xn) = PM.
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The dimension n of Tφ depends on the formula φ and on the list
x1, . . . , xn of variables—for example if φ is the formula of Example (E), then
the truth set ofφ(x, y, z) in R is the cylinder {(x, y, z) ∈ R3 | y = x2 − 3x+ 2}.
It is immediate that given φ(x1, . . . , xn) and ψ(x1, . . . , xn)

T¬φ = Mn \Tφ(3.17a)
Tφ∧ψ = Tφ ∩Tψ(3.17b)
Tφ∨ψ = Tφ ∪Tψ(3.17c)
Tφ⇒ψ = (Mn \Tφ) ∪Tψ(3.17d)
Tφ⇔ψ = Mn \ (Tφ△Tψ).(3.17e)

Next let us describe Tφ(x1,...,xn) when φ is ∃yψ.

Case 1: If y is not among the x1, . . . , xn, then

(3.18a) Tφ(x1,...,xn) = p[Tψ(y,x1,...,xn)]

where p : Mn+1 →Mn is the projection along the first coordinate,
that is

p(b, a1, . . . , an) = (a1, . . . , an).

Case 2: If y is, say, x1, then

(3.18b) Tφ(x1,...,xn) = M ×Tφ(x2,...,xn)

where Tφ(x2,...,xn) is as in Case 1.

Thus given a formula φ(x1, . . . , xn) one has

M ⊨ ∃x1 . . . xnφ if and only if Tφ(x1,...,xn) ̸= ∅,(3.18c)
M ⊨ ∀x1 . . . xnφ if and only if Tφ(x1,...,xn) = Mn.(3.18d)

Using these equivalences it is easy to check whether a structure M satisfies a
sentence σ.

Examples 3.34. (A) M ⊨ ∀x (φ(x)⇒ ψ(x)) if and only if the truth set of
φ(x)⇒ ψ(x) is M , that is to say Tφ ⊆ Tψ.

(B) ∀x (φ(x)⇒ ψ(x))⇒ (∀xφ(x)⇒ ∀xψ(x)) is a valid sentence. To prove
this we must check that for any structure M:

if M ⊨ ∀x (φ(x)⇒ ψ(x)) then M ⊨ ∀xφ(x)⇒ ∀xψ(x).

Thus suppose that M is a structure satisfying ∀x (φ(x)⇒ ψ(x)) and
∀xφ(x), that is to say Tφ ⊆ Tψ and Tφ = M . Then Tψ = M and
hence M ⊨ ∀xψ(x) as required.

The same argument shows that

(3.19) ∀x1, . . . , xn (φ(x⃗)⇒ ψ(x⃗)) |= ∀x1, . . . , xnφ(x⃗)⇒ ∀x1, . . . , xnψ(x⃗).
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(C) The sentence ∀x∃yφ(x, y) holds in M if and only if the set Tφ ⊆ M2

has non-empty vertical sections, while saying that M ⊨ ∃y∀xφ(x, y)
means that there is an horizontal section of Tφ which is M .

∀x∃yφ(x, y)

Tφ

∃y∀xφ(x, y)

Tφ

(D) Consider the formula

(3.20) ∀x(P (x) ∨Q(x))⇒ ∀xP (x) ∨ ∀xQ(x).

Fix a structure M. By (3.18d), asserting that M ⊨ ∀x(P (x) ∨ Q(x))
amounts to saying that TP (x)∨Q(x) = TP (x) ∪ TQ(x) = M , that is
PM ∪ QM = M ; while asserting that M ⊨ ∀xP (x) ∨ ∀xQ(x) means
that PM = M or QM = M . Therefore a structure M satisfies (3.20) if
and only if: whenever PM ∪QM = M then PM = M or QM = M . For
example, the structure M whose domain is N and where PM = QM = ∅
satisfies the sentence, while the structure N with domain N with PN

and QN are the set of even and odd numbers, respectively, does not
satisfy the sentence. It follows that the sentence (3.20) is satisfiable, but
not valid.

(E) Suppose that the formula φ(x1, . . . , xn) is tautological consequence of
ψ1(x1, . . . , xn), . . . , ψk(x1, . . . , xn); in other words: ψ1 ∧ · · · ∧ψk ⇒ φ

is a tautology (see page 33). Then ψ1 ∧ · · · ∧ ψk ⇒ φ is valid, and
hence TM

ψ1(x1,...,xn)
∩ · · · ∩TM

ψk(x1,...,xn)
⊆ TM

φ(x1,...,xn)
, for all structures

M. In particular, if φ(x1, . . . , xn) and ψ(x1, . . . , xn) are tautologically
equivalent, then TM

φ(x1,...,xn)
= TM

ψ(x1,...,xn)
.

Example 3.35. Consider a language containing unary function symbols f, g
and unary predicate symbols P,Q. If M is a structure for this language,
the functions and predicates of M will be denoted with the same letters
f, g, P,Q. The sets f [P ] and g−1[Q] are the truth sets of the formulæ
∃y(P (y)∧f(y) ≖ x) and Q(g(x)), so g−1[f [P ]] and f [P ]×g−1[Q] are the truth
sets of ∃y(P (y)∧f(y) = g(x)) and ∃y(P (y)∧f(y) ≖ x)∧Q(g(x)), respectively.
One can translate the properties of the structure M into statements of our
language: for example f [P ]∩g[Q] = ∅ if and only if M ⊨ ∀x(∃y(P (y)∧f(y) ≖
x)⇒ ¬Q(g(x))).
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The notion of logical consequence of sentences, formulated in Section 3.F,
can be extended to arbitrary formulæ as follows. We say that φ is logical
consequence of a set of formulæ Γ, in symbols Γ |= φ, if Γ∀ |= φ∀,
where Γ∀ is the set of the universal closures ψ∀ with ψ in Γ. Equivalently,
Γ |= φ if and only if

TM
φ(x1,...,xn)

= Mn, for every structure M such that M ⊨ ψ∀, for all ψ in Γ,

that is if φ holds true in every model of Γ∀. Two formulæ φ and ψ are
logically equivalent modulo Γ or over Γ if and only if φ⇔ ψ is logical
consequence of Γ.

Remarks 3.36. (a) The concept of logical equivalence of formulæ (with
free variables) modulo a given set of axioms is a rather common notion
in mathematics, and by Example 3.34(A) if two formulæ are logically
equivalent modulo modulo some set of formulæ Γ, then so are their
universal closures. For example the three formulæ x ·y ≖ y ·x, (x ·y)−1 =
x−1 · y−1 and (x · y)2 ≖ x2 · y2 are logically equivalent modulo TGrps,
that is to say: given a group G and a, b ∈ G, then ab = ba if and only if
(ab)−1 = a−1b−1 if and only if (ab)2 = a2b2. As their universal closures
are equivalent modulo the axioms for groups, it follows that which a
group is abelian if and only if it satisfies ∀x, y ((x · y)−1 = x−1 · y−1), if
and only if it satisfies ∀x, y [(xy)2 ≖ x2y2]. Saying that two formulæ are
logically equivalent modulo Γ is stronger than saying that their universal
closures are logically equivalent modulo Γ (see Remark 7.31).

(b) The satisfaction relation and truth sets yield a suitable framework for the
formalizations in Sections 2.B and 2.C—for example the formalization
of “there are infinitely many primes” is a way to write a sentence in
the language <,Pr or <, | asserting a certain fact in (N, <,Pr) or in
(N, <, |).

3.H. A closer look at the satisfaction relation*. We now give a brief
summary of a different, albeit completely equivalent, way to define the
satisfaction relation—this approach will be expounded in detail in Section 31.A
of Chapter VII. Given φ(x1, . . . , xn) an L-formula, M an L-structure, and
a1, . . . , an elements of M , the universe of M, we define by induction of the
height of the formula what it means that M satisfies φ when the variables
x1, . . . , xn take values a1, . . . , an, respectively,

M ⊨ φ[a1, . . . , an].

The idea is that if the free occurrences of x1, . . . , xn in φ are replaced by
a1, . . . , an, the resulting sentence is true in M. In particular, if φ is a sentence,
then the truth of M ⊨ φ[a1, . . . , an] does not depend on a1, . . . , an.
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Remark 3.37. Before we jump to the technical details, recall that by our
convention on page 37 the variables occurring free in φ are among the
x1, . . . , xn. Since some of the xis might not be free in φ, then the satisfaction
relation does not depend on those ai. In other words: M ⊨ φ[a1, . . . , an] holds
just in case M ⊨ φ[ai1 , . . . , aik ] holds, where xi1 , . . . , xik are those among
x1, . . . , xn that occur free in φ. So why we do not require from the outset
that all x1, . . . , xn occur free in φ? The reason is that a variable occurring
free in a disjunction need not be free in both disjuncts, so following this
path would only cause notational nuisance. Similarly, if t(x1, . . . , xn) is an
L-term and a1, . . . , an ∈M , then tM(a1, . . . , an) is the element of M defined
on page 52, and this element depends only on those xi1 , . . . , xik that actually
occur in t; in other words: tM(a1, . . . , an) = tM(ai1 , . . . , aik).

The definition of M ⊨ φ[a1, . . . , an] is by induction on the complexity of
φ—as usual we will write M ̸⊨ φ[a1, . . . , an] to deny that M ⊨ φ[a1, . . . , an]
holds.

• If φ is atomic we consider two cases:
– If φ(x1, . . . , xn) is t(x1, . . . , xn) ≖ s(x1, . . . , xn), then

M ⊨ φ[a1, . . . , an] if and only if tM(a1, . . . , an) = sM(a1, . . . , an).

– If φ(x1, . . . , xn) is R(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)) where R is an
k-ary predicate symbol, then

M ⊨ φ[a1, . . . , an] if and only if

(tM1 [a1, . . . , an], . . . , t
M
k [a1, . . . , an]) ∈ RM.

• If φ is ¬ψ then

M ⊨ φ[a1, . . . , an] if and only if M ̸⊨ ψ[a1, . . . , an].

• If φ is ψ1 ∨ψ2 then

M ⊨ φ[a1, . . . , an] if and only if
M ⊨ ψ1[a1, . . . , an] or M ⊨ ψ2[a1, . . . , an].

• If φ is ψ1 ∧ψ2 then

M ⊨ φ[a1, . . . , an] if and only if
M ⊨ ψ1[a1, . . . , an] and M ⊨ ψ2[a1, . . . , an].

• If φ is ψ1 ⇒ ψ2 then

M ⊨ φ[a1, . . . , an] if and only if
whenever M ⊨ ψ1[a1, . . . , an] then M ⊨ ψ2[a1, . . . , an].
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• If φ is ψ1 ⇔ ψ2 then

M ⊨ φ[a1, . . . , an] if and only if
M ⊨ ψ1[a1, . . . , an] exactly when M ⊨ ψ2[a1, . . . , an].

• If φ(x1, . . . , xn) is ∃yψ(x1, . . . , xn, y) we consider three cases.
– The variable y occurs free in ψ, and it is not one of the x1, . . . , xn. Then

M ⊨ φ[a1, . . . , an] if and only if
there is b ∈M such that M ⊨ ψ[a1, . . . , an, b].

– The variable y occurs free in ψ, and it is xi. Then

M ⊨ φ[a1, . . . , an] if and only if
there is b ∈M such that M ⊨ ψ[a1, . . . , ai−1, b, ai+1, . . . , an].

– The variable y does not occur free in ψ. Then

M ⊨ φ[a1, . . . , an] if and only if M ⊨ ψ[a1, . . . , an].

• If φ(x1, . . . , xn) is ∀yψ(x1, . . . , xn, y) we consider three cases.
– The variable y occurs free in ψ, and it is not one of the x1, . . . , xn. Then

M ⊨ φ[a1, . . . , an] if and only if M ⊨ ψ[a1, . . . , an, b], for every b ∈M.

– The variable y occurs free in ψ, and it is xi. Then

M ⊨ φ[a1, . . . , an] if and only if
M ⊨ ψ[a1, . . . , ai−1, b, ai+1, . . . , an], for every b ∈M.

– The variable y does not occur free in ψ. Then

M ⊨ φ[a1, . . . , an] if and only if M ⊨ ψ[a1, . . . , an].

The reader should check that for any φ(x1, . . . , xn) and any a1, . . . , an ∈M

M ⊨ φ[a1, . . . , an] ⇔ (a1, . . . , an) ∈ TM
φ(x1,...,xn)

.
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Exercises

Exercise 3.38. Let R be a binary relation on some set M . Show that:

• R is a strict preorder on M if and only if R is asymmetric and transitive
on M ;
• R is a strict order on M if and only if R is irreflexive and transitive on M .

Exercise 3.39. A proposition P as in Definition 3.6 is a finite string of
symbols s1, s2, . . . , sn. To each P we associate a string of integers k1, k2, . . . , kn
keeping track of all parentheses, increasing of 1 each time we encounter (
and decreasing of 1 each time we encounter ), that is: set k0 = 0, and if
si = ( then ki = ki−1 + 1, if si = ) then ki = ki−1 − 1, and if si /∈ {(, )}, then
ki = ki−1. Show that

(i) each P is a string beginning with ( and ending with );
(ii) if k1, k2, . . . , kn is associated to some proposition P, then kn = 0 and

ki > 0 for 1 ≤ i < n. Moreover if P /∈ Prop0(S) its main connective is
si, where i ≤ n is the unique value such that ki = ki−1;

(iii) if ht(P) > 0 then either P = (¬Q) for a unique Q, or else P = (Q⊙R)
for unique ⊙ ∈ {∧,∨,⇒,⇔, ·∨} and Q,R.

Exercise 3.40. Check that the following formulæ are tautologically equiva-
lent:

• φ ∧ (ψ ∨ χ) and (φ ∧ψ) ∨ (φ ∧ χ),
• φ ∨ (ψ ∧ χ) and (φ ∨ψ) ∧ (φ ∨ χ),
• φ ·∨ψ, ¬(φ⇔ ψ), φ⇔ ¬ψ, and ¬φ⇔ ψ,
• φ1 ⇒ (φ2 ⇒ . . . (φn ⇒ ψ) · · · ) and (φ1 ∧ · · · ∧φn)⇒ ψ,
• (φ1 ⇒ ψ) ∧ · · · ∧ (φn ⇒ ψ) and (φ1 ∨ · · · ∨φn)⇒ ψ,
• (φ⇔ ψ)⇔ χ and φ⇔ (ψ⇔ χ).

Exercise 3.41. For all sub-formulæ of the formula (3.2) on page 28, find the
free and bound occurrences of the variables.

Exercise 3.42. Put in prenex form the following formulæ:

• ∃yR(y, x)⇒ ∃y (R(y, x) ∧ ¬∃z (R(z, y) ∧R(z, x))),
• ∃x∀y∃zP (x, y, z) ∨ (∃x∀yQ(x, y) ∧ ¬∀x∃yR(x, y)),
• ∀x∀y (E(x, y)⇔ ∀z (R(z, x)⇔ R(z, y))).

For every such formula, compute the complexity of the prefix based on the
alternation of quantifiers, as shown on page 42.
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Exercise 3.43. Check that the statement “f is a continuous function from
R to R” is formalizable as a ∀∃∀-formula in the language with symbols f , +
and <.

Exercise 3.44. Show that if none of the variables that occur quantified in
φ are among x1, . . . , xn or among the variables of the terms t1, . . . , tn, then
φLt1/x1, . . . , tn/xnM is the formula φ[t1/x1, . . . , tn/xn] obtained by substitut-
ing every occurrence of xi with ti.

Exercise 3.45. Suppose that φ is a Boolean combination of its primitive sub-
formulæ ψ1, . . . ,ψn, and let φ′ be the formula obtained from φ by replacing
ψ1, . . . ,ψn, with ψ′

1, . . . ,ψ
′
n. Show that if ψi is tautologically equivalent to

ψ′
i (i = 1, . . . , n) then φ is tautologically equivalent to φ′.

Exercise 3.46. Suppose that φ is not a propositional contradiction and
that it is a Boolean combination of primitive sub-formulæ A1, . . . ,An. Let
i1, . . . , im be the rows of the truth table of φ where in the column for φ the
value 1 occurs. Check that φ is tautologically equivalent to the disjunction
Di1 ∨ · · · ∨Dim where every Di is the conjunction Ci,1 ∧ · · · ∧Ci,n, where Ci,j

is Aj if in the entry of the truth table with coordinates (i, j) there is a 1, or
¬Aj if there is a 0.

Exercise 3.47. Show that:

(i) the majority connective (see page 10) can be expressed using the con-
nectives ∧,¬, or the connectives ∨,¬;

(ii) {¬,⇒}, { ·∨,⇒}, and {∨,⇔, ·∨} are adequate;
(iii) {∨,∧,⇔,⇒}, {∨,∧, ·∨}, and {¬, ·∨,⇔} are not adequate;
(iv) Sheffer’s stroke | and Peirce’s arrow ↑ defined by

P |Q if and only if ¬ (P ∧Q) P ↑Q if and only if ¬ (P ∨Q) .

are the only binary connectives ⊙ such that {⊙} is adequate.

Exercise 3.48. Let M = (M,E) where E be a binary relation on M ̸= ∅.
Show that the following are equivalent:

(1) E is an equivalence relation on M ;
(2) E is symmetric and transitive on M , and M ⊨ ∀x∃y(x E y);
(3) M ⊨ ∀x1, x2, y1, y2(x1 E y1 ∧ x2 E y2 ∧ x1 E x2 ⇒ y1 E y2) and E is

reflexive on M .

Exercise 3.49. Let R ⊆M ×M . Show that

(i) R is an order on M if and only ((id∪(R | R))∩R∁)∪((R∩R−1)∩id∁) = ∅;
(ii) R is a total order on M if and only if ((id∪ (R | R))∩R∁)∪ (R∩R−1 ∩

id∁) ∪ (R ∪R−1)∁ = ∅;
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(iii) R is an equivalence relation on M if and only if ((id ∪ (R | R)) ∩R∁) ∪
(R ∩ (R−1)∁) = ∅;

(iv) (M,R) is a graph if and only if R ∩ (id ∪ (R−1)∁) = ∅.

Exercise 3.50. Prove the laws of calculus of relations in Table 2.

Exercise 3.51. Show that for all R,S, T ⊆M ×M

(R | S) ∩ T = ∅ ⇔ (R−1 | T ) ∩ S = ∅
⇔ (T | S−1) ∩R = ∅.

Exercise 3.52. Let L be the language containing a binary relation symbol
R. Determine which of the following sentences

σ0 : ∀x, y, z (x R y ∧ y R z ⇒ x R z) , σ3 : ∃x∀y (y ̸≖ x⇒ x R y)

σ1 : ∀x, y (x R y ⇒ ∃z (x R z ∧ z R y)) , σ4 : ∃x∀y¬ (y R x)

σ2 : ∀x∃y (x R y ∧ ¬∃z (x R z ∧ z R y)) , σ5 : ∃x∀y¬ (x R y) .

are true in the structures: (N, <), (N,≤), (N, |), (N,⊥), where |,⊥ are
the divisibility and co-primality relations, (Z, <), (Q, <), ((0; 1] ∪ [2; 3], <),
(P(N) \ {∅,N} ,⊂), (S2,⊥) with ⊥ the orthogonality relation and S2 ={
x ∈ R3 | ∥x∥ = 1

}
.

Exercise 3.53. Find the truth sets of the following formulæ in (N, ·):

(i) ψ(x): ∃u∀v (v ≖ v · u ∧ x ̸≖ u ∧ ∀y∀z (x ≖ y · z ⇒ y ≖ u ∨ z ≖ u)),
(ii) φ(x): ∀y∀z (ψ(y) ∧ψ(z) ∧ ∃u (y · u ≖ x) ∧ ∃u (z · u ≖ x)⇒ y ≖ z),
(iii) φ2(x): ∃y (x ≖ y · y ∧ψ(y)),
(iv) χ(x): ∃y∃z (x ≖ y · z ∧ψ(y) ∧ψ(z)).

Exercise 3.54. Determine whether the following sentences are satisfiable,
valid, or unsatisfiable:

(i) ∀x (P (x)⇒ Q(x)) ∧ ∃x (Q(x)⇒ R(x)) ⇒ ∀x (P (x)⇒ R(x)),
(ii) ∀x (P (x)⇒ Q(x)) ∧ ∀x (Q(x)⇒ R(x)) ⇒ ∀x (P (x)⇒ R(x)),
(iii) ∃x∃y (P (x)⇒ Q(y)) ⇔ ∃x (P (x)⇒ Q(x)),
(iv) ∃xP (x)⇒ ∃xQ(x) ⇒ ∃x (P (x)⇒ Q(x)),
(v) (∃xP (x)⇒ ∃xQ(x)) ⇒ ∃x (P (x)⇒ Q(x)),
(vi) ∃x (P (x)⇒ Q(x)) ⇒ (∃xP (x)⇒ ∃xQ(x)),
(vii) (∃xP (x)⇒ ∀x¬Q(x)) ∧ ∃x (P (x) ∧Q(x)).

Exercise 3.55. Show that:

(i) ∀x⃗ (φ(x⃗)⇔ ψ(x⃗)) ⇒ (∀x⃗φ(x⃗)⇔ ∀x⃗ψ(x⃗)) is valid;
(ii) (∀x⃗φ(x⃗)⇔ ∀x⃗ψ(x⃗)) ⇒ ∀x⃗ (φ(x⃗)⇔ ψ(x⃗)) is satisfiable, but not valid;
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(iii) for any formulaφ(x, y1, . . . , yn) the sentence ∀y⃗ ∃x (φ(x, y⃗)⇒ ∀xφ(x, y⃗))
is valid. (This generalizes Example 2.5.)

Exercise 3.56. Let L be a language containing only finitely many relational
symbols, and let x1, x2, . . . be an enumeration of all variables. (We could have
used the list v0, v1, . . . of Section 3.A, but here it is easier to start counting
from 1.) Let Fml(x1, . . . , xn) be the set of all formulæ with free variables
among {x1, . . . , xn}. Let Γ0(n) be the set of all quantifier-free formulæ in
Fml(x1, . . . , xn), and let Γm(n) be the set of all formulæ in Fml(x1, . . . , xn)
that are in prenex normal form with prefix of length m, that is the prefix has
m quantifiers.

Prove by induction on m that for every n there are finitely many formulæ
in Γm(n) that are not equivalent, that is to say: there are θ1, . . . ,θk in Γm(n)
for some k such that every φ in Γm(n) is equivalent to one of the θis.

Exercise 3.57. (i) Fix a language L with a binary operation symbol ∗.
The symbol ∗ occurs 4 times in the associative property—see (3.5) on
page 30. Is it possible to find an L equivalent to associativity, in which
∗ occurs less than 4 times? If so, what is the minimum number of
occurrences?

(ii) Fix a language L with a binary relation symbol R. Is it possible to find
an L equivalent the transitive property ∀x, y, z (x R y ∧ y R z ⇒ x R z)
the uses less than 3 occurrences of the symbol R? If so, what is the
minimum number of occurrences?

[Hint: φ(x1, . . . , xn)⇔ ∀y1, . . . , yn (
∧

1≤i≤n yi ≖ xi ⇒ φ(y1, . . . , yn)).]

Exercise 3.58. Let L be the language with binary predicate symbols Rq for
q ∈ Q+.

(i) Find a set Σ of L-sentences such that for any L-structure M,

M ⊨ Σ if and only if (M,d) is a pseudo-metric space

where d(x, y) < q ⇔ RM
q (x, y).

(ii) Repeat the preceding part using the language L0 obtained from L

by adding one further predicate symbol R0, and by requiring that
d(x, y) ≤ q ⇔ RM

q (x, y).

Notes and remarks

Waring’s problem (formula (3.3) on page 29) was formulated in 1770 by Waring and proved in 1909
by Hilbert. Thus one can define g(k) for k > 1 as the least n such that every natural number x

is sum of n powers of exponent k. The first few values of the function g are 1, 4 (Lagrange), 9,
19, . . . [HW79]. In number theory, more than g(k) is important to study G(k), that is the least
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n such that every sufficiently large natural number x is sum of n powers of exponent k. Clearly
G(k) ≤ g(k) and it can be shown that G(2) = g(2) = 4. The exact value of G(k) for k ≥ 3 is not
known—for example it is known that 4 ≤ G(3) ≤ 7, that is every sufficiently large natural number
is the sum of at most seven cubes, and that there are arbitrarily large natural numbers that are
not sums of three cubes.

The abc conjecture (Example 3.4) was formulated in 1988 by Oesterlé and, independently,
in 1985 by Masser; for this reason it is also known as the Oesterlé–Masser conjecture [GT02].
This conjecture, dubbed “the most important open problem in diophantine analysis” [Gol96],
implies several results in number theory, among which: Fermat’s last theorem (Exercise (vii)), the
existence of infinitely many non-Wiefeirich primes (Example 2.3), the Erdős-Woods conjecture
(Section 2.C.5) with the possible exception of finitely many counterexamples.

4. Morphisms, theories, compactness

First order structures are generalizations of algebraic structures (such as
groups, rings, . . . ) and relational structures (such as orders, graphs, . . . ).
In algebra, after introducing a specific kind of structure, say groups, one
defines the notion of subgroup, homomorphism and quotient group, product
of groups, and increasing union of groups. In a similar fashion we define what
we mean with substructure, morphism and quotient structure, product of
structure, increasing union of structures.

4.A. Substructures. Let M be a non-empty set, and let A ⊆M . If f is an
n-ary operation on M , we say that A is closed under f if f(a1, . . . , an) ∈ A
for all a1, . . . , an ∈ A, if n > 0, or m̄ ∈ A if n = 0 and f is the element
m̄ ∈M . The closure of X under f is the smallest subset of M containing
X and closed under f

Clf (X) =
⋂
{Y ⊆M | X ⊆ Y ∧ Y is closed under f}.

If F is a collection of operations on a set M , the closure of X under F is
the smallest subset of M containing X and closed under all f ∈ F,

ClF(X) =
⋂
{Y ⊆M | X ⊆ Y ∧ ∀f ∈ F (Y is closed under f)}

=
⋂

f∈F Clf (X).

Definition 4.1. Given two L-structures M, N we say that N is a substruc-
ture of M or equivalently M is a superstructure of N, in symbols N ⊆M,
if N , the universe of N, is contained in M the universe of M and if

• RN = RM ∩Nk for all k-ary relational symbols R,
• fN = fM ↾ Nk for all k-ary function symbols f ,
• cN = cM for all constant symbols c.

In other words, a substructure is determined by a ∅ ≠ N ⊆M containing
the elements cM and closed under the functions fM; if L ha only relational
symbols, any non-empty subset yields a substructure.
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If X ⊆M , the substructure of M generated by X is (the substructure
whose universe is)

N =
⋂{

M ′ | X ⊆M ′ ⊆M ∧M ′ is the universe of a substructure of M
}
.

The set N is closed under every fM, and every cM belongs to N , so N is
the (universe of the) smallest substructure of M containing X. In other
words: N is the closure of X ∪ {cM | c a constant symbol of L} under the
operations of M. The assumption that X is non-empty is needed to guarantee
that the universe of the substructure is non-empty, and it can be removed
if L has constant symbols. In other words an L-structure M has a least
substructure (i.e. a substructure contained in every other substructure of M)
if L has constant symbols. An L-structure is finitely generated if it is the
substructure generated by a finite subset.

For example, a substructure of an ordered field (F,+, ·,−, <, 0, 1) is a
subset R ⊆ F containing 0 and 1 and closed under +, · and −, that is an
ordered ring (although, in general, it is not a field); the substructure of
F generated by ∅ is the prime subring, which is (isomorphic to) Z if the
characteristic of F is 0, or it is Z(p) if the characteristic of F is a prime
number p.

Convention. We will write x⃗ ∈ X for x1, . . . , xn ∈ X, where x⃗ denotes a
finite string (x1, . . . , xn). If F : X → Y then F (x⃗) means (F (x1), . . . , F (xn)).
If t is a term we write t(x⃗) to say that the variables occurring in t are among
the ones listed in x⃗.

Proposition 4.2. If M is an L-structure generated by a subset ∅ ≠ D ⊆M ,
then M = {tM(d⃗) | t ∈ TermL ∧ d⃗ ∈ D}.

Proof. Let N = {tM(d⃗) | t ∈ TermL ∧ d⃗ ∈ D}. Taking t to be the variable
x we see that D ⊆ N , and taking t to be a constant symbol c, we see that
cM ∈ N . If f is an n-ary function symbol, then fM(tM1 (d⃗), . . . , tMn (d⃗)) =

(f(t1, . . . , tn))
M (d⃗) ∈ N . Therefore N is the universe of a substructure of M

containing D, and hence N = M. □

4.B. Morphisms. A morphism or homomorphism between L-structures
M and N is a map F : M → N between the universes of the structures that
preserves all relations, functions, and constants: if R and g are n-ary relation
and function symbols, and c is a constant symbol, then for all a1, . . . , an ∈M

(A) if (a1, . . . , an) ∈ RM then (F (a1), . . . , F (an)) ∈ RN,
(B) F (gM(a1, . . . , an)) = gN(F (a1), . . . , F (an)),
(C) F (cM) = cN.

If (A) is strengthened to
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(A′) (a1, . . . , an) ∈ RM if and only if (F (a1), . . . , F (an)) ∈ RN

then F is full.
The notion of morphism of structures extends at the same time the defini-

tion of homomorphism (of groups, rings,. . . ) and the definition of monotone
function between ordered sets. If F : M → N is a bijective morphism and
F−1 : N→M is also a morphism, then F and F−1 are isomorphisms and
we say that the two structures are isomorphic, in symbols

M ∼= N.

A full injective morphism is an embedding. We say that M embeds into N

if there is an embedding F : M→ N.

Remarks 4.3. (a) It is important that a morphism preserves all constants.
For example F : Z→ Z, k 7→ 0, is a morphism of the structure (Z,+, ·, 0)
in itself (that is: it is a morphism of rngs), but it is not a morphism of
(Z,+, ·, 0, 1) in itself (that is: it is not a morphism of rings).

(b) An isomorphism is a bijective morphism, but not conversely. For exam-
ple: if < is the usual order on the natural numbers and ≺ is defined
by n ≺ m⇔ m = n+ 1, then idN : (N,≺)→ (N, <) is a bijective mor-
phism, but not an isomorphism. Similarly an embedding is an injective
morphism, but not conversely.

(c) If L has no relation symbols, then any morphism is full. A bijective
full morphism is an isomorphism, so in absence relation symbols this
definition agrees with the one used in algebra.

(d) If F : M → N is a morphism, then N ′ = ranF is a non-empty subset
of the universe of N that is closed under any operation fN, with f a
function symbol of L. Therefore N ′ is the universe of N′ a substructure
of N with the relations defined by

(b1, . . . , bn) ∈ RN′ ⇔ (b1, . . . , bn) ∈ RN

R an n-ary relation symbol of L. The requirement that F is full amounts
to say that the relations RN′ can be defined by

(b1, . . . , bn) ∈ RN′ ⇔ (a1, . . . , an) ∈ RM

for some/any a1, . . . , an ∈M such that F (ai) = bi.

If F : M→ N is a full morphism then the equivalence relation ∼ on M
given by a ∼ b ⇔ F (a) = F (b) satisfies the following property:

(4.1)
If a1, . . . , an, b1, . . . , bn ∈ M and ai ∼ bi for 1 ≤ i ≤ n,
then RM(a1, . . . , an)⇔ RM(b1, . . . , bn) and fM(a1, . . . , an) ∼
fM(b1, . . . , bn).
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Any equivalence relation satisfying (4.1) is called a congruence on the
structure M. If ∼ is a congruence on M, then the set N = M/∼ becomes an
L-structure N by letting

RN([a1], . . . , [an]) ⇔ RM(a1, . . . , an),

fN([a1], . . . , [an]) = [fM(a1, . . . , an)],

cN = [cM],

and π : M ↠ N, a 7→ [a] is a full morphism whose induced congruence is ∼.
Therefore, any full morphism F : M→ N can be factored into an embedding
j, an isomorphism i, and a full surjective morphism π

M N

M/∼ ran(F )

F

π

i

j

If F : M → N is a morphism of L-structure and t is an L-term with
variables x1, . . . , xn, then

(4.2) ∀a1, . . . an ∈M
(
F (tM(a1, . . . , an)) = tN(F (a1), . . . , F (an))

)
,

where tM and tN are the n-ary functions induced by t (see page 52). Therefore
for every morphism F : M→ N:

• if φ(x1, . . . , xn) is t1(x1, . . . , xn) ≖ t2(x1, . . . , xn) then

tM1 (a1, . . . , an) = tM2 (a1, . . . , an) implies that

tN1 (F (a1), . . . , F (an)) = tN2 (F (a1), . . . , F (an)),

• if φ(x1, . . . , xn) is P (t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)) then(
tM1 (a1, . . . , an), . . . , t

M
k (a1, . . . , an)

)
∈ PM implies that(

tN1 (F (a1), . . . , F (an)), . . . , t
N
k (F (a1), . . . , F (an))

)
∈ PN.

All this can be stated more succinctly as: every morphism preserves atomic
formulæ.

Definition 4.4. A morphism F : M→ N of L-structures preserves a formula
φ(x1, . . . , xn) if and only if for all a1, . . . , an ∈M

M ⊨ φ[a1, . . . , an] implies that N ⊨ φ[F (a1), . . . , F (an)].

In other words: the image via F of the truth set of φ computed in M is
contained in the truth set of φ computed in N,

F [TM
φ(x1,...,xn)

]
def
= {(F (a1), . . . , F (an)) | (a1, . . . , an) ∈ TM

φ(x1,...,xn)
}

⊆ TN
φ(x1,...,xn)

.
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Remarks 4.5. (a) If F : M → N is a morphism, then by (3.17a) F pre-
serves φ and ¬φ if and only if F [TM

φ(x1,...,xn)
] = TN

φ(x1,...,xn)
∩ ranF ,

that is

M ⊨ φ[a1, . . . , an] if and only if N ⊨ φ[F (a1), . . . , F (an)].

(b) Every morphism preserves the formula x1 ≖ x2; a morphism F preserves
the formula x1 ̸≖ x2 if and only if F is injective.

Proposition 4.6. Let F : M→ N be a morphism.

(a) If F preserves φ and ψ, then it preserves also φ ∧ψ and φ ∨ψ.
(b) If F is an embedding then it preserves all quantifier-free formulæ.
(c) If F preserves φ, then it also preserves ∃xφ.
(d) If F is surjective and preserves φ, then it also preserves ∀xφ.
(e) If F is an isomorphism, then it preserves every formula.

Proof. (a) follows from (3.17b) and (3.17c).
(b) Suppose F is an embedding. Let us check by induction on the height

of a quantifier-free formula φ that

M ⊨ φ[a1, . . . , an] if and only if N ⊨ φ[F (a1), . . . , F (an)].

The result holds at once of φ is atomic. The case when φ is ¬ψ follows
from Remark 4.5(a). Suppose φ is ψ1 ⊙ψ2 with ⊙ a binary connective. If
⊙ is either ∨ or ∧ then apply part (a), if ⊙ is either ⇒ or ⇔ use (3.17d)
and (3.17e).

(c) Suppose F preserves φ(x, y⃗) and that M ⊨ ∃xφ[⃗a]. Then M ⊨ φ[b, a⃗]
for some b ∈M , so that N ⊨ φ[F (b), F (⃗a)] and therefore N ⊨ ∃xφ[F (⃗a)].

(d) We must show that if M ⊨ ∀xφ[⃗a] then N ⊨ φ[c, F (⃗a)] for every
c ∈ N . Fix such c and let b ∈ M be such that F (b) = c. By assumption
M ⊨ φ[b, a⃗] so N ⊨ φ[F (b), F (⃗a)] as F preserves φ, and this is what we had
to prove.

(e) As in part (b) we argue by induction on the height of φ that F
preserves φ and ¬φ. The case when φ is atomic or Boolean combination of
formulæ is as before, so we may assume that φ begins with a quantifier, e.g.
∃xψ, and that F preserves ψ and ¬ψ. By part (c) and inductive assumption
M ⊨ φ[⃗a] implies N ⊨ φ[F (⃗a)]. For the converse argue as follows. Suppose
M ̸⊨ φ[⃗a], that is M ⊨ ∀x¬ψ[⃗a]. By inductive assumption F preserves ¬ψ,
so N ⊨ ∀x¬ψ[F (⃗a)] by part (d), and therefore N ̸⊨ φ[F (⃗a)]. □

Therefore surjective morphisms preserve the positive formulæ, i.e.
those formulæ obtained from atomic formulæ by means of quantifiers and
the connectives ∧ and ∨. In particular:
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Proposition 4.7. If F : M→ N is a surjective morphism and M ⊨ σ, where
σ is a positive sentence, then N ⊨ σ.

The homomorphic image of a group, of an abelian group, of a ring, . . . is a
group, an abelian group, a ring, . . . , but the homomorphic image of an integral
domain need not be an integral domain since ∀x, y(x ̸≖ 0∧ y ̸≖ 0⇒ x · y ̸≖ 0)
is not positive. Therefore Proposition 4.7 cannot be generalized to all formulæ.

If M is a substructure of N, then inclusion M ↪→ N is a morphism and
hence for every atomic formula φ and every a1, . . . , an ∈M

M ⊨ φ[a1, . . . , an] if and only if N ⊨ φ[a1, . . . , an]

that is TM
φ(x1,...,xn)

= TN
φ(x1,...,xn)

∩Mn. Applying the identities (3.17) on
page 60 and proceeding by induction on the complexity of φ, the equality
above can be generalized to all quantifier-free φ. Applying the identity (3.18)
we obtain:

Proposition 4.8. Let M be a substructure of N and let φ(x1, . . . , xn) be a
quantifier-free formula. Then

• if N ⊨ ∀x1, . . . , xnφ then M ⊨ ∀x1, . . . , xnφ, and
• if M ⊨ ∃x1, . . . , xnφ then N ⊨ ∃x1, . . . , xnφ.

Therefore, if T is axiomatized by universal sentences, then it is preserved
by taking substructures, that is: if M is a substructure of N and N ⊨ T then
M ⊨ T . In particular: if M ⊆ N and R ⊆ N × N is an order (or a linear
order, or an equivalence relation) on N , then R ∩M ×M is an order (or a
linear order, or an equivalence relation) on M .

Proposition 4.8 admits a converse: if T is a theory such that if M ⊨ T
then N ⊨ T for every N substructure of M, then T admits an axiom system
made of universal sentences—see Theorem 31.13.

4.C. Relational theories. Given a language L, let Lrel be the language
with only predicate symbols defined as follows:

• all predicate symbols of L are in Lrel,
• an n+ 1-ary predicate symbol Rf for each n-ary function symbol f of L,
• a unary predicate symbol Rc for each constant symbol c of L.

For example, if L = LORings is the language of ordered rings, then Lrel has
the following relation symbols: ≤, R+, R×, R0, R1. The theory of ordered
rings can be re-written in Lrel. First of all we have axioms stating that R+

and R× define binary operations and that R0 and R1 define singletons

∀x1, x2∃!yR+(x1, x2, y) ∧ ∀x1, x2∃!yR×(x1, x2, y) ∧ ∃!yR0(y) ∧ ∃!yR1(y).
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Then each axiom of the theory of ordered rings TORings is transformed into
a sentence of Lrel. The axioms for linear orders do not need any cosmetic
changes, but the axioms involving the symbols + and · need some makeover.
For example commutativity and associativity of + can be written as the
universal closures of

R+(x1, x2, y)⇒ R(x2, x1, y)

R+(x1, x2, y1) ∧R+(y1, x3, y2) ∧R+(x2, x3, y3)⇒ R(x1, y3, y2).

This procedure is completely general: any L-theory can be turned into an
Lrel-theory, and any L-structure M can be transformed into an Lrel-structure
Mrel.

4.D. Products. The product of two L-structures M0 and M1 is the
L-structure M0 ×M1 having M0 ×M1 as domain, and defined by:

• if R is an n-ary relation symbol, then RM0×M1 ⊆ (M0 ×M1)
n is defined

by

((a1, b1), . . . , (an, bn)) ∈ RM0×M1 if and only if

(a1, . . . , an) ∈ RM0 and (b1, . . . , bn) ∈ RM1 ,

• if f is an n-ary function symbol, then fM0×M1 : (M0 ×M1)
n →M0 ×M1

is defined by

fM0×M1
(
(a1, b1), . . . , (an, bn)

)
=
(
fM0(a1, . . . , an), f

M1(b1, . . . , bn)
)
,

• cM0×M1 = (cM0 , cM1).

It is easy to check that the maps

π0 : M0 ×M1 →M, (a, b) 7→ a and π1 : M0 ×M1 →M1, (a, b) 7→ b

are full morphisms, and that for any L-structure N and any choice of (full)
morphisms Fi : N→Mi (i = 0, 1) the map N→M0×M1, x 7→ (F0(x), F1(x))
is a (full) morphism, and it is the unique (full) morphism H : N→M0 ×M1

such that the following diagram commutes

M0

N M0 ×M1

M1

F0

F1

H

π0

π1

The construction of the cartesian product of structures can be generalized
to an arbitrary family of factors: if Mj are L-structures,

∏
j∈J Mj is the
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L-structure M with universe

"j∈JMj = {h | h is a function, domh = I and h(i) ∈Mi, for all i ∈ I}

where for all h1, . . . , hn ∈ "j∈JMj and every n-ary relational symbol R

(h1, . . . , hn) ∈ RM ⇔ ∀j ∈ J [(h1(j), . . . , hn(j)) ∈ RMj ],

and similarly for the function and constant symbols. The only problem is
to check that the set "j∈JMj is non-empty. In most cases this is easy, for
example if the language has constant symbols, this immediate. On the other
hand, there are cases when the problem is more tricky, since the statement
that the cartesian product of non-empty sets is non-empty is equivalent to
an important set theoretic principle, the axiom of choice (Section 14).

If L is the language with a binary relation symbol R and M = (M,RM)
and N = (N,RN) are L-structures, then M× N = (M ×N,RM×N), where
for all (a, b), (c, d) ∈M ×N ,

(a, b) RM×N (c, d) if and only if a RM c and b RM d.

If M, N are ordered sets, then so is M×N and RM×N is called the product
ordering on M ×N . Observe that the product ordering of two linear orders
is never linear (unless one of the two orders is a singleton)—for example if
M, N are linear orders of size 2 and 3, then M × N is the first ordering in
Figure 6 on page 47. For this reason when dealing with linear orders it is
often useful to endow the cartesian product with a different ordering.

Definition 4.9. Suppose (L0,≤0) and (L,≤1) are linear orders. The lexi-
cographic order ≤lex on L0 × L1 is defined by

(a, b) ≤lex (c, d) ⇔ (a ≤0 c ∧ a ̸= c) ∨ (a = c ∧ b ≤1 d).

The antilexicographic order ≤a-lex is induced by the bijection L0 × L1 →
L1×L0, (a, b) 7→ (b, a) when L1×L0 is endowed with the lexicographic order,
that is

(a, b) ≤a-lex (c, d) ⇔ (b ≤0 d ∧ b ̸= d) ∨ (b = d ∧ a ≤1 c).

The orders ≤lex and ≤a-lex are linear, and will play an important in the
rest of this book.

We have argued that even if M,N satisfy ∀x, y(x R y ∨ y R x), this
sentence need not to hold in M × N. Therefore positive sentences are not
preserved under products. On the contrary, sentences of the form

(4.3) ∀x1, . . . , xn (t(x1, . . . , xn) ≖ s(x1, . . . , xn))
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where t and s are terms, are preserved by products. In fact if M and N satisfy
a sentence of this kind, then for all (a1, b1), . . . , (an, bn) ∈M ×N

tM×N((a1, b1), . . . , (an, bn)) =
(
tM(a1, . . . , an), t

N(b1, . . . , bn)
)

=
(
sM (a1, . . . , an), s

N(b1, . . . , bn)
)

= sM×N((a1, b1), . . . , (an, bn)).

Definition 4.10. Let L be a language without relational symbols. An L-
theory is equational if it can be axiomatized by sentences of the form (4.3).
Since a formula is equivalent to its universal closure (see page 37), a theory
is equational just in case it has a system of axioms made of identities, i.e.
formulæ of the form

t(x1, . . . , xn) ≖ s(x1, . . . , xn)

where t and s are terms.
The collection of all models of an equational theory is called equational

class or a variety. An equational theory (and the corresponding variety) is
1-based if it is axiomatized by a single identity.

Remark 4.11. The theory of groups (p. 53) and the theory of rings (p. 54)
are examples of equational theories. It can be shown that the theory of
groups is 1-based; in fact every sub-variety of the equational variety of groups
is 1-based.

Since the formulæ (4.3) are universal, by what we said above, and by (4.2),
we obtain:

Proposition 4.12. An equational theory T is preserved by taking substruc-
tures, homomorphic images, and products, that is:

(a) if M ⊨ T and F : M ↠ N is a surjective morphism, then N ⊨ T ,

(b) if M ⊨ T and N ⊆M is a substructure, then N ⊨ T ,

(c) if Mj ⊨ T for all j ∈ J , then
∏

j∈J Mj ⊨ T .

In other words, a variety is closed under homomorphic images, substructures,
and products.

A theorem of Birkhoff’s asserts the converse, that is: if L is a language
without relation symbols and C is a class of L-structures closed under
homomorphic images, substructures, and products, then it is a variety, that
is it is the class of all models of some system of equations [Ber12, Theorem
4.41].
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N5 M3 2× 2
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a b

Figure 7. Some finite lattices.

4.E. A first look at lattices. Most algebraic objects can be seen as L-
structures with L containing only constant and function symbols, while
objects stemming from combinatorics or order-theory are best described as
L-structures where L has only relation symbols.

Lattices were briefly introduced on page 45 and will show-up again in
Section 7. They are interesting mathematical objects that can be seen either
as orders with specific properties, or else as algebraic structures. For this
reason lattices can be studied with different first order languages, and axioms,
enabling us to use various tools and techniques.

Recall that an LOrdr-structure (M,≤) is an upper semi-lattice if every
pair of elements admits a sup, that is it satisfies

∀x ∀y ∃z (x ≤ z ∧ y ≤ z ∧ ∀w (x ≤ w ∧ y ≤ w ⇒ z ≤ w))

and it is a lower semi-lattice if every pair of elements admits an inf, that
is it satisfies

∀x ∀y ∃z (z ≤ x ∧ z ≤ y ∧ ∀w (w ≤ x ∧ w ≤ y ⇒ w ≤ z)) .

A lattice is an ordered set which is an upper and lower semi-lattice. Therefore
lattices can be seen as order satisfying certain LOrdr-sentences. The element
sup(a, b) is also called the join of a, b, while inf(a, b) is called the meet of
a, b, and they are denoted by

a⋎ b and a⋏ b

respectively. Figure 7 shows a few finite lattices that are not linear orders.

Remark 4.13. In lattice theory, the standard notation for join and meet is
a ∨ b and a ∧ b. The reason we adopted the non-standard notation ⋎ and ⋏
is that ∨ and ∧ are already used for disjunction and conjunction.
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Join and meet are binary operation on lattice satisfying the following
properties: associativity

∀x, y, z (x⋎ (y ⋎ z) ≖ (x⋎ y)⋎ z)(4.4a)
∀x, y, z (x⋏ (y ⋏ z) ≖ (x⋏ y)⋏ z),(4.4b)

commutativity

∀x, y (x⋎ y ≖ y ⋎ x)(4.5a)
∀x, y (x⋏ y ≖ y ⋏ x),(4.5b)

the absorption laws, that is

∀x, y ((x⋎ y)⋏ y ≖ y)(4.6a)
∀x, y ((x⋏ y)⋎ y ≖ y).(4.6b)

Equations (4.4)–(4.6) are formulated in the language for lattices LLtc
containing two binary operations ⋏ and ⋎.

Proposition 4.14. Let A = (A,⋎,⋏) be an LLtc-structure satisfying (4.4)–
(4.6).

(a) The operations ⋏ and ⋎ are idempotent, that is to say

A ⊨ ∀x(x ≖ x⋎ x ∧ x ≖ x⋏ x)

(b) A ⊨ ∀x, y (x⋎ y ≖ y ⇔ x⋏ y ≖ x),
(c) the relation ⪯ defined on A by

a ⪯ b ⇔ a⋎ b = b ⇔ a⋏ b = a

is an ordering, and (A,⪯) is a lattice such that sup(a, b) = a ⋎ b and
inf(a, b) = a⋏ b.

Proof. (a) By commutativity and absorption a = a⋏(a⋎a) so by absorption
again a⋎ a = a⋎ (a⋏ (a⋎ a)) = a. Similarly a⋏ a = a⋏ (a⋎ (a⋏ a)) = a.

(b) If a⋎b = b then a⋏b = a⋏(a⋎b) = a by absorption and commutativity.
If a⋏ b = a then a⋎ b = (a⋏ b)⋎ b = b⋎ (b⋏ a) = a by commutativity and
absorption.

(c) Reflexivity follows from idempotence. Suppose a ⪯ b and b ⪯ a, that
is a⋏b = a and b⋎a = a: then a = (b⋎a)⋏b = b⋏ (b⋎a) = b by absorption.
Hence antisymmetry holds. Suppose a ⪯ b and b ⪯ c, that is a = a⋏ b and
b = b⋏ c: then

a⋏ c = (a⋏ b)⋏ c = a⋏ (b⋏ c) = a⋏ b = a,

hence transitivity holds.
By commutativity and idempotence a ⋏ b ⪯ a, b and if c ⪯ a, b, that is

c ⋏ a = c and c ⋏ b = c, then c ⋏ (a ⋏ b) = (c ⋏ a) ⋏ b = c ⋏ b = c, that is
c ⪯ a⋏ b. This shows that inf(a, b) = a⋏ b. Similarly a⋎ b = sup(a, b). □
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Because of this equivalence, from now we will identify the relational
notion of lattice (that is an order admitting sups and infs) and the algebraic
notion of an LLtc-structure satisfying (4.4)–(4.6). This equivalence shows
that the same class of objects can be axiomatized using distinct languages.
The axiomatization in the language LLtc is an equational theory, hence by
Proposition 4.12 the family of lattices is closed by substructures, homomorphic
images, and products. On the other hand in the language LOrdr there is
neither equational nor universal axiomatization for lattices, since a subset
of a lattice is an ordered set, but not necessarily a lattice. Part (c) of
Proposition 4.14 shows that the two operations ⋏ and ⋎ are interdependent:
if (A,⋎,⋏1) and (A,⋎,⋏2) are lattices, then ⋏1 agrees with ⋏2. Similarly,
if (A,⋎1,⋏) and (A,⋎2,⋏) are lattice, then ⋎1 agrees with ⋎2.

A sublattice of a lattice (L,≤) is an L′ ⊆ L such that sup(a, b), inf(a, b)
computed in L belong to L′, for all a, b ∈ L′—this is more than requiring
that L′ with the induced order is a lattice. In other words: a sublattice is an
LLtc-substructure.

The operations ⋏ and ⋎ are monotone, that is if x ≤ x′ and y ≤ y′,
then x ⋏ y ≤ x′ ⋏ y′ and x ⋎ y ≤ x′ ⋎ y′. Therefore x ⋏ y ≤ x ⋏ (y ⋎ z)
and x ⋏ z ≤ x ⋏ (y ⋎ z), so that (x ⋏ y) ⋎ (x ⋏ z) ≤ x ⋏ (y ⋎ z). Similarly
x ≤ (x⋎ y)⋏ (x⋎ z) and y ⋏ z ≤ (x⋎ y)⋏ (x⋎ z), and hence x⋎ (y ⋏ z) ≤
(x⋎y)⋏(x⋎z). A lattice is distributive if these inequalities can be replaced
by equalities, that is if it satisfies the statements

∀x, y, z ((x⋎ y)⋏ z ≖ (x⋏ z)⋎ (y ⋏ z))(4.7a)
∀x, y, z ((x⋏ y)⋎ z ≖ (x⋎ z)⋏ (y ⋎ z))(4.7b)

Every family S of subsets of a given set, closed under intersections and unions
is a distributive lattice, and by Exercises 7.96 and 15.12 all distributive
lattices are isomorphic to such an S.

Not every lattice is distributive. For example the five element lattices M3

and N5 in Figure 7 on page 78 are the first examples of non-distributive lattices.
Another example of a non-distributive lattice is the family of subspaces of
a vector space of dimension ≥ 2. This last example suggests the following
definition: a lattice is modular if it satisfies the next two sentences, called
the modular law

∀x, y, z ((x⋏ y)⋎ (x⋏ z) ≖ x⋏ (y ⋎ (x⋏ z)))(4.8a)
∀x, y, z ((x⋎ y)⋏ (x⋎ z) ≖ x⋎ (y ⋏ (x⋎ z))) .(4.8b)

Every distributive lattice is modular, but not conversely: the lattice N5 is
not modular, while M3 is modular, but not distributive (Exercise 4.69).

The following result characterizes distributive and modular lattices—for
a proof see [BS81, pp. 14–15] or [Ber12, pp. 26–27].
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Theorem 4.15. (a) A lattice is modular if and only if it does not contain
N5 as a sublattice.

(b) A lattice is distributive if and only if it contains neither N5 nor M3 as
sublattice.

The fourth lattice of Figure 7 contains N5 as a sublattice, so it is not
modular, and hence not distributive.

Remark 4.16. By Exercise (4.68) a lattice is modular if it satisfies at least
one of the two conditions (4.8); similarly, in order to check that a lattice
is distributive it is enough to check one of the two conditions (4.7). These
conditions can be further weakened: a lattice is distributive if it satisfies
either one of

∀x, y, z
(
(x⋎ y)⋏ (x⋎ z) ≤ x⋎ (y ⋏ z)

)
∀x, y, z

(
x⋏ (y ⋎ z) ≤ (x⋏ y)⋎ (x⋏ z)

)
.

Similarly the definition of modularity can be weakened to either one of

∀x, y, z ((x⋏ y)⋎ (x⋏ z) ≤ x⋏ (y ⋎ (x⋏ z)))

∀x, y, z (z ≤ x⇒ x⋏ (y ⋎ z) ≤ (x⋏ y)⋎ z) .

The axioms for lattices, the modular law, the distributive properties are
equations, hence they are preserved by taking substructures and homomorphic
images, and products (Proposition 4.12).

A Boolean algebra B is a distributive lattice with distinguished elements
0 and 1, and a unary operation b 7→ b∗ such that b⋏ b∗ = 0 and b⋎ b∗ = 1,
and b ⋏ 1 = b and b ⋎ 0 = b, for all b ∈ B. Boolean algebras are finitely
axiomatizable in the language LBoole extending LLtc with a unary function
symbol ∗ and two constant symbols 0 and 1. Recall that in any lattice, and
hence in any Boolean algebra, the order is defined by b ≤ c⇔ b⋏ c = b⇔
b ⋎ c = c, so that 0 is the minimum and 1 is the maximum. A Boolean
algebra is non-degenerate if it has at least two elements—equivalently if it
satisfies 0 ̸≖ 1.

The element b∗ is the complement of b, and it is the unique element c
in the Boolean algebra such that b⋏ c = 0 and b⋎ c = 1. In fact this is true
in any distributive lattice.

Lemma 4.17. Let x, y, z be elements of a distributive lattice with minimum
0 and maximum 1, such that x⋏ y = x⋏ z = 0 and x⋎ y = x⋎ z = 1. Then
y = z.

Proof. y = 1 ⋏ y = (x ⋎ z) ⋏ y = (x ⋏ y) ⋎ (z ⋏ y) = 0 ⋎ (y ⋏ z) = y ⋏ z,
whence y ≤ z. Swapping y and z the other inequality z ≤ y is obtained. □
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Lemma 4.18. In a Boolean algebra the following properties hold:

(a) x⋏ y ≖ 0⇔ x ≤ y∗;
(b) (x⋏ y)∗ ≖ x∗ ⋎ y∗ and (x⋎ y)∗ ≖ x∗ ⋏ y∗ (De Morgan’s laws);
(c) x ≤ y ⇔ y∗ ≤ x∗;
(d) x⋏ y ≤ z ⇔ x ≤ z ⋎ y∗.

Proof. (a) Suppose x⋏ y ≖ 0. Then

x ≖ x⋏ (y ⋎ y∗) ≖ (x⋏ y)⋎ (x⋏ y∗) ≖ 0⋎ (x⋏ y∗) ≖ x⋏ y∗

that is x ≤ y∗. Conversely, suppose x ≤ y∗. Then x⋏y ≤ y and x⋏y ≤ x ≤ y∗

and hence x⋏ y ≤ y ⋏ y∗ ≖ 0, that is x⋏ y ≖ 0.

(b) By distributivity

(x∗ ⋎ y∗)⋏ (x⋏ y) ≖ (x∗ ⋏ (x⋏ y))⋎ (y∗ ⋏ (x⋏ y)) ≖ 0

(x∗ ⋎ y∗)⋎ (x⋏ y) ≖ (x∗ ⋎ y∗ ⋎ x)⋏ (x∗ ⋎ y∗ ⋎ y) ≖ 1

so (x⋏ y)∗ ≖ x∗ ⋎ y∗ by Lemma 4.17. The other identity (x⋎ y)∗ ≖ x∗ ⋏ y∗

follows by duality.

(c) x ≤ y ⇔ x⋏ y ≖ x⇔ x∗ ⋎ y∗ ≖ (x⋏ y)∗ ≖ x∗ ⇔ y∗ ≤ x∗.

(d) Suppose x⋏y ≤ z: then x ≖ x⋏ (y⋎y∗) ≖ (x⋏y)⋎ (x⋏y∗) ≤ z⋎y∗.
Conversely, if x ≤ z ⋎ y∗ then x ⋏ y ≤ (z ⋎ y∗) ⋏ y ≖ (z ⋏ y) ⋎ (y∗ ⋏ y) ≖
z ⋏ y ≤ z. □

Example 4.19. An algebra of sets is a non-empty A ⊆P(X) such that
A is closed under complements (if A ∈ A then A∁ = X \A ∈ A) and closed
under unions or intersections (and hence under both operations). Such A

is a Boolean algebra with 0 = ∅ and 1 = X and the operations of union,
intersection, and complements. In particular P(X) is a Boolean algebra,
and it is non-degenerate when X ̸= ∅.

Stone’s Theorem 14.19 says that every Boolean algebra is isomorphic to
an algebra of sets.

As the axioms Boolean algebras are equations, they are preserved by tak-
ing substructures and homomorphic images, and products (Proposition 4.12).

An atom of a Boolean algebra B is a minimal element of B \ {0}, that
is an a ∈ B \ {0} such that there are no 0 < b < a. An algebra B is atomic
if for every b > 0 there is an atom a ≤ b; the algebra B is atomless if it has
no atoms.

The degenerate algebra P(∅) is both atomic and atomless. If X ̸= ∅
then P(X) is atomic, and the singletons are the atoms. There are infinite
atomless Boolean algebras (Example 7.45(a)) and there are non-degenerate
algebras that are neither atomic, nor atomless.
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4.F. Increasing unions. Fix a language L which, for notational simplicity
will be assumed to have only a binary relation symbol R and a binary function
symbol ∗. Let (I,≤) be a linearly ordered set, and suppose Mi = (Mi, Ri, ∗i)
(i ∈ I) are L-structures such that Mi is a substructure of Mj for all i ≤ j.
Let M∞ =

⋃
i∈I Mi be the L-structure with universe M∞ =

⋃
i∈I Mi defined

as follows

x1 R∞ x2 ⇔ ∃i[x1, x2 ∈Mi ∧ x1 Ri x2]

⇔ ∀i[x1, x2 ∈Mi ⇒ x1 Ri x2]

x1 ∗∞ x2 = y ⇔ ∃i[x1, x2, y ∈Mi ∧ x1 ∗i x2 = y]

⇔ ∀i[x1, x2, y ∈Mi ⇒ x1 ∗i x2 = y].

Proposition 4.20. Suppose Mi with i ∈ I are as above, Mi ⊨ σ, and σ is a
∀∃-sentence. Then M∞ ⊨ σ.

Proof. Say σ is ∀x1, . . . xn∃y1 . . . ymθ with θ quantifier-free, and suppose
Mi ⊨ σ for all i ∈ I. We must show that for all a1, . . . , an ∈ M∞ there are
b1, . . . , bm ∈ M∞ such that M∞ ⊨ θ[⃗a, b⃗]. Fix a1, . . . , an ∈ M∞ and choose
i ∈ I such that a1, . . . , an ∈ Mi. As Mi ⊨ σ there are b1, . . . , bm ∈ Mi such
that Mi ⊨ θ[⃗a, b⃗] so that M∞ ⊨ θ[⃗a, b⃗]. □

Corollary 4.21. If a theory is axiomatized by ∀∃-sentences, then it is pre-
served under increasing unions.

In particular, the increasing union of fields, of dense linear orders, etc.
is a field, a dense linear order, etc. Proposition 4.20 and Corollary 4.21
do not extend to ∃∀-sentences. For example Mn = ({0, . . . , n},≤) satisfies
∃x∀y (y ≤ x), but

⋃
n∈NMn = (N,≤) does not.

Corollary 4.21 admits a converse: if a first-order theory is preserved under
increasing unions, then it is axiomatizable by ∀∃-sentences.

Example 4.22. The product of two groups G,H is usually called the direct
sum of the two groups, and it is usually denoted by G ⊕ H. There are
two injective morphisms iG : G → G ⊕H and iH : H → G ⊕H defined by
iG(x) = (x, 1H) and iH(y) = (1G, y). In particular, modulo identifying G
with its isomorphic copy in G⊕H, we may assume that G is a subgroup of
G⊕H.

The direct sum of the groups Gn is⊕
nGn = {s ∈ "nGn | {n ∈ N | s(n) ̸= 1Gn} is finite}

with the operations defined component-wise, and can be construed as an
increasing union of groups

G0 ⊆ G0 ⊕G1 ⊆ G0 ⊕G1 ⊕G2 ⊆ . . .

where the inclusions are modulo the identification above.
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Remarks 4.23. (a) The direct sum construction applies to rings as well,
or more generally to models of any equational theory T (so that product
is defined) and such that if M,N are models of T , then there is an
embedding of M into M×N. For example if Rn is the ring Z for all n,
then the direct sum

⊕
nRn is Z[X].

(b) While a direct sum can be seen as an increasing union, the two notions
are distinct:

⋃
n>0 Z[1/n] = Q, while

⊕
n>0 Z[1/n] is not divisible

(Exercise 4.81).

Example 4.24. For any linear order L let L+ be the linear order extending L
obtained by adding a new minimum, a new maximum, and adding a point be-
tween two consecutive elements of L. Therefore if L = {x1 < x2 < · · · < xn}
is finite, then L+ = {y1 < x1 < y2 < x2 · · · < xn < yn+1} is also finite. Let

L0 ⊂ L1 ⊂ L2 ⊂ . . .

be the finite linear orders defined by L0 a singleton, and Ln+1 = (Ln)
+.

As <n the ordering on Ln is extended by <m the ordering on Lm, when
m > n, then all these orderings are extended by <∞ on L∞ =

⋃
n Ln. For

this reason we forgo the subscript and use the symbol < to denote anyone of
these orderings. Observe that for all n

∀x, y ∈ Ln (x < y ⇒ ∃z ∈ Ln+1 (x < z ∧ z < y))

∃y, z ∈ Ln+1 ∀x ∈ Ln (y < x ∧ x < z).

so (L∞, <) is a dense linear order without minimum or maximum. Moreover
L∞ is countable, being a countable union of finite sets (Theorem 14.31).
Theorem 13.32 shows that any countable dense linear order without endpoints
is isomorphic to the rationals. Therefore Q can be seen as a countable
increasing union of finite linear orders.

4.G. Elementary embeddings and completeness.

Definition 4.25. (i) Let N ⊆ M be L-structures. We say that N is an
elementary substructure of M if for all formulæ φ(x1, . . . , xn) and
all a1, . . . , an ∈ N

M ⊨ φ[a1, . . . , an] if and only if N ⊨ φ[a1, . . . , an].

Equivalently: TN
φ = TM

φ(x1,...,xn)
∩Nn for all φ(x1, . . . , xn).

(ii) If f : N → M is an embedding and ran(f) is an elementary substruc-
ture, we will say that f is an elementary embedding and that N

elementarily embeds into M.

If N elementarily embeds into M, then M and N are elementarily equiv-
alent. An isomorphism is an elementary embedding, therefore isomorphic
structures are elementarily equivalent. The converse does not hold since, as
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we shall see later, there are elementarily equivalent structures of different
cardinalities. If F : N→M is a morphism such that

N ⊨ φ[a1, . . . , an] if and only if M ⊨ φ[F (a1), . . . , F (an)].

for all formulæ φ and all a1, . . . , an ∈ N , then F is injective since it must
preserve the formula x ̸≖ y, and hence it is an elementary embedding.

Next we look at three criteria—one for elementary substructures, one for
two structures being elementarily equivalent, and one for completeness of
theories.
4.G.1. A criterion for elementary substructures. The next result is known as
the Tarski-Vaught criterion.

Theorem 4.26. Let M be an L-structure and let N be a subset of M , the
universe of M. The following are equivalent:

(a) N is the universe of an elementary substructure of M,
(b) for every formula φ(y, x1, . . . , xn) and every a1, . . . , an ∈ N

M ⊨ ∃yφ[⃗a] ⇔ ∃a0 ∈ N (M ⊨ φ[a0, a1, . . . , an]) .

Proof. (a)⇒ (b): Suppose N is the universe of N an elementary substructure
of M, and that M ⊨ ∃yφ[a1, . . . , an]. By elementarity there is a0 ∈ N such
that N ⊨ φ[a0, a1, . . . , an], and hence M ⊨ φ[a0, a1, . . . , an].

(b)⇒ (a): First of all let us show that N is the universe of N a substruc-
ture of M. The relations RN are defined by restricting the RM to N , so we
only need to show that cM ∈ N for every constant symbol c, and that N is
closed under every operation fM, with f a function symbol. To prove this
consider the formulæ ∃y(y ≖ c) and ∃y(y ≖ f(x1, . . . , xn)) and apply (b).

Next, by induction on the height of ψ we prove that

(4.9) N ⊨ ψ[a1, . . . , an] ⇔ M ⊨ ψ[a1, . . . , an].

If ψ is atomic, then (4.9) holds by definition of substructure. If ψ is either
¬ψ1 or ψ1 ∨ψ2, then (4.9) holds by inductive assumption and by definition
of the satisfaction relation. Therefore we may assume that ψ is ∃yφ:

N ⊨ ∃yφ[a1, . . . , an]⇔ ∃a0 ∈ N (N ⊨ φ[a0, a1, . . . , an])

⇔ ∃a0 ∈ N (M ⊨ φ[a0, a1, . . . , an])

⇔M ⊨ ∃yφ[a1, . . . , an]. □

Corollary 4.27. If N ⊆M then the following are equivalent:

• N is an elementary substructure of M,
• for any φ(y, x1, . . . , xn) and any a1, . . . , an ∈ N

M ⊨ ∃yφ[a1, . . . , an] ⇔ ∃a0 ∈ N (M ⊨ φ[a0, a1, . . . , an]) .
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Corollary 4.28. If F : N → M is an embedding, then the following are
equivalent:

• F is an elementary embedding
• for any φ(y, x1, . . . , xn) and any a0, a1, . . . , an ∈ N

M ⊨ ∃yφ[F (a1), . . . , F (an)] ⇔ ∃a0 ∈ N (M ⊨ φ[F (a0), F (a1), . . . , F (an)]) .

Proposition 4.29. If Mn are L-structures such that Mn is an elementary
substructure of Mm when n < m, then each Mi is an elementary substructure
of M∞

def
=
⋃

n∈NMn.

Proof. We prove by induction on the complexity of φ(x1, . . . , xn) that

(4.10) ∀i ∈ N ∀a1, . . . , an ∈Mi

(
Mi ⊨ φ[a1, . . . , an] ⇔ M∞ ⊨ φ[a1, . . . , an]

)
The argument is an elaboration of the proof of the Tarski-Vaught criterion.
If φ is atomic, the result follows from the definition of substructure, and if φ
is ¬ψ or ψ⊙ χ with ⊙ a binary connective, then the result follows at once
from the inductive assumption.

Assume that φ is ∃yψ, fix i ∈ N and a1, . . . , an ∈Mi. If Mi ⊨ φ[⃗a] then
Mi ⊨ ψ[b, a⃗] for some b ∈Mi, so that M∞ ⊨ ψ[b, a⃗] by inductive assumption,
and hence M∞ ⊨ φ[⃗a]. Conversely, suppose M∞ ⊨ φ[⃗a], and let b ∈M∞ be
such that M∞ ⊨ ψ[b, a⃗]. Let j ≥ i be such that b ∈Mj so that by inductive
assumption

Mj ⊨ ψ[b, a⃗] if and only if M∞ ⊨ ψ[b, a⃗]

Therefore Mj ⊨ φ[⃗a] and hence Mi ⊨ φ[⃗a] since Mi is an elementary sub-
structure of Mj .

If φ is ∀yψ, then the result follows from the fact that φ is equivalent
to ¬∃y¬ψ and the paragraph above. More precisely, by inductive assump-
tion (4.10) holds for the formula ψ, and hence also for ¬ψ, by the properties
of the ⊨ relation. Therefore

Mi ⊨ ∀yψ[⃗a] if and only if Mi ̸⊨ ∃y¬ψ[⃗a]
if and only if M∞ ̸⊨ ∃y¬ψ[⃗a]
if and only if M∞ ⊨ ∀yψ[⃗a].

This concludes the proof. □

4.G.2. A criterion elementarity. We present a criterion to determine whether
two L-structures are elementary equivalent. This criterion applies to relational
languages with at most finitely many constant symbols, but in view of
Section 4.C this is not a serious drawback. So let’s fix L with an arbitrary
quantity of relation symbols and finitely many constant symbols c0, . . . , cm−1,
with the understanding that m = 0 means that the language is relational.



4. Morphisms, theories, compactness 87

Let A = (A, . . . ) and B = (B, . . . ) be two L-structures with L a relational
language, and assume for simplicity that A∩B = ∅. A partial isomorphism
from A to B is an isomorphism p : A′ → B′ where A′ is a finite substructure
of A and B′ is a finite substructure of B. Note that p(cAi ) = cBi for every
i < m.

For n ≥ 1 the Ehrenfeucht-Fraïsse game EFn(A,B) is a game lasting
n rounds in which two players I and II take turns and choose elements
x0, y0, . . . , xn−1, yn−1 in A ∪B

II

I x0

y0

x1

y1

· · ·

· · ·

xn−1

yn−1

with player I moving first in each round. There are three rules:

(1) xi and yi must belong to distinct structures, that is

∀i < n (xi ∈ A ⇔ yi ∈ B) ;

(2) if I chooses an xk that was already played, say xk ∈ {xi, yi}, then II
plays yk ∈ {xi, yi}, so that {xi, yi} = {xk, yk};

(3) if I plays a constant in one of the two structures, then II must play the
same constant in the other structure.

Letting ai ∈ A and bi ∈ B be such that {xi, yi} = {ai, bi}, at the end of
the match we have a function

p : {cA0 , . . . , cAm−1, a0, . . . , an−1} → {cB0 , . . . , cBm−1, b0, . . . , bn−1}

such that p(cAi ) = cBi for i < m and p(ai) = bi for i < n. We decree that
II wins this match of EFn(A,B) if p is a partial isomorphism from A to B,
otherwise I wins. A winning strategy for II is a protocol that guarantees
II’s victory, no matter what I plays; similarly, a winning strategy for I is a
protocol guaranteeing victory against any play of II.

The Ehrenfeucht-Fraïsse game is an example of a two-persons, perfect
information (each player knows the moves played so far), zero-sum game
(every match ends with the victory of exactly one player).

In the next examples L is the language for orders with just one binary
relation symbol ≤.

Example 4.30. Let A = (Z,≤) and let B = (Q,≤). Then I wins EF3(A,B)
by playing a0 = 0 and a1 = 1 so that II must respond b0 < b1 in Q, and
in the third and final round I plays b2 =

1
2(b0 + b1) so that no matter what

a2 ∈ Z is played by II, the map ai 7→ bi (i ≤ 2) is not increasing.
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Example 4.31. Let A = (N,≤) and let B = (N ⊎ Z,⪯), the disjoint union
of the natural numbers and the integers, with the ordering ⪯ that lists all
elements of N and then those of Z.18 The two players cooperatively construct
a function ai 7→ bi (i < n), and II wins if this map is increasing, and we will
prove that II has a winning strategy.

We will show that given a partial isomorphism p (i.e. a finite increasing
map), if p is regular enough then it can be further extended to a partial
isomorphism. The notion of regularity is based on the definition of distance:

• if a, a′ ∈ N, the universe of A, then dA(a, a
′) = |a− a′|;

• if b, b′ ∈ N ⊎ Z, the universe of B, then dB(b, b
′) = |b− b′| if both of them

belong to N or to Z, and it is ∞ otherwise.

Before we state the actual strategy, let us see what we need to assume on
the partial isomorphism played so far. Suppose we are at round k < n and I
plays ak between ai < aj with i, j < k. Then II must reply with bk between
bi < bj . Moreover if k + 1 < n and ak = ai + 1, then bk = bi + 1 since
otherwise I could play bk+1 between bi and bk leaving no room for II to
answer. Similarly, if ak + 1 = ai then bk + 1 = bj . This argument can be
generalized: if k + 2m < n and dA(ak, ai) ≤ 2m or dA(ak, aj) ≤ 2m, then
dB(bk, bi) = dA(ak, ai) or dB(bk, bj) = dA(ak, aj).

Here is the crucial definition: an increasing map p : {a0, . . . , ak−1} →
{b0, . . . , bk−1}, ai 7→ bi, is (n, k)-regular if for all −1 ≤ i < j < k

dA(ai, aj) ≤ 2n−j ⇔ dB(bi, bj) ≤ 2n−j ,(4.11a)

dA(ai, aj) ≤ 2n−j ⇒ dA(ai, aj) = dB(bi, bj),(4.11b)

where a−1 = 0A (that is the minimum of N) and b−1 = 0B (that is the
minimum of N ⊎ Z). Let p be as above and assume it is (n, k)-regular, and
that k < n. Suppose I plays ak in A. Then

• either ak < min(a0, . . . , ak−1),
• or there are i, j < k such that ai < ak < aj but it is not the case that
ai < ah < aj for some other h < k,
• or else ak > max(a0, . . . , ak−1).

Conditions (4.11) guarantees that II has enough room to play bk such that
bk < min(b0, . . . , bk−1), or else bi < bk < bj , or else bk > max(b0, . . . , bk−1),
so that the map p̃

def
= p ∪ {(ak, bk)} is (n, k + 1)-regular. If instead I plays bk

in B then by adapting the argument above one shows that II has enough
room to play a suitable ak in A so that p̃ is (n, k+1)-regular. Therefore after
the n-th round an (n, n)-nice map {a0, . . . , an−1} → {b0, . . . , bn}, ai 7→ bi is
obtained. As this map is increasing then II wins the game.

18The ordered set B is denoted in Section 13 as N+ Z.
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Certain games last forever: the Ehrenfeucht-Fraïsse game EFω(A,B) lasts
infinitely many moves, with I and II cooperatively constructing a map ai 7→ bi
between infinite substructures A′ = {ai | i ∈ N} and B′ = {bi | i ∈ N}, and
II wins just in case this map is an isomorphism.

Example 4.32. Player II has a winning strategy for EFω(A,B) where
A = (A,≤) and B = (B,⪯) are dense linear orders without endpoints.

The result follows from the fact that any is a partial isomorphism p from
A to B can be extended to a partial isomorphism p′ such that a ∈ dom p′

and b ∈ ran p′ for any given a ∈ A and b ∈ B. In fact suppose I plays a ∈ A
then:

• if a is smaller than the minimum of dom p then II can answer with an
element smaller than ran p (as B has no minimum);
• if a is larger than the maximum of dom p then II can answer with an

element larger than ran p (as B has no maximum);
• if a is between ai and aj , then using the fact that B is a dense linear order,
II plays an element between bi and bj .

The case when I plays b ∈ B is similar.

If II has a winning strategy for EFω(A,B) then it has a winning strategy
for EFn(A,B) for any n, but not conversely.

Example 4.33. Player I has a winning strategy in EFω(A,B) where A,B
are as in Example 4.31.

Say I plays an element b0 ∈ Z in the structure B. Then II must answer
some a0 ∈ N in the structure A. If I plays bk = b0 − k for k > 0, then after
a0-many rounds II will reach a certain loss.

Finally, let us show how Ehrenfeucht-Fraïsse games are related to elemen-
tary equivalence.

Definition 4.34. Let L be an arbitrary language. The quantifier-rank of
an L-formula φ is defined as follows:

• if φ is atomic, then qr(φ) = 0;
• if φ is ¬ψ, then qr(φ) = qr(ψ);
• if φ is ψ⊙ χ, then qr(φ) = max(qr(ψ), qr(χ));
• if φ is ∃xψ or ∀xψ, then qr(φ) = qr(ψ) + 1.

The quantifier rank is a measure of complexity of formulæ: qr(φ) = 0 just
in case φ is quantifier-free, qr(φ) = 1 just in case φ is Boolean combination
of formulæ that are either quantifier-free or else of the form ∃xψ or ∀xψ,
with ψ quantifier-free, and so on.



90 I. Introduction to mathematical logic

Theorem 4.35. Let A, B be L-structures, with L a language without function
symbols and with finitely many constant symbols. For each n ∈ N the following
are equivalent:

(a) A ⊨ σ if and only if B ⊨ σ, for all sentences σ such that qr(σ) ≤ n;
(b) II has winning strategy in EFn(A,B).

If a is an element of a L-structure A, then (A, a) is a L ∪ {̊a}-structure,
where å is a new constant symbol that is interpreted as a in this new structure.
Thus if φ(x) is a formula with one free variable, then a belongs to the truth
set of φ(x) for the structure A if and only if (A, a) satisfies the sentence
φL̊a/xM obtained from φ(x) by replacing x with å:

A ⊨ φ[a] if and only if (A, a) ⊨ φL̊a/xM.

Proof of Theorem 4.35.
LATER

□

Corollary 4.36. Let A, B be L-structures, with L a relational language.
Then A and B are elementary equivalent if and only if II has winning strategy
in EFn(A,B), for any n ∈ N.

Therefore (Q,≤) and (R,≤) are elementary equivalent by Example 4.32,
and so are (N,≤) and (N ⊎ Z,⪯) by Example 4.31.
4.G.3. A criterion for completeness. Two structures have the same size if there
is a bijection between their universes. In particular, isomorphic structures
have the same size. In Chapter VII (Theorem 31.36) we will prove the
following criterion for the completeness of a theory.

Theorem 4.37. Let T be a satisfiable theory in a language with at most
countably many non-logical symbols. Suppose

• either there is exactly one model of T up to isomorphism,
• or else every model of T is infinite, and there is a model M of T such that

every model N of T of the same size as M is isomorphic to M.

Then T is a complete theory.

Example 4.38. Consider the language L with no non-logical symbols: its
models are the non-empty sets. If T∅ is the L-theory with no axioms, then T∅
is satisfiable, since it is satisfied by any non-empty set, but it is not complete,
since neither the sentence “there are exactly n elements” εn of page 18, nor
its negation are logical consequences of T∅. By Theorem 4.37 the theories
Tn = {εn} and T∞ = {ε≥n | n > 0} are complete. (For T∞ note that any
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two countable models are isomorphic.) The theories Tn (n = 1, 2, . . . ,∞) are
the only complete theories extending T∅ (Exercise 4.91).

If T is a complete theory that has a finite model of size n, then T |= εn and
hence every model of T is finite of size n. Thus the theories of (semi)groups
(abelian or not), of rings, of fields, . . . are not complete.

Example 4.39. Recall that TFlds is the theory of fields in the language
LRings. If we add the sentence p1 ≖ 0 (p a prime) we obtain the theory Fp of
the fields of characteristic p, while if we add sentences p1 ̸≖ 0 (for all primes
p) we obtain F0 the theory of fields of characteristic zero.

The theory of algebraically closed fields is

ACF = TFlds ∪ {φn | n ≥ 1}

where φn says that every polynomial of degree n has a root

(φn) ∀a0, . . . , an (an ̸≖ 0⇒ ∃x (an · xn + · · ·+ a1 · x+ a0 ≖ 0)).

The theory ACF is not complete, since the characteristic of the field is not
determined by these axioms. Let

ACFp = ACF ∪ {p1 ≖ 0}

be the theory of algebraically closed fields of characteristic p, and let

ACF0 = ACF ∪ {n1 ̸≖ 0 | n ≥ 2}

be the theory of algebraically closed fields of characteristic zero.

Theorem 4.40. The theories ACF0 and ACFp are complete, and these are
the only complete theories extending ACF.

Sketch of the proof. Any two uncountable, algebraically closed fields of
the same size and same characteristic have transcendence bases of the same
size, and hence they are isomorphic—this uses a few facts about cardinalities
that will be proved in full generality in Section 20. □

4.H. Definable sets. A subset A of Mn is definable without parameters
if it is the truth set of a formula φ and a finite list of variables x1, . . . , xn,
that is if A = TM

φ(x1,...,xn)
. When A is a singleton {(a1, . . . , an)} we say that

(a1, . . . , an) is definable. The integer n is called the dimension of the definable
set A.

We say that A ⊆Mn is definable with parameters p1, . . . , pk ∈M if
there is φ and variables (x1, . . . , xn, y1, . . . , yk) such that

A = {(a1, . . . , an) ∈Mn | (a1, . . . , an, p1, . . . , pk) ∈ TM
φ(x1,...,xn,y1,...,yk)

}.

In other words: A is the section of TM
φ(x1,...,xn,y1,...,yk)

given by (p1, . . . , pk).
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A function f : X → M with X ⊆ Mn is definable (with or without
parameters) if its graph Gr(f) is definable. Every a ∈ M is definable with
parameter a, via formula x1 ≖ y1. In order to avoid trivialities, when dealing
with elements (i.e. singletons) the definability is always understood to be
without parameters. Every set which is definable without parameters can
be also defined with parameters p1, . . . , pk—just take the conjunction of the
formula defining the set with a valid formula with free variables y1, . . . , yk,
for example

∧
1≤i≤k yi ≖ yi. Thus the notion of definable set with parameters

extends the notion of definable set without parameters. Conversely, if A ⊆Mn

is definable via φ(x1, . . . , xn, y1, . . . , yk) and parameters p1, . . . , pk, and if
every pi is definable via ψi(yi), then A is definable without parameters via
the formula

∃y1, . . . , yk
( ∧
1≤i≤k

ψi(yi) ∧φ(x1, . . . , xn, y1, . . . , yk)
)

or equivalently via the formula

∀y1, . . . , yk
( ∧
1≤i≤k

ψi(yi) ⇒ φ(x1, . . . , xn, y1, . . . , yk)
)
.

Therefore the notions of definability with or without parameters agree in
structures where every element is definable, such as the natural numbers
(Section 11.A).

The family of definable sets in M (with or without parameters), of fixed
dimension n always contains the empty set (defined either by

∧
1≤i≤n xi ̸≖

xi or by
∨

1≤i≤n xi ̸≖ xi), the set Mn (defined by
∧

1≤i≤n xi ≖ xi or by∨
1≤i≤n xi ≖ xi) and it is closed under complements, intersections, unions,

and differences: if A,B ⊆Mn, are defined by the formulæ φ(x1, . . . , xn) and
ψ(x1, . . . , xn) then

• Mn \A is defined by ¬φ,
• A ∩B is defined by φ ∧ψ,

• A ∪B is defined by φ ∨ψ,
• A \B defined by φ ∧ ¬ψ.

Therefore the family of definable sets in M (with or without parameters),
of fixed dimension n is an algebra of subsets of Mn, where:

Definition 4.41. An algebra of subsets of a given set X is an A ⊆P(X)
such that X, ∅ ∈ A, and closed under intersections unions, and differences.

Remark 4.42. A subset A ⊆Mn definable with parameters p1, . . . , pk can
be identified with a Â ⊆ Mn+m definable with the same parameters—for
example if A is defined by φ(x1, . . . , xn, y1, . . . , yk) and parameters p1, . . . , pk,
then Â = A×Mm, is defined by

φ(x1, . . . , xn, xn+1, . . . , xn+m, y1, . . . , yk)
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and parameters p1, . . . , pk. Moreover the function A 7→ Â preserves19 the
usual set-theoretic operation of intersection, union, complement, . . . so the
collection of definable sets of dimension n can be seen as a subfamily of the
subsets of dimension m > n.

The family of definable sets becomes more complex as the dimension
grows—as we shall see in Section 11.A, the definable subsets of dimension
1 of (N, S) where S is the successor operation, are exactly the finite and
cofinite subsets, while the diagonal {(n, n) | n ∈ N} is an infinite definable
subset of dimension 2, whose complement is also infinite.

In general it is much easier to verify that a set A ⊆ Mn is definable
rather than proving the opposite: in the first case a formula φ whose truth
set is A must be found, while in the second case we must prove that no
formula φ would do. An often efficient method to prove the non-definability
of a set is based on the notion of automorphism of a structure, that is an
isomorphism of the structure onto itself. The set of all automorphisms of M

Aut(M)

is a group under composition. Every structure M has at least one automor-
phism—the identity function idM—and if this is the only automorphism, i.e.
if Aut(M) is the trivial group, we shall say that M is rigid. By Proposi-
tion 4.6(e), if A ⊆ Mn is definable, then it is mapped into itself by every
automorphism. Thus in order to prove that a set A ⊆Mn is not definable it
is sufficient to find an automorphism that does not map A onto itself. If there
is an automorphism f such that f [A] ̸= A and f(pi) = pi, for i = 1, . . . , k,
it follows that A is not definable with parameters p1, . . . , pk. For example,
{i,−i} is definable in the complex field by the formula x · x + 1 ≖ 0, but
neither the imaginary unit nor its conjugate are definable, since z 7→ z is an
automorphism.

Remarks 4.43. (a) A set invariant under automorphisms need not be
definable. (A set A ⊆ Mn is invariant under automorphisms
if a⃗ ∈ A implies that F (⃗a) ∈ A, for every automorphism F of M.)
For example the only automorphism of the natural numbers with the
successor operations is the identity (Exercise 4.76) and therefore every
subset of N is invariant under automorphisms. The definable subsets are
as many as the formulæ of the language containing the symbols 0 and S
and, as we shall see in Chapter VII, there are countably many of them,
while the subsets of N are many more. A more interesting example is
given by multiplication versus divisibility: every automorphism of (N, |)
is also an automorphism of (N, ·) (Exercise 11.46) yet multiplication is
not definable from divisibility (Exercise 12.30).

19A map like this is called a homomorphism of Boolean algebras, see Section 7.F.3.
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(b) If M is rigid and M ∼= N, then also N is rigid and the isomorphism
between M and N is unique, since if F,G : M → N are isomorphisms
then G−1 ◦ F is an automorphism of M and hence it is the identity.
Therefore if C is a collection of isomorphic L-structures, and if one of
them is rigid (equivalently: they are all rigid), then the structures in C
are canonically isomorphic, and hence they can be completely identified.

4.I. Interpretability in structures. Fix a field k. The set GL2(k) of
invertible 2× 2 matrices on k can be identified with the subset of k4 defined
by {(x11, x12, x21, x22) | x11 · x22 ̸= x12 · x21}, and the matrix-multiplication
operation can be seen as a binary operation on k4. Thus the group GL2(k)
can be defined in the field k, and we shall say that the structure (GL2(k), ·)
is definably interpretable in the structure (k,+, ·, 0, 1). More generally, an
L-structure M is definably interpretable into an L′-structure M′ if there
is an isomorphism F : M→ N such that N , the universe of N, is a definable
subset (of suitable dimension) of M′ and if all relations, functions, constants
of N can be defined in M′. (The k-ary operations of N can be seen as k+1-ary
relations on N .)

A further extension of the notion of definable interpretation is obtained
by encoding the structure M as a quotient of M′. More precisely we require
that N be of the form X/E where X definable subset (of suitable dimension)
of M′ and E is a definable equivalence relation on X. In this case we say
that M is definably interpretable in a quotient of M′. When E = idM
we fall-back in the previous definition.

For example consider the projective space of dimension n over a field k

kPn def
= (kn+1 \ {0})/E

where x E y ⇔ ∃λ ∈ k \ {0} (λx = y) is the collinearity relation on kn+1.
If f ∈ k[X0, . . . , Xn] is a homogeneous polynomial of degree d, i.e. f(λx) =
λdf(x) for all x ∈ kn+1 and λ ∈ k, the projective variety defined by f is

V = {[x] ∈ kPn | f(x) = 0} .
Thus the structure (kPn, V ) is definably interpretable with parameters20 in
k.
4.I.1. Coding arithmetic with sequences*. Recall (Example 3.24) that LConc
is the language with a binary function symbol ∗ and three constant symbols
0,1, ε. If A be a set with at least two elements a, b, then AN, the set
of all finite sequences from A, can be construed as an LConc-structure
A = (A<N,⌢, a, b, ⟨⟩). At first sight A looks a bit dull, with few definable
subsets. The goal of this section is to show that the opposite is true, as
(N,+, ·) is interpretable in A.

20The parameters are the coefficients of f .
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For the sake of legibility the symbol ∗ will often be suppressed, so when
t, u are LConc-terms we write tu rather than t ∗ u. Following the Convention
stipulated on page 25, tn is the term obtained by repeated application of ∗
to the term t, with the understanding that t0 is the constant ε.

The first step is to find a definable subset of A<N that plays the role of
N. The formula

(φN(x)) ∀y, z (x ̸≖ y0z)

defines the set N
def
= {b(n) | n ∈ N} of all strings in which a does not occur.

Each b(n) ∈ N is the value of the closed term 1n in A and the correspondence
N → N , n 7→ b(n) is a bijection. Observe that N is closed under concate-
nation and that b(n)⌢b(m) = b(n+m). Therefore addition on N is just the
concatenation operation.

The real issue is to find a formula φ×(x, y, z) that defines multiplication
on N . The formulæ

∃u∃v (u ∗ x ∗ v ≖ y)

∃v (x ∗ v ≖ y)

∃u (u ∗ x ≖ y)

define the orderings x ⊑ y, x ⊑i y and x ⊑f y (see Definition 3.16), so we can
freely use these symbols in the formulæ below. Given n,m > 0, the closed
term

t = 00101m0012012m0013013m00 . . .001n01nm00

encodes the computation of n ·m in the following sense:

• the sequence 00101m0 is the initial segment of t;
• the term 000 does not occur in t, that is t satisfies φ1(w): ¬∃u, v (w ≖
u000v);
• terms of the form 001i00 do not occur in t, that is t satisfies φ2(w):
¬∃u(φN(u) ∧ 00u00 ⊑ w);
• if 01k001i0 occurs in t and i ̸= n, then right after it we have 1k+m001i+10,

where m is retrieved from the initial part of t; thus t satisfies φ3(w):

∀u, s, z, v[φN(u) ∧φN(s) ∧φN(t) ∧ ε ̸≖ u ∧ ε ̸≖ s ∧ ε ̸≖ z

∧ 0010u00 ⊑i w ∧ v0s00z0 ⊑ w ∧ u ̸≖ z ⇒ v0s00z0su00z10 ⊑ w]

• the sequence 01n01n·m00 is a final segment of w.

Thus the formula φ×(x, y, z)

φN(x) ∧φN(y) ∧φN(z) ∧
[
((x ≖ ε ∨ y ≖ ε) ∧ z ≖ ε)

∨ ∃w
(
0010y0 ⊑i w ∧φ1(w) ∧φ2(w) ∧φ3(w) ∧ 0x0z00 ⊑f w

)]
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defines multiplication on N in the sense that for all n,m, k ∈ N

A ⊨ φ×[b
(n), b(m), b(k)] if and only if k = n ·m.

Therefore we have shown that:

Theorem 4.44. (N,+, ·) is definably interpretable in A.

4.J. Definability in groups. In order to study the first-order theory of
groups, we can use LGrps seen on page 53 and consisting of two function
symbols · and −1 and a constant symbol 1, but the choice of language is far
from being unique. If the symbol for inverses is removed, the language LMnd
is obtained; a structure for this language is a monoid if it satisfies (3.10a)
and (3.10b), and it is a group if it satisfies also ∀x∃y (x · y ≖ 1 ∧ y · x ≖ 1).
For the sake of frugality, we could eschew using the constant 1, limiting
ourselves to the language for semigroups LSGrps that has only one symbol ·
for a binary operation (Exercise 4.84). When dealing with abelian groups it
is customary to use additive notation and the language LAbGr (see page 55).

In this section G denotes an arbitrary group, and 1G is its identity element.
Let us see some examples subsets of Gn that are definable without parameters,
using LGrps, LMnd, or LSGrps.

• The trivial subgroup {1G} is defined by x ≖ x · x or by x ≖ 1.
• The center C(G) is defined by ∀y(y · x ≖ x · y). More generally, if
A ⊆ G is definable with parameters p1, . . . , pn, then its centralizer
CG(A)

def
= {g ∈ G | ∀x ∈ A (g · x = x · g)} is definable with parameters

p1, . . . , pn.
• The graph of the inverse map g 7→ g−1 is defined by either one of the

following formulæ: y · x ≖ (y · x) · (y · x), x · y ≖ 1, or y ≖ x−1.
• The conjugacy relation is defined by ∃z(z ·x ≖ y ·z), or by ∃z(z ·x·z−1 ≖ y).

In fact all of the above notions are uniformly definable, that is they are
defined using a single formula that works for every group.
4.J.1. Torsion. An element g ∈ G has torsion if gn = 1G for some n > 0
and the smallest such n is called the order of g and it is denoted by o(g).
Since o(g) = 1⇔ g = 1G, when we say that “G has an element with torsion”
we mean that there is g ∈ G such that o(g) = n > 1. If g in torsionless, i.e.
it has no torsion, we write o(g) = ∞, and the subgroup generated by g is
isomorphic to (Z,+).

A torsion group is a group in which every element has torsion; if instead
the only torsion element is 1G then the group is said to be torsion-free or
torsionless. Torsion-free groups are axiomatized by TGrps ∪ {τn | n ≥ 1},
with

(τn) ∀x (x ̸≖ 1⇒ xn ̸≖ 1).
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For n ≥ 1 the set

Torn(G) = {g ∈ G | o(g) = n}
is defined by xn ≖ 1 ∧

∧
1<k<n x

k ̸≖ 1, and

Tor(G) =
⋃

n≥1Torn(G)

is the set of all elements of G that have torsion. It is easy to check that
Tor(G) is a subgroup, when G is abelian.

Because of the quantification on the integers, the expression stating that x
has torsion, ∃n > 1 (xn ≖ 1) is only a pseudo-formula. If we replaced ∃n > 1
with a disjunction of the form

(
x2 ≖ 1

)
∨
(
x3 ≖ 1

)
∨ . . . an infinite string of

symbols is obtained, and such object cannot be a formula. So we may ask: is
Tor(G) a definable subset of G? If G is torsion then Tor(G) = G, while if
G is torsion-free then Tor(G) = {1G}, so in these cases Tor(G) is definable
without parameters. So the question above should be stated as: is Tor(G)
a uniformly definable subset of G? Corollary 4.56 shows that the answer is
negative.
4.J.2. Divisibility. The n-divisible part (n ≥ 1) of a group G is the set
Divn(G) of all elements of the form gn, and it is defined by the formula
∃y (x ≖ yn). The divisible part of G, in symbols Div(G), is the intersection
of all its n-divisible parts. When (G,+) is an abelian group its n-divisible
part

nG = {ng | g ∈ G}
is a subgroup called the n-divisible subgroup, and the divisible part is
called the divisible subgroup. Finally we say that a group is n-divisible
if it coincides with its n-divisible part; similarly a group is divisible if
it coincides with its divisible part. Divisible groups are axiomatized by
TGrps ∪ {δn | n ≥ 2} with

(δn) ∀x ∃y (yn ≖ x).

(If the additive notation is used then δn becomes ∀x ∃y (ny ≖ x).)
The expression ∀n > 0 ∃y

(
ny ≖ x

)
is not a formula, hence it cannot be

used to define the divisible part of a group. So we may ask: is the divisible
part definable in the group G? This is certainly the case if G is divisible, or
if the divisible part is {1G}, so the question must be restated as: is Div(G) a
uniformly definable subset of G? The answer is negative by Corollary 4.56.

Examples of n-divisible abelian groups are

Z[1/n] = {x ∈ Q | ∃k(nkx ∈ Z)}
and Z[1/n]/Z, that can be identified with a subgroup of the multiplicative
group {z ∈ C | |z| = 1} ∼= R/Z, while

Q =
⋃

n≥1 Z[1/n], R, Q/Z, R/Z
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are divisible and abelian. The group Z is not n-divisible for any n, and
its divisible subgroup is {0}, while Z × Q is not divisible, but its divisible
subgroup is {0} ×Q.

Example 4.45. Any torsion-free, divisible abelian group G is a vector
space over Q and its dimension as a vector space is called the rank of G
(Exercise 4.83). Two uncountable vector spaces over Q of the same size
are isomorphic (see Section 18.D.1 for details). Therefore (R,+), (C,+),
and (Qn,+) for n ≥ 1, are all elementarily equivalent, and the theory of
torsion-free, divisible abelian groups is complete.

4.K. The Compactness Theorem. A set of sentences Σ is finitely satis-
fiable if every finite Σ0 ⊆ Σ is satisfiable. Every satisfiable set of sentences is
finitely satisfiable, and the Compactness Theorem for first-order logic
asserts that the converse is true.

Theorem 4.46. Let Σ be a set of L-sentences. If Σ is finitely satisfiable,
then Σ is satisfiable.

This result is one of the cornerstones of mathematical logic, and will
be proved in Section 15. The proof for infinite languages L requires (a
consequence of) the axiom of choice, a set-theoretic principle that will be
introduced in Section 14.

Corollary 4.47. Let Σ be a set of L-sentences and let τ be an L-sentence.
If Σ |= τ, then there is a finite Σ0 ⊆ Σ such that Σ0 |= τ.

Proof. Suppose Σ |= τ, so that Σ∪{¬τ} is unsatisfiable by Proposition 3.30.
By compactness there is a finite Σ0 ⊆ Σ such that Σ0 ∪ {¬τ} is unsatisfiable,
and hence Σ0 |= τ again by Proposition 3.30. □

The next result is most useful.

Theorem 4.48. Suppose Σ is a set of L-sentences with arbitrarily large finite
models. Then Σ has an infinite model.

Proof. Otherwise Σ ∪ {ε≥k | k ≥ 1} would be unsatisfiable, and hence by
compactness there would be an n ≥ 1 such that Σ∪{ε≥k | 1 ≤ k ≤ n} would
be unsatisfiable, against our assumption that Σ has a model of size ≥ n. □

4.K.1. Finitely axiomatizable theories and classes. A theory is said to be
finitely axiomatizable if it has a finite set of axioms. More generally, given
theories T ′ ⊆ T in a language L, we say that T is finitely axiomatizable
modulo T ′ if there is a finite set Σ of L-sentences such that T ′ ∪ Σ is an
axiom system for T . Thus T is finitely axiomatizable if and only if it is
finitely axiomatizable modulo T ′, where T ′ is a theory consisting of valid
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sentences, e.g. T ′ = ∅. The following result is most useful for proving that a
given theory is not finitely axiomatizable.

Theorem 4.49. Let T be an L-theory and let {σn | n ∈ N} ∪ T ′ be a system
of axioms for it. Suppose that for every n there is an m > n such that
{σ0, . . . ,σn} ∪ T ′ ̸|= σm. Then T is not finitely axiomatizable modulo T ′.

Proof. Towards a contradiction, suppose that {τ0, . . . , τn} ∪ T ′ is a set
of axioms for T , and let τ =

∧
i≤n τi. As {σn | n ∈ N} ∪ T ′ |= τ, by

Corollary 4.47 there is a finite set I ⊆ N such that {σn | n ∈ I} ∪ T ′ |= τ.
By assumption there is a large enough m such that {σn | n ∈ I} ∪ T ′ ̸|= σm,
and this contradicts the fact that {τ} ∪ T ′ |= σn for all n. □

Corollary 4.50. If or every n there is m > n such that {σ0, . . . ,σn} |̸= σm
then {σn | n ∈ N} is not finitely axiomatizable.

Two sets of sentences Σ and ∆ are logically equivalent if and only if
they axiomatize each other, that is

Σ |= σ if and only if ∆ |= σ

for every sentence σ. Then ∆ is a set of axioms for Σ, and conversely. Call
Σ an independent system of sentences if none of its members is logical
consequence of the other sentences, that is if Σ \ {σ} |̸= σ, for every σ ∈ Σ.
Every finite set of sentences Σ contains an independent set of axioms ∆, but
such ∆ is far from being unique. If Σ is countable, then it has an independent
set of axioms ∆, but ∆ might not be a subset of Σ (Exercise 4.89).

The collection of all models of T is

Mod(T ) = {M | M is an L-structure such that M ⊨ T} .
Thus Mod(T ) = ∅ if and only if T is unsatisfiable and Mod(T ) is the collection
of all L-structures if and only if T consists of valid sentences. Given a class C
of L-structures, we can ask whether there is some theory T in the language L

such that C = Mod(T ). By Proposition 4.6(e) if M ∈ Mod(T ) and N ∼= M,
then N ∈ Mod(T ), and hence the problem is meaningful just in case C is
closed under isomorphisms.

Definition 4.51. A class of L-structures C is axiomatizable or elementary
if C = Mod(T ) for some theory T ; if T can be taken to be finite (or
equivalently: finitely axiomatizable), then C is finitely axiomatizable or
basic elementary. If C ′ = Mod(T ′) then C ⊂ C ′ is finitely axiomatizable
modulo C ′ if C = Mod(T ′ ∪ Σ) for some finite set of axioms Σ.

The finite set Σ of sentences in the definition above can be replaced by its
conjunction

∧
Σ, so if Ci = Mod(T ′ ∪ {σi}) is finitely axiomatizable modulo

C ′ = Mod(T ′), then C0 ∩ C1, C0 ∪ C1, and C ′ \ Ci are finitely axiomatized
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modulo C ′ via the sentences σ0 ∧ σ1, σ0 ∨ σ1, and ¬σi, respectively. In other
words: the family of all finitely axiomatizable classes is closed under taking
intersections, unions and complements. For the axiomatizable classes, we
have that

• Mod(T0) ∩Mod(T1) = Mod(T0 ∪ T1), so the intersection of two axiomatiz-
able classes is axiomatizable;
• the union of two axiomatizable classes is axiomatizable, if the language L

has countably many non-logical symbols (Exercise 31.58 in Chapter VII),
• the complement of an axiomatizable class C is axiomatizable if and only if

it is finitely axiomatizable, and so is C (Theorem 4.52).

If C is a class of L-structures such as: the non-empty sets, the ordered
sets, the groups, the rings, etc., then C is finitely axiomatized. Adding
the sentences ε≥n we obtain an axiomatization for the class C ′ ⊆ C of all:
infinite sets, infinite ordered sets, infinite groups, infinite rings, etc., and by
Theorem 4.49 C ′ is axiomatizable, but not finitely axiomatizable. Finally the
class C \ C ′ of all: finite non-empty sets, finite ordered sets, finite groups,
finite rings, etc., is not axiomatizable by Theorem 4.48. This is a particular
instance of a general result.

Theorem 4.52. Suppose C is an axiomatizable class, and that C0 ∪ C1 = C
and C0 ∩ C1 = ∅. If C0 and C1 are axiomatizable, then they are finitely
axiomatizable modulo C .

Proof. Let T be a set of axioms for C , and let Σi be a set of axioms for
Ci, for i = 0, 1. Then T ∪ Σ0 ∪ Σ1 is unsatisfiable, so by compactness
there are finite Σ′

i ⊆ Σi such that T ∪ Σ′
0 ∪ Σ′

1 is unsatisfiable. Therefore
C ⊇ Mod(T ∪ Σ′

i) ⊇ Mod(T ∪ Σi) and Mod(T ∪ Σ′
0),Mod(T ∪ Σ′

1) partition
C , and therefore Mod(T ∪ Σ′

i) = Mod(T ∪ Σi) = Ci. □

Theorem 4.53. Let C ′ ⊆ C be axiomatizable classes, and suppose that C ′

is not finitely axiomatizable modulo C . Then C \ C ′ is not axiomatizable.

Proof. Apply Theorem 4.52 to C0 = C ′ and C1 = C \ C ′. □

4.K.2. Some examples. Let L be the language with no logical symbols, so
that the L-structures are just the non-empty sets. Then {ε≥n | n ≥ 1} is the
theory of infinite sets. Since any finite number of sentences in this theory
has a finite model, it follows that this theory is not finitely axiomatizable.

Similarly, suppose L is any first-order language and T is any L-theory
that has arbitrarily large finite models. Then T ′ = T ∪ {ε≥n | n ≥ 1} is
the theory of all infinite models of T , and it is not finitely axiomatizable.
Equivalently, letting C = Mod(T ) and C ′ = Mod(T ′), then C ′ is not finitely
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axiomatizable modulo C , while C \ C ′, the class of all finite models of T , is
not axiomatizable.

Corollary 4.54. The classes of all infinite groups, infinite rings, infinite
fields, infinite orders, . . . are axiomatizable, but not finitely so. Therefore the
classes of all finite groups, finite rings, finite fields, finite orders, . . . are not
axiomatizable.

Theorem 4.55. The class of torsion-free abelian groups is axiomatizable,
but not finitely axiomatizable.

The class of divisible abelian groups is axiomatizable, but not finitely
axiomatizable, and hence the class of non-divisible groups is not axiomatizable.

Proof. Let TAbGr be the set of axioms for abelian groups. The class of
torsion-free abelian groups is axiomatized by TAbGr ∪ {τn | n ≥ 1}, so by
Theorem 4.49 it is enough to check no finite list of τns suffices. Given
n1, . . . , nk take a prime number p > n1, . . . , nk and consider the group Z(p):
this is a torsion group that satisfies τn1 ∧ · · · ∧ τnk

.
The class of all divisible groups is axiomatized by TAbGr ∪ {δn | n ≥ 2},

so it is enough to check no finite list of δns suffices. Given n let p be a
sufficiently large prime, say n! < p, so that Z[1/n!] is k-divisible, for all k ≤ n,
but it is not p-divisible. □

Corollary 4.56. The set of torsion elements and the divisible part are not
uniformly definable over class of all groups, that is to say: there are no
formulæ φTor(x) and φDiv(x) that define Tor(G) and Div(G) for any group
G.

Proof. Towards a contradiction suppose φTor(x) defines Tor(G) for all G.
Then Mod(TGrps ∪ {∀xφTor(x)}) would be the class of all torsion groups,
against Theorem 4.55.

The case for φDiv(x) is similar. □

Recall from Example 4.39 that F0,Fp are the theories of fields of charac-
teristic zero and p, respectively; ACF is the theory of all algebraically closed
fields, while ACF0,ACFp are the theories of all algebraically closed fields of
characteristic zero or p.

The theory Fp is finitely axiomatized, while F0 has infinitely many axioms
n1 ̸≖ 0: given any finite list of these axioms we can choose a large enough
prime p so that Z(p) satisfies all these finitely many axioms, but does not
satisfy p1 ̸≖ 0. Therefore F0 is not finitely axiomatizable.

The theory ACF has infinitely many axioms. By standard results in
algebra it is possible to construct a non-algebraically closed field (of any
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prescribed characteristic) satisfying finitely many of these axioms. Therefore
none of ACF, ACF0, ACFp is finitely axiomatizable.

Recapping:

Theorem 4.57. The classes of all algebraically closed fields Mod(ACF) and
of all fields of characteristic zero Mod(F0) are not finitely axiomatizable.

The class Mod(ACF0) of all algebraically closed fields of characteristic
zero is not finitely axiomatizable modulo either Mod(ACF) or Mod(F0).

Many axiomatizable classes of infinite structures are not finitely axiom-
atizable. On the other hand there are finitely axiomatizable classes with
only infinite structures, for example: dense linear orders, atomless Boolean
algebras, non-commutative division rings (Wedderburn’s Theorem), . . . . In
the next sections we shall see more examples of classes of structures which are
finitely axiomatizable, and also examples of classes that are axiomatizable,
but not finitely so, and examples of classes that are not axiomatizable at all.
Just like for definability, it is much easier to show that a class is (finitely)
axiomatizable, rather than proving the opposite. Sometimes the problem
of (finite) axiomatizability of a class of structures depends on the language.
The class of bipartite graphs is axiomatizable, but not finitely so, in the
language of graphs (Exercise 10.12 in Chapter III), while the same class is
finitely axiomatizable in a suitable extended language. A similar situation
happens for the class of abelian torsion-free groups (Example 9.6(d) and Exer-
cise 32.13). Another interesting example is the class of homogeneous linear
orders, that is linear orders such that for any pair of elements a, b there is
an automorphism F (that is an increasing bijection) such that F (a) = b. By
Exercises 4.90 and 32.15 homogeneous linear orders are not axiomatizable
in the language containing only <, but they are finitely axiomatizable in a
suitably extended language.

4.L. Some applications of compactness.

Theorem 4.58. Let (G, ·) be a group such that ∀n ≥ 2 ∃g ∈ G (o(g) ≥ n).
There is a group H which is elementarily equivalent to G and such that
∃h ∈ H (o(h) =∞).

Proof. Let L be the language extending LSGrps by adding a new constant
symbol c. An L-structure (H, ·, h) consists of a non-empty set H with a
binary operation · and a chosen element h. If (H, ·, h) is a model of

Σ = Th(G) ∪ {cn+1 ̸≖ 1 | n ∈ N}

then (H, ·) ⊨ Th(G) so it is a group elementarily equivalent to (G, ·). Moreover
the element h must satisfy hn+1 ̸= 1H for all n so it is torsionless. Therefore
it is enough to prove that Σ is satisfiable. By compactness it is enough to
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prove that every finite Σ0 ⊆ Σ is satisfiable. Given Σ0 choose N large enough
so that if cn+1 ̸≖ 1 belongs to Σ0 then n < N . So it is enough to show
that ∆

def
= Th(G) ∪ {cn+1 ̸≖ 1 | n < N} ⊇ Σ0 is satisfiable. But (G, ·, ḡ) ⊨ ∆,

where ḡ ∈ G is an element of order > N . This proves the theorem. □

The strategy of the proof of Theorem 4.58 is more important than
the statement, so let us summarize it. Given a theory T with a model
M = (M, . . . ), one expands the language by adding new symbols (in this case
a constant c) and extends T to a new theory Σ = T ∪ {σn | n ∈ N} whose
satisfiability would prove the result. (In our case T is Th(G), M = (G, ·),
and σn is cn+1 ̸≖ 1.) By the compactness theorem it is enough to show that
T ∪ {σn | n ∈ I} is satisfiable, for any finite I ⊆ N. For each I one choses an
appropriate element āI ∈M so that the expanded structure MI = (M, . . . , āI)
is a model of T ∪ {σn | n ∈ I}, proving the result.

An ordered field is Archimedean if it satisfies Archimedes’ principle

∀x∃n ∈ N
(
0 < x ⇒ x < n1

)
.

If K is a non-Archimedean ordered field, an element ξ ∈ K is said to be
infinite positive if n1 < ξ for all n. Its opposite η = −ξ satisfies η < −n1
for all n, and it is an infinite negative element. The inverse ε of an infinite
(positive or negative) element is called an infinitesimal and satisfies ε ≠ 0
and −1 < nε < 1 for all n.

The field R and its subfields are Archimedean, as Archimedes’ property
is preserved by taking substructures. Observe that the definition of the
Archimedean property is not a first-order formula, it is only a pseudo-formula.

Theorem 4.59. Every field is elementarily equivalent to a non-Archimedean
one. Therefore the Archimedean property is not first-order.

Proof. Let (F,+, ·, 0F , 1F , <) be an ordered field. Let c be a new constant
symbol and consider the theory

Σ = Th(F ) ∪ {n1 < c | n ∈ N}.

If (K,+, ·, 0K , 1K , k̄) ⊨ Σ then (K,+, ·, 0K , 1K) is a non-Archimedean field
(witnessed by the element k̄) elementary equivalent to (F,+, ·, 0F , 1F , <). □

With further work it is possible to construct a non-Archimedean field ∗R
such that R elementarily embeds into it, and any f : Rn → R can be extended
to a ∗f : ∗Rn → ∗R. In this context it is possible to develop mathematical
analysis using infinite and infinitesimal “numbers”. This is the starting point
of an important branch of mathematical logic known as non-standard
analysis.
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4.L.1. Complex variables. Recall (Example 4.39) that ACFp and ACF0, the
theory of algebraically closed fields of characteristic p (a prime number) or
zero, are complete theories. Using this one can prove an interesting result in
complex analysis.

Theorem 4.60 (Ax). Every injective polynomial function f : Cn → Cn is
surjective.

By a polynomial function f = (f1, . . . , fn) : R
n → Rn where R is a rng,

we mean n polynomials in n variables fi ∈ R[X1, . . . , Xn] for i = 1, . . . , n.
The degree of f is max(deg(f1), . . . ,deg(fn)). It is a trivial, but tedious
matter to check that for all n, d > 0 there is a ∀∃-sentence σn,d of LRngs such
that for each R commutative ring, R ⊨ σn,d if and only if

every injective polynomial function Rn → Rn of degree ≤ d is surjective.

Observe that if R is finite, then so is Rn, so R ⊨ σn,d as any injective function
Rn → Rn must be surjective.

Ax’s theorem amounts to prove that for all n, d > 0, C ⊨ σn,d; equivalently
ACF0 |= σn,d. Towards a contradiction and using the completeness of ACF0,
suppose ACF0 |= ¬σn̄,d̄, for some n̄, d̄ > 0. By compactness, there is N such
that

Σ
def
= ACF∪{k1 ̸≖ 0 | k ≤ N} |= ¬σn̄,d̄.

If F is an algebraically closed field of characteristic p > N , then F ⊨ Σ, so
F ⊨ ¬σn̄,d̄. Therefore a contradiction is attained, and hence Theorem 4.60
will be proved, once we show the following result.

Theorem 4.61. ACFp |= σn,d for all n, d > 0 and all primes p.

Proof. Fix n, d, p. The theory ACFp is complete, so it is enough to prove
that Z(p), the algebraic closure of Z(p), satisfies σn,d. As Z(p) =

⋃
k∈N Fk

is the increasing union of finite fields Fk, then each Fk satisfies σn,d, and so
does Z(p) by Proposition 4.20. □

Exercises

Exercise 4.62. Let (P,⪯) and (Q,�) be orders and let f : P → Q. Show
that:

(i) f : (P,⪯)→ (Q,�) is an embedding (in the sense of structures) if and
only if ∀x, y ∈ P (x ⪯ y ⇔ f(x)� f(y)),

(ii) if f is an embedding, then it is increasing,
(iii) the implication in (ii) cannot be reversed,
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(iv) if (P,⪯) is total and f monotone then ∀x, y ∈ P (f(x)� f(y)⇒ x ≺ y),

(v) if (P,⪯) is total and f increasing then ∀x, y ∈ P (x ⪯ y ⇔ f(x)� f(y)),

(vi) the assumption “(P,⪯) is total” in (v) cannot be removed.

Exercise 4.63. Check that:

(i) if F : M → N is a morphism of structures, then ran(F ) is a substructure
of N , and F : M → ran(F ) is a morphism of structures;

(ii) if L does not contain relation symbols, then a bijective morphism
F : M → N is an isomorphism;

(iii) M embeds into N if and only if M is isomorphic to a substructure of N ;

(iv) if F : M → N is bijective and (A′), (B) and (C) on page 70 hold, then
F is an isomorphism.

Exercise 4.64. Use the notation of Example 3.35.

(i) Verify that the following sets are definable in M : g[M \f−1[P ]], f−1[P ]\
g[Q], f [P ]△ f [Q].

(ii) Find a sentence σ such that M ⊨ σ if and only if f [P ] ∪ g[P ] ⊆
f−1[P ] ∩ g−1[Q].

Exercise 4.65. Show that the covering relation (see page 46) is definable
from the ordering relation ≤.

Exercise 4.66. A semi-lattice-algebra is a commutative semigroup (S, ·)
satisfying the idempotence property, that is ∀x (x · x ≖ x).

(i) Show that if (L,≤) is an upper semi-lattice, then (L,⋎) is a semi-lattice-
algebra. Similarly, if (L,≤) is a lower semi-lattice, then (L,⋏) is a
semi-lattice-algebra.

(ii) In semi-lattice-algebra (S, ·) we define the relations ≤⋎ and ≤⋏ on L by
letting a ≤⋎ b ⇔ a · b = b and a ≤⋏ b ⇔ a · b = a. Show that (L,≤⋎)
is an upper semi-lattice and (L,≤⋏) is a lower semi-lattice, and that
(L,≤⋎) and (L,≤⋏) are dual to each other. Moreover sup≤⋎

(a, b) =
a · b = inf≤⋏(a, b).

Exercise 4.67. (i) Show that in a finite linear order every element is
definable and hence every subset is definable without parameters.

(ii) Consider the ordered sets M3 and N5 of figure 7 on page 78, and find
their definable elements and their subsets that are definable without
parameters.

(iii) If L is a finite linear order of size n ≥ 1 then the order L × L has n
definable elements.
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Exercise 4.68. Show that in every lattice the following sentences hold:

∀x, y, z ((x⋏ y)⋎ z ≤ (x⋎ z)⋏ (y ⋎ z))

∀x, y, z ((x⋏ z)⋎ (y ⋏ z) ≤ (x⋎ y)⋏ z)

∀x, y, z ((x⋎ y)⋏ z ≖ (x⋏ z)⋎ (y ⋏ z))

⇔ ∀x, y, z ((x⋏ y)⋎ z ≖ (x⋎ z)⋏ (y ⋎ z))

∀x, y, z (z ≤ x⇒ (x⋏ y)⋎ z ≤ x⋏ (y ⋎ z))

∀x, y, z ((x⋏ y)⋎ (x⋏ z) ≖ x⋏ (y ⋎ (x⋏ z)))

⇔ ∀x, y, z (z ≤ x⇒ x⋏ (y ⋎ z) ≖ (x⋏ y)⋎ z)

⇔ ∀x, y, z ((x⋎ y)⋏ (x⋎ z) ≖ x⋎ (y ⋏ (x⋎ z))).

Exercise 4.69. Show that:

(i) Every distributive lattice is modular.
(ii) The lattice N5 is not modular, while the lattice M3 is modular, but not

distributive.

Exercise 4.70. Show that (x⋏y)⋎(y⋏z)⋎(x⋏z) ≖ (x⋎y)⋏(y⋎z)⋏(x⋎z)
holds in any distributive lattice.

Exercise 4.71. Suppose Ri is a binary relation on Xi ̸= ∅ with i = 0, 1. Let
R0 ⊗R1 be the binary relation on X0 ×X1 defined by

(x0, x1) R0 ⊗R1 (x
′
0, x

′
1) ⇔ x0 R0 x

′
0 ∧ x1 R1 x

′
1

so that (X0×X1, R0⊗R1) is the product of the two structures (X0, R0) and
(X1, R1). Show that

• R0, R1 are reflexive if and only if R0 ⊗R1 is reflexive;
• if R0, R1 are symmetric then R0⊗R1 is symmetric. Conversely if R0⊗R1

is symmetric and R1−i ̸= ∅ then Ri is symmetric;
• if R0, R1 are transitive then R0 ⊗R1 is transitive. Conversely if R0 ⊗R1

is transitive and dom(R1−i) ∩ ran(R1−i) ̸= ∅ then Ri is transitive;
• R0, R1 are preorders if and only if R0 ⊗R1 is a preorder;
• R0, R1 are equivalence relations if and only if R0 ⊗R1 is an equivalence

relation;
• if R0, R1 are antisymmetric then R0 ⊗R1 is antisymmetric. Conversely if
R0 ⊗R1 is antisymmetric and R1−i is not irreflexive then Ri is antisym-
metric;
• R0, R1 are orders if and only if R0 ⊗R1 is an order;
• R0, R1 are upward/downward directed orders if and only if R0 ⊗R1 is an

upward/downward directed order.
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Exercise 4.72. For each pair of structures

(R+, ·), (Q+, ·), (R \ {0} , ·), (Q \ {0} , ·), (R,+), (Q,+)

determine whether they are isomorphic, or one embeds into the other. Repeat
the argument for: (N,+), (N, ·), (N \ {0} , ·).

Exercise 4.73. Show that (R+, ·), (Q+, ·), (R \ {0} , ·), (Q \ {0} , ·) are
pairwise elementarily inequivalent.

Exercise 4.74. Show that:

(i) If f : N × N → N is such that f(a + c, b + d) = f(a, b) + f(c, d) for
all a, b, c, d ∈ N, then f(0, 0) = 0 and f(0,m) = f(n, 0) = nm where
n = f(0, 1) and m = f(1, 0). In particular, f is not injective, and hence
(N× N,+) does not embed into (N,+).

(ii) (Z+, ·) is isomorphic to (N[X],+). Conclude that (Z+×Z+, ·) is isomor-
phic to (Z+, ·), where multiplication on Z+ × Z+ is defined component-
wise, that is (a, b) · (c, d) = (a · c, b · d).

(iii) There is no injective function f : Z+ × Z+ → Z+ such that for all
a, b, c, d ∈ Z+

f(a, b · d) = f(a, b) · f(a, d) or f(a · c, b) = f(a, b) · f(c, b).

Exercise 4.75. Let M be an L-structure and p1, . . . , pk ∈M . Show that

(i) if f1, . . . , fn are partial functions from Mm to M and g is a partial
functions from Mn to M , and are definable in M with parameters
p1, . . . , pk, then the partial function h from Mm to M defined by h(x⃗) =
g(f1(x⃗), . . . , fn(x⃗)) is definable with parameters p1, . . . , pk;

(ii) if f is a partial injective function from M into itself, and it is definable
with parameters p1, . . . , pk, then so is the partial function f−1.

Exercise 4.76. Show that:

(i) Every element is definable in (N,+).
(ii) Every element is definable in (Z,+, ·).
(iii) Every element is definable in (Q,+, ·).
(iv) (N, S), (N,+), (Z,+, ·) and (Q,+, ·) are rigid structures.
(v) 0 is the only definable element in the structure (Z,+).
(vi) Neither N nor < are definable without parameters in (Z,+) and in

(R,+).

Exercise 4.77. Show that the following sets are definable in (N, |), where |
is the divisibility relation:

(i) {0} and {1};
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(ii) {n | n is not prime};
(iii) {pn | p is prime and n > 0};
(iv)

{
p2 | p is prime

}
;

(v) {pq | p and q are distinct primes};
(vi)

{
(n,m) ∈ N2 | n ⊥ m

}
, where n ⊥ m means that n and m are coprime;

(vii)
{
(n,m, k) ∈ N3 | k = lcm(n,m)

}
, where lcm(n,m) is the least common

multiple of n and m;
(viii)

{
(n,m, k) ∈ N3 | k = gcd(n,m)

}
, where gcd(n,m) is the greatest com-

mon divisor of n and m.

Exercise 4.78. Show that the complex field and the group {z ∈ C | |z| = 1}
are definably interpretable in (R; +, ·).

Exercise 4.79. Let H be a subgroup of a group G. The normalizer of
H in G is NG(H) = {g ∈ G | gHg−1 = H}. Show that if H is definable
with parameters p1, . . . , pn, then also NG(H) is definable with the same
parameters.

Exercise 4.80. Let G = {z ∈ C | |z| = 1}. Show that:

(i) f : (R+) → (G, ·), f(x) = e2πix, is a surjective homomorphism and
ker f = Z;

(ii) Tor(G) = {e2πix | x ∈ Q}, the group of all roots of unity;
(iii) G is an infinite abelian group that has torsion elements with arbitrarily

large order, and has elements without torsion;
(iv) there are distinct z, w ∈ G \ Tor(G) such that zw ∈ Tor(G). Therefore

the set of all torsionless elements together with 1G is not a subgroup.

Exercise 4.81. Let G =
⊕

n>0 Z[1/n]. Show that G ∼=
⊕

n>0 Z and that
mG ∼= G and

⋂
m≥1mG = {0G}.

Exercise 4.82. Let n > 1. Show that in Z/nZ every subgroup is definable
without parameters. What are the definable elements of Z/nZ?

Exercise 4.83. Show that:

(i) the divisible torsion-free abelian groups are exactly the vector spaces
over Q, and that homomorphisms between divisible torsion-free abelian
groups is a linear map between the corresponding spaces;

(ii) if G is a divisible torsion-free abelian group, then the only subsets that
are definable without parameters are ∅, G, {0G}, and G \ {0G}. [Hint:
a linearly independent set of vectors can be extended to a basis.21] In
particular, 0G is the unique definable element;

21This fact requires the axiom of choice.
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(iii) each group Z/nZ is definable in R/Z, with the identifications Z/nZ ∼=
{e2iπk/n | 0 ≤ k < n} and R/Z ∼= {z ∈ C | |z| = 1},

(iv) Let x ∈ G \ {0G} where G is an abelian n-divisible group. Show that if
G is ordered, then there is a unique y ∈ G such that ny = x. Show with
a counterexample that the result does not hold if G is not orderable.

Exercise 4.84. (i) Show that a semigroup (S, ·) is a group if and only if
there is an e ∈ S which is a left identity, that is e · x = x for all x ∈ S,
and for every x ∈ S there is y ∈ S which is a left inverse with respect
to e, that is y · x = e. Similarly, if we assume a right identity and right
inverses.

(ii) If S has at least two elements and satisfies ∀x, y (x · y ≖ x) then (S, ·)
is an example of a semigroup with a left identity, every element has a
right inverse, but it is not a group.

(iii) Find an axiom system for groups, and for torsion-free groups, in the
language LSGrps.

Exercise 4.85. Let B and C be Boolean algebras, with B not atomless and
C not atomic. Show that the Boolean algebra B × C is neither atomic nor
atomless.

Exercise 4.86. (i) Consider the following classes of LGrps-structures:
• For n ≥ 2, C≤n and C≥n are the collections of all groups such that each

element (other than the identity) has order ≤ n and ≥ n respectively.
Thus Cn = C≤n ∩ C≥n is the collections of all groups such that each
element (other than the identity) has order n,
• C<ω is the collection of all groups such that each element has finite

order,
• C∞ is the collection of all groups such that each element (other than

the identity) has infinite order.
For each of the classes C≤n, C≥n, Cn,

⋃
2≤n Cn, C<ω, and C∞ determine

whether it is an axiomatizable class, and in the affirmative case whether
it is finitely axiomatizable.

(ii) The conjugacy class of g ∈ G is {h−1gh | h ∈ G}, and the conjugacy
class of 1G is {1G}, and it is said to be trivial. The size of conjugacy
classes depends on the group: in the abelian case every conjugacy class
is a singleton, but if the group is not abelian they can be quite large.
For example, if n ≥ 5 then the least size of a non-trivial conjugacy class
of Sn is

(
n
2

)
.

Consider the following classes of LGrps-structures:
• for n ≥ 2 the class C≥n is the collection of all groups such that each

non-trivial conjugacy class has size ≥ n,



110 I. Introduction to mathematical logic

• C<ω the collection of all groups such that each conjugacy class is
finite,
• C∞ the collection of all groups such that each non-trivial conjugacy

class is infinite,
• C≥n is the collection of all groups with at least n conjugacy classes,
• C<ω the collection of all groups with finitely many conjugacy classes,
• C∞ the collection of all groups with infinitely many conjugacy classes.
Note that

⋃
2≤n C≥n ⊂ C<ω but

⋃
2≤n C n = C<ω. For each of the classes

C≥n,
⋃

2≤n C≥n, C<ω, C∞, C≥n, C<ω, and C∞ determine whether it is
an axiomatizable class, and in the affirmative case whether it is finitely
axiomatizable.

Exercise 4.87. Let L be the language with a binary relation symbol. By a
minor abuse of notation, call an L-structure (X,R) an equivalence relation
if R is an equivalence relation on X. Consider the following classes of
L-structures:

• Cn: all equivalence relations whose equivalence classes have size n,
• C<ω: all equivalence relations whose equivalence classes are finite,
• C∞: all equivalence relations whose equivalence classes are infinite,
• C n: all equivalence relations with exactly n equivalence classes,
• C<ω: all equivalence relations with finitely many equivalence classes,
• C∞: all equivalence relations with infinitely many equivalence classes.

Note that
⋃

n Cn ⊂ C<ω but
⋃

n C n = C<ω. For each of the classes Cn,
⋃

n Cn,
C<ω, C∞, C n, C<ω, and C∞ determine whether it is an axiomatizable class,
and in the affirmative case whether it is finitely axiomatizable.

Exercise 4.88. (i) Show that both the class of all atomic Boolean algebras,
and the class of all atomless Boolean algebras, are finitely axiomatizable
in LBoole.

(ii) Let C≤n be the class of all Boolean algebras with at most n many
atoms, and let C≥n be the class of all Boolean algebras with at least
n many atoms. Let also C<ω =

⋃
n C≤n be the class of all Boolean

algebras with finitely many atoms, and let C∞ be the class of all Boolean
algebras with infinitely many atoms. For each class determine whether
it is axiomatizable, and in the affirmative case whether it is finitely
axiomatizable.

Exercise 4.89. Let Σ be a set of sentences. Show that:

(i) If σ ∈ Σ and σ is valid, then Σ and Σ \ {σ} are logically equivalent.
(ii) If Σ is finite there is ∆ ⊆ Σ which is independent and logically equivalent

to Σ.
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(iii) Suppose Σ = {σn | n ∈ N} and that σn+1 |= σn, but σn ̸|= σn+1, for
all n ∈ N. Then
• Σ is not finitely axiomatizable,
• Σ has no independent subset of size ≥ 2,
• ∆ = {τn | n ∈ N} is a set of axioms for Σ, and ∆ \ {τn} ̸|= τn for

all n ≥ 1, where τ0 is σ0 and τn+1 is
∧

i≤n σi ⇒ σn+1.

(iv) If Σ is countable, then it has a countable, independent set of axioms.

Exercise 4.90. Recall that a linear order L is homogeneous if for any pair
of points a, b there is an automorphism Fab : L → L sending a to b. Show
that homogeneous linear orders are finitely axiomatizable in a language with
≤ and a 4-ary predicate F (a, b, x, y).

Exercise 4.91. Following the notation of Example 4.38, show that the
theories Tn (n ∈ N) and T∞ are the only complete extensions of T∅.

Exercise 4.92. Prove Theorem 4.46 from Corollary 4.47.

Exercise 4.93. Let k be a field and n > 1. Show that the following structures
are definably interpretable in k:

(i) the ring Mn,n(k) of all n× n matrices;
(ii) the groups GLn(k) of all invertible n × n matrices, and SLn(k) of all

n× n matrices with determinant 1;
(iii) the set of all nilpotent n× n matrices, i.e. those A ∈Mn,n(k) such that

Am = 0 for some m ∈ N, and the set of all diagonalizable n×n matrices.

Show that the groups PGLn(k)
def
= GLn(k)/C(GLn(k)), and PSLn(k)

def
=

SLn(k)/C(SLn(k)), where C is the center, are definably interpretable in a
quotient of k.

Exercise 4.94. Suppose A ⊆ Rn is definable with parameters p1, . . . , pk ∈ R,
in the field (R,+, ·, 0, 1). Show that Cl(A) and Int(A), the closure and the
interior of A, are definable with the same parameters.

Exercise 4.95. Let k be an infinite field, let G = {( x y
0 1 ) | x, y ∈ k ∧ x ̸≖ 0},

and let A = ( 1 1
0 1 ) and B =

(
b 0
0 1

)
with b ∈ k \ {0, 1}. Show that:

(i) G is a group under matrix multiplication;
(ii) the centralizers of A and B are CG(A) = {( 1 x

0 1 ) | x ∈ k} and CG(B) =
{( x 0

0 1 ) | x ∈ k \ {0}}, and that CG(B) acts on CG(A) by conjugation:(
x 0
0 1

)−1( 1 y
0 1

)(
x 0
0 1

)
=
(
1 y/x
0 1

)
;

(iii) the map j : CG(A) \ {I} → CG(B), j(M) = N ⇔ N−1MN = A where
I = ( 1 0

0 1 ), is well-defined and j ( 1 x
0 1 ) = ( x 0

0 1 );
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(iv) the operation ∗ : CG(A)× CG(A)→ CG(A),

M ∗N =

{
j(N)M (j(N))−1 if N ̸= I

I otherwise

is well-defined, commutative and associative, and it is definable in G
using the parameters A and B;

(v) (k,+, ·, 0, 1) is isomorphic to (CG(A), ·, ∗, I, A). Conclude that the field
k is definably interpretable in the group G.

Notes and remarks

The first axiomatizations of groups (abelian or otherwise) via a single equation as described in
Remark 4.11, were isolated by Tarski in 1938, and Higman and Neumann in 1952—see [MS96]
for an interesting survey of these classical results and more recent developments. Exercise 4.95 is
taken from [Mar02].

5. Derivations

In the previous pages we have seen as mathematical logic can be used to
formalize mathematical statements, and how to make rigorous the notion
that a sentence σ is true in a structure M. In this section we will tap another
aspect of logic, namely the study of the underpinnings of mathematical proofs.
More precisely we are going to define the notion of derivation, which is the
precise mathematical counterpart of the concept of proof. If we restrict to
proofs of identities we have the equational calculus; if we focus on proofs
that are based only on connectives we have the propositional calculus; if
we allow also quantifiers we obtain the predicate calculus.

A formula A can be derived from Γ, in symbols Γ ⊢ A, if there is a finite
sequence P1, . . . ,Pn of formulæ such that Pn = A and each Pi either is in
Γ or else it is a logical axiom, or else it is obtained from earlier Pjs using
some rules.22 (A logical axiom is a statement of a specific form that can
used to build derivations.) We write Γ,B ⊢ A rather than Γ ∪ {B} ⊢ A, and
write B1, . . . ,Bn ⊢ A instead of {B1, . . . ,Bn} ⊢ A.

The simplest system for derivations is the equational calculus. It is
suitable for first order languages without predicate symbols, formulæ are
equations s ≖ t for some terms s, t, and the only rule is the high-school rule
of substituting equal quantities inside equal terms.

22Capital roman letters like A, B, . . . range over formulæ (or propositions), and Γ, ∆, . . .
range over (possibly empty) sets of formulæ.
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In order to deal with formulæ with connectives and quantifiers we need
to introduce suitable rules. The main goal of this section is to devise a fixed,
finite set of rules and logical axioms for connectives and quantifiers. We first
deal with the propositional logic (i.e. we only use connectives, no quantifiers
are allowed), and then move to first-order logic.

5.A. Equational calculus. This logical calculus is meant to derive identities
from other identities, so it is suitable for equational theories (Definition 4.10).
Fix a language L without predicate symbols. The identity s ≖ t can be
derived from a set of identities Γ is there is a finite sequence α0, . . . ,αn of
identities such that αn is s ≖ t, and each αk for k ≤ n is either a premise,
that is an identity in Γ or a logical axiom, or else it can be derived from
earlier αjs by means of rules of inference: symmetry and transitivity for
equality, and Leibniz’ principle of indiscernibility of identicals

s ≖ t
t ≖ s

s ≖ t t ≖ u
s ≖ u

s1 ≖ t1 · · · sn ≖ tn
f(s1, . . . , sn) ≖ f(t1, . . . , tn)

for any n-ary function symbol f of L, and the substitution rule:
s ≖ t

s[u1/x1, . . . , un/xn] ≖ t[u1/x1, . . . , un/xn]
.

The only logical axiom is v0 ≖ v0, where v0 is the first variable in our
official list of variables (see page 23).

Recall that if A is an L-structure, an identity α is true in A if its universal
closure holds in A. It is immediate to check that if α is obtained by an
inference rule from identities that are true in A, then also α is true in A, and
since v0 ≖ v0 is true in any structure, we have the following result.

Theorem 5.1. If Γ ⊢ s ≖ t then Γ |= s ≖ t.

The result above says that the rules of equational calculus are sound, i.e.
they yield true statements if applied to true statements. For this reason the
result above is known as the Soundness Theorem for the equational calculus.
The converse of Theorem 5.1 is the Completeness Theorem for the equational
calculus.

Theorem 5.2. If Γ |= s ≖ t then Γ ⊢ s ≖ t.

Let us see two examples to illustrate derivations in the equality calculus.

Example 5.3. Let LSGrps be the language with a binary function symbol ·.
We claim that

(x · y) · z ≖ y ⊢ x ≖ y.

Thus if ∗ is a binary operation on a nonempty set A such that (a ∗ b) ∗ c = b
for all a, b, c ∈ A, then A is a singleton.
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Here is the derivation of x ≖ y from (x · y) · z ≖ y: it is a list with three
columns, the first one for the counter, the second for the identities, the third
for the justification of the line in question: p stands for premise that is either
a formula in Γ or else the logical axiom v0 ≖ v0, sym(k) means that the
current line is obtained from line k using symmetry of equality, trn(k, j)
means that the the identity s ≖ u in the current line is obtained from the
identities s ≖ t in line k and t ≖ u in line j using transitivity of equality,
ind(k, j) means that the identity in this line is is obtained via using the
indiscernibility of identicals, that is the identity in the current line is s·t ≖ u·v
and s ≖ u is on line on line k and t ≖ v is on line j while ind(k) means that
the identity in this line is s−1 ≖ t−1 where the equality in line k is s ≖ t, and
sbs(k)[t1/x1,...,tm/xm] means that the line is obtained from the identity in line
k by substituting x1, . . . , xm with t1, . . . , tm. It goes without saying that if
on line n we write sym(k), trn(k, j), ind(k, j) or sbs(k)[t1/x1,...,tm/xm] then
j, k < n.

1 (x · y) · z ≖ y p
2 (x · x) · z ≖ x sbs(1)[x/y]
3 ((x · x) · z) · y ≖ z sbs(1)[x·x/x,z/y,y/z]
4 v0 ≖ v0 p
5 y ≖ y sbs(4)[y/v0]
6 ((x · x) · z) · y ≖ x · y ind(2, 5)
7 x · y ≖ ((x · x) · z) · y sym(6)
8 x · y ≖ z trn(7, 3)
9 x · y ≖ x sbs(8)[x/z]

10 x · y ≖ y sbs(8)[y/z]
11 x ≖ x · y sym(9)
12 x ≖ y trn(11, 10)

The derivation above is replete with trivial steps that most mathemati-
cians would skip. For example common sense would suggest that x · y ≖ z
on line 8 should follow directly from lines 3 and 6. One way to avoid this
is to relax the rule trn by allowing s ≖ t to be derived from any chain of
identities that link the term s to the term t. Another rule that can be safely
extended is ind: from s ≖ t we can infer s · u ≖ t · u or u · s ≖ u · t for any
term u. These “relaxed” rules are called derived rules, that is auxiliary rules
that can be derived from the official rules, aimed at simplifying derivations.
Another pedantry is the step from line 4 to 5, and the solution is to declare
any identity of the form t ≖ t should be taken to be an axiom.

Example 5.4. Let LGrps be the language for groups with a binary function
symbol ·, a unary function symbol −1, and a constant symbol e. Let us show
that Γ ⊢ (x · y)−1 = y−1 · x−1, where Γ is the set of the identities

(x · y) · z ≖ x · (y · z) x · e ≖ x e · x ≖ x x · x−1 ≖ e x−1 · x ≖ e
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1 (xy)z ≖ x(yz) p
2 xe ≖ x p
3 ex ≖ x p
4 xx−1 ≖ e p
5 x−1x ≖ e p
6 (xy)(y−1x−1) ≖ x(y(y−1x−1)) sbs(1)[y−1x−1/z]

7 (yy−1)x−1 ≖ y(y−1x−1) sbs(1)[y/x,y−1/y,x−1/z]

8 yy−1 ≖ e sbs(4)[y/x]
9 x−1 ≖ x−1 p

10 (yy−1)x−1 ≖ ex−1 ind(9, 11)
11 ex−1 ≖ x−1 sbs(3)[x−1/x]

12 y(y−1x−1) ≖ x−1 trn(7, 10, 11)
13 x(y(y−1x−1)) ≖ xx−1 ind(12)
14 (xy)(y−1x−1) ≖ e trn(6, 4, 13)
15 (xy)−1((xy)(y−1x−1)) ≖ (xy)−1e ind(14)
16 (xy)−1e ≖ (xy)−1 sbs(2)[(xy)−1/x]

17 ((xy)−1(xy))(y−1x−1) ≖ (xy)−1((xy)(y−1x−1)) sbs(1)[(xy)−1/x,xy/y,y−1x−1/z]

18 ((xy)−1(xy))(y−1x−1) ≖ (xy)−1 trn(15, 16, 17)
19 (xy)−1(xy) ≖ e sbs(5)[xy/x]
20 ((xy)−1(xy))(y−1x−1) ≖ e(y−1x−1) ind(19)
21 e(y−1x−1) ≖ y−1x−1 sbs(3)[y−1x−1/x]

22 y−1x−1 ≖ (xy)−1 trn(18, 20, 21)

Figure 8. The derivation of Example 5.4.

that axiomatize the theory of groups. By associativity (x · y) · (y−1 · x−1) ≖
x · (y · (y−1 · x−1)) ≖ x · ((y · y−1) · x−1), and as y · y−1 ≖ x · x−1 ≖ e and
e · x−1 ≖ x−1, then x · ((y · y−1) · x−1) ≖ x · (e · x−1) ≖ x · x−1 ≖ e. Therefore

(x · y) · (y−1 · x−1) ≖ e.

Multiplying on the left by (x · y)−1 the identity above (x · y)−1 · ((x · y) ·
(y−1 · x−1)) ≖ (x · y)−1 · e ≖ (x · y)−1, and by associativity (x · y)−1 · ((x · y) ·
(y−1 · x−1)) ≖ ((x · y)−1 · (x · y)) · (y−1 · x−1) ≖ e · (y−1 · x−1) ≖ (y−1 · x−1).
Therefore (x · y)−1 ≖ y−1 · x−1. This argument can be converted in a full-
fledged derivation, as in Figure 8, where in order to enhance readability, the
symbol · is dropped and ts stands for t · s.

5.B. Natural deduction for propositional logic. In order to study
propositional logic, we start from a set L of symbols called letters, denoted
by a, b, c, . . . . By applying the connectives to the propositional letters we
obtain the propositions on L, denoted by A, B, C, . . . .

The calculus of natural deduction is a good framework for formalizing
mathematical proofs. There are no logical axioms, only logical rules. Any
proposition derived from Γ = ∅ is a tautology (Theorem 5.12) and conversely
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every tautology can be derived from no premise (Theorem 5.24)—the first
result say that the rules for connectives are sound, that is they do not prove
questionable facts, the second result says that they are complete, that is they
are powerful enough to prove any true fact.
5.B.1. Rules. Following the notation in Section 2.A, an introduction and an
elimination rule are formulated for each connective ¬, ∧, ∨, ⇒. The rules for
∧ and ∨ are

(I∧)
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(E∧ℓ)

Γ ⊢ A ∧ B
Γ ⊢ A

(E∧r)
Γ ⊢ A ∧ B
Γ ⊢ B

(I∨ℓ)
Γ ⊢ A

Γ ⊢ B ∨A
(I∨r)

Γ ⊢ A
Γ ⊢ A ∨ B

(E∨)
Γ ⊢ A ∨ B Γ ⊢ ¬A

Γ ⊢ B

The meaning of these rules is clear—for example I∧ says that if A and B can
be derived from Γ, then so does A ∧ B. Using the rules for ∧ one can prove
that A∧B ⊢ B∧A: if A∧B is a premise, then we obtain A and B using E∧,
so that B ∧A follows from I∧, in symbols

A ∧ B, A, B, B ∧A.

A more informative method to convey this is to write derivations as a list
with three columns, the first one for the counter, the second for the formulæ,
the third for the justification of the line in question:

(5.1)

1 A ∧ B p
2 A E∧ℓ(1)
3 B E∧r(1)
4 B ∧A I∧(3, 2)

Here and below p stands for premise i.e. a formula in Γ, and the numbers
in the justification points to the lines where the rule is applied, for example
I∧(3, 2) requires to take the conjunction of the proposition in line 3 with the
proposition in line 2.

The rules for ⇒ and ¬ are:

(I⇒)
Γ,A ⊢ B

Γ ⊢ A⇒ B
, (E⇒) Γ ⊢ A Γ ⊢ A⇒ B

Γ ⊢ B
,

(I¬)
Γ,A ⊢ ⊥
Γ ⊢ ¬A

, (E¬)
Γ,¬A ⊢ ⊥
Γ ⊢ A

,

where ⊥ denotes any formula of the form B ∧ ¬B. Rule E⇒ is usually called
Modus ponens.

This concludes the list of our rules for the connectives.

Remarks 5.5. (a) We could also introduce suitable rules for the bi-implication

(I⇔) Γ ⊢ A⇒ B Γ ⊢ B⇒ A
Γ ⊢ A⇔ B

,

(E⇔ℓ)
Γ ⊢ A⇔ B
Γ ⊢ A⇒ B

(E⇔r)
Γ ⊢ A⇔ B
Γ ⊢ B⇒ A
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and similarly for the exclusive disjunction, but this this would add an
extra layer of complexity in the later proofs. For this reason it is best
to think of A⇔ B and A ·∨ B as abbreviations for (A⇒ B) ∧ (B⇒ A)
and ¬A⇔ B, respectively.

(b) In order to keep the notation to a minimum, we will drop ℓ and r in the
rules E∧ and I∨.

We postpone the official definition of derivation to Section 5.C.1, but in
the meanwhile let us notice the following:

Proposition 5.6. (a) If Γ ⊢ A and Γ′ ⊇ Γ then Γ′ ⊢ A.
(b) If Γ ⊢ A and Γ′,A ⊢ B then Γ ∪ Γ′ ⊢ B.

Let us see some examples of derivations.
Since A,B ⊢ A, then A ⊢ B⇒ A by I⇒. This simple derivation can be

written as

(5.2)

1 A p
2 B a
3 A i(1)
4 B⇒ A I⇒(1)

The vertical bar in the middle column delimits a sub-derivation—the a in
the third column says that B is the assumption of the sub-derivation. A
line of a sub-derivation is alive as long as the sub-derivation hasn’t ended,
but after that it will be considered dead—a line cannot be revitalized. Thus
lines 2 and 3 will be dead at line 4. Therefore I⇒(j) on line k + 1 justifies
the implication Pj ⇒ Pk and witnesses that the sub-derivation on lines
from j to k is dead, while i(k) means that we are importing line k inside
this sub-derivation, and i is the importing rule—it is mandatory for the
imported statement to appear in a line that is still alive.

Remark 5.7. It is possible for a proposition to occur at distinct lines j < k
with only one of the two occurrences defunct at a later time, so “being alive”
is a property of a line of a derivation, not of the propositions involved.

Similarly one can prove that ⊢ A⇒ (B⇒ A):

(5.3)

1 A a
2 B a
3 A i(1)
4 B⇒ A I⇒(2)
5 A⇒ (B⇒ A) I⇒(1)

In the derivation (5.3) lines 1 and 4 die at stage 5, lines 2 and 3 die at
stage 4, so at the end the only surviving line is 5.

The number dk of vertical bars in the kth line is the depth of such line;
the depth of a derivation is the maximum depth of any of its lines. In (5.3)
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d2 = d3 = 2, d1 = d4 = 1 and d5 = 0, so the depth of this derivation is 2.
The depth of derivation (5.1) is 0.
5.B.2. Derived rules. Derivations can be cumbersome, but they can be stream-
lined by means of auxiliary rules, as we have seen in Section 5.A. As these
auxiliary rules can be derived from the official rules, we could dispense of
them altogether, if we wish so, at the price of making our derivations more
involved.

• The contrapositive rules

(ctr) Γ ⊢ ¬B⇒ ¬A
Γ ⊢ A⇒ B

and Γ ⊢ A⇒ B
Γ ⊢ ¬B⇒ ¬A

follow from ¬B ⇒ ¬A ⊢ A ⇒ B and A ⇒ B ⊢ ¬B ⇒ ¬A. The first
derivation is

(5.4)

1 ¬B⇒ ¬A p
2 A a
3 ¬B a
4 ¬B⇒ ¬A i(1)
5 ¬A E⇒(3, 4)
6 A i(2)
7 A ∧ ¬A I∧(6, 5)
8 B E¬(3)
9 A⇒ B I⇒(2)

The other derivation is proved in a similar way.
Let us see with example how ctr can be applied. To prove A,¬B⇒

¬A ⊢ B argue:
1 A p
2 ¬B⇒ ¬A p
3 A⇒ B ctr(2)
4 B E⇒(1, 3)

If we wished to avoid the contrapositive rule, we would have written

1 A p
2 ¬B⇒ ¬A p
3 A a
4 ¬B a
5 ¬B⇒ ¬A i(2)
6 ¬A E⇒(4, 5)
7 A i(3)
8 A ∧ ¬A I∧(7, 6)
9 B E¬(4)

10 A⇒ B I⇒(3)
11 B E⇒(1, 10)

or

1 A p
2 ¬B⇒ ¬A p
3 ¬B a
4 ¬B⇒ ¬A i(2)
5 ¬A E⇒(3, 4)
6 A i(1)
7 A ∧ ¬A I∧(7, 6)
8 B E¬(4)

where the derivation of the left is obtained by replacing the contrapositive
rule with its derivation, while the one on the right, although more succinct,
is still twice as long as the original one.
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• The proof-by-cases rule—seen in Example 2.8—says that

Γ,B ⊢ A Γ,¬B ⊢ A

Γ ⊢ A

Thus if A follows from both Γ,B and Γ,¬B then it follows from Γ alone—
proposition B is called the conditional assumption. It is justified as
follows. Taking Γ as premises, assume ¬A towards a contradiction. Assume
B. Since Γ,B ⊢ A then Γ,B,¬A yields a contradiction, so Γ,¬A ⊢ ¬B. As
Γ,¬B ⊢ A, then Γ,¬A yields a contradiction, so Γ ⊢ A.

• The rule

(5.5) Γ,B ⊢ A Γ,C ⊢ A

Γ ⊢ B ∨ C⇒ A

follows from the proof-by-cases rule, with B as conditional assumption.

• The transitivity rule for implication (tr⇒) is

Γ ⊢ A⇒ B Γ ⊢ B⇒ C
Γ ⊢ A⇒ C

and follows from A⇒ B,B⇒ C ⊢ A⇒ C:

(5.6)

1 A⇒ B p
2 B⇒ C p
3 A a
4 A⇒ B i(1)
5 B E⇒(3, 4)
6 B⇒ C i(2)
7 C E⇒(5, 6)
8 A⇒ C I⇒(3)

• Anything can be proved from a proposition and its negation:

(5.7) (⊥) Γ ⊢ A Γ ⊢ ¬A
Γ ⊢ B

To verify this start from Γ and, towards a contradiction, suppose ¬B; since
Γ,¬B proves both A and ¬A, then ¬B is rejected and B holds.

Exercise 5.48 lists several other useful auxiliary rules—associativity of
∧ and ∨, distributivity of ∧ and ∨, De Morgan’s rules, the double negation
rule, . . . , which are commonplace in mathematical proofs. For example, the
distributivity of ∧ with respect to ∨ is used to verify the distributivity of
intersection with respect to union, i.e. that A∩ (B ∪C) = (A∩B)∪ (A∩C).
In fact it is enough to verify that x ∈ A ∧ (x ∈ B ∨ x ∈ C)⇔ (x ∈ A ∧ x ∈
B) ∨ (x ∈ A ∧ x ∈ C), which follows from such a rule—just write A,B,C in
place of x ∈ A, x ∈ B and x ∈ C.
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5.B.3. More derivations.

Example 5.8. ⊢ (A⇒ (B⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)), since

1 A⇒ (B⇒ C) a
2 A⇒ B a
3 A a
4 A⇒ (B⇒ C) i(1)
5 A⇒ B i(2)
6 B⇒ C E⇒(3, 4)
7 C tr⇒(5, 6)
8 A⇒ C I⇒(3)
9 (A⇒ B)⇒ (A⇒ C) I⇒(2)

10 (A⇒ (B⇒ C))⇒ (A⇒ B)⇒ (A⇒ C) I⇒(1)

Example 5.9. ⊢ A ⇒ ¬¬A and ⊢ ¬¬A ⇒ A follow by A ⊢ ¬¬A and
¬¬A ⊢ A and I⇒:

1 A p
2 ¬A a
3 A i(1)
4 ¬¬A I¬(2)

1 ¬¬A p
2 ¬A a
3 ¬¬A i(1)
4 A E¬(2)

Example 5.10. ⊢ ¬A⇒ (A⇒ B) and ⊢ A⇒ (¬B⇒ ¬(A⇒ B)), since

1 ¬A a
2 A a
3 ¬A i(1)
4 B ⊥(2, 3)
5 A⇒ B I⇒(2)
6 ¬A⇒ (A⇒ B) I⇒(1)

1 A a
2 ¬B a
3 A⇒ B a
4 A i(1)
5 B E⇒(4, 3)
6 ¬B i(2)
7 B ∧ ¬B I∧(5, 6)
8 ¬(A⇒ B) I¬(3)
9 ¬B⇒ ¬(A⇒ B) I⇒(2)

10 A⇒ (¬B⇒ ¬(A⇒ B)) I⇒(1)

where ⊥ is the rule (5.7).

Example 5.11. ⊢ (A⇒ B)⇒ ((¬A⇒ B)⇒ B), since by the proof-by-cases
rule using A as conditional assumption we have:

1 A p
2 A⇒ B a
3 A i(1)
4 B E⇒(3, 2)
5 ¬A⇒ B a
6 B i(4)
7 (¬A⇒ B)⇒ B I⇒(5)
8 (A⇒ B)⇒ ((¬A⇒ B)⇒ B) I⇒(2)
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and
1 ¬A p
2 A⇒ B a
3 ¬A⇒ B a
4 ¬A i(1)
5 B E⇒(4, 3)
6 (¬A⇒ B)⇒ B I⇒(3)
7 (A⇒ B)⇒ ((A⇒ B)⇒ B) I⇒(2)

5.C. Soundness. In this section we prove that the rules of natural deduction
for propositional calculus are sound, that is they yield correct results. Recall
from Section 3.C.1 that a valuation is a function v : Prop(L)→ {0, 1}, from
the set of all propositions built from a set of letters L, to the truth values 0
and 1. Any valuation is completely determined by its restriction to L, so it is
customary to define v on L and canonically extend it to Prop(L). If Γ is a set
of propositions, with a minor abuse of notation we write v(Γ) = 1 to mean
that v(P) = 1 for all P ∈ Γ. Recall also that A is tautological consequence of
Γ if v(A) = 1 for all valuations v such that v(Γ) = 1.

Theorem 5.12. If Γ ⊢ A, then A is a tautological consequence of Γ.

In particular:

Corollary 5.13. If ⊢ A, then A is a tautology.

If Γ ⊢ A and Γ is finite (which can always be assumed by Theorem 5.17),
then ⊢

∧
Γ ⇒ A, so if

∧
Γ ⇒ A is a tautology, then A is tautological

consequence of Γ. Therefore Corollary 5.13 implies Theorem 5.12. The
converse of these results are also true—every tautology can be derived—but
a direct proof using natural deduction is a bit involved. In the next section a
different kind of logical calculus is introduced, one that will easily yield the
desired result.

In order to appreciate the hurdles that we need overcome towards proving
soundness for natural deduction, let us consider some specific cases.23

Suppose first P1, . . . ,Pn is a derivation of Γ ⊢ A of depth d = 0, that is
there are no sub-derivations. We claim that:

(∗) If v(Γ) = 1, then v(Pi) = 1 for all 1 ≤ i ≤ n.

Since Pn = A, then (∗) yields that A is tautological consequence of Γ. To
prove (∗) we argue by induction on i ≤ n. Suppose v(Γ) = 1. If Pi ∈ Γ then
v(Pi) = 1 by choice of v, so we may assume that Pi is obtained from earlier
Pjs by means of I∧,E∧, I∨,E∨,E⇒. (The rules I¬,E¬, I⇒ entail the use of
sub-derivations, so they are not allowed here.) Suppose, for example, that

23The reader is encouraged to verify that the statement of Theorem 5.12 holds for the
derivations seen so far.
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on line i rule I∧ was used, that is Pi = Pj ∧ Pk with j, k < i; by induction
assumption v(Pj) = v(Pk) = 1, so v(Pi) = 1. The case of the other rules is
similar.

Note that (∗) fails for the derivations with depth 1—for example in the
derivation (5.2) of A ⊢ B⇒ A, consider a valuation such that v(A) = 1 and
v(B) = 0. The correct genaralization of (∗) to derivations of depth 1 is

(∗∗)
Suppose v(Γ) = 1. If line i has depth 0, then v(Pi) = 1; if line i it has
depth 1 and v(Pj) = 1, where j is the first line of the sub-derivation
reaching line i, then v(Pi) = 1.

As the last line of a derivation has depth 0, then (∗∗) yields Theorem 5.12
for derivations of depth 1. The proof of (∗∗) is similar to that of (∗). Let us
see a specific example.

Example 5.14. Let P1, . . . ,P8 be the derivation of A⇒ B,B⇒ C ⊢ A⇒ C
displayed on (5.6) on page 119. Suppose v(A ⇒ B) = v(B ⇒ C) = 1. As
P1,P2 are premises, then v(P1) = v(P2) = 1. Since P3 (that is: A) is an
assumption, from now until line 7 we may assume that v(A) = 1; as P4 = P1

and P6 = P2, then v(P4) = v(P6) = 1, and hence v(P5) = v(P7) = 1. Finally,
consider line 8, where A ⇒ C is inferred from lines 3 and 7 via I⇒. If
v(A) = 1 then v(C) = v(P7) = 1, so v(A ⇒ C) = 1, and if v(A) = 0, then
v(A⇒ C) = 1. Therefore v(P8) = 1 in any case.

The proof of Theorem 5.12 follows from a suitable generalization of (∗)
and (∗∗) to all derivations.
5.C.1. A proof of Theorem 5.12*. Before plunging into the details of the proof,
we must first give a precise definition of what is a derivation. Definition 5.15
below is a bit intimidating, but it is just collecting what we have said so far
about derivations.

Definition 5.15. A justified derivation from Γ is a finite list

(P1, j1, d1, D1), . . . , (Pn, jn, dn, Dn)

where the Pks are propositions, dk ∈ N is the depth of line k, Dk is the set of
dead lines at stage k, and jk is a justification, i.e. one of the following labels:
p, a, i(m), or an introduction/elimination rule for the connectives. For any
1 ≤ k ≤ n we require that:

(1) D1 = ∅,
(2) |dk − dk−1| ≤ 1, where d0 = dn = 0,
(3) if dk−1 ≤ dk, then Dk = Dk−1,
(4) if dk−1 > dk, then

(5.8) Dk = Dk−1 ∪ {k∗, . . . , k − 1},
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where k∗ is least m such that dm = dk−1, and di = dk−1 for all m ≤ i ≤
k − 1,

(5) if jk = p, then Pk ∈ Γ,
(6) dk = dk−1 + 1 if and only if jk = a,
(7) if jk = i(k′), then 1 ≤ k′ < k and k′ /∈ Dk, and dk′ < dk,
(8) if jk is one of I∧(j, h), E∧ℓ(j), E∧r(j), I∨ℓ(j), I∨r(j), E∨(j, h), or

E⇒(j, h), then
• dk = dk−1,
• j, h ∈ {1, . . . , k − 1} \Dk,
• dh = dj = dk;

(9) if jk is one of I⇒(j), I¬(j), E¬(j), then dk = dk−1 − 1, and j = k∗

following the notation of (5.8). Moreover
• if jk = I⇒(j), then Pk = Pj ⇒ Pk−1,
• if jk = I¬(j), then Pk = ¬Pj ,
• if jk = E¬(j), then ¬Pk = Pj .

An unjustified derivation (or simply: a derivation) from Γ is a sequence
of propositions P1, . . . ,Pn that admit a justification, that is sequence
(j1, d1, D1), . . . , (jn, dn, Dn) so that (P1, j1, d1, D1), . . . , (Pn, jn, dn, Dn) is a
justified derivation from Γ.

A proposition A derives from Γ, in symbols Γ ⊢ A, if there is a derivation
P1, . . . ,Pn from Γ such that A = Pn.

Remarks 5.16. (a) The sets Dks can be retrieved from the dks, which
in turn can be retrieved from the jks, but the jks cannot be retrieved
from the Pks. Therefore a justification can (and form now on: will) be
identified with the sequence j1, . . . , jn, and a justified derivation can
be defined as a sequence of pairs (P1, j1), . . . , (Pn, jn, ) satisfying the
conditions above.

(b) If (P1, j1, d1, D1), . . . , (Pn, jn, dn, Dn) is a derivation from Γ and k < n,
then (P1, j1, d1, D1), . . . , (Pk, jk, dk, Dk) is a derivation from Γ if and
only if dk = 0.

If Γ ⊢ A and Γ ⊆ Γ′, then the same derivation witnesses that Γ′ ⊢ A.
Conversely if Γ ⊢ A, then Γ0 ⊢ A for some finite Γ0 ⊆ Γ since finitely many
premises can occur in a derivation. Therefore we have proved the following:

Theorem 5.17. Γ ⊢ A if and only if Γ0 ⊢ A for some finite Γ0 ⊆ Γ.

Given a derivation of length n, for each k ≤ n let Ak be the set of all
lines ≤ k in which assumptions have appeared and that are not yet dead:

(5.9) Ak = {m | 1 ≤ m ≤ k ∧ jm = a} \Dk.
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For example in the derivation (5.4)on page 118 A0 = A9 = ∅, A2 = A8 = {2}
and A3 = · · · = A7 = {2, 3}.

Lemma 5.18. Using the notation of Definition 5.15:

(a) Dk ⊆ {1, . . . , k − 1}, so k /∈ Dk.
(b) If 1 ≤ k′ ≤ k ≤ n then Dk′ ⊆ Dk and Dk ∩ {1, . . . , k′} = Dk′ .
(c) If m+ 1 = maxAk−1 and dk < dk−1, then Am = Ak.
(d) |Ak| = dk.

Proof. (a) and (b) are proved by induction using clauses (3) and (4).
(c). If m + 1 = maxAk−1 and dk + 1 = dk−1 then Dk = Dk−1 ∪

{m+ 1, . . . , k − 1} so by parts (a) and (b)

Ak = {i ≤ k | ji = a} \Dk

= {i ≤ m | ji = a} \Dk

= {i ≤ m | ji = a} \Dm

= Am.

(d). By clause (6) and part (c)

dk = dk−1 + 1 ⇔ jk = a ⇔ Ak = Ak−1 ∪ {k}
dk = dk−1 ⇔ Ak = Ak−1

dk = dk−1 − 1 ⇔ Ak = Ak−1 \ {maxAk−1}.

Therefore if dk = |Ak−1| then dk = |Ak| and since d0 = 0 and A0 = ∅ the
result follows by induction. □

Recall that Γ |= P means that P is a tautological consequence of Γ
(Example 3.26).

Theorem 5.19. If (P1, j1, d1, D1), . . . , (Pn, jn, dn, Dn) is a justified derivation
from Γ, then Γ |=

∧
i∈Ak

Pi ⇒ Pk, where Ak is as in (5.9).

Remark 5.20. If Ak = ∅ then
∧

i∈Ak
Pi ⇒ Pk is Pk. The condition above

could have been stated more easily as Pk is tautological consequence of
Γ ∪ {Pi | i ∈ Ak}, but the current formulation is useful for Theorem 5.40
later on.

Proof. We proceed by induction on k ≤ n, and consider the various possibility
for what jk can be. The result follows vacuously if there is no valuation that
gives truth value 1 to all propositions in Γ ∪ {Pi | i ∈ Ak}, so let’s assume
otherwise.

If jk is p or a, then Pk ∈ Γ∪{Pi | i ∈ Ak}, and the result follows at once.
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If jk is i(j) then j /∈ Dk, and j < k. By inductive assumption Pj is a
tautological consequence of Γ∪{Pi | i ∈ Aj}, and since Pj = Pk and Aj ⊆ Ak

the result follows at once.
Thus jk must be an application of a rule for connectives, as in cases (8)

and (9) of Definition 5.15.
If jk is one of I∧(j, h), E∧ℓ(j), E∧r(j), I∨ℓ(j, h), I∨r(j, h), E∨(j, h), or

E⇒(j, h), with j, h < k, then Pk is a tautological consequence of Pj ,Ph,
and since dj = dh = dk we have that Aj = Ah = Ak. By inductive
Γ |=

∧
i∈Ak

Pi ⇒ Pj and Γ |=
∧

i∈Ak
Pi ⇒ Ph, so the result follows.

Thus we may assume that jk is one of I⇒(j), I¬(j), E¬(j). Then there is
a sub-derivation from line m < k− 1 to line k− 1 of depth dk +1 that proves
Pk, and

(5.10) Am = Ak−1 = Ak ∪ {m}.

• If jk = E¬(m), then Pk = ¬Pm and Pk−1 = B ∧ ¬B for some B. By
inductive assumption Γ |=

∧
i∈Ak−1

Pi ⇒ Pk−1. If v is any valuation
satisfying Γ∪{Pi | i ∈ Ak} then since v(Pk−1) = 0 and by (5.10) v(Pm) = 0,
that is v(Pk) = 1. In other words Γ |=

∧
i∈Ak

Pi ⇒ Pk.
• The case when jk = I¬(m) is similar.
• Finally suppose jk = I⇒(m), so that Pk = Pm ⇒ Pk−1. By inductive

assumption Γ |=
∧

i∈Ak−1
Pi ⇒ Pk−1. If v is any valuation satisfying

Γ ∪ {Pi | i ∈ Ak}, then v(Pm ⇒ Pk−1) = 1 by (5.10). Therefore Γ |=∧
i∈Ak

Pi ⇒ Pk.

The proof is complete. □

As the last line n of a derivation has depth 0, then An = ∅ so Theorem 5.12
holds.

5.D. Hilbert-style propositional calculus. Hilbert and Ackerman in-
troduced a logical calculus—completely equivalent to natural deduction of
Section 5.B—consisting of a few selected tautologies called logical axioms
and one logical rule, Modus Ponens (MP) of page 9, which is just the
elimination rule for implication. There are many variants of this calculus,
depending on the choice of the logical axioms, and for this reason we speak of
Hilbert-style calculi. In some sense, natural deduction is the best choice for
modelling mathematical proofs and writing down specific derivations, while
a Hilbert-style calculus is the best choice for proving facts about derivations.

Convention. Since there are two competing notions of derivation—natural
deduction vs. Hilbert-style—we write ⊢ND and ⊢H to tell them apart. Once
we prove that the two notions yield the same results, we can forget about
these decorations.
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We take ¬ and ⇒ as basic connectives, and define the other ones in
term of these. In particular A ∨ B, A ∧ B are shorthand for ¬A ⇒ B and
¬(A⇒ ¬B), and A⇔ B is (A⇒ B) ∧ (B⇒ A). The axioms are

A1: A⇒ (B⇒ A),
A2: (A⇒ (B⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)),
A3: A⇒ ¬¬A,
A4: ¬A⇒ (A⇒ B),
A5: A⇒ (¬B⇒ ¬(A⇒ B)),
A6: (A⇒ B)⇒ ((¬A⇒ B)⇒ B).

These are axiom schemata, since A,B,C stand for any proposition, and by
Section 5.B.3 they are provable in the calculus of natural deduction.

A (Hilbert-style) derivation from Γ is a finite list P1, . . . ,Pn such
that each Pi is either in Γ, or else it is an axiom, or else it follows from earlier
Pjs via MP, and in this case we say that Pn is derivable from Γ, in symbols
Γ ⊢H Pn. An initial segment of a Hilbert-style derivation is still a derivation,
so proofs by induction on the length of a derivation are considerably easier
than similar proofs in the context for natural deduction. For example it is
straightforward to check that

(5.11) if Γ ⊢H A, then A is tautological consequence of Γ.

By (5.3) and Section 5.B.3, the logical axioms are derivable using the calculus
of natural deduction, and since MP is E⇒, it follows at once that

(5.12) if Γ ⊢H A, then Γ ⊢ND A.

Lemma 5.21. (a) ⊢H A⇒ A,
(b) If Γ ⊢H A⇒ B and Γ ⊢H ¬A⇒ B then Γ ⊢H B.

Proof. (a) For notational ease we write B for A⇒ A:

1 (A⇒ (B⇒ A))⇒ ((A⇒ B)⇒ (A⇒ A)) A2
2 A⇒ (B⇒ A) A1
3 (A⇒ B)⇒ (A⇒ A) MP(1,2)
4 A⇒ (A⇒ A), i.e. A⇒ B A1
5 A⇒ A MP(3,4)

(b) Say P1, . . . ,Pn and Pn+1, . . . ,Pn+m are derivations from Γ where Pn is
A⇒ B and Pn+m is ¬A⇒ B. By A6

P1, . . . , Pn+m, (A⇒ B)⇒ ((¬A⇒ B)⇒ B), (¬A⇒ B)⇒ B, B

is a derivation witnessing that Γ ⊢H B. □

The proof above exemplifies everything that is annoying with the Hilbert-
style calculi—not only proofs are considerably longer than their analogs
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in natural deduction, they lack any clear motivation. And although ⊢H-
derivations are easy to check, they are hard to devise.

The next result shows how to prove the I⇒-rule.

Theorem 5.22. If Γ,A ⊢H B then Γ ⊢H A⇒ B.

Proof. Suppose P1, . . . ,Pn witnesses Γ,A ⊢H B, with Pn = B. We prove by
induction on 1 ≤ i ≤ n that Γ ⊢H A⇒ Pi. We take cases:

• If Pi is in Γ, then Γ ⊢H A⇒ Pi since

1 Pi ⇒ (A⇒ Pi) A1
2 Pi p
3 A⇒ Pi MP(1, 2)

• If Pi is A then ⊢H A⇒ Pi by part (a) of Lemma 5.21.
• If Pi follows by MP from Pm and Pk, where m, k < i and Pk is Pm ⇒ Pi,

then by inductive assumption Γ ⊢H A⇒ Pm and Γ ⊢H A⇒ (Pm ⇒ Pi).
As (A⇒ (Pm ⇒ Pi))⇒ ((A⇒ Pm)⇒ (A⇒ Pi)) is an axiom A2, then
Γ ⊢H A⇒ Pi follows from two applications of MP. □

By MP, if ⊢H A⇒ B then A ⊢H B, and hence

⊢H A⇒ B if and only if A ⊢H B.

If v : {a1, . . . , an} → {0, 1} and A ∈ Prop({a1, . . . , an}), define

Av =

{
A if v(A) = 1,

¬A if v(A) = 0.

Lemma 5.23. If A is a proposition whose letters are among {a1, . . . , an}
and v : {a1, . . . , an} → {0, 1}, then av1, . . . , a

v
n ⊢H Av.

Proof. By induction on the number k of connectives of A. If k = 0, then
A = ai for some i, and hence ai ⊢ ai and ¬ai ⊢ ¬ai. Thus we may assume
that k > 0 and that the result holds for all B with fewer connectives.

Suppose A is ¬B. Then by inductive assumption av1, . . . , a
v
n ⊢ Bv. If Bv =

¬B = A, then v(B) = 0, so v(A) = 1 and A = Av, and hence av1, . . . , a
v
n ⊢ Av.

If Bv = B then v(B) = 1 so v(A) = 0 and Av = ¬A = ¬¬B. Since B⇒ ¬¬B
is an axiom A3, then av1, . . . , a

v
n ⊢ ¬¬B, that is av1, . . . , a

v
n ⊢ Av.

Suppose A is B⇒ C. Then (∗) av1, . . . , avn ⊢ Bv, and (⋆) av1, . . . , a
v
n ⊢ Cv

by inductive assumption.

• If v(B) = 0 then v(A) = 1 so Bv = ¬B and Av = A is B⇒ C. As ¬B⇒
(B ⇒ C) is an axiom A4 then (∗) together with MP yields av1, . . . , a

v
n ⊢

B⇒ C, that is av1, . . . , a
v
n ⊢ Av.
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• If v(C) = 1 then v(A) = 1, so Cv = C and Av = A. As C⇒ (B⇒ C) is
an axiom A1, then (⋆) together with MP yields av1, . . . , a

v
n ⊢ B⇒ C, that

is av1, . . . , a
v
n ⊢ Av.

• If v(B) = 1 and v(C) = 0 then v(A) = 0, so that Av = ¬(B⇒ C), Bv = B,
and Cv = ¬C. As B⇒ (¬C⇒ ¬(B⇒ C)) is an axiom A5, then (∗), (⋆)
and MP yield that av1, . . . , a

v
n ⊢ ¬(B⇒ C), that is av1, . . . , a

v
n ⊢ Av. □

Theorem 5.24 (Post). If A is a tautology, then ⊢H A, and hence ⊢ND A.

Proof. Say a1, . . . , an are the letters occurring in A. We prove by induc-
tion on 0 ≤ k ≤ n that av1, . . . , a

v
n−k ⊢ A for any v : {a1, . . . , an−k} →

{0, 1}. The case k = 0 is Lemma 5.23. If the result holds for some k and
v : {a1, . . . , an−k−1} → {0, 1} then

av1, . . . , a
v
n−k−1, an−k ⊢H A and av1, . . . , a

v
n−k−1,¬an−k ⊢H A,

so by Theorem 5.22

av1, . . . , a
v
n−k−1 ⊢H an−k ⇒ A and av1, . . . , a

v
n−k−1 ⊢H ¬an−k ⇒ A.

Therefore av1, . . . , a
v
n−k−1 ⊢H A by part (b) of Lemma 5.21. Therefore the

result holds for k + 1. Note that when k = n this says ⊢H A. □

Theorem 5.24 is called the completeness theorem for propositional
calculus—it asserts that the logical rules are complete, i.e. they are powerful
enough to derive any result proved semantically using truth tables. By
Theorems 5.12 and 5.24, for any set of propositions Σ,

Σ ⊢ A if and only if A is a tautological consequence of Σ.

Definition 5.25. Fix a non-empty set S of propositional letters. A set
Σ ⊆ Prop(S) is

• consistent if no propositional contradiction can be derived from Σ,
• satisfiable if it has a model, that is24 there is a valuation v : S → 0, 1 such

that v(A) = 1 for all A ∈ Σ.

If Σ is inconsistent, i.e. it is not consistent, then every proposition can
be derived from Σ, and conversely. Therefore

Σ is consistent if and only if {P ∈ Prop(S) | Σ ⊢ P} ≠ Prop(S).

If Σ ⊢ P then Σ0 ⊢ P for some finite Σ0 ⊆ Σ, so Σ is consistent if and only if
every finite Σ0 ⊆ Σ is consistent. If Σ0 = {Q0, . . . ,Qn} then Σ0 ⊢ P if and
only if Q0 ⇒ . . .⇒ Qn ⇒ P is a tautology. Thus, if Σ is satisfiable then Σ is
consistent.

24See Example 3.26
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Conversely, suppose Σ is consistent. Assume, for the time being, that
Σ is finite. If Σ = {Q1, . . . ,Qn} then by induction on n ≥ 0 we prove
that Σ is satisfiable. In fact if n = 0 then Σ is empty so it is trivially
satisfiable. If n > 0 then {Q1, . . . ,Qn−1} is also consistent, so it is satisfiable
by inductive assumption. If, towards a contradiction, {Q1, . . . ,Qn} were
not satisfiable, then v(Qn) = 0 for every v model of {Q1, . . . ,Qn−1}, and
hence Q1 ⇒ . . . ⇒ Qn−1 ⇒ ¬Qn would be a tautology. This would yield
Q1, . . . ,Qn−1 ⊢ ¬Qn by the Completeness Theorem 5.24, and hence the
inconsistency of {Q1, . . . ,Qn} would follow, against our assumption. Suppose
now Γ is infinite: by the argument above Σ is finitely satisfiable, so Σ is
satisfiable by the Compactness Theorem 4.46. Therefore we have proved:

Theorem 5.26. Σ ⊆ Prop(S) is satisfiable if and only if it is consistent.

5.E. Shoenfield’s system*. We now look at a proof system based on the
connectives ¬,∨ as presented in Shoenfield’s textbook [?]. All other connec-
tives are defined in terms of ¬ and ∨, for example (recalling Convention 3.A)
A1 ⇒ . . .⇒ An ⇒ B and A1 ∧ · · · ∧An ⇒ B stand for ¬A1 ∨ · · · ∨ ¬An ∨ B.

There is only one type of axiom, ¬A ∨ A, and there are four inference
rules:

A ∨ B ∨ C
(A ∨ B) ∨ C

A ∨A
A

A
B ∨A

A ∨ B ¬A ∨ C
B ∨ C

called: associativity, contraction, expansion, and cut. (Note that the
expansion rule is just I∨ℓ from Section 5.B.) An S-derivation from Γ is a
finite list A1, . . . ,An such that each Ai is either in Γ, or else it is an axiom
(i.e. of the form ¬B ∨ B), or else it follows from earlier Ajs via one of the
four rules. Write Γ ⊢S A if there is an S-derivation A1, . . . ,An from Γ such
that An is A. As usual when Γ is empty we write ⊢S A.

Proposition 5.27. The commutativity rule A ∨ B
B ∨A

and MP A ¬A ∨ B
B

hold.

Proof. Suppose A ∨B: as ¬A ∨A is an axiom then ⊢ B ∨A by the cut rule.
Thus the commutative rule holds.

For MP argue as follows. Given A then B ∨A by expansion, and hence
A ∨ B by commutativity. If ¬A ∨ B holds, then B ∨ B by the cut rule, and
therefore ⊢ B by the contraction rule. □

Corollary 5.28. The rule of tautological consequence holds: for all n ≥ 1 if
A1, . . . , An and ¬A1 ∨ · · · ∨ ¬An ∨ B hold, then B holds. In symbols:

A1, A2, . . . An ¬A1 ∨ · · · ∨ ¬An ∨ B

B
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Proof. By induction on n. When n = 1 it is just MP. Assuming the result
is true for some n ≥ 1, and suppose we are given A1,A2, . . . ,An+1, and
¬A1 ∨ ¬A2 · · · ∨ ¬An+1 ∨ B, then ¬A2 · · · ∨ ¬An+1 ∨ B follows by MP, and
therefore B by inductive assumption. □

Proposition 5.29. If A1, . . . ,An is a derivation from Γ, then each Ai is a
tautological consequence of Γ.

Proof. If Ai ∈ Γ then the result holds by fiat, so we may assume otherwise.
Therefore i > 1 and we may assume that the result holds for Aj with j < i.
Proposition Ai is obtained from earlier Ajs by means of one of our four rules,
and since all these rules preserve tautological consequence, the result holds
by induction. □

In particular, if ⊢S A then A is a tautology. Conversely,

Theorem 5.30. If A is a tautology then ⊢S A.

Corollary 5.31. A1, . . . ,An ⊢S A if and only if ⊢S ¬A1 ∨ . . .¬An ∨A.

Proof. If A1, . . . ,An ⊢S A then by Proposition 5.29 A is tautological con-
sequence of A1, . . . ,An, so ¬A1 ∨ . . .¬An ∨ A is a tautology, and hence
⊢S ¬A1 ∨ . . .¬An ∨A.

Conversely, if ⊢S ¬A1 ∨ . . .¬An ∨A then by repeated applications of MP
we successively derive

A1, . . . ,An ⊢S ¬A2 ∨ · · · ∨ ¬An ∨A

A1, . . . ,An ⊢S ¬A3 ∨ · · · ∨ ¬An ∨A

...

A1, . . . ,An ⊢S A

which is what we had to prove. □

Therefore in order to derive a result we can either use Shoenfield’s system,
or the Hilbert-system of Section 5.D or the system of Natural Deduction from
Section 5.B, that is

Γ ⊢S A if and only if Γ ⊢H A if and only if Γ ⊢ND A.

Before proving Theorem 5.30 we need some preliminary results. For the
sake of brevity write ⊢ for ⊢S.

Lemma 5.32. The double negation rule A ∨ B
¬¬A ∨ B

holds.
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Proof. The proposition ¬¬A ∨ ¬A holds, being an axiom, so by commuta-
tivity we get ¬A ∨ ¬¬A. As A ∨ B holds by assumption we get B ∨ ¬¬A by
cut, and hence ¬¬A ∨ B by commutativity. □

Lemma 5.33. For 1 ≤ i < j ≤ n the rule Ai ∨Aj

A1 ∨ · · · ∨An
holds.

Proof. We proceed by induction on n. If n = 2 there is nothing to prove, so
we may suppose that n ≥ 3. Assume Ai ∨Aj towards proving A1 ∨A2 ∨ B,
where B = A3 ∨ · · · ∨An.

If i ≥ 2, then Aj occurs in B so by inductive assumption A2 ∨ B holds,
and hence A1 ∨A2 ∨ B by expansion.

If i = 1 and j ≥ 3, then A1 ∨ B holds by inductive assumption, so
B ∨ A1 by commutativity, and hence A2 ∨ B ∨ A1 by the expansion rule. By
associativity and commutativity A1 ∨A2 ∨ B holds, which is what we had to
prove.

If i = 1 and j = 2, then A1∨A2 holds by assumption, so by the expansion
rule and commutativity (A1 ∨ A2) ∨ B2 holds. Therefore A1 ∨ A2 ∨ B2 holds
by associativity. □

Lemma 5.34. If n,m ≥ 1 and {i1, . . . , im} ⊆ {1, . . . , n}, then the rule
Ai1 ∨ · · · ∨Aim

A1 ∨ · · · ∨An
holds.

Proof. By induction on m.
If m = 1 then letting i = i1 we have that (Ai+1 ∨ · · · ∨An) ∨Ai by the

expansion rule so that Ai ∨ Ai+1 ∨ · · · ∨ An by commutativity. The result
follows by repeated applications of the expansion rule.

If m = 2 we distinguish two cases: if i1 = i2 by applying the contraction
rule we fall back in the m = 1 case, and if i1 ≠ i2 we may assume by
commutativity that i1 < i2 and apply Proposition 5.33.

Suppose m ≥ 3 and that Ai1 ∨ · · · ∨ Aim holds. For notational ease let
A = A1 ∨ · · · ∨ An. By associativity (Ai1 ∨ Ai2) ∨ Ai3 ∨ · · · ∨ Aim holds,
and since this is a disjunction of m − 1 propositions, then by inductive
assumption (Ai1 ∨ Ai2) ∨ A holds. Commutativity and associativity imply
that (A ∨Ai1) ∨Ai2 holds, and since this is a disjunction of two propositions
we have (A ∨Ai1) ∨A by case m = 2. By commutativity and associativity
(A ∨A) ∨Ai1 so by commutativity Ai1 ∨ (A ∨A), which is a disjunction of
two propositions. From the case m = 1 we obtain A ∨ (A ∨ A) and hence
(A∨A)∨ (A∨A) by expansion and associativity. Applying contraction twice
we obtain A. □

Lemma 5.35. The rule ¬A ∨ C ¬B ∨ C
¬(A ∨ B) ∨ C

holds.
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Proof. The proposition ¬(A ∨ B) ∨ A ∨ B holds, being an axiom, so by
commutativity we get A ∨B ∨¬(A ∨B). As ¬A ∨C holds by assumption we
get (B∨¬(A∨B))∨C by cut, and hence C∨B∨¬(A∨B) by commutativity.
By Proposition 5.34 B ∨ C ∨ ¬(A ∨ B) holds, and since ¬B ∨ C holds by
assumption, we obtain (C∨¬(A∨B))∨C by cut. Therefore C∨C∨¬(A∨B)
by commutativity, and hence ¬(A ∨ B) ∨ C by Proposition 5.34. □

Call A ∈ Prop(L) a literal if it is either a propositional letter or else the
negation of a propositional letter.

Proposition 5.36. Suppose A1 ∨ · · · ∨An is a tautology and that every Ai

is a literal. Then there are i ̸= j such that Ai is the negation of Aj.

Proof. Suppose there are no i, j as above. Let v : L → 2 be the valuation
v(a) = 1 ⇔ ¬a is Ai, for some i = 1, . . . , n. Then v(Ai) = 0 for all i and
hence v(A1 ∨ · · · ∨An) = 0. □

Lemma 5.37. Let n ≥ 2. If A1∨· · ·∨An is a tautology, then ⊢ A1∨· · ·∨An.

Proof. We prove the result by induction on the pseudo-length of A1∨· · ·∨An,
that is the number

N = lh(A1) + · · ·+ lh(An).

By Proposition 5.36 we may assume that some Ai is not a literal. By
Proposition 5.34 for all 1 ≤ i ≤ n

⊢ A1 ∨ · · · ∨An if and only if ⊢ Ai ∨ · · · ∨An ∨A1 ∨ · · · ∨Ai−1

so we may assume that A1 is not a literal. Thus A1 could be of the form
B ∨ C, or ¬¬B, or ¬(B ∨ C).

If A1 is B ∨ C, then B ∨ C ∨ A2 ∨ · · · ∨ An is a tautology, and since its
pseudo-length is N − 1, by inductive assumption ⊢ B ∨ C ∨ A2 ∨ · · · ∨ An,
and therefore ⊢ (B ∨ C) ∨A2 ∨ · · · ∨An by associativity.

If A1 is ¬¬B then B∨A2∨· · ·∨An is a tautology with pseudo-length N−2
so by inductive assumption ⊢ B∨A2∨· · ·∨An. Therefore ⊢ A1∨A2∨· · ·∨An

by the double negation rule.
If A is ¬(B ∨ C), then ¬B ∨ A2 ∨ · · · ∨ An and ¬C ∨ A2 ∨ · · · ∨ An are

tautologies of pseudo-length < N , so by inductive assumption they can be
derived. By Lemma 5.35 ⊢ ¬(B ∨ C) ∨A2 ∨ · · · ∨An, which is what we had
to prove. □

We can now prove Theorem 5.30.

Proof of Theorem 5.30. If A is a tautology, then so is A ∨A so ⊢ A ∨A
by Lemma 5.37 so ⊢ A by contraction. □
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5.F. Predicate calculus using natural deduction. Natural deduction
for first-order logic has the rules for the connectives from Section 5.B, an
introduction and an elimination rule for quantifiers, and a few axioms for
equality. The resulting system is called predicate calculus. As for proposi-
tional calculus, derivations are organized in sub-derivations and the notion
of depth and a line being alive/dead is as before. Since we are dealing with
first-order logic, we abandon upper case roman letters A,B,C, . . . used for
propositions in favour of the lower case Greek letters φ,ψ,χ, . . . for formulæ,
while Γ,∆, . . . are sets of formulæ. The rules are:

(I∃)
φLt/xM
∃xφ

(E∃)
∃xφ
φLc/xM

, c a new constant, starting a sub-derivation

(I∀)
φ
∀xφ , x does not occur free in any assumption alive at this stage

(E∀)
∀xφ
φLt/xM

, t a term.

The adjective new in E∃ means that c does not belong to the language L we
are currently using. Note that the term t in I∃ and in E∀ could be x itself,
so in that case φLt/xM is just φ. The rules I∃ and E∀ are obvious, while the
other two need some explanation.

• E∃ captures a basic pattern in proofs: once we get to an existential formula
∃xφ, it is customary to fix a witness c satisfying φ and proceed with the
argument, so that at the end of the proof no mention of this c is present.
Whenever E∃ is applied a new sub-derivation begins, increasing the depth
of the derivation; this sub-derivation can be terminated once we reach a
formula φ in which c does not occur, and φ is exported to the next line
with justification e.
• I∀ is the rule of generalization since it allows to infer ∀xφ from φ. The

requirement for its applicability can be stated more formally as follows. If
I∀ is to be applied to φ(x) on line n yielding ∀xφ on line n+ 1, we must
consider every line k ≤ n that are still alive at this stage and which are
the beginning of sub-derivation: for any such k we must check that x does
not occur free in that formula. Failure to comply with the requirement
above might lead to incorrect proofs.

Example 5.38. Suppose c is a constant symbol of our language, then

1 x ≖ c p
2 ∀x (x ≖ c) I∀(1)

witnesses that x ≖ c ⊢ ∀x (x ≖ c). In fact, a straightforward elaboration of
this argument shows that φ(x) ⊢ ∀xφ(x) for any φ(x).
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On the other hand
1 x ≖ c a
2 ∀x (x ≖ c) I∀(1)  
3 x ≖ c⇒ ∀x (x ≖ c) I⇒(1, 2)

is not a derivation because of an incorrect application of I∀ on line 1, as a
sub-derivation starts on that line and x is free in the formula of that line.
If the above were a derivation, it would prove that ⊢ x ≖ c ⇒ ∀x (x ≖ c),
and by the argument above we could prove that ⊢ ∀x (x ≖ c⇒ ∀x (x ≖ c)),
which is not a valid sentence, since it fails in any model with more than one
element.

Example 5.38 highlights a subtle point in the predicate calculus. Although
⊢ φ ⇒ ψ yields φ ⊢ ψ by means of E⇒, the converse does not hold: from
φ ⊢ ψ we cannot infer that ⊢ φ ⇒ ψ, so Theorem 5.22 from Section 5.D
fails. The correct version of that result in our context is Theorem 5.44.

The next example illustrates the usage of the rule I∃.

Example 5.39. ⊢ φLt/xM⇒ ∃xφ, since

1 φLt/xM a
2 ∃xφ I∃(1)
3 φLt/xM⇒ ∃xφ I⇒(1, 2)

In order to complete our presentation of predicate calculus we must define
the axioms for equality:

EQ1: x ≖ x,
EQ2: x ≖ y ⇒ y ≖ x,
EQ3: x ≖ y ∧ y ≖ z ⇒ x ≖ z,
EQ4: (x1 ≖ y1 ∧ · · · ∧ xn ≖ yn)⇒ f(x1, . . . , xn) ≖ f(y1, . . . , yn)

EQ5: (x1 ≖ y1 ∧ · · · ∧ xn ≖ yn ∧ P (x1, . . . , xn))⇒ P (y1, . . . , yn)

where f is a function symbol, and P is a relation symbol. The axioms for
equality can be used inside a derivation just like premises.

Given Γ a set of L-formulæ and φ an L-formula, a derivation of φ
from Γ is a finite sequence ψ1, . . . ,ψn of L-formulæ such that each ψi is
either an element of Γ, or it is an axiom of equality, or it is obtained by one
of the introduction/elimination rules described above. We write

Γ ⊢L φ

to say that there is a derivation of φ from Γ, but the subscript L will be
suppressed, when it is clear from the context. Proposition 5.6 holds for
predicate calculus, as well, so

• if Γ ⊢ φ and Γ′ ⊇ Γ then Γ′ ⊢ φ, and
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• if Γ ⊢ φ and Γ′,φ ⊢ ψ then Γ ∪ Γ′ ⊢ ψ.

Of course it is possible to use the derived rules of Section 5.B.2 for proposi-
tional calculus, as well as some specific ones for the quantifiers that will be
presented in Section 5.F.2.

The rules are sound that is only valid formulæ can be derived, and are
complete that is any valid sentence can be derived.

Theorem 5.40 (Soundness). Let Γ ∪ {φ} be a set of L-formulæ. If Γ ⊢ φ
then Γ |= φ.

The proof of Theorem 5.40 is an elaboration of that of Theorem 5.12, and
is contained in Section 5.F.1 below. The reverse implication Σ |= φ⇒ Σ ⊢ φ
i.e. completeness will be proved in Chapter VII.

Warning. The word “complete” has two distinct meanings in logic, and this
unfortunate situation may cause some confusion. The completeness of some
logical calculus refers to the fact that the logical rules are powerful enough
to derive any result proved by means of models. It does not say that the
set of all sentences that are true in every structure is a complete theory, as
Example 4.38 shows.

5.F.1. Proof of the Soundness Theorem 5.40*. The notation of the proof of
Theorem 5.12 will be adopted in what follows. First of all we need to extend
Definition 5.15 to first-order logic. A justified derivation from Γ is a finite list

(φ1, j1, d1, D1, c1), . . . , (φn, jn, dn, Dn, cn)

where

• ck = ⟨c1, c2, . . .⟩ is a (possibly empty) finite string of new constant symbols,
that is ci is a constant symbol that does not belong to L ∪ {c1, . . . , ci−1},
the language L with the symbols c1, . . . , ci−1 added for all 1 ≤ i ≤ lh ck.
Set L(ck) = L ∪ {c1, . . . , cm} where ck = ⟨c1, . . . , cm⟩;
• φk is a L(ck)-formula;
• jk is one of the following labels: p, a, i, an introduction/elimination rule

for the connectives, or an introduction/elimination rule for the quantifiers,
or the export rule e;
• dk ∈ N and Dk ⊆ {1, . . . , k − 1};

Clauses (1)–(9) are stated with φk in place of Pk, but (6) is modified as

(6) dk = dk−1 + 1 if and only if jk ∈ {a,E∃}.

Besides clauses (1)–(9) we require that:

(10) c1 = cn = ⟨⟩ be the empty string;
(11) if jk ∈ {I∃,E∀, I∀} then
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• ck = ck−1,
• dk = dk−1 and hence Dk = Dk−1 by clause (3);

(12) if jk = I∃ then φk is of the form ∃xψ and φk−1 is ψLt/xM with t an
L(ck−1)-term,

(13) if jk = E∀ then φk−1 is of the form ∀xψ and φk is ψLt/xM, with t an
L(ck−1)-term,

(14) if jk = I∀ then φk is ∀xψ and φk−1 is ψ and x does not occur free in
any of the assumptions alive at line k, that is x is not free in any φm

with m ∈ Ak;

(15) if jk = E∃ then:
• dk = dk−1 + 1 and hence Dk = Dk−1 by condition (3),
• ck is obtained by extending ck−1 with a new constant symbol c̄,

that is if ck−1 = ⟨c1, . . . , cm⟩ then ck = ⟨c1, . . . , cm, c̄⟩;
• φk is ψLc̄/xM and φk−1 is ∃xψ;

(16) if jk = e then:
• k∗ = m+ 1 < k − 1,
• φm is of the form ∃xψ
• φm+1 is ψLc̄/xM and jm+1 = E∃
• dm = dk and dm+1 = dk−1 = dk + 1 and hence Dk ⊃ Dk−1 by

clause (4),
• cm = ck and cm+1 = ck−1 = ck

⌢⟨c̄⟩,
• φk is φk−1 and c̄ does not occur in φk−1.

Suppose Γ ⊢ φ and let (φ1, j1, d1, D1, c1), . . . , (φn, jn, dn, Dn, cn) be a
justified derivation of φ from Γ, so that φn is φ. As in Theorem 5.19 we
show that for all k ≤ n

(5.13) Γ |=
∧
i∈Ak

φi ⇒ φk

where Ak is the set defined in (5.9), so that when An = ∅ this yields Γ |= φ

as required. The formula
∧

i∈Ak
φi ⇒ φk belongs to the language L(ck),

so (5.13) amounts to say that: for any L(ck)-structure B, if B ⊨ Γ (that is
B satisfies the universal closure of any formula in Γ), if the free variables of∧

i∈Ak
φi ⇒ φk are among x1, . . . , xp and b1, . . . , bp are elements of B such

that B ⊨ φi[b1, . . . , bp] for all i ∈ Ak, then B ⊨ φk[b1, . . . , bp]. So suppose
that

the free variables of
∧

i∈Ak
φi ⇒ φk are among x1, . . . , xp,

that b1, . . . , bp are elements of B, an L(ck)-structure, and
that B ⊨ φi[b1, . . . , bp]

towards proving B ⊨ φk[b1, . . . , bp].
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If jk ∈ {p,a, i, I¬,E¬, I∧,E∧, I∨,E∨, I⇒,E⇒} the argument is the same
as in the proof of Theorem 5.19, except for minor changes. For example
suppose jk = I⇒(m), with m < k. Then φk is φm ⇒ φk−1. Let B be an
L(ck)-structure. By inductive assumption Γ |=

∧
i∈Ak−1

φi ⇒ φk−1. If v is
any valuation satisfying Γ∪{Pi | i ∈ Ak}, then v(Pm ⇒ Pk−1) = 1 by (5.10).
Therefore Γ |=

∧
i∈Ak

Pi ⇒ Pk.
Therefore it is enough to consider when jk ∈ {I∃,E∃, I∀,E∀, e}. Let us

summarize a few facts:

• if jk ∈ {I∃,E∀, I∀} then by (11) dk = dk−1 and hence Ak = Ak−1,
• if jk = E∃, then dk = dk−1 + 1 and Ak = Ak−1 ∪ {k},
• if jk = e, then, with the notation of (16), dk−1 = dk + 1, Am = Ak and
Am+1 = Ak−1 = Ak ∪ {m+ 1}.

Suppose jk = I∃. Then φk−1 is ψLt/xM and φk is ∃xψ. As Ak = Ak−1,
the free variables of

∧
i∈Ak

φi ⇒ φk are the same of
∧

i∈Ak−1
φi ⇒ φk−1. By

inductive assumption B ⊨ φk−1[b1, . . . , bp], so tB[b1, . . . , bp] witnesses that
B ⊨ φk[b1, . . . , bp] as required.

Suppose jk = E∀. Then φk−1 is ∀xψ and φk is ψLt/xM. As Ak = Ak−1,
the free variables of

∧
i∈Ak−1

φi ⇒ φk−1 occur free in
∧

i∈Ak
φi ⇒ φk. By

inductive assumption B ⊨ φk−1[b1, . . . , bp], and therefore B ⊨ φk[b1, . . . , bp]
as required.

Suppose jk = I∀. Then φk is ∀xφk−1 and x does not occur free in any
φi where i ∈ Ak = Ak−1. The free variables of

∧
i∈Ak−1

φi ⇒ φk−1 are
among x, x1, . . . , xp. Let b be an arbitrary element of B. By case assumption
B ⊨

∧
i∈Ak−1

φi[b1, . . . , bp], so B ⊨
∧

i∈Ak−1
φi[b, b1, . . . , bp], and hence by

inductive assumption B ⊨ φk−1[b, b1, . . . , bp]. Therefore B ⊨ φk[b1, . . . , bp].
Suppose jk = E∃. Then φk−1 is ∃xψ and φk is ψLc/xM. As k ∈ Ak, the

formula
∧

i∈Ak
φi ⇒ φk is a tautology, and since B ⊨

∧
i∈Ak

φi[b1, . . . , bp]

then B ⊨ φk[b1, . . . , bp], as required.
Lastly, suppose jk = e. Then φk is φk−1 and c̄ does not occur in it. By

case assumption

(5.14) ∀i ∈ Ak = Am (B ⊨ φi[b1, . . . , bp]) .

Th free variables of
∧

i∈Am
φi ⇒ φm are those of

∧
i∈Am+1

φi, and they are
among the x1, . . . , xp. By inductive assumption B ⊨ φm[b1, . . . , bp], so there
is an element b̄ of B such that

(5.15) (B, b̄) ⊨ φm+1[b1, . . . , bp]

where (B, b̄) is the L(cm+1)-structure obtained from B by interpreting the
constant symbol c̄ with b̄. By (5.14) and (5.15) it follows that (B, b̄) ⊨∧

i∈Am+1
φi[b1, . . . , bp], and since Am+1 = Ak−1 and by inductive assumption
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we have that (B, b̄) ⊨ φk−1[b1, . . . , bp]. As φk, that is φk−1, is an L(ck)-
formula, it follows that B ⊨ φk[b1, . . . , bp], as required.

The proof of the Soundness Theorem 5.40 is complete.
5.F.2. Some derived rules for predicate calculus.

• The rule of tautological consequence (taut) asserts that if Γ ⊢ ψ1, . . . ,
Γ ⊢ ψn and if φ is tautological consequence of ψ1, . . . ,ψn, then Γ ⊢ φ. In
fact ψ1 ⇒ . . .⇒ ψn ⇒ φ is provable, since it is a tautology (Theorem 5.24)
so this rule follows from repeated applications of the E⇒.
• The rules (exch∃/∀) for exchanging the quantifiers

∀xφ
¬∃x¬φ , ¬∃x¬φ

∀xφ , ∃xφ
¬∀x¬φ , ¬∀x¬φ

∃xφ ,

state that either quantifier can be defined from the other one. The first
two instances follow from ⊢ ∀xφ⇒ ¬∃x¬φ and ⊢ ¬∃x¬φ⇒ ∀xφ:
1 ∀xφ a
2 ∃x¬φ a
3 ¬φLc/xM E∃(3)
4 ∀xφ i(1)
5 φLc/xM E∀(4)
6 ∀xφ ∧ ¬∀xφ ⊥(3, 5)
7 ∀xφ ∧ ¬∀xφ e
8 ¬∃x¬φ I¬(2)
9 ∀xφ⇒ ¬∃x¬φ I⇒(1, 8)

1 ¬∃x¬φ a
2 ¬φ a
3 ∃x¬φ I∃(2)
4 ¬∃x¬φ i(1)
5 ∃x¬φ ∧ ¬∃x¬φ I∧(3, 4)
6 φ E¬(2)
7 ∀xφ I∀(6)
8 ¬∃x¬φ⇒ ∀xφ I⇒(1, 7)

while the third and fourth instance follow from the first two with ¬φ in
place of φ and the double negation rule (Exercise 5.50).
• The instantiation rules

∀x1 . . . ∀xnφ
φLt1/x1, . . . , tn/xnM

,
φLt1/x1, . . . , tn/xnM
∃x1 . . . ∃xnφ

,

follow from
⊢ ∀x1 . . . ∀xnφ⇒ φLt1/x1, . . . , tn/xnM,
⊢ φLt1/x1, . . . , tn/xnM⇒ ∃x1 . . . ∃xnφ.

(5.16)

By (exch∃/∀) and the contrapositive rule, it is enough to prove the second
derivation. By Example 5.39

∃xi+1 . . . ∃xnφLt1/x1, . . . , ti/xiM ⇒ ∃xi∃xi+1 . . . ∃xnφLt1/x1, . . . , ti−1/xi−1M

is valid, with the understanding that when i = n, this means that

⊢ φLt1/x1, . . . , tn/xnM⇒ ∃xnφLt1/x1, . . . , tn−1/xn−1M.

By transitivity of implication ⊢ φLt1/x1, . . . , tn/xnM⇒ ∃x1 . . . ∃xnφ fol-
lows. In particular

(5.17) ⊢ ∀x1 . . . ∀xnφ⇒ ∃x1 . . . ∃xnφ.
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• The swapping of quantifiers rule Γ ⊢ ∃x ∀yφ
Γ ⊢ ∀y ∃xφ

, follows from ⊢
∃x ∀yφ⇒ ∀y ∃xφ. Consider these:

1 ∃x ∀yφ a
2 ∀yφLc/xM E∃(1)
3 φLc/xM E∀(2)
4 ∃xφ I∃(3)
5 ∃xφ e
6 ∀y ∃xφ I∀(5)
7 ∃x ∀yφ⇒ ∀y ∃xφ I⇒(1, 6)

1 ∀y ∃xφ a
2 ∃xφ E∀(1)
3 φLc/xM E∃(2)
4 ∀yφLc/xM I∀(3) ?
5 ∃x ∀yφ I∃(4)
6 ∃x ∀yφ e
7 ∀y ∃xφ⇒ ∃x ∀yφ I⇒(1, 6)

The one on the left is a derivation of ⊢ ∃x ∀yφ⇒ ∀y ∃xφ, while the one
on the right might not be a derivation: the application of I∀ on line 4 could
be illegal since y might occur free in φ. In case y is not free in φ, it is a
derivation of ∀y ∃xφ⇒ ∃x ∀yφ. (In this case ∀y ∃xφ, ∃x ∀yφ, and ∃xφ
assert the same fact.)
• The equivalence rules are

φ⇔ ψ

∀xφ⇔ ∀xψ
,

φ⇔ ψ

∃xφ⇔ ∃xψ
.

The first one follows from φ⇒ ψ ⊢ ∀xφ⇒ ∀xψ:
1 φ⇒ ψ p
2 ∀x(φ⇒ ψ) I∀(1)
3 ∀xφ a
4 ¬∀xψ a
5 ∃x¬ψ exch∃/∀
6 ¬ψLc/xM E∃(5)
7 ∀x(φ⇒ ψ) i(2)
8 φLc/xM⇒ ψLc/xM E∀(7)
9 ¬φLc/xM taut(6, 8)

10 ∀xφ i(1)
11 φLc/xM E∀
12 ∀xψ ⊥(11, 9)
13 ∀xψ e
14 ∀xψ ∧ ¬∀xψ I∧(13, 4)
15 ∀xψ E¬(4)
16 ∀xφ⇒ ∀xψ I⇒(1, 15)

The second rule follows from the first and (exch∃/∀).

Remark 5.41. If Γ ⊢ φ ⇔ ψ, then by the equivalence rule Γ ⊢ ¬∃xφ ⇔
∀x¬ψ, so the rule (exch∃/∀) can be extended accordingly. For example
⊢ ¬∃x(φ ∧ψ) ⇔ ∀x(φ⇒ ¬ψ).

5.F.3. Results about derivations.

Proposition 5.42. (a) Suppose Γ ⊢ φ⇒ ψ.
• If x does not occur free in φ, then Γ ⊢ φ⇒ ∀xψ.
• If x does not occur free in ψ, then Γ ⊢ ∃xφ⇒ ψ.
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(b) If Γ ⊢ φ, then Γ ⊢ ∀xφ. Therefore Γ ⊢ φ if and only if Γ ⊢ φ∀, where
φ∀ is the universal closure of φ.

(c) Γ,ψ ⊢ φ if and only if Γ, ∀xψ ⊢ ∀xφ.
(d) If Γ ⊢ φ, then Γ ⊢ φLt1/x1, . . . , tn/xnM.
(e) If Γ ⊢ φ⇒ ψ, then Γ ⊢ ∃xφ⇒ ∃xψ and Γ ⊢ ∀xφ⇒ ∀xψ.

Proof. (a) Assume φ and suppose x does not occur free in φ: as φ ⇒ ψ

follows from Γ, then so does ψ, so by applying I∀ we get ∀xψ. This application
of I∀ is legal, as by assumption x is not free in φ.

The other result follows by the contrapositive rule.

(b) Suppose Γ ⊢ φ. As ∃x¬φ ⇒ φ is a tautological consequence of φ
then Γ ⊢ ∃x¬φ ⇒ φ. By part (a) Γ ⊢ ∃x¬φ ⇒ ∀xφ, and since ∀xφ is
a tautological consequence of ∃x¬φ ⇒ ∀xφ then Γ ⊢ ∀xφ. By repeated
applications of this argument, Γ ⊢ φ implies Γ ⊢ φ∀. The converse direction
follows from (5.16).

(c) Let χ1, . . . ,χn be a derivation of Γ,ψ ⊢ φ. Without loss of generality
we may assume that χ1 is ψ with justification p. Then χ0, . . . ,χn+1 is a
derivation of Γ,∀xψ ⊢ ∀xφ, where

• χ0 is ∀xφ with justification p,
• the justification of χ1 is changed from p to E∀(0),
• χn+1 is ∀xφ with justification I∀(n).

The application of I∀(n) is legal, since the depth of line n in the derivation is
0, so it does not depend on any assumption.

Conversely, suppose χ1, . . . ,χn is a derivation of Γ, ∀xψ ⊢ ∀xφ, where
χ1 is ∀xψ with justification p. Then χ0, . . . ,χn+1 is a derivation of Γ,ψ ⊢ φ,
where

• χ0 is φ with justification p,
• the justification of χ1 is changed from p to I∀(0),
• χn+1 is φ with justification E∀(n).

(d) Suppose Γ ⊢ φ. By part (b) Γ ⊢ φ∀, so Γ ⊢ φLt1/x1, . . . , tn/xnM
follows from (5.16).

(e) Suppose Γ ⊢ φ⇒ ψ. By (5.16) again, ⊢ ψ⇒ ∃xψ, so Γ ⊢ φ⇒ ∃xψ,
and hence Γ ⊢ ∃xφ ⇒ ∃xψ by part (a). The result with the universal
quantifiers follows from the contrapositive rule. □

Part (b) of Proposition 5.42 explains a common pattern in mathematical
proofs: in order to prove the universal closure of φ it is enough to prove φ
itself.
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By Proposition 5.42(d) the axioms for equality with arbitrary terms
instead of variables are derivable:

EQ1+: t ≖ t,
EQ2+: t ≖ s⇒ s ≖ t,
EQ3+: t ≖ s ∧ s ≖ u⇒ t ≖ u,
EQ4+: (t1 ≖ s1 ∧ · · · ∧ tn ≖ sn)⇒ f(t1, . . . , tn) ≖ f(s1, . . . , sn)

EQ5+: (t1 ≖ s1 ∧ · · · ∧ tn ≖ sn ∧ P (t1, . . . , tn))⇒ P (s1, . . . , sn).

The next result is called the equality theorem.

Theorem 5.43. If the terms t1, . . . , tn and s1, . . . , sn are substitutable for
x1, . . . , xn in φ, then

⊢ t1 ≖ s1 ∧ · · · ∧ tn ≖ sn ⇒ (φLt1/x1, . . . , tn/xnM⇔ φLs1/x1, . . . , sn/xnM) .

Proof. Suppose first φ is atomic. By EQ2+ it is enough to prove that

⊢ t1 ≖ s1 ∧ · · · ∧ tn ≖ sn ∧φLt1/x1, . . . , tn/xnM ⇒ φLs1/x1, . . . , sn/xnM.

If φ is x1 ≖ x2 then we must prove that

⊢ t1 ≖ s1 ∧ t2 ≖ s2 ∧ t1 ≖ t2 ⇒ s1 ≖ s2

which follows from EQ3+. If φ is u(x1, . . . , xn) ≖ v(x1, . . . , xn) with u, v
terms, then we must prove that

⊢ t1 ≖ s1 ∧ · · · ∧ tn ≖ sn ∧ u(t1, . . . , tn) ≖ v(t1, . . . , tn)

⇒ u(s1, . . . , sn) ≖ v(s1, . . . , sn),

which follows from EQ4+ and transitivity. If φ is P (x1, . . . , xn) apply EQ5+.
Thus the result holds for any atomic φ.

We now proceed by induction on the height of φ. First of all notice that

(A⇔ B)⇒ (¬A⇔ ¬B),
(A1 ⇔ B1) ∧ (A2 ⇔ B2)⇒ ((A1 ⊙A2)⇔ (B1 ⊙ B2))

are tautologies, where ⊙ is any binary connective. Therefore if φ is either ¬ψ
or else ψ⊙ χ, the result follows at once by the inductive assumption. Finally
if φ is either ∃yψ or else ∀yψ, then the result follows from the inductive
assumption and the equivalence rule. □

As we observed after Example 5.38, if Γ ⊢ φ ⇒ ψ then Γ,φ ⊢ ψ by
MP. Conversely suppose χ1, . . . ,χn is a derivation of Γ ∪ {φ} ⊢ ψ. In order
to prove Γ ⊢ φ ⇒ ψ, one would start with assuming φ, starting thus a
sub-derivation, then write χ1, . . . ,χn, the derivation for Γ ∪ {φ} ⊢ ψ, and
then finish by closing the sub-derivation using the I⇒ rule. The problem is
that there might be a line 1 ≤ k ≤ n in the derivation of Γ ∪ {φ} ⊢ ψ where
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I∀ is applied to a variable that occurs free in φ, spoiling our plan. Therefore
the version of Theorem 5.22 for first-order logic is:

Theorem 5.44. Suppose that there is a derivation of Γ ∪ {φ} ⊢ ψ and
suppose that in such derivation all applications of I∀, if any, do not involve
variables that occur free in φ. Then Γ ⊢ φ⇒ ψ.

In particular, if φ is a sentence and Γ ∪ {φ} ⊢ ψ then Γ ⊢ φ⇒ ψ.

In mathematics, when proving ∀xφ one usually argues as follows: take a
generic element x̄ and show that φ holds for that x̄; as x̄ is arbitrary, one ob-
tains ∀xφ(x). The next result justifies the correctness of this argumentation.

Theorem 5.45. Suppose Γ is a set of L-formulæ and φ is an L-formula. If
c is a constant not in L, then

Γ ⊢L ∀xφ if and only if Γ ⊢L∪{c} φLc/xM.

Proof. If Γ ⊢L ∀xφ then Γ ⊢L∪{c} ∀xφ, and hence Γ ⊢L∪{c} φLc/xM
by (5.17).

Conversely suppose ψ1, . . . ,ψn witnesses that Γ ⊢L∪{c} φ, and let y be a
variable that doesn’t occur in any ψi. Each ψi is an L ∪ {c}-formula, and
it is easy to check that ψiLy/cM is an L-formula. For notational ease, write
ψ̄i for ψiLy/cM. Observe that if ψi is in Γ or is an axiom for equality, then
ψ̄i is ψi, and that ψ̄n is (φLc/xM)Ly/cM, that is φLy/cM. Then ψ̄1, . . . , ψ̄n is
an L-derivation witnessing Γ ⊢L φLy/xM. Next we apply Proposition 5.42:
by part (d) Γ ⊢L (φLy/xM)Lx/yM, that is Γ ⊢L φ, and hence Γ ⊢L ∀xφ by
part (b). □

5.G. From informal proofs to derivations. Let us sketch how to translate
a simple informal proof into a derivation.

Example 5.46. Suppose R is a transitive, symmetric relation on a set X
such that ∀x ∈ X ∃y ∈ X x R y. Then R is an equivalence relation on X.

We want to show that Γ ⊢ ∀x (x R x), where Γ is the set made up of the
three sentences: ∀x, y, z (x R y ∧ y R z ⇒ x R z), ∀x, y (x R y ⇒ y R x),
∀x ∃y (x R y). The semantic argument runs as follows. Given an element
c ∈ X, by hypothesis there is d ∈ X such that c R d, and hence d R c. As
R is transitive, from c R d and d R c we obtain c R c. Being c arbitrary we
infer ∀x (x R x). So if L is the language with R as a binary predicate, and c
is a constant symbol that does not belong to L, then by Theorem 5.45 it is
enough to prove that Γ ⊢L∪{c} c R c, as in Figure 9.

To be continued
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1 ∀x ∃y (x R y) p
2 ∀x, y (x R y ⇒ y R x) p
3 ∀x, y, z (x R y ∧ y R z ⇒ x R z) p
4 ∃y (c R y) E∀(1)
5 c R d E∃(4)
6 ∀x, y (x R y ⇒ y R x) i(2)
7 ∀y (c R y ⇒ y R c) E∀(6)
8 c R d⇒ d R c E∀(7)
9 d R c E⇒(5, 8)

10 c R d ∧ d R c I∧(5, 9)
11 ∀x, y, z (x R y ∧ y R z ⇒ x R z) i(3)
12 ∀y, z (c R y ∧ y R z ⇒ c R z) E∀(10)
13 ∀z (c R d ∧ d R z ⇒ c R z) E∀(11)
14 c R d ∧ d R c⇒ c R c E∀(12)
15 c R c E⇒(13, 5)
16 c R c e

Figure 9. A derivation used in Example 5.46.

5.H. A Hilbert-style calculus for first-order logic. It is possible to
develop a Hilbert-style calculus for first-order logic. In order to keep the
notational complexity to a minimum, we present a system where the premises,
the axioms, and the theorems are sentences. In other words when we write
Γ ⊢H φ we are assuming that all formulæ in Γ are sentences, φ is a sentence,
and every formula in this derivation is a sentence as well.

The official connectives are ¬ and⇒, all the other connectives are defined
accordingly. A logical axiom is a sentence of which is the universal closure
of a formula of the form

• φ⇒ ∀xφ, where x does not occur free in φ,
• φLt1/x1, . . . , tn/xnM⇒ ∃x1 . . . ∃xnφ, where t1, . . . , tn are closed terms,
• ∀x¬φ⇒ ¬∃xφ,
• ∀x (φ⇒ ψ)⇒ (∀xφ⇒ ∀xψ),
• an axiom for equality EQ1–EQ5,
• a tautology for propositional calculus.

Then Γ ⊢H φ just in case there is a finite list ψ1, . . . ,ψn of sentences such
that each ψi is either a logical axiom, or else it belongs to Γ, or else it is
obtained from the earlier ψis using the Modus Ponens (MP).

The last clause in the definition of logical axiom drastically simplifies
derivations, but at the same time makes the proofs and arguments in Sec-
tion 5.D utterly irrelevant.

Every axiom of this system is provable using natural deduction, and
hence Γ ⊢H φ implies that Γ ⊢ φ. It will be proved in Chapter VII that if
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Γ ⊢H φ then Γ |= φ (Soundness Theorem 33.4), and, conversely, if every
model satisfying Γ is a model of φ then Γ ⊢ φ (Completeness Theorem 34.3).

Remark 5.47. The fact that the only logical rule is the MP has the amusing
consequence that propositional logic governs derivations in first-order logic.
Validities in propositional logic can be established using the method of truth
tables, while derivations in first-order logic (arising from the formalization of
proofs in mathematics) tend to be quite complex, so a word of explanation is
in order.

If Γ is a finite set of propositions over a set of letters L, then Γ ⊢ A if
and only if

∧
Γ ⇒ A is a tautology, and this that can be established in a

mechanical way. When Γ is infinite, Γ ⊢ A just in case there is a finite Γ0 ⊆ Γ
such that

∧
Γ0 ⇒ A is a tautology, but there is no simple way to find out

which Γ0 would do the job.
If Γ ∪ {φ} is a set of L-sentences, Γ ⊢ φ just in case φ can be derived

using propositional logic from Γ ∪ Λ, where Λ is the set of all logical axioms
for L. Observe that Λ is infinite, even if Γ is finite (or even empty!), so the
task of deciding whether Γ ⊢ φ cannot be solved in a mechanical way.

Exercises

Exercise 5.48. Prove the following logical rules of propositional calculus
using natural deduction.

(i) The double negation rules A ⊢ ¬¬A and ¬¬A ⊢ A.
(ii) De Morgan’s laws: ⊢ ¬(A∨B)⇔ ¬A∧¬B and ⊢ ¬(A∧B)⇔ ¬A∨¬B.
(iii) The distributivity rules for ∧ and ∨: ⊢ A∧ (B∨C)⇔ (A∧B)∨ (A∧C)

and ⊢ A ∨ (B ∧ C)⇔ (A ∨ B) ∧ (A ∨ C).
(iv) Associativity and commutativity of ∨ and ∧:

⊢ A ∨ (B ∨ C)⇔ (A ∨ B) ∨ C ⊢ A ∨ B⇔ B ∨A

⊢ A ∧ (B ∧ C)⇔ (A ∧ B) ∧ C ⊢ A ∧ B⇔ B ∧A.

(v) ⊢ (A⇒ B)⇔ (¬A ∨ B).
(vi) ⊢ (A⇒ (B⇒ C)) ⇔ ((A ∧ B)⇒ C).

Exercise 5.49. Prove the following tautologies using the calculus of natural
deduction.

(i) (A⇒ B) ∨ (B⇒ A) (Dummet’s law).
(ii) ((A⇒ B)⇒ A)⇒ A (Peirce’s law).
(iii) (¬B⇒ ¬A)⇒ ((¬B⇒ A)⇒ B).
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(iv) (C⇒ A)⇒ [(C⇒ B)⇒ C⇒ (A ∧ B)].
(v) (A⇒ C)⇒ (B⇒ C)⇒ (A ∨ B)⇒ C.
(vi) (A⇒ B)⇒ ((B⇒ C)⇒ (A⇒ C)).
(vii) ((A⇒ B)⇒ C)⇒ ((C⇒ A)⇒ (D⇒ A)).

Exercise 5.50. Prove the validity of the following formulæ using the calculus
of natural deduction.

(i) ∃xφ⇔ ¬∀x¬φ (this is half of the rule exch∃/∀).
(ii) Assuming x does not occur free in ψ:

• ∀x(φ⇒ ψ) ⇔ (∃xφ⇒ ψ),
• (ψ⇒ ∀xφ) ⇔ ∀x(ψ⇒ φ),
• (ψ⇒ ∃xφ) ⇔ ∃x(ψ⇒ φ),
• (∀xφ⇒ ψ) ⇔ ∃x(φ⇒ ψ).

(iii) ∃x (φ⇒ ∀xφ). (This is Example 2.5.)
(iv) ∃x ∃yφ⇔ ∃y ∃xφ and ∀x ∀yφ⇔ ∀y ∀xφ.
(v) ∀xφ ∧ ∀xψ⇔ ∀x (φ ∧ψ) and ∃x (φ ∨ψ)⇔ ∃xφ ∨ ∃xψ.
(vi) ∀xφ ∨ ∀xψ⇒ ∀x (φ ∨ψ) and, dually, ∃x (φ ∧ψ)⇔ ∃xφ ∧ ∃xψ.
(vii) ∀x (φ⇒ ψ)⇒ (∀xφ⇒ ∀xψ).
(viii) ∃x(φ ∧ ∀y(φLy/xM ⇒ y ≖ x)) ⇔ (∃xφ ∧ ∀x∀y(φ ∧ φLy/xM ⇒ x ≖ y))

and ∃x(φ∧∀y(φLy/xM⇒ y ≖ x)) ⇔ ∃x∀y(φLy/xM⇔ x ≖ y). Thus the
three formulations of ∃! on page 16 are equivalent.

Exercise 5.51. Using natural deduction, show that if there are m distinct
elements that satisfy φ(x), then there are n distinct elements that satisfy
φ(x), with 1 ≤ n ≤ m.

Exercise 5.52. Show that the axioms EQ2 and EQ3 (i.e. symmetry and
transitivity of ≖) can be replaced by x1 ≖ y1 ∧ x2 ≖ y2 ∧ x1 ≖ x2 ⇒ y1 ≖ y2.

Notes and remarks

The approach to natural deduction presented here is due to Frederic Fitch and it is exposed in
detail in [BPBE11]. There are as many versions of Hilbert-style calculi, as there are books in
logic; the one presented here is (a modification of) the one in [Men15].

6. What is mathematical logic?

It would have probably been wiser to place a section with a title like this at
the end of the book, when the reader—hopefully—has mastered the basics of
the subject. And even then a title like this might still look a bit over the top,
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since the goal of this textbook is not presenting all of mathematical logic (a
patently hopeless endeavour), but only to cover the basics of those areas that,
according to the author’s opinion, are closer to other parts of mathematics.
Maybe this section should be entitled What is that part of mathematical logic
covered in this book? or something like that. . . . In any case, the desire to
give an eagle’s eye view of what will be covered in detail in the next sections
is too compelling.

Mathematical logic originated with the attempts to give mathematically
precise answers to general questions such as:

(1) What is a proof?
(2) What is an effective procedure?
(3) What does it mean that a certain statement is true?
(4) What is a set?
(5) Is logic a part of mathematics, or is it a discipline that comes before

mathematics?

The attempts to answer to these questions have generated a large body
of mathematical theories.

6.A. Proof theory. The notion of derivation has syntactical flavour, while
the usual mathematical reasoning is based on the notion of logical consequence
(see page 56), and this is a semantic concept, i.e. it talks about models. The
formal, syntactical notion of proof (encoded by the definition of derivation)
and the semantic one (following common mathematical practice) are tightly
connected. If Σ ⊢ σ then every model of Σ is a model of σ (soundness
Theorem 33.4) and, conversely, if every model satisfying Σ is also a model
of σ then Σ ⊢ σ (completeness Theorem 34.3). Therefore derivations are
the formal counterpart of the intuitive notion of proof—σ is provable (in the
usual sense) from Σ, if and only if σ can be derived from Σ, in symbols Σ ⊢ σ.

A system of axioms Σ is consistent if it does not derive every formula,
that is if it cannot derive a formula and its negation. If Σ has a model, then it
is consistent, since a structure cannot satisfy both a sentence and its negation.
The converse also holds (model existence Theorem 34.4): if Σ is consistent,
then it has a model.

6.B. Computability. Every effective function belongs to a set of functions
known as the computable functions. Since every computable function is
effective, we shall use the terms “effective” and “computable” interchangeably.
A set A ⊆ N is decidable or computable if its characteristic function is
computable. To check that n belongs to ran(f), with f : N→ N a computable
function, it is enough to compute f(0), f(1), . . .: if n appears in this list, then
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we will be able to asses in a finite number of steps that n ∈ ran(f), if instead
n does not appear, we must perform an infinite number of computations in
order to be sure that n /∈ ran(f). A set of the form ran(f) with f computable
is semi-decidable or computably enumerable. Every computable set is
computably enumerable, but not conversely. The computably enumerable
subsets of N are exactly the Diophantine sets, i.e. those of the form
N ∩ {f(n1, . . . , nk) | n1, . . . , nk ∈ Z} with f a polynomial in k variables and
coefficients in Z.

If we consider a language with finitely many non-logical symbols—almost
every first-order language considered so far is of this kind—it is possible
to associate to each formula and, more generally, to any string of formulæ,
a natural number. If Σ is a computable set of axioms, then the set of all
derivations from Σ is computable. In other words: it is a routine task to check
whether or not a given string of formulæ is a derivation, while if Σ is sufficiently
strong, then the set of theorems of Σ is computably enumerable, but not
computable. The expression “sufficiently strong” means that Σ proves certain
elementary facts on natural numbers—for example, Peano arithmetic
(see Section 12.D in Chapter III) would do. A further extension of these
ideas leads to the celebrated Gödel’s First Incompleteness Theorem:25

every sufficiently strong, computable, and consistent system of axioms Σ is
incomplete, that is there is a statement σ such that Σ ̸⊢ σ and Σ ̸⊢ ¬σ.

6.C. Models. In mathematical logic, terms and formulæ of a language L

are full fledged mathematical objects (just like natural numbers, graphs,
vector spaces, . . . ). On the other hand, in common mathematical practice
(pseudo-)formulæ don’t have a real mathematical status, their role is to
describe properties of structures, that are the true point of interest for all
mathematicians not working in logic. Thus one of the first, and foremost,
obstacles met at the beginning of the study of mathematical logic is to accept
the fact that formulæ and structures are both objects worth studying. This
shift in perspective allows not only to study all formulæ that are true in a
given structure, or in a class of structures, like it happens in algebra, but it
also allows the opposite route: starting with a set of sentences and consider
the structures that satisfy this given set. Model theory, that is the study of
the mutual relationship between formulæ and structures of the same language,
already begun in Sections 3 and 9 will be investigated in a systematic way in
Chapter VII. We shall see that the study of models of first-order theories can
solve problems arising in other parts of mathematics, and sheds new light on
well-known objects. For example, we shall construct structures (M,+, ·, <)
which are elementarily equivalent (but not isomorphic) to (N,+, ·, <). These

25The incompleteness theorems are among the deepest results in mathematical logic and will
be proved in Chapter VIII.
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structures are called non-standard models of arithmetic, and are essential to
fully appreciate the Gödel incompleteness theorem.

Finally, observe that in the preceding pages we have explained what it
means for a sentence of L to be true in a structure M, that is there is a map

L-sentences× L-structures→ {0, 1}

assigning value 1 to (σ,M) if and only if M ⊨ σ. Under closer scrutiny,
the definition above is not very satisfying since we were a bit too cavalier
when moving from the formal language L to the informal language where
mathematical facts are stated. To convince oneself of the need for an adequate
formalization of the notions of satisfaction and definability, it is enough to
consider the following argument, known as Berry’s paradox: let n be the
smallest natural number that it is not definable with less than 1000 symbols.
But the sentence above has less than 1000 symbols, and hence it defines n.
In Chapter VII we shall rigorously formalize the satisfaction relation, and
Berry’s paradox will vanish in thin air.

Peano arithmetic and set theory are theories where it is possible to con-
struct statements that can be neither proved nor refuted from the given
theory. On the other hand, there are examples of mathematically interesting
first-order theories that are not subject to the incompleteness phenomenon.
For example, ACF0 the theory of algebraically closed fields of characteristic
zero (Example 4.39) is complete, thus it is the theory of (C,+, ·) by Proposi-
tion 3.32. Every complete theory T , in a computable language is decidable,
that is there is an algorithm that decides wether a given statement is prov-
able or not from T , and the study of complete decidable theories is one of
the central topics in model theory. The theory of (N,+, ·) is complete, but
undecidable, and so it is not computably axiomatizable. Whenever (N,+, ·)
is definably interpretable in a structure, it follows that such structure is
undecidable.

6.D. Sets. Set theory is ubiquitous in mathematics—the objects studied
in algebra, analysis, geometry, are construed as sets with some additional
structure. In Section 13 of Chapter IV and more extensively in Chapter VI we
will show how to reconstruct in set theoretic terms the fundamental objects of
mathematics—natural numbers, real numbers, measure theory, etc. Because
of this foundational aspect, we will study set theory in Chapter V.

Besides being a handy and useful language for mathematics, set theory
has a life of its own, focusing on the analysis of the notion of infinity,
with problems, techniques, specific methods, that make it one of the most
fascinating parts of mathematical logic. Before plunging into these topics,
note that set theory can be formalized as a first-order theory—in fact such
formalization is needed, since Russell in 1901 showed that naïve set theory is
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inconsistent. At the beginning of the twentieth century, several (essentially
equivalent) axiomatizations of the notion of set have been introduced, and in
Chapter V we will develop set theory as a first-order theory.

Let’s go back at the notion of infinity. Cantor, the creator of set theory,
had the revolutionary idea that sizes of infinite sets can be compared using
bijections. In particular, the kind of infinity of the real line is larger than the
kind of infinity of the natural numbers (Theorem 13.22). Cantor conjectured
that there was no intermediate kind of infinity, that is every infinite subset of
the real line is either in bijection with the natural numbers, or with the line
itself, and this conjecture was called the Continuum Hypothesis (CH). In
1938 Gödel showed that the Continuum Hypothesis cannot be disproved from
the axioms of set theory, and in 1963 Cohen showed that it is neither provable.
Therefore axiomatic set theory is incomplete, and the Continuum Hypothesis
is an example of such incompleteness. In the last few decades a large number
of questions, some of which originated in other areas of mathematics, have
been shown to be independent.

6.E. Metamathematics. In this book, set theory is taken as the bedrock
upon which other mathematical objects are built. In particular, logical
notions such as language, derivation, structure, truth, . . . , are formalized
within axiomatic set theory. Here we focus on the Zermelo-Frænkel axiom
system ZF, possibly augmented with the axiom of choice ZFC, but a similar
argument applies to the other axiomatizations of set theory, such as NGB or
MK. Being a first-order theory, ZF should be presented after Chapter VII
where the results on first-order theories are proved. We reach a paradoxical
situation: we need set theory to define the concept of structure of first-order
language (in order to define the notion of validity of a formula), and yet we
must use a first-order language to rigorously develop the notion of set, i.e.
the theory ZF. More generally: if logic is a part of mathematics, how can it
be the foundation of all of mathematics (and hence of itself)? This vicious
circle, reminiscent of chicken-or-egg dilemma, is just apparent. Let’s see how
it can be solved.
6.E.1. Syntax. Consider a first-order language L with a finite number of non-
logical symbols (i.e. relation, function, and constant symbols)—all examples
in Sections 3 and 9 are of this kind, and so is L∈, the language having only
one binary relation symbol ∈. Terms and formulæ of L are concrete objects,
symbols that we write on the blackboard or on a piece of paper, so we can
check in a mechanical way if a given string is a formula of L. Suppose Σ is
an effective set of sentences of L, that is such that it is possible to establish
in a mechanical way whether an L-sentence σ belongs to Σ. For brevity’s
sake we say that L and Σ as above are effective. All examples of axiom
systems encountered in Sections 3 and 9, as well as the axiom systems for
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set theory that will be seen in Chapter V, are examples of effective theories.
As explained in Section 6.A a derivation of σ from Σ is a finite string of
formulæ of L, each of which is a logical axiom, or it is in Σ, or it is obtained
from the preceding formulæ by means of a logical rule, and the notion “being
a derivation from Σ” is effective. In other words: given a sequence φ0, . . . ,φn

of formulæ of L, it is possible to determine in a mechanical way whether this
is a derivation from Σ.26

The formulæ of L∈ as well as the derivations in this language are pre-
set-theoretic entities, concrete objects that are needed in order to be able
to speak about arbitrary sets. The mathematical environment where these
constructive arguments on formulæ are carried out is called metatheory
or metamathematics. If we were to try formulate a bold analogy with
computer science, we could say that metamathematics is to mathematics as
compilers are to general programs.

We shall say that Σ is consistent if it is not possible to derive from it
any formula or, equivalently, if no logically false formula can be derived from
it, such as, for example, ∃x(x ̸≖ x). Thus asserting the consistency of Σ is a
universal statement, and can be seen as an optimistic prediction: we shall
never be able to derive a contradiction from Σ. Conversely, to conclude that
Σ is inconsistent (i.e. it is not consistent) we must exhibit a derivation of a
contradiction from Σ.
6.E.2. Semantics. The notions of structure, model, morphism, . . . are all
set-theoretical and hence live inside ZF, but they do not belong to the the
metatheory. Conversely, all arguments carried out in the metatheory can be
coded within a sufficiently strong theory, such as, for example, ZF. In partic-
ular, the notions of derivation and consistency can be coded within set theory,
thus ZF can formalize (and prove) both the Completeness Theorem 34.3

Let T be a first-order theory in a language L and let σ be
an L-statement. Then T |= σ if and only if T ⊢ σ.

and the Model Existence Theorem 34.4

A consistent first-order theory is satisfiable.

These two results apply to all first-order theories, not just the effective ones.
6.E.3. Coding of syntax. If L and Σ are effective, then they are representable
using natural numbers inside set theory. Every formula φ is coded via
a natural numbers ⌜φ⌝, while Σ is coded by a computable set of natural
numbers ⌜Σ⌝. Thus a derivation from Σ can be coded as a finite sequence of
natural numbers, which in turns can be coded by a single natural number.

26When we claim to have proved a theorem, we are essentially saying (modulo a translation
in the language L∈) that a certain statement σ can be derived form the axion of set theory.
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If in the metatheory it has been shown that

(6.1) Σ ⊢ σ
then the fact that such derivation exists is provable inside ZF, and we can
write

(6.2) ZF ⊢ ∃n (n codes a proof of σ from Σ).

Thus (6.2) follows from (6.1). The converse implication, however, is problem-
atic: to prove formula (6.1) an explicit derivation φ0, . . . ,φn of σ must be
provided, while to prove (6.2) it is enough to show that there exists some
derivation of σ from Σ; for example it is enough to reach a contradiction in
ZF from the assumption that no such derivation exist. The situation is similar
to what happens in number theory when one proves a statements of the
form ∃nφ(n) with φ a computable property: if the proof uses constructive
arguments, then we can (hope to) explicitly write down a number n that
has property φ, but if abstract methods were used in the proof, then, in
general, we have no clue on what n might be. The problem can be stated as
follows. We have a theory T and a formula φ(x), where x ranges over the
natural numbers, such that membership for the set I defined by it is effective.
Suppose T ⊢ ∃xφ(x) yet in the metatheory we verify that I = ∅, and hence
T proves that ¬φ(0), ¬φ(1), ¬φ(2), . . . . Such T is a deranged theory, since
it asserts the existence of a natural number that cannot be found in the real
world, yet it need not be inconsistent. A theory T for which this phenomenon
does not occur, is called Σ1-sound. If we assume that ZF is Σ1-sound (and
this is a very reasonable assumption) then (6.2) implies (6.1).

Gödel’s Second Incompleteness Theorem says that no effective,
consistent, sufficiently strong theory proves its own consistency. Sufficiently
strong entails that such theory can encode the syntax of an effective language,
so ZF is sufficiently strong. Moreover, the vast body of mathematical results
proved in set theory suggests that ZF is free from contradictions. Thus, by
Gödel’s theorem, ZF ̸⊢ ConZF.

The interplay between theory and metatheory is one of logic’s most
fascinating facets, and will be studied in Chapter VIII.





Chapter II

Orders, Boolean algebras
and computations

7. Orders, lattices, and Boolean algebras

7.A. Orders. An LOrdr-structure, where LOrdr is the language containing
a binary relation symbol ≤, is a pair (P,≤P ) with ≤P a binary relation on
P . Recall that (P,≤P ) is an order if it satisfies

• ∀x (x ≤ x),
• ∀x, y (x ≤ y ∧ y ≤ x⇒ x ≖ y),
• ∀x, y, z (x ≤ y ∧ y ≤ z ⇒ x ≤ z),

and (P,≤P ) is a total i.e. linear order if moreover it satisfies ∀x, y (x ≤
y ∨ y ≤ x). If antisymmetry is dropped we have a preorder or quasi-order.
Observe that a subset of a (total) order is a (total) ordered, as the axioms
used to define it are ∀-sentences. If (P,≤) is an ordered set and A ⊆ P ,

pred(x,A;≤) = {y ∈ A | y < x}
is the set of all predecessors of x that lie in A—thus pred(x) = pred(x, P ;≤)
is the set of all predecessors of x. The dual of an LOrdr-structure P = (P,≤)
is the LOrdr-structure

P∆ = (P,≥)
where ≥ is the inverse of ≤, that is a ≥ b⇔ b ≤ a. Clearly P∆∆ = P. The
dual of formula φ of LOrdr is φ∆ obtained by replacing in φ every atomic
sub-formula of the form ‘x ≤ y’ with ‘y ≤ x’. Formally the dual of a formula
is defined inductively by

153
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• (x ≖ y)∆ is x ≖ y,
• (x ≤ y)∆ is y ≤ x,
• (¬φ)∆ is ¬(φ∆),

• (φ⊙ψ)∆ is φ∆ ⊙ψ∆,
• (Qxφ)∆ is Qxφ∆,

where ⊙ is a binary connective and Q is a quantifier. By induction on the
height of φ it is shown that TP

φ(x1,...,xn)
= TP∆

φ∆(x1,...,xn)
, and hence

P ⊨ σ if and only if P∆ ⊨ σ∆

for every sentence σ. A formula is self-dual if it is (logically equivalent to)
its dual. The sentences that axiomatize the class of orders (the reflexive,
antisymmetric and transitive properties) are self-dual, hence P is a (pre-)
order if and only if P∆ is a (pre-)order. To recap:

Duality principle for (pre-)orders. If P is a (pre-)order and σ is a
sentence of LpOrdr then

P ⊨ σ if and only if P∆ ⊨ σ∆.

In particular: σ is logical consequence of the axioms for (pre-)orders if and
only if so is σ∆.

Given an order (P,≤) and ∅ ≠ X ⊆ P , we will say that an element m ∈ X
is maximum in X if a ≤ m for all a ∈ X; if the condition is weakened to
“there is no a ∈ X such that m < a” the notion of maximal element in X is
obtained. When X = P we speak of maximum and maximal element. By the
antisymmetric property a maximum of a set X (if it exists) is unique, and
it is denoted by maxX, and it is the unique element satisfying the formula
∀y (y ≤ x) in the structure (X,≤). An element is minimum or minimal if
it is maximum or maximal in the dual order.

Remark 7.1. The duality principle for orders can be used to cut the num-
ber of verifications in half, but attention must be payed in order to avoid
misunderstandings. The duality principle does not assert that :

• if an ordered set satisfies σ then it satisfies also σ∆—there are ordered
sets that have minimum but not maximum (and conversely) so that they
satisfy ∃x∀y (x ≤ y) but not ∃x∀y (y ≤ x);
• an ordered set satisfies every self-dual sentence—any order without maxi-

mum or minimum does not satisfy the self-dual sentence ∃x∀y (x ≤ y) ∧
∃x∀y (y ≤ x).

Proposition 7.2. A finite non-empty ordered set has minimal and maximal
elements.

Proof. Let (A,≤) be a finite non-empty ordered set, say A = {a0, . . . , an}.
Towards a contradiction, suppose (A,≤) has no maximal elements. As a0 is
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not maximal, there must be k1 ≤ n such that a0 < ak0 ; as ak1 is not maximal,
there must be k2 ≤ n such that ak1 < ak2 ; and so on. Arguing this way we
would construct infinitely many elements a0 < ak0 < . . . of A against our
finiteness assumption.

The proof that (A,≤) has minimal elements is obtained by taking the
dual order. □

Remark 7.3. The proof of the preceding result uses a couple of obvious
facts that will be proved in detail later on. The first is that the kis is defined
inductively—in order to define ki+1 we must have first defined ki. (These
definitions will be considered in Section 12.B.) The second fact is that N does
not inject into a finite set (Dirichlet’s pigeonhole principle—Theorem 13.15).

Proposition 7.4. Any ordering ≤ on a finite sets A can be extended to a
linear ordering ⪯ on A, that is ∀x, y ∈ A (x ≤ y ⇒ x ⪯ y).

Proof. Proceed by induction on n the number of elements of A. If n ≤ 1
the result is trivial, so we may assume that n ≥ 2. By Proposition 7.2 let
ā ∈ A be minimal: by inductive assumption there is a linear order ≤∗ on
A \ {ā} extending ≤ on A \ {ā}. Then

x ⪯ y ⇔

{
x ≤∗ y and x, y ∈ A \ {ā}

x = ā

is a linear ordering on A extending ≤. □

In Chapter VI we shall see that Proposition 7.4 holds for infinite sets as
well (Theorem 14.22.)

Proposition 7.5. Two finite linear orders of the same size are isomorphic,
and the isomorphism is unique.

Proof. Let us prove by induction on n that two finite linear orders (P,≤P )
and (Q,≤Q) of size n are isomorphic, and the isomorphism is unique. If n = 0
then P = Q = ∅ and there is nothing to prove. Suppose P and Q have size
n+1. By Proposition 7.2 there are maxima p̄ ∈ P and q̄ ∈ Q, so by inductive
assumption there is a unique isomorphism f̄ : (P \ {p̄},≤P )→ (Q \ {q̄},≤Q),
so f : P → Q defined by

f(p) =

{
f̄(p) if p ̸= p̄,

q̄ if p = p̄,

is an isomorphism. Uniqueness of f follows from the observation that any
isomorphism maps p̄ to q̄. □



156 II. Orders, Boolean algebras and computations

If (P,≤) is a preorder, Q ⊆ P is an initial segment or lower set or
down-set of P if x ∈ Q ∧ y ≤ x ⇒ y ∈ Q. For example,

↓Q = {y ∈ P | ∃x ∈ Q(y ≤ x)}

is a lower set, for all Q ⊆ P ; in fact Q is a lower set if and only if ↓Q = Q.
When Q is a singleton {x} we shall write ↓x instead of ↓{x}. Note that
↓x = pred(x) ∪ {x}. The collection of all lower sets of the preorder P is

Down(P )

and it is an ordered set under inclusion, with maximum P and minimum ∅.
If P is an order (i.e. antisymmetry holds), the map

(7.1) P → Down(P ), x 7→ ↓x

is an embedding, and hence:

Proposition 7.6. Every order (P,≤) is embeddable in (P(P ),⊆).

We say that Q ⊆ P is a final segment or upper set or up-set if it is a
lower set of the dual preorder P∆, and

↑Q = {y ∈ P | ∃x ∈ Q(x ≤ y)}

is the set ↓Q computed in P∆. The collection of all upper subsets of P is
denoted by Up(P ), and it is ordered under inclusion. Since

Down(P )∆ → Up(P ), Q 7→ P \Q

Up(P )→ Down(P∆), Q 7→ Q

are isomorphisms, then

Down(P )∆ ∼= Down(P∆) and Up(P )∆ ∼= Up(P∆).

The families Down(P ) and Up(P ) are topologies on P , known as the down-
ward and upward topology respectively. The family {↓p | p ∈ P} a basis
for Down(P ) and {↑p | p ∈ P} is a basis for Up(P ).

Lemma 7.7. Suppose P,Q are preordered sets and f : P → Q. The following
are equivalent:

(a) f is monotone;
(b) f is continuous, when P , Q are endowed with the downward topology;
(c) f is continuous, when P , Q are endowed with the upward topology.

Proof. Suppose f is monotone. As f−1[↓q] is a down-set for any q ∈ Q, the
preimage of a basic open set is open, so f is continuous. Conversely suppose
f is continuous and that p1 ≤P p2. As p2 belongs to the open set f−1[↓f(p2)]
then p1 ∈ ↓p2 ⊆ f−1[↓f(p2)], so f(p1) ∈ ↓f(p2), that is f(p1) ≤Q f(p2).
Therefore we have proved that (a)⇔(b).
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The proof of (a)⇔(c) is completely analogous. □

An upper bound for a subset X of P is an element a ∈ P such that
∀x ∈ X (x ≤ a) and X▼ is the set of all upper bounds of X. A subset
X with an upper bound, that is such that X▼ ̸= ∅ is bounded above. If
a = minX▼ we say that a is the least upper bound of X. The definitions of
X▲, lower bound, subset bounded from below, greatest lower bound
are obtained by “dualizing” the definitions above. By the antisymmetric
property, the least upper bound of X = {pi | i ∈ I} (if it exists) is unique
and will be denoted by

supX = supi∈I pi or
b
X =

b
i∈I pi.

Recall from Section 4.E that sup(a, b) is denoted by a ⋎ b. Similarly, the
greatest lower bound of X = {pi | i ∈ I} ⊆ P is unique (if it exists) and is
denoted by

infX = infi∈I pi or
c
X =

c
i∈I pi

and inf(a, b) is denoted by a⋏ b.
In a lattice the maximum and the minimum (if they exist) are denoted by

1 and 0,1 and in this case we say it is a bounded lattice. In the case of linear
orders the maximum and minimum are called end-points. A lattice (L,≤) is
complete if

b
X exists for every X ⊆ L; equivalently, by Lemma 7.8 below,

if
c

X exists for every X ⊆ L. If X = {a1, . . . , an}, then
b
X = a1⋎ . . .⋎an

and
c
X = a1 ⋏ . . .⋏ an exist and are well defined, hence every finite lattice

complete. A complete lattice L is bounded, since 1 =
b
L and 0 =

c
∅.

Recall that X▼ = {y ∈ L | ∀x ∈ X (x ≤ y)} is the set of all upper bounds of
X, and that X▲ = {y ∈ L | ∀x ∈ X (y ≤ x)} is the set of all lower bounds
of X. If we only require the existence of

b
X when X is bounded from

above, i.e. X▼ ̸= ∅ (equivalently:
c
X exists if X is bounded from below,

i.e. X▲ ̸= ∅), then we say that the lattice is Dedekind-complete. The
definition of (Dedekind-)complete lattice is not first-order, because of the
quantification over arbitrary subsets.

If L is a complete lattice, a complete sublattice is an L′ ⊆ L such
that

b
X,

c
X ∈ L′ for all X ⊆ L′. Requiring that L′ ⊆ L be a complete

sublattice is more than being a sublattice and at the same time being a
complete lattice, as we require that for any X ⊆ L′, the values

b
X and

c
X

computed in L or in L′ agree.

Lemma 7.8. For any order (P,≤) the following are equivalent:

(1)
b
X exists, for every X ⊆ P ,

(2)
c
X exists, for every X ⊆ P ;

1Some books use ⊤ and ⊥ for the maximum and minimum, but we will try to avoid this
notation since the symbol ⊥ is already use for the incompatibility relation—see Section 7.J.2.
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and also the following are equivalent

(3)
b
X exists, for every ∅ ≠ X ⊆ P bounded from above,

(4)
c
X exists, for every ∅ ≠ X ⊆ P bounded from below.

Proof. Suppose (1) holds. Fix X ⊆ P . By assumption
b
X▲ exists, and

let ā be this element. Since any x ∈ X is an upper bound of the set X▲, it
follows that ā ≤ x, hence ā is a lower bound of X, and it is the largest such,
that is ā =

c
X. This shows that (1)⇒(2). The other implication is similar

so we have that (1)⇔(2).
The proof that (3)⇔(4) is left to the reader. □

Corollary 7.9. Any ordered set satisfying (1) or (2) of Lemma 7.8 is a
complete lattice; any ordered set satisfying (3) or (4) of Lemma 7.8 is a
Dedekind-complete lattice.

Examples 7.10. (a) A family S ⊆ P(X) closed under intersections and
unions, ordered by ⊆ is a lattice of sets, with A ⋏ B = A ∩ B and
A⋎B = A ∪B. If ∅, X ∈ S and S is closed under arbitrary unions and
intersections, then

b
i∈I Ai =

⋃
i∈I Ai and

c
i∈I Ai =

⋂
i∈I Ai, and we

will speak of a complete lattice of sets. In particular: (P(X),⊆)
and (Down(P ),⊆), with (P,⪯) an ordered set, are complete lattices of
sets. Note that S ⊆P(X) is a (complete) lattice of sets if and only if it
is a (complete) sublattice of P(X).

(b) If S ⊆P(X) is closed under arbitrary intersections, then S ordered by
⊆ is a bounded lattice with A⋏ B = A ∩ B and A⋎ B =

⋂
C⊇A∪B C.

Moreover, if {Ai | i ∈ I} ⊆ S then
c

i∈I Ai =
⋂

i∈I Ai, so S is a complete
lattice, but in general it is not a lattice of sets. Similarly, if S ⊆P(X)
is closed under arbitrary unions and ∅ ∈ S, then S is a complete lattice,
but not necessarily a lattice of sets.

Monotone functions on complete lattices have fixed points.

Theorem 7.11. Let (L,≤) be a complete lattice, let f : L→ L be monotone,
and let L′ = {x ∈ L | f(x) = x}. Then

(a) sup{x ∈ L | x ≤ f(x)} and inf{x ∈ L | f(x) ≤ x} are, respectively, the
largest and the smallest fixed points of f , and hence L′ ̸= ∅.

(b) L′ with the induced order is a complete lattice.2

Proof. (a) Let A = {x ∈ L | x ≤ f(x)} and let ā = supA. If x ∈ A, then
x ≤ ā and x ≤ f(x), whence x ≤ f(x) ≤ f(ā). Therefore f(ā) is an upper
bound for A. It follows that ā ≤ f(ā), whence f(ā) ≤ f(f(ā)) as f is
monotone. Thus f(ā) ∈ A, hence f(ā) ≤ ā. Therefore ā = f(ā) ∈ L′. Since

2But L′ is not necessarily a sublattice of L.
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L′ ⊆ A, it follows that ā is the largest fixed point of f . By a similar argument,
inf{x ∈ L | f(x) ≤ x} is the smallest fixed point of f .

(b) In order to prove that (L′,≤) is a complete lattice, by Lemma 7.8
it is enough to show that

b
L′ X exists, for any X ⊇ L′. So fix X ⊆ L′ and

let a be the supremum of X as computed in L. If x ∈ X then x ≤ a so
x = f(x) ≤ f(a), hence f(a) ∈ X▼, and therefore a ≤ f(a). Since M = ↑a
is a complete lattice and f ↾ M : M →M , there is a least fixed point a′ for
f ↾ M . Therefore a′ ∈ L′ and since a ≤ a′, then a′ ∈ X▼. If b ∈ L′ is an
upper bound for X, then a ≤ b, so b ∈M , hence a′ ≤ b. Therefore a′ is the
least upper bound of X as computed in L′. □

By Proposition 7.6 every order P can be embedded into a complete
lattice, but P(P ) need not be the smallest complete lattice L such that there
is an embedding j : P → L. Smallest here means that for any embedding
j′ : P → L′ there is a unique monotone h : L→ L′ such that h ◦ j = j′ and
h(x ⋏L y) = h(x) ⋏L′ h(y) for all x, y ∈ L. If L′ is also least, then there is
h′ : L′ → L such that h′ ◦ j′ = j so that h ◦h′ ◦ j′ = j′, and since idL′ ◦ j′ = j′

then by uniqueness h ◦ h′ = idL′ ; similarly h′ ◦ h = idL and hence L ∼= L′.
Thus the least complete lattice into which P can be embedded is unique up
to isomorphism, and it is called the Dedekind-McNeille completion of P ,
denoted by DM(P ).

Let f : P → Q be monotone. We say that f preserves sups if f(
b

P A) =b
Q f [A] whenever

b
P A and

b
Q f [A] exist for A ⊆ P ; the definition of f

preserves infs is analogous.

Theorem 7.12. For any order P the family

DM(P ) = {A ⊆ P | A▼▲ = A}
ordered by inclusion is a complete lattice, and the map i : P → DM(P ),
i(p) = ↓p is an embedding of orders that preserves sups and infs.

Moreover, if L is a complete lattice and j : P → L is an embedding that
preserves sups and infs, then there is a unique embedding h : DM(P )→ L
that preserves sups and infs and such that h ◦ i = j.

As the power-set of a finite set is finite, and every finite lattice is complete,
we have:

Corollary 7.13. Suppose P is a finite order. Then DM(P ) is finite as well,
and if P is a lattice, then P ∼= DM(P ).

The proof of Theorem 7.12 is postponed after Theorem 7.30. By Exer-
cise 7.72, if P is a linear order then so is DM(P ), and if P has no endpoints,
then ∅, P are the minimum and maximum of DM(P ), and if p is the supre-
mum of pred p = {q ∈ P | q < p} = ↓p \ {p} then (pred p)▼▲ = ↓p. The
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linear order DM(P ) \ {∅, P} is Dedekind-complete, and it is the Dedekind
completion of the linear order P . The Dedekind completion of Q is R—a
real number is (or better: can be construed as) a Dedekind cut, that is: a
non-empty proper initial segment of Q that has no maximum:

R = {x ⊂ Q | ∅ ≠ x ∧ ↓x = x ∧ ∀p ∈ x ∃y ∈ x (p < q)}.

7.A.1. Induction systems*. A function m : P(A)→P(A) is an operator
on A. We say m is monotone if X ⊆ Y ⊆ A ⇒ m(X) ⊆ m(Y ), and
that m is progressive if X ⊆ m(X). In other words, an operator is
monotone/progressive if it is a monotone/progressive map with respect to
inclusion. As P(A) is a complete lattice, by Theorem 7.11 any monotone
operator has a fixed point, that is a set X ⊆ A such that X = m(X). If
m is monotone, then X 7→ X ∪ m(X) is monotone and progressive, and
the least fixed point containing X is

⋃
n∈NXn, where X0 = X and Xn+1 =

Xn ∪m(Xn).
Any family F of operations on A yields a monotone operator

m(X) = {f(a1, . . . , ak) | a1, . . . , ak ∈ X ∧ f ∈ F ∧ k is the arity of f},
so the smallest subset of A, closed under every f ∈ F and containing X is

ClF X =
⋃
n∈N

Xn

where X0 = X and Xn+1 = Xn ∪m(Xn). Moreover

ClF =
⋃
{ClG Y | Y ⊆ X,G ⊆ F, with Y,G finite}.

One inclusion holds as ClG Y ⊆ ClF X for any G ⊆ F and Y ⊆ X. For the
other inclusion we prove by induction on n that if z ∈ Xn then z ∈ ClG Y
for some finite Y ⊆ X and G ⊆ F. If z ∈ X0 = X take G = ∅ and
Y = {z}. If z ∈ Xn+1 \ X0 then z = f(w1, . . . , wk) with w1, . . . , wk ∈ Xn

and f ∈ F, so by inductive assumption there are finite G1, . . .Gk ⊆ F and
Y1, . . . , Yk ⊆ X such that wi ∈ ClGi

Yi for 1 ≤ i ≤ k, and hence z ∈ ClG Y
where G = G1 ∪ · · · ∪ Gk ∪ {f} and Y = Y1 ∪ · · · ∪ Yk.

The ideas above are important enough to deserve a proper name.

Definition 7.14. An induction system is a triple X = (A,F, X) where F

is a set of operations on A and X ⊆ A; the sets (Xn)n∈N are the canonical
sequence of the system; the closure of X is X = ClF X.

Example 7.15. The subgroup H of a group G generated by a subset X is
the intersection of all subgroups of G containing X, but can also be defined
as the closure of the induction system (G, {·,−1}, X ∪ {1G}).

More generally, if M is a structure in a language L and X ⊆ M , the
substructure generated by X is the intersection of all substructures of M
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containing X or, equivalently, it is the closure of the induction system
(M, {fM | f function symbol of L}, X ∪ {cM | c constants of L}).

Example 7.16. Let L be a first-order language, and let Func and Const be
the sets of all function and constant symbols. Then (Term,Func,Const) and
(Term,Func,Const∪{x1, . . . , xn}) are induction systems, and their closure
are the set of all closed terms ClTerm, and the set of all terms whose variables
are among {x1, . . . , xn}.

Similarly, if Fml, AtFml, QFFml are the sets of all formulæ, all atomic
formulæ, all quantifier-free formulæ, respectively, and if C is the set of all
connectives and Q = {∀x,∃x | x is a variable}, then (Fml,C,AtFml) and
(Fml,C∪Q,QFFml) are induction systems, and their closure are QFFml and
the set of all formulæ in prenex normal form, respectively.

Example 7.17. Let f(n) = 2n, and g(n) = m if n = 3m + 1 is even
and g(n) = 0 otherwise, and let C ⊆ N be the closure of the inductive
system (N, {f, g} , {0, 1}). In other words, n ∈ C just in case there is a
suitable sequence of compositions of f and g that starting from 1 yields n.
Equivalently n ≥ 2 belongs to C if the following algorithm applied to n yields
1 in a finite number of steps: if a number is even, divide it by 2, if it is odd
multiply it by 3 and add 1. The received opinion is that C = N, that is to
say: given any n ≥ 2 the above algorithm will yield 1 in a finite number of
steps—this is known as Collatz’s conjecture and it is an open problem in
mathematics.

7.B. Residuated maps, Galois connections, and closure functions*.

Lemma 7.18. Suppose that P,Q are ordered sets, and that f : P → Q and
g : Q→ P are monotone and such that g ◦ f ≥ idP and f ◦ g ≤ idQ. Then

∀p ∈ P ∀q ∈ Q (f(p) ≤ q ⇔ g(q) ≥ p) ,(7.2a)

∀q ∈ Q
(
g(q) = max f−1[↓ q]

)
.(7.2b)

Proof. If f(p) ≤ q then p ≤ g(f(p)) ≤ g(q); conversely, if p ≤ g(q) then
f(p) ≤ f(g(q)) ≤ q. So (7.2a) holds.

Note that p ∈ f−1[↓q] ⇔ f(p) ≤ q ⇔ p ≤ g(q) ⇔ p ∈ ↓g(q), where the
second equivalence is by (7.2a). Then f−1[↓q] = ↓g(q), and hence (7.2b)
holds. □

Proposition 7.19. If P,Q are ordered sets and f : P → Q, then the following
are equivalent:

(a) f−1[↓q] is a principal down-set, for all q ∈ Q;
(b) f is monotone and there is a monotone g : Q→ P such that g ◦ f ≥ idP

and f ◦ g ≤ idQ.
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Proof. Endow P and Q with the downward topology. If (a) holds then the
preimage of a basic open set is basic open, so f is continuous, and therefore
monotone. For each q ∈ Q there is a p ∈ P such that ↓p = f−1[↓q], and
by antisymmetry this p is unique, and we call it g(q). If q1 ≤ q2 then
f−1[↓q1] ⊆ f−1[↓q2], so g is monotone. Now g(q) ∈ ↓g(q) = ↓p = f−1[↓q] so
f(g(q)) ≤ q, for all q ∈ Q. Also p ∈ f−1[↓f(p)] = ↓g(f(p)), so p ≤ g(f(p)).
Thus (b) holds.

The direction (b)⇒(a) follows at once from (7.2b) in Lemma 7.18. □

Lemma 7.20. Suppose P,Q are ordered sets, and f : P → Q is monotone.
Then there is at most one monotone g : Q → P such that g ◦ f ≥ idP and
f ◦ g ≤ idQ.

Proof. Suppose g1, g2 : Q→ P are such that gi ◦ f ≥ idP and f ◦ gi ≤ idQ,
for i = 1, 2. Then g1 = idP ◦ g1 ≤ (g2 ◦ f) ◦ g1 = g2 ◦ (f ◦ g1) ≤ g2 ◦ idQ = g2.
By symmetry g2 ≤ g1. □

A function f : P → Q between ordered sets satisfying either of the
equivalent conditions of Proposition 7.19 is said to be residuated, and the
unique function g is called the residual of f , and it is denoted by f∗.

Lemma 7.21. If f : P → Q is residuated, then f ◦f∗◦f = f and f∗◦f ◦f∗ =
f∗, and hence the maps F : P → P , F = f∗ ◦ f and G : Q→ Q, G = f ◦ f∗,
are idempotent.

Proof. For any p ∈ P we have that f∗ ◦ f(p) ≥ p, and hence f ◦ f∗ ◦
f(p) = f(f∗ ◦ f(p)) ≥ f(p). Since f ◦ f∗(q) ≤ q, for all q ∈ Q, then
f ◦ f∗ ◦ f(p) = f ◦ f∗(f(p)) ≤ f(p), so equality holds. The proof of the other
identity is similar, and the result on F and G is immediate. □

The results above can be dualized in the obvious way: if P,Q are ordered
sets then

• if f : P → Q and g : Q→ P are monotone and g ◦ f ≤ idP and f ◦ g ≥ idQ,
then

∀p ∈ P ∀q ∈ Q (f(p) ≥ q ⇔ g(q) ≤ p) ,(7.3a)

∀q ∈ Q
(
g(q) = min f−1[↓ q]

)
.(7.3b)

• for any f : P → Q there is at most one monotone g : Q → P such that
g ◦ f ≤ idP and f ◦ g ≥ idQ.
• for any f : P → Q the following are equivalent:

– f−1[↑q] is a principal up-set, for all q ∈ Q;
– f is monotone and there is a unique monotone g : Q→ P such that

g ◦ f ≤ idP and f ◦ g ≥ idQ.
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Example 7.22. Let X be a topological space, let P be the collection of all
open sets, and let Q be the collection of all closed sets. The map P → Q, U 7→
ClU is residuated with residual Q→ P , C 7→ IntC. Therefore IntClU ⊇ U
for any open set U , Cl IntC ⊆ C for any closed set C, and IntCl IntY = IntY
and Cl IntClY = ClY for all Y ⊆ X. Moreover Int ◦Cl: P → P and
Cl ◦ Int : Q→ Q are idempotent.

If f : P → Q is residuated, then f∗ : Q → P need not be residuated.
However, by duality, f : P → Q is residuated with residual g : Q→ P if and
only if g : Q∆ → P∆ is residuated with residual f : P∆ → Q∆. Thus f and
f∗ can be defined one from the other. It is customary to call f∗ the left
adjoint of f , and f the right adjoint of f∗—the reason for this terminology
will be explained in Section 22.

Definition 7.23. If f : P → Q and g : Q→ P are antitone maps between
ordered sets such that f ◦ g ≥ idQ and g ◦ f ≥ idP , then the pair (f, g) is a
Galois connection between P and Q.

If f : P → Q is residuated, then (f, f∗) is a Galois connection between
P and Q∆; conversely, if (f, g) is a Galois connection between P and Q
then f : P → Q∆ is residuated with residual g : Q∆ → P . Therefore Galois
connections and residuated maps are equivalent techniques for studying
ordered sets. Each approach has its merits: residuated maps can be composed
so that if f : P → Q and g : Q→ R are residuated then so is g ◦ f : P → R
(Exercise 7.75), while Galois connections are symmetric, meaning that (f, g)
is a Galois connection between P and Q if and only if (g, f) is a Galois
connection between Q and P . In view of the equivalence between residuated
maps and Galois connections, Lemma 7.21 becomes:

Lemma 7.24. If (f, g) is a Galois connection between P and Q, then f◦g◦f =
f and g ◦ f ◦ g = g.

Galois connections abound in mathematics. The next example, upon
which the notion is modelled, and giving the name to this subject, comes
from Galois theory in algebra.

Example 7.25. If K ⊆ L are fields and Gal(L : K) is the set of all
automorphisms of L that are the identity on K, let P be the set of all
subgroups of Gal(L : K) and let Q be the set of all subfields of L containing
K. Then (F,G) is a Galois connection between P and Q, where F(G) =
{x ∈ L | ∀g ∈ G (g(x) = x)} and G(F ) = Gal(L : F ).

Example 7.26. If K is an algebraically closed field and n ≥ 1 let P = P(Kn)
and let Q be the set of all ideals of K[X1, . . . , Xn]. For A ⊆ Kn let I(A) be the
ideal of all polynomials that vanish on A, and for a an ideal of K[X1, . . . , Xn],
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let Z(a) be the set of all common zeroes of the polynomials in a. This gives a
Galois connection between the set of all ideals of K[X1, . . . , Xn] and P(Kn).

Example 7.27. Let (P,≤) be an ordered set. The functions A 7→ A▼ and
A 7→ A▲ form a Galois connection between P(P ) and itself.

First of all they are both antitone maps. In order to show that A ⊆ A▼▲

fix a ∈ A. If b ∈ A▼ then b ≤ a, so a ∈ A▼▲. The other inclusion A ⊆ A▲▼

is proved similarly.

A closure function on an ordered set P is a monotone function f : P →
P which is progressive and idempotent, that is such that f ◦ f = f . If
progressiveness is replaced by its dual requirement, that is ∀x(f(x) ≤ x), we
say that f is an interior function. A closure/interior operator on X is a
closure/interior function on P(X) ordered by inclusion.

Example 7.28. The operations of closure/interior in a topological space X
are examples of closure/interior functions on X. If F is a family of operations
on a set X, then ClF is a closure function on X.

If f : P → Q is residuated with residual f∗ : Q→ P , then f∗ ◦ f : P → P
is a closure function and f ◦ f∗ : Q→ Q is an interior function. Equivalently:
if (f, g) is a Galois connection between P and Q, then g ◦ f : P → P and
f ◦ g : Q → Q are closure functions. Every closure function arises this
way: if c : P → P is a closure function then there is an ordered set Q and
functions f and g such that (f, g) is a Galois connection between P and Q
and c = g ◦ f [Bly05, Theorem 1.7 p. 10].

Proposition 7.29. Let i and c be an interior and closure functions on the
order P . Then i ◦ c is a closure function on ran i, and c ◦ i is an interior
function on ran c.

Proof. Monotonicity of i ◦ c is clear, so let us prove that it is progressive
and idempotent on ran i. Fix x ∈ ran i. We have that c(x) ≥ x so i(c(x)) ≥
i(x) = x. Thus i◦c is progressive, and hence (i◦c)◦(i◦c)(x) ≥ (i◦c)(x). Also
i(c(x)) ≤ c(x) so c(i(c(x))) ≤ c(c(x)) = c(x), and hence (i ◦ c) ◦ (i ◦ c)(x) ≤
(i ◦ c)(x). Thus i ◦ c is idempotent.

The result on c ◦ i follows by duality. □

Theorem 7.30. Let L be a complete lattice, let f : L→ L and M = ran f . If
f is a closure function, then M , with the ordering induced by L, is a complete
lattice, and

∀A ⊆M
(c

M A =
c

LA and
b

M A = f(
b

LA)
)
.

Dually, if f is an interior function then M is a complete lattice and
c

M A =
f(
c

LA) and
b

M A =
b

LA.
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Proof. Suppose f is a closure function. Since f ◦ f = f , then M is the set
of all fixed points of f , so it is a complete lattice by part (b) of Theorem 7.11.
Fix A ⊆M , and note that

c
M A ≤

c
A and

b
A ≤

b
M A.

Claim 7.30.1.
c
A ∈M , and hence

c
M A =

c
A.

Proof. Let a =
c
A. For each x ∈ A we have that a ≤ x and hence

f(a) ≤ f(x) = x, so that f(a) is an upper bound of A, and therefore
f(a) ≤ a. By progressiveness a ≤ f(a) so a = f(a) ∈M as required. □

Let a =
b
A and a′ =

b
M A: we must show that f(a) = a′. As a ≤ a′

and a′ ∈M , then a ≤ f(a) ≤ f(a′) = a′. As f(a) ∈M is an upper bound of
A, then f(a) = a′ as required.

The case of the interior function follows from duality. □

We are now ready to prove Theorem 7.12:

Proof. As f : P(P )→P(P ), A 7→ A▼▲ is a closure operator, then DM(P )
is a sub-order of P(P ), and it is a complete lattice with the operationsc
A =

⋂
A and

b
A = (

⋃
A)▼▲ for all A ⊆ DM(P ).

Next we prove that i : P → DM(P ) is an embedding of orders that
preserves infs and sups. Observe that i(x) = ↓x = {x}▲ = {x}▼▲ for all
x ∈ P , so

x ≤ y ⇔ {x}▼ ⊇ {y}▼ ⇔ {x}▼▲ ⊆ {y}▼▲

and hence i is an embedding. If a =
c

P A then

i(a) = {a}▲ =
⋂

x∈A{x}▲

=
c

P(P ) {{x}▲ | x ∈ A}
= infDM(P ) {{x}▲ | x ∈ A} by Theorem 7.30
= infDM(P ) i[A]

so i preserves infs. If b =
b

P A then y ≥ b⇔ ∀x ∈ A (y ∈ {x}▼ = {x}▼▲▼)
by Example 7.27 and Lemma 7.24, so

{b}▼ =
⋂
x∈A
{x}▼▲▼ = (

⋃
x∈A
{x}▼▲)▼

the last equality following from the identity
⋂

i∈I A
▼
i = (

⋃
i∈I Ai)

▼—see
Exercise 7.71. Therefore

i(b) = {b}▼▲ = (
⋃

x∈A {x}
▼▲)▼▲

= f(
b

P(P ){{x}
▼▲ | x ∈ A})

=
b

DM(P ){i(x) | x ∈ A} by Theorem 7.30

so i preserves sups as well.
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Now we prove the minimality of DM(P ). Let L be a complete lattice
and j : P → L an embedding that preserves sups and infs. For A ∈ DM(P )
set

h(A) =
b

L j[A].

Let us check that f : DM(P ) → L is an embedding. It is clear that h is
monotone, so suppose h(A) ≤ h(B) towards proving that A ⊆ B. For x ∈ A
we have j(x) ≤ h(A) ≤ h(B) =

b
L j[B] so given y ∈ B▲ we have that

j(x) ≤ j(y), and hence x ≤ y. Therefore x ∈ B▲▼ = B for all x ∈ A, which
is what we had to prove.

Next we check that h preserves sups, and hence preserves infs by Ex-
ercise 7.70. Let A ⊆ DM(P ) and let Ā =

⋃
A =

b
DM(P )A ∈ DM(P ).

Then
b

L h[A] =
b

L{h(B) | B ∈ A} =
b

L{
b

L j[B] | B ∈ A}
=
b

L{
b

L j(x) | ∃B ∈ A (x ∈ B)} =
b

L j[
⋃
A] = h(Ā) = h(

b
DM(P )A).

The function h commutes with i and j, since for all x ∈ P

h(i(x)) = h({x}▲▼) = h({x}▼) = supL j[{x}▼] = j(x)

by monotonicity of j.
Finally we prove the uniqueness of h. As A =

⋃
x∈A i(x) =

⋃
i[A] for all

A ∈ DM(P ), if h′ : DM(P )→ L is any embedding that preserves sups and
such that h′ ◦ i = j, then

h′(A) = h(
⋃

i[A]) =
b

L h ◦ i[A] =
b

L j[A] = h(A). □

7.C. Lattices. The dual of a term t of LLtc is the term t∆ obtained by
swapping the symbols ⋎ and ⋏. The dual of a formula φ is the formula
φ∆ obtained by replacing each term with its dual. The dual of a structure
A = (A,⋎,⋏) is the LLtc-structure A∆ = (A,⊔,⊓) where ⊔ = ⋏ and ⊓ = ⋎.
The dual of the dual is the original structure, that is A∆∆ = A. If A is an
LLtc-structure and σ is a sentence, then

A ⊨ σ if and only if A∆ ⊨ σ∆.

Since the axioms for lattice are self-dual, the dual of a lattice is a lattice.
The following result is the analogue of the duality for orders.

Duality principle for lattices. If A is a lattice and σ is an LLtc-sentence,
then

A ⊨ σ if and only if A∆ ⊨ σ∆.

In particular: σ is logical consequence of the axioms of lattices if and only if
so is σ∆.
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Remark 7.31. The duality principles for lattices should not be misunder-
stood. By Exercise 4.68 the sentences

∀x, y, z
[
(x⋎y)⋏z ≖ (x⋏z)⋎(y⋏z)

]
, ∀x, y, z

[
(x⋏y)⋎z ≖ (x⋎z)⋏(y⋎z)

]
are logically equivalent modulo the axioms for lattices, but this does not hold
for the formulæ

(x⋎ y)⋏ z ≖ (x⋏ z)⋎ (y ⋏ z), (x⋏ y)⋎ z ≖ (x⋎ z)⋏ (y ⋎ z)

(see Remark 3.36(a)). For example, in the fourth lattice of Figure 7 (a⋎b)⋏c =
(a⋏ c)⋎ (b⋏ c) but (a⋏ b)⋎ c ̸= (a⋎ c)⋏ (b⋎ c).

7.D. Distributive lattices. The axioms for modular and distributive lat-
tices are self-dual, hence the dual of a distributive/modular lattice is of
the same kind, hence the duality principle generalizes to the realm of dis-
tributive and modular lattices: if σ is a sentence a LLtc holding in every
modular/distributive lattice, then also the dual sentence σ∆ holds in every
modular/distributive lattice.
7.D.1. Free lattices. By Theorem 7.12 any ordered set P can be embedded
in a minimal complete lattice DM(P ). The dual question would be: what is
the largest, most general lattice L that P generates? (We are not concerned
about completeness here.)

Let us look at some concrete examples, when P is a finite order of size
≤ 3. First of all, if P is a lattice itself, then L = P , so we may assume that
P is not a lattice. Thus we may assume that P is not a linear order, so in
particular P has size 2 or 3.

If P has two incomparable elements a, b, then applying ⋎ and ⋏ and by
commutativity, associativity, and absorption the only elements we obtain are
a, b, a⋎ b, a⋏ b, so L is isomorphic to 2× 2 of Figure 7.

If the order has three elements a, b, c, we have three possible Hasse
diagrams:

a b

c

P1

a

b
c

P2

a b c

P3

The lattice generated by P1 is isomorphic to 2× 2.
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a

b

c

P2

0

a e

f

g

b d

c

1

L
0

a e

f

b d

c

1

L′

Figure 10. The lattice L, and the modular lattice L′, generated by P2

Next we turn our attention to P2. First we look at the elements that can
be constructed from a, b, c using a single application of either ⋎ or ⋏:

a = a⋏ b b = a⋎ b

1 = b⋎ c 0 = a⋏ c

d = a⋎ c e = b⋏ c.

A further application of an operation gives

f = a⋎ (b⋏ c) g = b⋏ (a⋎ c).

These are the only two new elements, as a ≤ b and associativity imply that
1 = a⋎ b⋎ c and 0 = a⋏ b⋏ c, while absorption yields a⋏ (b⋎ c) = a and
b⋎ (a⋏ c) = b. As a and b⋏ c are below a⋎ c it follows that f = a⋎ (b⋏ c) ≤
(a ⋎ c), and as a ≤ b and b ⋏ c ≤ b then f ≤ b; so f ≤ b ⋏ (a ⋎ c) = g.
Therefore the set

L = {0, a, b, c, d, e, f, g,1}
is closed under ⋎ and ⋏ and hence it is a lattice whose Hasse diagram is in
Figure 10. Observe that L is not modular as witnessed by the sub-lattice
{d, e, f, g, c}—if the generated lattice is required to be modular, i.e. to
satisfy (4.8), then g = (f ⋎ c)⋏ (f ⋎ g) = f ⋎ (c⋏ (f ⋎ g)) = f , so we obtain
the lattice L′ of Figure 10.

Finally, we turn our attention to the lattice generated by P3: it can be
shown that this is an infinite lattice. Thus the lattice generated by P3 is the
most complex lattice generated by an ordered set of size 3.

Definition 7.32. Let C be a non-empty set. The free lattice over C
FreeL(C) is the lattice generated by the order (C,≤) where ≤ is the identity
relation, that is c ≤ c′ ⇔ c = c′. If the generated lattice is required to be
modular or distributive we get FreeM(C) and FreeD(C).
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If the sets C and D are in bijection then their free lattices are isomorphic,
FreeL(C) ∼= FreeL(D), and similarly for the modular/distributive versions.
In particular, if C is a finite non-empty set with n elements, these lattices
will be denoted by FreeL(n), FreeM(n) and FreeD(n). Therefore FreeL(1) =
FreeM(1) = FreeD(1) is the lattice with one element, and FreeL(2) = 2× 2
which is distributive, so FreeL(2) = FreeM(2) = FreeD(2). As we mentioned
FreeL(3) (and hence every FreeL(m) for m ≥ 3) is infinite. On other hand,
FreeM(3) has 28 elements, while FreeM(4) (and therefore any FreeM(n) for
n ≥ 4) is infinite (Exercise 7.81).

Every FreeD(n) is finite, but in order to verify this fact we need a few
preliminary results. A term is a conjunction of the variables {x1, . . . , xn} if
it is of the form

xi1 ⋏ . . .⋏ xik

with {i1, . . . , ik} ⊆ {1, . . . , n}, while a term of the form

xj1 ⋎ . . .⋎ xjh

with {j1, . . . , jh} ⊆ {1, . . . , n}, is a disjunction of the variables {x1, . . . , xn}.
When I is a finite set, by induction on |I| one can show that in every
distributive lattice the following holds:

(7.4) x⋏
j

i∈I
yi ≖

j

i∈I
(x⋏ yi) and x⋎

k

i∈I
yi ≖

k

i∈I
(x⋎ yi),

An easy induction on the complexity of the term s yields the following
result, which is the algebraic counterpart of the fact that every formula is
tautologically equivalent to a formula in disjunctive normal form and to a
formula in conjunctive normal form (see Section 3.C.1 and Exercise 3.45.)

Lemma 7.33. For each term s ∈ TermLtc(x1, . . . , xn) there are terms u, v ∈
TermLtc(x1, . . . , xn) such that

• u is in disjunctive form, that is to say: a disjunction of conjunctions of
variables among {x1, . . . , xn},
• v is in conjunctive form, that is to say: a conjunction of disjunctions of

variables among {x1, . . . , xn},
• the formula s ≖ u ∧ s ≖ v is logical consequence of the axioms of distribu-

tive lattices.

By induction on the complexity of t ∈ Term(x1, . . . , xn) it follows from
the axioms of distributive lattices that x1 ⋏ . . . ⋏ xn ≤ t ≤ x1 ⋎ . . . ⋎ xn.
Moreover, since a term can be written in disjunctive form, that is a disjunction
of conjunctions, the elements of FreeD(n) are no more than the possible
disjunctive forms on n many variables. Therefore FreeD(n) is finite. For
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a⋏ b⋏ c

a⋏ b a⋏ c b⋏ c

(a⋏ b)⋎ (a⋏ c)
f

(a⋏ c)⋎ (b⋏ c)

a d b c

(a⋎ b)⋏ (a⋎ c) e (a⋎ c)⋏ (b⋎ c)

a⋎ b a⋎ c b⋎ c

a⋎ b⋎ c

Figure 11. The lattice FreeD(3) on the generators a, b and c, where
d = (a⋎b)⋏(a⋎c)⋏(b⋎c) = (a⋏b)⋎(a⋏c)⋎(b⋏c), e = (a⋎b)⋏(b⋎c),
f = (a ⋏ b) ⋎ (b ⋏ c).

example, the elements of FreeD(3) are disjunctions of k conjunctions on a, b, c,
that is

a, b, c, a⋏ b, a⋏ c, b⋏ c, a⋏ b⋏ c,(k = 1)
a⋎ b, b⋎ c, b⋎ c, a⋎ (b⋏ c), b⋎ (a⋏ c), c⋎ (a⋏ b),(k = 2)

(a⋏ b)⋎ (b⋏ c), (a⋏ b)⋎ (a⋏ c), (b⋏ c)⋎ (a⋏ c),

a⋎ b⋎ c, (a⋏ b)⋎ (b⋏ c)⋎ (a⋏ c).(k = 3)

The Hasse diagram of FreeD(3) is in Figure 11. The following question arises:
are we sure that the elements described above are all distinct? Couldn’t be
the case that there is some further identification? Exercise 7.80 shows that
this is not the case, hence FreeD(3) has exactly 18 elements. As the free
modular lattice has 28 elements this proves that FreeD(3) ̸∼= FreeM(3).

7.E. Examples of lattices.
7.E.1. P(X) is a distributive lattice, and therefore any lattice of sets is
distributive. In Section 32 we shall see that every distributive lattice is a
sublattice of P(X), for some X, and in Exercise 7.96 we shall see the proof
of this fact when the lattice is finite.
7.E.2. The set Sgr(G) of the subgroups of a group G ordered by inclu-
sion is a lattice. The operations are H ⋏ K = H ∩ K and H ⋎ K =
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⋂
{J ∈ Sgr(G) | H ∪K ⊆ J} = the subgroup generated by H ∪K. It is not

a sublattice of P(G).
The lattice Sgr(G) does not characterize the group G up to isomorphism,

for example Sgr(Z/4Z) ∼= Sgr(Z/9Z). The lattice Sgr(G) need not be dis-
tributive or modular—e.g. take the dihedral group D4 of the symmetries of
the square—but when G is abelian Sgr(G) is modular. More generally, the
collection NSgr(G) of all normal subgroups of a group G is a sublattice of
Sgr(G) and it is a modular lattice—this follows from the fact that for normal
subgroups H ⋎ K = HK = {hk | h ∈ H, k ∈ K}. Similarly, the family of
all submodules of a left module M over a ring R is a modular lattice, since
(N1 ∩N2) + (N1 ∩N3) ⊆ N1 ∩ (N2 + (N1 ∩N3)). In general, the lattice of
submodules is not distributive (Exercise 7.79).
7.E.3. The set Cong(M) of all congruences of a structure M ordered under
inclusion is a lattice. If M is an R-module Cong(M) is modular, if M is a
lattice Cong(M) is distributive [Ber12, p. 33].
7.E.4. By Example (b) the collection of all topologies on a set Y ordered
under inclusion is a complete bounded lattice. The minimum is the trivial
topology {∅, X}, the maximum is the discrete topology P(X), and if Ti are
topologies on X, then

c
i∈I Ti =

⋂
i∈I Ti and

b
i∈I Ti is the topology generated

by
⋃

i∈I Ti, that is the topology on X that has as a basis {Ai1 ∩ · · · ∩Ain |
Aij ∈ Tij ∧ i1, . . . , in ∈ I}. The lattice of all topologies on a set is (almost)
never modular [Ste66, Theorem 3.1].
7.E.5. If H,K ∈ Sgr(G) are finitely generated, then H ⋎ K is finitely
generated, but H ⋏K = H ∩K may fail to be finitely generated when G is
not abelian.Therefore the family of all finitely generated subgroups of G is
not a lattice, but an upper semi-lattice.

7.F. Boolean algebras.
7.F.1. Complemented lattices. A bounded lattice is complemented if it
satisfies the statement

∀x ∃y [x⋏ y ≖ 0 ∧ x⋎ y ≖ 1]

The element y is a complement of x; if the complement of x is a unique, it
will be denoted by x∗. If every element has a unique complement the lattice
is uniquely complemented. In such a lattice x∗∗ ≖ x for all x, and the
following hold:

∀x (x⋎ x∗ ≖ 1)(7.5a)
∀x (x⋏ x∗ ≖ 0)(7.5b)
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and

∀x (x⋎ 0 ≖ x)(7.6a)
∀x (x⋏ 1 ≖ x)(7.6b)

Thus Lemma 4.17 says that in a bounded distributive lattice, the com-
plement of an element, if it exist, is unique.

Remark 7.34. The lattices M3 and N5 of Figure 7 are complemented,
but not uniquely complement. Many of the early results in lattice theory
led to a conjecture stating the converse of Lemma 4.17: every uniquely
complemented lattice must be distributive. This conjecture turned out to be
false as Dilworth proved in 1945 that every lattice can be embedded into a
uniquely complemented one.

In Section 4.E we introduced LBoole extending LLtc with a unary oper-
ation symbol ∗ and two constant symbols 1 and 0, and defined a Boolean
algebra to be a bounded, complemented, distributive lattice. It turns out
that associativity and absorption for ⋏ and ⋎ follow from the other axioms,
so let’s re-define a Boolean algebra to be an LBoole-structure satisfying
TBoole which has as axioms:3

∀x, y (x⋎ y ≖ y ⋎ x)(4.5a)
∀x, y (x⋏ y ≖ y ⋏ x)(4.5b)

∀x, y, z ((x⋎ y)⋏ z ≖ (x⋏ z)⋎ (y ⋏ z))(4.7a)
∀x, y, z ((x⋏ y)⋎ z ≖ (x⋎ z)⋏ (y ⋎ z))(4.7b)

∀x (x⋎ x∗ ≖ 1)(7.5a)
∀x (x⋏ x∗ ≖ 0)(7.5b)
∀x (x⋎ 0 ≖ x)(7.6a)
∀x (x⋏ 1 ≖ x).(7.6b)

A Boolean algebra is non-degenerate if it satisfies 0 ̸≖ 1 or, equivalently, if
the algebra has at least two elements.

What we said in Remark 4.13 can be repeated here for Boolean algebras.
Most authors use ∨ and ∧ for join and meet, but others use + and ·. We will
use the symbol + for another important operation in Boolean algebras—see
Section 7.G.

The dual of a term of LBoole is the term obtained by exchanging ⋏ with ⋎
and 1 with 0; the dual of a formula φ is the formula φ∆ obtained by replacing
every term with its dual. The dual of a Boolean algebra B = (B,⋏,⋎, ∗,0,1)
is B∆ = (B,⊓,⊔, ∗,⊥,⊤) where ⊓ = ⋎, ⊔ = ⋏, ⊥ = 1 and ⊤ = 0. Since

3Theorem 7.35 will vindicate the adequacy of this definition.
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axiom (na) is the dual of (nb) (for n = 4.5, 4.7, 7.5, 7.6), and since 0 ̸≖ 1 is
self-dual, the dual of a Boolean algebra is a Boolean algebra. Moreover the
map B→ B∆, x 7→ x∗, is an isomorphism.

Duality principle for boolean algebras. If B is a Boolean algebra and σ
is a sentence, then

B ⊨ σ if and only if B ⊨ σ∆.

In particular: σ is logical consequence of the axioms for Boolean algebras if
and only if σ∆ is such.

Observe that in a Boolean algebra 1 = 0 ⋎ 0∗ = 0∗ ⋎ 0 = 0∗, so by
duality 0 = 1∗.

Every complemented distributive lattice (B,≤) is a Boolean algebra
(B,⋏,⋎, ∗,0,1). Conversely:

Theorem 7.35. Every Boolean algebra is a complemented distributive lattice.

Proof. Given a Boolean algebra (B,⋏,⋎, ∗,0,1) it is enough to show that
(B,⋏,⋎) is a lattice, since the distributivity laws (4.7) hold by assumption, 0
and 1 are the minimum and maximum by (7.6), and x∗ is the complement of
x by (7.5). Therefore we must check associativity (4.4) and absorption (4.6)
for ⋎ and ⋏.

Applying the axioms of TBoole we obtain

x⋏ (x⋎ y) ≖ (x⋎ 0)⋏ (x⋎ y) ≖ x⋎ (0⋏ y) ≖ x⋎ 0 ≖ x

so by the Duality Principle x⋎(x⋏y) ≖ x and hence the absorption laws (4.6)
are valid.

From y ≖ y⋏1 ≖ y⋏ (x⋎x∗) ≖ (y⋏x)⋎ (y⋏x∗) we obtain the following
cancellation law: if y ⋏ x ≖ z ⋏ x and y ⋏ x∗ ≖ z ⋏ x∗, then y ≖ z.

We can now prove that

x⋎ (y ⋎ z) ≖ (x⋎ y)⋎ z

follows from TBoole, so that by duality the analogous property for ⋏ holds.
By the cancellation law, it is enough to verify that t ⋏ x ≖ s ⋏ x and
t⋏ x∗ ≖ s⋏ x∗, where t is x⋎ (y ⋎ z) and s is (x⋎ y)⋎ z.

(x⋎ (y ⋎ z))⋏ x ≖ x by absorption

and

((x⋎ y)⋎ z)⋏ x ≖ ((x⋎ y)⋏ x)⋎ (z ⋏ x) by distributivity
≖ x⋎ (z ⋏ x) ≖ x by absorption
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so t⋏ x ≖ s⋏ x. By distributivity, commutativity, and (7.6a)

(x⋎ (y ⋎ z))⋏ x∗ ≖ (x⋏ x∗)⋎ ((y ⋎ z)⋏ x∗)

≖ 0⋎ ((y ⋎ z)⋏ x∗)

≖ (y ⋎ z)⋏ x∗

and

((x⋎ y)⋎ z)⋏ x∗ ≖ ((x⋎ y)⋏ x∗)⋎ (z ⋏ x∗)

≖ ((x⋏ x∗)⋎ (y ⋏ x∗))⋎ (z ⋏ x∗)

≖ (0⋎ (y ⋏ x∗))⋎ (z ⋏ x∗)

≖ (y ⋏ x∗)⋎ (x⋏ x∗)

≖ (y ⋎ z)⋏ x∗,

which is what we had to prove. □

The correspondence (B,⋎,⋏, ∗,0,1) 7→ (B,≤) transforming Boolean
algebras into complemented distributive lattices is the inverse of the map
(B,≤) 7→ (B,⋎,⋏, ∗,0,1).

The axioms for Boolean algebras are universal sentences, hence by Propo-
sition 4.8 every LBoole-substructure C of a Boolean algebra B is itself a
Boolean algebra and we will say that C is a subalgebra of B. The minimal
algebra is the unique (up to isomorphism) Boolean algebra with exactly
two elements 2 = {1,0}, and it is (isomorphic to) a subalgebra of any
non-degenerate Boolean algebra.

By Example 4.19 any algebra of sets is a Boolean algebra. Let us see
some more examples.

Examples 7.36. (a) If X is a topological space, a set U is clopen if it is
both closed and open.

CLOP(X) = {U ⊆ X | U is clopen in X}
is a subalgebra of P(X), called the clopen algebra. If X is connected
then CLOP(X) is the minimal algebra. In general CLOP(X) is not
complete. Conversely, given a set X ̸= ∅ every subalgebra B ⊆P(X)
generates a topology in which B = CLOP(X).

(b) Let (L,≤) be linearly ordered, and let I be the set of all intervals of the
form (a; b] with a < b and of all half-lines of the form {x ∈ L | x ≤ b}
and {x ∈ L | a < x}. The collection of all finite unions of sets in I, is a
subalgebra of P(L), called the interval algebra of (L,≤).

Recall that an atom of a Boolean algebra B is a minimal element of
B \{0}We will denote the set of atoms of B by At(B). An algebra is atomic
if for all b ∈ B \ {0} there is an atom a ≤ b. By Proposition 7.2 we have
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Proposition 7.37. Every finite Boolean algebra is atomic.

The family P(X) is an atomic Boolean algebra, and the atoms are
the singletons. In Section 25 we will prove that every Boolean algebra is
isomorphic to a subalgebra of P(X) for some X, and in this Section will
prove this when the algebra is finite (Corollary 7.48).

A Boolean algebra is complete if it is complete as a lattice. Every
finite Boolean algebra is complete, but this is not true in general for infinite
Boolean algebras. The next result generalizes the well-known set-theoretic
identities B ∩

⋃
i∈I Ai =

⋃
i∈I B ∩Ai and B ∪

⋂
i∈I Ai =

⋂
i∈I B ∪Ai.

Lemma 7.38. Let B be a Boolean algebra and let X ⊆ B be such that
b
X

exists. Then
b
{b⋏ x | x ∈ X} exists for all b ∈ B, and

b⋏
b

X =
b
{b⋏ x | x ∈ X}.

Similarly, if
c
X exists, then also

c
{b⋎ x | x ∈ X} exists and it is equal to

b⋎
c
X.

Proof. b ⋏ x ≤ b ⋏
b

X for each x ∈ X, so b ⋏
b
X is an upper bound of

{b⋏ x | x ∈ X}. If c is another upper bound of this set, then for each x ∈ X,

b⋏ x ≤ c⇒ x ≤ b∗ ⋎ c

by Lemma 4.18 and therefore
b
X ≤ b∗ ⋎ c, whence b⋏

b
X ≤ c. □

7.F.2. Boolean terms. Let t be a term of LBoole with variables x1, . . . , xn:
replacing the occurrences of 0 and 1 with x1⋏x∗1 and x1⋎x∗1 respectively, and
repeatedly applying De Morgan’s laws, the term t is transformed into a term
t′ with the same variables x1, . . . , xn in which the symbol for complements ∗

is only applied to variables. In other words, t′ = s[x∗1/y1, . . . , x
∗
n/yn] where

s ∈ TermLtc(x1, . . . , xn, y1, . . . , yn). By Lemma 7.33, s is equivalent to a
term u in disjunctive form, and to a term v in conjunctive form. Thus:

Lemma 7.39. For any term t ∈ TermBoole(x1, . . . , xn) there are terms
u, v ∈ TermLtc(x1, . . . , xn, y1, . . . , yn) such that, letting

u′ = u[x∗1/y1, . . . , x
∗
n/yn], v′ = v[x∗1/y1, . . . , x

∗
n/yn]

then u′, v′ ∈ TermBoole(x1, . . . , xn) and

• u′ is in disjunctive form, i.e. it is a disjunction of conjunctions of
{x1, . . . , xn, x∗1, . . . , x∗n},
• v′ is in conjunctive form, i.e. it is a conjunction of disjunctions of
{x1, . . . , xn, x∗1, . . . , x∗n},
• the formula t ≖ u′ ∧ t ≖ v′ follows from TBoole.
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7.F.3. Morphisms and products. We said on page 70 that a morphism is
a map between structures that preserves predicates, functions and con-
stants. Thus a morphism of partial orders is simply an order preserving
map, while a morphism of lattices is a monotone map preserving the inf
and sup operations, that is it is a morphism of LLtc-structures. If two
lattices are complemented and if f is a lattice morphism preserving the
maximum and the minimum, that is to say: it is a morphism of the structures
f : (M,⋏M ,⋎M ,0M ,1M ) → (L,⋏L,⋎L,0L,1L) then by Lemma 4.17 the
morphism f preserves complements, that is

∀x ∈M (f(x∗) = f(x)⋆)

where ⋆ is the complement in L. A Boolean algebra homomorphism is a
map between Boolean algebras that is a morphism of LBoole-structures. By
the arguments above, it is a map preserving ⋏, ⋎, 0 and 1; equivalently, by
De Morgan’s laws it is enough that preserves ⋏ and ∗ or that preserves ⋎
and ∗.

The axioms of TBoole are positive formulæ, hence they are preserved
under homomorphic images (Proposition 4.7) and products (Proposition 4.12).

7.G. Boolean rings. Addition in a Boolean algebra B is the binary
operation defined by

a+ b
def
= (a⋏ b∗)⋎ (b⋏ a∗).

Addition is commutative and that if f : B → C is a homomorphism, then
f(a+ b) = f(a) + f(b). Moreover, (B,+,⋏,0B,1B) is a commutative ring
(Exercise 7.83). Therefore we can associate a commutative ring to each
Boolean algebra,

(7.7) (B,⋎,⋏, ∗,0,1) 7→ (B,+, ·,0,1)

by taking a+ b as above, and letting

a · b def
= a⋏ b.

This is an example of a Boolean ring that is a ring satisfying ∀x(x2 ≖ x)—if
the multiplicative identity is not required we have a Boolean rng. Every
Boolean rng is commutative and if it is a ring, it arises from some Boolean
algebra (Exercise 7.90); every Boolean algebra homomorphism f : B → C is
a ring homomorphism. Thus we have another axiomatization of the notion
of Boolean algebra, as an LRings-structure satisfying the axioms for Boolean
rings.

The kernel of a Boolean algebras homomorphism f : B → C is

ker(f)
def
= {b ∈ B | f(b) = 0C}.

Thus f is injective if and only if its kernel is {0B}.
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Definition 7.40. An ideal of a Boolean algebra B is a non-empty subset
I, closed under ⋎ and such that ↓I = I. An ideal I is proper if I ̸= B; it is
trivial if I = {0B}.

Definition 7.40 is justified by the fact that an ideal in this sense is an
ideal in the sense of rings (Exercise 7.84). An ideal I of a Boolean algebra
B is principal if it is of the form ↓b = {c ∈ B | c ≤ b} for some x ∈ B; the
element b is called a generator of I and we will say that I is generated by b.

If I is a proper ideal of a ring R, then R/I is a ring and 0R/I ̸= 1R/I ;
if moreover R is Boolean, then R/I is also Boolean—this can either be
verified directly or by observing that ∀x(x2 ≖ x) is a positive formula and
then applying Proposition 4.6. In any ring, a proper ideal I is prime if
x · y ∈ I ⇒ x ∈ I ∨ y ∈ I, or equivalently if R/I is an integral domain; it is
maximal if there is no proper ideal containing I, or equivalently R/I is a
field. In any ring a maximal ideal is prime, and the converse is true in any
Boolean ring. In fact, a Boolean ring which is an integral domain must be
the field Z/2Z, since otherwise any a ̸= 0,1 would yield a · a∗ = a⋏ a∗ = 0.
Therefore:

Proposition 7.41. Let (B,⋏,⋎, ∗,0B,1B) be a non-degenerate Boolean
algebra and let I be a proper ideal.

(a) Let ∼I be the equivalence relation on B defined by x ∼I y ⇔ x+ y ∈ I.
The quotient set is a Boolean algebra (B/I,⊓,⊔,′ ,0B/I ,1B/I):

[x] ⊓ [y] = [x⋏ y] [x] ⊔ [y] = [x⋎ y] [x]′ = [x∗]

0B/I = [0B] 1B/I = [1B].

The ordering on B/I is given by [x] ⊑ [y] ⇔ x⋏ y∗ ∈ I.
(b) The following are equivalent:

• I is prime,
• I is maximal,
• ∀x(x /∈ I ⇔ x∗ ∈ I),
• B/I is the minimal algebra 2.

Remark 7.42. The equivalence “prime if and only if maximal” in (b) holds
not only for Boolean algebras, but more generally for von Neumann regular
rings (Section 9.D.1).

Observe that Proposition 7.41 yields a bijection

(7.8) {f : B → 2 | f a homomorphism} → {D ⊆ B | D is an ultrafilter},
where f 7→ {b ∈ B | f(b) = 1}.

Proposition 7.43. For every finite Boolean algebra B there is a homomor-
phism h : B → 2.
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Proof. Let I ⊆P(B) be the set of all proper ideals of B. Then (I,⊆) is a
finite ordered set so by Proposition 7.2 it has a maximal element I. Then
the canonical projection B → B/I is the required homomorphism. □

By dualizing the notion of ideal, the concept of filter is obtained.

Definition 7.44. A filter of a Boolean algebra B is a non-empty subset
F such that

• if x, y ∈ F then x⋏ y ∈ F and
• if x ∈ F and x ≤ y then y ∈ F .

A filter F is proper if F ̸= B, it is trivial if F = {1}, it is an ultrafilter if
it is proper and maximal with respect to inclusion. Therefore a proper filter
F is an ultrafilter if and only if x⋎ y ∈ F ⇒ x ∈ F ∨ y ∈ F . if and only if
∀x(x /∈ F ⇔ x∗ ∈ F ).

7.H. Ideals and filters on a set. An ideal/filter on the set X is an
ideal/filter of the Boolean algebra P(X). The addition operation in P(X)
is the symmetric difference Y + Z = Y △Z. Given a subalgebra S ⊆P(X),
an ideal of S is a family I ⊆ S closed under finite unions and subsets; a filter
of S is a family F ⊆ S closed under finite intersections and supersets. The
ideal generated by A ∈ S is {B ∈ S | B ⊆ A}. Dually, the filter generated by
A ∈ S is {B ∈ S | B ⊇ A}; when A = {a}, then F is an ultrafilter. A filter
F on X is an ultrafilter if and only if ∀Y ⊆ X(Y ∈ F ⇔ X \ Y /∈ F ) if and
only if F and its dual ideal partition P(X). If I is an ideal of a subalgebra
S ⊆P(X) the ordering on the quotient algebra S/I is

[Y ] ≤ [Z] ⇔ Y \ Z ∈ I.

Examples 7.45. (a) Fin = {A ⊆ N | A is finite} is a non-principal ideal
on N. The quotient algebra P(N)/Fin is atomless: in fact if A is
infinite (that is [A] ≠ 0 = Fin) then A can be written as union of two
infinite, disjoint sets B and C, that is A = B ∪ C and B ∩ C = ∅,
hence 0 < [B] < [A]. The dual of the ideal of finite subsets of N is the
Fréchet filter {X ⊆ N | N \X is finite}.

(b) If X is a topological space, Vx = {Y ⊆ X | ∃U open (x ∈ U ⊆ Y )} the
family of neighborhoods of a point x ∈ X is a proper filter. When X is
T2, it is an ultrafilter if and only if it is principal if an only if x is an
isolated point of X.

Proper ideals are usually associated to a notion of “smallness” for subsets
of X—the union of two small sets is small, and the subsets of small sets are
small. Dually a proper filter on X is a notion of “largeness” for subsets of X.
Examples of proper ideals are:
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• finite subsets of an infinite set,
• countable subsets of an uncountable set,
• inside P(R), the collection of null sets and the collection of meager.

In the last example and the next section we assume that the reader has a
passing acquaintance with measure and category. (These notions that will be
presented in Section 26.)
7.H.1. Filters and quantifiers. If F is a proper filter on X, then

∀Fxφ(x) means that {x ∈ X | φ(x)} ∈ F,

i.e. that φ(x) holds for all x except for a collection of points in the dual ideal
F̌. Similarly

∃Fxφ(x) means that {x ∈ X | φ(x)} /∈ F̌,

that is {x ∈ X | ¬φ(x)} /∈ F. Therefore

∀Fxφ(x) ⇔ ¬∃Fx¬φ(x), ∃Fxφ(x) ⇔ ¬∀Fx¬φ(x).

For example:

• when F = {X} is the trivial filter, then F̌ = {∅}, we obtain the usual
quantifiers;
• when F̌ is the ideal of null sets, we obtain the “measure-quantifiers” used in

analysis, where ∀µxφ(x) means that {x ∈ X | ¬φ(x)} is of measure-zero;
• when F is the filter of comeager sets, we obtain the “category-quantifiers”,

where ∀∗xφ(x) means that {x ∈ X | φ(x)} is comeager.

Some of the above filters/ideals admit a higher-dimensional version; for
example, we can speak of the ideal of null sets, meager sets, countable sets,
. . . of Rn. The Fubini theorem says that

∀λx ∈ R∀λy ∈ Rφ(x, y) ⇔ ∀λy ∈ R∀λx ∈ Rφ(x, y)

⇔ ∀λ2
(x, y) ∈ R2φ(x, y)

where the last formula says that {(x, y) ∈ R2 | ¬φ(x, y)} is null in R2. The
Kuratowski-Ulam theorem says that

∀∗x ∈ R∀∗y ∈ Rφ(x, y) ⇔ ∀∗y ∈ R∀∗x ∈ Rφ(x, y)

⇔ ∀∗(x, y) ∈ R2φ(x, y)

where the last formula says that {(x, y) ∈ R2 | ¬φ(x, y)} is meager in R2. A
filter F on a set X has the Fubini-Kuratowski-Ulam property if

(7.9) ∀Fx∀Fy (x, y) ∈ A ⇔ ∀Fy ∀Fx(x, y) ∈ A

where A ⊆ X ×X belongs to a suitable collection of sets. The theorems of
Fubini and Kuratowski-Ulam say that (7.9) holds when X = R, A is Borel,
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and F is the filter of co-null sets or the filter of comeager sets. Not every F

has the Fubini-Kuratowski-Ulam property (Exercise 7.104).

7.I. Representation theorem for atomic algebras.

Proposition 7.46. If B is a Boolean algebra and a ∈ B, the following are
equivalent:

(a) a is an atom;
(b) a ̸= 0 and for all b, c ∈ B, a ≤ b⋎ c if and only if a ≤ b or a ≤ c;
(c) for all b ∈ B, either a ≤ b or else a ≤ b∗;
(d) the principal ideal generated by a∗ is prime; equivalently, the principal

filter generated by a is an ultrafilter.

Proof. (a) ⇒ (b). If either a ≤ b or a ≤ c then a ≤ b ⋎ c. Conversely, if
a ≰ b and a ≰ c, then a⋏ b∗ ≠ 0 and a⋏ c∗ ̸= 0 by part (a) of Lemma 4.18.
Since a is an atom, a ⋏ b∗ = a and a ⋏ c∗ = a, that is a ≤ b∗ and a ≤ c∗,
hence a ≤ b∗ ⋏ c∗ = (b⋎ c)∗. If a ≤ b⋎ c then a ≤ (b⋎ c)∗ ⋏ (b⋎ c) = 0: a
contradiction. Therefore a ≰ b⋎ c.

(b) ⇒ (c). Given b ∈ B, then a ≤ 1 = b ⋎ b∗, hence either a ≤ b or
a ≤ b∗. But a ≤ b and a ≤ b∗ cannot hold simultaneously, since this would
imply that a ≤ 0 = b⋏ b∗.

(c) ⇒ (a). Note that (c) trivially implies that a ̸= 0. If there is a
0 < b < a, then a ≰ b implies that a ≤ b∗, hence 0 = a⋏ b∗∗ = a⋏ b = b, a
contradiction.

(b)⇔ (d) follows from the duality principle. □

Theorem 7.47. (a) For every Boolean algebra B such that At(B) ̸= ∅, the
function A : B →P(At(B))

A(b) = {a ∈ At(B) | a ≤ b}

is a homomorphism.
(b) B is atomic if and only if A is injective.
(c) If B is complete, or even:

b
X exists for all X ⊆ At(B), then A is

surjective.

Proof. (a) Let a ∈ At(B). Then a ≤ b ⋏ c if and only if a ≤ b and
a ≤ c and by Proposition 7.46, a ≤ b ⋎ c if and only if a ≤ b or a ≤ c.
Thus A(b ⋏ c) = A(b) ∩ A(c) and A(b ⋎ c) = A(b) ∪ A(c), that is A is a
homomorphism.

(b) It is immediate to check that B is atomic if and only if ker(A) = {0}.
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(c) Let X ⊆ At(B): we must show that X = A(b) for some b. Let b =
b
X.

Clearly X ⊆ f(b) and if, towards a contradiction, there is a ∈ A(b) \X, by
the definition of being an atom ∀x ∈ X (a⋏ x = 0), hence by Lemma 7.38

a = a⋏ b = a⋏
j

X =
j
{a⋏ x | x ∈ X} = 0,

a contradiction. Thus A(b) = X. □

Corollary 7.48. (a) Every atomic Boolean algebra is isomorphic to an
algebra of sets.

(b) Every atomic Boolean algebra which is complete (or even just:
b
X

exists for all sets of atoms X) is isomorphic to the power-set algebra of
some set.

7.J. Completion of Boolean algebras*.
7.J.1. The regular open algebra. An open set U of a topological space (X,T)

is regular if U = r(U), where r(Y )
def
= Int(Cl(Y )) for any Y . Let

RO(X) = {U ∈ T | U = r(U)}

be the family of all regular open sets of X. By Proposition 7.29 the map
r : T → T is a closure function, so for all open sets U, V

• U ⊆ V ⇒ r(U) ⊆ r(V )

• U ⊆ r(U)

• r(r(U)) = r(U).

As T is a complete lattice, ran r = RO(X) is a complete lattice with X and
∅ being the top and bottom elements, and the operations

U ⋏ V = U ∩ V and U ⋎ V = r(U ∪ V ).

If U ∈ T then U∗ def
= Int(X \U) is regular by Example 7.22. Since U ⋏U∗ = ∅

and U ∪ U∗ is dense in X, then U ⋎ U∗ = X, so U∗ is a complement of U .
Therefore RO(X) is a complemented lattice.

Let U ∈ T and Y ⊆ X.

Claim 7.48.1. U ∩ Cl(Y ) ⊆ Cl(U ∩ Y ).

Proof. Let x ∈ U ∩ Cl(Y ) and W be open and such that x ∈W . We must
show that W ∩ (U ∩ Y ) ̸= ∅. As U ∩W is open and x belongs to it, and
x ∈ ClY , then (U ∩W ) ∩ Y ̸= ∅, which is what we had to prove. □

As the interior of an intersection is the intersection of the interiors,

U ∩ r(Y ) = Int(U ∩ Cl(Y )) ⊆ r(U ∩ Y ).
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Using this equation we can prove that the lattice RO(X) is distributive: by
Remark 4.16 it is enough to check that U ⋏ (V ⋎W ) ⊆ (U ⋏ V )⋎ (U ⋏W )
for all U, V,W ∈ RO(X):

U ⋏ (V ⋎W ) = U ∩ r(V ∪W ) ⊆ r(U ∩ (V ∪W ))

= r((U ∩ V ) ∪ (U ∩W )) = (U ⋏ V )⋎ (U ⋏W ).

It follows that RO(X) is a complete Boolean algebra, called the regular open
algebra on X. In the next section we will prove that every complete Boolean
algebra is isomorphic to an algebra of this form. Note that CLOP(X) is a
subalgebra of RO(X), and a subalgebra of P(X), but, in general, RO(X)
is not a subalgebra of P(X), since the operation ⋎ may not agree with the
union.
7.J.2. Boolean completion. Let (P,≤) be an ordered set. Two elements
p, q ∈ P are compatible, p ∥ q, if ∃r ∈ P (r ≤ p, q); otherwise they are
incompatible p ⊥ q. A set D ⊆ P is dense if ∀p ∈ P ∃q ∈ D (q ≤ p);
equivalently, if it is dense in P with the downward topology. A monotone
map f : P → Q between ordered set is dense is ran f is dense in Q.

If P has minimum 0 (like in the case of Boolean algebras) the above
definitions become trivial—any two elements are always compatible, and
D ⊆ P is dense if and only if 0 ∈ D. For B a Boolean algebra and X ⊆ B,
let X+ def

= X \ {0B}.

Convention. When dealing with a Boolean algebra B, (in)compatibility
and density are understood to refer to B+, that is to say:

• Two elements b, c ∈ B+ are incompatible in B if and only if b ⊥B+ c,
that is b⋏ c = 0.
• D ⊆ B is dense in B if and only if D+ is dense in B+, that is ∀b ∈ B+ ∃d ∈
D+(d ≤ b).
• A monotone f : P → B where P is an ordered set, is dense if ran(f) is

dense in B.

If B is a Boolean algebra and b, c ∈ B+ are such that b ≰ c, then
d

def
= c ⋏ b∗ ≠ 0B and d, b are incompatible. This property is important

enough to deserve a:

Definition 7.49. An ordered set P is separative if

∀p, q ∈ P
[
p ≰ q ⇒ ∃r ≤ p (r ⊥ q)

]
.

Equivalently: if ∀p, q ∈ P
[
↓p ⊈ ↓q ⇒ ∃r ∈ ↓p (↓r ∩ ↓q = ∅)

]
.

The next result is straightforward.
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Proposition 7.50. Suppose B is a Boolean algebra and that D ⊆ B+ is
dense. Then D is separative.

Observe that for any ordered set P :

r(↓p) = {q ∈ P | ↓q ⊆ Cl(↓p)}
= {q ∈ P | ∀r ≤ q (↓r ∩ ↓p ̸= ∅)}
= {q ∈ P | ∀r ≤ q (r ∥ p)}.

Proposition 7.51. P is separative if and only if ∀p ∈ P (↓p ∈ RO(P )).

Proof. Suppose P is separative. If q ∈ r(↓p) then ∀r ≤ q (r ∥ p), and hence
q ∈ ↓p as P is separative. Conversely if ↓p = r(↓p) for all p ∈ P , then q ≰ p
implies that ∃r ≤ q (r ⊥ p), thus P is separative. □

The next result is the converse of Proposition 7.50.

Theorem 7.52. If P is separative then : P → RO(P )+, p 7→ ↓p is a dense
embedding.

Proof. By Proposition 7.51 i is well-defined, and since the sets ↓p form a
basis for the downward topology, ran i is dense in P .

The map i is clearly monotone; to prove it is an embedding, let’s assume
that i(p) ⊆ i(q) towards proving that p ≤ q. Towards a contradiction, assume
that p ≰ q. Choose r ≤ p such that r ⊥ q. Then ↓r ∩ ↓q = ∅ and hence
i(r) ∩ i(q) = ∅. As i(r) ≤ i(p), this yields the desired contradiction. □

Lemma 7.53. If B is a complete Boolean algebra and D ⊆ B is dense, then
b =

b
{d ∈ D | d ≤ b} for all b ∈ B.

Proof. Clearly b ≥ c
def
= supB{x ∈ D | x ≤ b}. If b > c then pick a x ∈ D

such that d ≤ b ⋏ c∗ ̸= 0, hence d ∈ {x ∈ D | x ≤ b}, and thus d ≤ c: a
contradiction. □

Lemma 7.54. Let B,C1, C2 be Boolean algebras, and suppose C1, C2 are
complete and ji : B → Ci (i = 1, 2) are dense embeddings. Then there is a
unique isomorphism h : C1 → C2 such that j2 = h ◦ j1.

Proof. By Lemma 7.53 every a ∈ C1 is of the form a = supC1
j1[Xa], where

Xa = {x ∈ B | j1(x) ≤ a}, and every b ∈ C2 is of the form b = supC2
j2[Yb],

where Yb = {x ∈ B | j2(x) ≤ b}. Define h : C1 → C2 by

h(a) = supC2
j2[Xa].

Then h is an order preserving bijection, and hence an isomorphism of Boolean
algebras, and it is the unique function h′ such that j2 = h′ ◦ j1. □
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The Boolean completion of a separative order P is a complete Boolean
algebra B together with a dense embedding j : P → B+; it exists by Theo-
rem 7.55 and it is unique by Lemma 7.54. In particular, taking P = B \{0B}:

Theorem 7.55. Every Boolean algebra can be densely embedded in a complete
Boolean algebra. Moreover this complete Boolean algebra is unique up to
isomorphism.

For B a Boolean algebra we have two types of completion: the Dedekind-
McNeille completion DM(B) which is a complete lattice (Theorem 7.12), and
the Boolean completion RO(B+). It turns out that DM(B) is a Boolean
algebra [Bly05, Theorem 6.13 p. 90] and since B densely embeds into it, then
DM(B) is isomorphic to RO(B+). In other words, the Dedekind-McNeille
completion and the Boolean completion of a Boolean algebra are the same.

7.K. Free Boolean algebras and propositional calculus.
7.K.1. Finitely generated Boolean algebras. Given a Boolean algebra B and
a subset C, the algebra generated by C is the smallest subalgebra B′ of B
containing C; we say that C is a set of generators for B′. By Proposition 4.2
B′ =

{
tB(c⃗) | c⃗ ∈ C ∧ t ∈ TermBoole

}
and by Lemma 7.39

B′ =
(
(C ∪ {c∗ | c ∈ C} ∪ {0,1})⋏

)⋎
=
(
(C ∪ {c∗ | c ∈ C} ∪ {0,1})⋎

)⋏(7.10)

where for any X ⊆ B we let

X⋏ = {x1 ⋏ . . .⋏ xn | x1, . . . , xn ∈ X and n ≥ 1}
X⋎ = {x1 ⋎ . . .⋎ xn | x1, . . . , xn ∈ X and n ≥ 1}.

Remark 7.56. The reason for having 0 and 1 in (7.10) is to take care of
C = ∅, in which case B′ = {0,1}. If C ̸= ∅, then 0 ∈ (C ∪ {c∗ | c ∈ C})⋏

and 1 ∈
(
(C ∪ {c∗ | c ∈ C})⋏

)⋎, hence the algebra generated by C is

B′ =
(
(C ∪ {c∗ | c ∈ C})⋏

)⋎
=
(
(C ∪ {c∗ | c ∈ C})⋎

)⋏
.

Corollary 7.57. Let B be a Boolean algebra, C ⊆ B a subalgebra, and
b ∈ B \ C. The subalgebra of B generated by C ∪ {b} is

{(c1 ⋏ b)⋎ (c2 ⋏ b∗) | c1, c2 ∈ C} = {(c1 ⋎ b)⋏ (c2 ⋎ b∗) | c1, c2 ∈ C}.

Corollary 7.58. If B is a Boolean algebra and C = {c1, . . . , cn} ⊆ B, then
the subalgebra B′ generated by C is finite, hence atomic, and the atoms are
the minimal elements of (C ∪ {c∗ | c ∈ C})⋏ \ {0}.

A Boolean algebra that admits a finite set of generators is said to be
finitely generated, thus a finitely generated Boolean algebra is finite. By
Corollary 7.58 a finitely generated algebra is finite.
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7.K.2. Propositional calculus. Recall from Section 3.C.1 that given a non-
empty set S of propositional letters one can construct the set Prop(S) of
propositions over S by applying ¬,∧,∨,⇒,⇔ to the elements in S. Let ⪯
be the binary relation on Prop(S) defined by

P ⪯ Q if and only if ⊢ P⇒ Q.

By Theorem 5.24 P ⪯ Q just in case P⇒ Q is a tautology. The relation ⪯ is
a pre-order on Prop(S), and the induced equivalence relation is

P ∼ Q if and only if ⊢ P⇔ Q

if and only if P,Q are tautologically equivalent
if and only if ∀v : S → {0, 1} (v(P) = v(Q))

(7.11)

and hence we can define an order on the quotient Prop(S)/∼

[P] ≤ [Q] if and only if ⊢ P⇒ Q.

Theorem 7.59. (Prop(S)/∼,≤) is a complemented, distributive lattice with
1 the set of all tautologies, 0 the set of all propositional contradictions.
Therefore it is a non-degenerate Boolean algebra with the operations

[P]∗ = [¬P] [P]⋎ [Q] = [P ∨Q] [P]⋏ [Q] = [P ∧Q].

Proof. Given P0,P1 ∈ Prop(S), we have that for i = 0, 1, ⊢ P0 ∧ P1 ⇒ Pi

and if ⊢ Q⇒ Pi then ⊢ Q⇒ P0 ∧ P1. Therefore

[P0 ∧ P1] = inf([P0], [P1]) = [P0]⋏ [P1].

Similarly [P0 ∨ P1] = sup([P0], [P1]) = [P0] ⋎ [P1], so (Prop(S)/∼,≤) is
a lattice. As ⊢ P ⇒ Q whenever Q is a tautology and P is arbitrary,
then 1 = {Q | Q is a tautology}. Dually 0 = {Q | Q is a propositional
contradiction}. As P ∨ ¬P ∈ 1 and P ∧ ¬P ∈ 0 for all P, we have that
[P]∗ = [¬P] is the complement of [P]. Finally distributivity follows from the
fact that

P ∧ (Q ∨ R) ⇔ (P ∧Q) ∨ (P ∧ R) P ∨ (Q ∧ R) ⇔ (P ∨Q) ∧ (P ∨ R)

are tautologies, for any P,Q,R ∈ Prop(S). □

By (7.11) any valuation v : S → 2 = {0, 1} can be extended to a unique

v̂ : Prop(S)/∼ → {0, 1}, v̂([P]) = v(P).

As v̂([P]∗) = v̂([¬P]) = v(¬P) = 1−v(P) and v̂([P]⋎ v̂([Q])) = v̂([P ∨Q]) =
sup{v(P), v(Q)}, it follows that v̂ is a homomorphism of Boolean algebras.
Conversely, any homomorphism f : Prop(S)/∼ → 2 defines a valuation
v : S → {0, 1}, v(A) = v̂([A]), such that v̂ = f . As homomorphisms between
B and 2 can be identified with ultrafilters (7.8) we obtain
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Proposition 7.60. There is a bijection between the set of all valuations
{0, 1}S and the set of ultrafilters on Prop(S)/∼.

The algebra Prop(S)/∼ of all propositions over S obtained by identifying
provably equivalent propositions, and it was the original motivation for the
investigations of Boolean algebras. Recall (Definition 5.25) that Σ ⊆ Prop(S)
is

• consistent if no contradiction can be derived from Σ—equivalently: not
every proposition can be derived from it,
• satisfiable if it has a model, i.e. there is v : S → {0, 1} such that v(P) = 1

for all P ∈ Σ.

Proposition 7.61. For any Σ ⊆ Prop(S) the set FΣ = {[P] | Σ ⊢ P} is a
filter of Prop(S)/∼, and if Σ is consistent then FΣ is proper.

Conversely, if F is a proper filter of Prop(S)/∼, then Σ = {P | [P] ∈ F}
is consistent, and FΣ = F .

Proof. If [P], [Q] ∈ FΣ then Σ ⊢ P and Σ ⊢ Q, so Σ ⊢ P ∧ Q, and hence
[P]⋏ [Q] = [P ∧Q] ∈ FΣ. If [P] ∈ F and [P] ≤ [Q] then ⊢ P⇒ Q, so Σ ⊢ Q
by MP, and hence [Q] ∈ FΣ. Therefore FΣ is a filter of Prop(S)/∼. If FΣ is
not proper, then every P is derivable from Σ, so Σ is inconsistent. Therefore
if Σ is consistent, then FΣ is proper.

Suppose now F is a filter, and let Σ = {P ∈ Prop(S) | [P] ∈ F}. If
P1,P2 ∈ Σ then [P1], [P2] ∈ F and hence [P1] ⋏ [P2] = [P1 ∧ P2] ∈ F , so
P1∧P2 ∈ Σ. In other words: Σ is closed under taking conjunctions. If Σ ⊢ Q,
then P1, . . . ,Pn ⊢ Q for some P1, . . . ,Pn ∈ Σ, so P1 ∧ · · · ∧ Pn ⊢ Q, and
hence ⊢ P1 ∧ · · · ∧ Pn ⇒ Q. As P1 ∧ · · · ∧ Pn ∈ Σ and [P1 ∧ · · · ∧ Pn] ≤ [Q],
it follows that [Q] ∈ F , and hence Q ∈ Σ. In other words: Σ is closed
under derivations, that is if Σ ⊢ Q then Q ∈ Σ. Therefore if F is a proper
filter then Σ cannot derive every sentence, that is Σ is consistent. Moreover
[P] ∈ FΣ ⇔ Σ ⊢ P⇔ [P] ∈ F , that is FΣ = F . □

Recall that a first-order theory is complete if it is satisfiable and any
sentence or its negation is logical consequence of it (Definition 3.31). The
next result says that any satisfiable set of propositions can be extended to a
complete one.

Proposition 7.62. If Σ ⊆ Prop(S) is satisfiable then there is a satisfiable
Σ′ ⊆ Prop(S) such that Σ ⊆ Σ′ and either P ∈ Σ or else ¬P ∈ Σ, for all
P ∈ Prop(S).

Proof. Let v : S → {0, 1} = 2 be a model of Σ and let v̂ : Prop(S)/∼ → 2 be
the induced homomorphism. Then Σ′ = {P | v̂([P]) = 1} is as required. □
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Arguing as in Lemma 3.8, if S is a non-empty set any v : S → B, where
B is a Boolean algebra, can be extended to a map, still denoted by v, from
Prop(S) to B so that the following hold:

v(¬P) = v(P)∗

v(P ∧Q) = v(P)⋏ v(Q)

v(P ∨Q) = v(P)⋎ v(Q)

v(P⇒ Q) = v(P)∗ ⋎ v(Q)

v(P⇔ Q) = (v(P)∗ ⋎ v(Q))⋏ (v(Q)∗ ⋎ v(P))

v(P ·∨Q) = (v(P)⋏ v(Q))⋎ (v(Q)⋎ v(P))∗.

(7.12)

Lemma 7.63. Let v : S → B be as above, and let P,Q ∈ Prop(S). If P is a
tautology, then v(P) = 1B. If P ∼ Q then v(P) = v(Q).

Proof. If P is a tautology, then ⊢ P where ⊢ is any of the equivalent notions
of derivation. The most straightforward way to prove our result is using
Shoenfield’s system from Section 5.E: the only connectives are ¬ and ∨, all
axioms are of the form ¬P ∨ P, and there are four inference rules:

• from P ∨ (Q ∨ R) derive (P ∨Q) ∨ R

• from P ∨ P derive P

• from P derive Q ∨ P

• from P ∨Q and ¬P ∨Q derive Q ∨ R.

It is immediate to check that any axiom gets value 1B, and that each rule
yields a proposition with value 1B whenever the assumptions have value 1B.
Therefore by induction on the length of the derivation we have that if ⊢ P,
then v(P) = 1B.

If P ∼ Q then ⊢ P ⇔ Q, so P ⇔ Q is a tautology, and hence (v(P)∗ ⋎
v(Q))⋏ (v(Q)∗ ⋎ v(P)) = 1B so that v(P) = v(Q). □

7.K.3. Free Boolean algebras. Prop(S)/∼ is the most general Boolean algebra
that one can construct starting from S, so in analogy with Section 7.D.1 we
call it the free Boolean algebra generated by S

FreeBoole(S) = Free(S).

If S and S′ are in bijection, then Free(S) ∼= Free(S′), and we denote the free
Boolean algebra with n generators by Free(n).

As every proposition is tautologically equivalent to one in conjunc-
tive/disjunctive normal form, the set Prop−(S) of all propositions constructed
from S using only ¬,∨,∧, intersects every equivalence class of Prop(S)/∼.
By (7.10) the elements of Free(S) are ∼-equivalence classes of disjunctions

C1 ∨ . . . ∨ Ck
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where each Ci is a conjunction of the form

Aε1
1 ∧ · · · ∧Aεm

m

where εj ∈ {−1, 1}, Ai ∈ S, and A1 = A and A−1 = ¬A.
If S is finite, say S = {A1, . . . ,An}, then Free(S) is atomic, and the atoms

are the equivalence classes of the propositions Aε1
1 ∧ · · · ∧Aεn

n . If instead S is
infinite, then Free(S) is atomless. To see this take a non-zero element [P] of
Free(S), where P = C1 ∨ . . . ∨ Ck and each Ci is a conjunction of letters or
negation of letters of S. As S is infinite, let A be a letter not occurring in P:
then both A ∧ P and ¬A ∧ P are non-null, so [A ∧ P], [¬A ∧ P] < [P].

We have thus proved:

Theorem 7.64. Free(n) is atomic, has 2n atoms, and hence has size 22
n . If

S is infinite, then Free(S) is atomless.

By Theorem 7.47 every finite Boolean algebra is isomorphic to an algebra
of sets, and every Boolean algebra with n generators is isomorphic to the
collection of sets generated A1, . . . , An contained in some set U . In order to
obtain Free(n) we should not assume any relation between A1, . . . , An. For
example Free(2) can be seen as the collection of all 16 sets that can obtained
from A,B ⊆ U ,

FreeBoole(2) = {A ∩B,A \B,B \A,A∁ ∩B∁, ∅, U,A,B,A∁, B∁,

A∁ ∪B∁, A∁ ∪B,A ∪B∁, A ∪B,A△B, (A ∩B) ∪ (A ∪B)∁}.
Not every finitely generated Boolean algebra is free, as there are Boolean
algebras of size 2n for any n ≥ 1. But every Boolean algebra is the quotient
of a free Boolean algebra.

Lemma 7.65. If B is a Boolean algebra and S ⊆ B is a set of generators,
then there is a surjective homomorphism h : Free(S)→ B.

Proof. The inclusion map S → B is extended to a function v : Prop(S)→ B
satisfying (7.12). By Lemma 7.63 v induces a homomorphism on the quotient

h : Prop(S)/∼ = Free(S)→ B,

as h([¬P]) = h([P])∗ and h([P ∨Q]) = h([P])⋎ h([Q]). □

Suppose Σ ⊆ Prop(S) is consistent, so that by Proposition 7.61 FΣ =
{[P] | Σ ⊢ P} is a filter of Free(S). Let

IΣ = {[¬P] | Σ ⊢ P}
be the ideal dual of FΣ. The quotient algebra Free(S)/IΣ is the Lindembaum
algebra of Σ.

Every Boolean algebra is isomorphic to a Lindembaum algebra.
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Theorem 7.66. Every Boolean algebra B is isomorphic to Free(S)/IΣ where
S ⊆ B is any set of generators of B and Σ ⊆ Prop(S) is a suitable consistent
set of propositions.

Proof. By Lemma 7.65 B ∼= Free(S)/I with I = kerh. By Proposition 7.61
the filter F dual to I is of the form FΣ for some consistent Σ, so the result
follows. □

7.L. Axioms systems for lattices and Boolean algebras*. Lattices
are be axiomatized in LLtc by associativity (4.4), commutativity (4.5), and
absorption laws (4.6), for ⋎ and ⋏, so this yields a system TLtc with six
identities. These axioms are mutually independent [PR08, p. 8], so we cannot
dispense of any of them. For distributive lattices we add the distributive
laws (4.7), and by Remark 4.16 we only need to add just one of the two
identities. But this does not mean that we end up with an independent set
of axioms, as distributivity, absorption, and commutativity yield associa-
tivity [PR08, Theorem 3.2.1, p. 59]. Thus in defining distributive lattices
(and Boolean algebras) we could have been more parsimonious by dropping
associativity.

Lattices are axiomatized by identities, so one might ask what is the
minimal number of identities needed to define the varieties of lattices, modular
lattices, distributive lattices, . . . . McKenzie proved in 1970 that the variety
of lattices is 1-based, i.e. it can be axiomatized by a single identity, and
that any 1-based equational subvarieties of lattices, is either the collection
of all lattices, or the collection of lattices with exactly one point (this one
being axiomatized by x ≖ y) [PR08, p. 28–29]. In particular, the notion of
modular or distributive lattice cannot be axiomatized by a single identity.
This should be contrasted with the situation for groups (see Remark 4.11).

The notion of Boolean algebra can be axiomatized in several ways: as a
complemented distributive lattice, as a Boolean ring, or as a LBoole-structure
(B,⋏,⋎, ∗,0,1) satisfying TBoole. The axioms in TBoole are not independent
(Exercise 7.93). The constants 1 and 0 are definable from ⋏, ⋎ and ∗, and
by De Morgan’s laws the operations ⋏ and ⋎ are definable from each other
using complementation. Therefore in order to axiomatize Boolean algebras it
is enough to use ∗ and just one among ⋏ and ⋎. In order to find a system
based on, e.g., ⋎ and ∗, one could restate the axioms in TBoole without
mentioning ⋏, 0 and 1, but other, simpler axiomatizations can be given. In
every Boolean algebra the following holds

(7.13) ∀x, y
[
(x∗ ⋎ y∗)∗ ⋎ (x∗ ⋎ y)∗ ≖ x

]
.

Huntington proved the converse—see [GH09, pp. 478–481] for a proof.
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Theorem 7.67. Suppose B is a set with an associative and commutative
binary operation ⋎, and a unary operation ∗ satisfying (7.13). Then b 7→
b ⋎ b∗ is constantly equal to a certain value 1, and letting 0 = 1∗ and
a⋏ b

def
= (a∗ ⋎ b∗)∗, we have that (B,⋎,⋏, ∗,0,1) is a Boolean algebra.

Thus (4.5a), (4.4a), and (7.13) form an axiom system for Boolean algebras,
and moreover an independent one, meaning that neither of them can be
derived from the other two [GH09, pp. 481]. An example of axiomatization
of Boolean algebras by means of ⋏, ∗ and 0 is presented in Exercise 7.92.

Shortly after Theorem 7.67 was proved, Robbins asked wether (7.13)
could be replaced by ∀x, y

[
((x⋎ y)∗ ⋎ (x∗ ⋎ y∗)∗)∗ ≖ x

]
. Observe that this

new identity holds in every Boolean algebra, so the problem is whether any
(B,⋎, ∗) satisfying this equation (a Robbins algebra) must satisfy (7.13) (and
hence be a Boolean algebra). The problem remained open for sixty years
until McCune proved this conjecture in 1997 using Otter, a program for
symbolic computation.

The variety of Boolean algebras is 1-based, i.e. it can be axiomatized by
a single identity t ≖ s (see Section 4.D). An example of such identity is

(((x⋎ y)∗ ⋎ z)∗ ⋎ (x⋎ (z∗ ⋎ (z ⋎ u)∗)∗)∗)∗ ≖ z.

If we want to be more parsimonious on the number of symbols of the language,
we could replace ⋏, ⋎ and ∗ by either one of the following binary operations:
x|y def

= (x⋏y)∗ and x↑y def
= (x⋎y)∗. Since x|x = x↑x = x∗, the operations ⋏,

⋎ and ∗ are definable in the structures (B, |) and (B,↑), and hence Boolean
algebras can be axiomatized in a language with just one binary operation
symbol. In fact it is possible to give an axiomatization by means of a single
identity of terms built from variables and |:

(x | ((y | x) | x)) | (y | (z | x)) ≖ y.

7.M. Relation algebras*. Relation algebras are structures providing an
algebraic counterpart to the calculus of relations of Section 3.D.5.

The language LRlnAlg is a streamlined version of the language used in
Section 3.D.5. It has two binary function symbols ⋎, |, two unary function sym-
bols ∗,−1, and a constant symbol I. An LRlnAlg-structure (B,⋎, |, ∗,−1, I)
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is a relation algebra if it satisfies the following identities:

x⋎ y ≖ y ⋎ x(R1)
x⋎ (y ⋎ z) ≖ (x⋎ y)⋎ z(R2)

(x∗ ⋎ y∗)∗ ⋎ (x∗ ⋎ y)∗ ≖ x(R3)
x | (y | z) ≖ (x | y) | z(R4)

x | I ≖ x(R5)

(x−1)−1 ≖ x(R6)

(x | y)−1 ≖ y−1 | x−1(R7)
(x⋎ y) | z ≖ (x | z)⋎ (y | z)(R8)

(x⋎ y)−1 ≖ x−1 ⋎ y−1(R9)

(x−1 | (x | y)∗)⋎ y∗ ≖ y∗.(R10)

If B has at least two elements, by Theorem 7.67 R1, R2, and R3 imply that
every relation algebra is a Boolean algebra (B,⋎,⋏, ∗,0,1), with a ⋏ b =
(a∗ ⋎ b∗)∗, 0 = 1∗ and 0 = I ⋎ I∗. So a relation algebra with at least two
elements is a Boolean algebra with two additional operations | and −1, and a
chosen element I.

Every (P(M ×M),∪, |, ∁,−1, id) is a relation algebra (for R4–R9 see
Table 2 on page 48, and for R10 see Proposition 3.15).

Exercises

Exercise 7.68. Let f : (P,≤P ) → (Q,≤Q) be an isomorphism of orders.
Show that:

(i) the map P(P ) → P(Q), X 7→ f [X] sends initial/final segments to
initial/final segments and therefore (Down(P ),⊆) ∼= (Down(Q),⊆) and
(Up(P ),⊆) ∼= (Up(Q),⊆).

(ii) If a ∈ P then f ↾ pred a : (pred a,≤P )→ (pred f(a),≤Q) is an isomor-
phism.

Exercise 7.69. (i) Show that the set of maximal elements and the set of
minimal elements are definable in the language LOrdr.

(ii) Give an example of an order with more than one maximal element, and
one with a unique maximal element, which is not the maximum.

Exercise 7.70. Show that if f : L→ L′ is an embedding between complete
lattices, then f preserves sups if and only if it preserves infs.
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Exercise 7.71. Let (P,≤) be an ordered set and let A ⊆ P . Show that

(i) if a =
b
A then {a}▼ =

⋂
x∈A {x}

▼ and if a =
c
A then {a}▲ =⋂

x∈A {x}
▲;

(ii) if Ai ⊆ P for i ∈ I, then (
⋃

i∈I Ai)
▼ =

⋂
i∈I A

▼
i and (

⋃
i∈I Ai)

▲ =⋂
i∈I A

▲
i .

Exercise 7.72. Let P be an ordered set and let i : P → DM(P ) be its
completion. Show that:

(i) P is the maximum of DM(P ), and if 1P is the maximum of P , then
i(1P ) = ↓1P = P . If P has minimum 0P then i(0P ) = {0P } is the
minimum of DM(P ); the empty set ∅ belongs to DM(P ) if and only if
P has no minimum, and in that case ∅ is the minimum of DM(P ).

(ii) P is a linear order if and only if DM(P ) is a linear order.
(iii) If p = suppred p then (pred p)▼▲ = (↓p)▼▲ = ↓p.

Exercise 7.73. Let (P,≤) be an ordered set. Show that

DM(P∆) = {A ⊆ P | A▲▼ = A} = DM(P )∆.

Exercise 7.74. Let (P,≤) be a preorder with the downward topology T =
Down(P ). Show that:

(i) T is T0 if and only if ≤ is antisymmetric;
(ii) T is T2 if and only if it is T1 if and only if ≤ is free on P , that is
∀x, y ∈ P (x ≤ y ⇔ x = y);

(iii) the closure of X ⊆ P is ↑X.

Exercise 7.75. Show that if P,Q,R are ordered sets and f : P → Q and
g : Q → R are residuated, then g ◦ f : P → R is residuated and (g ◦ f)∗ =
f∗ ◦ g∗.

Exercise 7.76. Suppose C ⊆P(A) is a family of sets closed under arbitrary
intersections such that A ∈ C. Show that there is a closure operator f on A
such that C = ran f .

Exercise 7.77. Compute the Dedekind-McNeille completion of all ordered
sets of size ≤ 5.

Exercise 7.78. Let f : L→ L′ with L and L′ lattices. Show that:

(i) f is monotone if and only if ∀a, b ∈ L (f(a⋎ b) ≥ f(a)⋎ f(b)) if and
only if ∀a, b ∈ L (f(a⋏ b) ≤ f(a)⋏ f(b)).

(ii) f is an isomorphism of ordered sets if and only if it is an isomorphism
of lattices.
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Exercise 7.79. Show that if V is a vector space of dimension n over a field
k, the set L = {W ⊆ V | W vector subspace of V }, ordered under inclusion,
is a complemented modular lattice, but it is not distributive when n > 1.

Exercise 7.80. Let T be a triangle in the plane with sides a, b and c. Show
that the lattice of sets generated by a, b, c is isomorphic to FreeD(3).

Exercise 7.81. In the lattice of linear subspaces of R3, consider the lines
a, b, c and d generated by the vectors (1, 0, 1), (0, 1, 1), (0, 0, 1) and (1, 1, 1).
Show that the sublattice generated by a, b, c, d is infinite. Conclude that
FreeM(4) is infinite.

Exercise 7.82. Fix a decreasing sequence of positive real numbers an
such that limn→∞ an = 0 and

∑∞
n=0 an = +∞, and let I = {S ⊆ N |∑

n∈S an <∞}. Show that:

(i) I is a non-principal ideal,
(ii) Fin ⊆ I,
(iii) the projection of I on P(N)/Fin is the ideal {[S] |

∑
n∈S an <∞},

(iv) the density-zero sets form a proper, non-principal ideal of P(N). (A
subset X of N has density 0 if limn→∞

|X∩{0,...,n}|
n = 0.)

Exercise 7.83. Show that the following hold in any Boolean algebra:

(i) x ≖ y ⇔ x+ y ≖ 0;
(ii) x+ y ≖ (x⋎ y)⋏ (x⋏ y)∗;
(iii) (x+ y)∗ ≖ (x⋏ y)⋎ (x∗ ⋏ y∗);
(iv) x⋏ y ≖ 0⇒ x+ y ≖ x⋎ y;

(v) x⋎ y ≖ (x+ y) + (x⋏ y);

(vi) x+ (y + z) ≖ (x+ y) + z;

(vii) x⋏ (y + z) ≖ (x⋏ y) + (x⋏ z).

Exercise 7.84. Let B be a Boolean algebra. Show that I is an ideal in the
sense of Definition 7.40 if and only if it is an ideal in the sense of rings.

Exercise 7.85. Show that Boolean algebras are finitely axiomatizable in the
language LOrdr.

Exercise 7.86. Let ≼ be the divisibility relation4 on the natural numbers,
that is m ≼ n⇔ ∃k (km = n). Let Div(n) = {m ∈ N | m ≼ n} be the set of
the divisors of n.

Show that:

(i) Div(0) = N and (Div(n),≼) is a distributive lattice with minimum 1
and maximum n.

4We use the symbol ≼ rather than |, already used in Section 2.C to stress that we are working
with a partial order.
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(ii) a ≼ b ⇔ Div(a) ⊆ Div(b), and in this case Div(a) is a sublattice of
Div(b).

(iii) If a = pk11 · · · pknn and b = qk11 · · · qkmm with distinct primes p1, . . . , pn
and q1, . . . , qm with 1 ≤ k1 ≤ · · · ≤ kn and 1 ≤ h1 ≤ · · · ≤ hm, then
Div(a) ∼= Div(b) if and only if n = m and ki = hi.

(iv) Div(n) ∼= Sgr(Z/nZ)∆, where Sgr(Z/nZ) is the lattice of subgroups of
Z/nZ.

(v) If n > 1 is square-free, then Div(n) is a Boolean algebra.

Exercise 7.87. Show that:

(i) if L is a (distributive) lattice and a ∈ L, then ↓a is a (distributive)
lattice, and similarly for ↑a;

(ii) if B is a Boolean algebra and a ̸= 0, then ↓a is a Boolean algebra and it
is isomorphic to ↑a∗. In particular, if a ∈ B\{0,1} then B is isomorphic
to the product (↓a)× (↓a∗).

(iii) If f : B → C is a morphism of Boolean algebras, then f ↾ ↓b : ↓b→ ↓f(b)
is a morphism of Boolean algebras.

(iv) If f : B → C is a morphism of Boolean algebras such that ker(f) is
principal, say ker(f) = ↓b, then b∗ is the largest a ∈ B such that f ↾ ↓a
is injective.

Exercise 7.88. Show that P(A) and P(B) are isomorphic Boolean algebras
if and only if A and B are in bijection.

Exercise 7.89. Let B ⊆ P(X) and C ⊆ P(Y ) be algebras of sets, and
suppose that X ∩ Y = ∅. Show that B × C is isomorphic to {b ∪ c |
b ∈ B ∧ c ∈ C} ⊆P(X ∪ Y ).

Exercise 7.90. If (B,+, ·, 0, 1) is a Boolean ring, define x ⋏ y
def
= x · y,

x⋎ y
def
= x+ y + x · y, and x∗

def
= 1 + x. Show that:

(i) ∀x ∈ B (x+ x = 0);
(ii) B is a commutative ring;
(iii) (B,⋏,⋎, ∗, 0, 1) is a Boolean algebra.

Check that the correspondence (B,+, ·, 0, 1) 7→ (B,⋎,⋏, ∗, 0, 1) between
Boolean rings and Boolean algebras is the inverse of the correspondence (7.7).

Exercise 7.91. Let (R,+, ·, 0, 1) be a (not necessarily commutative) ring
with unit, and let R̄ = {x ∈ R | x2 = x and ∀y ∈ R (x · y = y · x)}. (An
element in a ring such that x2 = x is called an idempotent.) Define

x⊕ y = x+ y − 2x · y.
Show that (R̄,⊕, ·, 0, 1) is a Boolean ring.
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Exercise 7.92. Let (B,⋏, ∗,0) be a structure such that ⋏ is a binary
operation that is commutative, associative and idempotent, while ∗ is a unary
operation such that

(7.14) x⋏ y∗ ≖ 0⇔ x⋏ y ≖ x.

Suppose also that 0 ̸≖ 0∗. Define 1
def
= 0∗, x ≤ y ⇔ x ⋏ y ≖ x and

x⋎ y
def
= (x∗ ⋏ y∗)∗.

Show that:

(i) x⋏ x∗ ≖ 0;
(ii) ≤ is an ordering on B, x⋏ y ≤ x and x⋏ y ≤ y for all x, y. Moreover 0

is least and x ≤ y ⇔ x⋏ y∗ ≖ 0 for all x, y;
(iii) x∗∗ ≖ x, hence the function x 7→ x∗ is a bijection of B. Moreover ⋎ is

idempotent and x⋎ x∗ ≖ 1;
(iv) x⋏ y ≖ (x∗ ⋎ y∗)∗ and ⋎ is associative, x⋎ (y ⋎ z) ≖ (x⋎ y)⋎ z;
(v) x ≤ y ⇔ y∗ ≤ x∗ ⇔ x⋎ y ≖ y;
(vi) if x ≤ y then x⋏ z ≤ y ⋏ z and x⋎ z ≤ y ⋎ z. In particular: if x ≤ y, z

then x ≤ y ⋏ z and if x, y ≤ z then x⋎ y ≤ z;
(vii) x⋏ (x∗ ⋎ y) ≖ x⋏ y and x⋎ (x∗ ⋏ y) ≖ x⋎ y;
(viii) the absorption laws (4.6) (x⋎ y)⋏ y ≖ y and (x⋏ y)⋎ y ≖ y hold;
(ix) the distributive laws (4.7)(x⋎y)⋏z ≖ (x⋏z)⋎(y⋏z) and (x⋏y)⋎z ≖

(x⋎ z)⋏ (y ⋎ z) hold.

Conclude that B is a Boolean algebra.

Exercise 7.93. (i) Show that the ring Z/2Z with the operations

a⋎ b = a+ b, a⋏ b = a · b, a∗ = a+ 1

satisfies every axiom of TBoole except (4.7b). Modify this example and
find a model for TBoole minus (4.7a), one for TBoole minus (7.5a), and
one for TBoole minus (7.5b).

(ii) Show that (7.6b) and (7.6a) are logically equivalent modulo the other
axioms of TBoole.

Exercise 7.94. If L is a lattice, the set of ⋎-irreducible elements is J(L) =
{x ∈ L \ {0} | ∀y, z (x = y ⋎ z ⇒ x = y ∨ x = z)}. Show that

(i) if L is finite a ≰ b, then ∃x ∈ J(L) (x ≤ a ∧ x ≰ b);
(ii) if L is finite, then a = sup {x ∈ J(L) | x ≤ a}, for all a ∈ L;
(iii) if L is distributive, x ∈ J(L) if and only if for all a1, . . . , an ∈ L, if

x ≤ a1 ⋎ . . .⋎ an then x ≤ ai for some 1 ≤ i ≤ n.
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Exercise 7.95. Let (P,≤) is a finite order, and let Down(P ) be the lattice
of its initial segments (Example 7.10(a)). Show that ↓x ∈ J(Down(P )) and
that the function P → J(Down(P )), x 7→ ↓x, is an order isomorphism.

Exercise 7.96. Show that in a finite distributive lattice the function L→
Down(J(L)), x 7→ {y ∈ J(L) | y ≤ x} is an isomorphism. In other words:
finite distributive lattices are, up to isomorphism, lattices of sets.

Exercise 7.97. Suppose A is an atomic subalgebra of P(X) for some X.
Show that if A is a finite, then At(A) is a partition of X, but this may fail if
A is infinite.

Exercise 7.98. Show that

(i) a Boolean algebra is atomless if and only if it is dense as an ordered set,
(ii) if (L,≤) is a dense linear order, then the algebra of intervals is atomless.

Exercise 7.99. Show that two sets A and B are in bijection if and only
if the Boolean algebras P(A) and P(B) are isomorphic. (Note that it is
consistent with the axioms of set theory that there are infinite sets A and B
that are not in bijection, yet P(A) and P(B) are in bijection.)

Exercise 7.100. Let ⊆∗ be the preorder on P(N) given by A ⊆∗ B if and
only if A \B is finite, let =∗ be the induced equivalence relation, and let ⊂∗

be its strict part. Show that

(i) If A0 ⊂∗ A1 ⊂∗ A2 ⊂∗ . . . is an ⊂∗-increasing chain, then there is
B ̸=∗ N such that ∀n ∈ N(An ⊂∗ B).

(ii) If An, Bn ⊆ N are such that n < m ⇒ An ⊂∗ Am ⊂∗ Bm ⊂∗ Bn, then
there is C ⊆ N such that ∀n ∈ N (An ⊆∗ C ⊆∗ Bn).

Exercise 7.101. Let B be a Boolean algebra. Show that:

(i) If X ⊆ B then⋂
{F | F ⊇ X and F is a filter} = ↑(X⋏)

is the smallest filter containing X. It is called the filter generated by
X.

(ii) For X ⊆ B, the filter generated by X is proper if and only if 0 /∈ X⋏.
(iii) If f : B → {0,1} is a surjective homomorphism of Boolean algebras,

then ker(f) is a maximal ideal.
(iv) The filter generated by {a} is an ultrafilter if and only if a is an atom.

Exercise 7.102. Let B be a Boolean algebra. For D ⊆ B let D∗ = {d∗ |
d ∈ D}. Show that

∀b ∈ B \ {0} ∃d ∈ D (0 < d ≤ b) ⇔ ∀b ∈ B \ {1} ∃d ∈ D∗ (b ≤ d < 1).
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In other words D ∩B+ is dense in B+ with the downward topology if and
only if D∗ ∩B− is dense in B− def

= B \ {1} with the upward topology.

Exercise 7.103. Suppose F is a filter on a set X ̸= ∅. Show that:

(i) If F is an ultrafilter then: F is not principal if and only if {a} /∈ F for
all a ∈ X, if and only if F extends {A ⊆ X | X \A is finite}, the filter
of co-finite sets.

(ii) If Y ∈ F then F ↾ Y
def
= F ∩P(Y ) is a filter on Y . Moreover, F is an

ultrafilter on X if and only if F ↾ Y is an ultrafilter on Y .

(iii) If g : X → Y then g∗(F )
def
= {B ⊆ Y | g−1[B] ∈ F} is a filter on Y .

Moreover, if F is an ultrafilter on X then g∗(F ) is an ultrafilter on Y .
(iv) If F is an ultrafilter on X and {X0, . . . , Xk} is a partition of X, then

there is a unique i ≤ k such that Xi ∈ F .

Exercise 7.104. Find a filter F on a set X that does not have the Fubini-
Kuratowski-Ulam property.

Notes and remarks

[DP02] is an excellent introduction to lattices, for a complete treatise see [Grä11]. Part (a)
of the Fixed Point Theorem 7.11 is usually attributed to Knaster and Tarski, while part (b) is
from [Tar55]. In [Dav55] the converse is shown: if a monotone function in a lattice L has fixed
points, then the lattice L is complete. Lattice were defined at the end of the nineteenth century by
Dedekind while studying the ordering of ideals of a ring under inclusion; the notion of modular
lattice stems from these studies (Example 7.E.2). The detailed analysis of FreeM(3) is due to
Dedekind, and dates to 1900. The size Dn of FreeD(n) is called the Dedekind number of order n,
and shows-up in many combinatorial questions. The values of Dn have been explicitly computed
up to n = 8, and are:

1, 4, 18, 166, 7579, 7828352, 2414682040996, 56130437228687557907786.

Part (a) of Theorem 4.15 is due to Dedekind, while part (b) is due to Birkhoff.

Boolean algebras were introduced in 1847 by Boole, but the axiomatic treatment as algebraic
structures satisfying certain properties is due to Huntington in 1904.

Exercise 7.92 is from [Byr46]—see also [Men70]. The binary operations | and ↑ described
in Section 7.L are the algebraic counterparts of the connectives of Sheffer and Peirce of Exercise 3.47.
For an encyclopedic treatise on Boolean algebras see the three volume opus [Kop89, MB89a,
MB89b]. In particular, Koppelberg’s paper in the first volume is an excellent introduction to the
subject.

The results presented in Section 7.L are taken from [MVF+02], a paper we refer the reader
to for proofs, historical background, and bibliographical references. The result in Exercise 7.96 is
known as representation theorem for distributive lattices, and it is due to Birkhoff.

8. Computability

Certain tasks in mathematics can be performed in a mechanical way, following
a prescribed protocol, while other tasks require new ideas. For example:
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proving a new (non-trivial) result requires ingenuity, while checking that a
certain argument is indeed a proof of the result in question is just a matter of
patience and careful proofreading.5 An effective procedure is a protocol that
can be mechanically performed by some agent: the input can be finite objects
(natural numbers, finite graphs, integers, . . . ) and by following such protocol
(a finite set of instructions) a finite object will be produced as output in a finite
number of steps. In other words: an effective procedure can be implemented
as a computer program. For example, given a first-order language with
finitely many non-logical symbols, there is an effective procedure to check
whether a finite string of symbols is a term or a formula. Similarly, there is
an effective procedure to check whether a LRings-sentence is an axiom of the
theory ACF0 of all algebraically closed fields of zero characteristic.

Since finite objects can be coded in arithmetic, we start with studying
effective procedures on natural numbers. In twenties of the last century, several
mathematically precise definitions of “effective function” were introduced, and
all these definitions singled-out the same class of functions. In this section
operation stands for k-ary function on the natural numbers, that is a map of
the form f : Nk → N, with the understanding that a 0-ary function is simply
a natural number.

Many of the usual operations are effective, and a quick inspection is
usually enough to convince oneself of this fact. This naïve approach can
yield wrong results (see the Remarks 8.1 below) and shows its limits when
we need to prove that a certain function is not computable. In this case
the need for a rigorous definition becomes unavoidable. The definition of
computable function is the formal counterpart of the informal notion of
effective function. In the next sections we will look at two subclasses of the
computable functions: the elementary computable functions and the
primitive recursive functions.

Remarks 8.1. (a) Some functions are computable, even if at first sight
one might think otherwise. For example, the constant functions are
computable under any reasonable notion of computation, hence the
unary function

f(n) =

{
1 if P holds,

0 otherwise,

is computable, where P is some open problem in mathematics, for
example one of those number theory conjectures seen in Exercise 2.11
of Chapter I. In other words we know that the algorithm that computes
f is one of two algorithms, but it is not known which of the two is

5We are under the rather optimistic assumption that the proof be clearly written and that all
steps have been fully explicated.
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the correct one. The situation is, to some extent, similar to that of
Example 2.8 of Chapter I.

Another example is Ramsey’s function R : N → N introduced on
page 262, assigning to each n the least m such that for all 2-coloring of
the complete graph Km has a monochromatic subgraph isomorphic to
Kn (Theorem 10.8). Although R is computable, the exact value of R(n)
for n ≥ 5 is unknown.

(b) In order to show that f : N2 → N is computable, it would seem enough
to check that for each k the function fk : N → N, n 7→ f(k, n), is
computable and then argue as follows: given (k, n) fix an algorithm for
fk and use it to compute fk(n). However, this argument is not correct,
since we must ensure the computability of the procedure assigning to
each k the algorithm for fk. For example, if g : N→ N is not computable
and f(k, n) = g(k), then fk is constant and hence computable, but the
function f is not.

(c) In most cases, it is routine to check whether a certain set of integers is
computable, but there are exceptions. Woods conjectured in [Woo81]
that for all k and all a there is i ≤ k such that a + i is coprime with
a and with a + k, but soon after he found a counterexample: k = 16
and a = 2184. (In fact this is the least such counterexample.) We
say that k is an Erdős-Woods number if it is a counterexample to
Woods’ conjecture, that is if there is a natural number a such that each of
a, a+1, . . . , a+k has a common factor with a or a+k. The set of all Erdős-
Woods numbers is infinite [Dow89], and it is computable [CHR03],
but proving this is far from trivial.

8.A. Elementary computable functions. Addition, multiplication, the
distance between numbers |x− y|, and (the integer part of) division

⌊x/y⌋ =

{
the largest k such that y · k ≤ x if y ̸= 0

0 otherwise

are effective functions. Certain constructions yield new effective operations
from old ones.

Definition 8.2. (i) Suppose that f be k-ary and that g0, . . . , gk−1 are
n-ary. The composition of f with g0, . . . , gk−1 is the map h : Nn → N

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gk−1(x0, . . . , xn−1)).



200 II. Orders, Boolean algebras and computations

(ii) If f is k + 1-ary, the generalized sum of f and the generalized
product on f are the k + 1-ary functions∑

f(x0, . . . , xk−1, xk) =
∑
y<xk

f(x0, . . . , xk−1, y),

∏
f(x0, . . . , xk−1, xk) =

∏
y<xk

f(x0, . . . , xk−1, y),

where
∑

f(x0, . . . , xk−1, 0) = 0 and
∏
f(x0, . . . , xk−1, 0) = 1.

The definition of composition might seem a bit too restrictive, as one
might want gis to be of different arity, or that the order of the variables in
the gis be different. The projection functions Ink , with k < n

Ink : Nn → N, (x0, . . . , xn−1) 7→ xk,

can be used to fix this problem. For example, the 3-ary function

h(x0, x1, x2) = f(g0(x1, x2), g1(x0), g2(x1, x0, x0))

is the composition of f with g̃0, g̃1 and g̃2, where

g̃0(x⃗) = g0(I
3
1 (x⃗), I

3
2 (x⃗))

g̃1(x⃗) = g1(I
3
0 (x⃗))

g̃2(x⃗) = g2(I
3
1 (x⃗), I

3
0 (x⃗), I

3
0 (x⃗)).

Here and below x⃗ is a typographical abbreviation of x0, x1, x2, or more
generally x0, . . . , xn−1 or even the n-tuple (x0, . . . , xn−1), if clear from the
context.

Definition 8.3. The family E of elementary computable functions is the
smallest class of functions containing addition, multiplication, the distance
between numbers, the (integer part of) division, and the projections, and
closed under composition and generalized sums and products.

Lemma 8.4. The following functions are in E:

• Ck : N→ N, n 7→ k;

• sgn: N→ N mapping 0 to 0, and everything else to 1; the function sgn(n) =
1− sgn(n);

• S(n) = n+ 1, and x 7→ x ·− 1, where 0 ·− 1 = 0 and n ·− 1 = n− 1 if n > 0;

• the exponential and the factorial.
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Proof. Note that

C0(x) = |x− x| sgn(x) =
∏

y<xC0(y) sgn = sgn ◦ sgn
C1 = sgn ◦ C0 Cm+1 = Cm + C1 S(x) = x+ C1

xy =
∏
z<y

x x! =
∏
z<x

S(z) x ·− 1 = |x− C1(x)| · sgn(x).□

Following standard practice in mathematical logic A(x0, . . . , xn−1) stands
for (x0, . . . , xn−1) ∈ A and we say that A ⊆ Nk is a k-ary predicate.
For example the binary predicates x = y, x ≤ y, . . . denote the sets{
(x, y) ∈ N2 | x = y

}
,
{
(x, y) ∈ N2 | x ≤ y

}
, . . . . We say that A ⊆ Nk is an

elementary computable set or, equivalently, it is a k-ary elementary
computable predicate if its characteristic function χNk

A : Nk → {0, 1} be-
longs to E. More generally: if F is a family of functions, we will say that A
is in F or, equivalently, that it is an F-predicate if χA ∈ F.

Lemma 8.5. Suppose F ⊇ E is closed under composition, generalized sums
and products. If a k-ary function f is in F then Gr(f) of is a k + 1-ary
F-predicate.

Proof. χGr(f)(n1, . . . , nk,m) = sgn(|f(n1, . . . , nk)−m|). □

The converse of Lemma 8.5 is not true, as there are non-elementary
functions whose graph is elementary (Proposition 8.33).

Examples 8.6. Let F ⊇ E be closed under compositions, generalized sums
and products.

(A) If A(x1, . . . , xm) is an F-predicate and f1, . . . , fm ∈ F are k-ary, then
A(f1(x1, . . . , xk), . . . , fm(x1, . . . , xk)) is a k-ary F-predicate, since its
characteristic function is χA(f1(x1, . . . , xk), . . . , fm(x1, . . . , xk)).

(B) If A,B ⊆ Nn are F-predicates, then ¬A def
= A∁ = Nn \ A and A ∧B

def
=

A∩B are F-predicates, since χ¬A = sgn ◦χA and χA∩B = χA ·χB . Thus
also A∨B def

= A∪B, A\B, and A△B are F-predicates. The predicates
A⇒ B and A⇔ B are simply the sets ¬A∪B and (¬A∪B)∩ (¬B∪A)
respectively, and hence these are also F-predicates. Thus the family of
subsets of Nk whose characteristic functions belong to F is a Boolean
algebra.

(C) x < y is in F, as its characteristic function is sgn⌊S(x)/S(y)⌋. Thus
by (A) and (B) are F-predicates:
• x ≤ y, since it is equivalent to ¬(y < x),
• x = y, since it is equivalent to x ≤ y ∧ y ≤ x,
• x ̸= y.



202 II. Orders, Boolean algebras and computations

(D) If {A1, . . . , Ak} is a partition of Nn and the Ais are in F, and if
g1, . . . , gk ∈ F are n-ary functions, then the function f : Nn → N defined
by

f(x⃗) =



g1(x⃗) if x⃗ ∈ A1,

g2(x⃗) if x⃗ ∈ A2,

...

gk(x⃗) if x⃗ ∈ Ak,

is in F, since f(x⃗) = g1(x⃗) · χA1
(x⃗) + · · ·+ gk(x⃗) · χAk

(x⃗).
(E) If A ⊆ Nn+1 is in F then so is

∀z < y A(x⃗, z)
def
= {(x⃗, y) ∈ Nn+1 | ∀z (z < y ⇒ A(x⃗, z))}

as its characteristic function is
∏

k<y χA(x⃗, k). Thus also

∃z < y A(x⃗, z)
def
= {(x⃗, y) ∈ Nn+1 | ∃z (z < y ∧A(x⃗, z))}
= ¬{(x⃗, y) ∈ Nn+1 | ∀z (z < y ⇒ ¬A(x⃗, z))}

is in F. Similarly ∀z ≤ y A(x⃗, z) and ∃z ≤ y A(x⃗, z) are in F. The
predicates

∀z < y A(x⃗, z), ∃z < y A(x⃗, z), ∀z ≤ y A(x⃗, z), ∃z ≤ y A(x⃗, z)

are obtained from A by bounded quantification.
(F) If A ⊆ Nn+1 is in F, then the n+ 1-ary function

µz ≤ y A(x⃗, z) =

{
min{z ≤ y | A(x⃗, z)} if this set is non-empty,

y otherwise,

is in F. In fact h ∈ F where

h(x⃗, w) = sgn(
∑

z<S(w)χA(x⃗, z)) =

{
0 if ∃z ≤ wA(x⃗, z),

1 otherwise,

and hence µz ≤ y A(x⃗, z) =
∑

w<y h(x⃗, w) is in F. The predicate

µz ≤ y A(x⃗, z)

is obtained by bounded minimization. If g(y⃗) is in F, then the
function (x⃗, y⃗) 7→ µz ≤ g(y⃗)A(x⃗, z) is in F.

(G) If g ∈ F is n+ 1-ary, then for all k ∈ N the n+ 1-ary function

f(x⃗, y) =

{
min{z ≤ y | g(x⃗, z) = k} if this set is non-empty,

y otherwise,

is in F. In fact f(x⃗, y) = µz ≤ y A(x⃗, z), where A ⊆ Nn+1 is obtained
from the graph of g, i.e. the set

{
(x⃗, y, w) ∈ Nn+2 | g(x⃗, y) = w

}
, by
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Figure 12. Triangular and square enumerations of N× N

setting w equal to k, that is to say: putting in place of w the function
Ck(I

n
0 (x⃗)). The result follows from Lemma 8.5, and Example (F) above.

The following is a partial converse to Lemma 8.5.

Proposition 8.7. Let F ⊇ E be a family of functions closed under compo-
sition, and generalized sums and products. Let f, g be k-ary functions such
that: Gr(f) is an F-predicate, g ∈ F, and ∀x⃗ ∈ Nk f(x⃗) ≤ g(x⃗). Then f ∈ F.

Proof. f(x⃗) = µy ≤ g(x⃗) [(x⃗, y) ∈ Gr(f)]. □

8.A.1. Coding of sequences. The set N × N is in bijection with N, that is
there is a bijection f : N2 → N and two functions g0, g1 : N → N such that
f(g0(n), g1(n)) = n, for all n ∈ N. In fact the functions f, g0, g1 can be taken
to be in E:

Examples 8.8. (A) As every nonzero natural number is of the form 2n(2m+
1), let f(n,m) = 2n(2m + 1) ·− 1, g0(n) = ⌊log2(n + 1)⌋ and g1(n) =

⌊⌊n+ 1/2g0(n)⌋/2⌋ ·− 1.
(B) The square enumeration is obtained by listing the elements of N2

following the ordering6

(x, y) <G (x′, y′) ⇔
(
max(x, y) < max(x′, y′) ∨

[max(x, y) = max(x′, y′) ∧ (x < x′ ∨ [x = x′ ∧ y < y′])]
)
.

(C) The diagonal or triangular enumeration is obtained by listing the
elements of N2 according to the ordering

(x, y)� (x′, y′) ⇔ x+ y < x′ + y′ ∨ [x+ y = x′ + y′ ∧ x < x′].

6<G is the Gödel ordering and will be used in Section 18.C.
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Exercise 8.54 show that the paring functions of Examples (A), (B) and (C)
are in E. Although all three enumerations are important, the diagonal one is
the most useful. The resulting bijection is denoted by J : N2 → N, and has a
particularly simple analytical expression:

(8.1) J(x, y) =
1

2
(x+ y)(x+ y + 1) + x

Write

(8.2) (·)0, (·)1 : N→ N

for the inverse maps, defined by J((n)0, (n)1) = n.
It is possible to code in an elementary way the set N<N of all finite

sequences of natural numbers. Our goal is to find

• an elementary computable Seq ⊆ N coding all finite sequences of natural
numbers,
• an elementary computable ℓ : N→ N such that ℓ(m) is the length of the

sequence coded by m ∈ Seq,
• an elementary computable method for decoding Seq×N → N, (m, i) 7→
((m))i, such that ((m))i is the i-th element of the sequence coded by m, if
i < ℓ(m).

Recalling the notation from Section 3.E, we assume that 0 codes ⟨⟩ the empty
sequence. The number in Seq coding the sequence ⟨n0, . . . , nk⟩ is denoted by

⟨⟨n0, . . . , nk⟩⟩.

We present two methods to achieve this. The first method (Section 8.A.2)
uses exponentiation and prime numbers to code sequences; the second method
(Section 8.A.3) is based on elementary facts about addition and multiplication,
and for this reason it is the preferred method.
8.A.2. Coding by exponentiation and primes. Let p : N→ N be the function
that enumerates the primes, that is p(0) = 2, p(1) = 3, p(2) = 5, . . . . Given
n0, . . . , nk ∈ N the number

m = p(0)n0+1p(1)n1+1 · · ·p(k)nk+1

codes the sequence ⟨n0, . . . , nk⟩. Then

{n ∈ N | ∀p, q primes (p | n ∧ q < p⇒ q | n)}

codes N<N. The functions e : N2 → N and l : N→ N defined by

• e(0, i) = e(1, i) = 0 and if k is the largest integer such that p(i)k+1 | n,
then e(n, i) = k;
• l(0) = l(1) = 0 and l(n) = the least i such that [p(i) ∤ n].
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yield the decoding machinery, and the length, that is e(n, i) = ((n))i and
l(n) = ℓ(n).
8.A.3. Coding by Gödel’s β function. Let us start with some elementary facts
from number theory.

The function

(8.3) Rem: N2 → N
defined by Rem(n,m) = the remainder of the division of n by m > 0, and
Rem(n, 0) = 0 is elementarily computable.

Fix pairwise co-prime 1 < c0, . . . , cn−1 ∈ N and let N =
∏

i<n ci. Then
∀k [N | k ⇔ ∀i < n (ci | k)] hence the map

Z/N → Z/c0 × · · ·Z/cn−1, {0, . . . , N − 1} ∋ x 7→ (x/c0, . . . , x/cn−1)

is an isomorphism, where x/ci is the equivalence class of x in Z/ci. Therefore,
for any choice of (not necessarily distinct) a0, . . . , an−1 ∈ N there is a unique
x < N such that x/ci = ai/ci for all i < n. We have thus proved:

Theorem 8.9 (Chinese remainder Theorem). If 1 < c0, . . . , cn−1 ∈ N are
pairwise co-prime, then for each a0, . . . , an−1 ∈ N there is a unique 0 ≤ x <∏

i<n ci such that x ≡ ai mod ci for i < n.

The coding strategy will be the following: given a0, . . . , an−1, choose
1 < c0, . . . , cn−1 pairwise co-prime and such that ai < ci. By Theorem 8.9
an x can be found so that ai = Rem(x, ci), hence the integer x encodes the
string ⟨a0, . . . , an−1⟩. Now for the details.

Lemma 8.10. Let y be a positive integer such that i | y for all 1 ≤ i < n and
let

ci = 1 + (i+ 1) · y.
Then c0, . . . , cn−1 are pairwise co-prime.

Moreover, if y ≥ max {a0, . . . , an−1}, where ⟨a0, . . . , an−1⟩ ∈ N<N, then
ai < ci for all i < n.

Proof. Towards a contradiction suppose that p is prime such that p | ci and
p | cj , with i < j < n. Then p | (cj − ci) = (j − i) · y and hence p | (j − i) or
p | y. Since j − i < n, and by hypothesis (j − i) | y, it follows that p | y and
hence ci is congruent modulo p to 1: a contradiction. □

Definition 8.11. β : N2 → N is the map

β(m, i) = Rem((m)0, 1 + (i+ 1) · (m)1).

The following is consequence of Lemma 8.10:

Lemma 8.12 (Gödel). For every n > 0 and every ⟨a0, . . . , an−1⟩ ∈ N<N

there is m such that β(m, i) = ai, for i < n.
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Proof. Let y > a0, . . . , an−1 be such that i | y for all i < n. By Lemma 8.10
the numbers ci

def
= 1 + (i + 1) · y are pairwise coprime. By the Chinese

remainder theorem there is x <
∏

i<n ci such that x ≡ ai mod ci for i < n.
Let m = J(x, y). Then

β(m, i) = Rem(x, 1 + (i+ 1) · y) = Rem(x, ci) = ai. □

Given a0, . . . , an−1 set

(8.4) ⟨⟨a0, . . . , an−1⟩⟩ = the least m such that
β(m, 0) = n ∧ ∀i < n (β(m, i+ 1) = ai).

It is clear that β is in E, and so are the functions

ℓ(x) = β(x, 0), ((x))i = β(x, i+ 1),

and the predicate

Seq = {n | ¬∃m < n [ℓ(m) = ℓ(n) ∧ ∀i < ℓ(n) (β(n, i) = β(m, i))]} .

The function IS : N2 → N

IS(x, i) = µy ≤ x
(
ℓ(y) = i ∧ ∀j < i

(
((x))j = ((y))j

))
is elementary computable. If x = ⟨⟨a0, . . . , ak−1⟩⟩ and i ≤ k, then IS(x, i) =
⟨⟨a0, . . . , ai−1⟩⟩; for this reason IS is called the initial-segment function. The
concatenation function Conc: N2 → N is defined as

Conc(x, y) =


⟨⟨a0, . . . , an−1, b0, . . . , bm−1⟩⟩ if x = ⟨⟨a0, . . . , an−1⟩⟩

and y = ⟨⟨b0, . . . , bm−1⟩⟩,

0 if x /∈ Seq∨y /∈ Seq.

Proposition 8.13. (a) There is an elementary computable function B : N2 →
N such that for all a0, . . . , an−1 ∈ N

⟨⟨a0, . . . , an−1⟩⟩ ≤ B(max{a0, . . . , an−1}, n).

(b) For every n ≥ 1 the function Nn → N, ⟨a0, . . . , an−1⟩ 7→ ⟨⟨a0, . . . , an−1⟩⟩,
is elementary computable.

(c) Conc, IS ∈ E.

Proof. (a) The function w(k, n) = max {k, n} · n! is in E, and so is

B(k, n) = J
(∏

i≤n c(i, k, n), w(k, n)
)
,

where c(i, k, n) = 1+(i+1) ·w(k, n). Given a0, . . . , an−1 ∈ N, by Theorem 8.9
and Lemma 8.10 there is x <

∏
i≤n c(i, k, n) such that n ≡ x mod c(0, k, n)

and ai ≡ x mod c(i+ 1, k, n). Since J is increasing in both variables,

∃z ≤ B(k, n)
[
ℓ(z) = n ∧ ∀i < n (((z))i+1 = ai)

]
.
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(b) Letting k = max {a0, . . . , an−1, n}, then

⟨⟨a0, . . . , an−1⟩⟩ = µz ≤ B(k, n)
[
ℓ(z) = n ∧

∧
i<n

((z))i+1 = ai
]
,

and hence (a0, . . . , an−1) 7→ ⟨⟨a0, . . . , an−1⟩⟩ is in E.

(c) It is enough to find g : N2 → N in E such that for all x, y ∈ Seq

Conc(x, y) = µz ≤ g(x, y)
[
ℓ(z) = ℓ(x) + ℓ(y)

∧ ∀i < ℓ(x) (((z))i = ((x))i) ∧ ∀j < ℓ(y) (((z))ℓ(x)+j = ((y))j)
]
.

Since β(x, i) ≤ x for all i, the map
h(x) = max{((x))0, . . . , ((x))ℓ(x)−1}

= µn ≤ x [∀i < ℓ(x) (β(x, i+ 1) ≤ n)]

is in E, and so are the functions

w(x, y) = max{h(x), h(y), ℓ(x), ℓ(y)} · (ℓ(x) + ℓ(y))!

ci(x, y) = 1 + (i+ 1)w(x, y).

Arguing as in part (a) one can define

g(x, y) = J(
∏

i≤ℓ(x)+ℓ(y) ci(x, y), w(x, y)). □

8.B. Primitive recursive functions.

Definition 8.14. If f is k-ary and g is k + 2-ary, we shall say that the
k + 1-ary function

h(x⃗, n) =

{
f(x⃗) if n = 0,

g(x⃗, n− 1, h(x⃗, n− 1)) if n > 0,

is obtained by primitive recursion from f and g. The variables x⃗ are
called parameters of the recursion; when these are not present, that is if
g is 2-ary and a ∈ N, then h : N→ N defined by

h(n) =

{
a if n = 0,

g(n− 1, h(n− 1)) if n > 0,

is obtained by primitive recursion without parameters from a and g.

The primitive recursion schemata (with or without parameters) can be
merged into a single scheme if constants are taken to be 0-ary functions. If
in the recursion scheme g does not depend on the k + 1-st variable, that is g
is k + 1-ary and

h(x⃗, n) = g(x⃗, h(x⃗, n− 1)), (n > 0)

then h is obtained by iteration via g starting from f or from a.
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If h is obtained from effective functions f and g by primitive recursion as
in Definition 8.14, then h is effective as well—in order to compute h(x⃗, n) we
compute in order

h(x⃗, 0) = f(x⃗)

h(x⃗, 1) = g(x⃗, 0, h(x⃗, 0)) = g(x⃗, 0, f(x⃗))

h(x⃗, 2) = g(x⃗, 1, h(x⃗, 1)) = g(x⃗, 1, g(x⃗, 0, f(x⃗)))

...

h(x⃗, n) = g(x⃗, n− 1, h(x⃗, n− 1)).

Definition 8.14 is different from ordinary definitions, in that the object to
be defined f appears on the left and on the right of the defining equa-
tion. In Section 12.B these definitions will be shown to be perfectly legal
(Theorem 12.3).

Definition 8.15. The family P of primitive recursive functions is the
smallest class of functions containing {c0, S} ∪ {Ink | k < n} and closed under
composition and primitive recursion.

We say that A ⊆ Nk is a primitive recursive set or, equivalently, it
is a k-ary primitive recursive predicate if its characteristic function is a
primitive recursive function.

Theorem 8.16. The class P is closed under generalized sums and products
and contains E.

P is the smallest class containing E and closed under composition and
primitive recursion.

For a proof of Theorem 8.16 see Exercise 8.55. The family P is larger
than E (Exercise 8.64), nevertheless E is closed under bounded primitive
recursion (Exercise 8.59).

Theorem 8.17. Suppose h : Nn+1 → N is obtained by primitive recursion
from g : Nn+2 → N and f : Nn → N. (If n = 0, that is if the recursion is
without parameters, then f is a natural number.) If f, g, k ∈ E and

∀x⃗ ∈ Nn+1 [h(x⃗) ≤ k(x⃗)],

then h ∈ E.

Recall the coding apparatus for finite sequences introduced in the preced-
ing Section. Given f : Nk+1 → N, let fm : Nk+1 → N be the function defined
by primitive recursion:

fm(x⃗, y) =

{
⟨⟨f(x⃗, 0)⟩⟩ if y = 0,

Conc(fm(x⃗, y − 1), ⟨⟨f(x⃗, y)⟩⟩) otherwise.
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In other words:
fm(x⃗, y) = ⟨⟨f(x⃗, 0), . . . , f(x⃗, y)⟩⟩

remembers all values f(x⃗, y′) with y′ ≤ y, and because of this it is called the
memory-function of f . The following result is straightforward.

Lemma 8.18. Suppose F is a family of functions containing the coding
apparatus, and closed under composition and primitive recursion. Then
f ∈ F ⇔ fm ∈ F.

In Definition 8.14, in order to compute the value h(x⃗, n) it is enough to
know the value immediately before h(x⃗, n− 1), but there are situations where
h(x⃗, n) depends also on h(x⃗, i), for i < n.

Definition 8.19. If f is k-ary and g is k+2-ary, we will say that the k+1-ary
function

h(x⃗, n) =

{
f(x⃗) if n = 0,

g(x⃗, n− 1, hm(x⃗, n− 1)) if n > 0,

is obtained by generalized primitive recursion from f and g.

Proposition 8.20. Let F ⊇ P be closed under composition and primitive
recursion. If h is obtained by generalized primitive recursion from f, g ∈ F

then h ∈ F.

Proof. Let H : Nk+1 → N be the function defined by primitive recursion

H(x⃗, n) =

{
F (x⃗) if n = 0,

G(x⃗, n− 1, H(x⃗, n− 1)) if n > 0,

where

F : Nk → N F (x⃗) = ⟨⟨f(x⃗)⟩⟩,

G : Nk+2 → N G(x⃗,m, y) = Conc(y, ⟨⟨g(x⃗,m, y)⟩⟩).
As z 7→ ⟨⟨z⟩⟩ is primitive recursive, then F ∈ F, and since F is closed under
primitive recursion, it follows that G and H belong to F. As

H(x⃗, n) = ⟨⟨h(x⃗, 0), h(x⃗, 1), . . . , h(x⃗, n)⟩⟩ = hm(x⃗, n)

it follows that h(x⃗, n) = ((H(x⃗, n)))n, and hence h ∈ F. □

8.C. Computable functions. We have seen that many effective operations
are in P, but there are examples of effective functions that are not primitive
recursive. Our goal is to give a rigorous definition of the largest class of
effective functions, called the computable functions. To achieve this we
must first take a closer look at the informal notion of algorithm. First of all
notice that algorithms may yield partial functions. For example, suppose P ⊆
N2 is decidable, that is there is an effective procedure to determine whether
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P (n,m) holds or not—equivalently its characteristic function χP : N2 →
{0, 1} is effective. Let Q = domP , that is n ∈ Q ⇔ ∃mP (n,m). Sets
of this form are said to be semi-decidable. Every decidable Q ⊆ N is
semi-decidable, just take P = Q×N; a less trivial example of semi-decidable
predicate is the Collatz set C of Example 7.17. The algorithm

given n, search for an m such that P (n,m), and in case
you find it, output 1 as result

defines an effective partial constant function from N to N, f : Q→ N, f(n) = 1.
If n ∈ Q then after finitely many steps we conclude that f(n) = 1, but if
n /∈ Q the algorithm goes into an infinite loop and the process never halts.
Similarly the function

g(n) = µmP (n,m)
def
= min{m ∈ N | (n,m) ∈ P}

is effective, but g need not be total, as there could be n such that ¬P (n,m)
for all m. If ∀n ∃mP (n,m) then g is total, but there are situations when
the outcome is not so definite. Suppose that the sentence ∀n ∃mP (n,m)
formalizes some open problem in number theory, for example asserting that a
certain set A of prime numbers is infinite: ∀n ∃m (n < m∧A(m)). Examples
of such A are the set of all Wieferich’s primes or its complement (Example 2.3),
the set {p | p and p+ 2 are prime}, the set of all Mersenne primes {p |
p is prime and ∃n (2n − 1 = p)}, . . . . Then g is an effective function whose
domain is an initial segment I of N, but we cannot prove to that I = N.7

An even more puzzling phenomenon occurs when proving ∀n∃mP (n,m)
requires a suitably strong theory. Peano Arithmetic (PA for short) is the first
order theory in which a decent theory of the natural numbers can be developed.
Its language LPA has a unary function symbol for the successor, two binary
function symbols for addition and multiplication, and a binary relation symbol
for the order; it will be presented in great detail in Section 12.D. In Section 35
examples will be given of LPA-formulæ φ(x, y) such that: the set P defined by
φ is in E and hence it is decidable via some elementary function, T ⊢ ∀x ∃yφ,
yet PA ̸⊢ ∀x ∃yφ, where T is any suitably strong extension of PA. We all
agree that g is effective, but from the point of view of PA the function g
cannot be shown to be total, while this can be established in T. For this
reason such g is said to be provably-total-in-T. A concrete example is the
function g of Example 1.1 in Section 1, i.e. the Goodstein sequence: it is
clearly computable, but to argue that it is total one need to resort to theories
that are stronger than PA. This phenomenon is quite general, meaning for
any sufficiently strong theory theory S (for example PA), there is a stronger
T and a suitable φ for which the argument above applies.

7Naturally this uncertain situation could be resolved in the future by a major breakthrough
in number theory.
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By a partial k-ary function we mean a function with values in N and
domain a subset of Nk; if the domain is indeed Nk we say that the function
is total. It is convenient to adopt the following

Notation. If f is a partial k-ary function

f(x⃗)↓ stands for x⃗ ∈ dom f f(x⃗)↑ stands for x⃗ /∈ dom f.

The composition of f partial k-ary with g1, . . . , gk partial n-ary is the
partial n-ary function h : D → N, where h(x⃗) = f(g1(x⃗), . . . , gk(x⃗)) and

D = {x⃗ ∈ Nn | x⃗ ∈ dom g1 ∩ · · · ∩ dom gk ∧ (g1(x⃗), . . . , gk(x⃗)) ∈ dom f}
= {x⃗ ∈ Nn | g1(x⃗)↓ ∧ · · · ∧ gk(x⃗)↓ ∧ f(g1(x⃗), . . . , gk(x⃗))↓}.

If f is a partial k + 1-ary function, then µy [f(x⃗, y) = 0] is the partial
k-ary function g defined as follows:

g(x⃗) =

{
min{y | f(x⃗, y) = 0 ∧ ∀z ≤ y f(x⃗, z)↓} if this set is non-empty,

undefined otherwise.

Let us pause for some examples.

• If f is total, then µy [f(x⃗, y) = 0] is the least y such that f(x⃗, y) = 0, if
such y exists, and undefined otherwise.
• Suppose (n,m) ∈ dom f if and only if m is even, and in this case f(n,m) =
0. Then µy [f(x, y) = 0] is total and equal to c0.
• Suppose (n,m) ∈ dom f if and only if m is odd, and in this case f(n,m) = 0.

Then µy [f(x, y) = 0] is the empty function.
• If f(n,m) = |n −m| then µy [f(x, y) = 0] is total, and it is the identity

function.

Definition 8.21. The collection C of computable functions is the smallest
family F of partial functions on N containing {+, ·,χ≤} ∪ {Ink | k < n}, and
closed under composition and the µ -operator, that is: if f ∈ F is k + 1-ary
then the partial k-ary function µy [f(x⃗, y) = 0] is in F.

The collection of total computable functions is Ctot.

Theorem 8.22. The class Ctot is closed under primitive recursion and
contains P.

C is the smallest class containing P and closed under composition and
the µ -operator.

For a proof of Theorem 8.22 see Exercise 8.69. There are total computable
functions that are not primitive recursive (Section 8.D), so

E ⊂ P ⊂ Ctot ⊂ C.
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The projections, addition, multiplication, and the characteristic function of
the ordering are total functions The composition of total functions yields
a total function, so the culprit for obtaining partial functions is the µ -
operator. Applying µ to well-behaved functions guarantees total functions.
It is easy to check that Ctot is the smallest class F of total functions containing
{+, ·,χ≤} ∪ {Ink | k < n}, closed under composition, and such that if f ∈ F

is k + 1-ary and ∀x⃗ ∃y [f(x⃗, y) = 0], then x⃗ 7→ µy [f(x⃗, y) = 0] is in F.
By Kleene’s Theorem 8.40 the µ -operator can be applied exactly once to

a total function in order to obtain any function in C: for any ariety n > 0
there is an elementary computable kn : Nn+2 → N such that for each n-ary
f ∈ C there is an e ∈ N such that

f(x1, . . . , xn) = (µy (kn(e, x1, . . . , xn, y) = 0)0

where z 7→ (z)0 is defined on page 204.
The definitions of E, P, C all share the same structure: start from a family

F0 of basic functions, and construct Fn+1 by closing Fn under composition
and an appropriate construction principle, so that the resulting family is
F =

⋃
n∈N Fn. Therefore

• if F = E, then F = {+, ·, d, q} ∪ {Ink | k < n}, where d(x, y) =
|x− y| and q(x, y) = ⌊x/y⌋, and the construction principle is taking
generalized sums and products;
• if F = P, then F0 = {c0, S} ∪ {Ink | k < n} and the construction

principle is primitive recursion;
• if F = C, then F0 = {+, ·,χ≤} ∪ {Ink | k < n} and the construction

principle is the µ -operator.

Thus E, P, and C are examples of induction systems in the sense of Defi-
nition 7.14 in Section 7.A.1. In particular, if we need to prove that every
function in F has property P we can proceed by induction: we prove that
every function in F0 has property P , and that if every function in

⋃
k<n Fk

has property P , then every function in Fn has property P .
A set A ⊆ Nk is a computable if its characteristic function is computable.

If A is a k+ 1-ary computable predicate then sgn ◦χA is a computable, total,
k + 1-ary function, and hence the function

Nk → N x⃗ 7→ µy A(x⃗, y)

assigning to each x⃗ the least y (if it exists) such that A(x⃗, y) is computable.

Remark 8.23. Up until the eighties of the last century people used the
adjective recursive as synonymous of computable, and computability theory
was called recursion theory. Nowadays recursive is used mainly when referring
to a computing procedure that feeds on some previously computed values.
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Every function in C is effective. Conversely,

Church’s thesis. Every effective operation is in C.

Every computable set is decidable, and by Church’s thesis every decidable
set is computable. Church’s thesis is neither a theorem nor a conjecture,
but rather an empirical observation: it asserts that the rigorous definition
of recursive function captures the vague notion of intuitively computable
function. We cannot exclude that Church’s thesis might be refuted, one day:
it would be enough to exhibit a function which is effectively computable in
the naïve sense, and yet it can be shown not to be computable in the sense
of Definition 8.21. There are, nevertheless, good reasons to believe Church’s
thesis since:

(A) all known examples of effective operations are in fact computable func-
tions;

(B) several distinct formalizations of the concept of effective operation have
been proposed—the definition above of computable function given above
is one of these; among the other ones are the Turing machines and Post
systems. These formalizations, although ostensibly different, define the
same class of functions C.

Because of this, Church’s thesis is accepted (as an empirical fact) in math-
ematics, and it is often used in proofs to argue that a given function is
computable. This is quite similar to what happens in calculus, where a
from some point on it is argued in an informal way that a given function is
continuous, instead of computing the δ from the ε. Actually, this amounts to
ask the reader to fill-in the gaps that the author of the text is too lazy to
write. This chore can be left to the reader only when the reader is familiar
enough with the basics of the subject, and for this reason our treatment, at
the beginning, will be quite detailed.

Remarks 8.24. (a) Knowing that a function is in C does not mean that
we know its algorithm. For example the function f defined by f(n) = 0
if a certain open problem in number theory (like the ones named in
Exercise 2.11) is true, and f(n) = 1 otherwise; then f is computable,
since it is constant, but we do not know which program computes the
function.

(b) The notion of computable function describes a rather idealized concept
of “computation”, unfettered by the inherent limitations of physical
devices. In other words, even if we know the algorithm witnessing that f
is computable, it is not clear that the function is feasable, meaning that
we can actually compute f(n) for all n. For example the computation
of n! is not feasible even for small values of n even if the function
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n 7→ n! is primitive recursive. For this reason, in the second half of the
last century, a theory of feasible computations, known as complexity
theory, emerged.

(c) There are countably many functions in C, and hence there are countably
many computable sets. Therefore computable sets and functions are a
small minority in the family of all sets and operations on the natural
numbers (see Section 13).

Suppose that in the definition of µ -operator the condition ∀z ≤ y f(x⃗, z)↓
is removed, so that the definition of g = µy [f(x⃗, y) = 0] becomes

g(x⃗) =

{
min{y | f(x⃗, y) = 0} if this set is non-empty,

undefined otherwise.

With this relaxed definition of µ -operator we could generate non-computable
functions. Imagine that f(x, y) is a partial computable function and that A
is an algorithm (i.e. a computer program) that calculates f : given an input
(n,m)

• if (n,m) ∈ dom f then after enough time has elapsed the algorithm A

applied to (n,m) stops and outputs f(n,m),
• if (n,m) /∈ dom f then A will go-on forever without any output.

Let us see how to compute g(x) = µy (f(x, y) = 0). The naïve idea would
be to calculate in order: f(n, 0), f(n, 1), . . . until we reach an integer m
such that f(n,m) = 0, and set m = g(x). Unfortunately f(n, k) might be
undefined for some k < m, and hence the procedure described above would
run into a grinding halt before reaching the input (n,m). A better strategy
would be applying the algorithm A simultaneously to

(n, 0), (n, 1), (n, 2), . . . .

Since our computer is multitasking we can spend some time on input
(n, 0), then some time on inputs (n, 0), (n, 1), then some time on inputs
(n, 0), (n, 1), (n, 2), and so on. If at time t the algorithm A stops on input
(n,m) yielding output 0, we cannot argue that f(n) = m since at some
later time t′ > t we might verify that the algorithm A stops on input (n,m′)
yielding output 0 with m′ < m. But waiting forever might not be wise since
f might not be defined on (n,m′). From the arguments above, it should be
clear that culprit for the subtle nature of the computable functions is the
minimization operator.

The elements of C are partial functions, so by a k-ary computable function
we always mean a function with domain contained in Nk and taking values
in N. When we mean a computable f : Nk → N, i.e. an element of Ctot, we
speak of a total computable k-ary function.
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Examples 8.25. (a) The empty function is in C—consider, for example
f(x) = µy [S(y) = 0].

(b) For any computable D ⊆ Nk there is a k-ary computable f such that
dom f = D; for example

f(x⃗) =

{
1 if x ∈ D,

µy [S(y) = 0] otherwise.

The functions in Example 8.25 are partial, but can be easily extended
to a total computable functions. In fact any computable function f whose
domain is a computable set D can be extended to a total computable f̃—just
map the complement of D to some fixed value. On the other hand, there are
computable partial functions that cannot be extended to a total computable
function (Theorem 8.43), i.e. there are f ∈ C such that there is no g ∈ Ctot

such that g ↾ dom f = f . This means that dom f is not computable, and sets
of this form are called semi-computable (see Section 8.E).
8.C.1. Some properties of computable functions.

Lemma 8.26. A total k-ary function f is computable if and only if its graph
Gr(f) is a k + 1-ary computable predicate.

Proof. One direction follows from Lemma 8.5. Conversely, if χGr(f) is
computable, then also f is computable: given x⃗ one looks for the first (and
unique) y such that (x⃗, y) ∈ Gr(f), and such y is f(x⃗). Formally:

f(x⃗) = µy [1 ·− χGr(f)(x⃗, y) = 0]. □

Proposition 8.27. For every unary, total computable f there is a partial
unary computable g which is the right-inverse of f , that is dom g = ran f and
∀y ∈ dom g (f(g(y)) = y).

Proof. The function (y, x) 7→ |f(x)− y| is computable, and

g(y) = µx [|f(x)− y| = 0]

is the required function. □

Proposition 8.27 can be extended to partial functions as well—see Corol-
lary 8.47.

Corollary 8.28. The inverse of a computable bijection is computable. In
particular, the set of all computable bijections of N is a group.

The enumerating function of an infinite set A ⊆ N is a function
f : N→ N mapping n to the n-th element of A.

Proposition 8.29. Suppose that A ⊆ N is infinite, and that f is the enu-
merating function. Then A is computable if and only if f is computable.
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Proof. Suppose that A is computable: f is computable since

f(n) =

{
min(A) if n = 0

g(f(n− 1)) if n > 0

where g(k) = µm [A(m) ∧m > k].
The other direction follows from A(x) ⇔ ∃y ≤ x [|f(y)− x| = 0]. □

Proposition 8.29 does not generalize to other classes of functions: if
F is E or P, there are sets in F whose enumerating function is in C \ F—
Proposition 8.33(a). The next result will be useful in the next section.

Lemma 8.30. Let A and B be infinite sets that partition N and let fA and
fB be their enumerating functions. Let F be E or P If Gr(fA) ∈ F, then
Gr(fB), A and B are in F.

Proof. (x, y) ∈ Gr(fB) if and only if

x = y < fA(0) ∨
(
∃u, v < y [(u, v) ∈ Gr(fA)

∧ ¬∃z, w < y (u < z ∧ (z, w) ∈ Gr(fA)) ∧ y = x+ u]
)

hence Gr(fB) ∈ F. Moreover A = {y | ∃x ≤ y [(x, y) ∈ Gr(fA)]} ∈ F hence
B = N \A ∈ F. □

Using the bijection J : N2 → N of (8.1) one can define the bijections

(8.5) Jn : Nn → N, Jn(x0, . . . , xn−1) = J(x0,J
n−1(x1, . . . , xn−1))

where J1 = idN and J2 = J . The inverse functions

(·)nk : N→ N (k < n)

are defined by

(8.6) Jn((x)n0 , . . . , (x)
n
n−1) = x.

The bijections Jn and their inverses are elementary computable (Exer-
cise 8.61). A function

f : Nn → Nm, f(x⃗) = (f0(x⃗), . . . , fm−1(x⃗))

is elementary computable (primitive recursive) if the fi : Nn → N (i < m)
are elementary computable (primitive recursive) computable. The notion of
computable function and computable set can be extended to other domains,
such as N<N: a function F : N<N → N<N is elementary computable (primitive
recursive) if and only if there is an elementary computable (primitive recursive)
f : N→ N such that

F (x0, . . . , xn) = (y0, . . . , ym) ⇔ f(⟨⟨x0, . . . , xn⟩⟩) = ⟨⟨y0, . . . , ym⟩⟩,



8. Computability 217

and a set A ⊆ N<N is elementary computable (primitive recursive) if and
only if the set

{⟨⟨x0, . . . , xn⟩⟩ | (x0, . . . , xn) ∈ A}
is elementary computable (primitive recursive).

8.D. Computable, but not primitive recursive functions. Acker-
mann’s function Ack: N2 → N is a concrete example of a computable
function that it is not primitive recursive. It is defined as

Ack(m,n) =


n+ 1 if m = 0,

Ack(m− 1, 1) if m > 0 and n = 0,

Ack(m− 1,Ack(m,n− 1)) if m > 0 and n > 0.

For ease of notation let Ackm : N→ N, n 7→ Ack(m,n). Then Ack0 ∈ E and
an easy induction proves that

m > 0 ⇒ Ackm(n) = Ack
(n+1)
m−1 (1)(8.7a)

∀m (Ackm is increasing) .(8.7b)

Therefore the computation of the values of the function Ackm boils-down to
computing values of the functions Ackm−1,Ackm−2, . . . ,Ack0. By Church’s
thesis, Ackermann’s function is computable. To prove this rigorously argue
as follows.

By equations (8.7), in order to compute Ack(m,n) it is enough to know
Ackermann’s function restricted to some finite D ⊆ N × N. Let F be the
collection of all pairs (f,D) such that:

(A) D ⊆ N× N is finite and f : D → N,
(B) ∀m,n

[
(m,n+ 1) ∈ D ⇒ (m,n) ∈ D

]
,

(C) ∀n
[
(0, n) ∈ D ⇒ f(0, n) = n+ 1

]
,

(D) ∀m
[
(m+ 1, 0) ∈ D ⇒ f(m+ 1, 0) = f(m, 1)

]
,

(E) ∀m,n
[
(m + 1, n + 1) ∈ D ⇒ (m + 1, n) ∈ D ∧ (m, f(m + 1, n)) ∈

D ∧ f(m+ 1, n+ 1) = f(m, f(m+ 1, n))
]
.

For every (m,n) we have that (Ack ↾ D,D) ∈ F, where D = {(i, j) ∈ N× N |
i ≤ m ∧ j ≤ km−1} and{

k0 = n,

ki+1 = Ack
(ki+1)
m−i (1) for 0 < i ≤ m.

Thus

Ack(m,n) = k ⇔ ∃(f,D) ∈ F
[
(m,n) ∈ D ∧ f(m,n) = k

]
.
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Every (f,D) ∈ F is in essence a finite sequence of natural numbers, hence it
can be coded as an element of Seq and let S ⊆ Seq be the set of numbers that
code an element of F. Thus an element of S is a finte sequence of natural
numbers, each coding a triple J(J(n,m), f(n,m)). Equations (A)–(E) can
be translated into conditions on the naturals showing that S is elementary
computable. For example, condition (A) can be rendered as

∀i, i′ < ℓ(s)∀m,n, k, k′ < s [((s))i = J(J(n,m), k)

∧ ((s))i′ = J(J(n,m), k′)⇒ k = k′]

while (B) and (C) become, respectively

∀i, i′ < ℓ(s)∀m,n, k, k′ < s [((s))i = J(J(n,m), k)

∧ ((s))i′ = J(J(n,m), k′)⇒ k = k′]

and

∀m,n < s
[
∃i < ℓ(s)∃k < sJ(J(m,n+ 1), k) = ((s))i

⇒ ∃i′ < ℓ(s) ∃k < sJ(J(m,n), k′) = ((s))i′
]
.

Therefore

Ack(m,n) = k ⇔ ∃s ∈ S ∃i < ℓ(s) [((s))i = J(J(m,n), k)]

and hence Ack(m,n) = (µy A(m,n, y))1, where

(8.8) A(m,n,J(s, k)) ⇔ s ∈ S ∧ ∃i < ℓ(s) [((s))i = J(J(m,n), k)].

Since A ⊆ N3 is elementary computable, it follows that Ack is computable.

Theorem 8.31. If f : Nn → N is primitive recursive, then there is a c such
that

∀x1, . . . , xn (f(x1, . . . , xn) < Ack(c, x1 + · · ·+ xn)) .

For a proof see Exercise 8.68.

Corollary 8.32. Ackermann’s function is not primitive recursive.

Proof. If, towards a contradiction, Ack were primitive recursive, then also
f(n) =

∑n
i=0Ack(i, n) would be primitive recursive, hence ∀n (f(n) < Ack(c, n))

for suitable c. In particular, if n ≥ c then

Ack(c, n) ≤
n∑

i=0

Ack(i, n) = f(n) < Ack(c, n)

a contradiction! □

By Corollary 8.28, the inverse of a recursive bijection is recursive.
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Proposition 8.33. (a) There is an infinite elementary recursive subset of
N whose enumerating map is computable but not in P.

(b) There is a computable function not in P whose graph is in E.
(c) There is an elementary computable bijection of N whose inverse is

computable but not in P.

Proof. Let A be the elementary predicate in (8.8). The function

f0 : N→ N, x 7→ µy A(x, x, y)

is increasing and dominates every primitive recursive unary function, since
n 7→ Ack(n, n) has this property and (k)1 ≤ k for all k. In particular f0 is
total, computable nut not in P, and ran(f0) and N \ ran(f0) are infinite. Let
f1 be the enumerating function of N \ ran(f0). Since

Gr(f0) =
{
(x, y) | A(x, x, y) ∧ ∀y′ < y [¬A(x, x, y′)]

}
is in E, then Gr(f1) and ran(f0) are in E as well by Lemma 8.30. This
proves (a) and (b).

Let g : N→ N be the bijection given by copying f0 on the even numbers
and f1 on the odd numbers:

g(x) =

{
f0(n) if x = 2n,

f1(n) if x = 2n+ 1.

Then g is a bijection, its graph

{(2x, y) | (x, y) ∈ Gr(f0)} ∪ {(2x+ 1, y) | (x, y) ∈ Gr(f1)}
is elementary, and g−1(y) ≤ 2y + 1, thus g−1 ∈ E by Proposition 8.7. Since
f0(n) = g(2n) it follows that g is computable but not in P. □

8.E. Computable and semi-computable sets. Example 8.6(A) can
be generalized to the case of computable functions. In other words, if
A(x1, . . . , xk) is a computable predicate and f1, . . . , fk are n-ary computable
total functions, then

A(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn))

is computable. We abbreviate this by saying that computable predicates are
closed under computable substitutions.

A similar argument holds for Examples 8.6(B)–(F). In particular, the
family of computable subsets of Nk is a Boolean algebra, and if A(x⃗, y) is
k + 1-ary computable, then the k + 1-ary predicates obtained from A by
bounded quantifications

∀z ≤ y A(x⃗, y) ∃z ≤ y A(x⃗, y)

are computable.
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Definition 8.34. A predicate A ⊆ Nk is semi-computable if there is a
computable Ã ⊆ Nk+1 which projects onto A, that is

A(x⃗) ⇔ ∃y Ã(x⃗, y).

Every computable predicate is semi-computable, but not conversely (The-
orem 8.48). If Φ: Nn → Nk is a computable bijection and n, k ≥ 1, then

A ⊆ Nn is (semi-)computable ⇔ Φ[A] ⊆ Nk is (semi-)computable.

Proposition 8.35. A semi-computable predicate is the domain of some
computable function.

Proof. Suppose A(x⃗)⇔ ∃y B(x⃗, y) with B computable. The function f(x⃗) =
µy B(x⃗, y) is computable, and dom f = A. □

Proposition 8.36. Let f be a partial k-ary function. If Gr(f) is semi-
computable, then f is computable.

Proof. Let A ⊆ Nk+2 be computable and such that (x⃗, y) ∈ Gr(f) ⇔
∃z A(x⃗, y, z). Then f(x⃗) = (µwA(x⃗, (w)0, (w)1))0 is computable. □

Proposition 8.37. The family of semi-computable sets is closed under

(a) substitution under computable total functions: if A is k-ary and semi-
computable and f1, . . . , fk are n-ary computable total functions, then
A(f1(x⃗), . . . , fk(x⃗)) is n-ary semi-computable;

(b) projections: if A ⊆ Nk is semi-computable and k > 1, then the k− 1-ary
predicate ∃xk A defined by

(x1, . . . , xk−1) ∈ ∃xk A ⇔ ∃xk (x1, . . . , xk−1, xk) ∈ A

is semi-computable;
(c) intersections and unions;
(d) bounded quantifications.

Proof. Suppose A(x⃗), B(x⃗) are k-ary semi-computable, and A′ and B′ are
computable k+1-ary predicates such that A(x⃗) if and only if ∃y A′(x⃗, y) and
B(x⃗) if and only if ∃y B′(x⃗, y).

(a) If f1, . . . , fk are n-ary computable total functions, then the n-ary pred-
icate A(f1(x⃗), . . . , fk(x⃗)) is semi-computable, since A(f1(x⃗), . . . , fk(x⃗)) if and
only if ∃y A′(f1(x⃗), . . . , fk(x⃗), y), and A′(f1(x⃗), . . . , fk(x⃗), y) is computable.

(b) We have that

(x1, . . . , xk−1) ∈ ∃xk A⇔ ∃xk ∃y A′(x1, . . . , xk−1, xk, y)

⇔ ∃z [∃xk ≤ z ∃y ≤ z A′(x1, . . . , xk−1, xk, y)]
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so we are done since the predicate in square brackets is computable, as it is
obtained from a computable predicate using bounded quantifications.

(c) (x1, . . . , xk) ∈ A ∪B just in case ∃y (A′(x⃗, y) ∨B′(x⃗, y)) so A ∪B is
semi-computable. Moreover

(x1, . . . , xk) ∈ A ∩B ⇔ ∃z ∃y ≤ z ∃y′ ≤ z (A′(x⃗, y) ∧B′(x⃗, y′)).

(d) For the bounded existential quantifier

(x1, . . . , xk−1, z) ∈ ∃xk ≤ z A⇔ ∃xk [A(x1, . . . , xk−1, xk) ∧ (xk ≤ z)],

so we apply part (b).
For the bounded universal quantifier

(x1, . . . , xk−1, z) ∈ ∀xk ≤ z A⇔ ∀xk ≤ z ∃y A′(x1, . . . , xk−1, xk, y)

⇔ ∃w [∀xk ≤ z ∃y ≤ wA′(x1, . . . , xk−1, xk, y)]

so we are done since the predicate in square brackets is computable, as it is
obtained from a computable predicate using bounded quantifications. □

The semi-computable sets form a bounded distributive lattice, but not a
Boolean algebra, as the complement of a semi-computable set need not be
semi-computable. If this is the case, then the set in question is computable,
and this is the content of the following result of Post.

Theorem 8.38. A predicate A is computable if and only if A and ¬A are
semi-computable.

Proof. If A ⊆ Nk is computable then so is ¬A = A∁ = Nk \ A, and hence
A and ¬A are semi-computable. Conversely, suppose B0, B1 ⊆ Nk+1 are
computable and such that

A(x⃗)⇔ ∃y B1(x⃗, y) ¬A(x⃗)⇔ ∃y B0(x⃗, y).

Then f : Nk → N, f(x⃗) = µy [B0(x⃗, y) ∨B1(x⃗, y))] is computable, and since
there is no y such that B0(x⃗, y)∧B1(x⃗, y), it follows that A(x⃗)⇔ B1(x⃗, f(x⃗)).
Thus A is computable, as it is obtained from B1 via a computable substitution.

□

Proposition 8.39. Let A ⊆ N.

(a) A is semi-computable if and only if A = ran f for some computable,
partial unary f .

(b) A ̸= ∅ is semi-computable if and only if A = ran f for some computable
f : N→ N.

(c) A is semi-computable and infinite if and only if A = ran f for some
injective, computable f : N→ N.
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(d) A is computable and infinite if and only if A = ran f for some increasing,
computable f : N→ N.

Proof. If A = ran f , then A is the projection of Gr(f) which is computable,
that is

A(y)⇔ ∃x [(x, y) ∈ Gr(f)].

This proves the ⇐ direction of parts (a) and (b).
If A = ∅ then A = ran f with f the empty function of Example 8.25(a),

so part (a) is proved.
If A ̸= ∅, suppose A(x)⇔ ∃y [(x, y) ∈ B] for some computable B ⊆ N2,

and let a be an element of A. The function f : N→ N

f(n) =

{
(n)0 if B((n)0, (n)1),

a otherwise,

is computable, and A = ran f .

(c) By part (a) A is the range of some computable g : N → N. Define
f : N→ N as follows: f(0) = g(0), and let f(n+ 1) = g(k) where k is least
such that g(k) /∈ {f(0), . . . , f(n)}. Then ran f = ran g = A, and by Church’s
thesis f is computable.

(d) The map f : N→ N{
f(0) = minA

f(n+ 1) = µy [A(y) ∧ f(n) < y]

is increasing, computable, and ran f = A.
Conversely, suppose A = ran f with f increasing. Then A(x) ⇔ ∃x ≤

y (f(x) = y) and hence A is computable. □

The next result, known as Kleene’s normal form theorem, proves
that any partial n-ary computable function f can be obtained by applying the
µ -operator to an elementary computable function kn, and composing with
another elementary computable function U, using an integer e. In loose terms,
in order to compute f(x⃗) it is enough to search for the least computation y
witnessing that the computer kn with input x⃗ and program e stops, and then
extract the value f(x⃗) from y by means of U.

Theorem 8.40 (Kleene). For each arity n > 0 there are elementary com-
putable functions kn : Nn+2 → N and U: N → N such that every partial
computable n-ary function f is of the form

f(x⃗) = U(µy [kn(x⃗, y, e) = 0])

for some e ∈ N. In fact U can be taken to be the map x 7→ (x)0, the first
inverse of the bijection J : N× N→ N.
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Kleene’s theorem is proved in Section 8.F.3, but for the time being let us
observe some corollaries. The condition kn(x⃗, y, e) = 0 can be replaced by
an elementary predicate Kn(x⃗, y, e), so that f(x⃗) = U(µyKn(x⃗, y, e)), and
we write φn

e for the e-th n-ary computable function x⃗ 7→ U(µyKn(x⃗, y, e)).
Thus

{φn
e | e ∈ N}

is the set of all n-ary computable functions. When n = 1 we write φe instead
of φ1

e.
The n+ 1-ary map (x⃗, e) 7→ U(µyKn(x⃗, y, e)) is computable, so:

Theorem 8.41. For each n ≥ 1 there is an (n+ 1)-ary computable function
F such that F (x⃗, e) = φn

e (x⃗), for all x⃗ ∈ Nn and all e ∈ N.

In other words the n-ary partial computable functions can be computably
enumerated by an n+ 1-ary partial computable function. On the other hand
there is no n + 1-ary total computable function that enumerates all n-ary
total computable functions. We prove this for n = 1, leaving the obvious
generalization to the reader.

Proposition 8.42. Let F be E, or P, or Ctot. There is no F : N× N→ N
in F such that

{Fe | e ∈ N} = F ∩ NN,

where Fe : N→ N, x 7→ F (e, x).

Proof. Otherwise f(x) = F (x, x) + 1 would be in F, and hence f = Fe for
some e ∈ N. But then f(e) = F (e, e) + 1 = f(e) + 1, a contradiction. □

The argument above does not apply to the partial binary computable
function F from Theorem 8.41 that enumerates every partial unary com-
putable function, as the function f(x) = F (x, x) + 1 in the proof above is
φe for some e /∈ dom f . On the other hand there is no total computable
G : N × N → N extending F , as letting g(x) = G(x, x) + 1 and arguing as
above we reach a contradiction. Therefore we have proved:

Theorem 8.43. There is a partial binary computable function that cannot
be extended to a total computable function.

Proposition 8.44. Let f be a partial k-ary function.

(a) f is computable if and only if Gr(f) is semi-computable.

(b) If f is computable, then dom f is semi-computable.

(c) If f is computable and dom f is computable, then Gr(f) is computable.
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Proof. (a) The reverse direction is Proposition 8.36. For the forward direction
suppose f is computable. By Kleene’s theorem there is e ∈ N such that
f(x⃗) = U(µyKn(x⃗, y, e)). Then

(x⃗, y) ∈ Gr(f) ⇔ ∃z
[
y = U(z) ∧Kn(x⃗, z, e) ∧ ∀z′ < z (¬Kn(x⃗, z

′, e))
]
.

The set in the square brackets is computable, and hence Gr(f) is semi-
computable.

(b) x⃗ ∈ dom f ⇔ ∃y [(x⃗, y) ∈ Gr(f)], so we are done by part (a) and
Proposition 8.37.

(c) If f is computable then Gr(f) is semi-computable by part (a), so it
is enough to show that Gr(f)∁ is semi-computable, and then apply Post’s
theorem. Since

(x⃗, y) /∈ Gr(f) ⇔ [x⃗ /∈ dom f ∨ ∃z (z ̸= y ∧ (x⃗, z) ∈ Gr(f))],

and dom f is computable, then Gr(f)∁ is semi-computable. □

Corollary 8.45. Let D ⊆ Nk be computable and let f : D → N. The following
are equivalent:

(a) f is computable,
(b) Gr(f) is computable,
(c) Gr(f) is semi-computable.

Theorem 8.46. For every semi-computable A ⊆ N2 there is a unary com-
putable g such that dom g = domA and ∀x ∈ domA [(x, g(x)) ∈ A].

Proof. If B ⊆ N3 is computable and such that A(x, y)⇔ ∃z B(x, y, z), then

g(x) = (µw [B(x, (w)0, (w)1)])0

is the required function. □

Corollary 8.47. Every unary computable function has a computable right-
inverse, that is: if f is unary computable there is g unary computable such
that dom g = ran f and ∀y ∈ dom g [f(g(y)) = y].

Proof. Apply Theorem 8.46 to A = {(x, y) ∈ N2 | (y, x) ∈ Gr(f)}. □

Recall that φe is the e-th computable unary function x 7→ U(µyK1(x, y, e)).
The halting set

H = {e ∈ N | ∃y (k1(e, y, e) = 0)} = {e ∈ N | φe(e)↓}

is the set of all programs that terminate when applied to themselves.

Theorem 8.48. The set H is semi-computable, but not computable.
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Proof. The set H is semi-computable as it is the projection an elementary
computable predicate. Towards a contradiction, suppose H is computable.
We argue as in Proposition 8.42. The binary predicate H(x)⇒ K1(x, y, x) is
computable and f(x) = U(µy H(x)⇒ K1(x, y, x)) + 1 is a total computable
unary function such that

f(x) =

{
φx(x) + 1 if x ∈ H

1 otherwise.

Let e ∈ N such that φe = f . As f is total, e ∈ H, so

φe(e) = f(e) = φe(e) + 1

a contradiction! □

A Diophantine set is of the form

N ∩ {f(n1, . . . , nk) | n1, . . . , nk ∈ Z} ,
where f ∈ Z[x1, . . . , xn]. Diophantine sets are semi-computable, and a deep
theorem by Davis, Matiyasevich, Putnam and Robinson the converse holds.

Theorem 8.49. Every semi-computable subset of N is Diophantine.

8.F. Programs. To prove that f : Nk → N is in F where F is E, P, or C,
one needs to show that f can be obtained from basic functions by means of
specific constructions such as composition, generalized sums and products,
primitive recursion, or minimization.
8.F.1. Programs for elementary functions. The first-order language LE for
the elementary functions has constant symbols

Add, Mult, Div, Quot, Projnk (0 ≤ k < n)

and k + 1-ary function symbols

Comk

and unary function symbols

Sum and Prod.

We will now show that each elementary function can be computed by closed
terms of LE, and for this reason these are called programs for elementary
functions. The programs Add, Mult, Div, and Quot compute the binary
functions x+y, x ·y, |x− y|, and ⌊x/y⌋, respectively, and the program Projnk
computes the projection function Ink . If P is a program that computes a k-ary
function f and Q0, . . . Qk−1 are programs that compute the n-ary functions
g0, . . . , gk−1 then

• Comk(P, Q0, . . . , Qk−1) computes f(g0(x⃗), . . . , gk−1(x⃗));
• Sum(P) and Prod(P) compute

∑
f and

∏
f .
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Thus every elementary function is computed by a program, but not every
program computes an elementary function, since Comk(P, Q0, . . . , Qk−1) is a
meaningful just in case the arity of the described functions match accordingly.
When this happens, we say it is a well-formed program, and write Elm for the
collection of the well-formed programs. A program which is not well-formed is
said to be ill-formed.8 Let ClTermE be the set of all closed terms of LE, and
let ar : ClTermE → N be the function defined by induction on the complexity
of terms as follows:

ar(Add) = ar(Mult) = ar(Div) = ar(Quot) = 2

ar(Sum(P)) = ar(Prod(P)) = ar(P)

ar (Comk(P, Q0, . . . , Qk−1)) =

{
n if ar(P) = k and ar(Qi) = n for all i < k,

0 otherwise.

Then Elm = {P ∈ ClTermE | ar(P) ̸= 0}, and when P ∈ Elm and f : Nk → N
is the function defined by P, then k = ar(P).

If P computes f : Nk → N, and Q and R compute x 7→ x+1 and x 7→ x ·−1,
respectively, then also Com1(R, Com1(Q, P)) computes f . By iterating the silly
procedure of adding and subtracting 1 at the end of a computation, we can
construct infinitely many programs that compute the same functions, that is

(8.9) ∀f ∈ E [{P ∈ Elm | P computes f} is infinite].

As noted in Section 3.A, any term of a first-order language is best de-
scribed in terms of its syntactic tree. For example, the well-formed program
Prod(Com2(Div, Proj

1
0, Proj

1
0)) that computes sgn(x) can be written as

Prod

Com2

Div Proj10 Proj10

8.F.2. Programs for primitive recursive functions. The language LP for the
primitive recursive functions has constant symbols Zero, Succ and Projnk for
0 ≤ k < n, a binary function symbol Rec, and the k+1-ary function symbols
Comk as before. A program for a primitive recursive function is a closed term
of LP, and let ClTermP be the set of all these programs. Every function in
P is computed by some program:

• Zero and Succ compute the functions n 7→ c0(n) = 0 and n 7→ n + 1
respectively,

8In computer science we would say that the compiler returns a syntax-error message when
dealing with an ill-formed program.
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• Projnk and Comk act as before,
• if P computes the k-ary function f and Q computes the k+2-ary function g,

then Rec(P, Q) is the program computing the k + 1-ary function h(x⃗, 0) =
f(x⃗) and h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y)).

Every primitive recursive function is computed by a program in ClTermP and,
just as in the case of the elementary function, not every program computes a
function. The set of all well-formed programs for primitive recursive functions
is denoted by PRec, and in analogy with (8.9) we have that

∀f ∈ P [{P ∈ PRec | P computes f} is infinite].

8.F.3. Programs for computable functions. The language LC for computable
functions has constant symbols Add, Mult, Less and Projnk for 0 ≤ k < n, a
unary function symbol Min, and the k+1-ary function symbols Comk as before.
The set of all closed terms is denoted by ClTermC, and its elements will be
called programs for computable functions. Here Less is the program that
computes the binary function χ≤(x, y), and if P is a program that computes
a k + 1-ary function f(x⃗, y) such that ∀x⃗ ∃y [f(x⃗, y) = 0], then Min(P) is the
program that computes the k-ary function x⃗ 7→ µy [f(x⃗, y) = 0].

Every computable function is computed by some program—in fact by
an argument as in (8.9) it is computed by infinitely many programs. Just
like what happened with E and P, not every element of ClTermC computes
a function of C, and we will write Rec for the set of well-formed programs
that do calculate computable functions, namely such that if we define an
appropriate arity function ar : ClTermC → N then P ∈ Rec if and only if

(A) ar(P) ̸= 0, and
(B) if P is Min(Q) and Q computes some f : Nk+1 → N, then for any x⃗ there

is a y such that f(x⃗, y) = 0.

Note that checking (A) is a straightforward task, but guaranteeing (B) is
much harder.

We can now sketch a the proof of Kleene’s normal form Theorem 8.40.
Given a program P for a computable f : Nk → N, the complete computation
of P on input x⃗ = (x0, . . . , xk−1) is the sequence recording all calculations
that lead to f(x⃗). The formal definition is a bit involved, since we need
to code everything (programs, sequences of computations, . . . ) as natural
numbers. Granted all this, one defines elementary predicates Kk ⊆ Nk+2 for
k > 0 such that Kk(e, x⃗, y) holds if and only if

• e is a program for computable functions satisfying (A),
• y = J(n, s) where s ∈ Seq codes the computations that witness that n is

the desired result.
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The definition of Kk is by induction on the complexity of the closed term e.
Given a computable function f : Nk → N pick a program P that computes it.
Then for any x0, . . . , xk−1 there is a finite sequence of calculations that yield
f(x⃗), and let s be the number coding such sequence; then Kk(P, x⃗,J(f(x⃗), s))
holds and therefore f(x⃗) = (µyKk(P, x⃗, y))0.

8.G. Computability on other domains. Given a bijection u : N → X
one can transfer the computability notions from N to X. For example,
letting u : N → Z, u(2n) = n and u(2n + 1) = −n − 1, then addition
and multiplication in Z are computable. This idea can be generalized to
infinite countable first-order structures for computable languages, that
is a language with countably many symbols Rn, fm, ci where each of n,m, i
ranges over an initial segment of the natural numbers, and the maps n 7→ k
and m 7→ k assigning to each Rn and fm its arity are computable. An infinite
countable L-structure M = ⟨M,RM, . . . , fM, . . . , cM, . . .⟩ is computable if
it admits a computable presentation, that is a bijection u : N→M such
that for each n-ary function symbol f , the map

Nn → N, (k1, . . . , kn) 7→ u−1
(
fM(u(k1), . . . , u(kn))

)
is computable, and for each n-ary predicate symbol R, the set

{(k1, . . . , kn) ∈ Nn | (u(k1), . . . , u(kn)) ∈ RM}

is computable. The choice of the bijection u is important for checking the
computability of the predicates and operations. It is easy to check that
(Z,+, ·, <) is a computable ordered ring, but checking the analogous fact for
other countable structures such as (Q,+, ·, <) can be very cumbersome.

8.H. Other definitions of computable functions*.
8.H.1. Machines.
Later

8.H.2. Alternative presentation of computable functions. An f : Nk → N is
computable if and only if f ◦ Φk : N→ N is computable, where Φk : Nk → N
is a computable bijection. (This is part (iv) of Exercise 8.61 when Φk = Jk

is obtained by composing J using the projection functions.) Therefore
the family of all computable operations can be recovered from the set of
computable unary functions, using any computable coding of sequences.
This suggests the following question: is there a definition of the set of all
unary computable functions that avoids n-ary operations with n > 1? The
quadratic-excess function Exc: N→ N is defined by Exc(n) = n−(⌊

√
n⌋)2;

it is elementary. The inversion of f : N→ N is the partial function defined
by f−1(m) = µn [f(n) = m]. A family F of partial unary functions is closed
under inversion if f−1 ∈ F for every total f ∈ F.
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Theorem 8.50. The family of computable functions is the smallest family
of operations containing Ink , +, S, Exc and closed under composition and
inversion.

The family of computable unary functions is the smallest family of unary
functions containing S and Exc, and closed under composition, addition, and
inversion.

A similar result holds for primitive recursive functions.

Theorem 8.51. P is the smallest family of operations containing Ink , +, S,
Exc, and closed under composition and iterations without parameters.

P ∩ NN is the smallest family of functions containing S, Exc, and closed
under addition, composition, and iterations without parameters.

Exercises

Exercise 8.52. Let F be a family of operations, closed under composition.

(i) If F contains the projections, σ : {0, . . . , n− 1} → {0, . . . ,m− 1} and
f ∈ F is n-ary, then g ∈ F where

g(x0, . . . , xm−1) = f(xσ(0), . . . , xσ(n−1)).

(ii) If F is closed under generalized sums and products, and if f, g ∈ F are
k + 1-ary, then the following are in F:

(x0, . . . , xk) 7→
∑

y<g(x0,...,xk)

f(x0, . . . , xk−1, y)

(x0, . . . , xk) 7→
∏

y<g(x0,...,xk)

f(x0, . . . , xk−1, y).

Exercise 8.53. The following functions are in E:

• the truncated difference

x ·− y =

{
x− y if x ≥ y,

0 otherwise;

• the function Rem of (8.3);
• the maximum and minimum functions maxk,mink : Nk → N

maxk(x0, . . . , xk−1) = max {x0, . . . , xk−1}
mink(x0, . . . , xk−1) = min {x0, . . . , xk−1} ;

• the function f : N2 → N, f(k, n) = 0 if k < 2 or n = 0, and f(k, n) =
⌊logk n⌋ otherwise.
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Exercise 8.54. Show that the coding of pairs of natural numbers in Exam-
ples 8.8 (A), (B) and (C) are in E.

Exercise 8.55. Let F be the smallest family of functions closed under
compositions and primitive recursion and containing C0, S and the projections
Ink . Show that the following functions and predicates are in F:

• the operations x+ y, x · y, xy, x ·− 1;
• sgn(x), sgn(x) , x ·− y, |x− y|;
• x < y, x ≤ y, x = y, ⌊x/y⌋;
• if f ∈ F is k + 1-ary, then

∑
f,
∏
f ∈ F.

Conclude that P = F.

Exercise 8.56. Let F ⊇ E be a family of operations closed under composition,
and generalized sum and product. Show that if the function g and the
predicate A are in F, then the following functions are in F:

f1(x⃗, y) =

{
min{z ≤ y | A(x⃗, z)} if this set is non-empty,

0 otherwise;

f2(x⃗, y) =

{
max{z ≤ y | A(x⃗, z)} if this set is non-empty,

y otherwise;

f3(x⃗, y) =

{
max{z ≤ y | A(x⃗, z)} if this set is non-empty,

0 otherwise;
f4(x⃗, y) = min {g(x⃗, z) | z ≤ y};
f5(x⃗, y) = max {g(x⃗, z) | z ≤ y}.

Exercise 8.57. Show that the following predicates and functions are in E:

(i) the divisibility relation x | y, the set Pr of prime numbers, and the
predicate P (k, x): “x is the k-th prime”;

(ii) the function p : N→ N enumerating Pr [Hint: p(k) ≤ 22
k ];

(iii) the coding via exponential seen in Section 8.A.2, that is the functions
e : N2 → N and l : N → N defined on page 278 and the set Seq∗ =
{p(0)n0+1 · · ·p(k)nk+1 | n0, . . . , nk ∈ N};

(iv) the functions lcm and gcd;
(v) the function sending n to the number of primes ≤ n;
(vi) Euler’s φ function, where φ(n) is the number of k < n that are coprime

with n, with φ(0) = 0 by convention;
(vii) the functions ω and Ω defined by ω(0) = ω(1) = Ω(0) = Ω(1) = 0,

and if m = pk11 · · · pknn with p1 < · · · < pn primes, then ω(m) = n and
Ω(m) = k1 + · · ·+ kn;
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(viii) the function σk : N→ N sending 0 to 0 and n > 0 to
∑

d|n d
k the sum

of divisors of n raised to the power k. In particular, σ0(n) counts the
number of divisors of n and σ1(n) is the sum of the divisors of n. Thus
the set of perfect numbers, that is the numbers n that are equal to
the sum of their divisors d < n, i.e. such that σ1(n) = 2n, is elementary
recursive;

(ix) the function f : N2 → N defined by

f(n,m) =


(
n

m

)
if m ≤ n,

0 otherwise;

(x) the function Lb : N→ {0, . . . , b− 1}, with b > 1, assigning to n its last
digit in the expansion in base b;

(xi) the function f : N→ N

f(n) =

{
0 if n = 0 or n /∈ Seq

2m0 + · · ·+ 2mk if n = ⟨⟨m0, . . . ,mk⟩⟩.

Exercise 8.58. Show that:

(i) σ : N→ N is in E where

σ(s) =

{
2m0 + · · ·+ 2mk if s = ⟨⟨m0, . . . ,mk⟩⟩

0 if s /∈ Seq;

(ii) for each n ≥ 1 there exist unique k ≥ 0 and m0 > · · · > mk such that
n = 2m0 + · · ·+ 2mk ;

(iii) the binary predicate

{(m,n) | 1 ≤ n =
∑
i≤k

2mi ∧ m0 > · · · > mk ∧ ∃i ≤ k (m = mi)}

is in E.

Exercise 8.59. (i) Given f : Nk+1 → N let f∗ : Nk+1 → N be defined by

f∗(x⃗, y) = 2f(x⃗,0)+1 · 3f(x⃗,1)+1 · · ·p(y)f(x⃗,y)+1

where p(i) is the i-th prime number (Exercise 8.57). In other words:
f∗ is the analogue of the memory-function fm for the coding-scheme of
Section 8.A.2. Show that f ∈ E ⇔ f∗ ∈ E.

(ii) Let h : Nn+1 → N be obtained by primitive recursion from g : Nn+2 → N
and f : Nn → N. (If n = 0, that is if the recursion is without parameters,
then f is a natural number.) Moreover suppose that ∀x⃗ ∈ Nn+1 [h(x⃗) ≤
k(x⃗)]. Show that if f, g, k ∈ E then h ∈ E.
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(iii) Show that f ∈ E ⇔ fm ∈ E.
(iv) Repeat part (ii) when h is obtained from g and f using generalized

primitive recursion (Definition 8.19).
(v) Prove that E is the smallest family of operations on N containing

C0, S, I
n
k and closed under composition and bounded primitive recursion.

Exercise 8.60. Assume either F = E or F = P. Show that:

(i) if f : N→ N is increasing and belongs to F, then ran(f) is in F;
(ii) if f is the enumerating function of A ⊆ N which is in F, and if there

exists h : N→ N in F such that ∀n (f(n) ≤ h(n)) then f ∈ F;
(iii) the enumerating function of Seq is elementary recursive.

Exercise 8.61. Let F be one of the classes E, P, Ctot. Check that

(i) the functions Jm and (·)mi (i < m) are in F;

(ii) the fi : Nn → N (1 ≤ i ≤ m) are in F if and only if f̃ : Nn → N,
f̃(x⃗) = Jm(f0(x⃗), . . . , fm−1(x⃗)) is in F.

(iii) A ⊆ Nm is in F if and only if {n ∈ N | ((n)m0 , . . . , (n)mm−1) ∈ A} is in F.

(iv) f : Nn → N is in F if and only if f̌ : N→ N, f̌(x) = f((x)n0 , . . . , (x)
n
n−1)

is in F.

Exercise 8.62. Write conditions (D) and (E) on page 217 as statements on
natural numbers and check that S is elementary recursive.

Exercise 8.63. Show that Fibonacci’s sequence defined as F (0) = F (1) =
1 and F (n) = F (n− 1) + F (n− 2) when n ≥ 2, is elementary recursive.

Exercise 8.64. Let E : N2 → N be the primitive recursive function defined
as {

E(x, 0) = x

E(x, y + 1) = xE(x,y).

Show that:

(i) x ≤ E(x, y);
(ii) E(x, y) < E(x, y + 1), if x > 1;
(iii) E(x, y) < E(x+ 1, y), if x > 1;
(iv) E(x, y) + E(x, z) < E(x,max(y, z) + 1), if x > 1;
(v) E(x, y) · E(x, z) < E(x,max(y, z) + 1), if x > 1;
(vi) E(x, y)E(x,z) < E(x,max(y + 1, z + 2)), if x > 1;
(vii) E(E(x, y), z) ≤ E(x, y + 2z), if x > 1;
(viii) if f ∈ E is k-ary, then there is c ∈ N such that

max(x⃗) > 1 ⇒ f(x⃗) < E(max(x⃗), c);
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(ix) E /∈ E.

Exercise 8.65. Show that if f : N→ N is in P, then the function (x, n) 7→
f (n)(x) coding the sequence of the iterates f (n) is in P.

Is the analogous statement for E true?

Exercise 8.66. Let F be P or Ctot. Let h0, h1 be defined via the simultaneous
recursion {

h0(x⃗, 0) = f0(x⃗)

h0(x⃗, y + 1) = g0(x⃗, y, h0(x⃗, y), h1(x⃗, y)){
h1(x⃗, 0) = f1(x⃗)

h1(x⃗, y + 1) = g1(x⃗, y, h0(x⃗, y), h1(x⃗, y)).

Show that if f0, f1, g0, g1 ∈ F, then h0, h1 ∈ F.

Exercise 8.67. Verify that for all m ∈ N the function

Ackm : N→ N, n 7→ Ack(m,n)

is primitive recursive, where Ack is Ackermann’s function.

Exercise 8.68. Prove Theorem 8.31 by verifying the following fact:

(i) y < Ack(x, y);
(ii) Ack(x, y) < Ack(x, y + 1);
(iii) Ack(x, y + 1) ≤ Ack(x+ 1, y);
(iv) Ack(x, y) ≤ Ack(x+ 1, y);
(v) Ack(1, y) = y + 2;
(vi) Ack(2, y) = 2y + 3;

(vii) for all c1, . . . , cn there is d such that ∀x
(∑

1≤i≤nAck(ci, x) ≤ Ack(d, x)
)
;

(viii) for all n-ary f ∈ P there is c such that ∀x1, . . . , xn (f(x1, . . . , xn) <
Ack(c, x1 + · · ·+ xn)).

Exercise 8.69. Show that:

(i) sgn(n) = χ≤(n+ n, n), and sgn = sgn ◦ sgn are computable.
(ii) The computable predicates are closed under Boolean operations (nega-

tion, conjunctions, disjunctions). Thus the binary predicates =, ̸=, and
≤ are computable.

(iii) The maps Ck : N→ N, n 7→ k, are computable.
(iv) If P is computable, then so is ∃z < y P (x⃗, z).
(v) J , (·)0, (·)1,β are computable.
(vi) f ∈ Ctot ⇔ fm ∈ Ctot where fm is as the memory-function of f .
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Let h be obtained from f, g ∈ Ctot by primitive recursion as in Defini-
tion 8.14, and let

G(x⃗, n,m) =

{
f(x⃗, n) if m = 0,

g(x⃗, n,m) otherwise.

Then G ∈ Ctot and h(x⃗, n) = G(x⃗, n, hm(x⃗, n)). Since

hm(x⃗, n) = µy
[
Seq(y) ∧ β(y, 0) = n

∧ ∀i < n∃z ≤ y (∀j < i (((y))j = ((z))i) ∧ ((y))i = G(z, i, n))
]

is in Ctot, it follows that h ∈ Ctot. Conclude that P ⊆ Ctot.

Exercise 8.70. If F is closed under primitive recursion, composition, and
contains I21 , then F is closed under iterations. In particular, P is closed under
iterations.

Exercise 8.71. Show that every infinite semi-computable subset of N contains
an infinite computable set.

Exercise 8.72. Prove part (c) of Proposition 8.39 without appealing to
Church’s Thesis.

Exercise 8.73. Let Tot = {e ∈ N | φe : N→ N} be the set of all codes for
total unary computable functions. Show that Tot is not semi-computable.

Notes and remarks

Our treatment of computability theory follows fairly closely [Mon76, Chapter 1]. The class
E of elementary recursive functions, introduced by Kalmàr in 1943, are the computable func-
tions relevant to computer science. It is possible to avoid generalized sums and products in the
definition of elementary function; in fact E is the smallest class of functions closed under compo-
sition and containing the projections and a fixed set of functions, such as {S, x ·− y, ⌊x/y⌋, xy},
or {x+ y, x ·− y, ⌊x/y⌋, 2y}, or

{
x+ y, x2, x mod y, 2y

}
[Maz02]. The classes P and of all com-

putable functions were introduced earlier as an attempt to capture the notion of effective function
by several mathematicians, including Gödel, Turing, and Post. Around 1920, Ackermann and
Sudan, at the time Hilbert’s students, came up with the first examples of computable, but not
primitive recursive. The function Ack is a variant, due to Péter and R. Robinson of the original
functions devised by Ackermann and Sudan. Theorems 8.50 and 8.51 are due to J. Robinson and
R. Robinson, respectively, and can be found in [Mon76, Chapter 3].

The map J was defined by Cantor. It is a quadratic polynomial, and if a quadratic
polynomial f ∈ R[x, y] yields a bijection N × N → N, then either f(x, y) = J(x, y) or else
f(x, y) = J(y, x) [Smo91].



Chapter III

Definability in algebra
and number theory

9. Definability in algebra

9.A. Groups.
9.A.1. Subgroups. The language LsubGrp is LGrps with an additional unary
predicate symbol S. The LsubGrp-structures are of the form (G, ·,−1, 1, H):
if these satisfy the axioms for groups and the sentence

S(1) ∧ ∀x, y
(
S(x) ∧ S(y)⇒ S(x · y−1)

)
then we are considering groups together with a preferred subgroup. If we
want to say that such subgroup is normal and non-trivial we use the sentence

∀x, y
(
S(x)⇒ S(y · x · y−1)

)
∧ ∃x (x ̸≖ 1 ∧ S(x)) ∧ ∃x¬S(x).

A group G is simple if it has no proper normal subgroups, that is if

∀S (S normal subgroup ∧ ∃x (S(x) ∧ x ̸≖ 1)⇒ ∀x S(x)) .

This is a formula in second-order logic (see Observation 3.25) since the
universal quantifier ranges on subsets hence it is confined in the realm of
pseudo-formulæ. In fact there is no system of first-order axioms whose models
are the simple groups.

Theorem 9.1. The class of all simple groups is not axiomatizable in any
first-order language L extending LGrps.

Proof. Towards a contradiction, suppose Σ is a set of L-sentences such that
Mod(Σ) is the collection of all simple groups. Adding the commutativity
property we obtain an axiom system Σ′ such that Mod(Σ′) is the class of all
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abelian simple groups, that is to say those groups that are either trivial (i.e.
consisting of one element) or else isomorphic to Z/pZ, with p prime. But
this contradicts Theorem 4.48. □

9.A.2. Ordered groups. An ordering ≤ on a group G is compatible if one or
both of the following holds in (G, ·,≤):

∀x, y, z (x ≤ y ⇒ z · x ≤ z · y)(9.1a)
∀x, y, z (x ≤ y ⇒ x · z ≤ y · z).(9.1b)

First of all observe that ≤ could be replaced by < above, and that if G is
abelian, then (9.1a) and (9.1b) are equivalent. If (G, ·,≤) satisfies (9.1a) then
≤ is a left-order on G, if it satisfies (9.1b) it is a right-order, and if it
satisfies both (9.1a) and (9.1b) it is a bi-order. The notions of left/right
order are dual to each other, in the sense that if ≤ is a left/right order on G
then ≤⋆ is a right/left order on G, where

(9.2) g ≤⋆ h ⇔ h−1 ≤ g−1.

If ≤ is linear we speak of linearly left-ordered and linearly right-ordered
groups. The cone of positive elements of G is

PG = {g ∈ G | 1 ≤ g}.
As customary in group theory, if X,Y ⊆ G we set X−1 = {g−1 | g ∈ X},
XY = {gh | g ∈ X,h ∈ Y }, and gX = {g}X = {gh | h ∈ X}.

Lemma 9.2. Let ≤ be a compatible order on G.

(a) If ≤ is a left-order then g ≤ h ⇔ g−1h ∈ PG, if ≤ is a right-order then
g ≤ h ⇔ hg−1 ∈ PG, and if ≤ is a bi-order then g ≤ h ⇔ h−1 ≤ g−1.

(b) If 1G < g, then o(g) =∞, and hence g cannot be maximal. If g < 1G,
then o(g) =∞, and hence g cannot be minimal.

(c) PG ∩ P−1
G = {1G} and P 2

G = PG.

Proof. (a) is immediate.
If 1G < g then g < g2 (so that g cannot be maximal) and by transitivity

and induction we have 1G < gn for all n > 0. The case when g < 1G is
analogous, so (b) is proved.

We now prove (c). For the sake of definiteness let’s assume that ≤ is
a left-order on G, the case of right-orders being similar. If g ∈ PG ∩ P−1

G ,
then g = h−1 for some h ∈ PG, so that 1G = h−1h ≥ h−11G = h−1 = g, and
hence g = 1G. If g, h ∈ PG, then 1G ≤ h so g ≤ gh and since 1G ≤ g we have
1G ≤ gh. Therefore P 2

G ⊆ PG. The other inclusion follows from 1G ∈ PG. □

If ≤ is the identity relation, that is g ≤ h ⇔ g = h, then (G, ·,≤) is
bi-ordered. In other words any group can be seen as an ordered group, but if
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we require more of the ordering the subject becomes less trivial. For example,
by Lemma 9.2(b) if (G,≤) is upward (or downward) directed with more than
one element, then G has a torsionless element, so G it must be infinite.

Lemma 9.3. Let ≤ be a compatible order on G.

(a) If ≤ is a bi-order, then gPGg
−1 = PG for all g ∈ G.

(b) If ≤ is total, then PG ∪ P−1
G = G.

Proof. (a) If ≤ is a bi-order and 1G ≤ h, then g = g1G ≤ gh and 1G =
gg−1 ≤ ghg−1. This implies that gPGg

−1 ⊆ PG for all g ∈ G. The other
inclusion is similar.

(b) is immediate. □

Conversely:

Proposition 9.4. Suppose G is a group and P ⊆ G is such that P ∩ P−1 =
{1G} and P 2 ⊆ P .

• If ∀g ∈ G
(
gPg−1 = P

)
then P is the positive cone of a bi-order on G.

• If P ∪ P−1 = G then P is the positive cone of a linear order on G, which
can be taken to be either a left-order or a right-order.

Proof. Define ≤ on G by g ≤ h⇔ g−1h ∈ P . Clearly ≤ is reflexive and for
transitivity argue as follows: if g ≤ h and h ≤ g then g−1h = (h−1g)−1 ∈
P ∩ P−1 = {1G}, so g = h.

Suppose gPg−1 = P for all g ∈ G. If g ≤ h and k1, k2 ∈ G are arbitrary,
then (k1gk2)

−1(k1hk2) = k−1
2 g−1hk2 ∈ k−1

2 Pk2 = P , so k1gk2 ≤ k1hk2. This
proves that ≤ is a bi-order on G.

Suppose now that P∪P−1 = G. Then g−1h ∈ P or h−1g = (g−1h)−1 ∈ P ,
so either g ≤ h or h ≤ g, for all g, h ∈ G. If g ≤ h and k ∈ G then
(kg)−1(kh) = g−1h ∈ P , so kg ≤ kh. Thus ≤ is a linear left-order on G. In
order to construct a linear right-order on G we repeat the argument above
using the ordering g ≤ h⇔ hg−1 ∈ P . □

Therefore the class of ordered groups can be axiomatized in a language
with a symbol for the binary operation, and a unary predicate symbol.

If (G, ·G,≤G) and (H, ·H ,≤H) are linearly left/right-ordered groups, the
product structure is not a linearly left/right-ordered group, unless one of
the two factors is trivial. On the other hand, (G × H, ·G×H ,≤lex) is lin-
early left/right-ordered, where ≤lex is the lexicographic order on G × H
(Definition 4.9). This suggests the following:

Definition 9.5. A group (G, ·) is left-orderable if (G, ·,≤) is linearly
left-ordered, for some ≤.
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The notion of being right-orderable and bi-orderable are as expected,
but observe that by (9.2) a group is left-orderable if and only if it is right-
orderable. If an abelian group is left/right-orderable, then it is bi-orderable.

Examples 9.6. (a) The group (R,+) is bi-orderable, via the usual ordering
on the reals. The group (R2,+) is also bi-orderable, as witnessed by the
lexicographic order or by the order given by any cone

Pθ = {(a, b) ∈ R2 | a = b = 0 ∨ (a > 0 ∧ b < aθ) ∨ (a < 0 ∧ b ≤ aθ)}
with θ ∈ R \ {1}.

(b) The group (R \ {0}, ·) is not orderable, since there is an element of order
2, against Lemma 9.2(b).

(c) The free group on 2 generators F (2) (see Section 18.D.2) is bi-orderable,
so not all bi-orderable groups are abelian.

(d) An abelian group is orderable if and only if it is torsion-free (Exer-
cise 32.13).

Thus the collection of all torsion-free abelian groups is an example of a
class which is not finitely axiomatizable in a language L, and that becomes
finitely axiomatizable in some L′ ⊇ L.

Definition 9.7. Let L ⊆ L′ be first-order languages. The reduction of an L′-
structure M′ is the L-structure M obtained by forgetting the interpretations
of all symbols of L′ that do not belong to L. Conversely, an expansion of
an L-structure M is any L′-structure M′ whose reduction is M.

The reduction of a rng (R,+,−, 0, ·) is the abelian group (R,+,−, 0);
conversely any abelian group (G,+,−, 0) can be expanded (possibly in more
than one way) to a rng (G,+,−, 0, ·), for example by setting a · b = 0 for all
a, b ∈ G. Recall Definition 4.51 of (basic) elementary class.

Definition 9.8. A class C of L-structures is pseudo-elementary (basic
pseudo-elementary) if it is the collection of reductions of structures in some
elementary (respectively: basic elementary) class C ′ in a language L′ ⊇ L.

The essence of Example 9.6(d) is that the class of all torsion-free abelian
groups is elementary, but not basic elementary in LAbGr, but it is basic
pseudo-elementary.

Definition 9.9. A linearly ordered group G is Archimedean if for all
1G < g < h there is n ∈ N such that h ≤ gn.

The additive group structure of an Archimedean field (see Section 4.L) is
an Archimedean group, and R and its subgroups are examples of Archimedean
groups. In fact by a theorem of Hölder, every Archimedean group is isomorphic
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to a subgroup of (R,+) [Bly05, Theorem 10.16 p. 188]. In particular, any
Archimedean group being abelian it is usually denoted using the additive
notation (G,+,≤), and the equations (9.1) become

∀x, y, z (x ≤ y ⇒ x+ z ≤ y + z).

The class C of all Archimedean ordered groups is not pseudo-elementary. In
fact if C were the collection of all reductions of an axiomatizable class C ′ in
a language L′, then all C ′ and hence C must have structures of arbitrarily
large cardinality (Theorem 31.29), against Hölder’s theorem.

Examples of non Archimedean linearly ordered groups are Z × Z with
the lexicographic order, and F (2) (Example 9.6(c)).

In a linearly (left-)ordered group G the ordering ≤ is highly homogeneous:
if a < b and c < d and a−1 · b = c−1 · d then there is an increasing bijection
f : G → G such that f(a) = c, f(b) = d, and mapping (a; b) onto (c; d)—
just take f(x) = c · a−1 · x. In particular we have two mutually exclusive
possibilities:

• the ordering is discrete that is ∀x ∃y (x < y ∧ ¬∃z (x < z ∧ z < y)) that
is ∃y(1G < y ∧ ¬∃z (1G < z ∧ z < y));
• the ordering is dense, that is ∀x, y (x < y ⇒ ∃z (x < z ∧ z < y)) that is
∀y(1G < y ⇒ ∃z (1G < z ∧ z < y)).

The ordering of G = (Z,+) is discrete, as there is no element between 0 (that
is 1G) and the element 1, while the ordering of G = (Q,+) is dense. In a
divisible ordered abelian group the order is dense, but the converse does not
hold (Exercise 9.19).

Adding to the theory of ordered abelian groups the axioms δn for divis-
ibility (see page 97), the theory of divisible ordered abelian groups is
obtained. It is a non-finitely axiomatizable theory (Exercise 9.24(i)) and
in Chapter VII (Exercise 31.56(iv)) we will see that it is a complete theory.
Therefore every divisible ordered abelian groups is elementarily equivalent to
(Q,+, <) or, equivalently to (R,+, <).
9.A.3. Z-groups. When dealing with ordered abelian groups it is customary
to adopt the additive notation, so if (G,+G,−G, 0G,≤G) is discrete, then
there is an element denoted by 1G such that 0G <G 1G and there is no
element between 0G and 1G.1 Thus it is convenient to work with the language
L with an additional symbol 1 so that a discretely ordered abelian group is
an L-structure (G,+G,−G, 0G, 1G,≤G) satisfying the relevant axioms.

The group Z×Z with the lexicographic order ≤lex is a discretely ordered
abelian group with 1Z×Z = (0, 1). Moreover the element (1, 0) is neither even

1In this case 1G does not denote the identity of the group, which is 0G, but the element that
is immediately above 0G.
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nor odd, that is

(9.3)
¬∃(n,m) ∈ Z× Z

[
(n,m) + (n,m) = (1, 0)

∨ (n,m) + (n,m) = (1, 0) + 1Z×Z
]
.

For a fixed n ≥ 2, every integer is congruent modulo n to some 1 ≤ m ≤ n,
that is Z satisfies the sentences

(πn) ∀x ∃y
( ∨
1≤m≤n

x+m1 ≖ ny
)
.

By (9.3) Z × Z does not satisfy π2, hence the theory of discretely ordered
abelian groups is not complete.

A discretely ordered abelian group satisfying the axioms πn for n ≥ 2,
is a Z-group. The theory of Z-groups is not finitely axiomatizable (Exer-
cise 9.24(ii)) and in Chapter VII (Exercise 31.56(v)) we will prove that it is
complete. Thus every Z-group is elementarily equivalent to (Z,+,−, 0, 1, <).

If G is an ordered abelian group, then G × Z is a divisible, discretely
ordered abelian group with the lexicographic order. If moreover G is divisible,
then G× Z is a Z-group.

If G is a discretely ordered abelian group, then Z = {k1G | k ∈ Z} is a
subgroup of G isomorphic to Z and G/Z is abelian. Moreover, if a+Z ̸= b+Z,
then either a + Z < b + Z, that is ∀g ∈ a+ Z ∀h ∈ b+ Z (g < h) or else
b+ Z < a+ Z, that is ∀g ∈ a+ Z ∀h ∈ b+ Z (h < g). Therefore G/Z is an
ordered abelian group. Moreover, if G is a Z-group, then G/Z is divisible.

9.B. Rings. Recall that LRings consists of two binary function symbols +
and ·, a unary function symbol −, together with two constant symbols 0 and
1. An L-structure (R,+,−, ·, 0, 1) satisfying (3.11) and (3.12) on page 53 is
a ring. Every integer n ∈ Z can be identified with a closed term: assign to
n > 0 the term n1 using the notation for terms nt introduced on page 25,
then extend this identification to Z. The closed terms 2 + 2, 2 · 2 and 4
are distinct: in an arbitrary L-structure they may denote different elements,
but in a ring they denote the same object. Similarly, to each polynomial
a0 + a1X + a2X

2 + · · ·+ anX
n ∈ Z[X] we assign the term

a0 + (a1 · x) + (a2 · x2) + · · ·+ (an · xn).

This example is quite general, since every term of our language can be seen
as a polynomial in several variables with integer coefficients.

Given a ring R, every element of the prime subring is definable by means of
the formula x ≖ n, for some n ∈ Z. If R has finite characteristic m, the prime
subring Z/mZ is definable in R via the formula x ≖ 0∨x ≖ 1∨· · ·∨x ≖ m− 1.
If R has finite characteristic 0, the definability of the prime subring Z depends
on R. In Section 11 we will see that Z is definable in Q, but it is not definable
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in R or in C. On the other hand Z is always definable in k[X] for any field k
of zero characteristic (Exercise 9.22).
9.B.1. Ideals. If we need to formalize in the language of rings facts involving
ideals, we face obstacles similar to the ones encountered when looking at
subgroups in the language of groups. Also in this case we add a new unary
predicate symbol I to LRings, and add as axiom

(9.4) ∃xI(x) ∧ ¬I(1) ∧ ∀x, y, z (I(x) ∧ I(y)⇒ I(x− y) ∧ I(x · z) ∧ I(z · x))
saying that the truth set of I(x) is a proper (two-sided) ideal. The notion of
prime and maximal ideal are rendered by ∀x, y (I(x · y)⇒ I(x) ∨ I(y)) and
∀x (¬I(x)⇒ ∃y I(x · y − 1)), respectively.

Definition 9.10. A semi-rng is an algebraic structure (R,+, ·, 0) such that
(R,+, 0) is a commutative monoid, (R, ·) is a semigroup, the operation · is
distributive with respect to +, and 0 · x = x · 0 = 0 for all x ∈ R. If there
is an element 1 ∈ R that is neutral with respect to · it is called a semi-ring,
and if the operation · is commutative it is called a commutative semi-rng.
The language for semi-rngs is obtained by removing the symbol − from the
language LRngs.

Every rng is a semi-rng. Examples of semi-rngs that are not rngs, are

• N with the usual operations,

• R ∪ {+∞} with the operation of addition x⊕ y
def
= min(x, y) and multipli-

cation x⊗ y
def
= x+ y, with the convention that x+ y = +∞ whenever at

least one among x and y are +∞,2

• the set of all ideals in a r(i)ng,
• the set R[X] of all polynomials with coefficients in a semi-r(i)ng R,
• a family of sets containing the empty set and closed under finite unions

and intersections, or more generally, a distributive lattice with minimum
(see Section 7.D).

9.B.2. Ordered fields. As mentioned on page 55 an ordered field is an LORings-
structure satisfying TOFlds, that is the axioms for fields and the compatibility
of the ordering with the operations. Equivalently (Exercise 9.29) it is a
structure for the language extending LRings via a unary predicate P , satisfying

∀x (P (x) ·∨ P (−x) ·∨ x ≖ 0)

∀x, y (P (x) ∧ P (y)⇒ P (x+ y) ∧ P (x · y))
In other words: an ordered field is a field F with a distinguished subset
P , called the cone of positive elements, which is closed under addition and

2This semi-ring is of central importance in an area of mathematics known as tropical geometry,
hence R ∪ {+∞} is known as the tropical semi-ring.
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multiplication, and so that F is partitioned into three disjoint subsets P , −P
and {0}.

Definition 9.11. An ordered field is real closed if every positive element is
a square and every polynomial of odd degree has a root.

Examples of Archimedean real closed fields are R and Q ∩ R, the field
of algebraic real numbers. Real closed fields are axiomatizable by adding to
TOFlds the existence of the square root of positive elements

∀x
(
x ≥ 0⇒ ∃y (y2 ≖ x)

)
together with the infinite sentences asserting that all polynomials of odd
degree have a root:

(ρn)
∀a0, . . . , a2n+1

(
a2n+1 ̸≖ 0⇒

∃x
(
a0 + a1 · x+ a2 · x2 + · · ·+ a2n+1 · x2n+1 ≖ 0

))
.

In Chapter ?? we shall prove that the theory of real closed fields is complete,
hence every real closed field is elementarily equivalent to the real field R. We
will show that no finite sub-list of the ρns is enough for the definition of a
real closed field, hence by Theorem 4.49 the first-order theory of real closed
fields is not finitely axiomatizable.
9.B.3. Vector spaces. The first-order language considered up to now had
finitely many non-logical symbols, but it is easy encounter languages that
do not fit in this picture. For example we can consider a vector space over
a field k as a structure (V,+, {fx | x ∈ k} ,0) where +: V × V → V is the
sum of vectors, 0 ∈ V is the zero vector and fx : V → V , fx(v) = xv is the
scalar multiplication. The language Lk has as many unary operations as the
elements of k. More generally a left R-module (with R a ring) can be seen
as a structure (M,+, {fx | x ∈ R} ,0), where fx : M →M , fx(m) = xm, is
the multiplication by x ∈ R. (If k and R are finite, then so are Lk and LR.)

Similarly one can axiomatize the notion of G-set, that is a non-empty set
X together with an action of the group G on X, that is a map G×X → X,
(g, x) 7→ g.x, such that 1G.x = x and g.(h.x) = (gh).x for all g, h ∈ G and
x ∈ X. The ensuing structure will be of the form (X, {fg | g ∈ G}) where
fg(x) = g.x.

Remark 9.12. Having seen these examples, the reader might ask what is
the point in focusing on first-order languages, since many concepts in various
areas of mathematics seem to require quantification over the natural numbers
or over arbitrary subsets of the structure. The reason is simple: first-order
logic allows us to prove results on models (for example: the Compactness
Theorem 4.46) that would not be provable in a more general context.
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9.C. Many-sorted structures and languages. The first-order structures
seen so far (groups, rings, . . . ) have the peculiarity that all of their elements
are of the same kind. There are nevertheless cases in mathematics where
items of different kind conjure to build a new object.
9.C.1. Vector spaces as two-sorted structures. The definition of vector space
over a field k (or more generally: the definition of R-module) uses two types of
objects, vectors and scalars. In Section 9.B.3, the field of scalars is hidden by
the unary functions fx, with x ∈ k, but what if we want to give a first-order
axiomatization of the notion of vector space, irrespective of the field k? A
solution is to consider structures M where the universe is of the form W ⊎ k,
with two unary predicates V and S(x) to formalize “x is a vector” and “x is
a scalar”, so that the structure satisfies the sentence

∀x (V (x)⇔ ¬S(x)) .

That is to say: every element is either a vector or a scalar, but not both. The
symbols ⊕ and ⊗ are used for sum of vectors and scalar multiplication, and
⊞ and ⊠ for the operations on the field k. The problem is that ⊕,⊗,⊞,⊠
are partial functions, defined only on certain pairs of elements, hence these
should be construed as ternary predicates. In other words, among the axioms
we must add statements of the form

∀x, y (V (x) ∧ V (y)⇒ ∃!z (⊕(x, y, z)))

and similarly for ⊗, ⊞ and ⊠. For example, commutativity of addition of
vectors is stated as

∀x, y, z (V (x) ∧ V (y) ∧ V (z) ∧ ⊕(x, y, z)⇒ ⊕(y, x, z))

and distributivity of scalar multiplication with respect to addition of vectors
can be stated as

∀x, y, z, x′, y′, z′, w
[
V (x) ∧ V (y) ∧ V (z) ∧ V (x′) ∧ V (y′) ∧ V (z′) ∧

S(w) ∧ ⊗(w, x, x′) ∧ ⊗(w, y, y′) ∧ ⊗(w, z, z′) ∧ ⊕(x, y, z)⇒ ⊕(x′, y′, z′)
]
.

We leave to the reader to check that notion of vector space over an arbitrary
field is finitely axiomatizable using the symbols V, S,⊕,⊗,⊞ and ⊠.

The formalization just presented is rather baroque, since we must specify
if a variable ranges over vectors of scalars. Mathematical practice suggests
to introduce two types of variables: those for vectors, denoted with boldface
letters u,v,w, . . ., and those for scalars, denoted with Greek letters α, β, γ, . . ..
From scalar variables it is possible to construct scalar terms using ⊞ and ⊠;
a vector term is defined as follows: every vector variable is a vector term,
the symbol + applied to vector terms yields a vector term, and the symbol
· applied to a scalar and a vector term yields a vector term. Therefore
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distributivity of scalar multiplication with respect to addition becomes

∀u,v, α
[
α · (u+ v) ≖ α · u+ α · v

]
.

9.C.2. A family of sets as a two sorted structure. Another example of two
sorted structure is given by any family S ⊆ P(A). In order to see S as a
first-order structure, fix two unary predicates, U for the elements of A and S
for the sets in S, plus a binary predicate E to tell when an element belongs
to a set. Thus S can be seen as a structure M = (M,UM, SM, EM) where
M = A ⊎ S, UM = A, SM = S, and EM = {(x,X) ∈ A× S | x ∈ X}. The
structure M satisfies

(9.5)
∀x(U(x)⇔ ¬S(x))

∀x, y (S(x) ∧ S(y) ∧ ∀z [U(z)⇒ (E(z, x)⇔ E(z, y))]⇒ x ≖ y),

that is: any object is either a point or else a set, and two sets are the same if
they have the same elements.

If we want to describe M as a two-sorted structure it is convenient, as in
the case of vector spaces, to distinguish variables for elements of A (denoted
with lower case letters x, y, z, . . .) from variables for subsets of A (denoted
with capital letters X,Y, Z, . . .). Then (9.5) becomes

∀X ∀x (X ̸≖ x)

∀X,Y [∀z (E(z,X)⇔ E(z, Y ))⇒ X ≖ Y ] ,

If we require that ∅ ∈ S, that S be closed under complements and under
intersections, then M must satisfy

∃X (¬∃xE(x,X)) ,

∀X ∃Y ∀z (E(z,X)⇔ ¬E(z, Y )) ,

∀X,Y ∃Z ∀w [E(w,Z)⇔ (E(w,X) ∧ E(w, Y ))] .

Conversely, a two-sorted structure M satisfying the statements above, is of the
form S ⊆P(A) where ∅ ∈ S is a closed under complements and intersections
(and hence closed under unions and A ∈ S). Families S as above are Boolean
algebras, and were introduced in Section 7.
9.C.3. Directed multigraphs. A multigraph is a set V together with a set
E of edges between them. The difference between this notion and that of a
graph in Section 3.D.2 is that there might be several edges between the same
vertexes, and that a vertex may be linked to itself. A directed multigraph
is a multigraph in which the edges have an orientation. It can be seen as a
two-sorted structure (V,E, s, t) with s, t : E → V assigning to each edge e
a vertex s(e) called source, and a vertex t(e) called target. If one wants to
recast this as a familiar one-sorted structure, we introduce a language with



9. Definability in algebra 245

two unary predicates V (x), E(x) and two binary predicates s(x, y) and t(x, y)
and require that the structure M = (M,V M, EM, sM, tM) satisfies:

∀x(V (x)⇔ ¬E(x))

∀x, y (s(x, y)⇒ E(x) ∧ V (y)) ∧ ∀x (E(x)⇒ ∃!y s(x, y))
∀x, y (t(x, y)⇒ E(x) ∧ V (y)) ∧ ∀x (E(x)⇒ ∃!y t(x, y)).

9.D. Further examples*.
9.D.1. Notions involving ideals. Notions involving quantifications over ideals
cannot, in general, be formalized in first-order logic. The radical of an ideal
a of a commutative ring R is the ideal

√
a = {x ∈ R | ∃n ∈ N (xn ∈ a)} .

When a = {0R} is the null ideal, we have the nil-radical Nil(R) of R. Even
if a is definable, it may happen that

√
a is not definable; in particular the nil-

radical is not, in general, a definable subset of R. An equivalent3 formulation
is given by [AM69, Prop. 1.8, Chapter 1]

√
a =

⋂
{p | p prime ideal and p ⊇ a} ,

but in this case this definition uses a quantification over subset. On the other
hand, the Jacobson radical

Jac(R) =
⋂
{m | m maximal ideal}

is definable, since it is the truth set of the formula ∀y∃z ((1− x · y) · z ≖ 1)
[AM69, Prop. 1.9, Chapter 1].

A commutative ring with 0R ̸= 1R is said to be Noetherian if every
increasing sequence of proper ideals

J0 ⊆ J1 ⊆ J2 ⊆ . . .

is such that Jn = Jn+1 for all sufficiently large n. Equivalently: a ring is
Noetherian if every proper ideal is finitely generated. Noetherian rings are not
first-order axiomatizable, but the collection of rings that are not Noetherian
is axiomatizable, provide that we add a unitary predicate I. In fact it is
enough to require TCRings together with the sentence (9.4) that says that
the truth set of I is an ideal, and the sentences

∀x1, . . . , xn
(∧

1≤i≤n I(xi)⇒ ∃y (I(y) ∧ ∀z1, . . . , zn (
∑n

i=1 zi · xi ̸≖ y))
)

for all n ≥ 1.
A commutative ring such that 0R ̸= 1R and with exactly one maximal

ideal is called a local ring. This notion would not seem be formalizable
in the extended language of Section 9.B.1, because of the quantification on

3The equivalence of the two definitions depends on the axiom of choice.
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subsets. But a commutative ring R such that 0R ̸= 1R is local if and only if
either x or 1 + x is invertible for all x ∈ R [AM69, Prop. 1.6, Chapter 1], so
being a local ring is indeed formalizable in LRings.

A ring R is von Neumann regular if every finitely generated left ideal
is generated by an idempotent—see [Kap95, Goo91]. Examples of von Neu-
mann regular rings are: any skew-field, the ring of endomorphism of a vector
space over a skew-field, and Boolean rings (p. 176). The definition above is not
first-order, but a different equivalent definition entails finite axiomatizability:
R is a von Neumann regular ring if and only if ∀x ∈ R ∃y ∈ R (x = xyx).
9.D.2. Rings of holomorphic functions. A function f : U → C, with U a non-
empty open subset of C, is holomorphic if it is differentiable in all points of
its domain, i.e. limw→z

f(w)−f(z)
w−z exists for all z ∈ U . An entire function is a

holomorphic function on C. The set H(U) of holomorphic functions on U is
a commutative ring with the operations of pointwise addition and product.
By identifying each complex number with the constant function on U defined
by it, we have that C ⊆ H(U). The study of H(U) is very important for
classifying the open set U up to conformal equivalence—two open sets U , U ′

are conformally equivalent if there is a holomorphic bijection ϕ : U → U ′. If
ϕ : U → U ′ is a holomorphic bijection, then Φ: H(U)→ H(U ′), f 7→ f ◦ϕ−1,
is a ring isomorphism such that Φ(i) = i. Conversely, if Φ: H(U)→ H(U ′)
is a ring isomorphism such that Φ(i) = i, then U and U ′ are conformally
equivalent [LR84, p. 130]. Therefore the ring structure H(U) encodes all
the information on the complex structure of U .

As we observed C is contained in the ring H(U)—in fact it is a definable
subset [Huu94]. The proof is non-trivial, but in the case U = C is easier, as
it follows from an application of Picard’s Little Theorem [Con78, p. 297]:
An entire non-constant function can avoid at most one values, that is if f is
entire and C \ ran(f) has at least two points, then f is constant. Thus C is
defined in H(C) by the formula φC(x)

x ≖ 0 ∨ x ≖ 1 ∨ (x | 1 ∧ (x− 1) | 1) .

The constants 0, 1 and the divisibility predicate | are definable in the ring
H(C), and will be used freely.

Although N is not definable in the complex field C, it is definable in the
ring H(C). Let us show that the formula φN(x)

x ∈ C ∧ ∀f, g [f | g ∧ ∀y ∈ C (f + y | g ⇒ f + y + 1 | g)⇒ f + x | g],

where z ∈ C stands for φC(z), defines N in H(C).
Let n ∈ N and let f, g be entire functions such that f | g, and such that

f + y | g ⇒ f + y+1 | g for all y ∈ C. Then f, f +1, . . . , f +n divide g, hence
n satisfies φN(x).
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To prove the converse we need to recall the following easy fact on holo-
morphic functions:

(9.6) if g ∈ H(C) and g(z0) = 0 for some z0 ∈ C, then z − z0 divides g.

Let h ∈ H(C) be an element satisfying φN(x). Then h ∈ C. Let f(z) = z
and g be a function that annihilates on the set {−k | k ∈ N}, for example
g(z) = 1/Γ(z) where Γ(z) =

∫∞
0 tz−1e−t dt. Let y ∈ C: by (9.6) f + y | g if

and only if y ∈ N, hence f + y | g ⇒ f + y+1 | g, and therefore f + h | g. But
from what we just said this implies h ∈ N.

9.E. The term algebra. In this Section L will be a first-order language
without relational symbols.

For M an L-structure, let

Cong(M) = {E | E is a congruence on M}

where the notion of congruence was defined in (4.1). The identity idM and
the trivial relation M ×M are congruences. If E is a family of equivalence
relations (or congruences) on M , then

⋂
E is an equivalence relation (or

congruence) on M . If R is a binary relation on M , then⋂
{E ∈ Cong(M) | R ⊆ E}

is the congruence generated by R. For notational ease we will often use
the same symbol for a relation and the congruence it generates.

If E is a family of equivalence relations on M then
⋃

E is not necessarily
an equivalence relation, since transitivity might fail, even when E has size
two. Thus given a family E ⊆ Cong(M), the congruence generated by

⋃
E is

the relation ∼ def
=
⋂
{R ⊇

⋃
E | R ∈ Cong(M)}. Equivalently (Exercise 9.34)

a ∼ b ⇔ ∃x0, . . . , xn ∈M ∃E0, . . . , En ∈ E

x0 = a ∧ xn = b ∧ ∀i < n (xi Ei xi+1)

The set Term = TermL of all terms of L can be seen as an L-structure
if the interpretation of the function and constant symbols are the symbols
themselves: if f is an n-ary function symbol, then

fTerm : Termn → Term, fTerm(t1, . . . , tn) = f(t1, . . . , tn)

and cTerm = c for all constant symbols c. A similar result holds if the set
Term is replaced by Term(x0, . . . , xn−1) the set of all terms whose variables
are among x0, . . . , xn−1, or by the set of all closed terms ClTermL = ClTerm.

Let T be an equational L-theory and let Σ be a set of identities whose
universal closure are the axioms of T . Each identity of Σ is of the form

(α) t(x0, . . . , xn−1) ≖ s(x0, . . . , xn−1)
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with t, s ∈ Term, and each one of these identities yields a congruence ∼α on
Term defined as the intersection of all congruences ≈ on Term satisfying

∀u0, . . . , un−1, v0, . . . , vn−1 ∈ Term
(
u0 ≈ v0 ∧ · · · ∧ un−1 ≈ vn−1

⇒ t[u0/x0, . . . , un−1/xn−1] ≈ s[v0/x0, . . . , vn−1/xn−1]
)
.

The congruence generated
⋃
α∼α is called the congruence generated by Σ

and it is denoted by ∼Σ.
If ∼ is a congruence on Term then Term(x1, . . . , xn)/∼ is isomorphic to

Term /≈ where ≈ is the congruence generated by the relation ∼∪{xn ≈ xm |
n < m}. Let L∞ be the language obtained by adding new constant symbols
{dn | n ∈ N} to L. The map

TermL → ClTermL∞ , t 7→ t[d0/x0, d1/x1, . . .]

is a bijection, and if ∼ is a congruence on TermL then

t ∼ s ⇔ t[d0/x0, d1/x1, . . .] ∼ s[d0/x0, d1/x1, . . .].

Thus TermL /∼ and ClTermL∞ /∼ are isomorphic L-structures, and so are
TermL(x0, . . . , xn−1) and ClTermLn , where Ln is the language obtained by
adding d0, . . . , dn−1 to L. Let K be a non-empty set—by replacing K with
another set in bijection with it if needed, we may consider it to be a set of
constant symbols disjoint from the constant symbols of L. Then T is a theory
in the language L ∪K as well, and the structure

FreeT (K) = ClTermL∪K /∼Σ

is the term model for T over L ∪K, or free model of T on K-generators.
The use of the word “model” is justified by the next theorem. An equational
theory is non-trivial if it not all of its models are singletons, that is if it
has a model with at least two elements—see Example 9.15 below for a trivial
equational theory.

Theorem 9.13. If L, T and K are as above, then FreeT (K) ⊨ T . If moreover
T is non-trivial, then

• K ⊆ FreeT (K) is a set of generators for FreeT (K),

• if M ⊨ T and F : K →M is any function, then there is a unique morphism
F̂ : FreeT (K)→M extending F ,

• if K and K ′ are in bijection, then FreeT (K) ∼= FreeT (K
′).

See [Ber12, Section 4.3] for a proof.
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9.E.1. Examples. Consider the language for semigroups LSGrps with just one
binary operation ∗.

Example 9.14. Let ∼ be the congruence generated by the associative law,
that is

(t ∗ s) ∗ u ∼ t ∗ (s ∗ u),
for all terms t, s, u. The quotient algebra Term /∼ is a semigroup and its
elements can be identified with expressions of the form

xn1
1 ∗ x

n2
2 ∗ · · · ∗ x

nk
k ,

where the variables x1, . . . , xk are not necessarily distinct, and n1, . . . , nk > 0—
if besides associativity we also require commutativity, that is t ∗ s ∼ s ∗ t for
all pairs of terms t and s, then the variables can be taken to be distinct.

If K = {a}, then the elements of FreeT (K) are of the form an with
n ≥ 1, and (FreeT (K), ∗) ∼= (N \ {0} ,+). If K = {a, b}, then the ele-
ments of FreeT (K) are of the form an1bm1an2bm2 . . . ankbmk with k ≥ 1,
m1, n2, . . . , nk > 0, n1,mk ≥ 0 and n1 +m1 > 0 if k = 1.

Example 9.15. If ∼ is the congruence generated by the identity (x∗y)∗z ≖ y,
the quotient algebra Term /∼ has only one element, that is to say s ∼ t for
all s, t ∈ Term. This follows from the fact that ∀x, y, z ((x ∗ y) ∗ z ≖ y) ⇒
∀x, y (x ≖ y) is valid, by Example 5.3.

Example 9.16. Consider the language LGrps but with the binary operation
denoted by ∗. Consider the congruence ∼ generated by the associative law for
∗, by 1 ∗ t ∼ t, and by t−1 ∗ t ∼ 1. The quotient structure Term /∼ is a group
(Exercise 4.84) whose elements are equivalence classes of terms built from the
constant 1 and from variables, that, as stated on page 23, are an infinite list
of objects v0, v1, . . .. It is the most general group that can be built from the
variables vn; such a group is called the free group of rank ω and will be
discussed in Section 18.D.2. If we restrict ourselves to Term(v1, . . . , vn)/∼ or
equivalently ClTerm(c1, . . . , cn)/∼ with c1, . . . , cn new constants, the most
general group on n generators is obtained, the free group of rank n.

The elements of Term(x)/∼ can be identified with expressions of the form
xn with n ∈ Z, hence the free group on one generator is isomorphic to (Z,+).
The elements of Term(x, y)/∼ can be identified with expressions of the form

xn1 ∗ ym1 ∗ xn2 ∗ ym2 ∗ · · · ∗ xnk ∗ ymk

where k ≥ 1, m1, n2, . . . , nk ∈ Z \ {0} and n1,mk ∈ Z, with the agreement
that if k = 1 and n1 = mk = 0, the resulting expression is the equivalence class
of the term 1. If ≡ is a congruence extending ∼, the structure Term(x, y)/≡ is
a group generated by two elements [x] and [y] which will be the homomorphic
image of Term(x, y)/∼, and every group generated by two elements can be
obtained as a quotient of the free group of rank 2. For example:
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Figure 13. The Cayley graph of the free group on two generators

• if ≡ enforces commutativity, then the expressions can be simplified to
xn ∗ ym with n,m ∈ Z, hence Term /≡ is isomorphic to Z× Z,
• if ≡ enforces commutativity and xn ≡ 1 and ym ≡ 1, then Term /≡ is

isomorphic to (Z/nZ)× (Z/mZ),
• if ≡ enforces x4 ≡ 1 and (x ∗ y)2 ≡ 1, then Term /≡ is isomorphic to the

dihedral group D4 of all isometries of the square—for example x represents
a rotation of π/2 and y is the reflection along the diagonal.

A group G = ClTerm(c1, . . . , cn)/≡ defined by some congruence extending ∼
is described by its Cayley graph: it is a directed graph with G as a set of
vertexes, and such that for distinct g, h ∈ G there is an edge from g to h just
in case g ∗ ci = h for some 1 ≤ i ≤ n. Thus the Cayley graph of Z looks like

while the Cayley graph of the free group on two generators ClTerm(a, b)/∼
is described in Figure 13. In algebra the free group F (C) on a non-empty
set C of generators is usually defined to be the set of all irreducible words
on C. A word on C is a finite sequences of the form cε11 · c

ε2
2 · · · cεnn with

ci ∈ C and εi ∈ {−1, 1}, with the understanding that c1 is identified with
c. A word w is reducible if ci = ci+1 and εi = −εi+1 for some i+ 1 < n; a
pair of consecutive elements of w as above is said to be offending. A word
that is not reducible is irreducible. By repeatedly removing all offending
pairs, any word can be thinned-down to a unique reduced word. The inverse
of the word w = cε11 · c

ε2
2 · · · cεnn is w−1 def

= c−εn
n · · · c−ε2

2 · c−ε1
1 . If w, z ∈ F (C)
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set w · z to be the sequence w followed by z, and the reduced. It can be
shown [Hun80, p. 65] that the operation is associative, that w−1 is indeed
the inverse of w, and that the empty word is the identity element.

Example 9.17. If L is the language of unitary semi-rings, that is the language
containing +, ·, 0 and 1, let ∼ be the congruence generated by the associative
and commutative property for + and ·, by 0 + t ∼ t, 1 · t ∼ t, and 0 · t ∼ 0.
Then Term(x1, . . . , xn)/∼ is the free semigroup on n generators and it is
isomorphic to N[X1, . . . , Xn], the semi-ring of polynomials in n variables and
coefficients in N.

Exercises

Exercise 9.18. Show that there are uncountably distinct linear orders ≤
that make (Z× Z,+,≤) a bi-ordered group.

Exercise 9.19. Let {ξn | n ∈ N} ⊆ (0; 1) be Q-linearly independent, and let
G =

⋃
n Z[ξ0, . . . , ξn] where Z[ξ0, . . . , ξn] = {

∑n
i=0 kiξi | ki ∈ Z}. Show that

G is a densely ordered abelian group which is not 2-divisible.

Exercise 9.20. Complete the verification that the notion of vector space
over an arbitrary field is finitely axiomatizable in the language V, S,⊕,⊗,⊞
and ⊠.

Exercise 9.21. Let R be a ring. Show that:

(i) R is not definable in the group (R[X],+);
(ii) the unknown X is not definable in the ring (R[X],+, ·).

Exercise 9.22. Let R be an integral domain of characteristic zero. Show
that:

(i) Z is definable without parameters in (R[X],+, ·, R), that is in the
structure obtained expanding the ring of polynomials with a unary
predicate for the elements of R. Thus Z is definable in R[X] if R is
definable in R[X].

(ii) if R is a field, then Z is definable without parameters in (R[X],+, ·).

Exercise 9.23. Show that the congruences in groups and rings can be
identified with normal subgroups and ideals, respectively.

Exercise 9.24. Show that the following first-order theories are not finitely
axiomatizable:

(i) the theory of ordered divisible abelian groups,
(ii) the theory of Z-groups.
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Exercise 9.25. Let G be a group and let H be a subgroup. Suppose that
some left coset aH is definable without parameters in G. Show that H is
definable without parameters in G

Exercise 9.26. Let LsubGrp be the language defined in Section 9.A.1. Find
a sentence σ of LsubGrp such that

(G, ·,−1, 1G, H) ⊨ σ if and only if G/H is an abelian group.

Exercise 9.27. Find sentences σn in the language for additive groups such
that G ⊨ σn if and only if G/2G has size n. Conclude that Zn and Zm are
elementarily equivalent if and only if n = m.

Exercise 9.28. Show that in a local ring the maximal ideal is definable
without parameters.

Exercise 9.29. Let k be a field. Show that

(i) if < turns k into an ordered field, then P = {x ∈ k | 0 < x} is the
cone of positive elements; conversely given a P as above, the relation
x < y ⇔ y − x ∈ P turns k into an ordered field.

(ii) The following properties are true in an ordered field
• ∀x ̸≖ 0

(
x2 ∈ P

)
;

• 1 ∈ P and the characteristic of the field is 0;
• x ∈ P ⇒ x−1 ∈ P ;
• 0 < x < y ⇒ 0 < y−1 < x−1.

Exercise 9.30. Work with LAbGr and suppose ∼ is a congruence on Term
enforcing and abelian group structure. Show that Term /∼ is isomorphic to
(Z[X],+).

Exercise 9.31. Show that

(i) if ∼ is a congruence on some L-structure M , then M →M/∼, a 7→ [a]∼,
is a surjective homomorphism;

(ii) if F : M ↠ N is a surjective homomorphism, then the equivalence
relation a ∼ b⇔ F (a) = F (b) is a congruence on M .

Exercise 9.32. (i) Verify in detail that the structures described in Sec-
tion 9.B.3, that is: modules over a ring R and vector spaces over a field
k, are axiomatizable in the first-order languages LR and Lk.

(ii) Show that the theory of vector spaces over k is finitely axiomatizable if
and only if k is finite. Is the analogous statement true for R-modules?

Exercise 9.33. Let k be a finite field and let Lk be the language of Sec-
tion 9.B.3. Show that:

(i) “the vectors v1, . . . ,vn are linearly independent” is a first-order formula
in Lk;
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Figure 14. Contraction by the edge e = {x, y}

(ii) the theory Tn of k-vector spaces of fixed dimension n is finitely axioma-
tizable, and that the theory T∞ of infinite dimensional k-vector spaces
is axiomatizable, but not finitely axiomatizable;

(iii) the theories Tn and T∞ are complete.

Exercise 9.34. Show that the congruence generated by
⋃

E is
⋃

n∈NRn,
where

Rn =
{
(x, y) ∈M2 | ∃x1, . . . , xn ∈M ∃E0, . . . , En ∈ E

∀i ≤ n (xi Ei xi+1 ∧ x0 = x ∧ xn+1 = y)
}
.

Notes and remarks

Exercise 9.22 is from [Rob51], where it is also shown that Z is definable in Z[X]. In 1936, motivated
by problems in lattice theory von Neumann introduced the notion of regular ring (Section 9.D.1).
Since the term regular ring is also used in algebra to denote a totally unrelated concept, it is
customary nowadays to include the von Neumann in their definition.

10. Definability in graphs

Recall form Section 3.D.2 that a graph is a structure (V,E) with E an
irreflexive symmetric relation. Given G = (V,E) and an edge e = {x, y} ∈ E,
the contraction of G by e is G/e = (V/∼, E′) where ∼ is the equivalence
relation on V that identifies the vertices x and y, and E′ is the relation
induced on the quotient (see Figure 14). We say that H is a minor of G,
in symbols H ≤ G, if H can be obtained from H ′ ⊆ G via a finite sequence
of contractions, that is to say: there are H0, H1, . . . ,Hn such that H = H0,
Hn = H ′ and Hi is Hi+1/ei+1 where ei+1 is an edge of Hi+1.

10.A. Axioms for graphs. The axioms for graphs are formulated in the
language LGrph containing a binary relation symbol E and assert that this
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relation is irreflexive and symmetric, that is

TGrph

{
∀x¬E(x, x)

∀x, y (E(x, y)⇒ E(y, x)) .

We say that G′ = (V ′, E′) is a subgraph of a graph G = (V,E), is symbols
G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E ∩ V ′ × V ′.

Remark 10.1. The notion of subgraph does not coincide with that of a
substructure since it is not required that E′ = E ∩ (V ′ × V ′). Whenever
V ′ ⊆ V and E′ = E ∩ (V ′ × V ′) we say that (V ′, E′) is the subgraph
induced by (V,E) on V ′.

A graph is complete if any two distinct vertexes are connected by an
edge, that is if E is total; in this case we will say that it is the complete
graph on V . Two complete graphs with the same number of vertices are
isomorphic, and Kn denotes the complete graph on n vertices (Figure 15). If
the induced subgraph on X ⊆ V is complete, we still say that X is a clique.
At the other extreme of the spectrum, a set X of vertexes is independent if
any two vertexes of X are never connected by an edge, that is if E restricted
to X is free. A graph is independent if its set of vertexes is independent, that
is if it has no edges.

The statement of Exercise 2.13 can be restated as a statement on graphs:
in every graph with six vertices there are three vertices that are mutually

K3 K4 K5

K2,2 K2,3 K3,3

Figure 15. Complete and bipartite graphs
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connected or mutually disconnected. This is a particular case of the following
result:

Theorem 10.2. ∀n∃m ≥ n such that every graph with m vertices contains
the complete graph Kn, or it has n mutually disconnected vertices.

A graph is bipartite if the set of vertices V can be partitioned into two
disjoint non-empty sets A0 and A1 such that there are no edges between
vertices of the same partition. The bipartite graph in which A0 has size n
and A1 has size m, and every vertex in Ai is linked to every vertex in A1−i

is denoted by Kn,m (Figure 15). In order to give a first-order formulation of
the notion of bipartite graph a two-sorted language is employed, that is two
unary predicate symbols A0 and A1 are introduced with the axioms:

∃xA0(x) ∧ ∃xA1(x)

∀x (A0(x)⇔ ¬A1(x))

∀x, y
[(
A0(x) ∧A0(y)

)
∨
(
A1(x) ∧A1(y)

)
⇒ ¬E(x, y)

]
.

If in the definition of bipartite graph we require that the set of vertices
be partitioned into k pieces, rather than two pieces, the notion of k-partite
graph is obtained. As we shall see in Section 10.C also k-partite graphs can
be finitely axiomatized.

A graph is planar if it can be drawn on the plane so that distinct edges
do not intersect. The graphs K4 and K2,3 are planar,

while it can be shown that neither K5 nor K3,3 are planar—these are the
minimal counterexample to planarity, since a graph G is planar if and only if
either K5 or K3,3 are minors of G.

10.B. Acyclic and connected graphs. Recall that a graph is acyclic if
it does not contain cycles, that is if ∀n ≥ 3χn holds, where χn is the formula

(χn) ¬∃x1, . . . , xn
(∧

1≤i<j≤n xi ̸≖ xj ∧ E(x1, xn) ∧
∧

1≤i<nE(xi, xi+1)
)
.

Unfortunately ∀n ≥ 3χn is just a pseudo-formula—in order to give a first-
order axiomatization of the class of acyclic graphs one needs to add to the
axioms for graphs all the sentences χn.

Recall that a graph is connected if every pair of vertices is connected by
a path; equivalently (V,E) is connected if the graph given by the transitive
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closure of E is the complete graph on V . A connected component of a
graph is an induced subgraph which is connected and maximal with respect
to inclusion among connected induced subgraphs. Every graph (V,E) is
the disjoint union of its connected components, that is there is a partition⋃

i∈I Vi = V of the set of vertices such that the induced subgraph on each Vi

is a connected component. Connectedness is usually stated as

∀x, y ∃k ≥ 1 ∃z0, . . . , zk
(
x ≖ z0 ∧ y ≖ zk ∧

∧
i<k

E(zi, zi+1)
)
,

but this is a pseudo-formula since

• the quantifier in “∃k ≥ 1” ranges over non-zero natural numbers, and not
on the vertices, and
• the quantification ∃z1, . . . , zk and the conjunction

∧
i<k E(zi, zi+1) are not

fixed once and for all, but depend on k.

The distance of two vertices v, w in a graph (V,E) is d(v, w), the length
d(v, w) of the shortest path between them, if they belong to the same con-
nected component, or d(v, w) =∞ otherwise. The diameter of a graph(V,E)
is the smallest N ≤ ∞ such that d(v, w) ≤ N for any v, w ∈ V . Observe that
d(v, w) = 0⇔ v = w, that {(v, w) ∈ V 2 | d(v, w) ≤ k} is definable in (V,E),
and that (V,E) is connected if and only if d(v, w) <∞ for any v, w ∈ V .

Proposition 10.3. Suppose (V,E) is a graph of infinite diameter. Then
there is a disconnected graph that is elementarily equivalent to (V,E).

Proof. It is enough to show that Th(V,E)∪{n < d(c0, c1) | n ∈ N} is finitely
satisfiable, where c0, c1 are two new symbols for constants. By assumption
∀n ∈ N ∃v, w ∈ V (n < d(v, w) ≤ ∞), so for any n we can assign c0, c1
to suitable vertexes whose distance is greater than n, so that Th(V,E) ∪
{n < d(c0, c1)} is satisfied. By compactness there is M = (V ′, E′, cM0 , cM1 )
that models Th(V,E)∪{n < d(c0, c1) | n ∈ N}. Therefore (V ′, E′) is a graph
elementarily equivalent to (V,E) with two vertexes in distinct connected
components. □

The graph (N, E) where n E m ⇔ |n−m| = 1 is connected and satisfies
the hypotheses of Proposition 10.3, therefore we have:

Corollary 10.4. The class of connected graphs is not axiomatizable.

10.C. Colorability. Given a graph G = (V,E), a k-coloring of the
vertices of G is a map F : V → {0, . . . , k − 1} such that F : G→ Kk. The
numbers 0, . . . , k − 1 are called colors of F . Equivalently: it is a morphism
of structures F : G→ Kk. A graph is k-colorable if it admits a k-coloring
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of vertices. The notion that a graph is k-colorable is first-order—it is enough
to introduce new unary predicates A0, . . . , Ak−1 with the axioms

∀x (A0(x) ∨ · · · ∨Ak−1(x))

¬∃x
∨

i<j<k (Ai(x) ∧Aj(x))

∀x, y
(
E(x, y)⇒ ¬

∨
i<k Ai(x) ∧Ai(y)

)
.

In fact to say that a graph is k-colorable is just another way to say that
the graph is k-partite. In particular: a graph is bipartite if and only if it
is 2-colorable. If G is a finite graph with vertices {v0, . . . , vn−1}, then the
map vi 7→ i witnesses n-colorability. The least k such that a finite graph is
k-colorable is the chromatic number of G and is denoted with χ(G). Thus
χ(Kn) = n, while a graph without edges is 1-colorable.

An ordered graph is a graph (V,E) with an order on V such that v E w
iff v is an immediate predecessor of w or, conversely, w is an immediate
predecessor of v; a graph is orderable if there is an order that makes it an
ordered graph.

Theorem 10.5. Let G = (V,E) be a finite graph.

(a) G is 2-colorable iff it does not contain cycles of odd length.
(b) G is orderable iff it is acyclic.

Proof. (a) If x1, . . . , xn is a cycle and F is a 2-coloring, then

∀i ≤ n (F (x1) ̸= F (xi)⇔ i even)

and since F (x1) ̸= F (xn), then G does not contain odd cycles. For the
converse direction, let

⋃
i∈I Vi = V be the partition of the set of vertices of

G in connected components. Since V is finite, also I is finite, hence we can
choose vi ∈ Vi and define F : V → {0, 1} by

F (v) = 1 ⇔ there is a k-path from some vi to v, with k even.

The assumption guarantees that F is indeed a 2-coloring.

(b) If G is orderable, then it contains no cycles by the transtive property.
For the other direction, argue as in part (a): if {Vi | i ∈ I} are the connected
components choose vi ∈ Vi and define the ordering on each Vi as follows: vi
is the minimum in Vi, the vertexes linked to vi cover it, and so on. □

Remark 10.6. The proof of the (⇒) direction in (a) and (b) does not
require that the graph be finite. For the (⇐) direction, if G is infinite, it
may happen that I, the set of indexes of the pieces of the partition in its
connected components, be infinite, and in order to select the vertices vi ∈ Vi

one must appeal to a set-theoretic principle known as the Axiom of Choice.
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The following result, known as the Four Color Theorem, is one of the
central results in the subject.

Theorem 10.7. Every finite planar graph is 4-colorable.

Theorem 10.7 is generally stated as follows: any map in a plane can
be colored using four colors in such a way that regions sharing a common
boundary do not share the same color. (In order to verify this equivalence it
is enough to associate a vertex v to every region in the map, and instate an
edge {v, w} just in case v and w represent contiguous regions.)

The dual notion of “coloring of vertices” is that of “coloring of edges”:
given a graph G = (V,E), a function F : E → {0, . . . , k − 1} is a k-coloring
of edges of G and the numbers 0, . . . , k − 1 are called colors. A subset
H ⊆ V is monochromatic for some k-coloring F if the edges of the induced
subgraph by H have all the same color, that is if there is i < k such that
F ({x, y}) = i for distinct x, y ∈ H. Since any graph with m vertices is a
subgraph of Km, Theorem 10.2 boils-down to the case k = 2 of the following
result, known as Ramsey’s Theorem.

Theorem 10.8. ∀n, k ∃m ≥ n such that for every k-coloring of Km there is
a monochromatic induced subgraph isomorphic to Kn.

10.D. Infinite graphs. Let us see two examples of graphs whose set of
vertexes is (an infinite subset of) N.

The countable complete graph is Kω = (N, E) where E = {{n,m} |
n ̸= m}, that is: every pair of distinct vertexes is joined by an edge. Every
countable graph can be identified with a subgraph of Kω. Ramsey’s The-
orem 10.8 holds for Kω as well: for all k > 0 and every k-coloring of the
edges of Kω, there is an infinite H ⊆ N such that the induced subgraph on
H (which is isomorphic to Kω) is monochromatic. We will prove this result
in Section 29.

The countable random graph Rω is the graph (N \ {0, 1}, E) defined
by:

n E m ⇔ n ̸= m ∧ (pn |m ∨ pm | n)
where (pn)n≥2 is the increasing enumeration of all prime numbers, that is
p2 = 2, p3 = 3, p4 = 5, . . .. (The reason for starting from 2 is that 1 divides
every number and 0 is divisible by any number, so 0 and 1 would be E-related
to anything, and this is a property that we wish to avoid.)

Definition 10.9. A graph G = (V,E) satisfies property Rnd if for any
two non-empty disjoint, finite subsets of vertexes A,B there is a vertex x
that has an edge with each vertex of A and no edge with any vertex in B,
that is

∀y ∈ A (x E y) ∧ ¬∃z ∈ B (x E z) .
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a a b

Figure 16. The graph Ha, and an R-link between Ha and Hb

Proposition 10.10. Rω has property Rnd.

Proof. Take x = (
∏

n∈A pn)
k with k sufficiently large so that px ∤m for all

m ∈ B. □

Property Rnd can be recast using infinitely many statements

(Rndn) ∀y1, . . . , yn, z1, . . . , zn
[ ∧
1≤i,j≤n

yi ̸≖ zj

⇒ ∃x
( ∧
1≤i≤n

E(x, yi) ∧ ¬E(x, zi)
)]
,

thus an axiom system for Rω in the language LGrph is TRndGrph whose
axioms are TGrph, the sentence ε≥3 “there are at least three distinct vertexes”,
and the sentences Rndn. Theorem 13.43 in Section 13.I shows that any
countable graph satisfying TRndGrph is isomorphic to Rω, and for this reason
any such graph is called a random graph (Exercise 24.43). By Theorem 4.37
the theory TRndGrph is complete.

10.E. Interpretability in graphs*. Graphs can interpret just about any
structure you can think of. Here we will show how to interpret any structure
of the form M = (M,R) with R ⊆M ×M , in a suitable graph GM defined
as follows. For each a ∈ M consider the graph Ha, and for each a, b ∈ M
such that a R b link Ha and Hb as in Figure 16. (The asymmetry of the
path from a to b codes that a is in relation with b.) The graph GM is then
obtained by taking all the Has together with the R-links between Ha and
Hb, whenever a R b.

Let us check that M is indeed interpretable in GM. The universe of the
structure M, that is the set M , is identified with the set of all vertices as
defined by the formula

ψU (x) ⇔ ∃z1, z2, z3ψH(x, z1, z2, z3)
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where ψH(x, z1, z2, z3) says that z1, z2, z3 are the vertexes of Ha, that is

(x E z1 ∧ z1 E z2 ∧ z2 E z3 ∧ z3 E z1 ∧ x ̸≖ z2 ∧ x ̸≖ z3)

∧ ∀w (w E z1 ⇒ w ≖ x ∨ w ≖ z2 ∨ w ≖ z3)

∧ ∀w (w E z2 ⇒ w ≖ z1 ∨ w ≖ z3)

∧ ∀w (w E z3 ⇒ w ≖ z1 ∨ w ≖ z2) .

The relation R is identified with the set of all ordered pairs of vertices defined
by the formula

ψR(x, y) ⇔ ψU (x) ∧ψU (y) ∧ ∃u1, u2, u3ψL(x, u1, u2, u3, y),

where ψL(x, u1, u2, u3, y) says that there is a link between x and y, that is[
x E u1 ∧ u1 E u2 ∧ u1 E u3 ∧ u3 E y ∧ x ̸≖ u2 ∧ x ̸≖ u3 ∧ y ̸≖ u1

∧ ∀w (w E u1 ⇒ w ≖ x ∨ w ≖ u2 ∨ w ≖ u3)

∧ ∀w (w E u3 ⇒ w ≖ u1 ∨ w ≖ y)

∧ ∀w (w E u2 ⇒ w ≖ u1)
]

A vertex of GM either belongs to some Ha, hence it satisfies φH(x)

∃a, z1, z2, z3 [ψH(a, z1, z2, z3) ∧ (x ≖ a ∨ x ≖ z1 ∨ x ≖ z2 ∨ x ≖ z3)]

or else it belongs to some link hence it satisfies φL(x)

∃a, u1, u2, u3, b [ψL(a, u1, u2, u3, b) ∧ (x ≖ u1 ∨ x ≖ u2 ∨ x ≖ u3)] .

Therefore the collection of all graphs of the form GM, that is: the
collection of all graphs that code a structure in the language with one binary
relation, is axiomatized by ∀x (φH(x) ·∨φL(x)), where ·∨ is the exclusive
disjunction. The constructions above apply to languages with more than one
binary relations. For example if we have two relations R and S then define
the Has and the R-links as before, while the S-links from Ha to Hb are coded
as:

a b
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Exercises

Exercise 10.11. (i) For each graph (V,E) let Cv = {w ∈ V | w E v} be
the set of vertexes connected to v ∈ V . Thus v has valence n iff Cv has
size n. Consider the following classes of LGrph-structures:
• Cn the collection of all graphs such that each vertex has valency n,

i.e. each Cv has size n,
• C<ω the collection of all locally finite graphs, i.e. such that each
Cv is finite,
• C∞ the collection of all graphs such that each Cv is infinite.

For each of the classes Cn,
⋃

n Cn, C<ω, and C∞ determine whether it is
an axiomatizable class, and in the affirmative case whether it is finitely
axiomatizable.

(ii) Consider the following classes of LGrph-structures:
• Cn the collection of all graphs that contain a cycle of length n (with
n ≥ 3),
• C<ω =

⋃
n≥3 Cn the collection of all graphs that contain a cycle,

• C∞ the collection of all graphs that don’t contain a cycle.
For each of the classes Cn, C<ω, and C∞ determine whether it is an
axiomatizable class, and in the affirmative case whether it is finitely
axiomatizable.

Exercise 10.12. Show that the following classes of graphs are axiomatizable,
but not finitely axiomatizable, in the language LGrph:

(i) all bipartite graphs;
(ii) all graphs (V,E) such that {w ∈ V | v E w} and {w ∈ V | ¬(v E w)}

are infinite, for every v ∈ V .

Exercise 10.13. Recall that TRndGrph extends TGrph with the axioms Rndn

for n ≥ 1 and ε≥3. Show that:

(i) K2 satisfies all axioms of TRndGrph except ε≥3, while Ki ̸⊨ Rnd2 if
i ≥ 3;

(ii) every graph satisfying TRndGrph is infinite;
(iii) if (V,E) ⊨ TRndGrph, then for every v there are infinitely many vertexes

that are liked to v, and infinitely many vertexes that are not linked to v;
(iv) if (V,E) ⊨ TRndGrph and ∅ ≠ A,B ⊆ V are finite and disjoint, then the

set {v ∈ V | ∀a ∈ A (a E v) ∧ ∀b ∈ B ¬(b E v)} is infinite;
(v) if (V,E) ⊨ TRndGrph and V ′ ⊆ V and V \ V ′ is finite, then the induced

subgraph on V ′ satisfies TRndGrph;
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(vi) the disjoint union of two graphs that satisfy TRndGrph does not satisfy
TRndGrph.

Exercise 10.14. The tensor product G×H of two graphs G = (VG, EG)
and H = (VH , EH) is the graph whose vertex set is VG × VH and with edges

(v1, w1) EG×H (v2, w2) ⇔ (v1 EG v2 ∧ w1 EH w2) .

In other words, G×H is the product of structures (VG, EG) and (VH , EH).
Show that χ(G×H) ≤ min(χ(G),χ(H)), where χ is the chromatic number.

Notes and remarks

Graph theory is an important area of combinatorics; the interested reader should consult [Die05]
for a thorough treatment. The theorem on planarity of graphs that do not contain as minor K5 nor
K3,3 was proved by Kuratowski and Wagner in the 30s of the twentieth century. The Four Color
Theorem 10.7 was proved in 1976 by Appel and Haken [AH76]. The countable random graph was
invented in 1959 by Erdős and Rényi, and independently by Gilbert. Theorem 10.8, proved in
1930 by Ramsey, is the cornerstone of a vast area of combinatorics known as Ramsey theory. The
least m satisfying the statement of the theorem, that is such that every k-coloring of Km has an
induced monochromatic subgraph isomorphic to Kn, is denoted by R(n, k), or simply R(n) when
k = 2. It can be shown that R(2) = 3, R(3) = 6 and R(4) = 18. For larger ns only upper and
lower estimates of R(n) are known—for example 43 ≤ R(5) ≤ 49 and 102 ≤ R(6) ≤ 165. This
situation is akin to Example 2.8—if A(n) is the statement that given n randomly chosen persons
there are at least 5 that are mutually acquainted or there are at least 5 that don’t know each other,
then A(43) ∨A(44) ∨ · · · ∨A(49), hence in particular we know that ∃nA(n), but we do not know
which of the disjuncts are true. Determining the exact value of R(n) is extremely difficult, and
many experts in combinatorics believe that the exact value of R(6) will not be determined any
time soon. We will prove Ramsey’s Theorem in Section 15. The statement that the inequality
in Exercise 10.14 can be strengthened to equality is an open problem in graph theory, known as
Hedetniemi’s conjecture.

Section 10.E is from [Mar02].

11. Definability in the integers, in the real and complex
numbers

11.A. Natural numbers.
11.A.1. The successor operator. Consider the structure (N, S) where S(n) =
n + 1 is the successor of n. The relevant language has a unary function
symbol S. The element 0 is definable in (N, S) since it is the only witness to

(φ0(x)) ∀y (S(y) ̸≖ x) .

Moreover the function S is injective, and no matter how many times it is
applied, it will never take us back to the starting point. In other words, the
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structure (N, S) satisfies the set of axioms

T(N,S)


∃!x ∀y (S(y) ̸≖ x)

∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y))

σn (n ≥ 1)

where σn is ∀x(S(n)(x) ̸≖ x). Note that σm follows from σm·k, hence T(N,S)
is not an independent set of axioms. The set of the σns cannot be cut-down
to a finite list, since the structure N ⊎ (Z/nZ) with the successor operation
x 7→ x+ 1 satisfies the first two axioms of T(N,S) and σi for 1 ≤ i < n, but
does not satisfy σn. Thus by Theorem 4.49 we have that

Proposition 11.1. T(N,S) is not finitely axiomatizable.

The natural number k > 0 is the unique element of (N, S) satisfying

(φk(x)) ∃y
(
φ0(y) ∧ S(k)(y) ≖ x

)
,

where φ0 is the formula defining 0. Thus every finite set {k1, . . . , kn} ⊆ N is
definable via the formula

φk1(x) ∨φk2(x) ∨ · · · ∨φkn(x).

Thus every co-finite set of natural numbers (that is of the form N \ F with
F finite) is definable. As we shall see in Section 11.A.2, these are the only
subsets of N that are definable in (N, S).

Let (M,SM ) be a model of T(N,S) and let 0M be the element of M defined
by φ0(x) above. The theory T(N,S) implies that the elements 0M , SM (0M ),
SM (SM (0M )), . . . are all distinct, hence the map F : N→M ,{

F (0) = 0M

F (n+ 1) = SM (F (n))

is a monomorphism (N, S)→ (M,SM ). In fact F is onto if and only if (N, S)
and (M,SM ) are isomorphic. A model (M,SM ) which is not isomorphic to
(N, S) is called a non-standard model.

Suppose (M,SM ) is non-standard. The equivalence relation ∼ on M \
ran(F ) defined by

(11.1) x ∼ y ⇔ ∃n ∈ N
[
x = SM ◦ · · · ◦ SM︸ ︷︷ ︸

n times

(y) ∨ y = SM ◦ · · · ◦ SM︸ ︷︷ ︸
n times

(x)
]

partitions M \ ran(F ) in equivalence classes, and since 0M is the only element
not in ran(SM ), each equivalence class is isomorphic to Z. Therefore we have
proved:
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Proposition 11.2. The non-standard models (M,SM ) of T(N,S) are, up to
isomorphism, of the form M = N ⊎ (I × Z) with I ̸= ∅ an arbitrary set and
SM : M →M is defined as

SM (x) =

{
k + 1 if x = k ∈ N,

(i, k + 1) if x = (i, k) ∈ I × Z.

Thus T(N,S) does not characterize (N, S) up to isomorphism.

Remarks 11.3. (a) The map F above is defined by recursion, and a rigor-
ous proof of its existence will be given in Theorem 12.2 in Section 12.

(b) The expression (11.1) does not give that ∼ is definable in M , since
S
(n)
M (x)

def
= SM ◦ · · · ◦ SM (x) is a term only when n is a fixed natural

number.

Proposition 11.4. The theory T(N,S) is complete.

Sketch of the proof. We will nee some facts that will be proved in Sec-
tion 20. Suppose M and N are uncountable models of T(N,S). Then they
must be non-standard and therefore of the form M = N ⊎ (I × Z) and
N = N ⊎ (J × Z). If M and N have the same cardinality, then I and J
must be in bijection, and hence M and N are isomorphic. Therefore T(N,S)
is complete by Theorem 4.37. □

11.A.2. Elimination of quantifiers. In order to study the collection of definable
subsets of (N, S) it is convenient to extend the language with a constant 0
for zero. The language so obtained is denoted by LD.4 Since 0 is definable
in (N, S), it follows that X ⊆ Nk is definable in (N, S) if and only if it is
definable in (N, S, 0).

Definition 11.5. Let L be a language extending LD. For each n ∈ N let
n be the closed L-term defined as follows. If n = 0, then n is the constant
symbol 0. If n = m+1, then n is the term S(m). The terms n so defined are
called numerals.

The terms of the extended language are those of the original language,
that is of the form S(n)(x), plus the numerals. A formula φ(x1, . . . , xn) of
the extended language can be translated into ∃y (φ0(y)∧φ′(x1, . . . , xn, y)) a
formula of the original language with φ′(x1, . . . , xn, y) obtained by replacing
the terms of the form k with S(k)(y). It follows that φ(x1, . . . , xn) and
∃y (φ0(y) ∧ φ′(x1, . . . , xn, y)) are equivalent modulo T(N,S). The expanded
structure (N, S, 0) has the same definable subsets of (N, S).

4The subscript D is for Dedekind.
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From now on, the language used will be LD, and the theory of the original
language T(N,S) containing only the symbol S, is replaced by its analogue

T(N,S,0)


∀x
(
S(x) ̸≖ 0

)
∀x
(
x ̸≖ 0⇒ ∃y(S(y) ≖ x)

)
∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y))

∀x(S(n)(x) ̸≖ x) (σn, n ≥ 1).

Definition 11.6. Let T be a theory in a language with constants. We say
that T admits elimination of quantifiers if a quantifier-free formula φ′ can
be assigned to any formula φ so that φ and φ′ have the same free variables,
and are logically equivalent modulo T . If the assignment φ ; φ′ can be
performed in a mechanical way, then T admits effective elimination of
quantifiers.

Definition 11.7. A theory T for which there is an algorithm to check whether
or not a sentence σ is logical consequence of T , is said to be decidable.

The notions of mechanical procedure and of decidable theory implicitly
entail that the theory be effectively axiomatized, that is to say: there are
effective methods to check whether a given string of symbols is a formula,
and to check whether a given sentence is an axiom of the theory.

Proposition 11.8. Let T be an effectively axiomatized theory.
Suppose T admits elimination of quantifiers, and that T is complete for

atomic sentences, that is to say: either T |= σ or else T |= ¬σ, for all atomic
sentences σ. Then T is complete.

Suppose T admits the effective elimination of quantifiers, and T is decid-
able for all atomic sentences, that is to say: for all atomic sentences σ it is
possible to determine in a mechanical way whether T |= σ or T |= ¬σ. Then
T is decidable.

Proof. Given a sentence σ, let θ be a quantifier-free sentence which is
logically equivalent to σ modulo T . Since θ is Boolean combination of atomic
sentences, the result follows. □

Remarks 11.9. (a) The requirement in Proposition 11.8 that either T |=
σ or else T |= ¬σ for all atomic sentences σ, cannot be removed
(Exercise 11.50).

(b) In Chapter VII we will show that a complete theory in a language with
finitely many non-logical symbols is decidable.

The following criterion is useful for verifying that a theory admits elimi-
nation of quantifiers.
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Lemma 11.10. The following are equivalent:

(a) T admits elimination of quantifiers,
(b) given a formula ∃xψ with ψ quantifier-free, there is a quantifier-free

formula θ with the same free variables as ∃xψ, and so that ∃xψ and θ
are logically equivalent modulo T ,

(c) as (b), but with ψ of the form α1 ∧ · · · ∧ αn and αi atomic or negation
of an atomic formula.

If the assignment ∃xψ; θ in (b) and (c) is effective, then condition (a) can
be strengthened to

(a′) T admits the effective elimination of quantifiers.

Proof. Clearly (a)⇒ (b)⇒ (c).

(c)⇒ (b): If ψ is quantifier-free, then we may assume it is in disjunctive
normal form (Section 3.C.1), that is of the form φ1 ∨ · · · ∨ φk with each
φi a conjunction of formulæ that are atomic or negated atomic. So ∃xψ is
logically equivalent to (∃xφ1) ∨ · · · ∨ (∃xφk), and hence by (c) it is logically
equivalent modulo T to some quantifier-free formula θ with the same free
variables as ∃xψ.

(b)⇒ (a): It is enough to show that for any φ in prenex form there is a
quantifier-free φ′ which is logically equivalent to φ modulo T , and with the
same free variables. The proof is by induction on the complexity of φ.

If φ is quantifier-free, then there is nothing to prove. If φ is ∃xψ, then
by inductive assumption there is a quantifier-free ψ′ with the same free
variables as ψ, and logically equivalent to ψ modulo T . Thus φ is logically
equivalent to ∃xψ′ modulo T , and by hypothesis there is a quantifier-free θ
with the same free variables as ∃xψ and logically equivalent to ∃xψ modulo
T . Therefore θ is the required formula. If φ is ∀xψ, then it is logically
equivalent to ¬∃x¬ψ, hence by the preceding case there is a quantifier-free
formula θ, with the same free variables as in ∃x¬ψ, and which is logically
equivalent to ∃x¬ψ modulo T . Then ¬θ is the required formula. □

Theorem 11.11. T(N,S,0) admits elimination of quantifiers.

The proof of this result is elementary, but lengthy, so it is postponed to
Section 11.A.3.

Remark 11.12. Theorem 11.11 does not hold if we were to use the language
containing only the symbol S. For example the formula φ0(x) defining 0 is
not logically equivalent to a quantifier-free formula.

Every sentence σ in the language containing S and 0 is logically equivalent
modulo T(N,S,0) to a quantifier-free sentence σ′, that is to say: a Boolean
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combination of formulæ of the form S(n)(0) ≖ S(m)(0), and for such sentence
it is straightforward to check whether it or its negation follows logically from
T(N,S,0). Therefore we obtain another proof of Proposition 11.4 that T(N,S,0)
and T(N,S) are complete theories.

The proof of Theorem 11.11 yields:

Corollary 11.13. T(N,S,0) and T(N,S) are decidable theories.

The subsets of N that are definable in (N, S, 0) are exactly the finite and
cofinite sets. In order to describe the definable sets of dimension two, the
following family comes handy: let D be the smallest family of subsets of N2

containing

• every point in N2,
• the diagonal lines

{
(n,m) ∈ N2 | m = n+ k

}
, for some k ∈ Z, and

• the horizontal and vertical lines {(n, k) ∈ N2 | n ∈ N} and {(k, n) ∈ N2 |
n ∈ N}, for k ∈ N,

and closed under finite unions and intersections, and complements. Then D

is the family of subsets of N2 that are definable in (N, S), and the sets in D

are of the form P △(
⋃
L) or N2 \ (P △(

⋃
L)) where P is a finite (possibly

empty) set of points and L is a finite (possibly empty) set of lines, and
{(n,m) | n < m} /∈ D (Exercise 11.60). In particular:

Corollary 11.14. The order relation is not definable in (N, S).

Recall that the covering relation (see page 46) is definable from the
ordering (Exercise 4.65). As the successor function defines the covering
relation, this proves that, in general, it is not possible to define the ordering
relation from the covering relation.

Remark 11.15. Quantifier elimination for a theory T yields important
information on the definable subsets of any model of T . For example,
Theorem 11.11 shows that, given a non-standard model M = N ⊎ (I × Z) of
T(N,S,0), the definable subsets of dimension 1 with parameters p1, . . . , pn ∈M
are the finite sets of the form F ⊆ N ∪ {p1, . . . , pn} and their complements.
In particular, no element of M \ N is definable without parameters, and N is
not definable, even allowing parameters.

In Chapter VII we will prove (Section 32.D.1) the following useful criterion
for proving elimination of quantifiers.

Proposition 11.16. Let T be a first-order theory in a language L with
constants. Suppose that for any pair M,N of models of T and for any
isomorphism F : M ′ → N ′, where M ′ is a substructure of M and N ′ is a
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substructure of N ,

M ⊨ ∃yφ[a1, . . . , an] ⇔ N ⊨ ∃yφ[F (a1), . . . , F (an)],

where φ(y, x1, . . . , xn) is a conjunction of atomic formulæ or negated atomic
formulæ, and a1, . . . , an ∈M ′. Then T admits elimination of quantifiers.

Remark 11.17. There are theories T without constants that nevertheless
admit elimination of quantifiers for formulæ that are not sentences, that
is to each non-closed formula φ we can associate an open formula φ′ with
the same free variables, so that φ and φ′ are logically equivalent modulo T .
In this case we say that T admits elimination of quantifiers for non-closed
formulæ and Proposition 11.16 above holds also in this case.

Besides T(N,S,0), there are several theories admit elimination of quantifiers:

• the theory of natural numbers with the order (Exercise 11.49) or with
addition (p. 273),
• the theory of dense linear orders without end points (Exercise 11.71),
• the theory of algebraically closed fields of fixed characteristic (Theo-

rem 11.44),
• the theory of real closed fields (Section 11.D.1).

11.A.3. Proof of Theorem 11.11*. In this section “equivalent” means “logically
equivalent modulo T(N,S,0)”. An atomic formula of the language with S and 0
is an equation of the following type:

type 1: S(n)(x) ≖ S(m)(y), with x and y distinct variables,
type 2: S(n)(x) ≖ m,
type 3: S(n)(x) ≖ S(m)(x),
type 4: n ≖ m.

Proposition 11.18. Given a quantifier-free sentence, either it or its negation
follows from T(N,S,0). In fact there is an algorithm that, given a quantifier-free
sentence σ, determines whether T(N,S,0) |= σ or else T(N,S,0) |= ¬σ.

Proof. If σ is atomic, then, as it is a sentence, it is of type 4, hence it is
logically equivalent modulo T(N,S,0) to k ≖ 0, for some k ≥ 0. If k = 0
then T(N,S,0) |= σ, and if k > 0 then T(N,S,0) |= ¬σ by axiom σk. A similar
argument applies to negations of atomic sentences. Since a quantifier-free
sentence can be taken to be in disjunctive normal form, the argument above
can be modified into an effective method to check whether T(N,S,0) |= σ or
else T(N,S,0) |= ¬σ. □

Thus Corollary 11.13 follows at once.
The axiom ∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y)) implies that
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If θ is. . . then ∃xθ is equivalent to. . .
x ≖ m 0 ≖ 0
x ̸≖ m 0 ≖ 0
x ≖ x 0 ≖ 0
x ̸≖ x 0 ̸≖ 0

S(m)(x) ≖ y y ̸≖ 0 ∧ · · · ∧ y ̸≖ m− 1

x ≖ S(m)(y) y ≖ y

x ̸≖ S(m)(y) y ≖ y

S(m)(x) ̸≖ y y ≖ y
Table 1.

• equalities of type 1 are equivalent either to ‘S(k)(x) ≖ y’ or to ‘x ≖ y’ or
else to ‘x ≖ S(k)(y)’, with k > 0, depending whether n is larger, equal, or
smaller than m;
• equalities of type 2 are equivalent either to ‘x ≖ 0’ (if n = m) or to

‘S(k)(x) ≖ 0’ (if k = n−m > 0) or else to ‘x ≖ k’ (if k = m− n > 0);
• equalities of type 3 are equivalent to ‘S(k)(x) ≖ x’ with k = |n−m|;
• finally those of type 4 are equivalent to ‘k ≖ 0’ with k = |n−m|.

The axioms ∀x
(
S(x) ̸≖ 0

)
and σk imply that if φ is atomic or the negation

of an atomic formula, then it is equivalent to a formula φ′ with the same free
variables, taken from the following list:

(11.2)

x ≖ S(m)(y) x ̸≖ S(m)(y)

x ≖ m x ̸≖ m

x ≖ x x ̸≖ x

0 ≖ 0 0 ̸≖ 0

where m ≥ 0. Call formulæ in the first column equalities, those in the second
column inequalities.

Lemma 11.19. If θ is a conjunction of formulæ that are atomic or negations
of atomic formulæ ψ1 ∧ · · · ∧ψn, then ∃xθ is equivalent to a quantifier-free
θ′ with the same free variables as ∃xθ.

Proof. Suppose n = 1, that is to say θ is either an atomic formula or the
negation of an atomic formula. We may assume that θ is a formula in the
list (11.2). If the variable x does not occur in θ, then ∃xθ is logically equivalent
to θ which is quantifier-free, hence we may assume that x occurs in θ. The
result follows from Table 1. Checking these equivalences is straightforward.
For example, for all y there are infinitely many x such that S(m)(x) ̸≖ y—more
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precisely: given an M ⊨ T(N,S,0) and an element b ∈M , the set

(11.3) TM
S(m)(x)̸≖y

∩M × {b}

is cofinite, hence non-empty: since b is arbitrary, it follows that TM
∃x(S(m)(x)̸≖y)

=

M .
Suppose now n > 1 and let y1, . . . , yk be the variables different from x

occurring in θ. If the variable x does not occur in some of the ψi, e.g. i = 1,
then ∃xθ is logically equivalent to ψ1 ∧ ∃x (ψ2 ∧ · · · ∧ψn), and by induc-
tive hypothesis ∃x (ψ2 ∧ · · · ∧ψn) is equivalent to a quantifier-free formula,
whence the result. If some of the ψis were

(11.4) x ≖ x or S(k)(x) ̸≖ 0 (k > 0)

then θ would be equivalent to the formula obtained by removing ψi from the
conjunction, and the inductive hypothesis applies. Similarly, if some of the
ψis were

(11.5) x ̸≖ x or S(k)(x) ≖ 0 (k > 0)

then ∃xθ would be equivalent to 0 ̸≖ 0 ∧
∧

1≤i≤k(yi ≖ yi). Therefore we may
assume that

• the variable x occurs in every ψi,
• no ψi is of the form either (11.4) or (11.5),
• every ψi is of the form

S(mi)(x) ≖ y S(mi)(x) ̸≖ y

x ≖ S(mi)(y) x ̸≖ S(mi)(y)

x ≖ mi x ̸≖ mi

where mi ≥ 0 and y is one of the y1, . . . , yk.

Case 1: Every ψi is an inequality. We distinguish two cases.
• ∃xθ is a sentence. Then the ψis are of the form x ̸≖ mi, hence the sentence
∃xθ is true in every model of T(N,S,0): just take x to be the element S(m)(0)
with m sufficiently large. In other words: ∃xθ is logically equivalent modulo
T(N,S,0) to 0 ≖ 0.
• ∃xθ is not a sentence. Then the ψis are of the form S(mi)(x) ̸≖ yj or of the

form S(mi)(yj) ̸≖ x with j = 1, . . . , k, and maybe some of the ψis are of the
form x ̸≖ m. Arguing as in the case of formula (11.3), for all M ⊨ T(N,S,0)
and every b1, . . . , bk ∈M the set

TM
θ(x,y1,...,yk)

∩M × {(b1, . . . , bk)}

is cofinite, since it is a finite intersection of cofinite sets. It follows that
TM

∃xθ = Mk, that is to say: ∃xθ is equivalent to
∧

1≤i≤k(yi ≖ yi).



11. Definability in the integers, in the real and complex numbers 271

The result holds in Case 1, hence we can suppose that at least one of the ψis
is an equality.
Case 2: At least one ψi of the form x ≖ t where t is m or S(m)(yh), with
1 ≤ h ≤ k. Then ∃xθ is equivalent to the formula θ′∧

1≤j≤n
j ̸=i

ψjLt/xM

obtained by removing ψi from the conjunction θ, and replacing the term
t instead of x in the other ψjs. The result holds in Case 2, thus we may
assume:
Case 3: At least one ψi of the form S(mi)(x) ≖ yh, with 1 ≤ h ≤ k. Let i
be the least such index, and let j1, . . . , jp be the other indexes j such that
ψj is of the form S(mj)(x) ≖ tj , which is equivalent to Smj (yh) ≖ Smi(tj).
Then ∃xθ is equivalent to the formula θ′ obtained by removing the formula
ψi from the conjunction θ, and replacing ψj1 , . . . ,ψjp with the formulæ
S(mj1

)(yh) ≖ S(mi)(tj1), . . . , S
(mjp )(yh) ≖ S(mi)(tjp).

Since in both Cases 2 and 3 the formula θ′ is quantifier-free and has he same
free variables as ∃xθ, the result is proved. □

This completes the proof of Theorem 11.11.
11.A.4. The ordering. Consider the structure (N, <). The successor function
is definable via the formula

(σ(x, y)) x < y ∧ ¬∃z (x < z ∧ z < y) ,

hence the definable sets in (N, <) are exactly those of (N, <, S, 0). The theory
T(N,<,S,0) is obtained by adding to T(N,S,0) the sentences asserting that < is a
strict linear order

¬∃x (x < x)(11.6a)
∀x, y, z (x < y ∧ y < z ⇒ x < z)(11.6b)
∀x, y (x < y ·∨ x ≖ y ·∨ y < x) ,(11.6c)

where ·∨ is the exclusive disjunction (see pag. 9), together with the sentence
asserting that S(x) is the immediate successor of x

(11.6d) ∀x, y (x < S(x) ∧ ¬ (x < y ∧ y < S(x))) .

The sentences ∀x(S(n)(x) ̸≖ x) follows from transitivity of the order relation,
hence T(N,<,S,0) is finitely axiomatizable. The theory T(N,<,S,0) admits elim-
ination of quantifiers (Exercise 11.49): it follows that T(N,<) and T(N,<,S,0)

are complete and decidable theories. Also in this case, the only subsets of N
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that are definable in (N, <, S, 0) or, equivalently, in (N, <), are the finite and
cofinite sets. The relation x < y can be written as ∃k

(
y ≖ S(S(k)(x))

)
or as

y ≖ S(x) ∨ y ≖ S(S(x)) ∨ y ≖ S(S(S(x))) ∨ . . . ,

but these are pseudo-formulæ so we cannot infer that the ordering is definable
in (N, S). In fact this is not the case by Exercise 11.60.

A straightforward adaptation of the proof of Proposition 11.2 yields:

Proposition 11.20. The non-standard models (M,SM ) of T(N,<) are, up to
isomorphism, of the form M = N⊎(I×Z) with (I,≺) an arbitrary non-empty
linearly ordered set, and <M is the standard order on N, every n ∈ N comes
before every (i, a) ∈ I × Z, and

(i, a) <M (j, b) ⇔ i ≺ j ∨ [i = j ∧ a < b].

Since any set I can be linearly ordered,5 every model of T(N,S) can be
turned into a model of T(N,<).

Arguing as in Proposition 11.4 one can prove that

Proposition 11.21. The theory T(N,<) is complete.

11.A.5. Addition. Consider the structure (N,+). The ordering x < y is
defined by the formula

x ̸≖ y ∧ ∃z (x+ z ≖ y) ,

hence the definable sets in the structures (N,+, <, S, 0) and (N,+) are the
same. For all n ≥ 2, the relation ≡n of congruence modulo n is definable in
(N,+) via the formula

(χn(x, y)) ∃z
(
x+ z + · · ·+ z︸ ︷︷ ︸

n

≖ y ∨ y + z + · · ·+ z︸ ︷︷ ︸
n

≖ x
)
,

hence (N,+, <, S, 0,≡2,≡3, . . . ) and (N,+) have the same definable sets.

Definition 11.22. Presburger arithmetic is the theory T(N,+,<,S,0) in the
language with symbols +, <, S, 0 and with the axioms:

• the axioms for linear orders (the statements (11.6) on page 271),
• the axioms for abelian monoids (the statements (3.11a), (3.11b), (3.11c)

on page 53),
• ∀x, y, z (x+ z ≖ y + z ⇒ x ≖ y) (cancellation law),
• ∀x, y

(
x+ y ≖ 0⇒ x ≖ 0 ∧ y ≖ 0

)
(positivity law),

• ∀x, y (x < y ⇔ x ̸≖ y ∧ ∃z (x+ z ≖ y)) (compatibility law),

5At least if we assume some form of the axiom of choice—see Section 28.C.
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• the infinite list of statements

(π′n) ∀x∃!y
(
χn(x, y) ∧ y < n

)
for every n ≥ 2.

Note that the axiom π′n can be re-written as

∀x∃!y ∃!z
(
x = nz + y ∧ y < n

)
,

that is the axiom πn for Z-groups (see page 240) recast for the structure
(N,+, <, S, 0,≡2,≡3, . . . ).

The theory T(N,+,S,0) does not admit elimination of quantifiers, since the
formula χn(x, y) is not equivalent to any open formula with free variables
x and y. In some sense, these are the only obstructions to elimination of
quantifiers. Let T(N,+,≡) be the theory (still dubbed Presburger arithmetic)
in the language expanded with infinitely many new binary relation symbols
≡n (n ≥ 2), with the axioms of T(N,+) together with the axioms

∀x, y (x ≡n y ⇔ χn(x, y))

for all n ≥ 2. Then T(N,+,≡) admits elimination of quantifiers and every
atomic sentence is decidable [End01, pag. 197–201]. Therefore T(N,+,≡) and
T(N,+) are complete decidable theories.

Every finite or cofinite subset of N is definable in (N,+), since every
definable set in (N, <) is also definable in (N,+). Besides the finite and
cofinite sets it is also possible to define any periodic set, that is every
arithmetic progression. In fact {a · n+ b | n ∈ N} is defined by

x ≡a b.

Since the family of definable subsets is closed under symmetric difference,
every eventually periodic subset of N is definable in (N,+). By elimination
of quantifiers it can be shown that the rank 1 definable sets of (N,+) are
exactly the subsets of N that are eventually periodic, and their complements.
Addition is neither definable in (N, <) nor in (N, S): otherwise the set of
even numbers would be definable in these structures against the fact that the
subsets of N that are definable in (N, <) or in (N, S) are the finite and the
cofinite ones.

Let’s now take a look at the non-standard models of T(N,+). By the
positivity and compatibility laws, 0 is the minimum of (M,<), and by the
cancellation law the element z whose existence is asserted in the axiom of
compatibility of sum and order is unique.

Proposition 11.23. M ⊨ T(N,+,≡) if and only if it is (isomorphic to)

G+ = {g ∈ G | 0G = g ∨ 0G <G g} ,
where G is a Z-group.
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Proof. Say (M,+, <, S, 0,≡2,≡3, . . . ) is a model of Presburger arithmetic,
and suppose F : M \ {0} →M ′ is a bijection where M ′ is a set disjoint from
M . Then F can be used to define + and < on M ′ by letting

∀x, y ∈M \ {0} [F (x) + F (y) = F (x+ y) ∧ (F (x) < F (y)⇔ y < x)] .

The order < can be extended to a total order on G
def
= M ∪M ′ by declaring

the elements in M ′ to appear before the elements in M . In order to define +
on G it is enough to define x+ y when x ∈M ′ and y ∈M or when x ∈M
and y ∈M ′. By requiring that x+ y = y + x we may assume that x ∈M ′

and y ∈M . If F−1(x) = y, then set x+ y = 0, so we may assume that either
F−1(x) < y or else y < F−1(x). If the former holds then F−1(x) + z = y
for some unique z ∈ M \ {0}, and set x + y = z; if the latter holds then
y + z = F−1(x) for some unique z > 0, and set x+ y = F (z). It is easy to
check that (G,+, <) is a Z-group.

The other direction, that G+ is a model of Presburger arithmetic for any
Z-group G, is left to the reader. □

If G is a Z-group and Z = {k1G | k ∈ Z}, the quotient (G/Z,<) is a
dense linear order without endpoints, hence the order in a non-standard
model of Presburger arithmetic is of the form N ⊎ L × Z, with L a dense
linear order without endpoints. A concrete example of a non-standard model
of Presburger arithmetic is N ⊎ Q × Z with addition operation defined by
n+(q, z) = (q, z+n) and (q1, z1)+(q2, z2) = (q1+q2, z1+z2) (Exercise 11.47).
11.A.6. Multiplication, divisibility, and coprimality. Consider the structures
(N,⊥), (N, |) and (N, ·), where ⊥ is the co-primality predicate, that is

x ⊥ y ⇔ ∀z (z | x ∧ z | y ⇒ z ≖ 1)

and | is the divisibility predicate. The relation | is definable in (N, ·), while
the definability of ⊥ in (N, |) follows from the definability of 1 in the structure
(N, |) (Exercise 4.77). The converse is not true, i.e. | is not definable in (N,⊥)
(Exercise 11.46) and · is not definable in (N, |) (Exercise 12.30).

It is possible to find a complete set of axioms for the structure (N, ·),
known as Skolem arithmetic, admitting elimination of quantifiers [Smo91,
page 333].

By Exercise 4.77 the set of primes is definable in (N, |) and hence also in
(N, ·). The set of primes is not eventually periodic, so it is not definable in
(N,+).

Corollary 11.24. The divisibility relation, and multiplication are not defin-
able in (N,+).

Using the identity

(11.7) z ≖ 0 ∨ (x+ y) ≖ z ⇔ (xz + 1)(yz + 1) ≖ z2(xy + 1) + 1



11. Definability in the integers, in the real and complex numbers 275

one can show that addition is quantifier-free definable both in (N, S, ·) and
in (Z, S, ·). The next result shows that the successor function cannot be
removed.

Proposition 11.25. The set
{
(n,m, k) ∈ N3 | n+m = k

}
is not definable

in the structure (N, ·).

Proof. Let F be a permutation on the set of primes. Every natural number
bigger than 1 can be written in a unique way as pn1

1 · · · p
nk
k with p1 < · · · < pk

primes, so F extends to a permutation of N by letting F (0) = 0, F (1) = 1
and F (pn1

1 · · · p
nk
k ) = F (p1)

n1 · · ·F (pk)
nk . It is immediate to check that

F : (N, ·)→ (N, ·) is an automorphism, but F (n+m) ̸= F (n) + F (m) if F is
not the identity. □

By what we saw the structures (N, S) and (N, |) are the least expressive
among those considered so far, but if we merge them in a single structure
(N, S, |) addition and multiplication, and hence the ordering, can be defined
(Exercise 11.70). To recap:

Proposition 11.26. (a) S is not definable in (N, |) and | is not definable
in (N, S).

(b) + and · are definable in any of (N, <, |), (N,+, |), (N, <, ·).

11.B. Arithmetic. In this section we shall prove that, contrarily to what
we have seen before, the structure (N,+, ·) can turn recursive definitions into
standard ones. In particular, the exponential map, defined recursively by

x0 = 1 xy+1 = xy · x

is definable. In fact every computable set and function is definable in arith-
metic. This means that the family of definable subsets of (N,+, ·) is very rich.
On the other hand, this plethora of definable subsets forbids the possibility of
finding an axiom system for the theory of (N,+, ·) that admits elimination of
quantifiers. As we shall see in Chapter VIII, the theory of (N,+, ·) is neither
effectively axiomatizable, nor decidable. In Section 12 Peano arithmetic, a
theory with a reasonable set of axiom and strong enough to prove many of
the elementary facts on natural numbers, will be presented.

In Section 8.A.1 the diagonal enumeration of N× N is defined and the
resulting bijection J : N× N→ N

J(x, y) =
1

2
(x+ y)(x+ y + 1) + x

is definable in (N,+, ·) by the formula

(ψJ (x, y, z)) ∃w(w + w ≖ (x+ y) · (x+ y + 1) ∧ w + x ≖ z).
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The two inverse maps n 7→ (·)0 and n 7→ (·)1 so that J((·)0, (·)1) = n are
defined by

∃yψJ (x, y, z)(ψ0(z, x))
∃xψJ (x, y, z).(ψ1(z, y))

The bijection J induces a bijection

P(N× N)→P(N), X 7→ J [X] = {J(n,m) | (n,m) ∈ X}

mapping definable sets to definable sets: if X ⊆ N× N is defined by φ(x, y)
then J [X] ⊆ N is defined by

∃x, y (ψJ (x, y, z) ∧φ(x, y));

conversely, if Y ⊆ N is defined byφ(z) then J−1[Y ] = {(n,m) | J(n,m) ∈ Y }
is defined by

∃z (ψJ (x, y, z) ∧φ(z)).
By Remark 4.42 the family of all definable sets of dimension 1 can always be
identified with a subfamily of the collection of definable sets of dimension 2,
but here we have a complete identification.

Composing J with itself we get a definable bijection

N× N× N→ N, (n,m, k) 7→ J(n,J(m, k)),

and by iterating this construction we get a definable bijection Nk → N, for
k ≥ 1, that carries definable sets to definable sets.

Using Gödel’s β function we constructed a coding machinery, that is

• a computable set Seq ⊆ N coding all finite sequences of natural numbers,
• a computable function ℓ : N → N such that ℓ(m) is the length of the

sequence coded by m ∈ Seq,
• for all k ∈ N a computable map Nk+1 → N, ⟨n0, . . . , nk⟩ 7→ ⟨⟨n0, . . . , nk⟩⟩,
• a computable decoding map Seq×N→ N, (m, i) 7→ ((m))i, so that ((m))i

is the i-th element of the sequence coded by m, if i < ℓ(m).

The function Rem is definable in (N,+, ·), since

Rem(n,m) = r ⇔ r < m ∧ ∃q(n = q ·m+ r).

and therefore

β(m, i) = Rem((m)0, 1 + (i+ 1) · (m)1).

is also definable in (N,+, ·). Therefore we have shown the existence of a
coding apparatus that is definable in (N,+, ·).

We now show that the existence of any definable coding apparatus, i.e. the
existence of definable Seq, ℓ, ⟨n0, . . . , nk⟩ 7→ ⟨⟨n0, . . . , nk⟩⟩ and (m, i) 7→ ((m))i
as above, guarantees the existence of many sets and functions in (N,+, ·).
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Example 11.27. The factorial is defined by the formula with free variables
x and y asserting “there is a finite sequence ⟨s0, . . . , sx⟩ of length x+ 1 such
that s0 = 1 and sx = y and si+1 = si · (i+ 1)”, in symbols

∃s[φSeq(s) ∧ ℓ(s) ≖ x+ 1 ∧ ((s))0 ≖ 1 ∧ ((s))x ≖ y

∧ ∀i ≤ x (i+ 1 ≤ x⇒ ((s))i+1 ≖ ((s))i · (i+ 1))],

where φSeq is a formula defining Seq.

Example 11.28. The exponential function (n,m) 7→ nm is defined by
the formula with free variables x, y, z asserting “there is a finite sequence
⟨s0, . . . , sy⟩ such that s0 = 1 and sy = z and si+1 = si · x”, in symbols

∃s[φSeq(s) ∧ ℓ(s) ≖ y + 1 ∧ ((s))0 ≖ 1 ∧ ((s))y ≖ z

∧ ∀i ≤ y (i+ 1 ≤ y ⇒ ((s))i+1 ≖ ((s))i · x)].

Remarks 11.29. (a) The two examples show that if f : N→ N is defined
recursively by f(0) = k and f(n+1) = g(n, f(n)), then f is definable in
(N,+, ·) whenever g is definable. In particular, if g : N→ N is definable,
then the sequence of the iterates f(n) = g(n)(0) is definable, hence

{g(n)(0) | n ∈ N} = {x ∈ N | ∃y(f(y) = x)}
is definable in arithmetic.

(b) Since the exponential function is definable in (N,+, ·) (Example 11.28)
some of the examples of formalization seen in Sections 2.B, 2.C and 3.B
can be carried out in the language of arithmetic: for example Fermat’s
Last Theorem (Exercise 2.11(vii)) and the abc-conjecture (Example 3.4)
are formalizable in the language containing the symbols + and ·. Even
the Riemann Hypothesis, the statement that the non-trivial zeros of
the ζ-function lie on the line ℜ(s) = 1

2 , turns out to be formalizable in
this language (see page 479).

(c) The fact that recursive definitions can be turned into standard definitions
is perhaps the most important consequence of the existence of a definable
coding machinery. Not every structure is endowed with such coding
device—quite the contrary, this is the exception rather than the rule.
Thus the ability of defining recursively defined objects is a rare feature
among structures. For example, the function g : R→ R, g(x) = x+1, is
definable in (R,+, ·), but N =

{
g(n)(0) | n ∈ N

}
is not definable in this

structure (Corollary 11.42).

Our official coding of sequences is obtained by using Gödels’ β function,
but one might wonder if the same can be achieved using simpler methods.
For example, we could try to code the sequence ⟨n0, . . . , nk⟩ by

m = J(k + 1,J(n0,J(n1, . . .J(nk−1, nk) · · · ))),
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so that ℓ(m) would be (m)0 = k + 1 and then recover the sequence from m
by ((m)1)0 = n0, (((m)1)1)0 = n1, . . . (· · · ((m)1)1 · · ·)1 = nk. Then Seq
would be the set {n ∈ N | (n)0 ̸= 0} ∪ {0}, where 0 is for coding ⟨⟩. The
decoding function would be (m, i) 7→ (f(m, i))0 where f is inductively defined
by f(m, 0) = (m)1 and f(m, i+1) = (f(m, i))1, if i+1 < ℓ(m). The problem
is that inductively defined functions are definable in ⟨N,+, ·⟩ once we have
the coding apparatus, which is exactly what we were trying to achieve. So
this approach does not work.

Another way of tackling the problem is coding using primes and expo-
nentials as in Section 8.A.2. Recall that p : N→ N enumerates the primes,
and that the sequence ⟨n0, . . . , nk⟩ can be coded by the number

m = p(0)n0+1p(1)n1+1 · · ·p(k)nk+1.

Then Seq would be the set of all n ̸= 1 such that if a prime p divides n,
then every prime p′ < p divides n. The functions e : N2 → N and l : N→ N
defined by

• e(0, i) = e(1, i) = 0 and if k is the largest integer such that p(i)k+1 | n,
then e(n, i) = k;
• l(0) = l(1) = 0 and l(n) = the least i such that [p(i) ∤ n].

yield the decoding machinery, and the length, that is e(n, i) = (n)i and
l(n) = ℓ(n). The problem with this coding is that it uses the exponential
function in an essential way, and in order to show that exponentiation is
definable in (N,+, ·) we need a definable coding apparatus. So this approach
does not work either.
11.B.1. The arithmetical hierarchy. We introduce a hierarchy of formulæ
giving a useful stratification of definable subsets of (N,+, ·). It is convenient
to expand the language by allowing a unary function symbol S for the successor
operation, a binary relation symbol < for the order, and a constant symbol 0
for zero. The resulting language is used in Section 12.D to formalize Peano
arithmetic, and for this reason is denoted by LPA.

Definition 11.30. If φ is an LPA-formula, then ∃x < yφ and ∀x < yφ are
abbreviations for ∃x (x < y ∧φ) and ∀x (x < y ⇒ φ). Similarly ∃x ≤ yφ
and ∀x ≤ yφ are shorthand for ∃x ((x < y∨x ≖ y)∧φ) and ∀x ((x < y∨x ≖
y)⇒ φ). These formulæ are obtained from φ by bounded quantifications.

A formula is

• ∆0 if it is obtained from atomic formulæ using connectives and bounded
quantifications;
• Σn with n ≥ 1 if it is of the form ∃xn∀xn−1 . . .Qx1φ with φ a ∆0 formula,

and Q is ∃ or ∀ depending if n is odd or even;
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• Πn with n ≥ 1 if it is of the form ∀xn∃xn−1 . . .Qx1φ with φ a ∆0 formula,
and Q is ∃ or ∀ depending if n is even or odd.

A set A ⊆ Nk is ∆0 or Σn or Πn if it can be defined in (N,+, ·, S,<, 0) by
means of a ∆0 or Σn or Πn formula.

Moreover A is ∆n if it is Σn and Πn.

Lemma 11.31. (a) The ∆0 subsets of Nk are closed under complements,
intersections, unions, and bounded quantifications.

(b) A subset of Nk is Σn if and only if its complement is Πn.

(c) Let A be a subset of Nk+1. If A is Σ1 then ∃xk A
def
= {a⃗ ∈ Nk | ∃bA(⃗a, b)}

is Σ1; if A is Π1 then ∀xk A
def
= {a⃗ ∈ Nk | ∀bA(⃗a, b)} is Π1.

(d) Σ1 subsets of Nk are closed under intersections and unions. Similarly,
Π1 subsets of Nk are closed under intersections and unions.

(e) Σ1 subsets of Nk are closed under bounded quantifications. Similarly,
Π1 subsets of Nk are closed under bounded quantifications.

Proof. (a) and (b) are immediate.

(c) Suppose A is Σ1, that is A(x⃗)⇔ ∃xk+1φ with φ(x0, . . . , xk+1) a ∆0

formula. Then
(x0, . . . , xk−1) ∈ ∃xk A⇔ ∃xk ∃xk+1φ

⇔ ∃y ∃xk < y ∃xk+1 < yφ

and the result follows from the fact that ∃xk < y ∃xk+1 < yφ is ∆0.

The case for ∀xk A
def
= {a⃗ ∈ Nk | ∀bA(⃗a, b)} when A is Π follows from

part (b).

(d) Suppose A,B ⊆ Nk are defined by ∃xk φ and ∃xk ψ with φ,ψ formulæ
in ∆0. Then (x0, . . . , xk−1) ∈ A ∪B ⇔ ∃xk (φ ∨ψ) and

(x0, . . . , xk−1) ∈ A ∩B ⇔ ∃xk φ ∧ ∃xk ψ
⇔ ∃y ∃xk < y ∃x′k < y (φ(x⃗, xk) ∧ψ(x⃗, x′k)).

Therefore Σ1 subsets of Nk are closed under unions and intersections, so the
same holds for Π1 using part (b).

(e) Suppose A ⊆ Nk is Σ1 and let φ be ∆0 so that ∃xk φ defines A. The set
∃y < xiA is defined by ∃y ∃xk (y < xi∧φ), so it is Σ1 by part (c) and the fact
that y < xi ∧φ is ∆0. The set ∀y < xiA is defined by ∃z ∀y < xi ∃xk < zφ,
so it is Σ1. Therefore the collection of all Σ1 subsets of Nk is closed under
bounded quantifications. The result for Π1 subsets follows from part (b). □

Recall from page 92 that a (possibly partial) k-ary function is definable
in a structure if its graph is a definable subset of dimension k + 1.
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Theorem 11.32. The graph of a computable function is Σ1.

Proof. The set of all computable functions is
⋃

n∈N Fn, where

F0 =
{
+, ·,χ≤

}
∪ {Imk | k,m ∈ N ∧ k < m}

Fn+1 = Fn ∪ {f | f is the composition of functions in Fn} ∪
∪ {µy [f(x⃗, y) = 0] | f ∈ Fn} .

Every function in F0 is Σ1. The case for +, ·, S, Ink is evident; the characteristic
function χ≤ is defined by the formula φ≤(x, y, z) given by(

z ≖ 0 ∨ z ≖ S(0)
)
∧
(
z ≖ S(0)⇔ (x < y ∨ x ≖ y)

)
.

Next we show that if every function in Fn is Σ1 definable, then so is every
function in Fn+1. Let φ(y1, . . . , yk, z) and ψi(x1, . . . , xn, y) (1 ≤ i ≤ n) be
Σ1 formulæ defining the k-ary function g and the n-ary functions f1, . . . , fk.
The formula

∃y1 . . . ∃yk
( ∧
1≤i≤k

ψi(x1, . . . , xn, yi) ∧ φ(y1, . . . , yk, z)
)

is Σ1 and defines g(f1(x⃗), . . . , fk(x⃗)).
Suppose g is k + 1-ary and definable via a Σ1 formula φg(x⃗, y, z). The

formula
φg(x⃗, y, 0) ∧ ∀w < y ∃zφg(x⃗, w, S(z))

is Σ1, and it defines x⃗ 7→ µy [g(x⃗, y) = 0].
Therefore every computable function is Σ1. □

Theorem 11.33. (a) A semi-computable set is Σ1.
(b) A computable set is ∆1.
(c) If f is computable with a computable domain, then Gr(f) is ∆1.

Proof. (a) By Proposition 8.35 a semi-computable set is of the form dom f
for some computable f . As dom f is the projection of Gr f which is Σ1, then
dom f is Σ1.

Part (b) follows from part (a), and part (c) follows from Proposition 8.44(c).
□

Theorem 11.34. Every Σ1 predicate is semi-computable, and every function
whose graph is Σ1 is computable.

Proof. A term t(x1, . . . , xk) of LPA is—essentially—a polynomial in the
variables x1, . . . , xk with coefficients in N, so any atomic formula t(x⃗) ≖ s(x⃗)
or t(x⃗) < s(x⃗) defines an elementary computable subset of Nk, for some
k. By induction on the complexity every ∆0 formula defines an elementary
computable set, so any Σ1 formula defines a semi-computable set.
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If f is a partial k-ary function such that Gr(f) is Σ1, then Gr(f) is
semi-computable, and hence f is computable by Proposition 8.36. □

11.C. The integers and the rationals. The numbers 0 and 1 are definable
in (Z, ·). Pell’s equation x2 = ky2 + 1 has (infinitely many) integer solutions
when k > 1 is a natural number and not a square, so N is the truth set in
(Z, S, ·) of the formula φ(z)

∃x
(
x2 ≖ z

)
∨ ∃x ∃y

(
y ̸≖ 0 ∧ y ̸≖ 1 ∧ x2 ≖ z · y2 + 1

)
,

thus φ(z) defines N also in (Z,+, ·). We can also use a theorem of La-
grange’s [HW79, p. 302], asserting that every natural number is the sum of
four squares, hence N is the truth set in (Z,+, ·) of

∃y1, y2, y3, y4 (x ≖ y1 · y1 + y2 · y2 + y3 · y3 + y4 · y4) .

Theorem 11.35. Multiplication is definable in the structure (N, S, |) and in
the structure (Z, S, |). Thus by Exercise 11.61 addition is definable in these
structures.

Proof. For (N, S, |) see Exercise 11.70; for (Z, S, |) see [Ric85]. □

Theorem 11.36. Z is definable in (Q,+, ·).

The proof of this important result uses non-trivial results in algebra, and
we refer the interested reader to the original paper [Rob49]. By Lagrange’s
theorem, N is definable in (Q,+, ·).

Remark 11.37. The formula φ(t) used in the proof of Theorem 11.36 is:

∀y, z (ψ(y, z, 0) ∧ ∀w (ψ(y, z, w)⇒ ψ(y, z, w + 1))⇒ ψ(y, z, t))

where ψ(t, y, z) is ∃a, b, c
(
t · y · z2 + 2 ≖ a2 + t · y2 − y · c2

)
. In prenex nor-

mal it becomes a ∀∃∀-formula

∀x1, x2∃y1, . . . , y7∀z1, . . . , z6[f(t, x1, x2, y1, . . . , y7, z1, . . . z6) ≖ 0],

with f ∈ Z[t, x1, x2, y1, . . . , y7, z1, . . . , z6]. This result has been recently
improved obtaining a definition of Z in Q via a ∀-formula of the form
∀x1, . . . , xn[f(t, x1, . . . , xn) ≖ 0] with f ∈ Z[t, x1, . . . , xn].

Therefore (N,+, ·) is definably interpretable in the structures

(Z, S, ·), (Z,+, ·), (N, S, |), (Z, S, |), (Q,+, ·),

and hence these structures have a very rich family of definable sets.

11.D. Real and complex numbers.
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11.D.1. The real field. Consider the structure (R,+, ·). The elements 0 and
1 are definable by the formulæ ∀y(y + x ≖ y) and ∀y(y · x ≖ y), while the
ordering x < y is definable by the formula

∃z (z ̸≖ 0 ∧ x+ z · z ≖ y) .

The sets definable in (R,+, ·) are exactly those definable in (R,+,−, ·, 0, 1, <),
but the latter structure is more convenient. So from now on we focus on
definability in (R,+, ·,−, 0, 1, <).

Every z ∈ Z and hence every q ∈ Q is definable in (R,+, ·,−, 0, 1, <).
Recall that a real number r ∈ R is algebraic if it is the root of some polynomial
with integer coefficients. Every f ∈ Z[X] yields a term t(x) with just one
variable x, hence saying that r is a root of f amounts to saying that r is
in the truth set of the formula t(x) ≖ 0. Since the set S of all roots of f is
finite, we can single-out r in S by pinning-down its position with respect to
the order: if S = {r1 < · · · < rk} and, for example, r = r3, then r is the only
real satisfying the formula

t(x) ≖ 0 ∧ ∃y1∃y2
(
t(y1) ≖ 0 ∧ t(y2) ≖ 0

∧ y1 < y2 < x ∧ ∀z (t(z) ≖ 0 ∧ z < x⇒ z ≖ y1 ∨ z ≖ y2)
)
.

Therefore every algebraic number is definable.

Definition 11.38. The family of semi-algebraic subsets of dimension n is
the smallest family of subsets of Rn containing the sets of the form

f(x1, . . . , xn) ≤ g(x1, . . . , xn)

with f, g polynomials with coefficients in R, and closed under intersections,
unions, and complements.

It is easy to check that the semi-algebraic sets are exactly those definable
with parameters in (R,+, ·, 0, 1, <) using an open formula. In Chapter ?? we
shall prove that the theory of real closed fields (Definition 9.11) admits the
elimination of quantifiers, and that it is a complete, decidable theory.

Remarks 11.39. (a) (N,+, ·) and (R,+, ·) show that a substructure of a
decidable structure need not be decidable.

(b) By Exercise 9.22, Z is definable in the ring R[X], yet it is not definable
in R.

The following results follow rom the elimination of quantifiers for real
closed fields:

Theorem 11.40 (Tarski-Seidenberg). If π : Rn+1 → Rn is the projection
along the first coordinate and A ⊆ Rn+1 is semi-algebraic, then π[A] is
semi-algebraic.
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Theorem 11.41. The subsets of R that are definable with parameters in the
real field are exactly the finite unions of singletons, intervals (open, closed,
half-open), and half-lines.

Corollary 11.42. None of the sets N, Z, Q is definable in (R,+, ·).

Corollary 11.42 remains true if we add the function exp(x) = ex. More-
over the theory of (R,+, ·, 0, 1, <, exp) is decidable, assuming the following
conjecture in number theory.

Definition 11.43. Let k be a field and let F be its prime subfield, that is
Q or Z/pZ depending on the characteristic of k. For each A ⊆ k let F(A)
be the smallest algebraically closed field containing F ∪ A. A set A ⊆ k is
algebraically independent if a /∈ F(A \ {a}), for all a ∈ A. If there is an
algebraically independent subset of k of size n, then k has transcendence
degree over F at least n.

Schanuel’s conjecture. If z1, . . . , zn ∈ C are linearly independent on Q,
then the transcendence degree of Q(z1, . . . , zn, e

z1 , . . . , ezn) over Q is at least
n.

11.D.2. The complex field. The theory of the complex field (C,+, ·, 0, 1) is
axiomatized by the axioms for algebraically closed fields of characteristic zero
ACF0 (Example 4.39).

Theorem 11.44. Let p be a prime or p = 0. The theory ACFp admits
elimination of quantifiers.

Proof. We apply Proposition 11.16. Let M,N be algebraically closed fields
of characteristic p, and suppose M ′ and N ′ are substructures of M and N ,
respectively, and that F : M ′ → N ′ is an isomorphism. Thus M ′ and N ′ are
rings of characteristic p and the isomorphism F extends to the quotient field.
Without loss of generality we may assume that M ′ and N ′ are fields. Let
M ′ and N ′ be the algebraic closure of M ′ computed in M and the algebraic
closure of N ′ computed in N . Since the algebraic closure is unique, up to
isomorphism, the isomorphism F extends to an isomorphism M ′ → N ′.

Let φ(y, x1, . . . , xn) be a conjunction of atomic formulæ and negation
of atomic formulæ, and let a1, . . . , an ∈ M ′: we want to show that if M ⊨
∃yφ[a1, . . . , an], then N ⊨ ∃yφ[F (a1), . . . , F (an)], and conversely. An atomic
formula is logically equivalent to a formula of the form t ≖ 0, with t a term
containing only variables among y, x1, . . . , xn. Since the conjunction of two
negated atomic formulæ (t ̸≖ 0) ∧ (s ̸≖ 0) is equivalent to t · s ̸≖ 0, we may
assume that φ is of the form

s ̸≖ 0 ∧
∧

1≤i≤k

ti ≖ 0.
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Suppose M ⊨ ∃yφ[a1, . . . , an]: this amounts to say that there is a b ∈ M
such that is not a root of the polynomial s[a1, . . . , an], yet it is a root of
each polynomial ti[a1, . . . , an]. Note that b ∈M ′, hence F (b) ∈ N ′ is a root
of ti[F (a1), . . . , F (an)] but it is not a root of s[F (a1), . . . , F (an)]. It follows
that N ⊨ ∃yφ[F (a1), . . . , F (an)]. The other direction

N ⊨ ∃yφ[F (a1), . . . , F (an)] ⇒ M ⊨ ∃yφ[a1, . . . , an]

is similar. □

An atomic sentence σ of the language LRings is logically equivalent modulo
ACFp to a sentence of the form ‘t ≖ 0’ with t a closed term, and each such
sentence is decidable in ACFp, and thus either ACFp ⊨ σ or else ACFp ⊨ ¬σ.
Therefore we obtain another proof of Theorem 4.40 that ACF0 and ACFp

are complete.

Remark 11.45. The proof of Theorem 11.44 relies on the fact that the
algebraic closure of a field is unique up to isomorphism, and this in turn
depends on the axiom of choice. But since the substructures M ′ and N ′

can be taken to be countable, and since the proof of the uniqueness of the
algebraic closure does not depend on choice when the field is countable, the
appeal to AC can be avoided completely—see Section 28.

Sets which are definable with parameters using atomic formulæ are
algebraic varieties, that is sets of the form

Z(f) = {(z1, . . . , zn) ∈ Cn | f(z⃗) = 0}

with f ∈ C[x1, . . . , xn]. Therefore the definable subsets of the complex
field are the sets that can be obtained by taking unions, intersections, and
complements of algebraic varieties. In particular, the sets N, Z, Q, and R
are not definable in the structure (C,+, ·, 0, 1).

Every rational number is definable in the complex field, but this result
does not extend to the algebraic numbers—as observed on page 93 the set
{i,−i} is definable, but none of its elements is.

Working in the structure (C,+, ·, 0, 1, exp), the set

ker(exp) = {z ∈ C | exp(z) = 1} = 2iπZ

can be defined, hence Z = {x ∈ C | x ker(exp) ⊆ ker(exp)} is definable.
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Exercises

Exercise 11.46. Show that:

(i) The divisibility relation | is not definable in the structure (N,⊥).
(ii) Every automorphism F of (N, |) is such that F (n ·m) = F (n) · F (m).

Exercise 11.47. Show that ⟨N ⊎Q× Z,+, <, 0⟩ is a model of Presburger
arithmetic. What are its definable elements? Is the set of all its definable
elements, a definable set?

Exercise 11.48. Use Theorem 4.37 to show that the theories T(N,S) and
T(N,<) are complete.

Exercise 11.49. Show that the theory T(N,<,S,0) admits effective elimination
of quantifiers, and hence it is a complete theory.

Exercise 11.50. For n ∈ N let Ln be the first-order language containing only
the constant symbols ci with 0 ≤ i < n. (In particular L0 is the language
without non-logical symbols.) Let Tn be the theory in the language Ln

containing all sentences ε≥k for k ≥ 1 (see page 18). Show that:

(i) Tn admits elimination of quantifiers for n ≥ 1, and T0 admits elimination
of quantifiers for non-closed formulæ,

(ii) T0 and T1 are complete theories, while for n ≥ 2 the theory Tn is not
complete.

Exercise 11.51. Complete the proof of Proposition 11.23.

Exercise 11.52. Show that the functions N→ N defined by g(0) = G(0) = 0,
g(1) = G(1) = 1 and for n ≥ 2

g(n) = the smallest k such that ∀x ∃y1, . . . , yk (x = yn1 + · · ·+ ynk )

G(n) = the smallest k such that ∃z ∀x ≥ z ∃y1, . . . , yk (x = yn1 + · · ·+ ynk )

are definable in (N,+, ·). (The functions g and G have been mentioned on
page 68 in relation to Waring’s problem (3.3) on page 29.)

Exercise 11.53. (i) Let C be the unary predicate “being a square”, that
is ∃y(y2 = x). Show that the map q(x) = x2 is definable in (N,+, C).

(ii) Show that multiplication is definable in (N,+, q).
(iii) Show that multiplication is definable in (N,+, f) where f ∈ N[X] is of

degree ≥ 2.
(iv) Argue that the only polynomial functions definable in (N,+) are those

of degree ≤ 1.
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Exercise 11.54. Show that N and multiplication are definable in (Z,+, C),
where C is as in Exercise 11.53.

Exercise 11.55. Show that the enumeration by squares of N×N in Figure 12
is definable in (N,+, ·) by giving an explicit formula for such bijection N×N→
N and for its inverses.

Exercise 11.56. Show that the bijection N × N × N → N, (n,m, k) 7→
J(n,J(m, k)) is a polynomial of degree four. Find a bijection N×N×N→ N
that is a polynomial of degree three. More generally, for each integer k > 0
construct a bijection Nk → N that is a polynomial of degree k.

Exercise 11.57. Let f(n) be the unique z ≤ n such that z(z+1)
2 ≤ n <

(z+1)(z+2)
2 . Show that (n)0 = n− f(n)(f(n)+1)

2 and (n)1 = f(n)− (n)0.

Exercise 11.58. Suppose that 1 < c0, . . . , cn−1 ∈ N are pairwise coprime
and let a0, . . . , an−1 ∈ N be arbitrary. Let N =

∏n−1
i=0 ci. Show that

(i) x =
∑n−1

i=0 ai(
N
ci
)ϕ(ci) is such that x ≡ ai mod ci, for all 0 ≤ i < n,

where ϕ is the Euler function, that is ϕ(k) = the number of 0 < x < k
such that x is co-prime with k;

(ii) if x ∈ N is such that x ≡ ai mod ci, for all 0 ≤ i < n, then the following
conditions are equivalent:
• y ≡ mod N
• y ≡ ai mod ci, for all 0 ≤ i < n.

Exercise 11.59. Check in detail that the function β is definable in the
structure of arithmetic.

Exercise 11.60. Show that:

(i) D is the family of subsets of N2 that are definable in (N, S),
(ii) the sets in D are of the form P △L or N2 \ (P △L) where P is a finite

(possibly empty) set of points and L is a finite (possibly empty) set of
lines,

(iii) {(n,m) | n < m} /∈ D.

Exercise 11.61. Check that the identity (11.7) holds in N and in Z and
conclude that addition is quantifier-free definable both in (N, S, ·) and in
(Z, S, ·).

Exercise 11.62. Show that < is definable without parameters in (Q,+, ·).

Exercise 11.63. Show that if p, q ∈ Q then the fields Q(
√
p) and Q(

√
q) are

elementarily equivalent if and only if they coincide.

Exercise 11.64. Show that the real field (R,+, ·) is rigid.
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Exercise 11.65. Show that the ordering is definable in (Z,+, ·).

Exercise 11.66. Show that the operation of addition + and the rational
field Q are definable in the structure (C, ·, exp).

Exercise 11.67. Show that N is definable in the structures (R,+, ·, sin),
(R,+, ·, cos), (C,+, ·, exp).

Exercise 11.68. Consider the structure (R,+, ·, 0, 1, <). Show that:

(i) every interval (open, closed, half-open) and every half-line whose end-
points are algebraic numbers, is definable;

(ii) the functions x 7→ |x|, x 7→ xq with q ∈ Q are definable. If f and g
are (partial) real-valued functions of a real variable, then also f/g is
definable;

(iii) Write the formula φ(x11, x12, x21, x22) asserting that the matrix(
x11 x12

x21 x22

)
is invertible. By elimination of quantifiers for real closed fields, there is
a quantifier-free formula logically equivalent to (and with the same free
variables as) φ: determine such formula.

Exercise 11.69. Consider the language of rings with an extra 1-ary function
symbol. Write down sentences σ of this language so that the structure
(R,+, ·, f) satisfies σ if and only if

(i) f is continuous,
(ii) f is of class Cn,
(iii) f(x) = ex,

(iv) f(x) = sin(x),
(v) f(x) = cos(x).

Exercise 11.70. (i) Suppose that a, b, x, y, p ∈ N \ {0} are such that:

a, b > 1 a ⊥ x a · b ⊥ x p | (lcm(a, x) + 1)

x ⊥ y b ⊥ y a · b ⊥ y p | (lcm(b, y) + 1) .

Show that p | (lcm(a · b, lcm(x, y))− 1).
(ii) Let a, b, c ∈ N \ {0, 1} and suppose that φ⇒ ψ, where φ is the formula[
x ̸≖ 0 ∧ a ⊥ x ∧ y ̸≖ 0 ∧ b ⊥ y ∧ c ⊥ x ∧ c ⊥ y ∧ x ⊥ y

∧ p is prime ∧ p | (lcm(a, x) + 1) ∧ p | (lcm(b, y) + 1)
]

an ψ is p | (lcm(c, lcm(x, y))− 1). Then a · b ≡ c (mod p).
(iii) Let a, b, c ∈ N \ {0, 1} and let p > a, b, c be prime. Show that there are

x, y satisfying φ. Conclude that the truth set of the formula σ(a, b, c):
∀x, y, p (φ⇒ ψ), is

{
(a, b, c) ∈ N3 | c = a · b

}
.
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(iv) Use Exercise 11.61 to conclude that addition and multiplication are
definable in the structure (N, |, S).

Exercise 11.71. Let DLO be the theory of dense linear orders without
endpoints in the language LOrdr containing only ≤ as a binary relation
symbol, and let DLO∗ be the same theory in the language L∗ obtained by
adding a constant symbol c to LOrdr. Show that DLO admits elimination
of quantifiers for non-closed formulæ, and that DLO∗ admits elimination of
quantifiers (for all formulæ).

Deduce that if (M,≤) ⊨ DLO then ∅ ̸= X ⊆ M is definable with
parameters {p1, . . . , pn} ⊆M if and only if X it is a finite union of intervals6

(closed, open, half-open) with endpoints in {p1, . . . , pn}.
Conclude that DLO is decidable.

Notes and remarks

The first part of Section 11.A follows closely the book [End01]. The axiomatization of (N,+) and
the elimination of quantifiers for this theory were obtained in 1929 by Presburger, a student of
Tarski at the time.

The subsets of Nk (k > 1) that are definable in Presburger arithmetic have been studied
in [Woo]. The definability of the integers in the rationals (Theorem 11.36) and the definability of
addition and multiplication in (N, S, |) (Exercise 11.70) are due to J. Robinson. That paper asked
whether multiplication is definable in the structures (N, S,⊥), (N,+,⊥), and (Z, S, |). The case of
(N, S,⊥) is still open: Woods proved in [Woo81] that the definability of multiplication in terms of
successor and co-primality is equivalent to the Erdős-Woods conjecture of Section 2.C.5. The case
of (N,+,⊥) and (Z, S, |) have positive solution: the former was solved by Robinson herself, and
the latter is Theorem 11.35. For a survey on definability on natural numbers see [Bès01].

The definability of Z in Q in the form described in Remark 11.37 is proved in [Koe16]: the
polynomial f(t, x1, . . . , xn) is of degree 28 and n = 418. It is known that Z is not definable in Q by
a quantifier-free formula, hence this result is, in some sense, optimal. It leaves open the possibility
that Z be definable in Q by a ∃-formula: the received opinion is that this should not be the case,
since it would contradict an important conjecture in number theory, known as the Bombieri-Lang
conjecture. The results in Section 9.D.2 are from [Rob51].

The elimination of quantifiers for real closed fields (proved by Tarski in 1951) and the ensuing
Tarski-Seidenberg Theorem 11.40, are crucial results for model theory and its applications to real
algebraic geometry. The Tarski-Seidenberg result has been applied by Hörmander to the study of
pseudo-differential operators [H0̈5]. Theorem 11.41 is the beginning of an important area in model
theory, the study of o-minimal structures, that is real closed fields in which the definable subsets
of dimension 1 are finite unions of singletons, intervals, and half-lines [vdD98]. The extension
of Corollary 11.42 to (R,+, ·, exp) is due to Wilkie [Wil96] while the proof of the decidability of
this structure, modulo Schanuel’s conjecture, is due to Wilkie and Macintyre [MW96]. Schanuel’s
conjecture is named after the mathematician who formulated it around 1960. It is one of the most
important conjectures in number theory, settling many open questions on transcendental numbers;
for example setting z1 = 1 and z2 = iπ it implies that π, e are algebraically independent, hence
π+ e, π · e are both transcendental (see Example 2.2).

6Half-lines and the singletons {pi} are taken to be intervals.
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12.A. Dedekind structures. LD is the language seen in Section 11.A with
a unary function symbol S and a constant symbol 0. A crucial feature of the
structure (N, S, 0) is the second-order induction principle

(Ind2) ∀I [0 ∈ I ∧ ∀x (x ∈ I ⇒ S(x) ∈ I) ⇒ ∀x (x ∈ I)] .

The expression second-order and the ensuing exponent 2 are motivated by the
quantification over arbitrary subsets (see Observation 3.25(b)). In particular
Ind2 is not a first-order formula. A structure (M,SM , 0M ) satisfying Ind2

∀I ⊆M [0M ∈ I ∧ ∀x (x ∈ I ⇒ SM (x) ∈ I)⇒ I = M ]

is said to be inductive. An inductive structure satisfying the sentences

∀x
(
S(x) ̸≖ 0

)
(12.1)

∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y))(12.2)

is a Dedekind structure. Clearly (N, S, 0) is a Dedekind structure. If
(M,SM , 0M ) is inductive, then M \ {0M} ⊆ ran(SM ); if it is a Dedekind
structure, then SM ◦ · · · ◦ SM has no fixed points (Exercise 12.19).

Examples 12.1. (i) Zn = (Z/nZ, σ, [0]), where σ([k]) = [k + 1] and [k]
is the class of k modulo n, is an inductive structure that satisfies (12.2)
but not (12.1).

(ii) Z′
m = ({0, . . . ,m− 1} , τ, 0), where m > 0, τ(k) = k+1 if 0 ≤ k < m−1

and τ(m−1) = m−1 is an inductive structure that does not satisfy (12.2);
Z′
m satisfies (12.1) if m > 1.

(iii) Zm,n = (Z, S, a) is the structure with domain {0, . . . ,m− 1} ⊎ Z/nZ,
where a = 0 and S is defined by

S(x) =


x+ 1 if x < m− 1,

[0] if x = m− 1,

σ(x) if x ∈ Z/nZ,

where σ is as in part (i). The structure Zm,n is described by the
directed graph in Figure 17. Note that Zn = Z0,n and that Z′

m = Zm,0.
The structure Zm,n is inductive; it satisfies (12.1) when m > 0, it
satisfies (12.2) when m = 0 and n > 0.

(iv) (N, T, 0), where T (n) = 2n is a structure that it is not inductive and
that satisfies (12.1) and (12.2).

Theorem 12.2. (a) If N is a Dedekind structure and M is an LD-structure,
then there is a unique morphism F : N →M .
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Figure 17. The structure Z3,6.

(b) The homomorphic image of an inductive structure is an inductive struc-
ture. Conversely, every inductive structure is the homomorphic image
of any Dedekind structure.

(c) If N and M are Dedekind structures, the unique morphism F : N →M
as in (a) is an isomorphism. In particular, every Dedekind structure is
isomorphic to (N, S, 0).

(d) The inductive structures are, up to isomorphism, (N, S, 0) and Zm,n for
m ≥ 0 and n ≥ 1.

Proof. (a) Let us start with proving uniqueness. If F,G : N → M are
distinct morphisms, let I = {x ∈ N | F (x) = G(x)}. Since 0N ∈ I and by
definition of morphism: if x ∈ I then SN (x) ∈ I, so by Ind2 on the structure
N we have that I = N , that is F = G.

To prove the existence of a morphism, argue as follows. Let S be the
family of the subsets W of N ×M such that (0N , 0M ) ∈W and

(*) (x, y) ∈W ⇒ (SN (x), SM (y)) ∈W.

It is immediate to check that N×M ∈ S and that F ∈ S, where F =
⋂

W∈SW .
Let

I = {x ∈ N | ∃!y ∈M [(x, y) ∈ F ]} .
Let us check by Ind2 on N that I = N , so that F : N → M is a morphism.
Clearly (0N , 0M ) ∈ F . If (0N , y) ∈ F with y ≠ 0M , let W = F \ {(0N , y)}.
Since (0N , 0M ) ∈ W , then (12.1) implies that W satisfies (*), hence W ∈
S and therefore F ⊆ W : a contradiction. Thus 0N ∈ I. Suppose now
x ∈ I and let y ∈ M be the unique element such that (x, y) ∈ F , so that
(SN (x), SM (y)) ∈ F . Towards a contradiction, suppose (SN (x), z) ∈ F
for some z ̸= SM (y) and let W ′ = F \ {(SN (x), z)}, so that W ′ /∈ S. As
(0N , 0M ) ∈ W ′, then (*) fails, that is there is (x′, y′) ∈ N ×M such that
(x′, y′) ∈ F and SN (x′) = SN (x) and SM (y′) = z. By (12.2) x = x′, and
since x ∈ I it follows that y = y′, hence z = SM (y): a contradiction.
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(b) Suppose F : N → M is a surjective morphism, N is an inductive
structure and I ⊆M is such that 0M ∈ I and ∀x ∈M (x ∈ I ⇒ SM (x) ∈ I).
Then Ind2 applied to N proves that F−1[I] = N , whence I = M .

Conversely suppose that M is inductive. Let N be a Dedekind struc-
ture and let F : N → M be the unique morphism given by (a). Let
I = {y ∈M | ∃x ∈ N (F (x) = y)}. Then 0M = F (0N ) ∈ I, and if F (x) ∈ I
then SM (F (x)) = F (SN (x)) ∈ I. Therefore I = M , that is F is surjective.

(c) If N and M are Dedekind structures, let F : M ↠ N and G : N ↠ M
be surjective morphisms as of (b). Then F ◦ G : N → N is a surjective
morphism, and since idN : N → N is the unique morphism (a), it follows
that F ◦G = idN , that is F : M ↠ N is an isomorphism and G is its inverse.

(d) Suppose M is an inductive structure. By (b) fix a surjective morphism
F : N→M . If F is injective, then F is an isomorphism, that is (M,SM , 0M )
is isomorphic to (N, S, 0). If F is not injective, let k be the least natural
number such that F (k) = F (m) for some m < k. Note that m is unique by
minimality of k, that is {F (0), . . . , F (k − 1)} are all distinct. In particular
SM (F (i)) = F (i+ 1) if i+ 1 < k and SM (F (k − 1)) = F (m). Therefore M
is isomorphic to Zm,n, where n = k − 1−m. □

12.B. Inductive definitions. The proof of the existence of a morphism
F : N →M in part (a) of Theorem 12.2 may seem overly indirect. Observe
that the map F is recursively defined by{

F (0N ) = 0M

F (SN (x)) = SM (F (x)).

The existence of F is apparently obvious. A seemingly convincing, but
fallacious, argument is: the function F is defined in 0N ; if F is defined in
x ∈ N , then it is defined in SN (x); therefore by induction F is defined on
N . Under closer scrutiny, this argument does not hold water, despite its
reassuring aspect: we argue about the domain of F , yet we have not yet shown
that such F exist, which is what the purported argument is supposed to
show! The preceding argument uses only the induction principle Ind2 for the
structure N , hence, if correct, it would show that: If (N,SN , 0N ) is inductive
and (M,SM , 0M ) is arbitrary, then there is a morphism F : N → M . But
this is false—consider N = Zn and M = Z′

n for n ≥ 2.
Inductive definitions will be thoroughly studied in Section 19—right now

we prove a result that is strong enough to account for most basic inductive
constructions.
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Theorem 12.3. Let A and B be non-empty sets, and let g : B → A and
F : N×B ×A→ A. There is a unique f : N×B → A such that{

f(0, b) = g(b)

f(n+ 1, b) = F (n, b, f(n, b)).

Proof. The proof is similar to that of Theorem 12.2. Consider the set

S = {W ⊆ (N×B)×A | ((0, b), g(b)) ∈W

∧∀((n, b), a) [((n, b), a) ∈W ⇒ ((n+ 1, b), F (n, b, a)) ∈W ]}

and let f =
⋂

S ⊆ (N × B) × A. As in the proof of Theorem 12.2, f ∈ S

and I = N by Ind2, where I = {n ∈ N | ∀b ∈ B ∃!a ∈ A [((n, b), a) ∈ f ]}.
Therefore f is the required function. The proof of uniqueness is left to the
reader. □

Whenever F does depend neither on N nor on B, Theorem 12.3 becomes:

Corollary 12.4. Let A, B be non-empty sets, and let g : B → A.

(a) For all F : B ×A→ A there is a unique f : N×B → A such that{
f(0, b) = g(b)

f(n+ 1, b) = F (b, f(n, b)).

(b) For all F : N×A→ A there is a unique f : N×B → A such that{
f(0, b) = g(b)

f(n+ 1, b) = F (n, f(n, b)).

(c) For all F : A→ A there is a unique f : N×B → A such that{
f(0, b) = g(b)

f(n+ 1, b) = F (f(n, b)).

When g is constant, the statement of part (c) of Corollary 12.4 can be
further simplified.

Corollary 12.5. If ā ∈ A and F : A→ A then there is a unique f : N→ A
such that {

f(0) = ā

f(n+ 1) = F (f(n)).

In other words, f is the sequence ⟨ā, F (ā), F (F (ā)), . . .⟩.

Example 12.6. The addition function N × N → N is obtained by letting
A = B = N, b = 0, g = idN, and F (k) = k + 1 in Corollary 12.4(c).
Multiplication and exponentiation can be defined in a similar fashion.
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Example 12.7. Given h : X → X, letting A be the set of all functions from
X to itself, letting ā = idX and F : A→ A be the map k 7→ h ◦k, then Corol-
lary 12.5 yields that there is a f : N→ A such that ∀n ∈ N ∀x ∈ X

(
f(n)(x) =

h(n)(x)
)
. In other words, f is the sequence ⟨idX , h, h ◦ h, h ◦ h ◦ h, . . .⟩.

Example 12.8. Let A be a non-empty set endowed with a binary operation
∗, and let (an)n be a sequence of elements of A. The sequence

s : N→ A, s(n) = (· · · (a0 ∗ a1) ∗ · · · ∗ an−1) ∗ an
is obtained from Corollary 12.4(b) by taking B = N, g(n) = an and F : B ×
A→ A such that F (k, a) = a∗g(k+1). Then there is a unique f : N×B → A
such that {

f(0, k) = g(k)

f(n+ 1, k) = f(n, k) ∗ g(n+ 1).

hence s(n) = f(n, 0). This kind of constructions is very common in mathe-
matics. For example, when A = R, the sum of the series

∑∞
n=0 an is defined to

be the limit (if it exists) of the sequence of the partial sums s(k) =
∑k

n=0 an.

Example 12.9. Recall that the transitive closure of R ⊆ X × X is the
smallest transitive relation R̃ on X containing R (see page 43). It can be
defined inductively by x R̃ y if and only if x R x1 R x2 R . . . R xn = y,
that is R̃ =

⋃
n∈N g(n,R) where g : N ×P(X ×X) → P(X ×X) is given

by g(0, S) = S and g(n + 1, S) = f(g(n, S)), and f(S) = S ∪ {(a, c) |
∃b ∈ X ((a, b), (b, c) ∈ S)}.

Recall from Section 7.A.1 that an inductive system is a triple X =
(A,F, X) where F is a set of operations on A and X ⊆ A.

An induction system (A,F, X) is free if for every f, g ∈ F we have that
f is injective, ran f ∩ ran g = ∅, and ran f ∩X = ∅. Examples of free systems
are (N, {S} , {0}), and the ones in Example 7.16.

The next result is a generalization of Theorem 12.2(a), and it is proved
using the same ideas as in that result.

Theorem 12.10. Let X = (A,F, X) be a free induction system. For any set
Z, any F : X → Z and any collection {Gf | f ∈ F} of functions Gf : Z

n(f)×
An(f) → Z where n(f) is the arity of f , there is a unique F : X→ Z which
extends F and such that for all f ∈ F and all x1, . . . , xn ∈ F, with n = n(f),

F (f(x1, . . . , xn)) = Gf (F (x1), . . . , F (xn), x1, . . . , xn).

12.C. The minimum principle. Ind2 is equivalent to two other principles
that are formulated in the language containing the symbol <: the second-
order strong induction principle

(sInd2) ∀I [∀x (∀y (y < x⇒ y ∈ I)⇒ x ∈ I) ⇒ ∀x (x ∈ I)] .
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and the second-order minimum principle

(MP2) ∀I [I ̸= ∅ ⇒ ∃x (x ∈ I ∧ ∀y (y < x⇒ y /∈ I))] .

Proposition 12.11. If (M,<, S, 0) ⊨ T(N,<,S,0), then Ind2, sInd2, and MP2

are equivalent for this structure.

Proof. Ind2 ⇒ sInd2: Suppose I ⊆M is such that

∀x ∈M (∀y ∈M (y < x⇒ y ∈ I) ⇒ x ∈ I)

and let J = {x ∈M | ∀y < x (y ∈ I)}. Then J ⊆ I by case assumption, and
since ∀y ∈M (y < 0⇒ y ∈ I) holds trivially, then 0 ∈ J . Suppose x ∈ J and
let y < S(x): then y < x or y = x, and in either case y ∈ I, hence S(x) ∈ J .
Thus J = M by Ind2, hence I = M as required.

sInd2 ⇒ MP2: Towards a contradiction suppose ∅ ≠ I ⊆M is such that

∀x ∈ I ∃y ∈ I (y < x).

Apply strong induction to J = M \ I. Suppose x ∈ M is such that
∀y ∈M (y < x ⇒ y ∈ J). If x ∈ I, then x would be the least element
of I, hence x ∈ J . By strong induction J = M , so I = ∅, against our
hypothesis.

MP2 ⇒ Ind2: Suppose M satisfies the minimum principle, and let I ⊆M
be closed under S and such that 0 ∈ I. If I ̸= M then let x be the minimum
of M \ I. Since x ̸= 0 then x = S(y) for some y by an axiom in T(N,<,S,0),
hence y ∈ I by minimality. But then x = S(y) ∈ I: a contradiction. □

12.D. Peano arithmetic. In order to apply methods of first-order logic to
arithmetic, the induction principle Ind2 is weakened by requiring it only for
truth sets of first-order formulæ. In other words we only require that

(Indφ)
(
φ(0) ∧ ∀x(φ(x)⇒ φ(S(x)))

)
⇒ ∀xφ(x),

for all LD-formulæ φ(x) with one free variable. Given a language L extending
LD, we write IndL (or simply Ind when L is clear) for the infinite list of all
axioms Indφ with φ an L-formula. This axiom-schema, known as first-
order induction principle is not strong enough for proving part (c) of
Theorem 12.2. In other words, a structure satisfying (12.1), (12.2) and IndD
need not be isomorphic to (N, S, 0). For example the LD-structure with
universe M = N ⊎ Z and such that 0M = (0, 0) and SM (k, i) = (k + 1, i),
satisfies (12.1), (12.2) and IndD, but it is not isomorphic to (N, S, 0), hence it
does not satisfy (Ind2). In analogy with what was done in Section 12.C, one
can formulate the principles sIndφ and MPφ when φ is an L-formula and L

is a language containing the symbols S, 0, <. For example MPφ says that

∃xφ(x)⇒ ∃x(φ(x) ∧ ∀z(z < x⇒ ¬φ(z))).
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Note that the equivalence between Ind, sInd, and MP for the language LD is
a logical consequence of T(N,<,S,0).

Definition 12.12. The language LPA is obtained by adding two binary
function symbols + and · and a binary relation symbol < to the language
LD.

Peano arithmetic (PA) is the theory in the language LPA whose axioms
are the statements:

PA1: ∀x
(
S(x) ̸≖ 0

)
,

PA2: ∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y)),
PA3: ∀x

(
x+ 0 ≖ x

)
,

PA4: ∀x, y (x+ S(y) ≖ S(x+ y)),

PA5: ∀x
(
x · 0 ≖ 0

)
,

PA6: ∀x, y (x · S(y) ≖ (x · y) + x),
PA7: ∀x¬

(
x < 0

)
,

PA8: ∀x, y (x < S(y)⇔ x ≤ y),

where x ≤ y is shorthand for x < y ∨ x ≖ y, and the first-order induction
principle Ind.

The structure (N, S, 0,+, ·, <) is a model of PA, but it is far from being
the only example—see Section 12.D.2. The equivalence between Ind, sInd,
and MP holds also for PA. Although Ind is weaker than Ind2, it is strong
enough to prove many results on natural numbers.
12.D.1. Some consequences of Peano’s axioms. Let PA− be the theory with
axioms PAn for 1 ≤ n ≤ 6 plus induction for formulæ in the language LPA

with < removed.

Lemma 12.13. The following statements are logical consequences of PA−:

(a) ∀x(x ≖ 0 ∨ ∃y(S(y) ≖ x)),
(b) ∀x(S(n)(x) ̸≖ x) for n > 0.

Therefore PA− extends the theory T(N,S,0) from Section 11.A.1.

Proof. Fix (M,S, 0M ,+, ·) a model of PA− and let us prove the result by
induction.

(a) We must check that M ⊨ φ[0M ] and that for every a ∈M , if M ⊨ φ[a]
then M ⊨ φ[S(a)], where φ(x) is x ≖ 0 ∨ ∃y(S(y) ≖ x). As M ⊨ 0 ≖ 0 the
base case is trivial. For the inductive step note that S(a) ∈ TM

∃y(S(y)≖x) and
hence M ⊨ φ[S(a)].

(b) Fix n > 0 and apply Indφ where φ is S(n)(x) ̸≖ x. Axiom PA1
guarantees that M ⊨ φ[0M ], and if M ⊨ φ[a] that is S(n)(a) ̸= a, then
S(n)(S(a)) = S(S(n)(a)) ̸= S(a), that is M ⊨ φ[S(a)]. □

Proposition 12.14. The following identities are logical consequences of PA−:

(a) x+ (y + z) ≖ (x+ y) + z,
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(b) 0 + x ≖ x,

(c) 1 + x ≖ S(x),

(d) x+ y ≖ y + x,

(e) 0 · x ≖ 0,

(f) x · S(0) ≖ S(0) · x ≖ x,

(g) (x+ y) · z ≖ (x · z) + (y · z),
(h) x · y ≖ y · x,

(i) x · (y · z) ≖ (x · y) · z.

Proof. Work in some model (M, 0, S,+, ·) of PA−.
(a) Apply Indφ(z) with φ(z) is ∀x, y(x+ (y+ z) ≖ (x+ y) + z). The base

case, that is M ⊨ φ[0M ], holds by PA3 as for all a, b ∈M

a+ (b+ 0M ) = a+ b = (a+ b) + 0M .

Assume now M ⊨ φ[c] for some c and let us argue that M ⊨ φ[S(c)]. For all
a, b ∈M :

a+ (b+ S(c)) = a+ S(b+ c) by PA4

= S(a+ (b+ c)) by PA4

= S((a+ b) + c) by inductive assumption
= (a+ b) + S(c) by PA4

so φ[S(c)] holds in M .

(b) Let φ(x) be the formula 0 + x ≖ x and apply Indφ: the base step
follows from PA3, the inductive step from PA4.

(c) Apply Indφ(x) where φ(x) is 1 + S(x). By PA3 we have the identity
1 + 0 ≖ 1 ≖ S(0), so the base case of the induction holds. If M ⊨ φ[a] for
some a ∈M , then letting 1M

def
= S(0M ) and using part (b)

1M + S(a) = S(1M + a) = S(S(a))

that is: M ⊨ φ[S(a)].

(d) Apply Indφ where φ(x) is the formula ∀y (x+ y ≖ y + x). The base
case M ⊨ φ[0M ] follows by PA3 and by part (b). Assume M ⊨ φ[a] (the
inductive assumption) towards proving M ⊨ φ[S(a)], that is S(a) + b =
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b+ S(a) for all b ∈M . Fix b ∈M :

S(a) + b = (1M + a) + b by part (c)
= 1M + (a+ b) by part (a)
= 1M + (b+ a) by inductive assumption
= S(b+ a) by part (c)
= b+ S(a) by PA4.

The verification of the remaining formulæ (e)–(i) is left to the reader. □

In particular, if M ⊨ PA−, then (M,+, 0) is a monoid. The order relation
x < y can be defined by the formula ∃z(x+S(z) ≖ y), and with this definition
PA− |= PA7 ∧ PA8 (Exercise 12.29). Therefore PA− is equivalent to PA, but
the latter theory is more convenient.

Theorem 12.15. The following facts follow from the axioms of PA:

(a) x < y ⇔ ∃z (x+ S(z) ≖ y),
(b) ∀x∀y∀z (x < y ∧ y < z ⇒ x < z) (transitivity),
(c) ∀x∀y (x < y ⇔ S(x) < S(y)),
(d) ∀x¬ (x < x) (irreflexivity),
(e) ∀x

(
0 ̸≖ x⇒ 0 < x

)
,

(f) ∀x∀y (x < y ·∨ x ≖ y ·∨ y < x) (trichotomy),
(g) ∀x, y, z (x < y ⇒ x+ z < y + z) (monotonicity of addition),
(h) ∀x, y, z

(
z ̸≖ 0 ∧ x < y ⇒ x · z < y · z

)
(monotonicity of multiplication).

Proof. Work in some model (M,S, 0,+, ·, <) of PA.
(a) Apply Indφ(y) where φ(y) is ∀x(x < y ⇔ ∃z (x+ S(z) ≖ y)). To

prove M ⊨ φ[0] fix an a ∈M : since a < 0 is impossible by PA7, it is enough
to check that for all b ∈M , a+ S(b) = S(a+ b) ̸= 0, which follows from PA1.
Suppose M ⊨ φ[a] for some a ∈M . Then

a < S(b)⇔ a < b ∨ a = b by PA8

⇔ ∃z (a+ S(z) = b) ∨ a+ S(0) = S(b) (by inductive assumption)
⇔ ∃z (a+ S(z) = S(b))

that is M ⊨ φ[S(a)] holds.

(b) follows from associativity of addition: if b = a+S(u) and c = b+S(v),
then c = b+S(v) = (a+S(u))+S(v) = a+(S(u)+S(v)) = a+S(S(u)+ v),
that is a < c.

(c) follows from commutativity of addition and a+ S(c) = b ⇔ S(a) +
S(c) = S(a+ S(c)) = S(b).
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(d) PA yields 0 ≮ 0; if a ≮ a for some a ∈ M then S(a) ≮ S(a) by
part (c). Thus the result holds by induction.

(e) Apply Indφ where φ(x) is 0 ≖ x ∨ 0 < x. The base case M ⊨ φ[0] is
immediate. Suppose that M ⊨ φ[a] for some a ∈ M , that is 0 = a ∨ 0 < a.
As a < S(a) by PA8, then 0 < S(a), and therefore M ⊨ φ[S(a)].

(f) By transitivity and irreflexivity of < it is enough to prove that
PA |= ∀x, y(x < y ∨ x ≖ y ∨ y < x). We apply Indφ where φ(x) is ∀y(x <
y∨x ≖ y∨y < x). The base case follows from part (e). Suppose M ⊨ φ[a] for
some a. We must show that for all b ∈M one of the following holds: S(a) < b,
S(a) = b, b < S(a). By inductive assumption a < b ∨ a = b ∨ b < a: since
a < S(a) by PA8, a = b ∨ b < a yields b < S(a). If a < b then a+ S(c) = b
for some c ∈M , so S(a) + c = b. If c = 0 then S(a) = b, and if c ̸= 0 then
c = S(d) by Lemma 12.13 so S(a) < b.

(g) We apply Indφ, where φ(z) is ∀x, y(x < y ⇒ x+z < y+z). The base
case follows from PA3. Suppose M ⊨ φ[a] and let b < c be elements of M . By
inductive assumption and part (c), b+S(a) = S(b+a) < S(c+a) = c+S(a).
As b, c are arbitrary, M ⊨ φ[S(a)].

(h) We apply Indφ, where φ(z) is ∀x, y(z ̸≖ 0 ∧ x < y ⇒ x · z < y · z).
The base case holds vacuously, so we may assume that M ⊨ φ[a] towards
proving M ⊨ φ[S(a)]. Let b < c be elements of M . As PA |= ∀w(w · 1 ≖ w),
we may assume that a ≠ 0. Then by PA6, the inductive assumption, and
part (g) b ·S(a) = b ·a+ b < c ·a+ b < c ·a+ c = c ·S(a). As b, c are arbitrary,
M ⊨ φ[S(a)]. □

Therefore any model of PA is a commutative ordered semi-ring (Defini-
tion 9.10).

Proposition 12.16. The following result (the algorithm of division with
remainder) is logical consequence of PA:

∀x ∀y > 0 ∃!q ∃!r
[
x ≖ y · q + r ∧ q ≤ x ∧ r < y

]
.

In particular, for all n ∈ N \ {0}, the sentence

∀x∃!r
(
χn(x, r) ∧ r < n

)
is a logical consequence of PA, where χn(x, y) is the formula on page 272

∃z
(
x+ z + · · ·+ z︸ ︷︷ ︸

n

≖ y ∨ y + z + · · ·+ z︸ ︷︷ ︸
n

≖ x
)
.

Proof. Work in some model (M,S, 0,+, ·) of PA. Fix a, b ∈ M with b > 0.
By monotonicity of multiplication a = S(0) · a ≤ b · a < b · S(a), so by the
minimum principle there is a least c such that a < b · c. Since c cannot
be 0, then c = S(q) for some q. By trichotomy either b · q = a or else
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b · q < a. If the former holds then set r = 0. If the latter holds then
b · q = b · q + 0 < a < b · S(q) = b · q + b so by the minimum principle there
is a least s such that b · d + e > a. Note that s ≤ b, and since s = 0 is
impossible, then s = S(r) for some r, hence b · q + r ≤ a. By trichotomy
again either b · q + r < a or else b · q + r = a: the former implies that
a ≥ S(b · q+ r) = b · q+S(r) = b · q+ s > a, a contradiction. We have proved
that a = b · q + r; we must show that q and r are unique. Suppose that
a = b ·q1+r1 = y ·q2+r2 with r1, r2 < b. If q1 < q2 then b ·q1 < y ·q2+r2 = a,
and since S(q1) ≤ q2 then a = b ·q1+r1 < b ·q1+b = b ·S(q1) ≤ b ·q2+r2 = a,
a contradiction. A similar contradiction follows from q2 < q1. Therefore
q1 = q2 = q. If r1 ̸= r2, say r1 < r2, then a = b · q + r1 < b · q + r2 = a, a
contradiction. Therefore r1 = r2 and hence

M ⊨ ∀x ∀y > 0 ∃!q ∃!r
[
x ≖ y · q + r ∧ q ≤ x ∧ r < y

]
If in the equation above we set y ≖ n, then since

x · n ≖ x+ · · ·+ x︸ ︷︷ ︸
n times

we have that M ⊨ ∀x∃!r
(
χn(x, r) ∧ r < n

)
. □

12.D.2. Non-standard models. If M = (M,SM , 0M ,+M , ·M , <M ) is a model
of PA then F : N → M , defined recursively by F (0) = 0M and F (n+ 1) =
SM (F (n)), is an embedding of the structure (N, S, 0,+, ·, <) into M. The
standard part of M is ranF = NM = {SM (n) | n ∈ N}, and it is an initial
segment of (M,<). If NM = M then F is an isomorphism, and M is said to
be standard; otherwise it is a non-standard model.

By Proposition 12.16 every model of PA is a model of Presburger’s
arithmetic, so if M = (M,SM , 0M ,+M , ·M , <M ) is a non-standard model of
PA, then M is of the form N⊎Q×Z where Q is a dense linear order without
endpoints, and the set NM has no least upper bound by Lemma 12.13.

Theorem 12.17. Every LPA-theory T such that (N, S, 0,+, ·, <) ⊨ T has a
non-standard model. In particular, there is a non-standard model of PA.

Proof. Let L be the language LPA augmented with a new constant symbol c,
and let ∆ be the theory T together with Σ = {S(n)(0) < c | n ∈ N}. If M ⊨ ∆,
then M must be non-standard, since cM is larger than any element of NM.
Therefore it is enough to show that ∆ is finitely satisfiable and then appeal
to compactness (Theorem 4.46). Fix ∆0 an arbitrary finite subtheory of ∆,
and let Σ0 be the part of Σ contained in ∆0. Every sentence in Σ0 is of the
form S(k)(0) < c for some k, and being Σ0 finite we can choose n ∈ N larger
all these ks. Then letting cM = n we have that M = (N, S, 0,+, ·, <, cM) is a
model of T and Σ0. This completes the proof. □
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Remark 12.18. The induction principle says that in order to prove ∀xφ(x)
it is enough to show φ(0) and ∀x (φ(x)⇒ φ(S(x))). A common narrative in
mathematics textbooks describes induction as a method to ascertain φ(n)
via some sort of domino effect, starting from φ(0) and eventually reaching
φ(n). But this description is misleading for two reasons. The first reason
is that it demotes induction from a significant new axiom to a mean for
avoiding lengthy verifications, the second is that there are consequences of
induction that cannot be proved by successive verifications starting from
zero. For example, S(x) ≖ S(0) + x follows from the axioms of PA, so if
(M,S, 0,+, ·, <) is a non-standard model of PA and a ∈M is non-standard,
then S(a) = S(0) + a, but no finite number of verifications yields this.

12.D.3. Which functions can be captured by PA? In order to proficiently de-
velop combinatorics and number theory inside PA, it is necessary to express in
LPA the sets and functions that are commonly used in these subjects. A func-
tion f : Nk → N is representable in PA if there is a formula φ(x1, . . . , xk, y)
such that for all n1, . . . , nk ∈ N

∀y
(
φ(n1, . . . , nk) ⇔ y ≖ f(n1, . . . , nk)

)
is a logical consequence of PA. (Observe that instead of φ(n1, . . . , nk) we
should have written φLn1/x1, . . . , nk/xkM to mean the sentence obtained from
φ by replacing the variables x1, . . . , xk with the numerals n1, . . . , nk.) The
notion of representability is a strengthening of the notion of definability: if
f : Nk → N is representable in PA, then its graph {(n1, . . . , nk,m) ∈ Nk+1 |
f(n1, . . . , nk) = m} is definable in (N,+, ·). In Section 24.D it is shown
that every computable function is representable in PA, a result that greatly
extend the definability results of Section 11.B. In particular there is a formula
Exp(x, y, z) such that the following are logical consequences of PA:

• ∀x, y∃!z Exp(x, y, z), i.e. Exp defines a function of two variables which we
write as xy;

• ∀xExp(x, 0, S(0));

• ∀x, y, z (Exp(x, S(y), z)⇒ ∃wExp(x, y, w) ∧ w · x ≖ z).

Therefore if LPA+ is the language obtained by adding a symbol for the
exponential to LPA, and if PA+ has axioms PA1–PA8 together with the
sentences ∀x(x0 ≖ 1) and ∀x, y(xS(y) ≖ xy · x) and the induction principle
for formulæ of LPA+ , then every statement σ of LPA which is provable in
PA+ is already provable in PA, and for every statement τ of LPA+ there is a
statement σ of LPA such that PA+ |= σ⇔ τ and PA+ |= τ iff PA |= σ.
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Exercises

Exercise 12.19. Show that:

(i) an inductive structure satisfies the sentence ∀x (x ̸≖ 0⇒ ∃y(S(y) ≖ x));
(ii) a Dedekind structure satisfies the sentences ∀x(S(n)(x) ̸≖ x). Thus a

Dedekind structure is a model of T(N,S,0) from Section 11.A.

Exercise 12.20. Show that T |= IndT , where T is one of the theories

T(N,S,0), T(N,<,S,0), T(N,+,<,S,0)

of Section 11.A and IndT is the axiom-schema Indφ where φ is a formula of
the language of T .

Exercise 12.21. Complete the details of the proof on the existence of the
morphism F : N →M in part (a) of Theorem 12.2.

Exercise 12.22. Suppose (N,SN , 0N ) is an LD-structure such that for all
LD-structures (M,SM , 0M ) there is a morphism F : N →M . Show that N
is a Dedekind structure, hence isomorphic to N.

Exercise 12.23. Complete the proof of Proposition 12.14 by checking
parts (e)–(i).

Exercise 12.24. Let (N,SN , 0N ) be an inductive structure. Show that:

(i) For each x ∈ N there is a unique morphism tx : (N,SN , 0N )→ (N,SN , x),
called the translation of order x.

(ii) The function a : N ×N → N defined by a(x, y) = tx(y) is the unique
function such that a(x, 0N ) = x and a(x, SN (y)) = SN (a(x, y)). The
operation a is called addition on N and is usually denoted by +N .

(iii) For each x ∈ N there is a unique map dx : N → N , called the dilation
of order x such that dx(0N ) = 0N and dx(SN (y)) = dx(y) +N x.

(iv) The function m : N ×N → N defined by m(x, y) = dx(y) is the unique
function such that m(x, 0N ) = 0N and m(x, SN (y)) = m(x, y) +N x.
The m is called multiplication on N and is usually denoted by ·N .

(v) If F : N → M is a morphism of inductive structures, then F is also a
morphism with respect to addition and multiplication, that is F (x+N

y) = F (x) +M F (y) and F (x ·N y) = F (x) ·N F (y).
(vi) Addition and multiplication on Zm,n are associative and commutative.

Exercise 12.25. Let N be an inductive structure. Show that:

(i) if N = N then there is a unique function E : N × N → N such that
E(x, 0N ) = SN (0N ) and E(x, SN (y)) = E(x, y) ·N x.
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(ii) if N = Zn,m there is no function E as above.

Exercise 12.26. If f : Nk+1 → N define
∑

f : Nk+1 → N and
∏

f : Nk+1 →
N by

∑
f(x1, . . . xk, 0) = 0∑

f(x1, . . . xk, n+ 1) = f(x1, . . . xk, n+ 1) +
∑

f(x1, . . . xk, n)

and 
∏

f(x1, . . . xk, 0) = 1∏
f(x1, . . . xk, n+ 1) = f(x1, . . . xk, n+ 1) ·

∏
f(x1, . . . xk, n).

Show that the existence of
∑

f and
∏

f follows from Theorem 12.3.

Exercise 12.27. The ordering in a non-standard model M of PA is M =
N ⊎ L× Z where L is a dense linear order without endpoints. Show L is not
complete; in particular is not isomorphic to R.

Exercise 12.28. Prove in PA+ the following:

• ∀x, y, z(xy+z ≖ xy · xz),
• ∀x, y, z(xy·z ≖ (xy)z),
• ∀x, y, z((x · y)z ≖ xz · yz),
• ∀x, y(x > 0 ∧ y > 1⇒ ∃z, w(x ≖ yz + w ∧ z < x ∧ w < xz)),

• ∀x, y(2S(x) | y ⇒ 2
x | y),

• ∀x∃!y, z
(
0 < x⇒ x ≖ 2

y
(2 · z + 1)

)
.

Exercise 12.29. Let ψ(x, y) be ∃z(S(z) ≖ y). Show that ∀x, y[ψ(x, S(y))⇔
ψ(x, y) ∨ x ≖ y] and ∀x¬ψ(x, 0) are logical consequence of PA−, and that
any model of PA− can be expanded is a unique way as a model of PA.

Exercise 12.30. Let a, b : N→ N be defined by a(0) = b(0) = 0 and

∀x > 0
(
x = 2a(x) · b(x) ∧ ¬(2 | b(x))

)
,

where | is the divisibility relation. Show that:

(i) the functions a and b are definable in (N,+, ·);
(ii) if M is a non-standard model of Th(N,+, ·, S, 0, <) then F : M →M

F (x) =

{
2 ·M x if a(x) is non-standard,

x otherwise

is an automorphism of (M, |M ), but F (x2) ̸= F (x)2 if a(x) is non-
standard.7

7Compare this to Exercise 11.46(ii).
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(iii) Conclude that multiplication is not definable in (N, |).

[Hint: for (i) use Example 11.28.]

Notes and remarks

This section is based on the paper [Hen60] by Henkin, where the proof of part (a) of Theorem 12.2
is credited to Lorenzen and, independently, to Hilbert and Bernays. (See also [Jac85, p. 16]
and [Fef64].) The first axiomatization of arithmetic based on the successor operation is due to
Dedekind, while that based on the operations of sum and product is due to Peano.





Chapter IV

Sets, choice, and
compactness

13. Ordinals and cardinals

13.A. Well-orders and ordinals. If (P,≤P ) and (Q,≤Q) are disjoint
ordered sets, define the ordering ⪯ on P ∪Q, called the sum-ordering of P
and Q, by placing the elements of P before those of Q, that is x ⪯ y if and
only if

(x ∈ P ∧ y ∈ Q) ∨ (x, y ∈ P ∧ x ≤P y) ∨ (x, y ∈ Q ∧ x ≤Q y).

If (P ′,≤P ′) ∼= (P,≤P ), (Q′,≤Q′) ∼= (Q,≤Q) and P ′ ∩Q′ = ∅, then the sum-
ordering on P ′ ∪Q′ is isomorphic to the sum-ordering on P ∪Q. Therefore
we can define the sum of two (not necessarily disjoint) orders

(P,≤P ) + (Q,≤Q),

as the sum-ordering on the disjoint union of P and Q. In other words: the
sum of orders is defined up to isomorphism. It is easy to check that he sum
of orders is associative, that is

(13.1) (P +Q) +R ∼= P + (Q+R).

We can define several orderings on P ×Q. If we take the product of the
structures (P,≤P ), (Q,≤Q) we obtain the product ordering defined by

(p1, q1)� (p2, q2) ⇔ (p1 ≤P p2 ∧ q1 ≤Q q2).

The lexicographic order ≤lex on P ×Q is defined by

(p1, q1) ≤lex (p2, q2) ⇔ p1 <P p2 ∨ (p1 = p2 ∧ q1 ≤Q q2),

305
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while the antilexicographic order ≤a-lex is

(p1, q1) ≤a-lex (p2, q2) ⇔ q1 <Q q2 ∨ (q1 = q2 ∧ p1 ≤P p2).

If P and Q are linear orders, then ≤lex and ≤a-lex are linear, while the
product order is never linear, unless one of P and Q is a singleton or empty.
For technical reasons that will be clear shortly, P ×Q is endowed with the
antilexicographic order. It is easy to check that multiplication of orders is
associative, that is

(13.2) (P ×Q)×R ∼= P × (Q×R).

If P and Q are finite linear orders of size n and m, then P +Q and Q+P
are linear orders of size n+m, and by Proposition 7.5 they are isomorphic.
The assumption that P and Q are finite is crucial: if P is the ordering with
exactly one element and Q = N is
then P +Q is isomorphic to Q

P +Q

N

On the other hand, Q+ P has a maximum element,

and hence it is not isomorphic to N ∼= P + Q. Note that this ordering
is isomorphic to the set of reals { n

n+1 | n ∈ N} ∪ {1}. The linear order
Z− = {k ∈ Z | k < 0} can be drawn as

thus Z− + N ∼= Z. Instead N + Z− is the linear order with maximum and
minimum isomorphic to the set of reals {−1 + n

n+1 | n ∈ N} ∪ {1− n
n+1 |

n ∈ N} and its diagram is

The order N+ N can be drawn as

and it is not isomorphic to either Z− + N or N+ Z−, but it is isomorphic to
the set of reals

{ n
n+1 | n ∈ N} ∪ {2n+1

n+1 | n ∈ N}
and to the set N × 2 where 2 is the linear order with two elements .
On the other hand, 2× N is isomorphic to N
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Thus P ×Q ≇ Q×P . Clearly, if P and Q are finite linear orders of size n and
m respectively, then P ×Q and Q× P are linear orders with nm elements,
and by Proposition 7.5 they are isomorphic.

A linear order (P,≤) is a well-order if every ∅ ≠ X ⊆ P has a minimum.
Every finite linear order is a well-order, N is a well-order, and every subset of
a well-order is a well-order with the induced relation. Conversely Z, Q, and
R are not well-orders.

Remark 13.1. Because of the quantification over arbitrary subsets, the
definition of well-order is not first-order. In Section 32 we will show that
there is no sentence σ in a first-order language L with a binary relation
symbol ≤ such that the models of σ are exactly the well-ordered sets.

Proposition 13.2. If (P,≤) is a well-ordered set and Q ⊆ P is an initial
segment, then either Q = P or else Q = pred(a,A;<) for some a ∈ P .

Proof. If Q ̸= P , then Q = pred(a,A;<) where a = min(P \Q). □

Well-orders are much more rigid than linear orders.

Proposition 13.3. If (P,≤) is a well-ordered set and f : P → P is increasing,
then ∀x ∈ P (x ≤ f(x)).

Proof. Towards a contradiction, suppose that {x ∈ P | f(x) < x} ≠ ∅ and
let a be its minimum. Since f is increasing f(f(a)) < f(a), yet f(a) < a and
the minimality of a imply that f(f(a)) ≥ f(a): a contradiction. □

Proposition 13.4. If (P,≤) is a well-ordered set and f : P → P is an
increasing bijection, then ∀x ∈ P (f(x) = x).

Proof. The functions f and f−1 are both increasing, and therefore x ≤ f(x)
and x ≤ f−1(x) by Proposition 13.3, thus x = f(x). □

Corollary 13.5. If (P,≤) and (Q,�) are isomorphic well-orders, the iso-
morphism f : P → Q is unique.

Corollary 13.6. If (P,≤) is a well-order and Q ⊂ P is an initial segment,
then P and Q are not isomorphic.

Proof. By Proposition 13.2 Q = {x ∈ P | x < a} for some a ∈ P . If f : P →
Q is an isomorphism, then f : P → P is increasing and f(a) < a, contradicting
Proposition 13.3. □

If P and Q are well-orders, let

Q ⊑ P ⇔ Q ∼= P ∨ ∃a ∈ P (Q ∼= pred a)
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that is, to say: Q ⊑ P if and only if Q is isomorphic to an initial segment
of P . By Corollary 13.6 the two conditions of the disjunction are mutually
exclusive, hence

(13.3) P ⊑ Q ∧Q ⊑ P ⇒ P ∼= Q.

If Q ⊑ P but Q ≇ P , then we write Q < P .

Theorem 13.7. If (P,<P ) and (Q,<Q) are well-ordered sets, then exactly
one of the following holds:

P < Q, Q < P, P ∼= Q.

Proof. By Corollary 13.6 the three conditions are mutually exclusive, so it
is enough to show that at least one must hold. Let

f = {(p, q) ∈ P ×Q | (pred p,<P ) ∼= (pred q,<Q)} .
If (p, q1), (p, q2) ∈ f , then (pred q1, <Q) ∼= (pred p,<P ) ∼= (pred q2, <Q) and
hence q1 = q2. Similarly, if (p1, q), (p2, q) ∈ f , then p1 = p2. Thus f is
an injective function. If p ∈ dom(f) and g is the isomorphism witnessing
(pred p,<P ) ∼= (pred f(p), <Q), and if p′ < p, then p′ ∈ dom(g) and hence
(pred p′, <P ) ∼= (pred g(p′), <Q) (Exercise 7.68). In other words: dom(f) is
an initial segment of P in the ordering <P . Similarly, ran(f) is an initial
segment of Q in the ordering <Q. If p1, p2 ∈ dom f with p2 < p1 and g is the
isomorphism between (pred p1, <P ) and (pred f(p1), <Q), then g ↾ pred p2 is
an isomorphism between (pred p2, <P ) and (pred g(p2), <Q) by Exercise 7.68,
hence f(p2) = g(p2) <Q f(p1). From this it follows that f is an isomorphism
between an initial segment of (P,<P ) and an initial segment of (Q,<Q). The
theorem will be proved if we show that

dom(f) = P ∨ ran(f) = Q.

Towards a contradiction, suppose this is not true and let p̄ = min(P \ dom f)
and q̄ = min(Q \ ran f). From what we said f : (pred p̄, <P )→ (pred q̄, <Q),
hence (p̄, q̄) ∈ f , by definition of f , a contradiction. □

Note that this “comparability” theorem among well-orders does not gen-
eralize to linear orders. For example, if ⪯ is the converse of ≤, the usual
ordering on the natural numbers, then the two linear orders (N,≤) and (N,⪯)
are not isomorphic, and neither is isomorphic to an initial segment of the
other—in fact neither of them embeds into the other.

An ordinal is a well-ordered set, up to isomorphism; for example the
natural numbers 1, 2, 3, . . . can be identified with

. . . . . .

while 0 is identified with the empty diagram. The ordinal associated with
the well-ordered set P is the order type of P . The order type of N (or of
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any infinite subset of the natural numbers) is denoted by ω. The ordinals are
denoted by lower case Greek letters α, β, γ, . . . . Certain non-zero ordinals
(for example ω) do not have a maximum, and are called limit ordinals; the
non-zero ordinals that are not limit are called successor ordinals.

The operations of addition and multiplication of ordinals are defined by
means of the operations + and × on the ordered sets, that is A and B are
well-orders of order type α and β, then define

α+ β = the order type of A+B

α · β = the order type of A×B

α ≤ β ⇔ A ⊑ B.

Theorem 13.7 and (13.3) imply that ≤ is a linear order on the ordinals.

Proposition 13.8. The relation ≤ on the ordinals is a well-order.

Proof. Given a non-empty set of ordinals X, let (P,≤P ) be a well-order
whose order type α is in X and let Q be the intersection of all initial segments
of P whose order type is in X; clearly Q is an initial segment of P and
if its order type β belongs to X, then β is the minimum of X. Thus it is
enough to check that β ∈ X. When Q = P then α = β and the result follows
at once, thus we may assume that Q ̸= P and thus, by Proposition 13.2,
Q = {x ∈ P | x <P a} for some a ∈ P . Since a /∈ Q and by definition of Q,
there must be Q′ = {x ∈ P | x <P a′} an initial segment of P whose order
type β′ is in X and such that a /∈ Q′. But this means that a ≮P a′, that is
a′ ≤P a. By minimality of Q, it follows that a′ = a, that is Q′ = Q, whence
β = β′ and therefore β ∈ X as required. □

By (13.1) and (13.2) it follows that the operations of addition and multi-
plication of ordinals are associative. In Section 19.D other properties of the
ordering, and of addition and multiplication of ordinals will be proved—for
example the right distributive property of multiplication with respect to
addition holds, that is

α · (β + γ) = α · β + α · γ

while the analogous version on the left does not hold. Addition and multipli-
cation are increasing functions in the second variable,

β < β′ ⇒ α+ β < α+ β′ 0 < α ∧ β < β′ ⇒ α · β < α · β′

and are monotone in the first variable,

α < α′ ⇒ α+ β ≤ α′ + β α < α′ ⇒ α · β ≤ α′ · β.
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As with ordinary addition and multiplication of natural numbers, if α, β are
order types of well-orders with at least two elements, then

α+ β ≤ α · β.

Moreover, the division-with-remainder formula holds:

α < β ⇒ ∃!γ < β ∃!δ < α (α · γ + δ = β).

Addition and multiplication on the ordinals can be defined recursively by:

α+ β =


α

(α+ γ) + 1

supγ<β(α+ γ)

α · β =


0 if β = 0,

(α · γ) + α if β = γ + 1,

supγ<β(α · γ) if β is limit.

This suggests the following definition of exponentiation of ordinals:

αβ =


1 if β = 0,

(αγ) · α if β = γ + 1,

supγ<β α
γ if β is limit.

(Table 2 in Section 19 collects the main properties of these operations.) By
Exercise 13.73 it is possible to construct countable, closed subsets of R whose
order type is

ω, ωω, ωωω
, . . . .

The following example exhibits a specific closed subset of R of order type
ωω—this example requires advanced notions in geometry and will not be
used later, so the reader can safely skip it.

Example 13.9. An n-dimensional hyperbolic manifold is an n-dimensional
connected manifold endowed with a complete a Riemannian metric such that
every point has a neighborhood isometric to an open set of Hn, where

Hn = {x = (x1, . . . , xn) ∈ Rn | xn ≥ 0}

is the hyperbolic plane with the complete Riemannian metric ds = dx
xn

of
sectional curvature −1. To each such M it is possible to assign a positive
real number vol(M) called volume, and

{vol(M) | M is a 3-dimensional hyperbolic manifold}

is a closed, well-orderable subset of R of order type ωω.

13.B. Induction, recursion, and well-orders*.
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13.B.1. Induction and well-orders. Recall from Section 12.C that the second
order induction principle Ind2 is equivalent to the minimum principle

(MP2) ∀I [I ̸= ∅ ⇒ ∃x (x ∈ I ∧ ∀y (y < x⇒ y /∈ I))] .

The minimum principle holds for any well-ordering, not just < on N, and
the proofs in Section 12.D can be recast as using the minimum principle on
some appropriate well-order. For example the proof of Proposition 12.14(d) of
commutativity of addition can be seen as a proof using the minimum principle
on the well-order <lex on N2 which has length ω · ω. Suppose, towards a
contradiction, that

I =
{
(n,m) ∈ N2 | n+m ̸= m+ n

}
is non-empty, so that by the minimum principle it has a <lex-least element
(n∗,m∗). By part (c) of Proposition 12.14 n∗ ≠ 0 and m∗ ̸= 0, so n∗ = n̄+ 1
and m∗ = m̄ + 1 for some n̄, m̄. By minimality of (n∗,m∗) one has that
n∗+m∗ ̸= m∗+n∗, ∀k(n̄+ k = k+ n̄) and n∗+ m̄ = m̄+n∗, and from these
a contradiction is easily reached.
13.B.2. Recursion and well-orders. If f is recursively defined by{

f(0) = a

f(n+ 1) = F (n, f(n))

then the computation of a specific value f(n̄) depends on n̄ many values
computed before: f(0), f(1), . . . , f(n̄− 1). In other words

(13.4) f(n) = F̃ (f ↾ predn)

where F̃ is a suitable functions whose domain is the collection of partial
functions from N to N. If the ordering < on N is replaced by some well-order
� on a set X, equation (13.4) is a template for the inductive definitions
on an arbitrary set. For example, in order to compute a specific value of
Ackermann’s function Ack(m,n) in Section 8.D, it is enough to determine
the values of Ack(m′, n′) when (m′, n′) <lex (m,n) hence Ack can be defined
as

Ack(m,n) = F̃ (Ack ↾ pred((m,n), <lex))

where F̃ is defined as follows: if f is a map defined on pred((m,n), <lex),

F̃ (f) =


n+ 1 if m = 0,

f(m− 1, 1) if m > 0 e n = 0,

f(m− 1, f(m,n− 1)) if m > 0 e n > 0.

The template (13.4) can be extended partial orders in which every non-empty
subset has a least element.1

1Such orders are dubbed well-founded and will be studied in Chapter V.
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Example 13.10. Consider M : N→ N defined by

M(n) =

{
n− 10 if n > 100,

M(M(n+ 11)) if n ≤ 100.

At first glance is not even clear if such function is well-defined for n ≤ 100.
First of all note that M(101) = 91. If 91 ≤ n ≤ 100, then M(n) =
M(M(n+ 11)) = M(n+ 1) hence

M(91) = M(92) = · · · = M(100) = M(101) = 91.

If 80 ≤ n ≤ 90, then 91 ≤ n + 11 ≤ 101 hence M(n) = M(M(n + 11)) =
M(91) = 91. Repeating the argument above it is easy to check that

M(n) =

{
n− 10 if n > 100,

91 if n ≤ 100.

Moreover M(n) = F̃ (M ↾ pred(n,≺)) if n ≤ 100, where ≺ is the ordering on
{0, . . . , 101} defined by

n ≺ m ⇔ [m < n ∧ n ≡ m mod 11] ∨ [91 ≤ n,m ≤ 101 ∧m < n].

13.C. Cardinality. Two sets X and Y are equipotent, in symbols

X ≍ Y,

if there is a bijection between them. The relation ≍ is an equivalence relation;
we say that two equipotent sets X and Y have the same cardinality and
write

|X| = |Y |.
The cardinality of the set of all natural numbers is

|N| = ℵ0,

where ℵ is aleph, the first letter of the Hebrew alphabet. A set X injects
into Y , in symbols

X ≾ Y

if there is an injective function f : X → Y ; in this case we will write

|X| ≤ |Y |.

The symbol ≤ suggests that we are dealing with an ordering: the reflexive
and transitive properties are immediate, while the anti-symmetric property
is ensured by the following result.

Theorem 13.11 (Cantor-Schröder-Bernstein). If X ≾ Y and Y ≾ X then
X ≍ Y .



13. Ordinals and cardinals 313

Proof. Fix two injective functions f : X → Y and g : Y → X. The ordered
set (P(X),⊆) together with the function Φ: P(X)→P(X)

Φ(Z) = X \ g[Y \ f [Z]]

satisfy Theorem 7.11’s hypotheses, hence there is Z ⊆ X such that Φ(Z) = Z,
i.e. X \Z = g[Y \ f [Z]]. Since g−1 is a bijection between X \Z and Y \ f [Z],
the map h : X → Y

h(x) =

{
f(x) if x ∈ Z

g−1(x) if x ∈ X \ Z
is a bijection. □

A set is in bijection with a proper subset of itself if and only if it contains
a copy of the natural numbers.

Proposition 13.12. N ≾ X ⇔ ∃Y ⊂ X (Y ≍ X).

Proof. Suppose f : N ↣ X and let Y = X \ {f(0)}. Then g : X → Y

g(x) =

{
x if x ∈ X \ ran f

f(n+ 1) if ∃n ∈ N (f(n) = x).

is a bijection.
Conversely, fix g : X → Y ⊂ X is a bijection, and let x0 ∈ X \ ran g: then

inductively define xn+1 = g(xn). A simple induction shows that the xns are
distinct, hence N ≾ X. □

If X ̸= ∅ and X ≾ Y then there is a surjection Y ↠ X: if f : X ↣ Y
and x0 ∈ X, then the map g : Y → X

g(y) =

{
x if f(x) = y,

x0 if y ̸= f(x) for all x ∈ X

is surjective and g ◦ f = idX . To prove the converse we need a further
assumption on Y .

Proposition 13.13. If g : Y → X is surjective and � is a well-order on Y ,
then there is an injection f : X → Y such that g ◦ f = idX .

In particular, if N surjects onto X then X ≾ N.

Proof. Let f(x) be the �-least y ∈ Y such that g(y) = x. □

The symbol 2 will be used to denote the cardinality of a set with two
elements, for example2 the set {0, 1}. Therefore 2 ≤ |X| stands for “X has

2As explained in Chapter V, in set theory the natural number 0 is construed as the empty set
∅ and the natural number n+ 1 is construed as the set {0, 1, . . . , n}.
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at least two elements”. The cardinality of N is denoted with the symbol ℵ0.
If X ≾ Z and Y ≾ W , then X × Y ≾ Z ×W , and if X ∩ Y = Z ∩W = ∅,
then X ∪ Y ≾ Z ∪W . Therefore we can define the sum and product of
cardinalities as

|X|+ |Y | = |X ⊎ Y | |X| · |Y | = |X × Y |.

If X and Y are disjoint set, each containing at least two elements, x0, x1 ∈ X
and y0, y1 ∈ Y , let f : X ∪ Y → X × Y be given by f(x) = (x, y0) if x ∈ X,
and for y ∈ Y

f(y) =

{
(x0, y) if y ̸= y0,

(x1, y1) if y = y0.
The function f is injective, so

(13.5) 2 ≤ |X|, |Y | ⇒ |X|+ |Y | ≤ |X × Y |.

In Section 11.B it is shown that N and N× N are equipotent, and hence:

Theorem 13.14. N× N ≍ N hence ℵ0 + ℵ0 = ℵ0 · ℵ0 = ℵ0.

13.C.1. Countable sets. In this Section we prove some facts about countable
sets that are usually taken for granted.

By definition, a set X is finite if and only if it is in bijection with
{0, . . . , n− 1}, for some n ∈ N where {0, . . . , n− 1} = ∅ when n = 0. In this
case we write |X| = n. This notation is justified by the fact that a finite
set is in bijection with a unique n ∈ N. This follows from part (a) of the
following result, known as the pigeonhole principle or Dirichlet’s principle:
if we place n pigeons inside m boxes and m < n, then one of the boxes will
contain at least two pigeons.

Theorem 13.15. For any n,m ∈ N:

(a) If {0, . . . , n− 1} ≾ {0, . . . ,m− 1}, then n ≤ m. In particular: if
{0, . . . , n− 1} ≍ {0, . . . ,m− 1}, then n = m.

(b) N is infinite, so N ̸≾ {0, . . . , n− 1}.

Proof. (a) By induction on n ∈ N. If n = 0 the result is trivial, so we may
assume that n = n′ + 1 and f : {0, . . . , n′} ↣ {0, . . . ,m′}. Clearly m > 0,
that is m = m′ + 1. Let g : {0, . . . ,m′} → {0, . . . ,m′} be the bijection that
exchanges f(n′) with m′ leaving everything else unchanged. Then

(g ◦ f) ↾
{
0, . . . , n′ − 1

}
:
{
0, . . . , n′ − 1

}
↣
{
0, . . . ,m′ − 1

}
hence, by inductive assumption, n′ ≤ m′, whence n = n′ + 1 ≤ m′ + 1 = m.

(b) If N ≾ {0, . . . , n− 1} for some n ∈ N, then since {0, . . . , n} ⊆ N it
would follow that {0, . . . , n} ≾ {0, . . . , n− 1} contradicting part (a). □
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Definition 13.16. A set is countable if it is finite, or else if it is in bijection
with N.

Remark 13.17. If f : n→ X is a bijection and n > 0, then we can list the
elements of X using f , that is X = {x0, . . . , xn−1}, where xi = f(i). When
in a mathematical text we read: “Consider a finite set X = {x0, . . . , xn−1}
. . . ” it is meant that we fix a bijection between {0, . . . , n− 1} and the set X.

Proposition 13.18. Suppose Y ≾ X.

(a) If X is finite then Y is finite and |Y | ≤ |X|.
(b) If X is countable then Y is countable and |Y | ≤ |X|.

Proof. (a) It is enough to show that if ∅ ̸= Y ⊆ {0, . . . , n− 1} then Y is
in bijection with {0, . . . ,m− 1} for some m ∈ N. Let b /∈ Y and define
f : N → Y ∪ {b} by first listing in increasing all elements of Y , and then
hitting the value b forever, that is: f(0) = minY and

f(k + 1) =

{
min(Y \ {0, . . . , f(k)}) if Y \ {0, . . . , f(k)} ≠ ∅

b otherwise.

(This recursive definition is justified by Corollary 12.5 by taking F : N →
Y ∪ {b} to be F (k) = min(Y \ {0, . . . , k}), if the set is non-empty, and
F (k) = b otherwise.) It is easy to check by induction that ∀j

(
f(j) ∈ Y ⇒

∀k < j (f(k) ̸= f(j))
)
, so if B

def
= {k ∈ N | f(k) = b} were empty, then

N ≾ Y against Theorem 13.15. So B ≠ ∅ and let m = minB. Then
f : {0, . . . ,m− 1} → Y is a bijection.

(b) By part (a) we may assume that Y ⊆ X = N. If Y is finite,
then it is countable and |Y | < |X| = ℵ0, so we may assume that Y is
infinite. By recursion define f : N → Y by f(0) = minY , and f(n) =
min(Y \ {f(0), . . . , f(n− 1)}) for n > 0. Then f is increasing, and hence
injective, and by construction it is surjective. Therefore |Y | = |X| = ℵ0. □

Proposition 13.19. A set is countable if and only if either it is empty or
else it is the surjective image of N.

Proof. If X is the surjective image of N, then X ≾ N by Proposition 13.13,
and hence X is countable by Proposition 13.18. The other direction is
immediate. □

Proposition 13.20. If the sets X,Y are finite, then so are

X ∪ Y, X × Y, XY ≍ X |Y | = X × · · · ×X︸ ︷︷ ︸
|Y | times

.
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Proof. If Y = {y1, . . . , ym} then XY → Xm, s 7→ (s(y1), . . . , s(ym)) is a
bijection. If we show that X × Y is finite for any choice of finite sets X and
Y , this would yield that X ×X = X2 is finite, and hence, by induction, that
Xm is finite. So suppose that n = |X| and m = |Y |. Note that

{0, . . . , n− 1} × {0, . . . ,m− 1} ⊆ {0, . . . , k − 1} × {0, . . . , k − 1}

where k = max(n,m). If F : N × N → N is any of the bijections seen in
Section 11.B, such as J or the square enumeration, then for any k there is l
such that F [{0, . . . , k − 1}2] ⊆ {0, . . . , l − 1}. Therefore X × Y injects into
some {0, . . . , l − 1} and hence it is finite.

Finally, let us show that X ∪ Y is finite. Since X ∪ Y = X ∪ (Y \X) we
may assume that X and Y are disjoint. The result is immediate if one of the
two sets is empty or it is a singleton, so we may assume that |X|, |Y | ≥ 2.
By what was argued on page 314 X ∪ Y ≾ X × Y , hence X ∪ Y is finite, as
it is in bijection with a subset of X × Y . □

Therefore by Theorem 13.14 and Propositions 13.18 and 13.20 we have:

Theorem 13.21. If X,Y are countable, then so are X ∪ Y and X × Y .
Moreover, if Y is finite, then XY is countable.

13.C.2. What exactly is an ordinal number? Although Cantor’s original def-
inition of an ordinal number as the equivalence class of well-ordered sets
under the isomorphism relation has an intuitive appeal, it has two drawbacks.
The first is problem has a foundational flavour. These equivalence classes are
very large: for example the ordinal 1 would be the collection of all single-
tons, and in particular {1}, being a singleton, should belong to 1—a rather
curious situation. The second, and more practical issue is that working with
equivalence classes means that in proofs we must choose representatives, and
check the results do not depend on these choices. A better approach is to
define canonical sets that are well-ordered, and show that any well-order is
isomorphic to one of those.

We define the ordinals 0, 1, 2, . . . , n, . . . to be the sets: ∅, {0} = {∅},
{0, 1} = {∅, {∅}}, . . . , {0, 1, . . . , n− 1}, . . . . Then ω can be defined as
N = {0, 1, . . .} the set of all natural numbers. Moving to larger ordinals
we have ω + 1 is {0, 1, . . . , ω} and ω + 2 is {0, 1, . . . , ω, ω + 1}, and so on.
More generally α+ 1 = α ∪ {α}. The formal definition of an ordinal number
α is that of a set such that the membership relation is transitive, that is
y ∈ x ∈ α ⇒ y ∈ α, and such that ∈ well-orders α. Thus β < α means
β ∈ α.

It can be shown that any well-ordered set is isomorphic to one and only
one α, so this sleeker construction of ordinals (due to von Neumann) is
completely equivalent to Cantor’s original definition. The only drawback is
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that it requires some preliminary groundwork. We will explore this approach
in Section 18.

The order type of a countable well-order is a countable ordinal. If α
is countable then every β < α is countable as well. Every natural number
and ω are countable ordinals, and it can be shown (Section 19) that the
countable ordinals are closed under the operations of addition, multiplication,
and exponentiation. In particular, ω+ω = ω · 2, ω ·ω = ω2, ωω, ωωω , . . . are
all countable ordinals. In Section 18.B we will show that not every ordinal is
countable—the least uncountable ordinal is called ω1.
13.C.3. Finite sequences. If X is a non-empty set, let

X<N = {(x0, . . . , xk−1) | k ∈ N ∧ ∀i < k (xi ∈ X)}

be the set of all finite sequences of elements from X, with the proviso that
when k = 0 we take the empty sequence ∅, and let [X]<N be the set of all
finite subsets of X. Note that [N]<N is the ideal Fin of all finite subsets of
the naturals. The function f : X<N → [X]<N, s 7→ ran(s) is surjective, and
whenever < is a linear order on X the function

g : [X]<N → X<N, {x0 < · · · < xn} 7→ (x0, . . . , xn)

is injective and such that f ◦g is the identity on [X]<N. Moreover X ≾ [X]<N

via x 7→ {x}. If X is finite then [X]<N = P(X) is also finite (Corollary 13.23)
while X<N is infinite since N ≾ X<N via the map

N ↣ X<N, n 7→ (x̄, . . . , x̄︸ ︷︷ ︸
n times

)

with x̄ some fixed element of X.
Next we argue that N<N ≾ N, and since N ≾ [N]<N ≾ N<N these sets are

equipotent. Examples of injective maps N<N ↣ N are:

• (n0, . . . , nk) 7→ ⟨⟨n0, . . . , nk⟩⟩ ∈ Seq ⊆ N from Section 11.B,
• (n0, . . . , nk) 7→ p(0)n0+1 · · ·p(k)nk+1 where p(i) is the ith prime number

(see Section 8.A.2). change!

Any bijection between X → N induces bijections X<N → N<N and
[X]<N → [N]<N, so

(13.6) |X| = ℵ0 ⇒ |X<N| = |[X]<N| = ℵ0.

13.D. Power set. The set P(X) is in bijection with {0, 1}X , the set of all
functions from X to {0, 1}, via the correspondence sending a subset of X to
its characteristic function

P(X)→ {0, 1}X , Y 7→ χX
Y .

Theorem 13.22 (Cantor). There is no surjection from X onto P(X) and
therefore P(X) ̸≾ X.
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Proof. Towards a contradiction, let f : X ↠ P(X) be a surjection and let

Y = {x ∈ X | x /∈ f(x)}.

Fix x̄ ∈ X such that f(x̄) = Y . Then x̄ ∈ Y ⇔ x̄ /∈ f(x̄) = Y : a
contradiction. □

In particular, P(N) ≍ {0, 1}N is uncountable.

Corollary 13.23. If Y is finite, then P(Y ) is finite.

Proof. By Proposition 13.20 when X = {0, 1} we have that P(Y ) ≍ XY is
finite. □

The proof of the next result is left to the reader.

Lemma 13.24. (a) X ≾ Y ⇒ P(X) ≾ P(Y );

(b) X ≾ Y ∧ Z ≾ W ⇒ XZ ≾ Y W ;

(c) X(Y ⊎Z) ≍ XY ×XZ ;

(d) (X × Y )Z ≍ XZ × Y Z ;

(e) (XY )Z ≍ XY×Z .

The exponentiation of two cardinalities is

|X||Y | = |XY |

and by Lemma 13.24 the usual algebraic properties hold:

|X|(|Y |+|Z|) = |X||Y | · |X||Z| and
(
|X||Y |)|Z|

= |X||Y |·|Z|.

Proposition 13.25. Suppose {0, 1} ≾ Y ≾ X and that X ×X ≍ X. Then
{0, 1}X ≍ Y X ≍ XX .

In particular, by Theorem 13.14, we have that {0, 1}N ≍ NN.

Proof. Since {0, 1}X ≾ Y X ≾ XX and since {0, 1}X ≍P(X) ≍P(X×X),
it is enough to prove that XX ≾ P(X ×X). But this is immediate since
any f : X → X is just a subset of X ×X. □

13.E. Sets of numbers. In Section 12.A we saw that N can be characterized,
up to isomorphism, by Dedekind’s axioms (Theorem 12.2(c)) and that the
addition and multiplication operations are well-defined on N. We will now
see how to construct other numerical sets, starting from (N,+, ·).
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13.E.1. The integers. The set of integers Z is defined as (N× N)/EZ where
EZ is the equivalence relation defined by

(n,m) EZ (h, k) ⇔ n+ k = h+m.

The ordering <Z and the addition and multiplication operations +Z and ·Z
are defined on Z by

[(n,m)]EZ
<Z [(n′,m′)]EZ

⇔ n+m′ < n′ +m.

[(n,m)]EZ
+Z [(h, k)]EZ

= [(n+ h,m+ k)]EZ
,

[(n,m)]EZ
·Z [(h, k)]EZ

= [(n · h+m · k, n · k +m · h)]EZ
.

The map N → Z, n 7→ [(n, 0)]EZ
, is an injective morphism with respect to

the ordering and the addition and multiplication operations, hence for all
intended purposes N can be identified with a subset of Z, and we can forget
the superscript in the order relation Z, and in the definition of sum and
product. Integers of the form [(n, 0)]EZ

are denoted by n and those of the
form [(0, n)]EZ

are denoted by −n. Clearly every z ∈ Z is either of the form
n or −n, for n ∈ N, hence the function f : N→ Z

f(n) =

{
m if n = 2m,

−m if n = 2m− 1,

is a bijection.
13.E.2. The rationals. The set Q is defined as (Z× (Z \ {0}))/EQ where EQ
is the equivalence relation

(x, y) EQ (z, w)⇔ x · w = y · z.

The ordering and the addition and multiplication operations on Q are defined
as

[(x, y)]EQ
<Q [(z, w)]EQ

⇔ x · w < y · z,

[(x, y)]EQ
+Q [(z, w)]EQ

= [(x · w + z · y, y · w)]EQ

[(x, y)]EQ
·Q [(z, w)]EQ

= [(x · z, y · w)]EQ

The map Z → Q, z 7→ [(z, 1)]EQ
, is an increasing, injective ring homomor-

phism, so Z is identified with a subset of Q. As before, the superscript Q

will be dropped from the symbols of the ordering, addition, and multipli-
cation. The rationals of the form [(z, w)]EQ

are denoted by z/w and every
rational number can be written as z/w with z and w coprime, and w > 0.
Therefore Q is in bijection with a subset of Z × Z which in turns is in bi-
jection with N × N. Theorem 13.14 implies that Q is in bijection with a
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Figure 18. A tree of fractions

subset of N and since N ≾ Z ≾ Q, the sets N and Q are in bijection, by the
Cantor-Schröder-Bernstein Theorem 13.11. Therefore

|Z| = |Q| = ℵ0.

It is possible to exhibit an explicit bijection between N and Q+. Consider
infinite the binary tree formed by fractions of the form i

j subject to the
following two rules: at the top of the tree there is the fraction 1

1 , and below a
fraction i

j we have two fractions i
i+j and i+j

j (see Figure 18). Let q : N→ Q+

be the function enumerating the tree of fractions, from left to right and from
top to bottom. Thus the first few values of q are: 1

1 ,
1
2 ,

2
1 ,

1
3 ,

3
2 , . . .. One checks

that:

• for each i
j the integers i and j are coprime;

• every q ∈ Q+ appears at least once in the tree;
• every q ∈ Q+ appears at most once in the tree.

The structure (Q, <) can be characterized up to isomorphism, as the
unique countable, dense, linear order without endpoints (Theorem 13.32
below). For example Q, Q ∪ {π}, Q ∩ R are order isomorphic, yet it is not
easy to explicitly define such an isomorphism. (Here and below Q is the set
of all algebraic numbers.) Therefore by Theorem 4.37

Corollary 13.26. The theory of dense linear orders without endpoints is
complete.

Every linear order (L,≤) can be given the interval topology generated
by the open half-lines {x ∈ L | x < b} and {x ∈ L | a < x}, with a, b ∈ L.
For example the topology on R is the interval topology induced by the
usual ordering. An isomorphism of linear orders is a homeomorphism of
the corresponding topological spaces. The function x 7→ 1

b−x −
1

x−a is an
isomorphism between (a; b) and R, and if a and b are rationals, it is also an
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isomorphism between (a; b)∩Q and Q. By Theorem 13.32 (a; b) ∩Q ∼= Q even
if a or b are irrationals, and moreover ((0; 1) \ {r}) ∩Q ∼= Q. On the other
hand R and (0; 1) \ {r} are not isomorphic, since they are not homeomorphic
topological spaces: the former is connected while the latter isn’t. Therefore
Theorem 13.32 cannot be generalized to uncountable orders.

Let p : N → N be the function enumerating the prime numbers (Ex-
ample 8.6(G)). Every element of Q+ distinct from 1 can be written in a
unique way as p(i1)

n1 · p(i2)n2 · · ·p(ik)nk with 0 ≤ i1 < i2 < · · · < ik and
n1, n2, . . . , nk ∈ Z \ {0}. Then the function Q+ → Z[X] defined by
(13.7)
1 7→ 0 and p(i1)

n1 · p(i2)n2 · · ·p(ik)nk 7→ n1X
i1 + n2X

i2 + · · ·+ nkX
ik

is a bijection. (Actually, it is an isomorphism of groups (Q+, ·) ∼= (Z[X],+).)
Since Q+ ≍ N, it follows that

|Z[X]| = ℵ0.
Every (n0, n1, . . . , nk−1) ∈ N<N yields a unique polynomial n0 + n1X + · · ·+
nk−1X

k−1 ∈ N[X], and conversely. Since N[X] is in bijection with Z[X], this
gives a new proof of the countability of N<N.

Note that ⊕nZ, the direct sum of ω copies of Z, is isomorphic to Z[X]
hence it has size ℵ0, while

∏
n Z, the direct product of ω copies of Z, is in

bijection with NN hence it is uncountable.
13.E.3. The algebraic numbers. The set of algebraic numbers Q ⊆ C is the set
of all solutions of polynomials Z[X]. Every f ∈ Z[X] yields a finite (possibly
empty) set Z(f) of complex numbers that are solutions of f : the set Z(f)
can be explicitly enumerated as {z0, . . . , zm} by requiring that if i < j then
|zi| ≤ |zj | and if zi = reiθ and zj = reiη, then 0 ≤ θ < η < 2π. A surjection
F : N× Z[X]→ Q is defined by

F (n, f) =


zn if Z(f) = {z0, . . . , zm} and n ≤ m,

zm if Z(f) = {z0, . . . , zm} and m < n,

0 if Z(f) = ∅.

By Theorem 13.14 |N× Z[X]| = ℵ0, hence there is a surjection F̃ : N ↠ Q.
By Proposition 13.13 Q ≾ N and since N ⊆ Q it follows that

|Q| = ℵ0.

13.E.4. Real and complex numbers. The set of real numbers is the Dedekind-
completion of the ordered set Q, that is

R = {x ∈P(Q) | x is a Dedekind cut}.
In other words: x ∈ R if and only if x /∈ {∅,Q}, ∀q ∈ x ∀p ∈ Q(p < q ⇒
p ∈ x), and ∀q ∈ x∃p ∈ x(q < p). The ordering on R is just inclusion
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between Dedekind cuts, and hence R is a dense linear order without end
points. Addition on R is defined by x+R y = {p+ q | p ∈ x ∧ q ∈ y}. The
definition of multiplication x ·R y is more cumbersome—see Exercise 13.71.

Let L be a linear order. A set D ⊆ L is dense (in the sense of the interval
topology) if and only if ∀x, y ∈ L∃d ∈ D (x < y ⇒ x < d < y). If L contains
a dense countable set (i.e. L is separable with this topology) we will say that
it is separable.

Theorem 13.27. Up to isomorphism, (R,≤) is the unique Dedekind-complete
separable linear order without endpoints.

Proof. Let (X,�) be a Dedekind-complete separable linear order, without
endpoints, and let D a countable dense subset. Then (D,�) is a countable
linear order without endpoints, hence by Theorem 13.32 there is an order-
preserving bijection F : Q→ D. For each r ∈ R we can find p ∈ Q such that
r ≤ p, hence the set {F (q) | q ∈ Q ∧ q ≤ r} is bounded above by F (p). The
function F can be extended to R by letting

F (r) = sup{F (q) | q ∈ Q ∧ q ≤ r}

where the sup is computed according to �. Clearly r ≤ s⇒ F (r)�F (s) and if
r < s tale q1, q2 ∈ Q, with r < q1 < q2 < s: then F (r)�F (q1)�F (q2)�F (s).
Therefore F is increasing. We must check that F is surjective. If x ∈ X
choose d ∈ D so that x � d and let p ∈ Q be such that F (p) = d. The
set A = {r ∈ R | F (r)� x} is bounded above by p, hence we can compute
r̄ = supA according ≤. Let us check that F (r̄) = x. If F (r̄)� x, fix d′ ∈ D
with F (r̄)� d′ � x. Let p′ = F−1(d′): then p′ ∈ A hence p′ ≤ r̄, but on the
other hand F (r̄)� d′ implies that r̄ < p′: contradiction. Similarly, the case
x� F (r̄) yields a contradiction, and it is left to the reader. □

13.F. The real numbers and Cantor’s set. For every x ∈ {0, 1}N let

(13.8) Φ(x) =
∞∑
n=0

2x(n)

3n+1
.

The function Φ: {0, 1}N → [0; 1] is injective so P(N) ≾ R. Since
R ⊆P(Q) and P(Q) ≍P(N), it follows that R ≾ P(N). By the Cantor-
Schröder-Bernstein Theorem 13.11 and Proposition 13.25:

Proposition 13.28. R ≍P(N). In particular, R is uncountable.

13.F.1. Cantor’s set. The set ran(Φ), where Φ is as in (13.8), is a well-known
set in Analysis. In order to describe it, let us introduce a few definitions. Fix
a closed interval I = [a; b] ⊂ R and fix an r ∈ (0; 1). Remove from I the open
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K0 = [0; 1]

K1 = [0; 13 ] ∪ [23 ; 1]

K2 = [0; 19 ] ∪ [29 ;
1
3 ] ∪ [23 ;

7
9 ] ∪ [89 ; 1]

K3 = [0; 1
27 ] ∪ · · · ∪ [2627 ; 1]

...

Figure 19. The construction of Cantor’s set.

interval centered at the mid-point of I of length r(b − a). We obtain thus
two closed intervals

I0 =

[
a; a+

1 + 2r

2
(b− a)

]
I1 =

[
b− 1 + 2r

2
(b− a); b

](13.9)

In Figure 19 we see an example with r = 1/2: given a closed interval I ⊆ R

. . .
I

. . .

remove the central part of I of length 1/2 of the length of I so that I0 and
I1 are obtained:

. . .
I0 I1

. . .

Cantor’s ternary set defined as

(13.10) E1/3 =
⋂
n

Kn,

where K0 = [0; 1], and Kn+1 ⊂ Kn is the union of 2n+1 closed intervals of
length 3−n−1 obtained by applying construction (13.9) with r = 1/3 to each
of the 2n intervals that Kn is made of. More precisely we define (Kn)n by
K0 = {[0; 1]}, and Kn+1 = {J \ J̆ | J ∈ Kn}, where if J = [a; b] then

J̆ = (a+ b−a
3 ; b− b−a

3 ).

It is easy to check by induction that each Kn a collection of 2n pairwise
disjoint, closed intervals, each of length 3−n, and that Kn =

⋃
Kn. Letting

In = {J \ J̆ | J ∈ Kn}, then [0; 1] \Kn =
⋃

In and [0; 1] \E1/3 =
⋃

I, where
I =

⋃
n∈N In. Notice that the Ins are pairwise disjoint, and that I is the

collection of all connected components of the open set [0; 1] \ E1/3.
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Remark 13.29. The construction of E1/3 is justified by Corollary 12.4 as
follows. Let A be the family of all finite sets of pairwise disjoint closed
subintervals of [0; 1], let a = {[0; 1]} ∈ A, and let

F : A→ A, {J1, . . . , Jk} 7→ {J1 \ J̆1, . . . , Jk \ J̆k}.

Then we have f : N→ A such that f(n) = Kn.

It is not hard to check (Exercise 13.86) that ran(Φ) = E1/3 hence Φ is a
bijection between 2N and E1/3. But much more is true. If ≤ is a linear order
on A, then the lexicographic order on AN is defined by

x ≤lex y ⇔ x = y ∨ ∃n [x(n) < y(n) ∧ ∀i < n (x(i) = y(i))]

where < is the strict order induced by ≤. In particular ≤lex is a linear order
on 2N, and by Exercise 13.85

Φ: (2N,≤lex)→ (E1/3,≤)

is an isomorphism, hence it is a homeomorphism between the space 2N with
the interval topology induced by ≤lex and E1/3 with the topology induced by
[0; 1]. In particular 2N with the interval topology is compact.3 As the length
of the intervals of Kn tend to 0, it follows that E1/3 has empty interior.

In Section 26.D we show how to assign to every reasonable X ⊆ R
a value λ(X) ∈ [0;+∞] estimating the size of X; such value called the
Lebesgue measure of X. It can be shown that λ(∅) = λ({x}) = 0 for all
x ∈ R, that λ(I) = b− a if I is an interval with endpoints a < b, and that
λ(
⋃

nXn) =
∑

n λ(Xn) whenever the Xns are pairwise disjoint. Since In has
2n open intervals of length 3−n−1,

λ(E1/3) = 1− λ(
⋃

n In) = 1−
∑∞

n=0
2n

3n+1 = 0.

If in the construction above we use r ∈ (0; 1) rather than 1/3 and [a; b] rather
than [0; 1], we obtain the set

Er(a, b) ⊂ [a; b],

which is compact, with empty interior and of measure zero.

13.G. Sets that are in bijection with R.

3The interval topology on 2N is the same as the product topology of Section 14.A when
2 = {0, 1} is given the discrete topology. This fact will be proved in Section 26.
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13.G.1. Product of copies of R. For each set X, the map sending each n-tuple
(x0, . . . , xn−1) ∈ Xn to the sequence

(x0, . . . , xn−1, xn−1, xn−1, . . . ) ∈ XN

is injective and witness that Xn ≾ XN, hence by Theorem 13.14 and Exer-
cise 13.24, for all n ≥ 1

({0, 1}N)n ≾ ({0, 1}N)N ≍ {0, 1}N×N ≍ {0, 1}N

hence by the Cantor-Schröder-Bernstein Theorem 13.11,

R ≍ Rn ≍ RN.

In particular R ≍ C, hence by Proposition 13.25 RR ≍ P(R). This shows
that the exponent N in the previous equation cannot be replaced with R.
13.G.2. The space of real-valued continuous functions on a separable space. If
X ̸= ∅ is a separable space then C(X,R), the set of all continuous real-valued
functions on X, is in bijection with R; in particular C(R,R) ≍ R.

To see this let Q ⊆ X be a countable dense set, and consider the function
C(X,R) → RQ, f 7→ f ↾ Q. If f, g ∈ C(X,R) differ at x0 ∈ X, then
by continuity there is U non-empty open such that x0 ∈ U and f and
g are always distinct on U . Let q ∈ Q ∩ U : then f(q) ̸= g(q) and hence
f ↾ Q ̸= g ↾ Q. Therefore the map f 7→ f ↾ Q is injective and since Q ≾ N, by
the preceding example we have that C(X,R) ≾ R. Using constant functions,
R ≾ C(X,R), hence C(X,R) ≍ R.
13.G.3. Separable metric spaces. Let (X, d) be a separable metric space, and
let Q = {qn | n ∈ N} be a countable dense subset of X. The function
F : X → RN, F (x) : N → R, n 7→ d(x, qn), is injective, hence X ≾ R. In
particular this holds when X is a (metric and separable) topological manifold
or a separable normed vector space, and since R embeds into such X, we have
another collection of sets in bijection with R. In particular every separable
Banach space (that is a complete, normed, vector space on R) is in bijection
with R.
13.G.4. Second countable spaces. Let X be a second countable space and let
B = {Vn | n ∈ N} be a basis for its topology T. The function T → P(N),
U 7→ {n ∈ N | Vn ⊆ U}, is injective, hence T ≾ R. By taking complements
one has that C, the family of all closed subsets of X, can be injected into R,
that is C ≾ R.

If X is T1 then the singletons are closed, so X ≾ R.

13.H. Back-and-forth constructions.
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13.H.1. Dense linear orders without endpoints. A partial isomorphisms be-
tween two orders (X,≤) and (Y,⪯) is a finite function p with dom p ⊆ X
and ran p ⊆ Y , such that x1 ≤ x2 ⇔ p(x1) ⪯ p(x2), for all x1, x2 ∈ X.

Lemma 13.30. Suppose p is a partial isomorphism between two linear orders
(X,≤) and (Y,⪯). If (Y,⪯) is dense and without endpoints, then for all
x ∈ X there is y ∈ Y such that p ∪ {(x, y)} is a partial isomorphism between
X and Y .

Proof. Fix x ∈ X. If x ∈ dom p pick y = p(x) so that p ∪ {(x, y)} = p. So
we may assume that x /∈ dom p = {x1 < · · · < xn}. If x < x1 then pick y
such that y ≺ p(x1)—this is possible, since Y has no minimum. If xn < x
then pick y such that p(xn) ≺ y—this is possible, since Y has no maximum.
If xi < x < xi+1 then pick y such that p(xi) ≺ y ≺ p(xi+1)—this is possible
since Y is dense. □

If p is a partial isomorphism between X and Y , then p−1 is a partial
isomorphism between Y and X, so we have at once:

Lemma 13.31. Suppose p is a partial isomorphism between two linear orders
(X,≤) and (Y,⪯). If (X,≤) is dense and without first or last element, for all
y ∈ Y there is x ∈ X such that p ∪ {(x, y)} is a partial isomorphism between
X and Y .

The next result shows that, up to isomorphisms, the set of rationals is
the unique countable dense linear order without end points.

Theorem 13.32 (Cantor). Any two countable dense linear order without
endpoints are isomorphic.

Corollary 13.33. Up to isomorphism, the countable dense linear orders are:
Q, [0; 1] ∩Q, [0; 1) ∩Q, (0; 1] ∩Q.

Proof of 13.32. Let (X,≤) and (Y,⪯) be two countable, dense linear orders
without endpoints, say X = {xn | n ∈ N} and Y = {yn | n ∈ N}. We shall
construct partial isomorphisms pn between X and Y such that xn ∈ dom(pn)
and yn ∈ ran(pn), and p0 ⊆ p1 ⊆ . . .. By construction

⋃
n pn will be an

isomorphism between X and Y .
Thus we are left to construct the pns. Set p0 = {(x0, y0)}. Suppose we

have constructed pn as above. By the Lemma 13.30 we may find a partial
isomorphism p′ ⊇ pn such that xn+1 ∈ dom p′; applying Lemma 13.31 we
construct p′′ ⊃ p′ such that yn+1 ∈ ran p′′. Then set pn+1 = p′′. □

The construction in Theorem 13.32 is known as the back-and-forth ar-
gument, since we must ensure that function be defined on all xns (the forth
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part) and that it takes all possible values yn (the back part). Using only the
forth part of the argument, it is possible to show that:

Theorem 13.34. Any countable linear order is embeddable in Q.

A linear order (L,≤) is ultrahomogeneous if for any pair of finite
sets A,B ⊆ L of the same size, there is an automorphism f of L such that
f [A] = B. By Exercise 13.61 this is the same notion as being interval-
homogeneous: for any two non-empty open intervals there is an automor-
phism mapping one onto the other. Arguing as in the proof of Theorem 13.32
and requiring that p0 extends some given partial isomorphism we have that
Q is homogeneous.

Theorem 13.35. If A,B ⊂ Q are finite subsets of equal size, then there is
an isomorphism f : (Q, <)→ (Q, <) such that f [A] = B.

13.H.2. Countable atomless Boolean algebras and random graphs*. A partial
isomorphism between two Boolean algebras A and B is an isomorphism
p : A′ → B′ where A′ is a finite subalgebra of A and B′ is a finite subalgebra
of B. The next result is the analogue of Lemma 13.30.

Lemma 13.36. Let p : A′ → B′ be a partial isomorphism between Boolean
algebras A and B, and suppose B is atomless. Then ∀x ∈ A∃y ∈ B such that
p can be extended to a partial isomorphism q : A′′ → B′′ such that q(x) = y,
where A′′ and B′′ are the Boolean algebras generated by A′∪{x} and B′∪{y}.

Proof. If x ∈ A′, then take y = p(x) and let A′′ = A′, B′′ = B′, and q = p,
so we may assume that x /∈ A′. By Corollary 7.57 A′′ = {(u⋏ x)⋎ (v ⋏ x∗) |
u, v ∈ A′}, so the atoms of A′′ are the non-zero elements of

{a⋏ x | a ∈ At(A′)} ∪ {a⋏ x∗ | a ∈ At(A′)}.

If a ∈ At(A′) and a⋏ x ̸= 0A, then

• either 0A < (a⋏ x) < a, and hence also 0A < (a⋏ x∗) < a,
• or else a⋏ x = a, that is a ≤ x, whence a < x, as x /∈ A′.

Thus the atoms of A′ are split into three pairwise disjoint families:

A1 = {a ∈ At(A′) | 0A < (a⋏ x) < a}
A2 = {a ∈ At(A′) | a < x}
A3 = {a ∈ At(A′) | a⋏ x = 0A}

and hence

At(A′′) = {a⋏ x | a ∈ A1} ∪ {a⋏ x∗ | a ∈ A1} ∪A2 ∪A3.
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The isomorphism p : A′ → B′ is a bijection At(A′)→ At(B′), so {B1,B2,B3}
is a partition of At(B′), where Bi = {p(a) | a ∈ Ai}. As B is atomless, for
each b ∈ B1 there is 0 < yb < b, so let

y =
j

(B2 ∪ {yb | b ∈ B1}) ∈ B.

(This element exists in B as it is the sup of a finite set.) As b⋏ b′ = 0B for
distinct b, b′ ∈ At(B), it follows that ∀b ∈ B1 (y⋏b = yb), ∀b ∈ B2 (y⋏b = b),
and ∀b ∈ B3 (y ⋏ b = 0B). Thus

{b⋏ y | b ∈ B1} ∪ {b⋏ y∗ | b ∈ B1} ∪B2 ∪B3

is the set of atoms of B′′, the Boolean algebra generated by B′ ∪ {y}. The
map that is the identity on A2 ∪A3 and

a⋏ x 7→ p(a)⋏ y, a⋏ x∗ 7→ p(a)⋏ y∗, (for a ∈ A1)

is a bijection At(A′′) → At(B′′) that can be extended to an isomorphism
q : A′′ → B′′. Since

q(a) = q(a⋏ x)⋎ q(a⋏ x∗) = (p(a)⋏ y)⋎ (p(a)⋏ y∗) = p(a)

for a ∈ A1, it follows that q extends p, and q(x) = y. □

The analogue of Lemma 13.31 is

Lemma 13.37. Let p : A′ → B′ be a partial isomorphism between Boolean
algebras A and B, and suppose A is atomless. Then ∀y ∈ B∃x ∈ A such that
p can be extended to a partial isomorphism q : A′′ → B′′ with q(x) = y, where
A′′ and B′′ are the Boolean algebras generated by A′ ∪ {x} and B′ ∪ {y}.

Theorem 13.38. Two countable atomless Boolean algebras are isomorphic.

Proof. Let A = {an | n ∈ N} and B = {bn | n ∈ N} be two Boolean algebras
as in the statement of the theorem. Using Lemmata 13.36 and 13.37 we
construct partial isomorphisms pn between A and B such that p0 ⊆ p1 ⊆ . . .
and an ∈ dom pn and bn ∈ ran pn. Then function f =

⋃
n pn : A → B is a

bijection, so it is enough to check that it is a homomorphism. If x, y ∈ A,
fix indexes m,n, h, k ∈ N such that x = am, y = an, x∗ = ah and x⋏ y = ak.
Then x, y, x∗, x ⋏ y ∈ dom pN where N = max(n,m, h, k) and since pN is
a partial isomorphism, pN (x∗) = pN (x)∗ and pN (x ⋏ y) = pN (x) ⋏ pN (y).
Since f extends pN one has f(x∗) = f(x)∗ and f(x⋏ y) = f(x) ∧ f(y). □

By Theorem 4.37:

Corollary 13.39. The theory of atomless Boolean algebras is complete.

Corollary 13.40. Prop(S), with S a countable set (Section 7.K.2), and the
interval algebra over Q (Example 7.36(b)) are isomorphic.
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The following results are the analogues of Theorems 13.34 and 13.35, and
their proof is left to the reader:

Theorem 13.41. Every countable Boolean algebra is isomorphic to a subal-
gebra of the countable atomless Boolean algebra.

Theorem 13.42. If B is a countable, atomless Boolean algebra, and p : B1 →
B2 is an isomorphism with B1, B2 finite subalgebras of B, then there is an
automorphism of B extending p.

13.H.3. Random graphs. Back-and-forth constructions can be used to show
also that any countable graph satisfying Rnd must be isomorphic to the
countable random graph Rω of Section 10.D, and that any countable graph
embeds into it (Exercise 13.62).

Theorem 13.43. (a) Every countable graph satisfying property Rnd of
Definition 10.9 is isomorphic to Rω.

(b) Every countable graph is isomorphic to an induced subgraph of Rω.
(c) If A,B ⊆ Rω are finite and f : A → B is an isomorphism of the

induced subgraphs, that is it is a bijection such that ∀a1, a2 ∈ A (a1 E

a2 ⇒ f(a1) E f(a2)), then there is an automorphism f̂ of Rω such that
f̂ ↾ A = f .

Therefore by Theorem 4.37:

Corollary 13.44. The theory of the random graph is complete.

13.I. Recursive constructions*. As seen in Sections 11.B, 12.B and 8,
inductive definitions are interesting from the logical point of view, and are
quite common in mathematics. Some inductive constructions can be carried
out in the transfinite.
13.I.1. Transfinite recursion and derived sets.

Definition 13.45. The derivative of a topological space X is

X′ = {x ∈ X | x is not isolated X} .

As X \ X′ =
⋃
{{x} | {x} open in X} it follows that X′ is closed in

X. A topological space is perfect if it has no isolated points, that is if
it coincides with its derivative. The empty set and the intervals of R are
examples of perfect spaces, while N with the discrete topology (that is: the
induced topology as a subset of R) is not perfect, since its derived set is empty.
Also the set {1− 2−n | n ∈ N}∪{1}, which has order type ω+1, isn’t perfect,
as its derivative is {1}, which itself isn’t perfect, since its derivative is empty.
Starting from X one defines X(n) by applying the derivation process n-times
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to X. The set X(ω) =
⋂

nX
(n) need not be perfect, hence this procedure can

be carried into the transfinite by setting

X(0) = X

X(α+1) = (X(α))
′

X(λ) =
⋂
α<λ

X(α) when λ is limit.

Thus the X(α) form a decreasing sequence of closed sets, that is X(β) ⊆ X(α)

when α < β; if X(ᾱ) = X(ᾱ+1) then X(ᾱ) = X(β) for all β > ᾱ, and we will
say that the derivation procedure terminates. The smallest such ᾱ is the
Cantor-Bendixson rank of X and it is denoted by ∥X∥CB.

The sets X(∥X∥CB) =
⋂

ν X
(ν) and X \ X(∥X∥CB) are, respectively, the

perfect kernel and the scattered part of X. A space without isolated
point coincides with its perfect kernel. At the other extreme of the spectrum
are the scattered spaces, whose perfect kernel is empty. The map oX

defined on X \X(∥X∥CB) by

oX(x) = o(x) = the unique α < ∥X∥CB such that x ∈ X(α) \X(α+1)

is the order of isolation of x in X. Therefore

X(α) = X \ {x ∈ X | o(x) < α} .

Proposition 13.46. In a second countable space there is no increasing
sequence of open sets of length ω1, i.e. there are no open sets Uα (α < ω1)
such that α < β ⇒ Uα ⊂ Uβ. Similarly there is no decreasing sequence of
closed sets of length ω1, i.e. there are no closed sets Cα (α < ω1) such that
α < β ⇒ Cα ⊃ Cβ.

Proof. Let X be a topological space, and let {Vn | n ∈ N} be a basis for it.
Towards a contradiction, suppose there are Uα (α < ω1) as above, then the
map {α | α < ω1} → N

α 7→ min{n ∈ N | Vn ⊆ Uα+1 ∧ Vn ⊈ Uα}

would be injective, against the definition of ω1.
The case for closed sets is obtained by taking complements. □

Fix a second countable topological space X with base {Un | n ∈ N}. For
each subspace C ⊆ X we can define its derivative C′ by taking C to be the
ambient space, and the map FC : C \ C′ ↣ N

FC(x) = min{n ∈ N | Un ∩ C = {x}}

is injective. In particular, letting C0 = X and Cα = X(α), then the Cαs are
a decreasing sequence of closed sets hence ∥X∥CB < ω1 by Proposition 13.46,
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and X(∥X∥CB) is perfect. Moreover, if P ⊆ X is perfect, then P ⊆ X(α) for
all α and in particular P ⊆ X(∥X∥CB). The map

F :
⋃

α<∥X∥CB

X(α)\X(α+1) → {α | α < ∥X∥CB}×N, x 7→ (o(x), FC(o(x))(x))

is injective. Since ∥X∥CB < ω1, there is g : {α | α < ∥X∥CB} ↣ N, and
composing F with the map {α | α < ∥X∥CB}×N ↣ N×N, (ν, i) 7→ (g(ν), i),
we obtain

X \X(∥X∥CB) =
⋃

α<∥X∥CB

X(α) \X(α+1) ≾ N× N ≍ N.

We have thus proved:

Theorem 13.47 (Cantor-Bendixson). Every second countable space X can
be partitioned as X = P ∪S, where P is closed and perfect, and S is countable
and open.

In particular, every closed set C of R can be decomposed as C = P ∪ S,
with P perfect and S countable. We will show in Section 26 that every
non-empty perfect set P ⊆ R contains a copy of 2N and hence it is equipotent
to R.

The construction of the X(α) is a definition by recursion, but of a more
general kind than the one seen so far,4 since we had to deal with limit stages.
A function f : Ord→ A, where Ord is the collection of all ordinals, is defined
by recursion if it is the unique solution to

f(0) = a

f(α+ 1) = F (α, f(α))

f(λ) = G(λ, (f(α))α<λ) if λ is limit,

where a ∈ A, F : Ord × A → A, and G is defined on pairs of the form
(λ, (xα)α<λ) with λ limit and xα ∈ A. In many cases we may assume that F
does not depend on α, i.e. that F : A→ A. For example, if X is a topological
space and

A = P(X), a = X, F (Y ) = Y ′, G(λ, (Yα)α<λ) =
⋂
α<λ

Yα,

we recover the construction of the X(α)s.
The study of recursive definitions on the ordinals will be take upon in

Section 19 in Chapter V.

4It’s life, Jim, but not as we know it.—Mr. Spock, Star Trek
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13.J. An interesting countable ordinal*.

work in progress

Lemma 13.48. ∀α < ω1 (ω
α < ω1).

In this section (νn)n∈N denote the ordinals defined as follows: ν0 = ω,
νn = ωνn . By induction on n, νn is countable, and hence so is

ε0 = sup
n

νn.

The ordinal ε0 is closed under exponentiation, that is:

α, β < ε0 ⇒ αβ < ε0.

13.J.1. Hydras. The battle between Hercules and the hydra is described in
Example 1.2—it is a game between these two players where at each round
Hercules chops off a head of the hydra, and the monster regenerates n new
parts of itself. The game terminates when there is nothing left of the hydra,
and Hercules is declared to be the winner.

A hydra is a finite tree T whose maximal nodes are called heads and the
minimum is called root. If t ∈ T then the set ↑t is usually denoted by T⌊t⌋,
that is

T⌊t⌋ = {u ∈ T | t ≤ u}.
The game starts with a hydra T = T0. At round n of the game the hydra is
a non-empty tree Tn, and Hercules removes one of the heads h ∈ Tn:

• if h is the root, the game is over and Hercules wins;
• if h is immediately above the root, then Tn+1 = Tn;
• if t is the immediate predecessor of h, and s is the immediate predecessor

of t, then Tn+1 is obtained from T ∗ = Tn \ {h} by attaching to s n-copies
of T ∗

⌊t⌋.

Thus if the original hydra is the tree T = T0 of Figure 1 on page 3, and
Hercule’s moves are as in Example 1.2, the hydra in the first three rounds is:

T1 T2 T3

We prove that no matter what strategy Hercules follows, he kills the hydra
in finitely many steps. To this end we assign an ordinal o(T ) to each hydra
(i.e. finite tree) T ̸= ∅, in such a way that

o(T0) > o(T1) > o(T2) > . . .
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Therefore in finitely many steps we reach Tn = ∅.
We label each node of T with an ordinal, and set o(T ) to be the label

of its root. The labelling procedure is defined starting from the maximal
elements of T (the heads) and moving downwards towards the root—as T is
finite, this labelling procedure is well-defined:

• every maximal node is labelled with 1 = ω0;
• if t is a node that has n immediate successors, and α1 ≥ · · · ≥ αn are the

labels of these nodes, then t is labelled with ωα1+···+αn .

Therefore the labelling of the hydra of Example 1.2 is

ωωω3+1+ω2+ω

ω

1

ωω3+1

1 ω3

1 1 1

ω2

1 1

so o(T0) = ωωω3+1+ω2+ω, and the reader can easily verify that

o(T0) > o(T1) = ωωω2·2+1+ω2+ω

> o(T2) = ωωω2·2+1+ω·4 > o(T3) = ωωω2·2+1+ω·3+3

Observe that the label of t in T is

o(T ∗) < o

13.J.2. Goodstein’s sequences.

13.J.3. The consistency of PA.

Exercises

Exercise 13.49. Show that:

(i) if (P,≤P ) and (Q,≤Q) are linear orders, then P + Q and P × Q are
linear orders. Show with a counterexample that this does not hold if
the product ordering is used instead of the lexicographic ordering;

(ii) if Q′ is an initial segment of Q, then P + Q′ and P × Q′ are initial
segments of P +Q and P ×Q, respectively. Show with a counterexample
that if P ′ is an initial segment of P , then it does not follow that P ′ +Q
and P ′ ×Q are initial segments of P +Q and P ×Q.
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(iii) P + P ∼= P × 2.

Exercise 13.50. Show that

(i) If (P,≤) is a well-order and Q ⊆ P , then Q with the induced order is a
well-order.

(ii) Propositions 13.2, 13.3 and 13.4 do not hold if the well-order (P,≤) is
replaced by Q or R.

Exercise 13.51. Complete the proof that q : N → Q+ on page 320 is a
bijection. Show that

(i) the denominator of q(n) is the numerator of q(n+1), hence q(n) = f(n)
f(n+1) ,

for some f : N→ N \ {0}
(ii) the function f satisfies the recurrence relations: f(0) = 1, f(2n+ 1) =

f(n), and f(2n+ 2) = f(n) + f(n+ 1).

Exercise 13.52. Compute the cardinality of the sets Xi ⊆ P(N) (i =
0, . . . , 3):

• X0 = {X ⊆ N | X is cofinite} = {X ⊆ N | N \X ∈ [N]<N},
• X1 = {X ⊆ N | X is infinite},
• X2 = {X ⊆ N | X is coinfinite} = {X ⊆ N | N \X is infinite},
• X3 = {X ⊆ N | X is infinite and coinfinite}.

Exercise 13.53. Suppose (L,⪯) is a linear order and that each Xn ⊆ L
(n ∈ N) is either finite, or else (Xn,⪯) ∼= (N,≤). Show, without assuming
ACω, that

⋃
nXn is countable.move in §14

Exercise 13.54. Show that f : [N]<N → N is a bijection, where f(∅) = 0
and if X = {k0 < · · · < kn} then f(X) = 2k0 + · · ·+ 2kn .

In the next two exercises the linear orders with one and two elements are
denoted by 1 and 2.

Exercise 13.55. Consider the following list of uncountable linear orders:

L0 = R+ R L1 = R× R L2 = [0; 1)× Z L3 = R+ 2 + R
L4 = Q× R L5 = R \Q L6 = [0; 1)× N L7 = R+ 1 + R
L8 = [0; 1) L9 = (0; 1]× N L10 = [0; 1]× Z L11 = R+ (ω + 1) + R
L12 = R×Q L13 = (0; 1]× Z L14 = (0; 1) ∪ (1; 2) L15 = (0; 1] ∪ (2; 3)

L16 = R \ Z L17 = (0; 1)× Z L18 = (0; 1] ∪ [2; 3) L19 =
⋃

n∈Z(2n; 2n+ 1)

L20 = (0; 1] ∪
{
2− (n+ 1)−1 | n ∈ N

}
∪ [2; 3)

For each pair 0 ≤ i < j ≤ 20 determine whether Li and Lj are isomorphic or
not.
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Exercise 13.56. Consider the following list of countable linear orders:

Q, Q+Q, Q+ 1 +Q, Q+ 2 +Q, Q× Z, Z×Q, Q \ Z.

For each pair, determine whether they are isomorphic or not.

Exercise 13.57. Use Theorem 13.32 to prove that given A,B countable dense
subsets of R there is an auto-homeomorphism f of R which is increasing, and
such that f [A] = B. In particular, there is an increasing auto-homeomorphism
of R mapping the irrational numbers onto the transcendental numbers.

Exercise 13.58. Let L ̸= ∅ be a countable linear order, and recall Corol-
lary 13.33. Show that:

(i) If Q ∈ {Q,Q ∩ [0; 1),Q ∩ (0; 1]} then Q× L is dense and determine to
which order it is isomorphic.

(ii) If Q = Q ∩ [0; 1] and L is dense then Q × L is dense and determine
which of the four orders above it is isomorphic to.

Exercise 13.59. Let I be a collection of pairwise disjoint intervals of R. For
I, J ∈ I set I � J ⇔ sup I ≤ inf J . Show that:

(i) I is countable and (I,�) is a strict linear order.
(ii) If the elements in I are open sub-intervals of [a; b] with disjoint closures,

i.e. I ̸= J ⇒ Cl(I) ∩ Cl(J) = ∅, and
⋃

I is dense in [a; b], then
(I,�) ∼= (Q, <).

(iii) If the elements of I are closed sub-intervals of (a; b) such that
⋃

I is
dense in (a; b), then (I,�) ∼= (Q, <). Conclude that here is no I as above
such that

⋃
I = (a; b).

(iv) If I is the collection of open intervals removed from [0; 1] in the con-
struction of E1/3 (see page 323), and D ⊆ (0; 1) is countable dense,
then there is a continuous monotone function f : [0; 1]→ [0; 1] such that
f [E1/3] = [0; 1] and on each I ∈ I the function f is constant and attains
value in D.

(v) Show that:
• q− is the immediate predecessor of q+ in (Down(Q),⊆), where
q− = {x ∈ Q | x < q} and q+ = q− ∪ {q} = ↓q.
• (Down(Q),⊆) ∼= (E1/3,≤).

[Hint: (I,�) ∼= (Q, <), where I is as in (iv).]

Exercise 13.60. Consider NN with the topology induced by the lexicographic
order ≤lex. Show that

(i) D = {h ∈ NN | ∃k ∀n ≥ k (h(n) = 0)} is countable and dense in NN, and
(D,≤lex) ∼= ([0; 1) ∩Q,≤).

(ii) NN is homeomorphic to [0; 1).
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Exercise 13.61. Show that:

(i) a linear order is ultrahomogeneous if and only if it is interval-homogeneous;
(ii) R \ Z is homogeneous, but not ultrahomogeneous.

Exercise 13.62. Prove Theorem 13.43.

Exercise 13.63. Show that a dense, Dedekind-complete linear order with at
least two elements is uncountable.

Exercise 13.64. Fix a bijection N→ {(A,B) | A,B ∈ [N]<N ∧ A ∩B = ∅},
n 7→ (An, Bn). Fix an increasing sequence (xn)n of non-zero natural numbers
such that max(An ∪Bn) < xn. Show that the graph (N, E)

∀m < k (m E k ⇔ ∃n (k = xn ∧m ∈ An))

satisfies Rnd.

Exercise 13.65. Show that:

(i) there is an order (P,≤) satisfying the following property: given finite
and pairwise disjoint sets A,B,C ⊆ P such that

∀a ∈ A∀b ∈ B ∀c ∈ C (b ≰ a ∧ c ≰ a ∧ b ≰ c) ,

there is p ∈ P \ (A ∪B ∪ C) such that

∀a ∈ A∀b ∈ B ∀c ∈ C (a ≤ p ≤ b ∧ p ≰ c ∧ c ≰ p) .

Such (P,≤) is called a random order;
(ii) two countable random orders are isomorphic,
(iii) every countable order embeds into a countable random order.

Exercise 13.66. In analogy with the case of the random graph and order,
define and construct a random object for each kind of structure:

(i) directed graph,
(ii) transitive relation,

(iii) irreflexive relation,
(iv) binary relation.

In each case state and prove a result analogous to Theorem 13.43.

Exercise 13.67. Show that there is a C ⊆P(N) such that (C,⊂) is isomor-
phic to (R, <).

Exercise 13.68. Compute the order type of X and Xk with k ∈ N:

X =
{

m·(n+1)−1
n+1 | n,m ∈ N

}
Xk =

{
m·(n+1)−1

n+1 | n ∈ N ∧ 0 ≤ m < k
}
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Exercise 13.69. Consider the set N[X] of polynomials in a variable X with
coefficients in N ordered under eventual dominance: f ≺ g ⇔ ∃M∀x >
M (f(x) < g(x)). Show that ≺ is a well-order of type ωω and explicitly
describe the isomorphism F : (N[X],≺)→ (ωω, <).

Exercise 13.70. Show that the sum and product of cardinalities are com-
mutative, associative operations, and that multiplication is distributive with
respect to addition.

Exercise 13.71. If x, y ∈ R and x, y > 0 set

x · y = {p ∈ Q | ∃q, r ∈ Q (0 < q ∈ x ∧ 0 < r ∈ y ∧ p ≤ q · r)}

and if x, y are not both positive,

x · y =



0 if x = 0 or y = 0,

−
(
(−x) · y

)
if x < 0 and y > 0,

−
(
x · (−y)

)
if x > 0 and y < 0,

(−x) · (−y) if x < 0 and y < 0,

where −x = {p ∈ Q | ∃s ∈ Q∀q ∈ x (p+ q < s < 0)}. Check that the opera-
tion is well-defined and that (R,+, ·, <) is an ordered Archimedean field.

Exercise 13.72. Suppose X and Y are finite sets. Show that |X ⊎ Y | =
|X| + |Y |, |X × Y | = |X| · |Y | and |XY | = |X||Y |, where the operations of
addition, multiplication, and exponentiation on natural numbers are defined
recursively as in Section 12.B.

Exercise 13.73. Show that A is equipotent with R, for any A ⊆ Rn such
that Int(A) ̸= ∅.

Exercise 13.74. Check that the proof of Theorem 13.34 shows that every
countable ordinal can be embedded in R as a closed set. In other words, for
all α < ω1 there is an order preserving f : α→ Q with ran(f) a closed subset
of R.

Exercise 13.75. Show that there is no increasing or decreasing function
f : ω1 → R.

Exercise 13.76. Let X ≍ Y ≍ N. Show that the following subsets of XY

are equipotent with R:

F0 = {f | f is bijective} F1 = {f | f is injective} F2 = {f | f is surjective} .

Conclude that F3 ≍ F4 ≍ R, where

F3 = {f ∈ NN | f is monotone}, F4 = {f ∈ NN | f is increasing}.
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Exercise 13.77. For any f ∈ 2N consider the linear order

Lf = Z+ f(0) + Z+ f(1) + Z+ f(2) + Z+ . . .

obtained by taking ω copies of Z in which the n-th copy is separated from
the n+ 1-st by a single point if and only if f(n) = 1. Show that Lf

∼= Lg if
and only if f = g. Conclude that there are |R|-many pairwise non-isomorphic
countable linear orders.

Exercise 13.78. For each n ≥ 2 construct a graph Gn on N satisfying
¬Rndn ∧

∧
j<n Rndj as defined on page 259. Conclude that ΣRndGrph is

not finitely axiomatizable.

Exercise 13.79. Show that if (L,<) is a separable linear order, then L ≾
P(N).

In the following exercises, alternative proofs of the Cantor-Schröder-
Bernstein Theorem 13.11 are presented.

Exercise 13.80. Suppose that f : A→ B is injective and that B ⊂ A. Let
C0 = A \B and Cn+1 = f [Cn]. Show that

h : A→ B, h(x) =

{
f(x) if x ∈

⋃
nCn

x otherwise

is a bijection. Use this to infer the Cantor-Schröder-Bernstein Theorem.

Exercise 13.81. Given two injective functions f : A → B and g : B → A
consider the sets

A0 = A B0 = B

An+1 = g[Bn] Bn+1 = f [An].

Show that h : A→ B is a bijection:

h(x) =

{
g−1(x) if x ∈

⋃
nA2n+1 \A2n+2,

f(x) otherwise.

Exercise 13.82. Suppose that f : A → B and g : B → A are injective
functions and that A∩B = ∅. If a′ = g(f(a)) we say that a′ is the immediate
successor of a and that a is the immediate predecessor of a′. Fix a ∈ A.
Define an with n ≥ 0 by letting a0 = a and an+1 = the immediate successor
of an. If the immediate predecessor of a exists, denote it with a−1; if the
immediate predecessor of a−1 exists, denote it with a−2; if the immediate
predecessor of a−2 exists, denote it with a−3; and so on. Suppose a is such
that there is a least n < 0 such that an is defined: then either

an /∈ ran(g)(13.11a)
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or else

an ∈ ran(g) and g−1(an) /∈ ran(f)(13.11b)

Let A0 be the set of all a satisfying (13.11b). Check that h : A → B is a
bijection

h(a) =

{
f(a) if a ∈ A0,

g−1(a) otherwise.

Exercise 13.83. In a commutative unitary semi-ring (R,+, ·, 0, 1) (see
Definition 9.10 on 241) define the relation x ≤ y ⇔ ∃z (x+ z = y). Suppose
a ∈ R is such that

a+ 1 = a(13.12a)
x+ y ≤ x⇒ y · a ≤ x.(13.12b)

Show that:

(i) x+ y ≤ x⇒ x+ y = x;

(ii) x ≤ y ∧ y ≤ x⇒ x = y, that is ≤ is a partial order on R;

(iii) The conjunction of (13.12a) and (13.12b) is equivalent to

(13.12c) x+ y = x⇔ y · a ≤ x.

Moreover a is the unique element of R satisfying (13.12c).

(iv) a+ a = a and a · a = a;

Exercise 13.84. (i) Show that if X ⊎ Y ≾ X then Y × N ≾ X.

(ii) Let R be the collection of all equivalence classes modulo the relation ≍ of
equipotence among sets. Use part (i) together with Exercise 13.83 to give
an alternative proof of the Cantor-Schröder-Bernstein Theorem 13.11
and of Theorem 13.14.

Exercise 13.85. Show that:

(i) the series (13.8) converges to a real number in [0; 1];

(ii) if ∀i < n (x(i) = y(i)) and x(n) = 0 and y(n) = 1, then Φ(x) < Φ(y) ≤
Φ(x) + 3−n.

Exercise 13.86. Fix a natural number b > 1. The base-b expansion of
x ∈ [0, 1] is the sequence (n0, n1, n2, . . . ) ∈ {0, . . . , b− 1}N such that

x =
∞∑
i=0

ni

bi+1
.



340 IV. Sets, choice, and compactness

(i) Verify that if: ∀i < k(ni = mi), nk = mk+1, and ∀i > k(ni = 0 ∧ mi =
b− 1), then

∞∑
i=0

ni

bi+1
=

∞∑
i=0

mi

bi+1
∈ [0, 1]

hence the base-b expansion of an x ∈ [0, 1] is not unique.

(ii) Show that if x admits an expansion that it is not eventually 0 or
eventually b− 1, then such expansion is unique.

(iii) Show that E1/3, the Cantor set, is the set of reals in [0; 1] admitting
an expansion in base 3 in which the digit 1 does not occur, and that
E1/3 = ran(Φ).

Exercise 13.87. Show that for any a < b and any 0 < r < 1 the set
Er(a, b) is compact, with empty interior, λ(Er(a, b)) = 0 and that there is a
homeomorphism f : [0; 1]→ [a; b] such that f [E1/3] = Er(a, b).

Exercise 13.88. We give an alternative proof of the fact that R is uncount-
able. Suppose (0; 1) = {rn | n ∈ N}, and for each n let dn,m ∈ {0, . . . , 9} be
the mth digit of the decimal expansion of rn. Argue that the real number
r ∈ (0; 1) with decimal expansion 0.e0e1e2 . . . where en = 2 if dn,n is odd and
en = 3 if dn,n is even, is not of the form rm.

Notes and remarks

Set theory was invented by Cantor around 1870 in order to study a problem in the theory of
trigonometric series posed by Riemann, see [Coo93].

The Cantor-Schröder-Bernstein Theorem 13.11 was stated (without proof) by Cantor in 1887
and in 1895 he obtained this result as corollary of the fact that every set can be well-ordered.
Schröder published an incorrect proof in 1896, while Bernstein gave a correct proof a year later. In
any case, the first correct proof of this result dates back to 1887 and it is due to Dedekind, but sadly
his name is not associated to this result. The proof of Theorem 13.11 sketched in Exercise 13.11 is
attributed to J. König, while Exercises 13.83 and 13.84 are form [Cra11].

The proof that P(N) is uncountable (Theorem 13.22) uses the celebrated diagonal method, a
technique used (implicitly or explicitly) in many other proofs that R is uncountable. For a proof of
this result that does not use the diagonal method see page 393.

Exercise 13.57 can be considerably strengthened: given A,B countable dense subsets of the
real line, there is an auto-homeomorphism f of R mapping monotonically A onto B and such that
f is the restriction of an entire function on the complex plane [BS70, SR74].

The result in Example 13.9 is form [Thu82]. The function in Example 13.10 is known
McCarthy’s 91 function, form the name of the computer scientist that defined it 1970. This function
(like other generalizations introduced by Knuth) are of importance in theoretical computer science,
in particular in the study of termination of programs [Man03]. Exercise 13.51 is from [CW00].
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14. The axiom of choice, the well-ordering principle, and
Zorn’s lemma.

In mathematics it is customary to denote a set of objects by using some
indexing method, so that a collection A of sets is often denoted by A = {Ai |
i ∈ I}, with I some set of indexes. Careless use of indexed symbols can hide
delicate problems. For example, suppose A is a non-empty family of non-
empty sets, that is to say: A = {Ai | i ∈ I} where I ≠ ∅ and ∀i ∈ I (Ai ̸= ∅).
It is tempting to restate the second clause as “there is ai ∈ Ai”, but writing “ai”
subsumes the existence of a function f assigning f(i) = ai ∈ Ai to each i ∈ I.
In other words, we moved from “∀i ∈ I∃x (x ∈ Ai)” to “∃f ∀i ∈ I (f(i) ∈ Ai)”
swapping the order of quantifiers. The axiom of choice, in symbols AC,
certifies the legitimacy of this swapping of quantifiers. Since {Ai | i ∈ I} ⊆
P(X) where X =

⋃
i∈I Ai, it can be stated as follows:

(AC) For each set X ̸= ∅ there is f : P(X) \ {∅} → X such that
∀Y ⊆ X (∅ ≠ Y ⇒ f(Y ) ∈ Y ).

The title Axiom refers to the fact that this a genuinely new principle, one that
cannot be derived from the other axioms of set theory that will be introduced
in Section V of the next Chapter. Another equivalent (Exercise 14.41) way
of stating AC involves cartesian products:

(14.1) If {Ai | i ∈ I} ≠ ∅ and Ai ̸= ∅ for all i ∈ I, then "i∈I Ai ̸= ∅.

The axiom of choice has an innocent-looking formulation, and many mathe-
maticians consider it to be obviously true. Yet AC is equivalent to several,
seemingly unrelated statements, some of which are far from being obvious.5

First we prove a technical result. Recall that a function on an ordered set
f : P → P is progressive if x ≤ f(x) for all x ∈ P , and that X▼ = {y ∈ P |
∀x ∈ X (x ≤ y)}, for any X ⊆ P .

Theorem 14.1. Suppose (P,≤) is an ordered set and G : {C ⊆ P | C is a
chain} → P is such that G(C) ∈ C▼. Then any progressive f : P → P has a
fixed point.

Proof. If f : P → P had no fixed points, then we define by induction on
the ordinals an increasing sequence pα ∈ P , by letting pα+1 = f(pα) and
pλ = G({pα | α < λ}) for λ limit. Since there are more ordinals than points
in P , a contradiction is reached. □

Remark 14.2. There is a sticky point in the proof above: we must be sure
that there is no injective map from the collection of all ordinals into P , and
this will follow easily from the axioms of set theory presented in Chapter V.

5The axiom of choice is obviously true, the well-ordering principle obviously false, and who
can tell about Zorn’s lemma?—Jerry Bona
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Theorem 14.3. The following are equivalent:

(a) Zorn’s Lemma: an ordered set such that every chain has an upper
bound has a maximal element;

(b) the well-ordering principle: every set can be well-ordered;
(c) the axiom of choice.

Proof. (a)⇒(b). Given a set X, we must find a well-order of X. Let

P = {(A,R) | A ⊆ X ∧R is a well-order of A}

and for (A,R), (B,S) ∈ P set (A,R)� (B,S) if and only if (A,R) = (B,S)∨
(A,R)� (B,S) where

(A,R)� (B,S) ⇔ A ⊂ B ∧R ⊂ S ∧ ∀b ∈ B \A∀a ∈ A (a S b)

In other words: S extends R by placing the elements of B \ A after those
of A. Thus (A,R)� (B,S) if there is b ∈ B such that A = pred(b, B;S). If
{(Ai, Ri) | i ∈ I} is a chain in P then

⋃
i∈I Ri well-orders

⋃
i∈I Ai, so there

is a maximal (Ā, R̄) ∈ P. Towards a contradiction, suppose Ā ̸= X and fix
b ∈ X \ Ā. Let S = R̄ ∪ {(a, b) | a ∈ Ā} ∪ {(b, b)}. Then (Ā ∪ {b} , S) ∈ P

and (Ā, R̄)� (Ā ∪ {b} , S), against the maximality of (Ā, R̄). Therefore R̄ is
a well-order of X.

(b)⇒(c). Given a non-empty X we must find a choice function f : P(X)\
{∅} → X. Given a well-ordering ⪯ of X, set f(Y ) to be the ⪯-least element
of Y .

(c)⇒(a). Let (P,≤) be an ordered set such that every chain has an upper
bound, and towards a contradiction suppose it has no maximal elements.
Let C be the collection of all non-empty chains of P . By hypothesis C▼ ̸= ∅
for all C ∈ C, so by AC let G : C → P , G(C) ∈ C▼. By case assumption
Ax = ↑x \ {x} = {y ∈ P | x < y} is non-empty for all x ∈ P , so by AC
there is f : P → P such that f(x) ∈ Ax. The function f is progressive, so
it has a fixed point by Theorem 14.1. But x < f(x) by construction: a
contradiction. □

Lemma 14.4 (Krull). Assuming AC, any ring6 contains a maximal ideal.

Proof. Let R be a ring and let I = {I ⊆ R | I is a proper ideal of R}. If
C ⊆ I is a chain, then

⋃
C is an ideal of R. Moreover

⋃
C is proper: if,

towards a contradiction, 1 ∈
⋃

C then 1 ∈ I ∈ C against the fact that every
I ∈ C ⊆ I is proper. Thus

⋃
C ∈ I. The assumption of Zorn’s Lemma hold,

so there is a maximal I ∈ I. □

6The assumption that we are dealing with a ring, i.e. there is a multiplicative identity cannot
be relaxed to rng or to group—see Exercise 14.39.
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As the lattice of ideals of R containing a given proper ideal I is isomorphic
to the lattice of ideals of R/I, we have

Corollary 14.5. Assuming AC, a proper ideal of a ring is contained in a
maximal ideal.

Definition 14.6. The Boolean prime ideal principle (BPI) is the state-
ment: any proper ideal in a Boolean algebra is contained in a prime ideal.

Krull’s Lemma implies that every Boolean algebra has a maximal (that
is: prime) ideal, so BPI follows from AC. By Exercise 14.40 BPI is equivalent
to the seemingly weaker statement: every Boolean algebra has a prime ideal.

14.A. Tychonoff’s theorem. Given functions Fi : X → Yi (i ∈ I) from a
set X to topological spaces Yi with topology Ti, we can endow X with the
topology induced by the functions Fi, namely the smallest topology that
makes all Fi continuous. This topology exists since the lattice of topologies
is complete, and

S = {F−1
i [U ] | i ∈ I ∧ U ∈ Ti}

is a subbase for it. A base for this topology is obtained by taking all finite
intersections of sets in S:

{F−1
i1

[Ui1 ] ∩ · · · ∩ F−1
in

[Uin ] | i1, . . . , in ∈ I ∧ Uij ∈ Tij}.

When X = "i∈IYi and Fi : X → Yi, f 7→ f(i), the resulting topology is
called the product topology or Tychonoff topology. By construction the
product topology is the coarsest topology on X that makes each projection
X → Yi, f 7→ f(i) continuous. The basic open sets are of the form

("nj=1Uij )× ("i∈I\{i1,...,in}Yi),

where Uij ∈ Tij and i1, . . . , in ∈ I. The box topology on "i∈IYi is the
topology generated by the sets {"i∈IUi | ∀i ∈ I (Ui open in Yi)}. When I is
finite the product and box topologies coincide, but when I is infinite the box
topology is strictly finer than the product topology.

Example 14.7. Consider RI = "i∈IR with I = R. The product topology is
the topology of pointwise convergence—fn → f if and only if fn(x)→ f(x)
for all x ∈ R. A basic open set is of the form

{f ∈ RR | f(xi) ∈ Ui, for i = 1, . . . , n}
with {x1, . . . , xn} ⊆ R and the Uis open intervals of R.

A basic open set in the topology of uniform convergence is of the form
{f ∈ RR | ∀x ∈ R |f(x)− g(x)| < ε} for some given g ∈ RR and ε ∈ R>0.
The topology of uniform convergence is strictly finer than the pointwise
topology. A basic open set in the topology of uniform convergence is open in
the box topology, but not in the product topology. On the other hand an
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open set in the box topology need not be open in the topology of uniform
convergence.

Let’s agree that from now on the spaces "i∈IYi and Y I are endowed with
the product topology, and the former is denoted by

∏
i∈I Yi.

Theorem 14.8 (Tychonoff). Assuming AC, the product of compact spaces is
compact, that is: if Xi is compact for all i ∈ I, then X =

∏
i∈I Xi is compact.

We present two proofs of this theorem. The first one relies on the following
result, known as the Alexander’s subbase Lemma.

Lemma 14.9. Assume AC. Suppose that a topological space X has a subbase
S such that every open covering V ⊆ S admits a finite subcovering. Then X
is compact.

Proof. Let S be as above. Since

B = {U0 ∩ · · · ∩ Un | U0, . . . , Un ∈ S ∧ n ∈ N}

is a base, towards a contradiction we may assume that there is a covering
U∗ ⊆ B of X that has no finite subcovering. Order by inclusion

F = {U ⊆ B | U ⊇ U∗ is a covering of X without a finite subcovering}.

Claim 14.9.1. If C ⊆ F is a chain, then
⋃

C ∈ F.

Proof of the Claim.
⋃
C is a covering of X containing U∗. If

⋃
C had a

subcovering {U0, . . . , Un}, choose Ui ∈ F such that Ui ∈ Ui. As C is a chain,
U0∪· · ·∪Un = Uj , for some suitable j ≤ n. Thus Uj has a finite subcovering,
against the fact that Uj ∈ C ⊆ F. □

By Zorn’s Lemma there is a maximal U ∈ F. Fix U ∈ U, and let
S0, . . . , Sn ∈ S be such that U = S0 ∩ · · · ∩ Sn.

Claim 14.9.2. Si ∈ U, for some i ≤ n.

Proof of the Claim. If Si /∈ U, then by maximality there is a finite Ui ⊆ U

such that Ui ∪ {Si} is a covering of X, that is Ui is a covering of X \ Si.
Therefore if {S0, . . . , Sn} ∩ U = ∅, then U0 ∪ · · · ∪ Un ∪ {U} ⊆ U would be a
finite cover of X, against our assumption. □

Therefore for all U ∈ U there is V ∈ U ∩ S such that U ⊆ V . So U ∩ S is
a covering of X and U ∩ S ⊆ S, so it has a finite subcovering V; but V ⊆ U,
against our assumption that U has no finite subcovering. □
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First proof of Tychonoff’s Theorem 14.8. Let X =
∏

i∈I Xi, and let
Ti be a compact topology on Xi. The family

S = {U × "i∈I\{j}Xi | j ∈ I ∧ U ∈ Tj}

is a sub-base for the topology of X, so by Lemma 14.9 it is enough to show
that any covering U ⊆ S has a finite subcovering. Fix such U, and let Vi =
{V ∈ Ti | F−1

i [V ] ∈ U} ⊆ P(Xi). Note that
⋃

i∈I{F
−1
i [V ] | V ∈ Vi} = U:

the inclusion from left-to-right follows from the definition of Vi, while the
other inclusion follows from U ⊆ S. If Vj is a covering of Xj , for some j,
then by compactness there would be a subcovering {V0, . . . , Vn} ⊆ Vj and
therefore {F−1

j [Vk] | 0 ≤ k ≤ n} ⊆ U would be a finite subcovering of X.
Thus, towards a contradiction, we may assume that Vi does not cover Xi,
for any i ∈ I. Choose xi ∈ Xi \

⋃
Vi so that letting f(i) = yi we have that

f ∈ X \
⋃

i∈I{F
−1
i [U ] | U ∈ Vi} = X \

⋃
U = ∅, a contradiction. □

14.B. Filters in topology. In this section X is a topological space, and
Vx is the filter of the neighborhoods of x ∈ X.

Lemma 14.10. For F a proper filter on X and x ∈ X, the following are
equivalent:

(a) x ∈
⋂

A∈F Cl(A).
(b) ∀A ∈ F ∀U ∈ Vx (A ∩ U ̸= ∅).
(c) C = {A ∩ U | A ∈ F, U ∈ Vx} is a family of non-empty sets, closed

under finite intersections.
(d) There is a proper filter G extending F ∪ Vx.

Proof. It is immediate that (a), (b), and (c) are equivalent. If (c) holds,
then G = {G ⊆ X | ∃C ∈ C (C ⊆ G)} is a proper filter extending F ∪ Vx,
so (d) holds. Conversely any G as in (d) extends C so (c) holds. □

Definition 14.11. For x ∈ X and F a proper filter on X, we say that

• x is a cluster point for F if any of the equivalent conditions of Lemma 14.10
is met;
• F converges to x if Vx ⊆ F.

Lemma 14.12. Let F be a proper filter on X. If F converges to x, then x is
a cluster point of F. If F is an ultrafilter, then F converges to x if and only
if x is a cluster point of F.

Proof. If F converges to x, then (b) of Lemma 14.10 shows that x is a cluster
point of F. Conversely, if x is a cluster point of the ultrafilter F, then F ∪Vx

is contained in a proper filter, which must be F by maximality. Therefore
Vx ⊆ F, that is F converges to x. □
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Lemma 14.13. X is Hausdorff if and only if each proper filter on X converges
to at most one point.

Proof. If X is Hausdorff then for distinct x0, x1 ∈ X there are disjoint
Ui ∈ Vxi , so that no proper filter can extend Vx0 ∪ Vx1 , and hence cannot
converge to both x0, x1. Conversely, if F is a proper filter converging to
distinct x0, x1 then Vx0 ∪ Vx1 ⊆ F, so ∀U0 ∈ Vx0 ∀U1 ∈ Vx1 (U0 ∩ U1 ̸= ∅),
that is X is not Hausdorff. □

Filters can be used to characterize compactness.

Theorem 14.14. X is compact if and only if every proper filter has at least
one cluster point.

Proof. Suppose X is compact and F is a proper filter. Since {Cl(A) | A ∈ F}
has the finite intersection property, then

⋂
{Cl(A) | A ∈ F} ̸= ∅, and hence

any of its elements are cluster points of F.
Conversely, suppose C is a family of closed sets with the finite intersection

property, and let us prove that
⋂

C ≠ ∅. Without loss of generality we
may assume that C is closed under finite intersections. Let F = {A ⊆ X |
∃C ∈ C (C ⊆ A)} be the filter generated by C. Then ∅ ≠

⋂
{Cl(A) | A ∈ F} ⊆⋂

{Cl(A) | A ∈ C} =
⋂

C, that is X is compact. □

Corollary 14.15. Assume BPI. A space X is compact if and only if each
ultrafilter converges to at least one point. A space X is compact and Hausdorff
if and only if each ultrafilter converges to exactly one point.

Proof. If X is compact and U is an ultrafilter on X, then U has at least one
cluster point, so U converges to at least one point. For the converse we apply
Theorem 14.14: let F be a filter on X, and by BPI let U ⊇ F be an ultrafilter.
Then U converges to some x, so x is a cluster point for F. □

The next result is Tychonoff’s Theorem 14.8 stated in a more articulated
form.

Theorem 14.16. Suppose the Xi (i ∈ I) are compact spaces, and let X =∏
i∈I Xi. Then AC implies that X is compact. If the spaces Xi are T2 then

AC can be weakened to BPI.

Proof. If X = ∅ then it is trivially compact, so we may assume otherwise.
By Theorem 14.14 we must prove that every proper filter F on X has a
cluster point. By BPI let U be an ultrafilter on X extending F; it is enough
to show that U converges to some x̄ which therefore will be a cluster point
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of F. Let πi : X → Xi, f 7→ f(i), be the projection on the i-th coordinate.
Since Ui = {πi[A] | A ∈ U} is an ultrafilter on Xi, then by compactness

Ci = {y ∈ Xi | Ui converges to y}
is non-empty. By AC choose x̄i ∈ Ci, for all i ∈ I. As Vx̄i ⊆ Ui, then any
basic open neighborhood of x̄ ∈ X = "i∈IXi is in U, where x̄ is the function
i 7→ x̄i. Therefore U converges to x̄.

If the Xis are Hausdorff, then the Cis are singletons so picking x̄i does
not require choice. □

Tychonoff’s theorem, even restricted to T1 spaces, implies AC (Exer-
cise 28.12). On other hand, the next result shows that Tychonoff’s theorem
for T2 spaces yields the existence of prime ideals in any Boolean algebra (and
hence BPI by Exercise 14.40).

Theorem 14.17. Suppose that the product of finite, discrete spaces is compact.
Then every Boolean algebra has a prime ideal.

Proof. We must show that if B is a Boolean algebra, then there is a ho-
momorphism h : B → 2 = {0,1}. Let A be the set of all Boolean finite
subalgebras of B and let XA be the set of all homomorphisms h : A→ 2 with
A ∈ A. Since A is finite then XA is finite, and so is YA = XA ∪ {∗} where ∗
is a point that does not belong to any of the XAs. By assumption

∏
A∈A YA

is compact, where each YA is endowed with the discrete topology. Moreover
A 7→ ∗ witnesses that "A∈AYA is non-empty. For A ∈ A consider the set

CA = {f ∈ "A∈AYA | fA ̸= ∗}
= {f ∈ "A∈AYA | fA : A→ 2 is a homomorphism}

where fA is f(A). By Proposition 7.43 the set CA is non-empty, and it
is closed, in fact: clopen. Therefore

∏
A∈AXA =

⋂
A∈ACA is closed and

hence compact. Moreover for any A1, . . . , An ∈ A, the Boolean algebra A
generated by A1 ∪ · · · ∪ An is finite (Corollary 7.58), so belongs to A, and
CA1 ∩ · · · ∩ CAn = CA ̸= ∅, so by compactness

∏
A∈AXA is non-empty. For

A1 ⊆ A2 in A the set

F (A1, A2) = {f ∈ "A∈AXA | fA1 = fA2 ↾ A1}
is closed (in fact: clopen) and non-empty, so by compactness

F =
⋂
{F (A1, A2) | A1 ⊆ A2 ∧A1, A2 ∈ A} ≠ ∅.

Pick f ∈ F and define h : B → 2 as follows: for each b ∈ B let

h(b) = fA(b) for some/any A ∈ A such that b ∈ A.

If b ∈ A1, A2 ∈ A pick A3 ∈ A containing A1 ∪ A2; as f ∈ F (A1, A3) ∩
F (A2, A3) then fA3 ↾ A2 = fA2 and fA3 ↾ A1 = fA1 so fA1(b) = fA3(b) =
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fA2(b), so that the definition of h is fully justified. Towards a contradiction,
suppose h is not a homomorphism: then there are b1, b2 ∈ B such that
h(b∗1) ̸= 1− h(b1) or h(b1 ⋏ b2) ̸= min(h(b1), h(b2)). If A is the subalgebra of
B generated by {b1, b2}, then h ↾ A ∈ XA, so h respects the operations on
b1, b2. □

14.C. Ultrafilters and Stone’s theorem. The Stone space7 of a Boolean
algebra B is

St(B) = {U ⊆ B | U is an ultrafilter of B} .

In the proof of Theorem 7.47 we defined a function

A : B →P(At(B)), A(b) = {a ∈ At(B) | a ≤ b}.

The map At(B) → {U ∈ St(B) | U is principal}, a 7→ ↑a, is a bijection,
so we can identify principal ultrafilters with atoms. If a Boolean algebra
is atomic then every ultrafilter is principal, so, modulo this identification,
A : B →P(St(B)) becomes A(b) = {U ∈ St(B) | b ∈ U}.

Theorem 14.18 (BPI). U : B →P(St(B)), U(b) = {U ∈ St(B) | b ∈ U} is
an injective homomorphism of Boolean algebras.

Proof. U(0B) = ∅ and U(1B) = St(B), since no ultrafilter contains 0B and
every ultrafilter contains 1B. Suppose U ∈ U(b) ∪ U(c): then either b ∈ U
or c ∈ U , and since b, c ≤ b⋎ c in either case we obtain that b⋎ c ∈ U , that
is U ∈ U(b ⋎ c). Conversely, if U ∈ U(b ⋎ c), that is b ⋎ c ∈ U , then either
b ∈ U or else c ∈ U , as U is prime, hence U ∈ U(b) ∪ U(c). It follows that

∀b, c ∈ B (U(b⋎ c) = U(b) ∪ U(c)) .

No ultrafilter contains both b and b∗, hence U(b) ∩ U(b∗) = ∅. Conversely, if
U /∈ U(b), then b∗ ∈ U and hence U ∈ U(b∗). Thus

∀b ∈ B (U(b∗) = St(B) \ U(b)) .

For every b ̸= 0B, the set {c ∈ B | b ≤ c} is a proper filter that by BPI can
be extended to an ultrafilter, so

∀b ∈ B \ {0B} (U(b) ̸= ∅) .

It follows that kerU = {0B}, hence U is an injective homomorphism. □

An immediate corollary is Stone’s representation theorem for Boolean
algebras, a result extending Corollary 7.48(a).

Theorem 14.19 (BPI). Every Boolean algebra is isomorphic to an algebra
of sets.

7In Section 25.B the set St(B) will be endowed with a topology, whence the name space.
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14.D. The compactness theorem for propositional calculus. In Sec-
tion 7.K.2 we constructed Prop(S) the set of all propositions with the letters
in S, and defined what it means for a valuation v : S → 2 = {0,1} to be a
model for a set of propositions. We also defined an equivalence relation on
Prop(S)

p |=| q ⇔ ∀v (v(p) = v(q))

and showed that Prop(S)/|=| is a Boolean algebra with maximum ⊤ the set
of all tautologies and minimum ⊥ the set of all propositional contradictions.

A set Γ ⊆ Prop(S) is satisfiable if it has a model, i.e. there is a valuation
v such that v(p) = 1 for all p ∈ Γ; we say that it is finitely satisfiable
if every finite subset of Γ is satisfiable. The following result, known as the
Compactness Theorem for propositional calculus, is an immediate
consequence of Theorem 4.46, but can be proved directly.

Theorem 14.20. Assume BPI. If Γ ⊆ Prop(S) is finitely satisfiable, then it
is satisfiable.

Proof. The assumption on Γ amounts to say that ⊥ ̸= [p1∧∧∧ . . .∧∧∧pn] for
each p1, . . . ,pn ∈ Γ. In other words, the filter generated by {[p] | p ∈ Γ} is
proper. By BPI, let D be an ultrafilter extending this filter, and let v : S → 2
defined by v(p) = 1 ⇔ [p] ∈ D. Therefore p ∈ Γ implies that [p] ∈ F ⊆ D,
hence v(p) = 1. Thus we have shown that Γ is satisfiable. □

Corollary 14.21. Assume BPI and let Γ ⊆ Prop(S). If Γ |= p then ∆ |= p
for some finite ∆ ⊆ Γ.

Proof. Towards a contradiction, suppose that ∆ ̸|= p, for all finite ∆ ⊆ Γ,
and let v∆ be a function satisfying ∆ but such that v∆(p) = 0. Then v∆
satisfies ∆ ∪ {¬¬¬p}. It follows that

∀∆ ⊆ Γ (∆ finite ⇒ ∆ ∪ {¬¬¬p} is satisfiable)

and hence by the Compactness Theorem let v be a model of Γ ∪ {¬¬¬p}. But,
by assumption, every model of Γ must satisfy p: a contradiction. □

Compactness for propositional logic can be used to prove that every
partial order can be extended to a total order.

Theorem 14.22 (BPI). Every strict order ≺ on a set X can be extended to
a strict total order � on X, that is

∀x, y ∈ X (x ≺ y ⇒ x� y) .

Proof. Let (X,≺) be a strict order: by Proposition 7.4 we may assume that
X is infinite. Consider the propositional calculus Prop(S) where S = X ×X,
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and let Γ ⊆ Prop(S) be the set

{¬¬¬(x, x) | x ∈ X} ∪ {(x, y)∨∨∨(y, x) | x, y ∈ X,x ̸= y}
∪ {
(
(x, y)∧∧∧(y, z)

)
⇒⇒⇒(x, z) | x, y, z ∈ X}.

The idea is that a propositional letter (x, y) asserts that x precedes y in a
strict order on X. Any v : S → 2 defines a relation � = �v on X

x � y ⇔ v(A) = 1, where A = (x, y) ∈ S

and, conversely, every binary relation � defines a function v = v�. Then v
satisfies Γ if and only if � is a strict linear order on X. Moreover, if v satisfies
Γ ∪∆, where ∆ = {(x, y) | x ≺ y}, then the induced ordering � extends ≺.
Thus, by Theorem 14.20, it is enough to show that Γ∪∆ is finitely satisfiable.

Let Γ0 ∪∆0 be finite, with Γ0 ⊆ Γ and ∆0 ⊆ ∆. Let X0 be the set of
all x ∈ X occurring in some letter of Γ0 ∪∆0. The set X0 is finite, and by
Proposition 7.4 there is a strict total order � on X0 extending ≺ on X0. Let
v : S → {0,1} be a function such that

∀x, y ∈ X0 (v(x, y) = 1⇔ x� y) .

Let us check that v(p) = 1 for all p ∈ Γ0 ∪ ∆0. If p = ¬¬¬(x, x) ∈ Γ0,
then x ∈ X0, and the thesis follows at once from the failure of x � x.
If p = (x, y)∨∨∨(y, x) ∈ Γ0 then x ≠ y, hence either x � y or else y � x,
that is either v(x, y) = 1 or else v(y, x) = 1; thus v(p) = 1. If p =
((x, y)∧∧∧(y, z))⇒⇒⇒(x, z) ∈ Γ0 and, towards a contradiction, v(p) = 0, then
v(x, y) = v(y, z) = 1 and v(x, z) = 0, that is x� y and y � z, but ¬(x� z):
a contradiction. If p ∈ ∆0 then p = (x, y) and x ≺ y, so x � y, whence
v(p) = 1. Therefore v satisfies Γ0 ∪∆0. As Γ0 ∪∆0 is arbitrary, it follows
that Γ ∪∆ is finitely satisfiable, as required. □

Taking ≺ as the empty order on X we have:

Corollary 14.23 (BPI). Every set can be totally ordered.

Corollary 14.24. BPI implies the axiom of choice for finite sets ACFin: if
A ̸= ∅ is a family of non-empty finite sets, then there is a choice function on
A.

Proof. Let X =
⋃

A and let ≤ be a linear order on X. If A ∈ A, then A is
a finite subset of X, so we can choose its least element. □

14.D.1. Applications to combinatorics. In 1935 Philip Hall proved the fol-
lowing result on bipartite graphs (Section 10), known as Hall matching
theorem.
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Theorem 14.25. If (A ⊎B,E) is a bipartite graph with A finite, and such
that

(14.2) a1, . . . , an ∈ A distinct ⇒ n ≤ |{b ∈ B | ∃i < n (b E ai)}| < ℵ0.

Then there is an injective f : A→ B such that a E f(a) for all a ∈ A.

The finiteness assumption on A can be removed.

Theorem 14.26 (BPI). Let (A⊎B,E) be a bipartite graph satisfying (14.2).
Then there is an injective f : A→ B such that a E f(a) for all a ∈ A.

Proof. Consider the propositional calculus Prop(A × B). For each a ∈ A
the set {b ∈ B | a E b} is finite of size n(a) ≥ 1, so by Corollary 14.24 we
can fix an enumeration (ba1, . . . , b

a
n(a)) of this set. For distinct a, a′ ∈ A and

b ∈ B let pa, qa,a′,b ∈ Prop(A×B) be defined by

pa =
(∨

1≤i≤n(a)
(a, bai )

)
∧∧∧
(∧

1≤i<j≤n(a)
¬¬¬
(
(a, bai )∧∧∧(a, baj )

))
,

qa,a′,b = ¬¬¬[(a, b)∧∧∧(a′, b)].

If v is a valuation such that v(pa) = 1, then there is a unique b ∈ B such
that a E b and v(a, b) = 1; similarly, if v(qa,a′,b) = 1 then v(a, b) = 1 and
v(a′, b) = 1 cannot both be true. By Theorem 14.25 the set Φ ⊆ Prop(A×B)
of all pas and qa,a′,bs is finitely satisfiable, so by Theorem 14.20, there is
a valuation v satisfying Γ. Then set f(a) to be the unique b such that
v(a, b) = 1. □

Theorem 14.27 (BPI). Suppose F : A→P(B) is such that F (a) is finite
for any a ∈ A. If |F (a1) ∪ · · · ∪ F (an)| ≥ n for any distinct a1, . . . , an ∈ A,
then there is an injective f : A→ B such that f(a) ∈ F (a) for all a ∈ A.

Proof. Without loss of generality we may assume that A∩B = ∅, so consider
the bipartite graph on A∪B with a E b⇔ b ∈ F (a). The result follows from
Theorem 14.26. □

Every finitely generated vector space has a basis, and any two basis are
in bijection. The axiom of choice implies that this result holds for arbitrary
vector spaces.

Proposition 14.28. Let V be a vector space over a field k.

(a) AC implies that V has a basis.
(b) BPI implies that if A,B ⊆ V are bases, then A ≍ B.

Proof. (a) Any maximal linearly independent set is a basis, so apply Zorn’s
Lemma to the family {X ⊆ V | X is linearly independent} ordered under
inclusion.
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(b) As B is a basis of V , any non-zero v can be written in a unique way
as v = α1b1 + · · · + αnbn, with b1, . . . ,bn ∈ B and α1, . . . , αn ∈ k \ {0k}.
Thus for any a ∈ A there is a non-empty finite F (a) ⊇ B such that a is a
linear combination of the vectors in F (a) with non-zero scalars. By basic
linear algebra F (a1) ∪ · · · ∪ F (an) has size ≥ n, so A ≾ B by Theorem 14.27.
Similarly B ≾ A so the result follows by the Cantor-Schröder-Bernstein
Theorem. □

A transcendence basis for a field a maximal, algebraically indepen-
dent set (Definition 11.43). By BPI every field k can be embedded in an
algebraically closed field k (Theorem ??), and the intersection kalg of all
algebraically closed subfields of k containing k is called the algebraic closure
of k. Therefore an algebraically independent set B is a basis if and only if
kalg is the smallest algebraically closed field containing the prime subfield
and B. In analogy with Proposition 14.28 we have

Proposition 14.29. If k is a field,

(a) AC implies that k has a transcendence basis.
(b) BPI implies that any two transcendence bases are in bijection.

14.E. Countable choices. The axiom of choice has many important ap-
plications throughout mathematics (see Section 28) but it has also a few
counterintuitive consequences, involving subsets on R that most mathemati-
cians would consider to be pathological (see Section 28.B). For this reason it
is customary to keep close tabs on the applications of this axiom. Several
weakenings of AC have been introduced. One of these is the axiom of count-
able choices ACω, stating that for any family {An | n ∈ N} of non-empty
sets, there is a sequence (an)n such that an ∈ An for all n.

Theorem 14.30. Assume ACω. If X is infinite then N ≾ X.

Proof. As X is infinite, ∅ ≠ Gn
def
= {g | g : n ↣ X} for every n ∈ N. By ACω

fix gn ∈ Gn. Define by recursion f : N→ X{
f(0) = g1(0)

f(n+ 1) = gn+2(i)

where i = min{k ≤ n+ 1 | gn+2(k) /∈ {f(0), . . . , f(n)}}. Since ran(gn+2) has
n + 2 elements, at least one of these does not belong to {f(0), . . . , f(n)}
hence f is well defined. A simple induction shows that f is injective. □

Thus ACω and Proposition 13.12 imply that a set is infinite if and only if
it is in bijection with a proper subset of itself. This is the property Dedekind
used to define infinity, hence sets that are in bijection with a proper subset
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of themselves are called Dedekind-infinite; a set which is not in bijection
with a proper subset of itself is called Dedekind-finite.

Theorem 14.31. Assume ACω. If Xn ≾ N for all n ∈ N, then
⋃

n∈NXn ≾ N,
that is to say: countable union of countable sets is countable.

Proof. Let N :
⋃

nXn → N, x 7→ min{n ∈ N | x ∈ Xn}. By ACω choose
fn : Xn ↣ N and define F :

⋃
nXn ↣ N× N, F (x) = (N(x), fN(x)(x)). □

Remark 14.32. Theorems 14.30 and 14.31 are not provable without choice.
For example it is consistent that there exist infinite sets that are Dedekind-
finite, i.e. sets X such that n ≾ X for all n ∈ N, yet X does not contain a
sequence (xn)n of distinct elements. Such sets can be taken to be subset of
R. No infinite, Dedekind-finite set can be well-orderable.

Similarly, in the absence of choice, the countable union of countable sets
need not be countable. In fact in absence of choice, it may happen that R is
the countable union of countable sets!

The principle ACω(R) is obtained by requiring that An ⊆ R in the
statement of ACω. It is used even in basic calculus courses, for example
when proving the equivalence between continuity and sequential continuity.
Recall that f : R→ R is sequentially continuous in x̄ if f(xn)→ f(x̄) for all
sequences xn → x̄. Every continuous function is continuous is sequentially
continuous and by ACω(R) it can be shown that

(14.3) For every f : R→ R and all x̄ ∈ R, if f is sequentially continuous
in x̄, then f is continuous in x̄.

In fact (14.3) is equivalent to ACω(R)—see Exercise 28.19. On the other hand
its global version:

(14.4) For all f : R→ R, if f is sequentially continuous in every point,
then it is continuous on R

is provable without choice [Her06, pag. 30]. This is not surprising: state-
ment (14.3) is of the form

∀f ∀x̄ (φseq. cont.(f, x̄)⇒ φcont.(f, x̄))

and it is stronger than (14.4) which is of the form

∀f (∀x̄φseq. cont.(f, x̄)⇒ ∀x̄φcont.(f, x̄)) .

Another subtle application of ACω(R) occurs in the construction of the
Lebesgue measure (Section 26.D). One of the first results proved in measure
theory is that the union of countably many null sets is null, and since countable
sets are null, this implies that R cannot be the countable union of countable
sets. But as we observed this (highly pathological!) situation could occur
if ACω is eschewed entirely, so this shows that ACω(R) is indeed crucial for
having a decent theory of integration.
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14.F. What exactly is a cardinal number? The definition of cardinality
of a set given in Section 13.C is similar to the notion of ordinal number
presented in Section 13.A, |X| is {Y | Y ≍ X}, the equivalence class of
X under the equipotence relation. Many of the shortcomings of the naïve
definition of ordinals highlighted in Section 13.C.2 can be repeated for the
concept of cardinality.

Let us assume for the rest of this section the axiom of choice. As every
set can be well-ordered, we can define the cardinality of X to be the smallest
ordinal |X| in bijection with it. An ordinal that is not in bijection with any
smaller ordinal is called a cardinal, so under AC the cardinality of any set is
a cardinal. Every natural number is a cardinal, and so is ω, which we denote
as ℵ0. The smallest uncountable ordinal is ω1, which is also denoted by ℵ1;
more generally, ℵn+1 is the smallest cardinal bigger than ℵn.

The cardinality of the continuum is the cardinality of R, or equiva-
lently, of any set in bijection with it, like P(ω) or 2N. By Theorem 13.22
the cardinality of the continuum is uncountable, that is 2ℵ0 ≥ ℵ1. Cantor
conjectured that inequality could be replaced by an equality, and dubbed the
ensuing statement the continuum hypothesis

(CH) 2ℵ0 = ℵ1.

The formula above asserts that the type of infinity of the real numbers is the
smallest kind of uncountable infinity, so it can be restated as

∀X ⊆ R (|X| ≤ ℵ0 ∨ X ≍ R) .

(Clearly in the formula above the set R can be replaced by any other set
equipotent with it.) This is a reasonable sounding statement, since for all sets
X ⊆ R encountered in practice, either X is countable or else X is in bijection
with R—Cantor proved this when X is open or closed, and the result was
later extended to all Borel sets by Alexandroff. Despite its innocent look, the
continuum hypothesis cannot be proved nor disproved from the usual axioms
system for set theory—see Sections 39 and 41.
14.F.1. Equivalents of the continuum hypothesis. The continuum hypothesis
has many applications throughout mathematics. It can be used to prove facts
in analysis, geometry, algebra, . . . , that otherwise would not be provable.
Some of these facts turn out to be equivalent to CH itself, for example
Theorem 14.33 and Corollary 14.38.

Theorem 14.33 (Erdős). CH is equivalent to: there is an uncountable
family F of entire functions such that for all z ∈ C the set {f(z) | f ∈ F} is
countable.

It is convenient to restate this result in a slightly more general form.
Let κ be an infinite cardinal. A family F of entire functions is κ-small
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iff |{f(z) | f ∈ F}| < κ for all z ∈ C. If |F| < κ then F is κ-small, and
Theorem 14.33 says that ¬CH is equivalent to the fact that every ω1-small
family is countable, and thus follows from the next two propositions.

Proposition 14.34. If κ < 2ℵ0 then every κ-small family is of cardinality
< κ. In particular: ω1 < 2ℵ0 implies that every ω1-small family is countable.

Proof. Towards a contradiction, suppose F is κ-small and |F| ≥ κ. By
passing to a subfamily if needed, we may assume that {fα | α < κ} is an
enumeration without repetitions of F. For each α < β < κ let Eα,β = {z ∈ C |
fα(z) = fβ(z)}. By standard facts on holomorphic functions Eα,β ∩ {z ∈ C |
|z| ≤ n} is finite, for all n ∈ N, so Eα,β is countable. Therefore

⋃
α<β<κEα,β

has size ≤ κ < |C|. Let w ∈ C \
⋃

α<β<κEα,β . Then the values fα(w) are all
distinct, against κ-smallness. □

Corollary 14.35. If {f(z) | f ∈ F} is finite for all z ∈ C then F is finite.

Proposition 14.36. CH implies that there is an uncountable family of entire
functions that is ω1-small.

Proof. Fix {zα | α < ω1} an enumeration without repetitions of C. We
construct entire functions fα with α < ω1 so that

(∗) α < β ⇒ fβ(zα) ∈ Q+ iQ

Given any z ∈ C, let α < ω1 such that z = zα: then {fβ(zα) | β < ω1} ⊆
{fβ(zα) | β ≤ α} ∪Q+ iQ. Therefore {fα | α < ω1} is ω1-small.

The construction of the fα is by recursion. Let f0 be any arbitrary entire
function. Suppose 0 < β < ω1 and that {fα | α < β} has been constructed.
Let ν ∋ n 7→ gn and ν ∋ n 7→ wn, where ν ≤ ω, be some enumeration without
repetitions of the sets {fα | α < β} and {zα | α < β}. To be more specific,
if α ≤ ω take ν = α, and gn = fn and wn = zn; if ω < α fix some bijection
between α and ω and use it to relabel the functions and points. We construct
fβ such that

∀n ∈ ω
(
fβ(wn) ∈ Q+ iQ ∧ fβ(wn) ̸= gn(wn)

)
so that (∗) holds, and fβ differs from all fα with α < β. The following
elementary fact will come handy.

Claim 14.36.1. For every a, b ∈ C with b ̸= 0, and for every ε positive and
real, there is c ∈ C such that a+ bc ∈ Q+ iQ and |c| < ε.

Proof. The map h : C → C, z 7→ a + bz is a homeomorphism. By density
choose d ∈ Q + iQ ∩ {w ∈ C | |w − a| < ε|b|}. Then c = h−1(d) is as
required. □
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The function fβ will be of the form

fβ(z) =
∑

i<ν ci(
∏

j<i(z − wj))

= c0 + c1(z − w0) + c2(z − w0)(z − w1) + · · ·

with |cn| < 2−n so that the series converges and fβ is indeed an entire function.
Note that for every n < ν,

fβ(wn) =
∑

i≤n ci(
∏

j<i(z − wj)),

since all terms
∏

j<i(wn−wj) are zero when i > n. We construct inductively
the cns so that

fβ(wn) ∈ Q+ iQ \ {fβ(wm) | m < n}

so that (∗) holds. This can be done since the value fβ(wm) does not depend
on cn when m < n. Let c0 = 0, and suppose c0, . . . , cn have been constructed.
As

fβ(wn+1) =
∑n

i=0 ci
∏

j<i(wn+1 − wj)︸ ︷︷ ︸
a

+ cn+1 (wn+1 − w0) · · · (wn+1 − wn)︸ ︷︷ ︸
b

we can apply the Claim to find the desired cn+1. □

The next result shows that the continuum hypothesis is equivalent to a
statement in elementary geometry. In order to simplify the notation, it is
convenient to introduce the following definition. For S an arbitrary set, a
line in Sn parallel to the i-th direction, with i < n, is a set of the form

{(a0, . . . , ai−1, x, ai+1, . . . , an−1) ∈ Sn | x ∈ S}

for some a0, . . . , ai−1, ai+1, . . . , an−1 ∈ S. Thus in R2 a line parallel to the
0-th direction is an horizontal line, i.e. parallel to the x-axis, and a line
parallel to the 1-st direction is an vertical line, i.e. parallel to the y-axis.

Theorem 14.37 (Sierpiński). For every set S, the following are equivalent:

(a) |S| ≤ ω1.
(b) There is a partition S2 = A0 ∪ A1 such that for i = 0, 1 every line

parallel to the i-th direction intersects Ai in a countable set.
(c) There is a partition S3 = A0 ∪ A1 ∪ A2 such that for i = 0, 1, 2 every

line parallel to the i-th direction intersects Ai in a finite set.

Proof. (a)⇔(b) Let � be a well-order of S of order type ≤ ω1, and let A0 be
� and A1 its complement, that is A1 = {(x, y) ∈ S2 | y � x}. A line parallel
to the 0-th direction is the set of �-predecessors of some s ∈ S, hence it is
countable.

Conversely, suppose there is a partition as in the statement, and towards
a contradiction suppose |S| > ω1. Let Y ⊂ S be a set of size ω1. As the
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vertical sections of A1 are countable, for every x ∈ S there is f(x) ∈ Y such
that (x, f(x)) /∈ A1, and therefore (x, f(x)) ∈ A0. As |S| > |Y | = ω1, there
is an uncountable X ⊆ S such that the map x 7→ f(x) is constant on X, and
let y ∈ Y be this constant value. Then X ⊆ {x ∈ S | (x, y) ∈ A0}, against
the assumption that the horizontal sections of A0 are countable.

(a)⇔(c) Suppose S = {rα | α < ω1}: we must construct A0, A1, A2 as
in part (c). For each γ < ω1 choose an injection jγ : γ + 1 → ω. Given
(x0, x1, x2) ∈ S3, let α, β, γ ∈ ω1 such that {x0, x1, x2} = {rα, rβ, rγ}, and
without loss of generality we may assume that α, β ≤ γ and that jγ(α) ≤ jγ(β).
For i < 3 define

Ai = {(x0, x1, x2) ∈ S3 | i is least such that rα = xi}

This defines a partition of S3 in three disjoint sets A0, A1, A2, so it is enough
to show verify the finiteness condition. Consider a line L parallel to the
0-th axis, say L = {(x, b, c) | x ∈ S}. If (x, b, c) ∈ A0, then x = rα and
{b, c} = {rβ, rγ}, for some β, γ such that α, β ≤ γ and jγ(α) ≤ jγ(β). Since
jγ(β) ∈ ω, there are finitely many possibilities for jγ(α) and hence for x.
Thus L ∩A0 is finite. The case for A1 and A2 is similar.

Conversely suppose there is a partition S3 = A0 ∪A1 ∪A2 as in part (c),
and that |S| ≥ ℵ2. Fix U, V,W ⊆ S of size ℵ0,ℵ1,ℵ2, respectively. For each
(u, v) ∈ U × V the set B(u, v) = {z ∈ S | (u, v, z) ∈ A2} is finite, and as⋃

(u,v)∈U×V B(u, v) is of size ≤ ℵ1, there is c ∈W such that

∀(u, v) ∈ U × V [(u, v, c) /∈ A2] .

For each u ∈ U the set B′(u) = {y ∈ S | (u, y, c) ∈ A1} is finite, so⋃
u∈U B′(u) is countable, so there is b ∈ V such that

∀u ∈ U [(u, b, c) /∈ A1] .

As {x ∈ S | (x, b, c) ∈ A0} is finite, then there is a ∈ U such (a, b, c) /∈ A0.
By construction (a, b, c) cannot belong to A1 or to A2, contradicting the fact
that A0 ∪A1 ∪A2 = S3. □

Corollary 14.38. CH is equivalent to either of the following:

• There is a partition of the R2 = A0 ∪A1 such that for i = 0, 1 every line
parallel to the i-th direction intersects Ai in a countable set.
• There is a partition of R3 = A0 ∪ A1 ∪ A2 such that for i = 0, 1, 2 every

line parallel to the i-th direction intersects Ai in a finite set.

The proof of Theorem 14.37 shows that |S| ≤ ℵ0 if and only if there is
a partition S2 = A0 ∪ A1 such that every line parallel to the i-th direction
has finite intersection with Ai, so we cannot replace countable with finite in
part (b) of Theorem 14.37. One could ask what is so special about dimension
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2 and 3, and the fact that the intersections be finite or countable. It turns
put that positing the existence of a partition of R3 = A0 ∪A1 ∪A2 such that
every line parallel to i-direction has countable intersection with Ai (i < 3) is
equivalent to positing the existence of a partition of R4 = A0 ∪A1 ∪A2 ∪A3

such that every line parallel to the i-th direction has finite intersection with
Ai (i < 4), and either statement is equivalent to 2ℵ0 ≤ ℵ2. More generally,
by a theorem of Sikorski |S| ≤ ℵn is equivalent to either one of the following
statements:

• there is a partition of Sn+2 = A0 ∪ · · · ∪An+1 such that every line parallel
to the i-th direction has finite intersection with Ai;

• there is a partition of Sn+1 = A0 ∪ · · · ∪An such that every line parallel
to the i-th direction has countable intersection with Ai.

14.G. From naïve set theory to axiomatic set theory. As we have
remarked before, the definition of ordinals and cardinals as quotients modulo
suitable equivalence relations yield huge equivalence classes. In naïve set
theory, that is to say: in the elementary, non-axiomatic presentations of
set theory, as usually presented in mathematics textbooks, these questions
are not usually addressed. But lighthearted use of very large collections of
objects is prone to serious problems that hinder the technical development of
the discipline. These problems show up as antinomies or paradoxes. Let us
see two of these, one related to the notion of ordinal number, the second to
cardinality.
14.G.1. Burali-Forti’s paradox. By Proposition 13.8, (Ord,≤) is a well-order,
with Ord the set of all ordinals. Note that if (P,≤P ) is a well-order of order
type α ∈ Ord, then P is isomorphic to {β ∈ Ord | β < α} via the map that
sends x to the order type of the initial segment {y ∈ P | y <P x}. Therefore,
if Ω ∈ Ord is the order type of (Ord,≤), then the well-order Ord is isomorphic
to its initial segment {α ∈ Ord | α < Ω}, against Corollary 13.6.
14.G.2. Cantor’s paradox. If X is the set of all sets, then P(X) ⊆ X, hence
there should be a surjection from X onto P(X), against Theorem 13.22.

As the unconsidered usage of very large collections (the set of all sets, the
set of all ordinals,. . . ) leads to logical contradictions, it is necessary to put
on firm grounds the mathematical constructions seen in the previous pages,
starting from set theory itself. The plan is to sort the aggregates of objects
into two regions: the small collection called sets and large collections called
proper classes. The first region is inhabited by the sets usually encountered
in mathematics (N, R, differentiable manifolds, etc.), while the dangerously
large collections (the set of all sets, the set of all ordinals, . . . ) will be
relegated to the second region. In Chapter V we shall see how axiomatic
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set theory delimits the range of the notion of set, wiping out these logical
antinomies.
14.G.3. A crash course in set theory. If the reader is too impatient to see
what will be happen in the next Chapter (or, more likely, if the reader is too
lazy to read it), we list now the main ideas.

Theorem 13.14 says that ω × ω is in bijection with ω, and this fact
generalizes to all infinite cardinals, that is (Theorem 18.28)

If κ is an infinite cardinal, then κ× κ ≍ κ.

For A a well-orderable set, let |A| be the smallest ordinal α in bijection with
A. Thus assuming the axiom of choice, the notion of ‘cardinality of a set’
is well-defined. If we relinquish AC, the definition cardinality requires some
further notions in set theory (Section 20.C). The operations on cardinals
are defined as above, that is κ + λ is the cardinal in bijection with the
(well-orderable) set κ ⊎ λ, and κ · λ is the cardinal in bijection with the
(well-orderable) set κ× λ. Thus if κ and λ are infinite cardinals

κ+ λ = κ · λ = max {κ, λ}.

Also (13.6) can be generalized to all infinite cardinals (Theorem 18.31)

|X| = κ ≥ ℵ0 ⇒ |X<N| = κ

that is: if X is infinite and well-orderable then X ≍ X<N. If we do not
assume some form of choice, we cannot exclude that X be infinite, that is
n ≾ X for all n ∈ N, yet ω ̸≾ X. In other words: X has more than n
elements, for all n ∈ N, yet it does not contain an infinite sequence of distinct
elements. Since N ≾ X<N, such an X would contradict the formula above.
In absence of choice we can only prove that

∅ ≠ X ⇒ X<N ≍ (X<N)<N

These results will be relevant when looking at arbitrary first-order languages.
For example: if the set of non-logical symbols of L has size ≤ κ, then the set
of all L-terms and L-formulæ are well-orderable and of size ≤ κ.

Given a family F of operations on a non-empty set X, the closure of
Y ⊆ X is the smallest Ȳ ⊆ X such that Y ⊆ Ȳ and Ȳ is closed under
all f ∈ F, and it is denoted with ClF(Y ). For example, if X is a ring and
F = {+,−, ·}, and 0X ∈ Y ⊆ X, then Ȳ = ClF(Y ) is the smallest subring of
X containing Y . If X is well-orderable, then Ȳ is of size ≤ max(ℵ0, |Y |). (We
need to take in account ℵ0 since Y could be finite, yet Ȳ could be infinite.)
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More generally (Theorem 21.18)

If F is a collection of operations on X, and X and F are well-orderable
and |F| ≤ |X|, then ClF(Y ) is well-orderable and for all Y ⊆ X

|ClF(Y )| = max(ℵ0, |Y |, |F|).

Exercises

Exercise 14.39. Show that (Q,+) has no maximal proper subgroups. Con-
clude that the rng (Q,+, ∗) where a ∗ b = 0 for all a, b ∈ Q has no maximal
ideals.

Exercise 14.40. Show that BPI follows from: every Boolean algebra has a
prime ideal.

Exercise 14.41. Prove that the following statements are equivalent to AC:

(i) the axiom of choice for families of pairwise disjoint sets: if A ̸= ∅ is a
family of non-empty, pairwise disjoint sets, then there is f : A→

⋃
A

such that ∀A ∈ A (f(A) ∈ A);
(ii) if A ̸= ∅ is a family of non-empty, pairwise disjoint sets, then there is a

transversal for A, that is a T ⊆
⋃
A such that A ∩ T is a singleton,

for all A ∈ A;
(iii) the formula (14.1);
(iv) if f : X ↠ Y then there is a left inverse for f , that is there is g : Y ↣ X

such that ∀y ∈ Y (f ◦ g(y) = y);
(v) every set X is projective, that is to say: for every f : X → Y and

every surjection g : Z ↠ Y there is h : X → Z such that f = g ◦ h;
(vi) every set is contained in a projective set;
(vii) if a set R is a binary relation, then there is a function f such that

dom(f) = dom(R) and ∀x ∈ dom(R) (x, f(x)) ∈ R.

Exercise 14.42. Let Fi,j be non-empty sets, with (i, j) ∈ I × J . Show that:

(i)
⋂
i∈I

⋃
j∈J

Fi,j ⊇
⋃

f∈IJ

⋂
i∈I

Fi,f(i) and "i∈I
⋃
j∈J

Fi,j ⊇
⋃

f∈IJ

"i∈IFi,f(i);

(ii) AC implies that⋂
i∈I

⋃
j∈J

Fi,j =
⋃

f∈IJ

⋂
i∈I

Fi,f(i) and "i∈I
⋃
j∈J

Fi,j =
⋃

f∈IJ

"i∈IFi,f(i);
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(iii) both statements, for arbitrary I, J, Fi,j ,⋂
i∈I

⋃
j∈J

Fi,j ⊆
⋃

f∈IJ

⋂
i∈I

Fi,f(i) and "i∈I
⋃
j∈J

Fi,j ⊆
⋃

f∈IJ

"i∈IFi,f(i)

imply AC.

Exercise 14.43. Show that if F is a proper filter of a Boolean algebra B
and BPI(B) holds, then F =

⋂
{D ∈ St(B) | F ⊆ D}.

Notes and remarks

Theorem 14.1 was proved around 1950 by Bourbaki and independently by Witt and for this reason
it is known as the Bourbaki-Witt fixed point theorem. The presentation of Tychonff’s theorem
follows [Cie97].

15. The compactness theorem

15.A. Ultraproducts. We want to generalize the cartesian product con-
struction. Given non-empty sets Ai (i ∈ I ̸= ∅) and a filter F on I consider
the equivalence relation ∼F on "i∈IAi

f ∼F g ⇔ {i ∈ I | f(i) = g(i)} ∈ F.

The relation ∼F is clearly reflexive and symmetric; transitivity follows from
{i ∈ I | f(i) = h(i)} ⊇ {i ∈ I | f(i) = g(i)} ∩ {i ∈ I | g(i) = h(i)} and the
closure of F under intersections and supersets. The reduced product of
the Ais modulo F is the quotient∏

F

Ai
def
= "i∈IAi/∼F.

If F = P(I) then
∏

F Ai is a singleton; if F = {I} then
∏

F Ai can be
identified with "i∈IAi; if F is proper and {i0} ∈ F for some i0 ∈ I, then∏

F Ai → Ai0 , [f ] 7→ f(i0), is a bijection. When F is an ultrafilter, the
reduced product is called an ultraproduct. If the sets Ai are the same set
A we speak of a reduced power and write AI/F; if F is an ultrafilter we
will speak of ultrapower.

Remark 15.1. The construction of reduced power is similar to the construc-
tion of Lp(X,µ) spaces in analysis, where starting from a measurable space
one takes the quotient set{

f | f : X → R is µ-measurable and
∫
X |f(x)|

p dx < +∞
}

taking f ∼F g where F = {Y ⊆ X | µ(X \ Y ) = 0} is the filter of all
sets whose complement is null. (In case µ is a probability measure F =
{Y ⊆ X | µ(Y ) = 1}.) The addition, multiplication and the ordering on
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Lp(X,µ) are defined by: [f ] + [g] = [f + g] and [f ] · [g] = [f · g], where
(f + g) (x) = f(x) + g(x) and (f · g) (x) = f(x) · g(x), and [f ] < [g] if and
only if {x ∈ X | f(x) < g(x)} ∈ F. If the measure concentrates on a point
x̄ ∈ X, that is F = {Y ⊆ X | x̄ ∈ Y } is a principal ultrafilter, then Lp(X,µ)
is isomorphic to R.

If the Ais are endowed with some (algebraic or relational) structure, the
reduced product is endowed with the same structure as well. Let us see
two specific examples when F is a proper, non-trivial, non-principal filter on
I = N.
15.A.1. Ultrapower of (N,≤). Let us fix a filter F on N and consider the
reduced power NN/F with the ordering

[f ]� [g] ⇔ {n ∈ N | f(n) ≤ g(n)} ∈ F

If {n | f(n) = f ′(n)} , {n | g(n) = g′(n)} , {n ∈ N | f(n) ≤ g(n)} ∈ F then{
n ∈ N | f ′(n) ≤ g′(n)

}
⊇{

n | f(n) = f ′(n)
}
∩
{
n | g(n) = g′(n)

}
∩ {n ∈ N | f(n) ≤ g(n)} ∈ F

hence the definition of � does not depend on the representative. Similarly,
one verifies that � is reflexive, antisymmetric, and transitive on NN/F, i.e.
(NN/F,�) is an ordered set.

By assumption F contains the Fréchet filter, hence if f, g ∈ NN agree
from some point on, then f ∼F g. If F is the Fréchet filter, then the ordering
is not total.

Suppose now that F is an ultrafilter. For each pair f, g ∈ NN the sets

{n | f(n) < g(n)} , {n | f(n) = g(n)} , {n | f(n) > g(n)}

form a partition of the natural numbers, hence one and only one of the
following condition holds:

[f ]� [g], [f ] = [g], [g]� [f ].

In other words, � is a linear order on NN/F.
Moreover, if F is non-principal, then � is not a well-order on NN/F: if

fk(n) = |n− k| then . . . [f2]� [f1]� [f0] is an infinite descending chain.
15.A.2. Ultraproduct of fields. If the An = kn are fields, define the operations
of addition and multiplication on

∏
F kn by letting

[f ]+ [g] = [f + g] and [f ] · [g] = [f · g]

where the sequences f + g and f · g are defined by

(f + g)(n) = f(n) +n g(n) and (f · g)(n) = f(n) ·n g(n),
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and the operations +n and ·n on the right-hand side are addition and mul-
tiplication in the field kn. With these operations we get a commutative
ring—the identity elements for sum and product are the equivalence classes
of the sequences n 7→ 0kn and n 7→ 1kn , respectively, and will be denoted
with 0 and 1.

Suppose that [f ] ̸= 0 ̸= [g], but [f ] · [g] = 0. This means that {n |
f(n) = 0kn} /∈ F and {n | g(n) = 0kn} /∈ F, but

{n | f(n) · g(n) = 0kn} = {n | f(n) = 0kn} ∪ {n | g(n) = 0kn} ∈ F,

that is F is not prime.
Conversely if F is prime, that is an ultrafilter, then

∏
F kn is a field. In

fact if [f ] ̸= 0, then A
def
= {n | f(n) ̸= 0kn} ∈ F so we can define

f ′(n) =

{
f(n) if n ∈ A,

1kn otherwise,

so that [f ] = [f ′] and ∀n (f ′(n) ̸= 0kn). If g(n) is the element of kn such
that f ′(n) · g(n) = 1kn , then ∀n (f ′(n) · g(n) = 1kn), that is [f ] · [g] = 1.

If F is the ultrafilter generated by some n0 ∈ N, the function
∏

F kn → kn0 ,
[f ] 7→ f(n0) is an isomorphism of fields. If instead F is non-principal, the
ultraproduct need not be isomorphic to one of its factors. For example suppose
that the fields kn have finite characteristic and that the characteristic tends
to infinity, that is limn→∞ char(kn) = ∞. Fix an m > 0 and let [f ] be a
non-zero element of the ultraproduct—from what we have seen above, we
may assume that f(n) ̸= 0kn , for all n ∈ N. The element

m[f ]
def
= [f ]+ · · ·+ [f ]︸ ︷︷ ︸

m

is the equivalence class of the function mf ∈ "nkn defined by

n 7→ mf(n)
def
= f(n) + · · ·+ f(n)︸ ︷︷ ︸

m

Let M be such that ∀n ≥M (char(kn) > m) hence ∀n ≥M (m · f(n) ̸= 0kn).
The sequence

g(n) =

{
mf(n) if n ≥M

1kn otherwise

is equivalent to mf as F is not principal, hence N \M ∈ F. It follows that
m[f ] is not null. Being m and [f ] arbitrary, we have verified that

∏
F kn is

of characteristic 0.
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15.B. The fundamental theorem of ultraproducts.

Theorem 15.2 (Łos). Let Ai = (Ai; . . . ) be L-structures, with i ∈ I, and
let U be an ultrafilter on I. Let �i be a well-order on Ai. For every formula
φ(x1, . . . , xn) and every g1, . . . , gn ∈ "i∈IAi∏

U

Ai ⊨ φ[[g1], . . . , [gn]] ⇔ Xφ,g1,...,gn ∈ U,

where Xφ,g1,...,gn = {i ∈ I | Ai ⊨ φ[g1(x), . . . , gn(x)]}.

Proof. The proof is by induction on the complexity of φ. If φ is atomic, the
result follows from the definition of

∏
U Ai. For the other cases, suppose fo

simplicity that n, the number of free variables of φ is at most 2. If φ = ¬ψ,
then ∏

U

Ai ⊨ φ[[g1], [g2]]⇔
∏
U

Ai ̸⊨ ψ[[g1], [g2]]

⇔ Xψ,g1,g2 /∈ U

⇔ Xφ,g1,g2 ∈ U

where in the last passage we used that Xφ,g1,g2 = I \Xψ,g1,g2 .
If φ = ψ ∨ χ, then∏
U

Ai ⊨ φ[[g1], [g2]]⇔
(∏

U

Ai ⊨ ψ[[g1], [g2]]
)
∨
(∏

U

Ai ⊨ χ[[g1], [g2]]
)

⇔ Xψ,g1,g2 ∈ U ∨ Xχ,g1,g2 ∈ U

⇔ Xψ,g1,g2 ∪Xχ,g1,g2 ∈ U

⇔ Xψ∨χ,g1,g2 ∈ U

where we used that Xψ∨χ,g1,g2 = Xψ,g1,g2 ∪Xχ,g1,g2 .
Suppose now φ = ∃yψ. If

∏
U Ai ⊨ φ[[g1], [g2]] then there is h ∈ "i∈IAi

such that
∏

U Ai ⊨ ψ[[h], [g1], [g2]] hence, by inductive hypothesis, Xψ,h,ḡ ∈
U . As Xφ,g1,g2 ⊇ Xψ,h,g1,g2 , it follows that Xφ,g1,g2 ∈ U . Conversely, suppose
that Xφ,g1,g2 ∈ U . Let h ∈ "i∈IAi be the function

h(i) =

{
the �i-least a such that Ai ⊨ ψ[a, g1(i), g2(i)] if i ∈ Xφ,g1,g2 ,

a∗i otherwise,

where a∗i is the �i-least element of Ai. Then Xφ,g1,g2 is contained in
Xψ,h,g1,g2 (in fact: the two sets are the same) hence Xψ,h,g1,g2 ∈ U . By
inductive assumption, this implies that

∏
U Ai ⊨ ψ[[h], [g1], [g2]] hence∏

U Ai ⊨ φ[[g1], [g2]]. □

Corollary 15.3. Let A be a well-orderable structure, let U be an ultrafilter on
I, and let π : A→

∏
U A be the map defined by π(a) = [ca] where ca : I → {a}.
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Then π is an elementary embedding. In particular A is elementarily equivalent
to any of its ultrapowers.

We are now ready to prove the compactness theorem for first-order logic,
Theorem 4.46.

Theorem 15.4. Assume AC. If Σ ⊆ Sent(L) is finitely satisfiable, then it is
satisfiable.

Proof. The result is trivial if Σ is finite, so we may assume otherwise. Then
Σ does not belong to I = {i ⊆ Σ | i is finite}. By AC for any i ∈ I choose
Ai ⊨ i. Let S(i) = {j ∈ I | i ⊆ j}. As S(i1) ∩ · · · ∩ S(in) = S(i1 ∪ · · · ∪ in),
then {S(i) | i ∈ I} ⊆P(I) is a base for a proper filter F on I. Let U ⊇ F
be an ultrafilter extending F . We want to show that for each σ in Σ∏

U Ai ⊨ σ.

This follows at once from Łos’ Theorem and from {i ∈ I | Ai ⊨ σ} ⊇ S({σ}) ∈
F ⊆ U . □

Remark 15.5. Does the Compactness Theorem 15.4 depend on the axiom
of choice? The answer is: it depends on the language L. More to the point:

• if the set of non-logical symbols of L is countable (or more generally: it is
well-orderable), then compactness is provable without any appeal to the
axiom of choice;
• if L is arbitrary, then the compactness theorem follows BPI. In fact the

compactness theorem for arbitrary languages is equivalent to BPI.

The proof of Theorem 15.4 given above uses the full axiom of choice, but in
Chapter VII we will present a different proof compactness that vindicates the
two points above. For the time being let us observe that all the consequences
of Theorem 15.4 (that is Theorem 4.46) presented in Sections 4.K, 4.L used
countable languages, so none of them requires choice.

15.C. More applications of compactness.

Definition 15.6. The elementary diagram of A is the set of all sentences
that hold in (A, a)a∈A,

EDiag(A) = Th((A, a)a∈A).

The diagram of A is the set of all atomic and negated-atomic formulæ that
are true in (A, a)a∈A

Diag(A) = EDiag(A) ∩
(
AtFml(LA) ∪ {¬ψ | ψ ∈ AtFml(LA)}

)
.

Theorem 15.7. The following are equivalent:

(a) A ≼· B,
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(b) there is an expansion B̃ of B in the language LA = L∪ {̊a | a ∈ A} such
that B̃ ⊨ EDiag(A).

Proof. (a)⇒ (b): If π : A→ B is elementary, then letting (̊a)B̃ = π(a) for
a ∈ A, we obtain the expansion B̃ = (B, π(a))a∈A. Let us check that B̃ ⊨ σ for
all σ ∈ EDiag(A). If σ ∈ Sent(LA) then σ is of the form φL̊a1/x1, . . . , ån/xnM,
where φ(x1, . . . , xn) is an L-formula, therefore

(A, a)a∈A ⊨ σ⇔ A ⊨ φ[a1, . . . , an]

⇔ B ⊨ φ[π(a1), . . . , π(an)]

⇔ B̃ ⊨ σ.

(b)⇒ (a): Suppose that B̃ is an LA-structure satisfying EDiag(A). Then,
for each pair a1, a2 ∈ A

a1 ̸= a2 ⇔ (̊a1 ̸≖ å2) ∈ EDiag(A) ⇔ B̃ ⊨ å1 ̸≖ å2 ⇔ (̊a1)
B̃ ̸= (̊a2)

B̃.

Therefore π : A→ B, π(a) = (̊a)B̃, is an injective function. If φ(x1, . . . , xn)
is an L-formula and a1, . . . , an ∈ A, then

A ⊨ φ[a1, . . . , an]⇔ φL̊a1/x1, . . . , ån/xnM ∈ EDiag(A)

⇔ B̃ ⊨ φL̊a1/x1, . . . , ån/xnM
⇔ B ⊨ φ[π(a1), . . . , π(an)].

Thus π is elementary. □

The same proof yields:

Theorem 15.8. The following are equivalent:

(a) A ·⊆ B,

(b) there is an expansion B̃ of B in the language LA = L∪ {̊a | a ∈ A} such
that B̃ ⊨ Diag(A).

Notes and remarks
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Exercises

Exercise 15.9. Suppose R is a ring, D a filter on a set I ̸= ∅, and J =
{f ∈ RI | ∃X ∈ D ∀i ∈ X f(i) = 0R}. Show that

(i) J is a two-sided ideal of the ring RI and that the reduced power RI/D
is isomorphic to the quotient ring RI/J .

(ii) Assuming D is an ultrafilter on I, then
• R does not have zero-divisors if and only if J is a prime ideal of RI ;
• R is a division ring if and only if J is a maximal ideal of RI .

Exercise 15.10. Show that a group G is (left-)orderable if and only if
every finitely generated subgroup of G is (left-)orderable. Conclude that if
G0 ⊆ G1 ⊆ . . . are (left-)orderable groups, then

⋃
n∈NGn is (left-)orderable.

Exercise 15.11. In this exercise we give a new proof of Stone’s Theorem 14.18.
Let L be the language {X,F, ∈̊, C, U, I} where

• X,F are 1-ary relational symbols,
• ∈̊, C are 2-ary relational symbols,
• U, I are 3-ary relation symbols

Find a finite Σ ⊆ Sent(L) such that every model of Σ is isomorphic to a
structure with universe X ∪ F, where X ̸= ∅, X ∩ F = ∅, F ⊆ P(X) is a
subalgebra, the relation ∈̊ is interpreted as membership between elements of
X and elements of F, while the sets C, I and U are, respectively, the graphs
of the functions complementation, intersection, and union in F. Let B be
an boolean algebra and let L̃ = L ∪ {̊b | b ∈ B}. Show that Diag(B) ∪ Σ is
a finitely satisfiable set of L̃-sentences. Conclude that B is isomorphic to a
subalgebra of P(X), for some set X.

Exercise 15.12. Use Exercise 7.96 to prove that every distributive lattice is
isomorphic to a sublattice of some P(X).

Exercise 15.13. Prove the Four Color Theorem 10.7 for plane maps with
infinitely many regions, that is: any graph that does not contain neither K5

nor K3,3 as minor is 4-colorable.





Chapter V

Basic set theory

16. The axioms

A set is completely characterized by its elements—two sets with the same
elements coincide:

Suppose that A and B are sets and that, for every x,
x ∈ A if and only if x ∈ B. Then A = B.

(∗)

This principle, known as the axiom of extensionality, is the foundation of
set theory. Another characteristic of the conception of set is that given a
property φ, it is possible to consider the set {x | φ(x)} of all x that satisfy
φ. This set is completely determined because of (∗). It seems reasonable to
postulate that:

(∗∗) If φ is a property, then the set {x | φ(x)} exists.

Yet Bertrand Russell in 1901 showed that (∗∗) contradicts (∗)! To see this,
consider the property φ(x) asserting “x is a set and x /∈ x”, and let

(16.1) R = {x | x /∈ x}.

By (∗∗) R is a set, so either R /∈ R or else R ∈ R. But

R ∈ R implies that R /∈ R and(16.2a)
R /∈ R implies that R ∈ R,(16.2b)

a contradiction. Russell’s paradox, like the Burali-Forti and Cantor paradoxes
(Sections 14.G.1 and 14.G.2 in Chapter ??) use (∗∗) to define collections that
are very “large”, but never appeal to sets encountered in mathematical practice.
In order to resolve these contradictions, several axiomatic theories have
been introduced, each one precisely delimiting the admissible set-theoretic

369
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constructions. The theory that we are going to present is known Morse-Kelly
set theory (MK).

16.A. Sets and classes. The primitive notions are that of a class, and
membership ∈ between classes. A class A is a set if and only if there is a
class B to which A belongs, that is ∃B(A ∈ B). A class that is not a set is a
proper class. In naïve set theory, it is customary to distinguish between sets
(or classes) and objects, but the notion of set (and class) is so general that it
is possible to avoid objects that are not sets or classes. In other words, we
may assume from now on that the elements of a class are themselves classes,
in fact sets. The principle (∗) can be extended to cover the case when A and
B are classes (rather than sets).

Axiom of Extensionality. If A and B are classes and ∀x(x ∈ A⇔ x ∈ B),
then A = B.

In order to adequately formalize (∗∗), the ambiguous concept of property
is replaced with the rigorous notion formula of set theory. The language
of set theory is the first-order language L∈ with only one binary predicate
∈. Thus its atomic formulæ are of the form x ∈ y and x = y.1 We will
abbreviate ¬(x ∈ y) with x /∈ y. Let Set(x) be the formula asserting that x
is a set:

(Set(x)) ∃y (x ∈ y) .

The following axiom-schema crystallizes the principle (∗∗).

Axiom of Comprehension. Let φ(x, y1, . . . , yn) be a formula in which the
variable x occurs free, and let A be a variable different from x, y1, . . . , yn.
Then

∀y1 . . . ∀yn∃A∀x
(
x ∈ A⇔ (Set(x) ∧φ(x, y1, . . . , yn))

)
.

The class A defined by φ and y1, . . . , yn is the class of all sets x such
that φ(x, y1, . . . , yn) holds. By extensionality, the class A is unique and it is
denoted by {x | φ(x, y1, . . . , yn)}.

Remark 16.1. In mathematics, every time it is proved that

∀x1 . . . ∀xn∃!yφ(x1, . . . , xn, y)

a new symbol t(x1, . . . , xn) is introduced, denoting the unique y satisfying
φ(x1, . . . , xn, y). This t(x1, . . . , xn) is called a defined term, and it is a
term of a language extending L∈. Therefore

(16.3) {t(x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}

1We should really write x ≖ y, rather than x = y, but as the only terms of in set theory are
the variables, we can safely blur the distinction between these two notions.
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is shorthand for the class

{y | ∃x1 . . . ∃xn (x1 ∈ X1 ∧ · · · ∧ xn ∈ Xn ∧φ(x1, . . . , xn, y))},

where φ is the formula defining t.

Let’s go back to Russell’s paradox. By the axiom of comprehension, the
class R = {x | x /∈ x} exists and the implication in (16.2a) shows that R ∈ R
cannot hold, hence R /∈ R. If R were a set, we could apply (16.2b) and obtain
a contradiction as before. (If instead R is a proper class and the problem
disappears.) It follows that R is a proper class.

If A is a class, {x ∈ A | φ(x, y1, . . . , yn)} is the class determined by
the formula x ∈ A ∧ φ(x, y1, . . . , yn), that is {x ∈ A | φ(x, y1, . . . , yn)} =
{x | x ∈ A ∧φ(x, y1, . . . , yn)}. The usual set-theoretic operations apply to
classes as well: if A and B are classes, then A ∩ B = {x | x ∈ A ∧ x ∈ B},
A ∪ B = {x | x ∈ A ∨ x ∈ B}, A \ B = {x | x ∈ A ∧ x /∈ B} and A△B =
(A \ B) ∪ (B \ A) are classes. From the axiom of extensionality, it follows
that A ∩B = B ∩A, A ∪B = B ∪A and A△B = B△A.

The axiom of comprehension guarantees the existence of many classes,
but by itself it does not guarantee the existence of sets.

Axiom of Set-existence. ∃x Set(x).

The class A is a subclass of B, i.e. A is contained in B, in symbols
A ⊆ B, if ∀x (x ∈ A⇒ x ∈ B). If A ⊆ B and A ̸= B, then A is a proper
subclass of (or: is properly contained in) B and write A ⊂ B.

Axiom of Power-set. For every set A there is a set P such that

∀B (B ⊆ A⇔ B ∈ P ) .

In other words: if A is a set, every subclass of it is a set, and the class of
all subsets of A is itself a set. The set P as above is denoted with P(A) and
it is called power-set of A. Note that P(x) is a defined term in the sense
of Remark 16.1.

Corollary 16.2. If B is a set and A ⊆ B then A is a set. Equivalently: if
A is a proper class and A ⊆ B then B is a proper class.

If A is a set, then also A ̸= = {x ∈ A | x ̸= x} is a set. No x can belong
to A ̸= and by the axiom of extensionality, any empty class must be equal to
A ̸=. In other words, A ̸= does not depend on A and it is called empty set,
and it is denoted with ∅.

Give two sets x and y, the axiom of comprehension guarantees the
existence of {x, y}, and by extensionality {x, y} = {y, x}. We require that
this class be a set:
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Axiom of Pairing. If x and y are sets, then {x, y} is a set.

It is not required that x and y be distinct—if x and y coincide, we will
write {x, x} as {x}, called the singleton of x. The axiom of comprehension
applied to the formula x = x1 ∨ · · · ∨ x = xn guarantees the existence of
{x1, . . . , xn}; by the axiom of union that we will see shortly, it can be shown
that {x1, . . . , xn} is a set (Exercise 16.15(iii)).

If x and y are sets, the ordered pair (x, y) is defined as

(16.4) (x, y)
def
= {{x}, {x, y}}.

Proposition 16.3. For all sets x, y, z, w, we have (x, y) = (z, w) ⇔ x =
z ∧ y = w.

Proof. Suppose that (x, y) = (z, w): we must to check that x = z and
y = w. If x = y then {{x}} = (x, y) = (z, w) = {{z}, {z, w}}, hence
{x} = {z, w} = {z}, that is x = z = w. It follows that x = y ⇒ z = w and
since the converse implication follows similarly, it can be shown that

(16.5) x ̸= y and z ̸= w.

Since {x} ∈ (x, y) = (z, w) = {{z}, {z, w}}, it follows that either {x} = {z}
or else {x} = {z, w}, hence either x = z or x = z = w. The second possibility
must be discarded because of (16.5), hence x = z. From {x, y} ∈ (x, y) =
(z, w) = (x,w) it follows that either {x, y} = {x} or {x, y} = {x,w}. The
former cannot hold by (16.5), and by the latter we obtain y ∈ {x,w}, that is
either y = x or y = w: again by (16.5) it follows that y = w.

The converse implication is immediate. □

Remark 16.4. The definition in (16.4) is due to Kuratowski. It is not the
only possible definition of ordered pair, but it is probably the simplest. The
first such definition was given by Wiener in 1914, (x, y)W = {{∅, {x}}, {{y}}}.
Another definition of ordered pair is a variant of the one by Kuratowski:
(x, y)K′ = {x, {x, y}}. The disadvantage of this definition is that it requires
the axiom of foundation (defined below) in order to prove its adequacy—see
Exercise 16.21.

If A ∈ B it is reasonable to consider A to be simpler than B. From this
point of view, the empty set is the simplest of all sets. If the elements of a
set are simpler than the set itself, then no set should belong to itself.

Axiom of Foundation. If A is a non-empty class there is a B ∈ A such
that A ∩B = ∅.

Remark 16.5. If A ∈ A for some class A, then A would be a set and hence
{A} would exist. By the axiom of foundation there should be a set B ∈ {A}
such that B ∩ {A} = ∅. Then B should be A and by assumption A ∈ A = B
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and therefore A ∈ B ∩ {A}: a contradiction. Similarly there are no sets A
and B such that A ∈ B and B ∈ A.

Since no set can belong to itself, Russell’s class R in (16.1) is the class of
all sets, and it is usually denoted by V:

(16.6) V
def
= {x | x = x}.

For this reason, V is called the universe of all sets or total class.
The operations of generalized unions and intersections are defined as

follows: ⋃
A =

⋃
x∈A

x = {y | ∃x ∈ A(y ∈ x)}⋂
A =

⋂
x∈A

x = {y | ∀x ∈ A(y ∈ x)},

with the proviso that when A = ∅ then
⋂
A = ∅. Since

⋂
A ⊆ x for all x ∈ A,

Corollary 16.2 implies that
⋂

A is always a set.

Axiom of Union. If A is a set, then
⋃
A is also a set.

Thus, if x and y are sets, then {x, y} is also a set by the axiom of pairing,
hence x ∪ y

def
=
⋃
{x, y} is also a set.

The cartesian product of two classes A and B is the class A × B =
{(x, y) | x ∈ A ∧ y ∈ B}, which exists by comprehension.

Proposition 16.6. If A and B are sets, then A×B is also a set.

Proof. It is enough to find a set containing A × B. If x ∈ A and y ∈ B,
then {x}, {x, y} ⊆ A ∪B, and hence (x, y) = {{x}, {x, y}} ⊆P(A ∪B). It
follows that A×B ⊆P(P(A ∪B)), so we are done. □

16.B. Infinite sets. The constructions seen so far enable us to construct
infinitely many sets. Starting from ∅ and using pairing and unions we obtain

{∅} = S(∅), {∅, {∅}} = S({∅}), {∅, {∅}, {∅, {∅}}} = S({∅, {∅}}), . . .

where
S(x) = x ∪ {x}

is called the successor of x. The sets in the list above are all distinct, thus
the class V is infinite. Let’s introduce the following definition: a class I is
inductive if

∅ ∈ I ∧ ∀x (x ∈ I ⇒ S(x) ∈ I) .

Inductive classes exist, for example V, but what about inductive sets?

Axiom of Infinity. There is an inductive set.
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Let I be the class of all inductive sets and let

(16.7) N def
=
⋂

I.

Thus N is the smallest set containing ∅ and closed under the successor
operation. Define 0 = ∅, 1 = S(0), 2 = S(1) = S(S(0)), . . .

Proposition 16.7. N ∈ I and if n ∈ N, then either n = 0 or else n = S(m)
for some m ∈ N.

Proof. It is easy to check that N ∈ I. Let n ∈ N \ {0} and suppose, towards
a contradiction, that n ̸= S(m) for all m ∈ N. Then J = N \ {n} would
be an inductive set, that is J ∈ I. This implies that J ⊇

⋂
I = N, but by

construction J ⊂ N: a contradiction. □

We are now ready to prove Ind2 the second-order induction principle for
N seen in Section 12.A.

Proposition 16.8. Suppose that 0 ∈ I ⊆ N and ∀n (n ∈ I ⇒ S(n) ∈ I).
Then I = N.

Proof. I ∈ I, therefore I ⊇ N. □

16.C. Relations and functions. A binary relation (or simply: a relation)
is a class whose elements are ordered pairs. A relation F is functional if
(x, y), (x, y′) ∈ F implies that y = y′; sometimes we use the term class-
function instead of functional relation. A function is a set which is a
functional relation. We often write x R y instead of (x, y) ∈ R and whenever
R is a functional relation, R(x) denotes the unique y (if it exists) such that
(x, y) ∈ R. The composition of R with S is the class

R ◦ S def
= {(x, z) | ∃y ((x, y) ∈ S ∧ (y, z) ∈ R)}

and the converse of R is

R̆ = {(x, y) | (y, x) ∈ R} .

Although the definition of R ◦ S (and of R̆) makes sense for all classes, it is
particularly important when R and S are functional relations: in this case
also R ◦ S is a functional relation and (R ◦ S)(x) = R(S(x)).

The domain, the range, and the field of a class R are, respectively,

dom(R) = {x | ∃y (x, y) ∈ R} ran(R) = {y | ∃x (x, y) ∈ R}
fld(R) = dom(R) ∪ ran(R).

Proposition 16.9. If R is a set, then dom(R), ran(R), fld(R) are sets.
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Proof. In order to show that dom(R) is a set, it is enough to find a set
containing dom(R): if x ∈ dom(R) then x ∈ {x} ∈ (x, y) ∈ R, for some
y, hence x ∈

⋃
(
⋃
R), and therefore dom(R) ⊆

⋃
(
⋃
R). The argument for

ran(R) and fld(R) are similar. □

Proposition 16.10. Let F be a class of functions upward directed under ⊆.
Then

⋃
F is a functional relation.

Proof.
⋃
F is a class of ordered pairs. Suppose that (x, y), (x, z) ∈

⋃
F,

hence (x, y) ∈ f and (x, z) ∈ g, for some f, g ∈ F. Let h ∈ F be such that
f, g ⊆ h: then (x, y), (x, z) ∈ h hence y = z. □

The next result amplify Remark 16.5.

Theorem 16.11. There is no functional relation F such that domF = N
and F (S(n)) ∈ F (n) for all n ∈ N.

Proof. Suppose there is such an F . Since ∅ ̸= ranF , there is y ∈ ranF
such that y ∩ ranF = ∅ by the axiom of foundation. Let n ∈ N be such that
y = F (n). But F (S(n)) ∈ F (n) ∩ ranF : a contradiction. □

For F and A arbitrary classes, the point-wise image of A via F is the
class

F [A] = F“A = {y | ∃x ∈ A (x, y) ∈ F}.
The notation F“A is used whenever the square brackets are already used
for some other concepts (e.g. equivalence classes). The pre-image of A via
F is F−1[A] = {x | ∃y ∈ A (x, y) ∈ F}, while F ↾ A = {(x, y) ∈ F | x ∈ A}
is the restriction of F to A. If both F and A are proper classes, it may
happen that F [A] be a proper class: for example if F is the identity functional
relation

id
def
= {(x, x) | x ∈ V}

then id[A] = A is not a set. We write idA for id ↾ A. If R is a relation on a
class X and Y ⊆ X, we denote the induced relation R ∩ (Y × Y ) by R ↾ Y
or even R, if there is no danger of confusion.

By Exercise 16.15(v) if F is a set then also F [A] is a set, but what
happens if F is a proper class and A a set? Small classes are sets, and since
every element of A corresponds at most one element of F [A], this class should
be a set.

Axiom of Replacement. If F is a functional relation and A is a set, then
F [A] is a set.

This completes the list of the axioms of MK.
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If F is a (class-)function with domain A and range contained in B, we
say that F is a (class-)function from A to B and write F : A → B. The
collection of all these F is denoted with AB or BA.

Remark 16.12. Both notations BA and AB are used in set theory, but only
the latter is common in other parts of mathematics. The reason for using
AB is that in certain situations BA is ambiguous: for example 23 is the class
(actually: the set, by Proposition 16.13) of all maps from the set 2 = {0, 1}
to the set 3 = {0, 1, 2}, while 32 is the number 9. When there is no danger of
confusion we will freely use BA.

Proposition 16.13. If A and B are sets, then BA is a set.

Proof. BA ⊆P(A×B). □

If F is an injective (class-)function, then F̆ is also a (class-)function,
denoted by F−1, and it is called the inverse (class-)function. In this case F
and F−1 are inverses of each other, that is

∀x ∈ dom(F ) [(F−1 ◦ F )(x) = x] and ∀x ∈ ran(F ) [(F ◦ F−1)(x) = x].

The point-wise image of A via F−1 coincides with the preimage of A via
F , hence the notation F−1[A] is unambiguous. We retool the notions seen
in Section 13.C to classes: given two classes A and B, we will say that A
embeds into B, A ≾ B if there is an injective functional-relation F : A ↣ B;
if F is bijective we will say that A and B are equipotent, A ≍ B.

The axiom of replacement yields:

Proposition 16.14. If A is a proper class and A ≾ B, then B is a proper
class as well.

16.D. Sequences and strings. In mathematics the notation Fx is often
used in place of F (x)—when writing “ai (i ∈ I)” or “(ai)i∈I ” we are really
positing the existence of a function a with domain I mapping i ∈ I to ai.
For example it is common practice in mathematics to use “indexed sets” to
denote a family of sets—e.g we write A as {Ai | i ∈ I}. This can always
be achieved—set I = A and take i 7→ Ai to be the identity map idI . This
notation is very handy when dealing with the disjoint union of the sets
Ai: choose A′

i ≍ Ai so that these new sets are pairwise disjoint, and we take
their union. For example take A′

i = {i} × Ai. When A and B are sets or
classes, their disjoint union is

(16.8) A ⊎B = ({0} ×A) ∪ ({1} ×B).

In order to concisely describe the function with domain I mapping i ∈ I
to ai we shall write either I ∋ i 7→ ai or else ⟨ai | i ∈ I⟩. This notation is
particularly handy when I ∈ N, that is when we deal with finite sequences,
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or strings. For example, s = ⟨a0, a1, . . . , an−1⟩ is the function with domain
n = {0, 1, . . . , n− 1} that assigns ai to i < n; the ordinal n = dom(s) is called
the length of s and it is denoted with lh s. In calculus, the word sequence
means function with domain N, but in set theory it simply means function,
so ⟨ai | i ∈ I⟩ is an I-sequence of sets. With a slight abuse of terminology
we speak of sequences even when I is a proper class and ⟨ai | i ∈ I⟩ is a
class-function.

Although the sequence ⟨a, b⟩ of length 2 and the ordered pair (a, b) are
essentially the same, they are distinct sets. The advantage in using sequences
rather than pairs becomes evident when we must talk about n-tuples: if
we defined2 a tuple by (a1, a2, . . . , an)

def
= ((a1, a2, . . . , an−1), an), then its

length would not be well-defined. Another drawback of the usual definition
of ordered pair is that the cartesian product is non-associative, hence the
expression X × · · · ×X is ambiguous—for example: when we write R3 do
we mean (R× R)× R or R× (R× R)? In order to avoid petty (and trivial)
ambiguities, it is best to declare that Xn be the class of all functions from n
into X, rather than the cartesian product X × · · · ×X, and that Xn ×Xm

stands for the collection Xn+m. In accordance with Section 3.E, for any class
X let

(16.9) X<N = {s | s is a finite string and ran(s) ⊆ X}.

Then X<N is a set if and only if X is a set.
A finitary function or operation on a class X is a functional relation

f : Xn → X where n = ar(f) ∈ N is called arity of f . If n = 0 then
f : {∅} → X, hence f is completely determined by the value f(∅) ∈ X.
Thus 0-ary functions on X can be identified with the elements of X. If f
is an operation on X, by notational simplicity we will write either f(x⃗) or
f(x0, . . . , xn−1) rather than the more correct, but baroque, f(⟨x0, . . . , xn−1⟩).

The definition of ordered pair can be extended to proper classes: if A
and B are classes and at least one among them is a proper class, set

⟨A,B⟩ def
= A ⊎B.

Since A = {x | (0, x) ∈ ⟨A,B⟩} and B = {x | (1, x) ∈ ⟨A,B⟩}, the class
⟨A,B⟩ codes both A and B. More generally, if we assign a class Ai to each
i ∈ I, and at least one of the Ai’s is a proper class, define the sequence
⟨Ai | i ∈ I⟩ to be the class

A = {(i, a) | i ∈ I ∧ a ∈ Ai}

and, with abuse of language, we will write I = dom(A).
Recall the axiom of choice, introduced in Section 14.

2This is the approach that will be used in Section 39—see Definition 39.1.
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Axiom of Choice. If A is a non-empty set and if ∀A ∈ A (A ̸= ∅), then
there exists f : A→

⋃
A such that ∀A ∈ A (f(A) ∈ A).

A map f as above is called a choice function for A; a choice function
on X, where X is a non-empty set, is an f : P(X) → X such that f ↾
P(X) \ {∅} is a choice function for P(X) \ {∅}. Letting X =

⋃
A we can

reformulate AC as: “For every set X ̸= ∅ there is a choice function on X.”
Recall that if I is a set and ⟨Ai | i ∈ I⟩ is a sequence of sets, the generalized
cartesian product is

"i∈IAi = {f | f is a function, dom(f) = I and ∀i ∈ I (f(i) ∈ Ai)}.

Therefore if Ai = A for all i ∈ I, then "i∈IAi = AI . If Ai0 = ∅ for some
i0 ∈ I, then "i∈IAi = ∅. The converse: “if I ̸= ∅ is a set and Ai ̸= ∅ for all
i ∈ I, then "i∈IAi ≠ ∅” is equivalent to AC (Exercise ??). Note that when the
Ai are all equal to some fixed set A ̸= ∅, then AC is not needed to prove that
"i∈IAi = AI is non-empty, as witnessed by any constant function i 7→ a ∈ A.

The theory obtained by adding the axiom of choice to MK is denoted by
MK+ AC. By requiring a uniform method for extracting an element from
a non-empty set, we obtain a strengthening of AC known as the axiom of
global choice

(AGC) ∃F (F : V \ {∅} → V ∧ ∀x (x ̸= ∅ ⇒ F (x) ∈ x)) .

We have little use for such principle and, unless otherwise stated, in this book
when appealing to choice we mean the “local version” AC, or some weakening
of it.

Exercises

Exercise 16.15. Show that:

(i) if A is a set, then A ∩B is a set,
(ii) if B is a proper class then A ∪B is a proper class,
(iii) if x1, . . . , xn are sets, then also {x1, . . . , xn} is a set,
(iv) V \ x is a proper class, for every set x,
(v) if f is a set, then so is f“A,
(vi) {{x} | x ∈ V} is a proper class;
(vii) if y ̸= ∅ is a set, then {x | x ≍ y} is a proper class.
(viii) Give an example of a proper class A such that

⋃
A is a proper class.

Exercise 16.16. Show that:
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(i) if A is a proper class or if B = ∅ ≠ A, then BA = ∅,
(ii) if A ̸= ∅ is a set and B is a proper class, then BA is a proper class,
(iii) if A = ∅, then BA = {∅}.

Exercise 16.17. Show that

(i) X is a set if and only if X<N is a set,
(ii) if X is a proper class, then Xn (n ̸= 0) is a proper class,
(iii) a class R is a binary relation if and only if it coincides with its double

converse ˘̆
R,

(iv) if R̆ is a proper class, then so is R.

Exercise 16.18. Find formulæ φ(x) and ψ(x) stating that “x is of the form
{y, z}, with y ̸= z” and “x is an ordered pair.”

Exercise 16.19. Formalize in L∈ the following axioms of MK: Powerset,
Pairing, Foundation, Union, Infinity, and Replacement.

Exercise 16.20. Show that if ⟨Ai | i ∈ I⟩ is a sequence of non-empty classes
and I ̸= ∅ is in bijection with a natural number, then "i∈IAi ̸= ∅.

Exercise 16.21. Show that:

{{∅, {x}}, {{y}}} = {{∅, {z}}, {{w}}} ⇒ x = z ∧ y = w and
{x, {x, y}} = {z, {z, w}} ⇒ x = z ∧ y = w.

(For the second implication use the axiom of foundation.) Therefore the
definitions of order pair (x, y)W and (x, y)K′ in Remark 16.4 are adequate.

Exercise 16.22. Show that there is no formula φ(x, y, w⃗) such that MK
proves:

∃w⃗
[
∀x (Set(x)⇒ ∃!yφ(x, y, w⃗)) ∧ ∀y∃x(Set(x) ∧φ(x, y, w⃗))

]
.

In other words, in MK there is no definable surjective map from V, the class
of all sets, onto the collection of all classes. In layman’s terms: are more
classes than sets.

17. The theories MK, ZF, and NGB

The axiomatization of set theory was introduced in order to resolve the
antinomies spawned by Russell’s paradox. A possible axiomatization is the
one seen in the preceding section—the theory MK—that talks about certain
mathematical objects called classes. These split into two sub-collections: the
“small” ones, that is sets, and the “large” ones, that is the proper classes. The
axioms of MK are:

Extensionality: ∀x∀y (∀z(z ∈ x⇔ z ∈ y)⇒ x = y).
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Comprehension (axiom schema): For all L∈ formulæ

φ(x, y1, . . . , yn)

in which x occurs free, and for all variables A different from x, y1, . . . , yn,

∀y1 . . . ∀yn∃A∀x (x ∈ A⇔ Set(x) ∧φ(x, y1, . . . , yn)) .

Existence of sets: ∃x∃y(x ∈ y).

Power-set: ∀x (∃y (x ∈ y)⇒ ∃z∃w (z ∈ w ∧ ∀t (t ∈ z ⇔ t ⊆ x))).

Pairing: ∀x∀y (∃a (x ∈ a) ∧ ∃b (y ∈ b)⇒ ∃z∃c (z ∈ c ∧ z = {x, y})).

Foundation: ∀A (A ̸= ∅ ⇒ ∃x (x ∈ A ∧ x ∩A = ∅)).

Union: ∀x (Set(x)⇒ ∃u (Set(u) ∧ u =
⋃
x)).

Infinity: ∃x (Set(x) ∧ ∅ ∈ x ∧ ∀y (y ∈ x⇒ S(y) ∈ x)).

Replacement:

(17.1) ∀F∀A
((
∀x ∈ dom(F ) ∃!y (x, y) ∈ F ∧ Set(A)

)
⇒ Set(F“A)

)
.

The axioms above are only partially formalized in the language L∈
since we have used defined terms like ⊆, {x, y}, ∩, ∅,

⋃
, S, F“A, dom(F ),

and the formula Set(x). We leave to the reader the burden of removing
these definite symbols (Exercise 16.19). Moreover we have used capital and
lower case letters, in an attempt to make the meaning of the axioms more
transparent. For example, in the case of the axiom of replacement, the letter
F suggests that we are working with a function (to be precise: a functional
relation). In the axiom of comprehension the letters (i.e. the variables)
y1, . . . , yn denote parameters, while the capital letter A is used for the class
{x | φ(x, y1, . . . , yn)} whose existence is postulated by the axiom.

It is possible to formulate MK in a two-sorted language—see Section 9.C.
Formally we have a binary relation symbol ∈ and two disjoint lists of variables
x0, x1, x2, . . . for sets, and X0, X1, X2, . . ., for classes. Here is how the axioms
of MK look like. Note the axiom of set existence follows logically from
∃x(x = x), but on the other hand an axiom stating that sets are classes must
be added.

Sets are classes: ∀x ∃X (x = X).

Extensionality: ∀X∀Y (∀z(z ∈ X ⇔ z ∈ Y )⇒ X = Y ).

Comprehension (axiom schema): For φ(x, Y1, . . . , Yn, z1, . . . , zm) an L∈
formula in which x occurs free, and for all variables A different from Y1, . . . , Yn,

∀Y1 . . . ∀Yn∀z1 . . . ∀zm∃A∀x (x ∈ A⇔ φ(x, Y1, . . . , Yn, z1, . . . , zm)) .

Power-set: ∀x∃y∀z (z ∈ y ⇔ ∀w(w ∈ z ⇒ w ∈ x)).
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Pairing: ∀x∀y∃z∀w (w ∈ z ⇔ w = x ∨ w = y).

Foundation: ∀X (∃y(y ∈ X)⇒ ∃y (y ∈ X ∧ ¬∃w(w ∈ y ∧ w ∈ X))).

Union: ∀x∃u∀y (y ∈ u⇔ ∃z(z ∈ x ∧ y ∈ z)).

Infinity: ∃x (∅ ∈ x ∧ ∀y (y ∈ x⇒ S(y) ∈ x)).

Replacement: ∀F∀a
((
∀x ∈ dom(F ) ∃!y(x, y) ∈ F

)
⇒ ∃b(b = F“a)

)
.

17.A. The Zermelo-Frænkel axioms. Another axiomatization of set
theory is due to Zermelo and Frænkel, and it generally known with the
acronym ZF. Just like MK, it is formulated in the language L∈, hence the
notion of formula of set theory remains the same, but, contrarily to MK,
it is a theory that talks only about sets. Proper classes in ZF are formulæ
describing a collection without formal counterpart in the theory. For example:
instead of the class of all groups one considers the formula γ(x) asserting
that x is a group, that is x is an ordered pair (G, ∗), where G is a non-empty
set and ∗ is a binary operation on G inducing a group structure. Similarly,
the class of all topological spaces is the formula τ(x) stating that x is an
ordered pair (X,O) where X is a non-empty set and O is a topology on X.
In particular, the class V of all sets has no right to exists in ZF. The axioms
of extensionality and foundation are exactly as in MK; the axioms of pairing,
powerset, union, and infinity are essentially as in MK, except that we do not
need to state that we are dealing with sets:

Pairing: ∀x∀y∃z (z = {x, y}).

Power-set: ∀x∃y∀z (z ∈ y ⇔ z ⊆ x).

Union: ∀x∃y∀z (z ∈ y ⇔ ∃u (u ∈ x ∧ z ∈ u)).

Infinity: ∃x (∅ ∈ x ∧ ∀y (y ∈ x⇒ S(y) ∈ x)).

The axiom-schema of comprehension is replaced by

Separation (axiom schema): For any φ(x,B, y1, . . . , yn) such that x occurs
free in it, and for any variable A different from x,B, y1, . . . , yn,

∀y1 . . . ∀yn∀B∃A∀x (x ∈ A⇔ x ∈ B ∧φ(x,B, y1, . . . , yn)) .

In other words: for any set B and any formula φ the set A = {x ∈ B |
φ(x, y1, . . . , yn)} exists. The axiom of replacement is supplanted by the
following axiom-schema:
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Replacement (axiom-schema): For any φ(x, y,A, z1, . . . , zn) and any vari-
able B different from x, y,A, z1, . . . , zn,

∀A∀z1 . . . ∀zn (∀x (x ∈ A⇒ ∃!yφ(x, y,A, z1, . . . , zn))⇒
∃B∀y (y ∈ B ⇔ ∃x (x ∈ A ∧φ(x, y,A, z1, . . . , zn)))) .

In other words: given sets A, z1, . . . , zn, if the formula φ defines a function
x 7→ y on the set A, then there is a set B whose elements are exactly all
these y.

Note that (17.1) is a single axiom, while the axiom-schema of replacement3

of ZF is an infinite list of statements. Russell’s paradox is disarmed by ZF
as follows. First of all the collection R in (16.1) was not defined using the
axiom of separation, thus we cannot infer that it is a set, i.e. a legitimate
object in ZF. In fact ZF proves that: ¬∃x ∀y (y /∈ y ⇒ y ∈ x). To see
this, suppose, towards a contradiction, that such a set x exists: then x = R,
and the implications (16.2a) and (16.2b) would still be valid, leading to a
contradiction. It follows that R is not a set, hence Russell’s paradox vanishes.

17.B. The von Neumann-Gödel-Bernays axioms. There is a third
approach to axiomatic set theory, due to von Neumann and developed by
Gödel and Bernays, aptly named NGB. As in the case of MK, the theory NGB
deals with both sets and classes. The axioms of this theory are more easily
stated in a two-sorted language: as before, upper case letters range on classes,
while lower case letters range over sets. If we wanted to stick to the usual one
sorted language, we should replace each occurrence of quantification over sets
∃xφ(x) and ∀xφ(x) with ∃X (Set(X) ∧φ(X)) and ∀X (Set(X)⇒ φ(X)).

Sets are classes: ∀x ∃X (x = X),

Classes belonging to classes are sets: ∀X ∀Y (X ∈ Y ⇒ ∃x (x = X)),

Extensionality: ∀X∀Y (∀z(z ∈ X ⇔ z ∈ Y )⇒ X = Y ),

Pairing: ∀x∀y∃z∀w (w ∈ z ⇔ w = x ∨ w = y).

A formula is predicative if the only quantified variables are set-variables.

Predicative comprehension (axiom schema): If x is free in the predicative
formula φ(x, y1, . . . , yn, Z1, . . . , Zm), and X does not occur in φ, then

∀y1, . . . , yn, Z1, . . . , Zm∃X∀x(x ∈ X ⇔ φ(x, y1, . . . , yn, Z1, . . . , Zm)).

Separation: ∀x∀Y ∃z∀w (w ∈ z ⇔ w ∈ x ∧ w ∈ Y ), that is: the intersection
of a class with a set is a set.

Power-set: ∀x∃y∀z (z ∈ y ⇔ z ⊆ x).

3In order to tell apart the axiom of replacement in MK (a single statement) from the one in
ZF (an infinite list of statements), the former is called strong replacement.
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Foundation: ∀X (∃y (y ∈ X)⇒ ∃y (y ∈ X ∧ ∀z (z /∈ y ∩X))).

Union: ∀x∃y∀z (z ∈ y ⇔ ∃u (u ∈ x ∧ z ∈ u)).

Infinity: ∃x (∅ ∈ x ∧ ∀y (y ∈ x⇒ S(y) ∈ x)).

Replacement: ∀F∀a
[
∀x (x ∈ a⇒ ∃!y (x, y) ∈ F )⇒ ∃b∀y (y ∈ b⇔ ∃x (x ∈

a ∧ (x, y) ∈ F ))
]
.

17.C. MK vs NGB vs ZF. Although the vast majority of the objects studied
in mathematics are sets, it is often useful to be able to speak of the class of all
groups, or the class of all topological spaces, or the class of all finite sets—this
is particularly relevant when using the language of categories (Section 22). For
this reason some mathematicians prefer a theory like MK or NGB over ZF. On
the other hand these theories do not seem to be very satisfactory either, since
it is not possible to construct aggregates such as classes-of-classes like P(V),
or classes-of-classes-of-classes like P(P(V)), etc. These very large aggregates
occur in various part of mathematics, for example the topology on the class
of all ordinals (Section 21.D), the category of all categories (Section 22), the
topology on the class of all L-structures (Section 15), and so on. Actually if
we extend ZF by adding strong forms of the axiom of infinity it is possible to
capture the concept of class, of class-of-classes, class-of-classes-of-classes,. . .
and much more. For this reason research in set theory takes place for the
most part in ZF or in some extension of it.

The axioms of MK that we presented form an infinite list, and the same
is true were of ZF and NGB. In Chapter VIII we will prove that for ZF and
MK this is not an accident, since these theories are not finitely axiomatizable,
while, quite surprisingly, NGB is finitely axiomatizable.

In MK and NGB it is possible to prove theorems of the form

∃X (¬Set(X) ∧ . . . X . . .)(17.2)

and

∀X (¬Set(X)⇒ . . . X . . .)(17.3)

that is statements of the form: “There is a proper class X such that . . . ” and
“For all proper classes X it happens that . . . ”. Clearly in MK and NGB one
can prove much more complex statements, like: “For each proper class X
there is a proper class Y such that . . . ”. In ZF one might prove existential
statements as in (17.2): in this case we must explicitly produce a formula
defining the proper class X with the required properties. In MK and in NGB
the burden is lighter and we may prove (17.2) by contradiction: assuming
no proper class X satisfies the required property, a contradiction is argued
in MK or in NGB. In ZF statements of the form (17.3) are problematic: a
“theorem” of this kind must be proved case-by-case, one for each formula
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φ defining the class X. The ensuing result is a scheme of theorems or a
metatheorem.

The discussion above may suggest that the difference between MK and ZF
pertains only to proper classes, and that the theorems about sets be the same
in either theory. Every statement on sets provable in ZF is also a theorem of
MK, but not conversely: there are statements on the natural numbers that
are provable in MK, but not in ZF. In fact these can be taken to be of the
form

∀n ∈ N P (n)

where P is a recursive predicate. Admittedly, statements of this form are
quite rare, and by and large, a result about sets proved in MK is also provable
in ZF, essentially with the same proof. On the other hand, any statement
about sets proved in NGB, can be proved inside ZF.

17.D. Set theory as a foundation for mathematics. In the remaining
sections we shall show how to reconstruct mathematics within axiomatic set
theory, giving a rigorous proof of even the simplest results. In particular, the
results in Chapter I, III and ?? will be shown to be provable in MK, in NGB,
and in ZF. Let us see how.

The structure ⟨N,S, 0⟩ is inductive (Proposition 16.8), hence by what
was said at the end of Section 12.A, the two operations + and · are defined
on N, and satisfy the recursive definitions of sum and product. In Section 18
we shall define ordinals (and cardinals) and their ordering; the set N will be
an ordinal and we will check that its ordering satisfies the minimum principle,
enabling us to recover all results from Section 12. In particular, it is possible
to define the bijection J : N × N → N of (8.1) on page 204, hence one can
prove that N× N ≍ N (Theorem 13.14). The sets Z, Q, R and C are defined
as in Section 13, and hence N ≍ Z ≍ Q, and P(N) ≍ R ≍ C, and P(N) is
uncountable.

The definition of first-order language, term, formula, will be given in
Section 30.B, and the satisfaction relation will be given in Section 31.A: the
ancillary notions (such as: free/bound occurrences of variables, etc.) are
particular cases of results on finite strings of Section 23.

Exercises

Exercise 17.1. Let σ be the statement ∃x′∃x∀y(y /∈ x ∧ x ∈ x′), that the
assertion that empty set exists. Clearly σ is a theorem of both ZF and MK.
Consider the following theories
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T1: σ + pairing axiom + powerset axiom,
T2: σ + union axiom + powerset axiom,
T3: σ + pairing axiom + union axiom + powerset axiom.

Which of the theories above proves the existence of a set with 5 elements?

Exercise 17.2. Show that in the presence of the other axioms of MK, the
axiom of replacement (17.1) is equivalent to its injective version: If F is an
injective functional relation and A is a set, then F [A] is a set.

Prove a similar result for ZF.

Exercise 17.3. Show that NGB can be formalized using one sort of variables.

Exercise 17.4. In this exercise, let’s assume that both MK and NGB are
formulated in a two sorted language. Show that:

(i) every axiom of ZF is provable in NGB;
(ii) every axiom of NGB is provable in MK.

Notes and remarks

The axiomatization of set theory was completed only in the first half of the twentieth century, and it
is the cooperative effort of many mathematicians, including Zermelo, Frænkel, von Neumann, Gödel,
Bernays, Kelley and Morse. An excellent textbook in set theory covering ZF is [Lev02], while for
NGB see [Men15]. The theory MK was developed independently by Kelley and Morse: the appendix
of the book on general topology by Kelley [Kel55] contains a list of axioms equivalent to the ones
presented here, while the Morse’s monograph [Mor65] gives a detailed (and fairly idiosyncratic)
presentation of the axioms of MK. The exposition in this book follows closely [Mon69].

18. Ordered sets and ordinals

The notions seen in Section 7 (pre-orders, equivalence relations, . . . ) can be
recast in the language of classes. For example, we say that R ⊆ X ×X is
reflexive on the class X if x R x that is (x, x) ∈ R for all x ∈ X, but we will
refrain from writing

⟨X,R⟩ ⊨ ∀x (x R x)

since, as we shall see in Section 31.A, the satisfaction relation is defined only
for structures that are sets.

The following notion is of interest only when dealing with proper classes.

Definition 18.1. R ⊆ X ×X is left-narrow if {y ∈ X | y R x} is a set, for
all x ∈ X.

Therefore an order ≤ on a proper class X is left-narrow if

pred(x,X;≤) = {y ∈ X | y < x}
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is a set for all x ∈ X. Similarly, an equivalence relation E on a proper class
X is left-narrow if every equivalence class is a set, hence the quotient4 X/E =
{[x]E | x ∈ X} can be defined. Extending the definitions in Section 13.A
to classes, if ⟨X0,≤0⟩ and ⟨X1,≤1⟩ are ordered classes, we can define two
orderings on X0 ×X1: the product order and the lexicographic order
≤lex. These constructions can be generalized: if ⟨I,≼⟩ is an ordered set and
⟨Xi,≤i⟩ with i ∈ I are ordered classes, the product order on "i∈IXi is defined
by

f � g ⇔ ∀i ∈ I (f(i) ≤i g(i))

while the lexicographic order is defined by

f ≤lex g ⇔ ∃i ∈ I
(
∀j ∈ I (j ≺ i⇒ f(j) = g(j)) ∧ f(i) ≤i g(i)

)
,

where ‘j ≺ i’ means ‘j ≼ i ∧ j ̸= i’. The ordering on ⊎i∈IXi =
⋃

i∈I {i} ×Xi

is defined by

(i, x) ≤lex (j, y) ⇔ (i ≺ j ∨ (i = j ∧ x ≤i y)) .

Definition 18.2. A relation R ⊆ X × X on a class X is well-founded
if every non-empty subclass of X contains an R∗-minimal element, where
R∗ = R \R−1 is the strict part of R:

∀Y ⊆ X (Y ̸= ∅ ⇒ ∃y ∈ Y ∀z ∈ Y ((z, y) ∈ R⇒ (y, z) ∈ R)).

If R is not well-founded on X we will say that it is ill-founded.

The axiom of foundation implies that {(x, y) ∈ V | x ∈ y} is irreflexive
and well-founded, and since {y | y ∈ x} = x is a set for all x ∈ V, it is
left-narrow.

A total, well-founded, left-narrow order is a well-order; if R is a well-
order, then R \ id is a strict well-order. If R is a well-order on A and
B ⊆ A then R (or better: R ∩B ×B) is a well-order on B.

A class is well-orderable if it has a well-order. The implication (b)⇒(c)
in the proof of Theorem 14.3 shows that:

Theorem 18.3. If the class X is well-orderable, then there is a choice
class-function on X.

The following result is a straightforward generalization of Propositions 13.3
and 13.4 and Corollaries 13.5 and 13.6.

Theorem 18.4. Let ⟨A,≤⟩ be a well-ordered class.

• If f : A → A is increasing, then ∀a ∈ A (a ≤ f(a)); if moreover f is
bijective then f = idA.

4In Section 20.C a method to define X/E when E is not left-narrow will be given.
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• If ⟨A,≤⟩ and ⟨B,�⟩ are isomorphic well-ordered classes, then the isomor-
phism is unique.
• If a ∈ A, then ⟨A,≤⟩ and ⟨pred(a,A;≤),≤⟩ are not isomorphic.

18.A. Ordinals. We now give a rigorous treatment of ordinal numbers,
which were already informally introduced in Section 13.A.

Definition 18.5. A class A is transitive if
⋃
A ⊆ A, that is if

∀a∀x ((a ∈ A ∧ x ∈ a)⇒ x ∈ A) .

An ordinal is a transitive set such that all of its elements are transitive. The
ordinals are usually denoted with lower case Greek letters α, β, . . . and

Ord

is the class of the ordinals.

The proof of the next result is straightforward, and it is left to the reader.

Proposition 18.6. (a) If x is a transitive set, then
⋃

x and S(x) are
transitive.

(b) If α ∈ Ord then α ⊆ Ord and S(α) ∈ Ord.
(c) If x is a set of ordinals, then

⋃
x ∈ Ord.

Proposition 18.7. Ord is a proper class.

Proof. The class Ord is transitive: if it were a set, then it would be an
ordinal, hence Ord ∈ Ord, against the axiom of foundation. □

Theorem 18.8. Two ordinals are ∈-comparable, that is for α, β ∈ Ord
exactly one of the following possibilities holds:

α ∈ β ∨ α = β ∨ β ∈ α.

Proof. The axiom of foundation implies that two distinct possibilities cannot
hold simultaneously, so we are left to prove that at least one holds. We must
show that

A = {α ∈ Ord | ∃β ∈ Ord (α /∈ β ∧ α ̸= β ∧ β /∈ α)}
is empty. If A ̸= ∅, by foundation there is ᾱ ∈ A such that

(18.1) ᾱ ∩A = ∅.
Then B = {β ∈ Ord | β /∈ ᾱ ∧ β ̸= ᾱ ∧ ᾱ /∈ β} is a non-empty class, and
again by foundation there is β̄ ∈ B such that β̄ ∩B = ∅. If γ ∈ ᾱ then (18.1)
implies that γ /∈ A, hence in particular β̄ ∈ γ ∨ β̄ = γ ∨ γ ∈ β̄. The first
two possibilities and the transitivity of ᾱ imply that β̄ ∈ ᾱ, contradicting
β̄ ∈ B. Therefore γ ∈ β̄. Since γ is arbitrary, we obtain ᾱ ⊆ β̄. Similarly
β̄ ⊆ ᾱ hence ᾱ = β̄ a contradiction. □
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Corollary 18.9. The membership relation ∈ is a strict well-order on Ord,
and hence on every ordinal α.

For this reason we stipulate that

α < β means α ∈ β, and α ≤ β means α ∈ β ∨ α = β.

If ∅ ≠ A ⊆ Ord, then the ∈-minimal element of A is the minimum of A.
From Theorem 18.4 we get:

Proposition 18.10. (a) If f : α → β is increasing, then γ ≤ f(γ) for all
γ ∈ α, and α ≤ β.

(b) If f : α→ β is an isomorphism, then α = β and f is the identity.

Similarly, if f : Ord→ Ord is increasing then γ ≤ f(γ) and if moreover
f is surjective, then it is the identity.

Notation. We will write A ≤ Ord in lieu of “A ∈ Ord ∨ A = Ord” and use
the letter Ω to denote such a class A. In other words, either Ω ∈ Ord or else
Ω = Ord.

Any ordinal α yields a well-order ⟨α,≤⟩ and if β ∈ α, then β =
pred(β, α;≤). Theorem 18.4 implies that ⟨α,≤⟩ ∼= ⟨β,≤⟩ if and only if
α = β.

Let ⟨X,�⟩ be a well-ordered class and let

A = {α ∈ Ord | ∃x ∈ X (⟨α,≤⟩ ∼= ⟨pred(x),�⟩)}
be the class of the ordinals isomorphic to some initial segment of X. Suppose
f : ⟨α,≤⟩ → ⟨pred(x),�⟩ is the isomorphism witnessing α ∈ A. If β ∈ α
then f ↾ β : ⟨β,≤⟩ → ⟨pred(f(β)),�⟩ is an isomorphism, hence β ∈ A.
It follows that A is a transitive class of ordinals, hence A ≤ Ord. Let
F : A→ X be the functional relation that sends α ∈ A to the unique x ∈ X
such that ⟨α,≤⟩ ∼= ⟨pred(x),�⟩. It is immediate to check that ran(F ) is
an initial segment of X. If, towards a contradiction, ran(F ) ̸= X, then
ran(F ) = pred(x̄,�), for some x̄ ∈ X. Since A ≍ pred(x̄,�), it follows that
A ∈ Ord hence A ∈ A by definition of A: a contradiction. Therefore F is
surjective. By Theorem 18.4 and what we just proved we have the following:

Theorem 18.11. Every well-ordered set is isomorphic to a unique ordinal,
and every well-ordered proper class is isomorphic to Ord. Moreover the
isomorphism is unique.

Theorems 18.8 and 18.11 yield:

Theorem 18.12. If ⟨A,≤⟩ and ⟨B,⪯⟩ are well-ordered classes, then exactly
one of the following holds:
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(1) ∃a ∈ A (⟨pred(a),≤⟩ ∼= ⟨B,⪯⟩)
(2) ∃b ∈ B (⟨pred(b),⪯⟩ ∼= ⟨A,≤⟩)
(3) ⟨A,≤⟩ ∼= ⟨B,⪯⟩.

In particular, any two well-ordered proper classes are isomorphic.

If ⟨X,⪯⟩ is a well-ordered class, its order type is the unique Ω ≤ Ord
isomorphic to ⟨X,⪯⟩ and it is denoted by ot ⟨X,⪯⟩ or simply with ot(X)
if the ordering is clear from the context. In particular ot(A) = Ord for all
proper classes A ⊆ Ord. The unique isomorphism ⟨Ω,≤⟩ → ⟨X,⪯⟩ is the
enumerating function.

Proposition 18.13. If ∅ ≠ A ⊆ Ord then minA =
⋂
A.

Proof. By foundation if ᾱ ∈ A is such that ᾱ∩A = ∅, then ∀α ∈ A (ᾱ ⊆ α),
so
⋂
A = ᾱ = minA. □

A particular case of Theorem 16.11 is

Corollary 18.14. There is no descending chain of ordinals, that is to say
¬∃f (f : N→ Ord ∧ ∀n(f(S(n)) < f(n))).

Lemma 18.15. (a) Every natural number is an ordinal.
(b) If n ∈ N and x ∈ n then x ∈ N.

Proof. (a) Towards a contradiction, suppose X = N \Ord is non-empty, and
let n ∈ X be such that n∩X = ∅. Since 0 is an ordinal, it follows that n ̸= 0
hence, by Proposition 16.7 n = S(m) for some m ∈ N. Then m ∈ Ord and
therefore S(m) ∈ Ord ∩ N: a contradiction.

(b) Towards a contradiction, suppose X = {n ∈ N | ∃x ∈ n (x /∈ N)} is
non-empty, and let n̄ ∈ X be such that n̄ ∩ X = ∅. Fix x̄ ∈ n̄ such that
x̄ ∈ n̄ \ N. By Proposition 16.7, n̄ = S(m̄) for some m̄ ∈ N, hence either
x̄ ∈ m̄ or else x̄ = m̄. It is immediate to check that either way a contradiction
is obtained. □

An ordinal α is successor if α = S(β), for some β. Clearly α < S(α) and
there is no β such that α < β < S(α). In other words S(α) is the immediate
successor of α in the ordering given by ∈. If an ordinal is not a successor and
it is not 0, it is limit.

In set theory it is customary to denote N by ω.

Theorem 18.16. ω is the smallest limit ordinal.

Proof. ω is an ordinal by Lemma 18.15, and by Proposition 16.7 there are no
limit ordinals smaller than ω. It is enough to check that ω is not a successor.
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If, towards a contradiction, ω = S(α), then α ∈ ω, hence S(α) ∈ ω, that is
ω ∈ ω: a contradiction. □

Proposition 18.17. (a) α < β ⇔ α ⊂ β;

(b) α ≤ β ⇔ α ⊆ β;

(c) α < β ⇔ S(α) ≤ β;

(d) α < β ⇔ S(α) < S(β);

(e) x ⊆ α⇒ (
⋃
x = α ∨

⋃
x < α);

(f)
⋃
(S(α)) = α;

(g) α = S(
⋃
α) ∨ α =

⋃
α;

(h)
⋃
α = α⇔ (α = 0 ∨ α limit)⇔ ⟨α,<⟩ has no maximum.

Proof. (a) If α ∈ β then α ⊆ β by transitivity. The axiom of foundation
implies α ̸= β, hence α ⊂ β. Conversely, suppose α ⊂ β: foundation implies
that β /∈ α and since β ̸= α it follows that α ∈ β.

(b) is similar to (a).

(c) Let α < β. Since β ∈ S(α) is impossible, then either β = S(α) or
S(α) ∈ β. The converse implication is immediate.

(d) is similar to (c).

(e)
⋃
x is an ordinal by Proposition 18.6 hence it is comparable to α. But

α ∈
⋃
x implies that α ∈ β ∈ x ⊆ α, for some β: a contradiction. Therefore⋃

x ≤ α.

(f) β ∈
⋃
S(α) if an only if either β ∈ γ ∈ α for some γ or else β ∈ α.

Therefore β ∈
⋃
S(α)⇔ β ∈ α.

(g) As S(α) ⊇ α then α =
⋃
S(α) ⊇

⋃
α by part (f). If

⋃
α < α, then

by (c) S(
⋃
α) ≤ α, hence it is enough to prove that the strict inequality

does not hold: if S(
⋃
α) ∈ α then

⋃
α ∈ S(

⋃
α) implies that

⋃
α ∈

⋃
α, a

contradiction.

(h) follows from (f) and (g). □

Thus λ is limit if and only if λ =
⋃

λ > 0.

Proposition 18.18. If A ⊆ Ord is a set, then
⋃
A = supA.

Proof. The result follows from the following three easy facts: the first is
that

⋃
A is the smallest set containing every α ∈ A, the second is that

⋃
A

is an ordinal, the third is that ≤ and ⊆ agree on the ordinals. □
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18.B. Cardinals. A class is finite if is in bijection with a natural number,
otherwise is said to be infinite. Since natural numbers are sets, finite classes
are sets and proper classes are infinite.

Definition 18.19. A cardinal is an ordinal κ that is not in bijection with
any α < κ. Cardinals are usually denoted with greek letters such κ, λ, . . .
and Card is the class of cardinals.

A class X is well-orderable if there is a well-order on X—equivalently,
by Theorem 18.11, if X is in bijection with some Ω ≤ Ord. By Exercise 18.42,
if X is well-orderable and Y is in bijection with (or even if it is surjective
image of) X, then Y is well-orderable; conversely, if Y is well-orderable and
X ≾ Y , then X is well-orderable.

Definition 18.20. If X is a well-orderable set, the cardinality of X is the
smallest ordinal |X| in bijection with X. In particular, |α| is the smallest
ordinal β ≍ α, so |α| ≤ α.

Thus, the cardinality of a set (if it exists, i.e. if the set is well-orderable) is
a cardinal. The axiom of choice is equivalent to the statement that every set
is well-orderable (Theorem 14.3) hence |X| is defined for every set X if AC
is assumed. Theorem 13.15 implies that every natural number is cardinals,
and that ω is the first infinite cardinal. On the other hands, S(ω), S(S(ω)),
S(S(S(ω))), . . . are not cardinals (Proposition 18.22).

Proposition 18.21. If κ and λ are cardinals,

(a) κ = λ if and only if κ ≍ λ,
(b) κ ≤ λ if and only if κ ≾ λ. In particular: if X and Y are well-orderable,

then |X| ≤ |Y | ⇔ ∃f(f : X ↣ Y ).

Proof. (a) Suppose that κ ≍ λ and that κ ̸= λ, e.g. κ < λ. Then λ would
be in bijection with a smaller ordinal, a contradiction.

(b) Towards a contradiction suppose κ ≾ λ and λ < κ. Then idλ : λ ↣ κ
so by the Cantor-Schröder-Bernstein Theorem 13.11 κ ≍ λ, hence κ = λ by
part (a), a contradiction. □

Proposition 18.22. (a) If α ≥ ω then |α| = |S(α)|,
(b) |α| ≤ β ≤ α⇒ |α| = |β|,
(c) |α| = |β| if and only if α ≍ β,
(d) |α| ≤ |β| if and only if α ≾ β.

Proof. (a) The function S(α)→ α which is the identity on α\ω and sending
n 7→ S(n), if n < ω, and α 7→ 0 is a bijection.
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(b) Let f : α → |α| be a bijection. Since f : α → β is injective and β
injects into α, then |α| = |β| by the Cantor-Schröder-Bernstein 13.11 and
Proposition 18.21.

(c) and (d) follow from Proposition 18.21. □

The only examples of cardinals we have encountered so far are the
natural numbers and ω, hence it is natural to ask whether there exist larger
cardinals. By Cantor’s Theorem 13.22, P(ω) is not countable, so if we
want an uncountable cardinal we could well-order P(ω) and compute its
cardinality. A well-ordering of P(ω) requires AC, so the question is: can we
prove the existence of an uncountable cardinal without choice? The answer
is affirmative, and actually for any set X there is a least ordinal κ that does
not inject into X, and in fact κ is a cardinal. (This cardinal will come handy
in Section 20.B.) Here are the details.

Given a set X, let

A = {(α, f) | α ∈ Ord ∧ f : α ↣ X}.

For each (α, f) ∈ A let W(α,f) be the well-order on ran(f) ⊆ X induced by
f , that is

x W(α,f) y ⇔ f−1(x) ≤ f−1(y).

Thus f : ⟨α,≤⟩ →
〈
ran(f),W(α,f)

〉
is an isomorphism. If (α, f), (β, g) ∈ A

and W(α,f) = W(β,g) then g−1 ◦ f : ⟨α,≤⟩ → ⟨β,≤⟩ is an isomorphism, hence
α = β and f = g by Proposition 18.10. In other words: the function

(18.2) A→P(X ×X), (α, f) 7→W(α,f)

is injective, hence A is a set by the replacement and power-set axioms. Its
projection on the first coordinate B = {α ∈ Ord | α ≾ X} is a transitive set,
hence it is an ordinal. The ordinal B is the smallest ordinal that does not
embed into X and it is called the Hartogs’ number of the set X, denoted
by

Hrtg(X).

By taking the inverse of the function in (18.2) a surjection P(X ×X) ↠ A
is obtained, and composing with the projection A ↠ Hrtg(X) we obtain
the surjection P(X × X) ↠ Hrtg(X). Let us show that Hrtg(X) is a
cardinal: towards a contradiction, if |Hrtg(X)| ∈ Hrtg(X), then Hrtg(X) ≾
|Hrtg(X)| ≾ X, a contradiction. We have proved the following

Theorem 18.23. For any set X, Hrtg(X) is the smallest ordinal that does
not inject into X, and it is a cardinal. Moreover P(X ×X) surjects onto
Hrtg(X).

Definition 18.24. α+ = Hrtg(α).
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Thus α+ is the smallest cardinal strictly larger than α, and if α ≥ ω,
then α+ =

⋃
{β | |β| = |α|} = {β | |β| ≤ |α|}. In Section 18.C we will show

(Theorem 18.28) that α× α ≍ α, for all α ≥ ω, hence

(18.3) ∀α ≥ ω
(
P(α) ↠ α+

)
.

As R ≍P(ω) surjects onto ω+ but ω does not, we obtain another proof of
the fact that R is uncountable.

Theorem 18.25. If X is a set of cardinals, then supX is a cardinal.

Proof. If λ =
⋃

X were not a cardinal, then |λ| < λ hence |λ| < κ ≤ λ
for some κ ∈ X and hence |κ| = |λ|, that is κ would not be a cardinal, a
contradiction. □

Corollary 18.26. Card is a proper class, and it is closed in Ord.

18.C. Cardinal arithmetic.

Definition 18.27. Cardinal addition and cardinal multiplication are
the binary operations Card× Card→ Card defined by

κ+ λ = |{0} × κ ∪ {1} × λ| κ · λ = |κ× λ|.

These operations are well defined since κ ⊎ λ = {0} × κ ∪ {1} × λ and
κ× λ are well-ordered by the lexicographic order. By (13.5),

(18.4) 2 ≤ κ, λ ⇒ κ+ λ ≤ κ · λ.
Note that by part (a) of Proposition 18.22, this formula holds even with one
of the two cardinals is 1 and the other is ≥ ω. Thus if κ and λ are cardinals
and either 2 ≤ min(κ, λ) or else 1 = min(κ, λ) and ω ≤ max(κ, λ), then

(18.5) max(κ, λ) ≤ κ+ λ ≤ κ · λ ≤ max(κ, λ) ·max(κ, λ).

The Gödel well-ordering <G on Ord×Ord is defined by

(α, β) <G (γ, δ)⇔[
max(α, β) < max(γ, δ) ∨

(
max(α, β) = max(γ, δ) ∧ (α, β) <lex (γ, δ)

)]
.

The ordering <G coincides with the ordering on ω given by the square
enumeration (see pag. 203), and if α < β then α× α is an initial segment of
β × β.

Theorem 18.28. Let κ be an infinite cardinal. Then ot(κ× κ,<G) = κ and
|κ× κ| = κ.

Proof. The function ⟨κ,<⟩ → ⟨κ× κ,<G⟩, α 7→ (α, 0), is increasing hence
κ ≤ ot(κ × κ,<G). Therefore it is enough to show by induction on κ ≥ ω
that ot(κ× κ,<G) ≤ κ, hence |κ× κ| = κ.
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Let α < κ. If α < ω, then |α× α| < ω by Proposition 13.20. If instead
ω ≤ α, then ω ≤ |α| < κ hence, by inductive assumption, |α| × |α| is of
size |α|. As |α| × |α| is in bijection with α × α, we have that |α × α| < κ.
Therefore we have proved that ∀α < κ (|α× α| < κ). Fix α, β < κ. The
set pred(α, β) of all <G-predecessors of (α, β) is included in ν × ν, where
ν = max{α, β}+ 1, hence |pred(α, β)| ≤ |ν × ν| < κ. We have thus shown
that ∀α, β < κ (ot pred(α, β) < κ), hence ot(κ× κ,<G) ≤ κ. □

From (18.5) and Theorem 18.28 we get

Corollary 18.29. If κ and λ are cardinals different from 0 and at least one
among κ and λ is infinite, then

max(κ, λ) = κ+ λ = κ · λ.

In other words: the sum and multiplication of cardinals are trivial opera-
tions. Using Theorem 18.28, Proposition 13.25 can be restated as follows.

Proposition 18.30. If 2 ≤ κ ≤ λ and λ is an infinite cardinal, then
λ2 ≍ λκ ≍ λλ.

In absence of the axiom of choice it is not possible to prove that κX is
well-orderable when κ ≥ ω and X has at least two elements—for example
if AC fails ω2 may not be in bijection with any ordinal. We will now prove
(without appealing to AC) that nκ is well-orderable when n < ω.

Let X be an infinite set which has the same size as its square, and let
f : X ×X → X be a bijection witnessing this. By Theorem 12.3 define by
recursion on n ≥ 1 bijections jn :

nX → X as follows. Let j1(⟨x⟩) = x for
all x ∈ X, and since the function n+1X → nX ×X, s 7→ (s ↾ n, s(n)), is a
bijection, it is possible to define jn+1 via the diagram

n+1X nX ×X X ×X X

s (s ↾ n, s(n)) (jn(s ↾ n), s(n)) f(jn(s ↾ n), s(n))

jn+1

Therefore nX ≍ X for all n > 0. Moreover given x̄ ∈ X the function
jω :

<ωX → ω ×X

jω(s) =

{
(0, x̄) if s = ∅,

(n, jn(s)) if lh(s) = n > 0,

is injective. If ω ≾ X then ω ×X ≾ X ×X ≍ X, so <ωX ≾ X. We have
thus shown that
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Theorem 18.31. Let X be an infinite set such that X × X ≍ X. Then
∀n > 0 (nX ≍ X). Moreover, ω ≾ X implies <ωX ≍ X.

In particular, if X is well-orderable and infinite, then |<ωX| = |X|.

Definition 18.32. If ⟨X,�⟩ is a well-ordered set and α ∈ Ord, let

[X]α = {Y ⊆ X | ot⟨Y,�⟩ = α} .
Replacing = with ≤ and < in the formula above, the definition of [X]≤α and
[X]<α is obtained.

Every x ∈ [κ]n can be written as x = {α0, . . . , αn−1} with α0 <
· · · < αn−1 < κ, and therefore it can be identified with the sequence
⟨α0, . . . , αn−1⟩ ∈ nκ. Such identification yields an injection [κ]n ↣ nκ
that extends to [κ]<ω ↣ <ωκ. Therefore for n > 0

κ ≤ |[κ]n| ≤
∣∣[κ]<ω

∣∣ ≤ ∣∣<ωκ
∣∣ = κ

that is κ = |[κ]n| = |[κ]<ω|.

Corollary 18.33. If X is infinite and well-orderable, then also [X]n and
[X]<ω are well-orderable, and |[X]n| = |[X]<ω| = |X| if n > 0.

The well-orderability assumption in Theorem 18.31 is essential, since by
Theorems 14.3 and 20.11 “X ≍ X × X for every infinite X” implies that
every set is well-orderable. Corollary 18.35 shows that, regardless of choice,
there are arbitrarily large sets that are in bijection with their own square.

Proposition 18.34. <ωX ≍ ω × <ωX ≍ <ω(<ωX) for every set X.

Proof. If X = ∅ then <ωX = ∅ and the result is trivial. If X = {x0} is a
singleton, then <ωX ≍ ω and the result follows from Theorem 18.31. If X
has at least two distinct elements x0, x1, given s ∈ <ωX let

s′ = x
(lh s)
0

⌢⟨x1⟩⌢s.
The map <ωX → <ωX, s 7→ s′ is injective, and so is the map

<ω(<ωX)→ <ωX, ⟨s0, . . . , sn⟩ 7→ s′0
⌢s′1

⌢ . . .⌢s′n.

Since <ωX ≾ ω × <ωX and

ω × <ωX → <ω(<ωX), (n, s) 7→ ⟨ s, . . . , s︸ ︷︷ ︸
n+1 times

⟩,

is injective, the result follows from the Cantor-Schröder-Bernstein Theo-
rem 13.11. □

Corollary 18.35. For any set X there is a set Y such that X ≾ Y and such
that Y ≍ <ωY and hence Y ≍ Y × Y .

Proof. Take Y = <ωX. □
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The set Y in Corollary 18.35 can be taken to be transitive—Exercise 20.25.

18.D. Applications.
18.D.1. Vector spaces. Suppose V is a non-trivial vector space on a field
k. If V is well-orderable, then k is also well-orderable, and V has a basis
(Exercise 20.24). Conversely, if k is well-orderable and V has a well-orderable
basis, then V is well-orderable. To see this suppose |k| = κ and that
{eα | α ∈ λ} is a basis of V , where λ is a cardinal. For every v ∈ V there is
a unique finite set I = I(v) = {α0, . . . , αn−1} ⊆ λ and a unique sequence of
non-zero scalars s = s(v) ∈ nk \ {0k} such that

v =
∑
i<n

s(i)eαi .

(When v = 0 then I(v) = s(v) = ∅.) The map

V → [λ]<ω × <ω(k \ {0k}), v 7→ (I(v), s(v))

is injective, and since [λ]<ω and <ω(k \ {0k}) are well-orderable, then V is
well-orderable. If max(κ, λ) ≥ ω then |[λ]<ω × <ω(k \ {0k})| = max(κ, λ), so
|V | ≤ max(κ, λ). Since k ≾ V and λ ≾ V we have that

|V | =

{
κλ if κ, λ < ω,

max(κ, λ) otherwise.

Suppose {eα | α ∈ λ} and {e′α | α ∈ λ′} are bases of V , with λ, λ′ car-
dinals. If λ < ω, then λ = λ′ by elementary linear algebra; if ω ≤ λ < λ′,
choose a finite set Iα ⊆ λ′ for each α < λ so that eα is in the span of
{e′β | β ∈ Iα}, and hence I =

⋃
α<λ Iα is of size λ and {e′α | α ∈ I} generates

V , contradicting the assumption that {e′α | α ∈ λ′} is a base. Therefore if
V is well-orderable two bases have the same size, and the cardinality of any
such base is called the dimension of V , in symbols dim(V ).

Corollary 18.36. If V,W are well-orderable vector spaces over a well-
orderable field k, and |V |, |W | > |k|, then

V ∼= W ⇔ dim(V ) = dim(W ) ⇔ |V | = |W |.

Remark 18.37. The axiom of choice is equivalent to the fact that every
vector space has a basis (AC(2) of Section 28.C), while the statement “two
bases of the same vector space are in bijection” follows from a weakening of
AC (see Exercise 32.10).

18.D.2. Free groups. Recall from Section 9.E that any equational theory
admits a free model over X, for any set X. The free group F (X) is the
set of all sequences ⟨xε11 , . . . , xεnn ⟩ where xi ∈ X and εi ∈ {−1, 1} for all
1 ≤ i ≤ n, with the proviso that if xi = xi+1 then εi = εi+1. Thus F (X) can
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be identified with a subset of ({1,−1} ×X)<ω, while X is identified with a
subset of F (X) via x 7→ (1, x). It follows that if X is well-orderable, so is
F (X), and if |X| = κ ≥ ω, then |F (X)| = κ. Any map f from a set X to a
group G can be uniquely extended to a homomorphism f̂ : F (X)→ G, and
if X ≾ Y then F (X) can be identified with a subgroup of F (Y ).

If X is well-orderable, then the rank of F (X) is the cardinality of X. If
X ≍ Y then F (X) is isomorphic to F (Y ), and the unique (up to isomorphism)
free group of rank κ ̸= 0 is denoted by F κ. If X ≾ Y then F (X) is isomorphic
to a subgroup of F (Y ), but the converse does not hold: the free group F 2

contains subgroups isomorphic to each F n with 1 ≤ n ≤ ω; for example, the
subgroup generated by {anba−n | n ∈ ω} is isomorphic to F ω. The following
result summarizes what we just said. (The axiom of choice is needed for this
result—see Section 28.C.)

Proposition 18.38. Assume AC. If X,Y are infinite sets, then |X| =
|Y | ⇔ F (X) ∼= F (Y ) ⇔ |F (X)| = |F (Y )|.

Exercises

Exercise 18.39. Show that the lexicographic ordering on 2×Ord is total,
every non-empty subclass has a minimum, but it is not left-narrow, hence it
is not a well-order.

Exercise 18.40. Let R ⊆ X × X be a transitive,5 left-narrow relation.
Then R is well-founded if and only if every non-empty sub-set of X has an
R-minimal element.

Exercise 18.41. Show that:

(i) if R is a reflexive relation on X, then R is a set if and only if X is a set;
(ii) if ∼ is an equivalence relation on a set X, then X/∼ is a set.
(iii) The relation of equipotence between sets (see page 376) is an equivalence

relation that is not left-narrow on V.

Exercise 18.42. Show that for X a class the following conditions are
equivalent: (1) X is well-orderable; (2) ∃Ω ≤ Ord∃F (F : Ω ↠ X); (3)
X ≾ Ord.

Exercise 18.43. If ⟨A,<⟩ is a well-ordered class in which every element
different from the minimum has an immediate predecessor, then its order
type is ≤ ω, and hence A is a set.

5By Exercise 19.23 the transitivity assumption can be removed.
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Exercise 18.44. Let I ⊆ Ω ≤ Ord.

(i) Suppose that
(
∀β ∈ Ω(β < α⇒ β ∈ I)

)
⇒ α ∈ I, for all α ∈ Ω. Show

that I = Ω.
(ii) Suppose that
• 0 ∈ I,
• ∀α ∈ Ω

(
∃β(α = S(β) ∧ β ∈ I)⇒ α ∈ I

)
,

• ∀α ∈ Ω
(
(α limit and ∀β < α β ∈ I)⇒ α ∈ I

)
.

Show that I = Ω.

Exercise 18.45. Show that

(i) <G is a well-ordering on Ord×Ord and that
• if α < β then α× α is an initial segment of β × β,
• the class-function ν 7→ ot⟨ν × ν,<G⟩ is increasing and continuous;

(ii) if F : Ord×Ord→ Ord is the class-function witnessing the isomorphism
between ⟨Ord×Ord, <G⟩ and ⟨Ord, <⟩, then for any α, β ∈ Ord
• F (α, β) ≥ max(α, β) and
• F (α, β) = max(α, β)⇒ α = 0 ∧ (β ∈ {0, 1} ∨ β is limit).

Exercise 18.46. Show that if λ is limit and �α is a well-order on Xα for all
α < λ, then the following is a well-order on

⋃
α<λXα: x �λ y iff

min {α | x ∈ Xα} < min {α | y ∈ Xα} ∨ ∃α (x, y ∈ Xα \
⋃
β<α

Xβ ∧ x �α y).

Exercise 18.47. Show that:

(i) if X surjects onto Y , then Y ≾ P(X),
(ii) κ+ ≾ P(P(κ)),
(iii) there is a surjection {Y ∈P(P(X)) | ⊆ well-orders Y} ↠ Hrtg(X),

and hence Hrtg(X) ≾ P(P(P(X))).

Exercise 18.48. Let G be an ordered abelian group. Show that if A,B ⊆ G
are well-ordered, then A+B = {a+ b | a ∈ A, b ∈ B} is well-ordered.

Notes and remarks

The literature on orders is enormous. Ordinals are the only kind of orderings that admit a general
structure theorem—for all the other orderings there are very few general results. The original
definition of ordinal (due to Cantor) as the isomorphism class of well-orders has the disadvantage
that every non-null ordinal would be a proper class—this is the same problem that arises with
the naive definition of cardinality, as equivalence class of equipotent sets (see Section 20.C). The
modern definition of ordinal as a transitive set whose elements are transitive sets is due to von
Neumann.
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19. Recursive constructions

We now start a systematic study of recursive constructions, a topic that
was introduced in Section 12.B. By Theorem 12.3, given non-empty sets A
and B, and functions g : B → A and F : ω ×B ×A→ A, there is a unique
f : ω ×B → A such that{

f(0, b) = g(b)

f(n+ 1, b) = F (n, b, f(n, b)).

In the proof of Theorem 12.3, the function f is obtained by taking the
intersection of a suitable collection of subsets of (ω × B) × A. This works
fine as long as A and B are sets, but when A or B are proper classes we only
show that for each n the function fn : B → A, b 7→ f(n, b), can be defined
by comprehension; the sticky point is to define the sequence of the fns,
or—equivalently—the function f . Rather than approximating f top-down
as in the proof of Theorem 12.3, we approximate f bottom-up, pretty much
like what was done in Example 7.15 for constructing the subgroup of a group
generated by a set.

Theorem 19.1. Let A be a class, let ā ∈ A, and let F : ω × A → A be a
functional relation. There is a unique function G : ω → A such that{

G(0) = ā

G(S(n)) = F (n,G(n)).

Proof. Let

G =
{
p | ∃m ∈ ω

[
p : m→ A ∧ (0 < m⇒ p(0) = ā)

∧ ∀n (S(n) < m⇒ p(S(n)) = F (n, p(n)))
]}

Claim. If p, q ∈ G then p ∪ q is a function.

Proof. Suppose that p, q ∈ G and p ∪ q is not a function. Then there is
a least n ∈ dom(p) ∩ dom(q) witnessing p(n) ̸= q(n). Clearly n ̸= 0 since
p(0) = ā = q(0), and hence n = S(k) for some k ∈ ω. Then

p(n) = F (k, p(k)) = F (k, q(k)) = q(n),

where the second equality follows from minimality of n. □

By an argument as in Proposition 16.10, G =
⋃
G ⊆ ω×A is a functional

relation, and hence a function by replacement. Since {(0, ā)} ∈ G, it follows
that G ̸= ∅ and G(0) = ā. Moreover if S(n) ∈ dom(G) for some n ∈ ω, then
G(S(n)) = p(S(n)) for some p ∈ G hence G(S(n)) = F (n, p(n)) = F (n,G(n)).
Thus G is a (possibly partial) function satisfying the statement of the theorem.
We must show that dom(G) = ω. Towards a contradiction, suppose n̄ is least
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such that n̄ /∈ dom(G). Since 0 ∈ dom(G) then n̄ = S(m̄) for some m̄. It is
easy to check that

p
def
= G ∪ {(n̄, F (m̄,G(m̄)))} ∈ G

hence p ⊆ G, and therefore n̄ ∈ dom(G): a contradiction.
We are left to show that the function G is unique: if G′ were another

function satisfying the theorem, then let n̄ be least such that G(n̄) ̸= G′(n̄).
Clearly n̄ ̸= 0 hence n̄ = S(m̄) for some m̄, and therefore, by minimality of n̄,

G(n̄) = F (m̄,G(m̄)) = F (m̄,G′(m̄)) = G′(n̄),

contradiction! □

Theorem 19.4 in Section 19.B is a substantial generalization of Theo-
rem 19.1, but the reason for proving first a special case is not just a pedagogical
one, as the proof of the general Recursion Theorem requires Proposition 19.2
which follows from Theorem 19.1.

19.A. Transitive closure.
19.A.1. Transitive closure of a class. The transitive closure of a class X is

TC(X) =
{
y | ∃n ∈ ω ∃f ∈ S(n)V

[
f(0) ∈ X ∧

y = f(n) ∧ ∀i < n f(S(i)) ∈ f(i)
]}

.

In other words: y ∈ TC(X) if and only if there are x0, . . . , xn in V such that

y = x0 ∈ x1 ∈ · · · ∈ xn ∈ X.

If z ∈ y and f ∈ S(n)V witnesses that y ∈ TC(X), then f ∪ {(S(n), z)}
witnesses that z ∈ TC(X). Therefore TC(X) is transitive, it contains X,
and if Y ⊇ X is transitive, then TC(X) ⊆ Y . Thus TC(X) is the smallest
transitive class containing X.
19.A.2. Transitive closure of a relation. The transitive closure of R ⊆
X ×X where X is a class, is the relation

R̃ =
{
(x, y) ∈ X ×X | ∃n > 0 ∃f ∈ S(n)X

[
x = f(0) ∧

y = f(n) ∧ ∀i < n (f(i), f(S(i))) ∈ R
]}

In other words: x R̃ y if and only if there are x0, . . . , xn in X such that

x = x0 R x1 R · · · R xn−1 R xn = y.

By construction R̃ is the smallest transitive relation on X extending R—see
page 43.
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Proposition 19.2. R is left-narrow on X if and only if R̃ is left-narrow on
X.

Proof. Since R ⊆ R̃ it is enough to check that R̃ is left-narrow if so is R.
Fix a x̄ ∈ X.

Claim 19.2.1. There is a sequence of sets ⟨Zn | n ∈ ω⟩ such that

Z0 = {y ∈ X | y R x̄}

Zn+1 = {y ∈ X | ∃z ∈ Zn (y R z)} =
⋃

z∈Zn

{y ∈ X | y R z}.

Proof. Apply Theorem 19.1 when A = V, ā = Z0, and F (n, a) = {x ∈ X |
∃y ∈ a (x R y)}. Then G(n) = Zn. □

By replacement
⋃

n∈ω Zn is a set, and it is equal to {y ∈ X | y R̃ x̄}. □

Proposition 19.3. R is well-founded on X if and only if R̃ is well-founded
on X.

Proof. Since R ⊆ R̃ it is enough to check that if R is well-founded then
so is R̃. Fix ∅ ̸= Y ⊆ X and show that there is an R̃-minimal element in
Y . A path from Y to itself is a finite sequence ⟨z0, . . . , zn⟩ in X such that
z0, zn ∈ Y and zi R zi+1 for i < n. Let

Ȳ = {x ∈ X | ∃s (s is a path from Y in itself and x ∈ ran s)}

be the class of points visited by a path from Y to itself. By construction
Y ⊆ Ȳ and let ȳ be an R-minimal element of Ȳ . Moreover no element of
Ȳ \ Y is R-minimal, hence ȳ ∈ Y . Let us check that ȳ is R̃-minimal in Y . If,
towards a contradiction, x̄ R̃ ȳ for some x̄ ∈ Y distinct from ȳ, then there is
a path ⟨z0, . . . , zn+1⟩ from Y in itself with z0 = x̄ and zn+1 = ȳ and n > 1.
Therefore zn R ȳ, against R-minimality of ȳ. □

19.B. The Recursion Theorem. Theorems 12.3 and 19.1 are not enough
for many applications. For example, we might need both G(n) and n in
order to compute G(S(n))—if G is the factorial function, then G(S(n)) =
G(n) · S(n). Or maybe the value G(S(n)) might depend on some (or all)
values G(k) for k ≤ n. Moreover we often need to define a function by
recursion on a well-founded relation, rather than just on ω.

Theorem 19.4. Let X and Z be classes, let R ⊆ X × X be irreflexive,
left-narrow and well-founded, and let F : Z ×X ×V→ V. Then there is a
unique G : Z ×X → V such that for all (z, x) ∈ Z ×X

(19.1) G(z, x) = F (z, x,G ↾ {(z, y) | y R x}).
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Proof. Suppose that G,G′ : Z×X → V satisfy (19.1) and that G ̸= G′. Fix
a z̄ ∈ Z such that Y = {x ∈ X | G(z̄, x) ̸= G′(z̄, x)} ≠ ∅ and let x̄ ∈ Y be
an R-minimal element of Y . Then

G ↾ {(z̄, y) | y R x̄} = G′ ↾ {(z̄, y) | y R x̄}

and let p̄ be this functional relation. Since R is left-narrow, then p̄ is a set
by replacement, so G(z̄, x̄) = F (z̄, x̄, p̄) = G′(z̄, x̄): a contradiction. Thus
uniqueness is established.

Let G be the class of all functions p such that

(i) dom(p) ⊆ Z ×X,
(ii) ∀(z, x) ∈ dom(p)∀y ∈ X (y R x⇒ (z, y) ∈ dom(p)),
(iii) ∀(z, x) ∈ dom(p) (p(z, x) = F (z, x, p ↾ {(z, y) | y R x})).

Note that (ii) is equivalent to the seemingly stronger condition

∀(z, x) ∈ dom(p) ({z} × {y ∈ X | y R̃ x} ⊆ dom(p)),

where R̃ is the transitive closure of R.

Claim 19.4.1. If p, q ∈ G then p ∪ q is a function, and p ∪ q ∈ G.

Proof. Towards a contradiction suppose that

{x ∈ X | ∃z ∈ Z ((z, x) ∈ dom(p) ∩ dom(q) ∧ p(z, x) ̸= q(z, x))}

is non-empty, and by well-foundedness let x̄ be an R-minimal element of this
class. Let z̄ ∈ Z be such that (z̄, x̄) ∈ dom(p) ∩ dom(q) and p(z̄, x̄) ̸= q(z̄, x̄).
By (ii) {(z̄, y) | y R x̄} ⊆ dom(p) ∩ dom(q) and by R-minimality of x̄

p ↾ {(z̄, y) | y R x̄} = q ↾ {(z̄, y) | y R x̄} def
= r̄

hence, by (iii), p(z̄, x̄) = F (z̄, x̄, r̄) = q(z̄, x̄), against our assumption. It is
easy to check that p ∪ q ∈ G. □

The class G =
⋃
G is a functional relation with domain ⊆ Z × X

satisfying (19.1) for all (z, x) ∈ dom(G), so it is enough to show that
dom(G) = Z × X. If Z × X \ dom(G) ̸= ∅, let x̄ be an R-minimal el-
ement of {x ∈ X | ∃z ∈ Z (z, x) /∈ dom(G)} and let z̄ ∈ Z be such that
(z̄, x̄) /∈ dom(G). By Proposition 19.2 the relation R̃ is left-narrow, and hence

p̄
def
= G ↾ {(z̄, y) | y R̃ x̄}

is a set by the axiom of replacement. It is easy to check that p̄ ∈ G and that
also

p̄ ∪ {((z̄, x̄), F (z̄, x̄, p̄ ↾ {(z̄, y) | y R x̄}))} ∈ G.

Therefore (z̄, x̄) ∈ dom(G), against our assumption. It follows that G is the
class-function we were looking for. □
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Remarks 19.5. (a) The reason to use R̃ rather than R in the definition of
p̄ is to ensure condition (ii) so that p̄ ∈ G.

(b) The hypothesis that R be irreflexive can be removed, but then in the
statement and the proof the sets of the form {(z, y) | y R x} should be
replaced by {(z, y) | y R x ∧ ¬(x R y)}.

(c) Theorem 19.4 is formulated and proved in MK, and says that for each
class-function F there is a unique class-function G with certain properties.
The statement and proof work in NGB without any changes. If we want
to state (and prove) Theorem 19.4 in ZF, we must employ the longer
phrasing: given formulæ φX , φZ , φR and φF that define, respectively,
the classes X, Z, the relation R ⊆ X ×X, and the functional relation
F : Z ×X × V → V as in the statement, then there is a formula φG

that defines the functional relation G satisfying (19.1). If moreover ψ
is another formula defining a class-function G′ satisfying (19.1) then
G = G′, that is the formulæ φG and ψ are logically equivalent.

Thus in ZF we do not have a single statement but a schema of
theorems, one for each choice of φX , φZ , φR and φF : for each choice
of formulæ it is possible to construct explicitly a formula φG.

19.C. Applications and examples. Let us see some examples of functions
constructed via Theorem 19.4.
19.C.1. The transitive closure of a set. The transitive closure was defined
for all classes in Section 19.A.1. If x is a set, then TC(x) can be defined
using Theorem 19.1 as TC(x) =

⋃
n∈ω xn with x0 = x and xn+1 =

⋃
xn.

Equivalently, TC(x) can be defined using Theorem 19.4 by ∈-recursion as

TC(x) = x ∪
⋃
y∈x

TC(y).

Thus if M ̸= ∅ is a transitive set then the map P(M)→P(M), x 7→ TC(x),
is a closure operator in the sense of Section 7.A.
19.C.2. Rank of a well-founded relation. If R is an irreflexive, left-narrow,
and well-founded relation on X, then the functional relation defined by

ϱR,X(x) =
⋃
{S(ϱR,X(y)) | y R x}

is called rank of R on X.

Proposition 19.6. ran(ϱR,X) is an initial segment of Ord, that is either
ran(ϱR,X) ∈ Ord or else ran(ϱR,X) = Ord. Moreover x R y ⇒ ϱR,X(x) <

ϱR,X(y), and ϱR,X(x) = inf{α | ∀y
(
y R x⇒ ϱR,X(y) < α

)
}.

Proof. If ϱR,X(y) ∈ Ord for each y such that y R x, then ϱR,X(x) ∈ Ord by
Proposition 18.6, hence ran(ϱR,X) ⊆ Ord. Towards a contradiction, suppose
there is x̄ ∈ X and an α such that α ∈ ϱR,X(x̄) \ ran(ϱR,X), and take x̄ to
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Figure 20.

be R-minimal such. Then there would exist y R x̄ such that α < S(ϱR,X(y)).
Since α /∈ ranϱR,X then α < ϱR,X(y), against the R-minimality of x̄.

The rest of the proof is left to the reader. □

Thus ϱR,X(x) = 0 if and only if x is R-minimal in X and ϱR,X(x) = α
if and only if x is R-minimal in X \ {y ∈ X | ϱR,X(y) < α}. The rank
function yields a complexity to each x ∈ X—the complexity of x is the least
value bigger than the complexity of the ys such that y R x. For example,
if R is a relation on X = {a, b, c, d, e, f, g} described by the directed graph
(see Section 7.C) of Figure 20 then ϱR,X(d) = ϱR,X(e) = ϱR,X(g) = 0,
ϱR,X(b) = ϱR,X(f) = 1, ϱR,X(c) = 2 and ϱR,X(a) = 3.
19.C.3. The Mostowski collapse. If R is an irreflexive, left-narrow, well-
founded relation on X, then the function with domain X defined by

πR,X(x) = {πR,X(y) | y R x}

is the Mostowski collapse. The class X = ran(πR,X) is called the tran-
sitive collapse of R and X. One checks that X is transitive and that
∀x, y ∈ X (x R y ⇒ πR,X(x) ∈ πR,X(y)).

For example, if R and X are as in Figure 20, πR,X(d) = πR,X(e) =
πR,X(g) = ∅, πR,X(b) = πR,X(f) = {∅} = 1 and πR,X(c) = {0, 1} = 2 and
πR,X(a) = {1, 2}.

Definition 19.7. A relation R ⊆ X ×X is extensional on X if

∀x, y ∈ X (∀z ∈ X (z R x⇔ z R y)⇒ x = y) .

Proposition 19.8. Let R be an irreflexive, left-narrow, well-founded relation
on the class X.

(a) If R is extensional on X, then πR,X is injective and πR,X : ⟨X,R⟩ →〈
X,∈

〉
is an isomorphism.

(b) If R is a strict well-order on X, the functions πR,X and ϱR,X coincide.
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Proof. (a) Let us check that πR,X is injective. Towards a contradiction, let
x̄ be R-minimal such that πR,X(x̄) = πR,X(ȳ), for some ȳ ̸= x̄. Let z R x̄:
since πR,X(z) ∈ πR,X(x̄) = πR,X(ȳ), there is a w R ȳ such that πR,X(z) =
πR,X(w). By minimality of x̄, then z = w. Therefore ∀z (z R x̄⇒ z R ȳ).
Similarly, if z R ȳ then there exists w R x̄ such that πR,X(z) = πR,X(w)
hence z = w, that is ∀z (z R ȳ ⇒ z R x̄). Thus, by extensionality, ȳ = x̄,
against our assumption. It follows that πR,X is a bijection between X and
X.

If πR,X(x) ∈ πR,X(y) = {πR,X(z) | z R y}, then by injectivity x R y.
Therefore ∀x, y ∈ X (x R y ⇔ πR,X(x) ∈ πR,X(y)).

(b) Suppose that ϱR,X(y) = πR,X(y), for all y R x. Then πR,X(x) =
{πR,X(y) | y R x} = {ϱR,X(y) | y R x} is a set of ordinals. If πR,X(z) ∈
πR,X(y) ∈ πR,X(x), then z R y R x, whence z R x, that is πR,X(x) is
transitive, hence an ordinal. By construction πR,X(x) is the sup of the ordinals
S(πR,X(y)) = S(ϱR,X(y)) with y R x, that is πR,X(x) = ϱR,X(x). □

19.C.4. The ℵ function. By Corollary 18.26 Card\ω is a proper class hence its
transitive collapse is Ord. The enumerating function of Card \ ω is denoted
with the first letter of the Hebrew alphabet ℵ (pronunced “aleph”), and
satisfies the following definition:

ℵ0 = ω, ℵS(α) = (ℵα)+, ℵλ = sup
α<λ
ℵα, if λ is limit.

Thus ℵ0 = ω, ℵ1 = ω+, . . . . We often write ωα instead of ℵα, so ω1 is the
first uncountable ordinal, ω2 is the least ordinal of size bigger than ω1, and
so on.
19.C.5. Fixed points of continuous functions.

Lemma 19.9. If f : Ord→ Ord is increasing and continuous, then

∀α∃ᾱ > α (f(ᾱ) = ᾱ) .

Proof. Define inductively the sequence ⟨αn | n ∈ ω⟩ by α0 = S(α) and
αS(n) = f(αn), and let ᾱ = supn αn. If f(α0) = α0, then ∀n (α0 = αn) and
hence ᾱ = α0. If instead α0 < f(α0) = α1, then αn < αS(n) and therefore ᾱ
is limit. Then

f(ᾱ) = supν<ᾱ f(ν) = supn f(αn) = supn αS(n) = ᾱ.

In any case ᾱ is the least fixed point for f bigger than α. □

Since ℵ : Ord→ Ord is increasing and continuous, there are cardinals κ
such that κ = ℵκ, and the least such cardinal is the supremum of

ℵ0, ℵℵ0 , ℵℵℵ0
, ℵℵℵℵ0

, . . . .
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α∔ β =


α if β = 0,

S(α∔ γ) if β = S(γ),

supγ<β(α∔ γ) if β is limit,

α · β =


0 if β = 0,

(α · γ)∔ α if β = S(γ),

supγ<β α · γ if β is limit,

α.β =


1 if β = 0,

α.γ · α if β = S(γ),

supγ<β α
.γ if β is limit.

Table 1. The recursive definition of addition, multiplication, exponenti-
ation on the ordinals.

19.D. Ordinal arithmetic. The operations of ordinal addition, multipli-
cation, and exponentiation were defined in Section 13. Every cardinal is an
ordinal, and this could cause some ambiguity: for example the term ω + 1
could either mean ω, the result of cardinal addition, or else it could denote
S(ω), the result of ordinal addition. For this reason we write α∔β, α ·β, and
α.β for the operations of ordinal addition, multiplication, and exponentiation.
They are functions Ord × Ord → Ord defined by recursion, as in Table 1.
When α, β ∈ ω the definitions of α∔ β and α · β boil-down to the definitions
of addition and multiplication on N, so they commute by Theorem 12.15;
moreover ordinal and cardinal operations agree on the finite cardinals, but
differ on the infinite cardinals (Exercises 19.29 and 19.30). Table 2 collects
some of the properties of ordinal operations, some of which we have seen in
Section 13. They can all be proved by transfinite induction. For example, for
the first property, argue by induction on β′ that ∀β < β′ (α ∔ β < α ∔ β′).
The case β′ = 0 holds trivially, so we may assume that β′ is successor or limit.
If β′ = S(β′′) > β then β′′ ≥ β: by inductive assumption α∔β ≤ α∔β′′ and

α∔ β′′ < S(α∔ β′′) = α∔ β′,

whence the result. If β′ is limit and β′ > β, then

α∔ β′ = sup
γ<β′

α∔ γ ≥ α∔ S(β) > α∔ β.

This concludes the proof that ∀β, β′ (β < β′ ⇒ α∔ β < α∔ β′).
For each α the class-function Ord→ Ord, β 7→ α∔ β is increasing and

continuous, so there is a proper class of γ such that α ∔ γ = γ. Similarly
there is a proper class of γ such that α · γ = γ, and a proper class of γ such
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β < β′ ⇒ α∔ β < α∔ β′

If λ =
⋃
λ = supi∈I λi, then α∔ λ =

⋃
(α∔ λ) = supi∈I α∔ λi

(α∔ β)∔ γ = α∔ (β ∔ γ)
α < α′ ⇒ α∔ β ≤ α′ ∔ β
0∔ β = β
β ≥ ω ⇒ 1∔ β = β
β ≤ α∔ β
α ≤ β ⇔ ∃!γ (α∔ γ = β)
If α ̸= 0 then β < β′ ⇒ α · β < α · β′

If λ =
⋃
λ = supi∈I λi then α · λ =

⋃
(α · λ) = supi∈I α · λi

α · (β ∔ γ) = α · β ∔ α · γ
0 · β = 0 and 1 · β = β
(α · β) · γ = α · (β · γ)
α < α′ ⇒ α · β ≤ α′ · β
λ =

⋃
λ⇔ ∃ν(ω · ν = λ)

λ =
⋃

λ⇒ 2 · λ = λ

If α > 1 then β < β′ ⇒ α.β < α.β′

If α > 0 then α.(β∔γ) = α.β · α.γ

(α.β).γ = α.(β·γ)

α < α′ ⇒ α.β ≤ α′.β

1.β = 1
If
⋃
β = β then 0.β = 1; if β is a successor then 0.β = 0

If α > 1 then β ≤ α.β

If 1 < α then ∀β∃!γ ≤ β∃!δ < α∃!ε < α.γ (α.γ · δ ∔ ε = β)

Table 2. Some properties of ordinal operations.

that α.γ = γ. In fact there is a proper class of additively indecomposable
ordinals, i.e. ordinals γ such that α, β < γ ⇒ α∔ β < γ; similarly, there is
a proper class of multiplicatively indecomposable ordinals, i.e. ordinals
γ such that α, β < γ ⇒ α · β < γ and a proper class of exponentially
indecomposable ordinals, i.e. ordinals γ such that α, β < γ ⇒ α.β < γ
(Exercise 19.34). The exponentially indecomposable ordinals bigger than ω
are called ϵ-numbers and the smallest of them is

ϵ0 = sup{ω, ωω, ωωω
, ωωωω

, . . .}.

19.E. The von Neumann hierarchy. The ordinal ϱR,X(x), when X = V
and R is the ∈ relation, is called rank of x and it is denoted by rank(x).
From the definition it follows that

x ∈ y ⇒ rank(x) < rank(y) x ⊆ y ⇒ rank(x) ≤ rank(y),

and by induction it follows that rank(α) = α.



408 V. Basic set theory

Proposition 19.10. (a) rank(P(x)) = S(rank(x)).
(b) rank(

⋃
x) = sup{rank(y) | y ∈ x}.

Proof. (a) Since x ∈P(x) it follows that S(rank(x)) ≤ rank(P(x)). Con-
versely, if y ⊆ x, then S(rank(y)) ≤ S(rank(x)) and hence rank(P(x)) =
sup{S(rank(y)) | y ⊆ x} ≤ S(rank(x)).

(b) If y ∈ x then y ⊆
⋃
x, so sup{rank(y) | y ∈ x} ≤ rank(

⋃
x).

Conversely, if z ∈ y ∈ x then S(rank(z)) ≤ rank(y) hence S(rank(z)) ≤
sup{rank(y) | y ∈ x}. As z is arbitrary, then rank(

⋃
x) ≤ sup{rank(y) |

y ∈ x}. □

Definition 19.11. Let Vα = {x | rank(x) < α}. The von Neuman hier-
archy is the class function ⟨Vα | α ∈ Ord⟩.

As rank(α) = α it follows that Vα ∩Ord = α.

Theorem 19.12. Vα is a transitive set and

(19.2) Vα =
⋃

β<α P(Vβ).

Proof. If y ∈ x ∈ Vα then rank(y) < rank(x) < α and therefore y ∈ Vα.
Thus Vα is a transitive class. By induction on α let us show that Vα is
a set and that (19.2) holds. Suppose the result holds for all β < α: then
{P(Vβ) | β < α} is a set, hence it is enough to prove (19.2). If y ∈ x then
rank(y) < rank(x) so that x ⊆ Vrank(x), and therefore rank(x) < α ⇒ x ∈⋃

β<α P(Vβ). Conversely, if x ∈
⋃

β<α P(Vβ), then x ⊆ Vβ , for some β < α

and therefore rank(y) < β for all y ∈ x, which implies rank(x) ≤ β < α. □

Corollary 19.13. (a) V0 = ∅.
(b) If α < β then Vα ∈ Vβ and Vα ⊂ Vβ.
(c) VS(α) = P(Vα).
(d) Vλ =

⋃
α<λVα, when λ is limit.

(e) V =
⋃

α∈OrdVα.

Therefore the universe V is the increasing union of the transitive sets
Vα, each of which belongs to the successive sets, and the least such set is
empty (see Figure 21). As |Vn+1| = 2n for all n ∈ ω, then Vω ≍ ω, and
Vω+1 ≍P(ω) ≍ R. In Vω there is (an isomorphic copy of) any finite structure
(graph, group, ring, . . . ), and Vω is the universe where finite combinatorics
takes place. Its elements are the hereditarily finite sets, that is those
sets whose transitive closure is finite. If x, y ∈ Vα then {x, y} ∈ Vα+1 and
(x, y) ∈ Vα+2, so N× N ⊆ Vω.

Remark 19.14. One would expect that Z and Q be subsets of Vω, yet the
usual construction yields that, e.g. Z = N×N/EZ ⊆ Vω+2. As we are taking



19. Recursive constructions 409

Vα

Ord

V

Figure 21. The universe V and the hierarchy of Vαs.

quotients of a countable set, it is possible to choose canonical representatives
in the equivalence classes. For example if we re-define

Z = {(n, 0) | n ∈ ω} ∪ {(0, n) | n ∈ ω}
Q = {(z, w) ∈ (Z \ {0})2 | z, w relatively prime and w > 0} ∪ {(0, 0)},

then Z,Q ⊆ Vω, and hence R ⊆P(Q) ⊆ Vω+1.

Every object usually encountered in classical mathematics (finite combi-
natorics, real and complex analysis, . . . ) can be construed as an element of
Vω+ω, but this does not mean that the study of Vα for large α is irrelevant
for classical mathematics. In fact the answer to many natural questions in
classical mathematics are strictly related to questions regarding properties of
Vα for very large αs.

19.F. Models of set theory. A structure for L∈, the first-order language
used to formulate MK, NGB, and ZF, is a pair ⟨M,E⟩ where M is a non-
empty set6 and E ⊆ M ×M . It can be quite difficult to determine which
sentences are true in an arbitrary L∈-structure ⟨M,E⟩. If E is extensional on
M , i.e. if ⟨M,E⟩ models the axiom of extensionality, and if E is well-founded
on M , then ⟨M,E⟩ is isomorphic to a unique ⟨M,∈⟩ with M transitive. A
particular kind of transitive structures are the ⟨Vα,∈⟩ (simply denoted by
Vα), for α > 0. The following question comes up:

Which axioms of set theory are true in Vα?

Theorem 19.15.

(a) All axioms of ZFC except the axiom of infinity hold in Vω.

6The requirement of focusing on sets rather than classes will be explained in Chapter VIII.



410 V. Basic set theory

(b) All axioms of ZF except possibly for replacement hold in Vλ, if λ > ω is
limit.

(c) Assuming choice, then AC holds in Vλ, if λ is limit.

Remarks 19.16. (a) For the sake of simplicity, Theorem 19.15 is stated
for (sub-theories of) ZF, but a similar statement could be formulated
for MK or NGB (Exercise 19.31).

(b) Theorem 19.15 suggest the following question: are there ordinals α such
that Vα is a model of ZF or MK? The answer will be presented in
Section 21.F after enough cardinal arithmetic is developed.

(c) Although a direct proof of Theorem 19.15 is possible, we will follow
a more general route, since this will be useful later in the book (Sec-
tions 24.B and 37).

19.F.1. A hierarchy of formulæ.

Definition 19.17. An L∈-formula is ∆0 if it belongs to the smallest class
containing all atomic formulæ and closed under connectives and bounded
quantifications, that is

• atomic formulæ are ∆0,
• if φ,ψ are ∆0 then so are ¬φ and φ⊙ψ, where ⊙ is any binary connective,
• if φ is ∆0 then so is ∀y(y ∈ x⇒ φ) and ∃y(y ∈ x ∧φ),

and nothing else is a ∆0-formula.

We write ∀y ∈ xφ and ∃y ∈ xφ instead of ∀y(y ∈ x ⇒ φ) and ∃y(y ∈
x ∧φ). Table 3 lists some ∆0-formulæ. Checking that they are indeed ∆0 is
straightforward. For example, Trans(x) is ∆0 since it is ∀y ∈ x ∀z ∈ y (z ∈ x).

Definition 19.18. A L∈-formula is Σ1 if it is of the form ∃xφ with φ a
∆0-formula; it is Π1 if it is of the form ∀xφ with φ a ∆0-formula.

Thus the negation of a Π1-formula is (logically equivalent to) a Σ1-formula,
and conversely.

Definition 19.19. Let M be a non-empty set. We say that φ(x1, . . . , xn)
is:

• upward absolute between M and V if

∀a1, . . . , an ∈M
(
(⟨M,∈⟩ ⊨ φ[a1, . . . , an]) ⇒ φ(a1, . . . , an)

)
;

• downward absolute between M and V if

∀a1, . . . , an ∈M
(
φ(a1, . . . , an) ⇒ (⟨M,∈⟩ ⊨ φ[a1, . . . , an])

)
;
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Trans(x), i.e. x is transitive x = {y, z}
Ord(x), i.e. x is an ordinal x = (y, z)
Op(x), i.e x is an ordered pair f : x→ y
Rel(x), i.e. x is a relation y = dom(x)
Fn(x), i.e. x is a function y = ran(x)
Seq(x), i.e. x is a finite sequence S(x) = y
x is an injective function f(x) = g(y)
x is a reflexive relation g = f ↾ x
x is a symmetric relation f(x) = y
x is a transitive relation f“x = y
x ⊆ y z = x× y
z = x ∪ y z = x \ y
z = x ∩ y

Table 3. Some ∆0-formulæ.

• absolute between M and V if it is both upward and downward absolute,
that is

∀a1, . . . , an ∈M
(
(⟨M,∈⟩ ⊨ φ[a1, . . . , an]) ⇔ φ(a1, . . . , an)

)
,

where φ(a1, . . . , an) stands for φLa1/x1, . . . , an/xnM.

From the definition it follows that φ is upward absolute between M and
V if and only if ¬φ is downward absolute between M and V, and that if
φ and ψ are upward/downward absolute, then so are φ ∧ ψ and φ ∨ ψ.
Therefore the collection of formulæ that are absolute between M and V is
closed under all connectives.

An easy induction on the complexity of formulæ shows that:

Lemma 19.20. A quantifier-free formula is absolute between a transitive
M ̸= ∅ and V.

Lemma 19.21. Suppose M is a non-empty transitive set.

(a) Every ∆0 formula is absolute between M and V.

(b) Every Σ1 formula is upward absolute between M and V, and every Π1

formula is downward absolute between M and V.

Proof. (a) By Lemma 19.20 it is enough to consider formulæ of the form
∀y ∈ xiφ(y, x1, . . . , xn). Fix a1, . . . , an ∈ M . By the inductive hypothesis,
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and since M is transitive,

⟨M,∈⟩ ⊨ ∀y ∈ xiφ[⃗a]⇔ ∀b ∈M (b ∈ ai ⇒ ⟨M,∈⟩ ⊨ φ[b, a⃗])
⇔ ∀b ∈ ai ⟨M,∈⟩ ⊨ φ[b, a⃗]
⇔ ∀y ∈ aiφ(⃗a).

(b) It is enough to prove that Σ1 formulæ are upward absolute. Sup-
pose that φ(y1, . . . , yk, x1, . . . , xn) is ∆0, that a1, . . . , an ∈ M , and that
⟨M,∈⟩ ⊨ ∃y1, . . . , yk φ[a1, . . . , an]. Fix b1, . . . , bk ∈ M such that ⟨M,∈⟩ ⊨
φ[b1, . . . , bk, a1, . . . , an]. By part (a)φ(b1, . . . , bk, a1, . . . , an) holds, and hence
∃y1, . . . , yk φ(a1, . . . , an). □

Thus the meaning of a ∆0 formula in a transitive structure ⟨M,∈⟩ is the
same as in V, and in particular it applies to all formulæ of Table 3.

Theorem 19.22. Suppose M ̸= ∅ is a transitive set. Then

(a) ⟨M,∈⟩ satisfies the axioms of extensionality and foundation.
(b) If {a, b} ∈M for all a, b ∈M , then ⟨M,∈⟩ satisfies the axiom of pairing.
(c) If

⋃
a ∈M for all a ∈M , then ⟨M,∈⟩ satisfies the axiom of union.

(d) If ∀a ∈M (P(a) ∩M ∈M), then ⟨M,∈⟩ satisfies the power-set axiom.
(e) If ω ∈M then ⟨M,∈⟩ satisfies the axiom of infinity.
(f) If ∀a ∈M ∀b ⊆ a (b ∈ M), then ⟨M,∈⟩ satisfies the axiom schema of

separation.
(g) If for all a ∈M and all f : a→M there is b ∈M such that ran f ⊆ b,

then ⟨M,∈⟩ satisfies the axiom schema of replacement.
(h) ⟨M,∈⟩ ⊨ AC if and only if ∀A ∈M (∀A ∈ A (A ≠ ∅)⇒ ∃f ∈M (f is a

choice function for A)).

Proof. (a) The axioms of extensionality and foundations are the universal
closure of the ∆0-formulæ

∀z ∈ x (z ∈ y) ∧ ∀z ∈ y (z ∈ x)⇒ x = y

∃y ∈ x (y = y)⇒ ∃y ∈ x ∀z ∈ y (z /∈ x)

so they are downward absolute. Both axioms hold in V and therefore hold in
⟨M,∈⟩.

(b) and (c) follow from the fact that z = {x, y} and v =
⋃

u are ∆0

formulæ.

(d) Fix a ∈ M and let b
def
= P(a) ∩M . As z ⊆ x is ∆0, then ⟨M,∈⟩

satifies ∀z(z ⊆ x⇔ z ∈ y), where x and y are given the values a and b.

(e) The axiom of infinity is ∃xφ(x) where φ(x) is the ∆0-formula ∅ ∈
x∧∀y ∈ x (S(y) ∈ x), so by absoluteness ⟨M,∈⟩ satisfies the axiom of infinity
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if and only if ∃x ∈M φ(x). As ω satisfies φ, if ω ∈M then ⟨M,∈⟩ satisfies
the axiom of infinity.

(f) We must show that given φ(x, y, w⃗), and given a, c⃗ ∈M to be assigned
to the variables y, w⃗, the set b = {d ∈ a | ⟨M,∈⟩ ⊨ φ[d, a, c⃗]} belongs to M .
But this follows at once by the assumption and by b ⊆ a.

(g) We must show that given φ(x, y, z, w⃗) and given a, c⃗ ∈ M to be
assigned to the variables z, w⃗, if ⟨M,∈⟩ ⊨ ∀x ∈ z ∃!yφ[a, c⃗] then there is
b ∈ M such that ⟨M,∈⟩ ⊨ ∀x ∈ z ∃y ∈ vφ[a, c⃗, b], with b assigned to the
variable v. Then φ, a, c⃗ yield a function f : a→M , and by case assumption
there is b ∈M such that ran f ⊆ b. This is the b we were looking for.

(h) The result follows from the straightforward verification that φ(f, x)
saying “x ̸= ∅, every element of x is non-empty, and f : x→

⋃
x is a choice

function” is ∆0. □

Proof of Theorem 19.15. (a) It is enough to check that replacement and
choice hold in Vω. As we shall see (Exercise 21.52), every Vn is finite, hence
every element of Vω is finite. It follows that every x ∈ Vω is well-orderable,
hence AC holds by Theorem 18.3. Moreover, if A ∈ Vω and F : A→ Vω, then
F“A is finite, F“A = {a0, . . . , an−1}. For every i < n, let mi < ω be such
that ai ∈ Vmi . Then F“A ⊆ Vm, where m = max {m0, . . . ,mn−1}, hence
F“A ∈ Vm+1.

(b) Since ω ∈ Vλ we apply Theorem 19.22(e).

(c) If A ∈ Vλ is a non-empty family of non-empty sets, by AC there is a
choice function f : A→

⋃
A. If α < λ is such that A ∈ Vα∔1 then f ∈ Vα∔3

so we are done by Theorem 19.22(h). □

Exercises

Exercise 19.23. Generalize Exercise 18.40 by showing that if X is a class,
R ⊆ X ×X is left-narrow on X, and every non-empty subset of X has an
R-minimal element, then R is well-founded on X.

Exercise 19.24. Show that if X and Y are transitive classes and f : X → Y
is a bijective functional relation such that ∀x1, x2 ∈ X (x1 ∈ x2 ⇔ f(x1) ∈
f(x2)), then f = id ↾ X and X = Y . Conclude that the classes πR,X and X
in part (a) of Proposition 19.8 are unique.

Exercise 19.25. Check that if R is a well-order on X then ran(ϱR,X) =
ot(X,R) and ϱR,X : X → ot(X,R) is the inverse of the enumerating function
(see page 389).
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Exercise 19.26. Suppose X ⊆ Y are classes. Show that:

(i) TC(X) ⊆ TC(Y ).
(ii) If Y is transitive, then TC(X) ⊆ Y .

Exercise 19.27. Suppose X is a transitive class, and let Ω = rank“X. Show
that Ω ∈ Ord if X is a set, and Ω = Ord if X is a proper class.

Exercise 19.28. Prove the properties of ordinal addition, multiplication,
and exponentiation listed in Table 2.

Exercise 19.29. Show that f : ⟨{0} × α ∪ {1} × β,<lex⟩ → ⟨α∔ β,<⟩ and
g : ⟨β × α,<lex⟩ → ⟨α · β,<⟩ are order isomorphisms,7 where f(0, ν) = ν and
f(1, ν) = α∔ ν, and g(γ, δ) = α · γ ∔ δ. Conclude that:

• |α ∔ β| = |α|+ |β| and |α · β| = |α||β|, where on the right-hand-side we
use the cardinal operations. In particular, n∔m = n+m and n ·m = nm
for all n,m ∈ ω;
• if κ ≥ ω is a cardinal and α, β < κ then α∔ β, α · β < κ.

Exercise 19.30. Show that

(i) mn is finite and |mn| = n.m for all n,m ∈ ω.
(ii) there are ordinals such that α∔ β ̸= β∔α; such that α · β ̸= β ·α; such

that (α∔ β) · γ ̸= (α · γ)∔ (β · γ).
Exercise 19.31. Show that

(i) all axioms of MK except the axiom of infinity hold in VS(ω),
(ii) if λ > ω is limit, then all axioms of MK with the possible exception of

replacement hold in VS(λ), and if we assume choice, also AC holds.

Exercise 19.32. Suppose λ, ν are limit ordinals, and m,n ∈ ω and m > 0.
Show that:

(i) (λ∔ n)∔ (ν ∔m) = λ∔ ν ∔m;
(ii) (λ∔ n) ·m = λ ·m∔ n;
(iii) (λ∔ n) · ν = λ · ν;
(iv) (λ∔ n) · (ν ∔m) = λ · ν ∔ λ ·m∔ n = λ · (ν ∔m)∔ n.

Exercise 19.33. Show that if α < β then ω.α · n∔ ω.β = ω.β for all n ∈ ω;
if α < ω.β then α∔ ω.β = ω.β .

Exercise 19.34. If F : Ord × Ord → Ord is a binary operation on the
ordinals, an ordinal α is F -indecomposable8 if and only if ∀β, γ < α (F (β, γ) <

7This shows the correctness of the definitions of addition and multiplication of ordinals seen
in Section 13.A.

8When F is the addition, multiplication, or exponential operation we will speak of additively,
multiplicatively, or exponentially indecomposable ordinals defined on page 407.
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α). The ordinals 0, ω are additively, multiplicatively, and exponentially
indecomposable, 1 is additively and multiplicatively indecomposable, and 2
is multiplicatively indecomposable.

Show that for α, λ ∈ Ord and λ limit:

(i) If α ≥ 2 then α < α ∔ α ≤ α · α ≤ α.α, and if α > 2 then all the
inequalities are strict.

(ii) If λ is exponentially indecomposable, then it is multiplicatively inde-
composable; if λ is multiplicatively indecomposable, then it is additively
indecomposable.

(iii) If ν 7→ F (α, ν) is increasing and continuous, for all α, then λ is F -
indecomposable if and only if F (α, λ) = λ, for all α < λ. (Therefore
∀α, β < λ (α ∔ β < λ) ⇔ ∀α < λ (α ∔ λ = λ), and similarly for multi-
plication and exponentiation.)

(iv) λ is additively indecomposable if and only if ∃α (λ = ω.α) and α is
multiplicatively indecomposable ∃α(λ = ω.ω.α

).
(v) If λ is additively decomposable, then there are 0 < β < α < λ such

that λ = α ∔ β; if λ is multiplicatively decomposable, then there are
0 < β < α < λ such that λ = α · β.

Exercise 19.35. Define by recursion E(0, α) = α and E(n∔1, α) = α.E(n,α).
Show that for α ≥ 2:

(i) if n ≤ m then E(n, α) ≤ E(m,α) and E(n, α)∔E(m,α) ≤ E(m∔1, α);
(ii) supnE(n, α) is the smallest exponentially indecomposable ordinal > α,

and supnE(n, α) = supnE
′(n, α) where E′(n∔ 1, α) = E′(n, α).E

′(n,α)

and E′(0, α) = α.

Exercise 19.36. Order the ordinals α0, . . . , α5:

α0 = ω.ω · (ω ∔ ω) α1 = (ω ∔ ω) · ω.ω α2 = (ω.ω ∔ ω) · ω ∔ ω.ω

α3 = ω · ω.ω ∔ ω.ω · ω α4 = ω.ω · ω ∔ ω · ω.ω · ω α5 = (ω · 3)ω∔1

Exercise 19.37. Let F : Ord × Ord → Ord be the unique isomorphism
between ⟨Ord×Ord, <G⟩ and ⟨Ord, <⟩. Show that:

(i) The anti-lexicographic ordering and <G agree on α× [α;α∔ β), for all
α, β ∈ Ord. Therefore ot ⟨α× [α;α∔ β), <G⟩ = α · β.

(ii) If ot ⟨λ× λ,<G⟩ = λ, then λ is multiplicatively indecomposable. [Hint:
argue that λ is additively indecomposable.]

(iii) If γ ≥ ω is additively indecomposable and ν < γ, then ot ⟨ν × ν,<G⟩ <
γ2. Conclude that if λ is multiplicatively indecomposable, then λ =
ot ⟨λ× λ,<G⟩.

Exercise 19.38. Let β > 1.
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(i) Consider the equation
ν = β.γ0 · δ0 ∔ β.γ1 · δ1 ∔ · · ·∔ β.γm−1 · δm−1, with m ∈ ω,
γ0 > γ1 > · · · > γm−1 and 0 < δi < β for all i < m,

(∗)

where ν = 0 if and only if m = 0. Show that
• if ν is as in (∗) then ν < β.γ0∔1,
• for every ν ∈ Ord there exist and are unique m ∈ ω and γi, δi for
i < m such that (∗) holds.

The expression (∗) is the normal form of ν in base β, and when β = ω
it is called Cantor’s normal form.

(ii) Let E(α, β) = {f ∈ αβ | {γ ∈ α | f(γ) ̸= 0} is finite}. If f, g ∈ E(α, β)
are distinct, there is a largest γ ∈ α such that f(γ) ̸= g(γ) and set
f ≺ g ⇔ f(γ) < g(γ). For each ν ∈ β.α let Φ(ν) ∈ E(α, β) be defined
by using the equation (∗) above:

Φ(ν)(γ) =

{
δi if γ = γi,

0 otherwise.

Show that Φ: ⟨β.α, <⟩ → ⟨E(α, β),≺⟩ is an order isomorphism.
(iii) Show that if κ ≥ ω is a cardinal, then α, β < κ⇒ β.α < κ.

Exercise 19.39. The ordinal sum of a sequence of ordinals ⟨αi | i < ν⟩ is∑̇
i<ναi

def
= ot⟨⊎i<ναi,≤lex⟩. Show that:

(i) If ν = ξ ∔ 1, then
∑̇

i<ναi =
∑̇

i<ξαi ∔ αξ. In particular if ν = 2,∑̇
i<ναi = α0 ∔ α1.

(ii) If ξ < ν, then
∑̇

i<ξαi ≤
∑̇

i<ναi and the inequality is strict if and only
if αj ̸= 0 for some ξ ≤ j < ν.

(iii) If ν is limit, then
∑̇

i<ναi = supξ<ν

∑̇
i<ξαi.

Exercise 19.40. If f and g are real valued function of a real variable, set

f ≺ g ⇔ ∃M∀x > M (f(x) < g(x)) .

(See Exercise 13.69.) Let F be the smallest set of functions containing N[X]

and closed under addition and the operation f 7→ Xf . (Thus X(X3X+2+5XX)+
2X + 4 is in F, but (X + 1)X is not.) Show that the ordering ≺ on F is a
well-order of type ϵ0.

Exercise 19.41. Consider the first-order language L with only < as nonlogi-
cal symbol. A statement σ characterizes an ordinal α ̸= 0 if α is the unique
non-zero ordinal satisfying σ, that is if β ̸= 0 and ⟨β,<⟩ ⊨ σ then α = β.

Show that:

(i) every 0 < α < ω.ω can be characterized by a sentence σ of L,
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(ii) if 0 < α < β < ω.ω then ⟨α,<⟩ and ⟨β,<⟩ are not elementarily equiva-
lent.

(We will prove in ?? that this is optimal: the only characterizable ordinals
are those < ωω.)

Exercise 19.42. Let b be a natural number > 1. The expression of n in
pure base b is computed as follows:

• write n in base b, that is n = bk0h0 + · · ·+ bkm−1hm−1;
• every ki is written in base b, that is ki = bk̄0 h̄0 + · · ·+ bk̄m−1 h̄m−1;
• every k̄i is written in base b, and so on. . .

until in the expression we have digits ≤ b. For example the expression of
n = 1931 in pure base b = 2, 3, 4 is

1931 = 22
2+1+2 + 22

2+1+1 + 22
2+1

+ 22
2+2+1 + 22+1 + 2 + 1

= 33·2 · 2 + 33+2 + 33+1 · 2 + 33 · 2 + 32 + 3 + 2

= 44+1 + 44 · 3 + 43 · 2 + 4 · 2 + 3.

Per each n ∈ N, the Goodstein sequence of n is computed as follows:
Gn(0) = n, Gn(k + 1) is obtained from Gn(k) written in pure base k + 2,
replacing every k + 2 with k + 3, and then subtracting 1. Thus Gn(1) is
obtained by replacing every 2 in the expression in pure base 2 with 3 and
then subtracting 1, Gn(2) is obtained from Gn(1) written in pure base 3,
replacing 3 with 4 and then subtracting 1, and so on. The first few elements
of the Goodstein sequence n = 1931 are

G0(1931) = 22
2+1+2 + 22

2+1+1 + 22
2+1

+ 22
2+2+1 + 22+1 + 2 + 1

G1(1931) = 33
3+1+3 + 33

3+1+1 + 33
3+1

+ 33
3+3+1 + 33+1 + 3

G2(1931) = 44
4+1+4 + 44

4+1+1 + 44
4+1

+ 44
4+4+1 + 44+1 + 3

G3(1931) = 55
5+1+5 + 55

5+1+1 + 55
5+1

+ 55
5+5+1 + 55+1 + 2

...

Show that every Goodstein sequence ends with a 0, that is ∀n∃k Gn(k) = 0.

Exercise 19.43. By Cantor’s Theorem 13.22 there is no injection F from
the powerset P(X) into X. In this exercise we will explicitly construct sets
W and Z of X such that F (W ) = F (Z).

Let F : P(X)→ X. Show that there is a unique W ⊆ X and a unique
well-order � on W such that

(a) F ({z ∈W | z � w}) = w, for all w ∈W and
(b) F (W ) ∈W .
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Conclude that F is not injective, even if restricted to PWO(X) = {Y ⊆ X |
Y is well-orderable}.

Exercise 19.44. Let a : Vω → ω be the map defined by a(∅) = 0 and
a(x) =

∑
i≤k 2

a(xi) if x = {x0, . . . , xk} has size k + 1. Show that a is a
bijection.

[Hint: see Exercise 8.58.]

20. Cardinality and the axiom of choice

Recall that the axiom of choice is equivalent both to Zorn’s Lemma and to the
well-ordering principle, that is the statement that every set is well-orderable
(Theorem 14.3). In particular cardinal exponentiation is defined by

λκ = |κλ| .
This definition subsumes that the set κλ is well-orderable, so the operation of
cardinal exponentiation is defined under AC. By Lemma 13.24 we have that
for cardinals κ, λ, µ, ν

κ ≤ ν ∧ λ ≤ µ ⇒ κλ ≤ νµ
(
κλ
)µ

= κλ·µ

κλ+µ = κλ · κµ (κ · λ)µ = κµ · λµ.

Definition 20.1. If X is a set and κ is a cardinal

Pκ(X) = {Y ⊆ X | |Y | < κ}
is the collection of all well-orderable subsets of X of size less than κ.

Note that Pκ(λ) = [λ]<κ, as in Definition 18.32. By Exercise 20.19,
Pκ(λ) has size λ<κ ≤ λκ, where

λ<κ def
= sup {λν | ν ∈ Card ∧ ν < κ} .

The class-function ℶ : Ord→ Card, where ℶ (to be read: beth) is the second
letter of the Hebrew alphabet, is defined by recursion by

ℶ0 = ω, ℶα∔1 = 2ℶα , ℶλ = supα<λ 2
ℶα , for λ limit.

Cardinal exponentiation will be presented in detail in Section 21. For the
time being we just look at some elementary facts.

20.A. The continuum hypothesis. Cantor’s Theorem 13.22 can be re-
stated as ∀I

(
|I| < 2|I|

)
. The Continuum Hypothesis CH is the statement

that
2ℵ0 = ℵ1,

or, equivalently, ∀X ⊆ R (|X| ≤ ℵ0 ∨ |X| = |R|). The Generalized Contin-
uum Hypothesis GCH is its generalization to all infinite cardinals

∀α ∈ Ord
(
2ℵα = ℵα+1

)
,
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or, equivalently, ∀X ⊆ P(ℵα) (|X| ≤ ℵα ∨ |X| = |P(ℵα)|). Both CH and
GCH are independent from the usual axiomatizations of set theory, like
MK+ AC, NGB+ AC, or ZFC. In particular it may happen that 2ℵn = ℵf(n)
for any monotone function f : ω → ω such that f(n) ≥ n + 1. Thus if
2ℵ0 = 2ℵ1 = ℵk for some k ≥ 2, then |P(ω)| = |P(ω1)|, so that the
implication X ≾ Y ⇒ P(X) ≾ P(Y ) cannot be reversed. Similarly, the
implication κ1 < κ2 ⇒Pκ1(λ) ≾ Pκ2(λ) cannot be reversed.

The continuum hypothesis asserts that two very different uncountable
sets, R and ω1, are in bijection. One might ask if one of the two sets surjects
onto or injects into the other. The only result that one can prove without
choice is that R ↠ ω1, as it follows from (18.3). All other possibilities (that
is ω1 ≾ R, R ≾ ω1, and ω1 ↠ R) either follow from AC or else are equivalent
to CH. More to the point:

• Assuming AC then R is well-orderable, so ω1 ≾ R. But ω1 ≾ R does not
imply that R is well-orderable. From ω1 ≾ R it is possible to construct
certain “pathological” subsets of R (sets that are non-Lebesgue measurable,
that do not have the property of Baire,. . . ), see Section 28.B.

• If ω1 ↠ R then R ≾ ω1, so R is well-orderable, and since ω1 is the least
uncountable ordinal, it follows that ω1 ≍ R.

Remark 20.2. As we shall see in Section 20.C below, it is possible to de-
velop the notion of cardinality in a choice-less world. In this context, the
continuum hypothesis can be restated as: ∀A ⊆ P(ω)

(
A ≾ ω ∨ A ≍

P(ω)
)
. This sentence does not to imply that P(ω) is well-orderable,

so it is weaker than CH. The generalized continuum hypothesis becomes
∀X ∀A ⊆P(X)

(
X infinite⇒ A ≾ X ∨A ≍P(X)

)
. The statement implies

the axiom of choice, and hence it is fully equivalent to GCH (Exercise 20.28).

20.B. Which sets are well-orderable? The axiom of choice says that
given a non-empty family of non-empty sets A there is a function f : A→

⋃
A

such that ∀A ∈ A (f(A) ∈ A). The family A can be written as {Ai | i ∈ I}
with Ai ⊆ X, for suitable sets I and X. By fixing one or both parameters I
and X interesting weak forms of AC are obtained.

Focusing on the set of indexes I we obtain ACI

(ACI)
given ⟨Ai | i ∈ I⟩ such that Ai ≠ ∅ for all i ∈ I, there is
⟨ai | i ∈ I⟩ such that ai ∈ Ai, for all i ∈ I.

When I is finite, ACI is provable in both MK and ZF, but when I is infinite a
statement strictly weaker than AC, but still independent of the other axioms
of set theory, is obtained. When I = ω we obtain the Axiom of Countable
Choices ACω which we talked about in Section ??.
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Focusing on the set X we obtain the principle AC(X)

(AC(X)) if X is a non-empty set, then there is a choice function on X.

Lastly, ACI(X) is the statement

(ACI(X)) if X is a non-empty set and I →P(X) \ {∅}, i 7→ Ai, then
there is a function I → X, i 7→ ai ∈ Ai.

Therefore ACI⇔∀X ACI(X), AC(X)⇔∀I ACI(X) and AC⇔∀I ∀X ACI(X).
If X ↠ Y and J ↣ I, then ACI(X)⇒ ACJ(Y ) (Exercise 20.16). Exercise ??
shows a few statements equivalent to AC:

• every partition of a non-empty set has a selector,

• the cartesian product of non-empty sets is non-empty,

• every surjection has a left inverse,

• for every relation R there is a function f such that ∀x ∈ dom(R) [x R f(x)],

and more examples, from various parts of mathematics, will be seen in
Section 28.

By Theorem 14.3 the axiom of choice, that is ∀X AC(X), is equivalent to
“every set X is well-orderable”. In fact the equivalence holds for every set X,
that is AC(X) if and only if X is well-orderable: the reverse implication is
Theorem 18.3 and the forward implication is the next result.

Theorem 20.3. AC(X) implies that X is well-orderable.

Proof. If X = ∅ then, trivially, X is well-orderable, hence we may assume
that X is non-empty and fix a choice function C for X. Let x0 = C(X) and
suppose we have constructed x0, x1, . . . , xβ, . . . distinct elements of X, with
β < α. If X = {xβ | β < α} then α→ X, β 7→ xβ is the required bijection.
Otherwise choose an element xα ∈ X distinct from the preceding ones, for
example xα = C(X \ {xβ | β < α}). If the function α 7→ xα were defined
for all α < Hrtg(X), we would have an injection Hrtg(X) ↣ X, against the
definition of Hartogs’ number (pag. 392). Therefore there is ᾱ < Hrtg(X)
such that X = {xβ | β < ᾱ}. □

The preceding results can be extended to proper classes if we convene
that a choice function for a proper class X is a class-function F with domain
{y | ∅ ≠ y ⊆ X} and such that F (y) ∈ y, for all y ∈ dom(F ).

Theorem 20.4. A class X is well-orderable if and only if there is a choice
function on X. In particular, V is well-orderable if and only if AGC, the
global axiom of choice (pag. 378), holds.
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We proved in Chapter ?? that the axiom of choice is equivalent to Zorn’s
Lemma (Theorem 14.3), which says ∀X Zorn(X), where

Zorn(X): if ≤ is an ordering on X such that every chain has an upper
bound, then there is a maximal element x ∈ X.

If the assumption is strengthened by replacing “chain” with “upward directed
set” we obtain the weaker principle:

wZorn(X): if ≤ is an ordering on X such that every upward directed
set has an upper bound, then there is a maximal x ∈ X

and ∀X wZorn(X) is known as the weak Zorn’s Lemma. The Haus-
dorff’s maximality principle says that every ordered set contains a maxi-
mal chain, ∀X MaxHaus(X), where

MaxHaus(X): if ≤ is an ordering on X, then ∃C ⊆ X (C maximal chain).

Proposition 20.5. Fix a non-empty set X,

X is well-orderable⇒MaxHaus(X)⇒ Zorn(X)⇒ wZorn(X)

and
wZorn(P(X ×X))⇒ X is well-orderable.

Proof. Suppose X is well-orderable, and towards a contradiction, let ≤ be
an ordering on X without maximal chains. If C ⊆ X is a chain, the set

K(C) = {x ∈ X \ C | C ∪ {x} is a chain}

is non-empty. Fix a choice function F : P(X) \ {∅} → X. Then

g : Hrtg(X)→ X, α 7→ F (K ({g(β) | β < α})) .

is injective, against Theorem 18.23.
Suppose now MaxHaus(X), and let ≤ be an order on X such that each

chain has an upper bound. If C ⊆ X is a maximal chain, then the upper
bound of C must belong to C hence it is a maximal element of X.

The implication Zorn(X)⇒ wZorn(X) is immediate.
Finally notice that in part (a)⇒(b) of the proof of Theorem 14.3, i.e.

that Zorn’s Lemma implies the well-ordering principle, we actually used
wZorn(P(X ×X)). □

Theorem 20.6. AC is equivalent to ∀α ∈ Ord (P(α) is well-orderable).

Proof. By Corollary 19.13 it is enough to show that Vα is well-orderable for
all α. Proceed by induction on α.
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Clearly V0 = ∅ is well-orderable, and if Vα is well-orderable and f : Vα →
γ is a bijection, then by hypothesis there is a well-order ≺ on P(γ) that
induces via f a well-order on Vα+1 = P(Vα).

We now consider the more complex case when λ is limit. Suppose Vα is
well-orderable for every α < λ: if we can construct (without appealing to
AC!) well-orders �α on Vα, for all α < λ, then for x, y ∈ Vλ

(20.1) x�λ y ⇔ ∃α < λ
[
(x ∈ Vα∧y /∈ Vα)∨ (x, y ∈ Vα+1 \Vα∧x�α+1 y)

]
is a well-order of Vλ (Exercise 18.46) as required. Let γ = supα<λ γ

+
α where

γα = |P(α)|, so that every well-order of Vα has order-type < γ. Let ≺ be a
well-order on P(γ). It is enough to construct by induction on α < λ a well-
order �α on Vα. Set �0 = ∅; if �α is a well-order on Vα and fα : Vα → γ+

is its enumerating function, then define �α+1 on Vα+1 using fα and ≺; if
ν < λ is a limit ordinal, apply construction (20.1) with ν in place of λ. □

The next result summarizes some equivalents of the axiom of choice. Re-
call from page 42 that a subset Q of an preordered set ⟨P,≤⟩ is independent
if x ≰ y and y ≰ x for all distinct x, y ∈ Q.9

Theorem 20.7. The following are equivalent:

(a) AC.

(b) Hausdorff’s maximality principle.

(c) Zorn’s Lemma.

(d) The weak form of Zorn’s Lemma.

(e) The Teichmüller-Tukey Lemma: Let ∅ ̸= F ⊆P(X) be a family of
finite character, that is

∀Y ⊆ X (Y ∈ F ⇔ ∀Z ⊆ Y (Z finite⇒ Z ∈ F)) .

Then every Y ∈ F is included in a maximal Z ∈ F.

(f) The Axiom of Multiple Choices (AMC): For every set X ≠ ∅ there
is a function F : P(X) \ {∅} → P(X) \ {∅} such that F (A) ⊆ A is
finite, for each ∅ ≠ A ⊆ X.

(g) Every pre-order contains a maximal independent subset.

(h) Kurepa’s maximality principle: Every order contains a maximal
independent subset.

(i) Every linear order is well-orderable.

9In combinatorics independent subsets of orders are also known as antichains, but in this
book we eschew this terminology since for Boolean algebras, which are particular kind of ordered
sets, the word ‘antichain’ has a different meaning.
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Proof. The implications (g) ⇒ (h) and (a) ⇒ (f) are immediate, while
(a)⇔ (b)⇔ (c)⇔ (d) follow from Proposition 20.5.

(d)⇒ (e). Let F ⊆P(X) be of finite character, and let Y ∈ F. If D ⊆ F

is an upward directed collection of sets containing Y , then
⋃

D ∈ F by the
finite character of F, so D has an upper bound in F. Therefore there is a
Z ∈ F which is maximal and contains Y .

(e) ⇒ (g). Let ⟨X,≤⟩ be a preordered set. The collection F of all
indpendent subsets of X has finite character, and ∅ ∈ F, hence it contains a
maximal set.

(f)⇒ (i) and (h)⇒ (i). Let ⟨X,≤⟩ be a linear order: we will show that
there is a choice function for X hence the result follows from Theorem 20.3.

Suppose (f) holds: by assumption there is G : P(X) \ {∅} →P(X) \ {∅}
such that G(A) ⊆ A is finite, for each ∅ ̸= A ⊆ X. Let g(A) be the last
element of G(A). Then g is a choice function on X.

Suppose (h) holds: let ⪯ be the order on P = {(A, a) | A ⊆ X ∧ a ∈ A}
defined by

(A, a) ⪯ (B, b) ⇔ A = B ∧ a ≤ b.

By assumption there is a maximal independent A ⊆ P: it is clear that A is a
choice function for X.

(i) ⇒ (a). α2 is linearly ordered by the lexicographic <lex, hence α2 is
well-orderable. Since α2 ≍P(α) the result follows from Theorem 20.6. □

20.C. Cardinality without choice*. Assuming the axiom of choice, every
set is in bijection with an ordinal, hence the notion of cardinality (Defini-
tion 18.20) is defined by

|X| = min {α | α ≍ X}

where ≍ is the equipotence relation between sets. But how do we define this
notion in the absence of AC? In naïve set theory (Section 13) the cardinality
of a set X is defined as

card(X) = [X]≍,

and comparison between cardinalities is

(20.2) card(X) ≤ card(Y ) ⇔ X ≾ Y.

By the Cantor-Schröder-Bernstein Theorem 13.11 ≤ is antisymmetric, hence
it is an order on cardinalities. The drawback of this approach is that card(X)
is a proper class when X is non-empty (Exercise 18.41). A similar problem
occurs when dealing with an equivalence relation E on a proper class A such
that E is not left-narrow, that is the equivalence classes are proper classes—
this is the typical case when one studies structures up to isomorphism. Given
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a class A and an equivalence relation E as above, we would like a class
function C : A→ A such that

∀x ∈ A (C(x) ∈ [x]E) and ∀x, y ∈ A (x E y ⇒ C(x) = C(y)) .

The existence of such a C is equivalent to the existence of a transversal T
for the relation E, that is a class T ⊆ A such that T ∩ [x]E is a singleton,
for each x ∈ A.

In some situations the function C can be explicitly defined, even when E
is not left-narrow on A:

• If A is the class of well-ordered sets and E is the isomorphism relation,
then every equivalence class contains exactly one ordinal, hence we can set
C(A,<) = ot(A,<);
• If A is the class of countable compact spaces and E is the homeomorphism

relation, then we can set C(K) to be the unique ordinal of the form
ω.γ · n+ 1, with γ < ω1 (Theorem 27.2);
• If A is the class of all finitely generated abelian groups and E is the

isomorphism relation, then set C(G) = Zn×Z/p1Z×Z/p2Z×· · ·×Z/pkZ
for suitable n ≥ 0, primes p1 ≤ p2 ≤ · · · ≤ pk, and k ≥ 0.

If some form of choice is assumed, the above list can be extended:

• Assuming AC and letting A be the class V and E the relation ≍, then we
can define C(A) as the unique cardinal κ in bijection with A.
• If the axiom of global choice is assumed, then V is well-orderable (Theo-

rem 20.4) hence a class-function C can be defined for each A and E.

Conversely, in absence of choice it is not possible, in general, to select
a canonical representative in each equivalence class of E. Using the Vα

hierarchy of Section 19.E, it is possible to define (without choice!) a function
J·KE : A→ V such that

∅ ≠ JxKE ⊆ [x]E and x E y ⇔ JxKE = JyKE .

The set JxKE is called the Scott’s E-equivalence class,

JxKE = {y | y E x ∧ ∀z (z E x⇒ rank(y) ≤ rank(z))}
= [x]E ∩Vᾱ,

where ᾱ = min {α | Vα ∩ [x]E ̸= ∅}. Note that x need not to belong to JxKE .
If JxKE is a singleton for each x, then we can define a choice function for the
E-equivalence classes by setting C(x) =

⋃
JxKE .

Example 20.8. The order type of an ordered set ⟨A,<⟩ is defined by

type⟨A,<⟩ =

{
ot⟨A,<⟩ if ⟨A,<⟩ is a well-order,

J⟨A,<⟩K∼= otherwise,



20. Cardinality and the axiom of choice 425

where ∼= is the isomorphism relation for ordered sets.
Order types can be added and multiplied—see Section 13.A.

20.C.1. Cardinalities in the absence of choice. In the absence of AC the
cardinality of a set X is defined as

(20.3) card(X) =

{
|X| if X is well-orderable,

JXK≍ otherwise.

Cardinalities are usually denoted by lower case german letters, with c denoting
the cardinality of the continuum. The ordering on cardinalities is given
by (20.2), that is

a ≤ b ⇔ A ≾ B for some/every A ∈ a and B ∈ b.

Remark 20.9. Using this definition every cardinal is a cardinality—the
converse (that is every cardinality is a cardinal) is equivalent to the axiom of
choice by the arguments in Section 20.B.

Assuming AC two cardinalities are always comparable, as they are ordinals.
In fact comparability between cardinalities is equivalent to the axiom of choice.

Theorem 20.10. AC is equivalent to the statement:

∀a, b (a ≤ b ∨ b ≤ a) ,

or equivalently: A ≾ B ∨ B ≾ A, for every set A,B.

Proof. By Theorem 18.3 and by the argument above, it is enough to show
that comparability of cardinalities implies that every set is well-orderable.
Fix a set A: as Hrtg(A) ≾ A is impossible by Theorem 18.23, then A ≾
Hrtg(A) ⊆ Ord. □

The operations on cardinalities are defined by

card(A) + card(B) = card(A ⊎B),

card(A) · card(B) = card(A×B),

card(A)card(B) = card(BA).

Note that this definition of addition and multiplication agrees with Defini-
tion 18.27 whenever A and B are well-orderable. The proof on page 314
shows that if 2 ≤ a, b, then a + b ≤ a · b. By definition a is infinite if and
only if a ≮ ω, so Theorem 18.28 says that AC implies

(20.4) a ≮ ω ⇒ a · a = a,

that is to say: if A is infinite, then A ≍ A × A. Assuming (20.4), if A ∈ a
and B ∈ b are infinite disjoint sets then

A ∪B ≍ (A ∪B)× (A ∪B) ≍ A ∪ (A×B) ∪ (B ×A) ∪B,
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hence A× B ↣ A ∪ B, and therefore a · b = a+ b. The next result shows
that this last equality implies AC.

Theorem 20.11. The following are equivalent:

(a) AC,
(b) ∀a(a ≮ ω ⇒ a · a = a),
(c) ∀a∀b(a, b ≮ ω ⇒ a · b = a+ b).

Proof. It is enough to show that (c) implies that every set A is well-orderable.
First of all we may assume that A is disjoint from B = Hrtg(A). By
assumption there is a bijection F : A × Hrtg(A) → A ∪ Hrtg(A). Since
Hrtg(A) ≾ A is impossible,

∀x ∈ A∃α ∈ Hrtg(A) (F (x, α) /∈ A).

If α(x) is the least witness, then A→ Hrtg(A), x 7→ F (x, α(x)), is injective
hence A is well-orderable. □

Part (b) of Theorem 20.11 should be contrasted with Corollary 18.35.

20.D. Countable and dependent choices. The axiom of countable
choices ACω, first introduced in Section 14.E, implies that the countable
union of countable sets is countable (Theorem 14.31). In particular: ω1 is
not countable union of countable sets. To prove this it is enough to tap a
particular instance of ACω.

Theorem 20.12. Assume ACω(R). Then ω1 is not countable union of
countable sets. In particular: if αn < ω1 for all n < ω, then supn αn < ω1.

Proof. Let Xn ⊆ ω1 be countable sets, for n < ω. Without loss of generality,
we may assume that each Xn is infinite, and let

An = {R ⊆ ω × ω | R is a well-order of ω and ot ⟨ω,R⟩ = ot ⟨Xn,≤⟩} .

As P(ω × ω) ≍ R we may choose Rn ∈ An for all n ∈ ω, and let
fn : ⟨ω,Rn⟩ → ⟨Xn,≤⟩ be the unique isomorphism. Then

ω × ω →
⋃

n∈ω Xn, (n,m) 7→ fn(m)

is surjective, thus
⋃

n∈ω Xn is countable. □

By Hartogs’ result R ↠ ω1 (see (18.3) on page 393), so we have:

Corollary 20.13. ACω(R) implies that R is not countable union of countable
sets.
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Another weak form of the axiom of choice is DC, the axiom of dependent
choices:

(DC) ∀X ∈ V \ {∅} DC(X)

where DC(X) says: If R ⊆ X×X and ∀x∃y (x R y), then for all x̄ ∈ X there
is an f : ω → X such that f(0) = x̄ and ∀n (f(n) R f(n+ 1)).

As for the axiom of countable choices, DC(X) is outright provable when
X is well-orderable, and if X ↠ Y then DC(X)⇒ DC(Y ) (Exercise 20.16).

Proposition 20.14. For every non-empty set X, AC(X) ⇒ DC(X) and
DC(X × ω)⇒ ACω(X). In particular: AC⇒ DC⇒ ACω.

Proof. Assume AC(X) towards proving DC(X). Let X ̸= ∅ and let R ⊆
X × X be such that ∀x∃y (x R y). Pick x0 ∈ X and a choice function
C : P(X) \ {∅} → X. Recursively define f : ω → X by f(0) = x0 and
f(n+1) = C ({y ∈ X | f(n) R y}). It is immediate to check that f witnesses
DC(X) for R and x0.

Assume DC(X × ω) towards proving ACω(X). Given {An | n ∈ ω} ⊆
P(X) \ {∅} let R be the relation on X × ω defined by

(a, n) R (b,m) ⇔ m = n+ 1 ∧ (a ∈ An ⇒ b ∈ Am).

For every (a, n) ∈ X × ω there is some b ∈ X such that (a, n) R (b, n+ 1):
if a ∈ An pick b ∈ An+1, if a /∈ An let b = a. Fix an element a0 ∈ A0: by
DC(X × ω) there is a function f : ω → X × ω such that f(0) = (a0, 0) and
f(n) R f(n+ 1) for all n. The function g : ω → X

g(n) = the first component of the ordered pair f(n)

is the required function. □

Neither ACω nor DC is provable without choice, and the implications in
Proposition 20.14 cannot be reversed. Both ACω and DC are used throughout
mathematics, and Section 28.C collects some of these applications. For the
time being, let us point out a few results. As already observed on page 353,
ACω is used to prove that the equivalence between continuity and sequential
continuity, and to construct the Lebesgue measure (Section 26.D); the stronger
DC is even more useful, since it implies pivotal results such as the Baire
category Theorem 26.8.
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Exercises

Exercise 20.15. Show that GCH is equivalent to ∀α (ℵα = ℶα).

Exercise 20.16. Suppose X ↠ Y . Show that

(i) DC(X)⇒ DC(Y );
(ii) if I ≾ J , then ACJ(X)⇒ ACI(Y )

Exercise 20.17. Show that the following are equivalent to AC.

(i) For every family of sets A there is a maximal subfamily B ⊆ A of
pairwise disjoint sets.

(ii) For every ⟨Ai | i ∈ I⟩ there is ⟨Bi | i ∈ I⟩ such that ∅ ⊆ Bi ⊆ Ai,⋃
i∈I Bi =

⋃
i∈I Ai and Bi ∩Bj = ∅ for i ̸= j.

(iii) An ordered set in which every chain has the least upper bound, has a
maximal element.10

(iv) An ordered set in which every well-ordered chain has an upper bound,
has a maximal element.

Exercise 20.18. Show that R ≾ Pω1(R) and R ↠ Pω1(R).

Exercise 20.19. Suppose λ ≤ κ are infinite cardinals. Show that:

(i) [κ]λ ≾ λκ ≾ Pλ+(κ) =
⋃

α<λ+ [κ]α.

(ii) If α < λ then [κ]α ≾ [κ]λ.
(iii) Assuming AC, then |[κ]λ| = κλ = |Pλ+(κ)|.11

Exercise 20.20. Assume DC. Show that an irreflexive relation R on a set X
is well-founded if and only if there are no sequences ⟨xn | n < ω⟩ such that
xn+1 R xn, for all n.

Exercise 20.21. Assume AC and let κ be an infinite cardinal. A graph
⟨V,E⟩ is κ-random if for every pair of disjoint sets X,Y ∈Pκ(V ) there is
a v ∈ V such that ∀x ∈ X (x E v) and ¬∃y ∈ Y (y E v).12 Show that:

(i) any isomorphism between two induced subgraphs of size < κ of a κ-
random graph can be extended to an automorphism of the κ-random
graph;

(ii) the κ-random graph is isomorphic up to isomorphism;

10This is the statement of Zorn’s Lemma with least upper bound instead of upper bound.
11See also Exercise 21.49.
12Thus a random graph in the sense of Section ?? is an ω-random graph.
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(iii) every graph of size ≤ κ is (isomorphic to) an induced subgraph of the
κ-random graph;

(iv) if κ<κ = κ then there is a κ-random graph.

Exercise 20.22. Show that if R is well-orderable then

(i) Pω1(R) is also well-orderable and |R| = |Pω1(R)|,
(ii) |M| = 2ℵ0 , where M = {f ∈ RR | f is monotone}.

Exercise 20.23. Show that

(i) DC implies that its version for classes: For each class X ̸= ∅ (proper
or otherwise), for each x̄ ∈ X and each relation R on X such that
∀x∃y (x R y), there is a sequence s : ω → X such that s(0) = x̄ and
∀n (s(n) R s(n+ 1));

(ii) DC(X) is equivalent to the seemingly weaker statement, where the
first element of the sequence f is not given in advance: If R is a binary
relation on X such that ∀x∃y (x R y), then there is a sequence s : ω → X
such that ∀n (s(n) R s(n+ 1)).

Exercise 20.24. Suppose V is a non-trivial vector space on a field k, that is
V is not just the null vector. Show that if V is well-orderable, then so is k,
and V has a basis, that is a maximal linearly independent set.

Exercise 20.25. Without assuming AC show that Vα ≍ Vα × Vα for all
α ≥ ω.

Exercise 20.26. Show that:

(i) Hrtg(X) ≍ P(X) if and only if X,P(X) are well-orderable, and
|X|+ = 2|X|. In particular GCH is equivalent to ∀X(X infinite ⇒
Hrtg(X) ≍P(X));

(ii) if X ≾ Y then Hrtg(X) ̸≍P(P(Y )).

Exercise 20.27. Suppose A,B are disjoint. Show that:

(i) if C × C ≍ C, and there is no surjection A ↠ C, then A ∪ B ≍ C
implies that B ≍ C;

(ii) if 2×A ≍ A and A ∪B ≍P(A), then B ≍P(A).

Exercise 20.28. For X an infinite set, let Φ(X) be the formula

∀A ⊆P(X)
(
A ≾ X ∨A ≍P(X)

)
.

Let P0(X) = X and P i+1(X) = P(P i(X)).

(i) Assume that X ≍ 2 × X and that Φ(P i(X)) holds for i ≤ 2. Use
Exercises 18.47, 20.26, and 20.27 to show that:
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(1) P i(X) ≍ P i(X) ×P i(X) and hence P i(X) ≍ 2 ×P i(X) for
1 ≤ i ≤ ω,

(2) P2(X) ≾ Hrtg(X)⊎P2(X) ≾ P3(X), and conclude that Hrtg(X) ≾
Hrtg(X) ⊎P2(X) ≍P2(X),

(3) P(X) ≾ Hrtg(X) ⊎P(X) ≾ P2(X), so P(X) ≍ Hrtg(X).
Conclude that X is well-orderable.

(ii) Use that X ≾ ω × X to prove that the assumption that X ≍ 2 × X
in part (i) can be omitted, and conclude that ∀X(X infinite⇒ Φ(X))
implies AC.

Exercise 20.29. Assume AC and show that:

(i) For any set X and any infinite cardinal κ, |X| ≤ κ if and only if there
is C ⊆ Pκ(X) such that

⋃
C = X and C is linearly ordered under

inclusion, that is: ∀A,B ∈ C (A ⊆ B ∨B ⊆ A).
(ii) CH is equivalent to each of the following:
• there is a preorder � on X such that {x ∈ X | x� y} is countable,

for any y ∈ X, where X is any set in bijection with R;
• there are countable fields Fi ⊆ R (i ∈ I) such that R =

⋃
i∈I Fi and

Fi ⊆ Fj ∨ Fj ⊆ Fi, for all i, j ∈ I. (It is possible to swap R with any
algebraic structure which is in bijection with R and “field” with any
suitable notion of substructure.)

Notes and remarks

The literature on the axiom of choice is very vast. Besides the classical books [Jec73, RR85]
and the monumental [HR98] let us single out the book by [Her06]. The proofs of the relative
consistency of the axiom of choice the (generalized) continuum hypothesis, and their negation
were obtained, respectively, by Gödel in 1937 and by Cohen in 1963. Theorem 20.6 is due to
Sierpiński. The continuum problem is to determine the cardinality of R or, equivalently, of P(ω).
Cantor in 1878, conjectured that the size of R were the least uncountable cardinality; using
modern notation, we can say that Cantor conjectured wCH or even CH, as the statement “every
set is well-orderable” was considered by Cantor as a valid principle. The generalized continuum
hypothesis GCH is due to Hausdorff in 1914. Proposition 20.11 is due to Tarski. The statement
‘card(X) + card(X) = card(X) for every infinite set X’ does not imply AC [Sag75].

21. Cardinal exponentiation

21.A. Generalized sums and products.

Definition 21.1 (AC). Let ⟨κi | i ∈ I⟩ be a sequence of cardinals.

(i) The generalized sum of the κis is
∑

i∈I κi = |
⋃

i∈I{i} × κi|;
(ii) The generalized product of the κis is

∏
i∈I κi = |"i∈Iκi|.
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The definition of generalized cardinal sum does not require the axiom of
choice, if I is well-orderable. The case of generalized product is different: if
I = ω and κi = 2, in order to find a well-order on "i∈Iκi = ω2 ≍ R we must
tap choice. It follows at once that

• κ =
∑

i∈κ 1 =
∑

i∈κ κi, with κi = 1,
• 2κ =

∏
i∈κ 2 =

∏
i∈κ κi, with κi = 2,

• the operations of generalized sum and product are monotone, that is if
κi ≤ λi, then

∑
i∈I κi ≤

∑
i∈I λi.

Proposition 21.2. If I is a well-orderable set and 1 ≤ κi for every i ∈ I,
then ∑

i∈I κi ≤ |I| · supi∈I κi,
and if max(|I|, supi∈I κi) ≥ ω, then equality holds.

Proof. The inclusion
⋃

i∈I{i} × κi ⊆ I × supi∈I κi proves the inequality.
For every α ∈ supi∈I κi pick i(α) ∈ I such that α ∈ κi(α): the func-
tion supi∈I κi →

⋃
i∈I{i} × κi, α 7→ (i(α), α) is injective and proves that

supi∈I κi ≤
∑

i∈I κi. By monotonicity |I| =
∑

i∈I 1 ≤
∑

i∈I κi. There-
fore max(|I|, supi∈I κi) ≤

∑
i∈I κi. The conclusion follows from Corol-

lary 18.29. □

Therefore if κ is an infinite cardinal, 2<κ =
∑

λ∈Card∩κ 2
λ.

Theorem 21.3 (AC). If I and {Xi | i ∈ I} are sets, then

|
⋃

i∈I Xi| ≤ |I| · supi∈I |Xi|.

Proof. For each i ∈ I choose a bijection fi : Xi → |Xi| and for each x ∈⋃
i∈I Xi choose i(x) ∈ I such that x ∈ Xi(x). The function⋃

i∈I Xi →
⋃

i∈I{i} × |Xi| x 7→ (i(x), fi(x)(x))

is injective hence |
⋃

i∈I Xi| ≤
∑

i∈I |Xi|. The result follows immediately from
Proposition 21.2. □

By formula (18.4) and Exercise 21.56 we get that if I ̸= ∅ and κi ≤ λi ≥ 2
then

∑
i∈I κi ≤

∏
i∈I λi.

Theorem 21.4 (J. König). Assume AC. If κi < λi for all i ∈ I, then∑
i∈I κi <

∏
i∈I λi.

Proof. It is enough to show that
∑

i∈I κi ≱
∏

i∈I λi, that is no F :
⋃

i{i} ×
κi → "i∈Iλi can be surjective. Fix an F as above: for every i ∈ I, the
set {F (i, α)(i) | α ∈ κi} has cardinality < λi, so we can define a function
f ∈ "i∈Iλi:

f(i) = min (λi \ {F (i, α)(i) | α ∈ κi}) .
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Let us check that f /∈ ran(F ): if, towards a contradiction, f = F (i0, α0)
for some i0, α0, then f(i0) /∈ {F (i0, α)(i0) | α ∈ κi0} by definition of f , a
contradiction. □

In particular, taking κi = 1 and λi = 2 we obtain again Cantor’s theorem,
|I| < 2|I|.

21.B. Regular and singular cardinals.

Definition 21.5. A function f : β → α is cofinal (in α) if ran(f) is
unbounded in α, that is ∀α′ < α ∃β′ < β (α′ ≤ f(β′)). The cofinality of
an ordinal α is the least β such that there is a cofinal f : β → α. This β is
denoted by cof(α).

Let us see some examples.

• As id ↾ α is cofinal, cof(α) ≤ α, for each α. In particular cof(0) = 0.
• The cofinality of a successor ordinal γ+1 is 1, as witnessed by the function
0 7→ γ. Conversely, if λ is limit, cof(λ) is limit.
• cof(ω) = ω and if we assume a bit of choice, by Theorem 20.12 cof(ω1) = ω1.

On the other hand, cof(ℵω) = ω, since n 7→ ℵn is cofinal.

A cofinal map cof(α)→ α need not be monotone, but by the next result we
can always assume that this is the case. (Actually, we could even assume the
map be increasing and continuous—see Exercise 21.47.)

Lemma 21.6. There is a cofinal monotone function f : cof(α)→ α.

Proof. Let g : cof(α) → α be cofinal, and to avoid trivialities we may
assume that α is limit. For β < cof(α) let f(β) = max

(
g(β), supγ<β f(γ)

)
.

By construction f is monotone and cofinal. If there is a least β̄ < cof(α)
such that supγ<β f(γ) = α, then f : β̄ → α would be cofinal: a contradiction.
Therefore f : cof(α)→ α is as required. □

Lemma 21.7. If f : β → α and g : γ → β are cofinal and f is also monotone,
then f ◦ g : γ → α is cofinal.

Proof. If α′ < α let β′ < β be such that f(β′) ≥ α′ and let γ′ < γ be such
that g(γ′) ≥ β′. Then f(g(γ′)) ≥ α′. □

Corollary 21.8. cof(cof(α)) = cof(α).

Definition 21.9. A limit ordinal λ is regular if cof(λ) = λ. Otherwise it is
singular. If λ is an infinite cardinal, we will speak of regular or singular
cardinal.
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If f : |λ| → λ is a bijection, then f is cofinal, hence a regular ordinal is a
cardinal. Conversely, limit ordinals that are not cardinals are singular. Note
that although not an ordinal, Ord can be thought to be regular, since by the
axiom of replacement, no f : α→ Ord can be cofinal.

Theorem 21.10 (AC). If κ ≥ ω then κ+ is regular.

Proof. Towards a contradiction suppose cof(κ+) ≤ κ. Let f : cof(κ+)→ κ+

be cofinal. Then κ+ =
⋃

i<cof(κ+) f(i) hence by Theorem 21.3

κ+ ≤
∑

i<cof(κ+)|f(i)| ≤ cof(κ+) · supi<cof(κ+)|f(i)| ≤ κ,

a contradiction. □

Theorem 21.11 (AC). If κ is a singular cardinal, then there is an increasing
sequence ⟨κi | i < cof(κ)⟩ of regular cardinals such that

κ = supi<cof(κ) κi =
∑

i<cof(κ) κi.

Proof. Let f : cof(κ)→ κ be increasing and cofinal. The function

g(α) = min{λ ∈ κ | λ is regular, λ ≥ f(α) and ∀β < α (g(β) < λ)}

is defined for all α < cof(κ) since the regular cardinals are unbounded below
κ hence if ᾱ < cof(κ) were the least ordinal such that g(ᾱ) is not defined,
then it would mean that κ = supβ<ᾱ g(β), that is g : ᾱ→ κ would be cofinal,
against ᾱ < cof(κ). Letting κi = g(i), it follows that

κ = supi<cof(κ) κi ≤
∑

i<cof(κ) κi ≤ κ · cof(κ) = κ

as required. □

Theorem 21.12 (AC). κcof(κ) > κ when κ is an infinite cardinal.

Proof. If κ is regular, the statement becomes κκ = 2κ > κ, which is true
by Cantor’s Theorem 13.22. We may therefore suppose that cof(κ) < κ. By
Theorem 21.11 there are cardinals κi such that κ = supi<cof(κ) κi and hence
by König’s Theorem 21.4

κ =
∑

i<cof(κ) κi <
∏

i<cof(κ) κ = κcof(κ). □

Corollary 21.13 (AC). cof(2κ) > κ when κ is an infinite cardinal.

Proof. If λ = cof(2κ) ≤ κ, then 2κ < (2κ)λ = 2κ·λ = 2κ, a contradiction. □

In particular, cof(2ℵ0) > ℵ0 hence 2ℵ0 can neither be ℵω, ℵω+ω (or, more
generally, ℵλ with λ < ω1 limit) nor can be the least fixed point of the ℵ
function (see pag. 405). The next result is known as Hausdorff’s formula.

Theorem 21.14 (AC). ℵℵβ

α+1 = max
(
ℵα+1,ℵ

ℵβ
α

)
.
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Proof. If ℵα+1 ≤ ℵβ then by Proposition 18.30 ℵℵβ
α = ℵℵβ

α+1 > ℵβ ≥ ℵα+1

hence the result is proved.
Suppose instead that ℵβ < ℵα+1. If f : ℵβ → ℵα+1, then by regularity

ℵα+1 (Theorem 21.10) there is a γ < ℵα+1 such that ran f ⊆ γ. Thus
ℵβℵα+1 =

⋃
γ<ℵα+1

ℵβγ and by Theorem 21.3

ℵℵβ

α+1 = |
⋃

γ<ℵα+1

ℵβγ| ≤ ℵα+1 · ℵ
ℵβ
α .

The other inequality is immediate. □

Theorem 21.15 (Bukovsky–Hechler). Assume AC. If cof(2<κ) > κ > cof(κ)
then 2κ = 2<κ.

Proof. Let ⟨κα | α < cof(κ)⟩ be increasing and supα∈cof(κ) κα = κ. If
∀α ∈ cof(κ)∃β ∈ cof(κ) (2κα < 2κβ ), then cof(2<κ) = cof(κ) < κ, against
our assumption. Therefore there is γ such that 2κβ = 2κγ for all β ≥ γ. We
may assume that κγ ≥ cof(κ). Then by Exercise 21.44(iii)

2κ = 2
∑

α∈cof(κ) κα =
∏

α∈cof(κ) 2
κα ≤ (2κγ )cof(κ) = 2κγ = 2<κ. □

21.C. Applications. Recall that an operation on a set X is a function
f : nX → X for some n < ω, and that if F is a collection of operations on X
and Y ⊆ X, then ClF Y , the closure of Y under F, is the smallest subset of X
containing Y and closed under each f ∈ F. By Section 7.A.1, ClF Y =

⋃
n Yn,

where Y0 = Y and Yn+1 = Yn ∪ {f (⃗a) | a⃗ ∈ Y <ω
n ∧ f ∈ F}.

Definition 21.16. A generalized operation on X is a f : αX → X where
α ∈ Ord is the arity of f , written ar f ; when α ≥ ω we will speak of
infinitary operations, while ordinary operations, i.e. when α < ω, are often
called finitary operations.

If F is a collection of generalized operations on X and Y ⊆ X, then

ClF Y =
⋂
{Z ⊆ X | Y ⊆ Z ∧ ∀f ∈ F ∀a⃗ ∈ ar(f)Z (f (⃗a) ∈ Z)}

is the smallest subset of X containing Y and closed under each f ∈ F.

Theorem 21.17. Let F be a family of generalized operations on a set X and
let Y ⊆ X. Suppose λ is a regular cardinal such that λ > ar(f) for all f ∈ F.

(a) Then ClF Y =
⋃

β<λ Yβ where Y0 = Y , Yγ =
⋃

β<γ Yβ when γ is limit,
and Yβ+1 = Yβ ∪ {f (⃗a) | f ∈ F ∧ a⃗ ∈ ar(f)Yβ}.

(b) Assume AC and suppose κ ≥ max(λ, |F|, |Y |) and ∀f ∈ F
(
κ|ar(f)| = κ

)
.

Then |ClFY | ≤ κ.
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Proof. (a) It is clear that Y =
⋃

α<λ Yα is contained in ClF Y . To prove the
other inclusion note that if f ∈ F and α = ar f , then by regularity of λ every
a⃗ ∈ αY belongs to some Yβ , so f (⃗a) ∈ Yβ+1 ⊆ Y .

(b) By Theorem 21.3 it is enough to show that ∀β < λ (|Yβ| ≤ κ). This is
true if β = 0 or β limit. Suppose this holds for some β, so that |Yβ| ≤ κ and
|ar(f)Yβ| ≤ κ for all f ∈ F. As {f (⃗a) | f ∈ F ∧ a⃗ ∈ ar(f)Yβ} is the surjective
image of

⋃
f∈F{f} × ar(f)Yβ , which has size ≤ |F| · κ, then |Yβ+1| ≤ κ. □

Theorem 21.18 (AC). Let F is a family of generalized operations on a set
X and let Y ⊆ X.

(a) If ar(f) < ω for all f ∈ F, i.e. F is a family of finitary operations, then
|ClFY | ≤ max(ω, |F|, |Y |).

(b) If ar(f) < ω1 for all f ∈ F, and |F| ≤ |Y |ω, then |ClFY | ≤ |Y |ω.

Proof. (a) It is enough to check that λ = ω and κ = max(ω, |F|, |Y |) satisfy
the hypotheses of Theorem 21.17, namely that κn = κ. This follows from
Theorem 18.31.

(b) It is enough to observe that λ = ω1 and κ = |Y |ω satisfy the hypotheses
of Theorem 21.17, namely κω = κ. □

Example 21.19. If M = ⟨M, . . .⟩ is an L-structure, then the substructure
generated by Y ⊆M has size ≤ max(ω, λ, |Y |), where λ is the cardinality of
the set of non-logical symbols of L.

Example 21.20. A Boolean algebra B is countably complete if it is
closed under countable joins or, equivalently, countable meets. The smallest
countably complete subalgebra of B containing Y ⊆ B has size ≤ |Y |ω.

A σ-algebra is an algebra of sets which is closed under countable unions
or, equivalently, countable intersections; thus a σ-algebra is an example of
a countably complete Boolean algebra. If X is a topological space, the σ-
algebra generated by the open sets is the family Bor(X) of Borel subsets
of X. By Section 13.G.4 when X is infinite, second countable, and T1, then
|Bor(X)| = 2ℵ0 .

21.D. The topology on the ordinals. Every ordinal, being a linear order,
is a topological space, and since α is a subspace of β when α < β, it is natural
to consider the topology on an ordinal as the one induced by the topology of
the intervals on ⟨Ord,≤⟩. The problem is that, strictly speaking, it makes
no sense to talk of a topology on a proper class such as Ord. On the other
hand one can give the following:

Definition 21.21. Let Ω ≤ Ord. A class A ⊆ Ω is open in Ω if for every
α ∈ A there is are β < α < γ such that (β; γ) ⊆ A, with the proviso that if
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α = 0 then we require [0; γ) ⊆ A for some γ > 0. A class C ⊆ Ω is closed in
Ω if Ω \ C is open in Ω; equivalently:

∀λ
(
0 <

⋃
(C ∩ λ) = λ⇒ λ ∈ C

)
.

Thus 0 and all successor ordinals are isolated points of Ω. The spaces
ω ∔ 1 and ω ∔ n are homeomorphic for all 1 ≤ n < ω (Exercise 21.50), while
the spaces ω ∔ 1 and ω ∔ ω ∔ 1 are not homeomorphic, since the former
has one non-isolated point, namely ω, while the latter has two non-isolated
points, ω and ω ∔ ω.

Proposition 21.22. An ordinal is a compact space if and only if it is either
zero or else a successor ordinal.

Proof. We will prove by induction on α that every open covering U of α∔ 1
has a finite subcovering. If α = 0 the result follows at once, thus we may
assume that α > 0 and that β ∔ 1 be compact, for all β < α. Let U be an
open cover of α∔ 1 and let U ∈ U be such that α ∈ U . Choose β < α such
that [β∔1, α] ⊆ U : by inductive assumption there is a finite U0 ⊆ U covering
β ∔ 1 ≤ α, hence U0 ∪ {U} is a finite open cover of α∔ 1.

Conversely, suppose λ is a limit ordinal: then {[0;α) | α < λ} is an open
covering of λ that has no finite subcovering. □

Definition 21.23. A Hausdorff topological space is totally disconnected
or zero-dimensional if every point has a neighborhood base made of clopen
sets.

A topological space X is completely regular, if given a closed set C
and a point x /∈ C there is a continuous f : X → [0; 1] such that f(x) = 1
and ∀y ∈ C (f(y) = 0).

By Tietze’s theorem, every metric space is completely regular, and a
completely regular space is Hausdorff. An ordinal is a totally disconnected,
completely regular space.

Proposition 21.24. Let X be a completely regular topological space that
does not surject onto R. Then X is totally disconnected.

Proof. Fix x ∈ X and V an open neighborhood, and let f be a continuous
function such that f(x) = 0 and f(y) = 1 for all y ∈ X \ V . By assumption
there is r ∈ (0; 1)\ran(f). Then f−1[0; r] = f−1[0; r) is a clopen neighborhood
of x contained in V . □

Corollary 21.25. A countable metric space is totally disconnected.

By Exercise 13.74, every countable ordinal is homeomorphic to a countable
closed subset of R, hence by Proposition 21.22 every countable successor
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ordinal is homeomorphic to a countable compact subset of R. In Section 27
the converse will be proved: every countable compact space is homeomorphic
to a countable ordinal, hence to a compact subset of R.

Which conditions must f : Ω → Ord satisfy in order to be continuous?
Continuity is never a problem on the successor ordinals, as they are isolated
points. If γ < Ω is limit and f(γ) is a successor, then by continuity of f ,
there is an interval [β; γ] which is mapped by f in the singleton {f(γ)}; in
other words: f is eventually constant below γ. If γ < Ω is limit and f(γ) is
limit, then for every δ < f(γ) there is β < γ such that the interval [β; γ] is
mapped by f into the interval [δ; f(γ)]. Therefore we have the proved the
following:

Lemma 21.26. Suppose f : Ω→ Ord is monotone. Then f is continuous if
and only if for every limit ordinal λ < Ω

f(λ) = supβ<λ f(β) and ∀X ⊆ λ (supX = λ ⇒ f(λ) = supν∈X f(ν)).

Thus if f : Ω→ Ord is increasing and continuous, then f(λ) is limit for
all limit ordinals λ.

Proposition 21.27. Suppose Ω is either a regular cardinal or Ord. If
f : Ω→ Ω is increasing and continuous then ran f is closed and unbounded
in Ω. Conversely, if C is closed and unbounded in Ω, then its enumerating
function f : Ω→ C ⊆ Ω is increasing and continuous.

Proof. Suppose f : Ω→ Ω is increasing and continuous. Then f(α) ≥ α, as
f is increasing, so ran f is unbounded in Ω. Suppose λ is limit and λ ∩ ran f
is unbounded in λ, and let ν = {α < Ω | f(α) < λ}; then ν must be limit,
and by continuity λ = f(ν) ∈ ran f . Therefore ran f is closed in Ω.

Conversely, suppose C is closed and unbounded in Ω, and let f be its
enumerating function. Then f is increasing and dom f = Ω by our assumption
on Ω. If λ ∈ Ω is limit, then ν

def
= supγ<λ f(γ) is limit and C = ran f is

unbounded in ν, so ν ∈ C and hence f(λ) = ν = supγ<λ f(γ). Therefore f
is continuous. □

21.E. Stationary and club sets. In this section, unless otherwise stated

κ is an uncountable regular cardinal.

The next result shows that

Club(κ) = {X ⊆ κ | ∃C ⊆ X (C is closed and unbounded in κ)}

is a proper filter on κ. (Properness follows from the fact that ∅ is not
unbounded, so if X ∈ Club(κ) then κ \X /∈ Club(κ).)
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Theorem 21.28. If C,D ⊆ κ are closed and unbounded in κ, then C ∩D is
closed and unbounded in κ.

Proof. Clearly C ∩D is closed, so it is enough to show that it is unbounded
in κ. Given α < κ let us find a β ∈ C ∩ D with α < β. Using that C
and D are unbounded, let us construct inductively an increasing sequence
of ordinals α < γ0 < δ0 < γ1 < δ1 < . . . such that γi ∈ C and δi ∈ D.
Let β = supi γi = supi δi. Since κ is regular then β ∈ κ and since C and
D are closed, β = supi γi ∈ C and β = supi δi ∈ D, that is β ∈ C ∩ D as
required. □

The assumption that κ be regular and uncountable cannot be removed—
the sets {2n | n ∈ ω} and {2n+ 1 | n ∈ ω} are closed and unbounded in ω
but their intersection ∅ is not unbounded in ω.

Theorem 21.29. If γ < κ and the ⟨Cα | α < γ⟩ are closed unbounded in κ,
then

⋂
α<γ Cα is closed unbounded in κ.

Proof. Clearly
⋂

α<γ Cα is a closed subset of κ, so it is enough to show that it
is unbounded. We argue by induction on γ. If γ = 0 or γ = 1 there is nothing
to prove. The case of γ a successor ordinal follows from Theorem 21.28, so
we may assume that γ is limit. Replacing Cα with

⋂
β≤αCβ , we may assume

that
α < β < γ ⇒ Cα ⊇ Cβ.

Given a ν < κ, construct an increasing sequence ⟨ξα | α < γ⟩ with ν < ξ0
and ξα ∈ Cα. Then ξ = supα<γ ξα ∈ κ as κ is regular, and since the Cαs are
closed and {ξβ | β ≥ α} ⊆ Cα, then ξ ∈ Cα for each α < γ. □

An ordinal α < κ is closed under f : nκ→ κ if f(β1, . . . , βn) ∈ α for all
β1, . . . , βn ∈ α. The set of all ordinals closed under f is C(f).

Theorem 21.30. (a) C(f) is closed and unbounded, for all f : nκ→ κ.
(b) If C ⊆ κ is closed and unbounded, then C ⊇ C(f) for some f : κ→ κ.

Proof. (a) As α < κ we must find γ ≥ α which is closed under f . Let

γi+1 = sup {f(β1, . . . , βn) | β1, . . . , βn ∈ γi}
where γ0 = α. By our assumption on κ, we have that

|{f(β1, . . . , βn) | β1, . . . , βn ∈ γi}| ≤ |γi|n < κ,

hence γ = supi γi < κ is the ordinal we are looking for.
Closure of C(f) in κ is immediate.

(b) Let C ⊆ κ be a closed unbounded, let g be its enumerating function,
and let f(α) = g(α+ 1): as α ≤ g(α) < f(α), if γ is closed under f , then γ
is limit and C ∩ γ is unbounded in γ. Therefore C(f) ⊆ C. □
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Corollary 21.31. If F is a collection of operations on a regular cardinal κ
and |F| < κ, then

⋂
f∈F C(f), the set of all α < κ which are closed under all

f ∈ F, is closed and unbounded in κ.

Therefore if A is an algebraic structure of size κ a regular cardinal with
< κ many operations and constants (e.g. a group, a ring, a lattice, . . . ) and
⟨aα | α < κ⟩ is an enumeration of A, then the set of all ν < κ such that
{aα | α < ν} is a substructure of A is closed and unbounded in κ.
21.E.1. Diagonal intersections and Fodor’s lemma. Theorem 21.29 says that
the intersection of γ < κ sets that are closed and unbounded is closed and
unbounded. We cannot hope to replace γ with κ since Dα = κ \ α is closed
and unbounded but ∅ =

⋂
α<κDα. As we shall see, this is, in some sense, the

only obstruction.

Definition 21.32. The diagonal intersection of a sequence ⟨Xα | α < κ⟩
of subsets of κ is △α<κXα = {β < κ | β ∈

⋂
α<β Xα}.

Let us derive a couple of easy facts from Definition 21.32. The first is that
if Yα =

⋂
β≤αXβ, then

⋂
α<β Xα =

⋂
α<β Yα so that △α<κXα = △α<κYα.

The second is that β ∈
⋂

α<β Xα is equivalent to ∀α < β (β ∈ Xα), which is
equivalent to ∀α < κ (β ∈ α∔ 1 ∨ β ∈ Xα), and hence

(21.1) △α<κXα =
⋂
α<κ

(Xα ∪ α∔ 1).

Proposition 21.33. If κ > ω and Cα is closed and unbounded in κ for each
α < κ, then △α<κCα is closed and unbounded in κ.

Proof. First of all, we may assume that α < β ⇒ Cα ⊇ Cβ. Closure of
C = △α<κCα is immediate by (21.1), so it is enough to check that C is
unbounded. Fix β0 < κ. As

⋂
ν≤γ Cν is unbounded in κ for all γ < κ

(Theorem 21.29), one defines an increasing sequence

β0 < β1 < β2 < · · · < β = supn βn

such that βn+1 ∈
⋂

ν≤βn
Cν . As n < m ⇒ βm ∈ Cβn, the fact that Cβn is

closed implies that β = supm>n βm ∈ Cβn , hence β ∈
⋂

nCβn =
⋂

ν<β Cν ,
that is β0 < β ∈ C as required. □

Definition 21.34. A ⊆ κ is stationary in κ if A ∩ C ̸= ∅ for all closed
unbounded C ⊆ κ.

By Theorem 21.29, a set in Club(κ) is stationary, but not conversely—
Exercise 21.58. As observed in Section 7.H a filter on X is a notion of
“largeness” for subsets of X, so sets in Club(κ) are large, their complements
are small and are non-stationary, while stationary sets are not small. A
stationary subset of κ is unbounded in κ since it must intersect every closed
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set of the form (α;κ) for α < κ. Thus regularity of κ implies that the
stationary sets have size κ.

Theorem 21.35 (Fodor). Let S ⊆ κ be stationary and let F : S → κ be such
that ∀α ∈ S (α ̸= 0⇒ F (α) < α). Then F is constant on a stationary subset
of κ.

Proof. Towards a contradiction, suppose that F−1 {α} is non-stationary for
all α < κ, that is

∀α ∈ κ∃Cα ⊆ κ
(
Cα closed and unbounded in κ and Cα ∩ F−1 {α} = ∅

)
.

By Proposition 21.33, △α<κCα is closed and unbounded, and since (0;κ)
is also closed and unbounded, the same is true of C = (△α<κCα) \ {0} by
Theorem 21.29. Let α ∈ S ∩ C: then β

def
= F (α) < α by definition of F , and

α ∈ Cβ by definition of diagonal intersection, hence α /∈ F−1 {β} that is
F (α) ̸= β: a contradiction. □

Remark 21.36. The assumption ‘κ is an uncountable regular cardinal’
posited at the beginning of this section was meant to streamline the presen-
tation, but can be relaxed to ‘κ is a limit ordinal of uncountable cofinality’,
and under this weaker assumption Club(κ) becomes a proper filter closed
under intersections of size < cof(κ). Thus by Corollary 21.13 Club(2ℵ0) is a
proper filter closed under countable intersections. Replacing κ with Ord the
arguments go through, but the members of Club(Ord) are proper classes, and
Club(Ord) is closed under set-size intersections. As Club(Ord) is a collection
of proper classes, it is not a legitimate object in MK or NGB, nor a fortiori
in ZF; note that Club(Ord) is construed in MK or in NGB as a formula φ(X)
saying that ∃C ⊆ X (C is a closed and unbounded proper class of ordinals).

21.E.2. The exponential function. The study of the class-function κ 7→ 2κ is
a central topic in set theory. We have proved a few general rules, namely

Rule 1: κ < λ⇒ 2κ ≤ 2λ,
Rule 2: κ < cof(2κ), and hence κ+ ≤ 2κ.

The GCH strengthens Rule 2 by requiring that 2κ = κ+, and therefore
cof(2κ) = κ+ > κ, for all infinite cardinals κ. By work of Gödel in 1937 GCH
cannot be refuted from ZFC, and by work of Cohen in 1963, it cannot be
proved in ZFC.13 Extending Cohen’s work, Easton showed in 1964 that Rule
1 and Rule 2 are the only restrictions for the exponential function κ 7→ 2κ

whenever κ is regular. For example, it is consistent that 2κ = κ++ for every
regular κ, or that 2κ > κ+ and that ∀λ < κ

(
2λ = λ+

)
, with κ regular

cardinal. The situation for singular cardinals is much deeper and interesting.

13Similar results hold when ZFC is replaced by NGB+ AC or MK+ AC.
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Silver proved in 1974 that GCH cannot fail first at a singular cardinal of
uncountable cofinality.

Rule 3: If λ is a limit ordinal of uncountable cofinality and {α < cof(λ) |
2ℵα = ℵα+1} is stationary in cof(λ), then 2ℵλ = ℵλ+1.

In particular, GCH cannot fail first at ℵω1 . The assumption ω < cof(λ)
in Rule 3 cannot be removed since Magidor proved in 1978 that GCH can fail
first at ℵω, that is that ∀n < ω

(
2ℵn = ℵn+1

)
and 2ℵω > ℵω∔1. The value

2ℵω cannot be arbitrarily large: in 1989 Shelah proved that:

Rule 4: if ∀n
(
2ℵn < ℵω

)
, then 2ℵω < ℵmin(ω4,(2ℵ0 )+).

For an exposition of these results see [Kun83, Jec03].

21.F. Universes.

Definition 21.37. A cardinal κ is strong limit if 2λ < κ for all λ < κ. A
regular cardinal κ > ω is weakly inaccessible if it is limit; it is strongly
inaccessible if it is strong limit.

If κ is weakly inaccessible then κ = ℵκ, but the least fixed point of the
ℵ function is of cofinality ω and hence not regular. A strongly inaccessible
cardinal is necessarily weakly inaccessible, and GCH guarantees the converse.
In the absence of some cardinal arithmetic assumption, the two notions can
be quite different; it is possible that 2ℵ0 is weakly inaccessible, while if κ is
strongly inaccessible then 2ℵ0 < κ.

Lemma 21.38. Assume AC and suppose κ is strongly inaccessible. Then
|Vα| < κ for all α < κ. In particular |x| < κ for all x ∈ Vκ.

Proof. Proceed by induction on α. If |Vα| < κ then |Vα+1| = 2|Vα| < κ,
as κ is strong limit. If α is limit, then |Vα| = |α| · supβ<α|Vβ| < κ by
regularity. □

Theorem 21.39. Assume AC. If κ is strongly inaccessible, then Vκ ⊨ ZFC.

Proof. Suppose κ is strongly inaccessible. In order to prove that Vκ ⊨ ZFC,
by Theorem 19.15 it is enough to show that Vκ satisfies replacement. By
part (g) of Theorem 19.22 it is enough to show that if f : a→ Vκ with a ∈ Vκ,
then there is b ∈ Vκ such that ran f ⊆ b. Let g : a → κ, g(x) = the least
α < κ such that f(x) ∈ Vα. By Lemma 21.38 |a| < κ, so ran g ⊆ γ for some
γ < κ, and hence ran f ⊆ Vγ ∈ Vκ. □

The converse of Theorem 21.39 fails since if κ is inaccessible there are
many α < κ such that Vα ⊨ ZFC (Theorem 31.22). See Exercise 21.63 for a
sort of converse with MK instead of ZF.
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Definition 21.40. A universe is a transitive set U closed under the operation
x 7→P(x), such that ω ∈ U , and ∀I ∈ U ∀f : I → U

(⋃
i∈I f(i) ∈ U

)
.

Theorem 21.41 (AC). U is a universe if and only if U = Vκ for some
strongly inaccessible cardinal κ.

The proof of Theorem 21.41 is based on the following:

Lemma 21.42. If U is a universe then

(a) x ⊆ y ∈ U ⇒ x ∈ U ,
(b) x, y ∈ U ⇒ x ∪ y ∈ U ,
(c) if x, y ∈ U then {x, y} ∈ U and hence (x, y) ∈ U ,
(d) if x, y ∈ U then x× y ∈ U and xy ∈ U ,
(e) if f : I → U and I ∈ U then ran f ∈ U and f ∈ U .

Proof. (a) x ∈P(y) ∈ U so x ∈ U by transitivity.

(b) 2 ∈ ω ∈ U , so 2 ∈ U by transitivity. Then x ∪ y =
⋃

i∈2 f(i) where
f : 2→ U is defined by f(0) = x and f(1) = y.

(c) If x ∈ U then {x} ∈PP(x) ∈ U , so {x} ∈ U . Thus if x, y ∈ U then
{x}, {y} ∈ U , so {x, y} ∈ U , and therefore (x, y) ∈ U .

(d) The result follows from x× y ⊆PP(x ∪ y) and xy ⊆P(x× y).

(e) Letting g : I → U be i 7→ {f(i)}, then ran f =
⋃

i∈I g(i) ∈ U .
Moreover f ⊆ I × ran f ∈ U , whence f ∈ U . □

Proof of Theorem 21.41. Suppose U is a universe and let κ = U ∩Ord.
By Lemma 21.42(c) κ must be a limit ordinal and κ /∈ U . If γ < κ and

f : γ → κ, then sup ran f =
⋃

α<γ f(α) ∈ U and hence f cannot be cofinal in
κ. It follows that κ is a regular cardinal. If 2λ ≥ κ for some infinite cardinal
λ < κ there would exist a surjection f : P(λ) ↠ κ ⊆ U . But P(λ) ∈ U and
by Lemma 21.42(e) κ ∈ U , a contradiction. It follows that κ is a strongly
inaccessible cardinal.

Let us check that Vα ∈ U for all α < κ, so that Vκ ⊆ U . As U is
closed under the P operation, then κ̄ = {α < κ | Vα ∈ U} is a limit ordinal:
if κ̄ < κ then using the function κ̄ → U , α 7→ Vα, we would have that
Vκ̄ =

⋃
α<κ̄Vα ∈ U , so that κ̄ ∈ κ̄, a contradiction. Having shown that

Vκ ⊆ U , we must prove the converse inclusion, so that Vκ = U . Towards
a contradiction, let x ∈ U \ Vκ be of least rank: then rank(x) = κ so that
the map x → κ, y 7→ rank(y), is cofinal so that κ = supy∈x rank(y) ∈ U , a
contradiction.

Suppose now κ is a strongly inaccessible cardinal, and let us check that
Vκ is a universe. Suppose f : I → Vκ with I ∈ Vκ. Then the function I → κ,
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i 7→ rank(f(i)), is bounded in κ, since |I| < κ, so ran f ⊆ Vα for some α < κ.
Therefore

⋃
i∈I f(i) ⊆ Vα, and hence

⋃
i∈I f(i) ∈ Vα+1 ⊆ Vκ. The other

clauses in the definition of universe are immediate. □

Exercises

Exercise 21.43. Show that a non-zero ordinal is a compact topological space
if and only if it is a successor ordinal.

Exercise 21.44. Assume AC, and suppose that λ and all κs below are
cardinals. Show that:

(i)
∑

i∈I κi =
∑

i∈I κφ(i) and
∏

i∈I κi =
∏

i∈I κφ(i), for all bijections φ : I →
I (commutativity of generalized addition and multiplication of cardinals).

(ii)
∑

i∈I κi =
∑

j∈J
∑

i∈Aj
κi and

∏
i∈I κi =

∏
j∈J
∏

i∈Aj
κi, for any par-

tition ⟨Aj | j ∈ J⟩ of I (associativity of generalized addition and
multiplication of cardinals).

(iii) λ
∑

i∈I κi =
∏

i∈I λ
κi .

(iv) If ⟨κn | n < ω⟩ is increasing and κ0 > 0, then
∑

n κn <
∏

n κn.
(v) If κ is a limit cardinal and λ < cof(κ), then κλ =

∑
δ∈Card∩κ δ

λ.

Exercise 21.45. Assume AC and suppose κ, λ are infinite cardinals, and
that κ = supα<λ κα where ⟨κα | α < λ⟩ is a monotone sequence of cardinals.
Show that:

(i) If A ⊆ λ has size λ then κ = supα∈A κα ≤
∏

α∈A κα.
(ii) There is a partition ⟨Ai | i < λ⟩ of λ such that |Ai| = λ for all i ∈ λ.
(iii) κλ =

∏
α∈λ κα. In particular ℵℵ0

ω =
∏

n∈ω ℵn.

Exercise 21.46. Show that for any infinite cardinal κ the classes {λ ∈ Card |
λκ = λ} and {λ ∈ Card | λκ > λ} are proper.

Exercise 21.47. Show that if λ is limit, then there is a cofinal f : cof(λ)→ λ
which is increasing and continuous.

Exercise 21.48. Show that:

(i) If fi : κi → α is increasing and cofinal and κi is regular (i = 0, 1), then
κ0 = κ1;

(ii) If f : κ→ γ is increasing and cofinal then κ = cof(γ);
(iii) If λ is limit, then cof(ℵλ) = cof(λ).

Exercise 21.49. Suppose κ ≤ λ are infinite cardinals, and show that:
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(i) If λ ≤ cof(κ) then [κ]λ ≍ λκ.
(ii) Assuming AC, cof(λ) > cof(κ), and sup

{
νλ | ν ∈ Card ∩ κ

}
≤ κ, then

|[κ]λ| < κλ.

Exercise 21.50. Show that:

(i) An ordinal is a totally disconnected, completely regular space.
(ii) If λ is a limit ordinal, then λ ∔ 1 and λ ∔ n are homeomorphic, for

1 ≤ n < ω.
(iii) If ξ and λ are limit ordinals, f : ξ → λ is increasing and continuous, and⋃

ran(f) = λ, then ran(f) is a closed subset of λ.
(iv) Every function f : ω → ω is continuous.
(v) The class-function Ord→ Ord, α 7→ α∔ 1, is discontinuous on all limit

ordinals.

Exercise 21.51. Suppose λ is a limit ordinal with cof(λ) > ω, and let
f : λ → λ be increasing and continuous. Show that {α < λ | f(α) = α} is
closed and unbounded.

Exercise 21.52. Show that |Vn| < ω for all n, and that |Vω∔α| = ℶα, for
all α ∈ Ord.

Exercise 21.53. Following Remark 21.36, generalize the results and defini-
tions in Section 21.E to the case when κ is either an ordinal of uncountable
cofinality, or else when κ is Ord.

Exercise 21.54. Let Ω be either a regular, uncountable cardinal, or else
Ω = Ord. Let X ⊆ Ω be unbounded in Ω. Show that:

(i) X is closed if and only if its enumerating class-function FX : Ω→ X ⊆ Ω
is continuous.

(ii) Letting X ′ = {FX(λ) | λ < Ω is limit}, if X is closed then so is X ′, and
X ′ ⊆ X.

(iii) If X is closed, then so are the classes X(α) for α < Ω defined inductively
by X(0) = X, X(α∔1) = (X(α))′ and X(λ) =

⋂
α<λX

(α) when λ is limit.
Therefore also △α<ΩX

(α) def
= {ν ∈ Ω | ∀α < ν (ν ∈ X(α))} is closed and

unbounded in Ω.
(iv) If X = Ω then X ′ = {γ ∈ Ω | γ is limit} = {ω · α | α ∈ Ω \ {0}}, and

X ′′ = {γ ∈ Ω | γ is limit of limits} = {ω2 · α | α ∈ Ω \ {0}}.

Exercise 21.55. Show that if f : nκ → κ is a surjection, then {α < κ |
f ↾ nα : nα→ α is a surjection} is closed and unbounded. Repeat with “bi-
jection” in place of “surjection”.
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Exercise 21.56. Suppose ⟨κi | i ∈ I⟩ and ⟨λi | i ∈ I⟩ are (finite or infinite)
cardinals and that κi ≤ λi and 2 ≤ λi for all i ∈ I. Show that if I has at
least three elements, then F :

⋃
i∈I{i} × κi → "i∈Iλi

F (i, α)(j) =


α if i = j,

0 if i ̸= j and α ̸= 0,

1 if i ̸= j and α = 0,

is injective. Conclude that
⋃

i∈I{i} × κi ≾ "i∈Iλi, for every I.

Exercise 21.57. For κ an infinite cardinal, cof(κ) is the least λ such that
there is ⟨Aα | α < λ⟩ such that

⋃
α<λAα = κ and |Aα| < κ for all α < λ.

Exercise 21.58. For λ < κ regular cardinals, let Eκ
λ = {α < κ | cof(α) = λ}.

Show that Eκ
λ is stationary in κ. Conclude that Eω2

ω , Eω2
ω1

/∈ Club(ω2).

Exercise 21.59. Suppose κ and λ are infinite cardinals and Xα ⊆ λ for each
α ∈ κ. Show, without assuming AC, that

⋃
α<κXα ≾ κ × supα∈κ ot(Xα),

and hence |
⋃

α<κXα| ≤ κ · supα∈κ|Xα|+. In particular, ω2 is not a countable
union of countable sets.

Exercise 21.60. Let ⟨P,≤⟩ be an ordered set without maximum. We say
that X ⊆ P is

• unbounded if there is no p ∈ P such that ∀q ∈ X (q ≤ p); equivalently if
X▼ = ∅ with the notation of Section 7.A;
• dominating if ∀p ∈ P ∃q ∈ X (p ≤ q).

Whenever P is well-orderable let

b(P ) = min{|X| | X is unbounded in P}
d(P ) = min{|X| | X is dominating in P}

Show that

(i) a dominating set is unbounded, and if ⟨P,≤⟩ is linear then the converse
holds;

(ii) if b(P ) is infinite, then it is regular, and if ⟨P,≤⟩ is a well-order, then
b(P ) = cof(ot(P ));

(iii) assuming AC, there is an ordered set with d(P ) singular;
(iv) for each n > 1 construct P such that b(P ) = n.

Exercise 21.61. Show that GCH implies that for all infinite cardinals κ, λ

κλ =


κ if λ < cof κ,

κ+ if cof κ ≤ λ ≤ κ,

λ+ if κ < λ.
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Exercise 21.62. Suppose ν is an ordinal such that 2ℵα = ℵα∔ν , for all
α ∈ Ord. Show that if ν ≥ ω, then ν is a successor, and if γ is least such that
γ ∔ ν > ν then γ < ν is limit. Use the Bukovsky–Hechler Theorem 21.15 to
derive a contradiction, and conclude that ν < ω.

Exercise 21.63. Assume AC. Show that:

(i) γ < κ is a limit cardinal if and only if Vκ ⊨“γ is a limit cardinal”.
Repeat the argument with “strong limit” and “regular” in place of

“limit”.
(ii) If Vκ ⊨ ZFC then κ is a strong limit cardinal, |Vκ| = κ and hence

κ = ℵκ.
(iii) κ is strongly inaccessible if and only if Vκ+1 ⊨ MK+ AC.
(iv) The existence of a weakly/strongly inaccessible cardinal cannot be proved

in ZFC or MK+ AC.

Exercise 21.64. A train runs along the countable ordinals, leaving station
0 with destination ω1. At every station α a passenger steps-down, if the
train is non-empty, and then ω new passengers get on the train. How many
passengers are on the train when it arrives at station ω1?

22. Categories

In this Section we present the bare minimum of category theory, in order to
provide a useful language for many parts of mathematics.

A category C consists of

• two non-empty classes ObjC and ArwC, whose elements are called, respec-
tively, objects and arrows (or morphisms)
• two functional relations assigning to each arrow f two objects domC(f)

and codC(f) called, respectively, domain and codomain of the arrow f ,
• a functional relation assigning to each object a an arrow 1Ca with domain

and codomain a,
• a partial binary operation ◦C on arrows (f, g) 7→ f ◦C g ∈ ArwC, called

composition with domain {(g, f) ∈ ArwC ×ArwC | codC f = domC g},

satisfying the following:

(i) if f, g ∈ Arw and g ◦ f is defined, then dom g ◦ f = dom f and
cod g ◦ f = cod g,

(ii) if cod f = dom g and cod g = domh, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ,
(iii) dom1a = a = cod1a,
(iv) cod f = dom g = b⇒ f = 1b ◦ f ∧ g = g ◦ 1b.
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We write f : a→ b or a
f−→ b or a−→

f
b to say that f is an arrow from a to b,

that is an element of

hom(a, b) = {f ∈ Arw | dom(f) = a ∧ cod(f) = b}.

A category is:

• locally small if hom(a, b) is a set for all a, b ∈ Obj; if moreover Obj is a
set then the category is small;
• concrete if hom(a, b) ⊆ ab that is arrows are functions, ◦ is the usual

composition, and 1a = ida, for all a, b ∈ Obj.

We say that D is a subcategory of C if ObjD ⊆ ObjC and homD(a, b) ⊆
homC(a, b) for all a, b ∈ ObjD.

Examples 22.1. (a) The prototypical example of a category is Sets: the
class of objects is V and an arrow from a to b is a triple (a, f, b) with
f : a→ b, ◦ is the usual composition, and 1a = ida.

(b) The category Str(L) has L-structures as objects and the arrows are
f : M → N morphisms of structures. If we require that the structures
satisfy some theory T , a subcategory is obtained. In particular we obtain
the category of ordered sets with monotone functions, the category of
groups with homomorphisms, . . . .

Similarly one can consider collections of sets endowed with additional
structure, and functions preserving such structure, such as topological
spaces with continuous functions, . . . .

(c) Every preorder set ⟨P,≤⟩ can be described as a category letting Obj = P
and stipulating that there is exactly one arrow between p and q if and
only if p ≤ q.

(d) Every monoid M can be seen as a category with just one object, whose
arrows are the elements of M , composition is the operation and 1M is
the identity of M .

(e) Any directed multigraph (Section 9.C.3) (V,E, s, t) gives rise to a cat-
egory: the objects are the elements of V , and the arrows are finite
compositions of edges in E and the 1v for v ∈ V .

(f) The set of all matrices over a ring can be construed as a category, where
Obj = N \ {0}, the arrows m → n are the m × n matrices, and the
composition is row-by-column multiplication.

The categories of examples (a) and (b) are concrete categories, while
those of examples (c)–(f) are not.

Definition 22.2. Let C be a category, and let ⟨I, E⟩ be a directed graph
such that (i, i) /∈ E for all i ∈ I. A diagram with shape I is a map
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• •

• •
⟨I, E⟩

b d

a c

g

f

h

C

k

M M

M M

n

m

n

M

m

Figure 22. Diagrams indexed by a directed graph ⟨I, E⟩ in a category
C, and in a monoid M

assigning to each vertex i ∈ I an object ai, and to each oriented edge
(i, j) ∈ E an arrow ai → aj . For the ease of notation we denote such diagram
by {ai, fi,j | i, j ∈ I}, and say that I is the index set of the diagram. A
diagram commutes if h = g ◦ f for all arrows f, g, h in the diagram such
that cod(f) = dom(g) and cod(g) = dom(h).

In Figure 22 we have a directed graph and a commutative diagram in C
and in a monoid M (Example (d)): in the first case it says that g ◦ f = k ◦ h,
in the second case it says that mn = nm. In particular, properties (ii) and (iv)
can be stated by saying that the following diagrams commute.

b d

a c

h◦gg

f
g◦f

h◦(g◦f)

(h◦g)◦f

h

a b

b c

f

f
1b

g

g

22.A. Functors.

Definition 22.3. A functor F : C → D is a pair of functional relations
ObjC → ObjD and ArwC → ArwD, such that

(1) F(1Ca) = 1DF(a),

(2) if f : a→ b then F(f) : F(a)→ F(b) and

(3) F(g ◦C f) = F(g) ◦D F(f).

Examples 22.4. (a) The functional relation associating to each L-structure
M its universe M is a functor StrL → Sets. Similarly the functional
relation associating to any rng the underlying abelian group defines a
functor from the category of rngs to the one of abelian groups. Functors
as above are called forgetful since they forget in part or completely the
structure of the starting object.
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(b) A function between preordered sets (considered as categories) is mono-
tone if and only if it is a functor. Similarly a map between monoids is a
homomorphism if and only if it is a functor.

(c) The category of all small categories Cat has for objects all small cate-
gories with functors between them as arrows. It is locally small, but not
small.

(d) As every directed graph can be seen as a category (Example 22.1(e)),
the assignment from ⟨I, E⟩ to C in Definition 22.2 is a functor.

Definition 22.5. Let F,G : C→ D be functors. A natural transformation
η : F→ G is a system of D-arrows ηa : F(a)→ G(a) for a ∈ ObjC such that
for any C-arrow f : a→ b the diagram

F(a) G(a)

F(b) G(b)

F(f)

ηa

G(f)

ηb

commutes. If each ηa is an isomorphism, then η is called a natural isomor-
phism between F and G.

Definition 22.6. Suppose F : C→ D and G : D→ C are functors. If there
is a natural bijection between hom(F(a), b) and hom(a,G(b)) then F,G is an
adjoint pair of functors, with F the left adjoint and G the right adjoint.

Examples 22.7. (a)
(b)

22.B. Duality. The definition of category can be cast in first-order logic,
using a language L with two unary predicates Obj and Arw, two binary
predicates dom and cod, and a ternary predicate ◦. Of the following four
axioms, the first says that anything is either an object or else it is an arrow,
the second and the third say that dom and cod are functions on the arrows,
and the fourth says that ◦ is an associative binary operation on arrows:

∀x (Obj(x)⇔ ¬Arw(x))(22.1a)
∀f, a (dom(f, a)⇒ Arw(f) ∧Obj(a))

∧ ∀f (Arw(f)⇒ ∃!a(Obj(a) ∧ dom(f, a)))
(22.1b)

∀f, b (cod(f, b)⇒ Arw(f) ∧Obj(b))

∧ ∀f (Arw(f)⇒ ∃!b(Obj(b) ∧ cod(f, b)))
(22.1c)

∀f, g, a, b, c
(
dom(f, a) ∧ cod(f, b) ∧ dom(g, b) ∧ cod(g, c)

⇒ ∃!h(Arw(h) ∧ dom(h, a) ∧ cod(h, c) ∧ ◦(f, g, h))
)(22.1d)
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(For the sake of readability we have used a, b, c for variables that range over
objects, and f, g, h for variables that range over arrows—in fact using a
two sorted language as in Section 9.C with dom and cod unary partial
functions, and ◦ as a binary partial operation would have ensured a less
baroque presentation.) The class of models of these axioms is the class of all
small categories. (The restriction to small categories is due to our insistence
to consider only structures whose universe is a set.)

The dual of an L-formula φ is obtained by

• swapping dom and cod, while leaving the other predicates unchanged
• replace any instance of ◦(x, y, z) with ◦(y, x, z).
The axioms (22.1b) and (22.1c) are dual to each other, and (22.1a) and (22.1d)
are (logically equivalent to) their dual. Therefore the axiom system (22.1a)–
(22.1d) exhibit a duality similar to the one for Boolean algebras. The analogue
of the dual of a Boolean algebra is the following notion.

Definition 22.8. Given a category C, the opposite category Cop has the
same objects and arrows as C, but the operations dom and cod are swapped
and the composition is performed backwards: Objop = Obj, Arwop = Arw,
domop(f) = cod(f) and codop(f) = dom(f), and f ◦op g = g ◦ f .

Many concepts in category theory can be “dualized” by inverting the
arrows in a commutative diagram, or considering the opposite category. For
example, an arrow from a to b is mono or a monomorphism, f : a ↣ b, if
f ◦ g = f ◦ h⇒ g = h for every object c and every pair of arrows g, h from c
to a. The dual notion is that of being epi or an epimorphism, f : a ↠ b, if
g ◦ f = h ◦ f ⇒ g = h for every object c and every pair of arrows g, h from b
to c. Note that in the category of sets, a function is mono if it is injective,
and it is epi if it is surjective, thus “being a subset” and “being a quotient”
are dual notions.

An arrow from a to b is iso or an isomorphism, f : a →̃ b, if there is a
g : b→ a such that g ◦ f = 1a and f ◦ g = 1b. Moreover g is unique, and it
is called the inverse of f , denoted by f−1: if g1 and g2 are inverses of f , then

g1 = 1a ◦ g1 = (g2 ◦ f) ◦ g1 = g2 ◦ (f ◦ g1) = g2 ◦ 1b = g2.

Two objects a and b are isomorphic, a ∼= b, if there is an isomorphism
between them.

Definition 22.9. An object a of a category C is

• injective if for every arrow f : b → a and every mono arrow h : b → c
there is an arrow g : c→ a such that g ◦ h = f ;
• projective if for every arrow f : a→ b and every epi arrow h : c→ b there

is an arrow g : a→ c such that g ◦ h = f .
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Definition 22.10. An initial object of C is an object 0 such that for all
a ∈ ObjC there is a unique arrow 0 → a. A terminal object in C is an
initial object in Cop, i.e. it is a 1 ∈ ObjC such that for all a ∈ ObjC there is
a unique arrow a→ 1.

Proposition 22.11. Two initial (terminal) objects (if they exist) are iso-
morphic, and moreover the isomorphism is unique.

Proof. Suppose 0,0′ are initial objects in a category C. Then there are
f : 0 → 0′ and f ′ : 0′ → 0, so that f ′ ◦ f : 0 → 0. As 0 is an initial object
the arrow 10 : 0 → 0 is unique, so f ′ ◦ f = 10. Similarly f ◦ f ′ = 10′ so
f : 0→ 0′ is the unique isomorphism between 0 and 0′. The argument for
terminal objects is analogous. □

Examples 22.12. (a) In the category Sets the empty set is the unique
initial object, and any singleton is a final object.

(b) In an ordered set the minimum is the initial object, and the maximum
is the terminal object. Therefore not every category has an initial or a
terminal object.

(c) In the category of groups the trivial group with one element is both the
initial and the terminal object.

A controvariant functor F : C → D is a functor F : Cop → D or
equivalently a functor F : C→ Dop. In order to distinguish the two concepts,
sometimes the notion of Definition 22.3 is called a covariant functor.

Example 22.13. Let C be the category of vector spaces over a field k with
linear maps as arrows. Then C→ C, W 7→W ∗ sending each vector space to
its dual and each linear map f : W → Z to f∗ : Z∗ →W ∗, f∗(z∗) = z∗ ◦ f is
a controvariant functor.

Definition 22.14. Let D = {ai, fi,j | i, j ∈ I} be a diagram in C indexed by
a directed graph I (Definition 22.2).

• A cone for D is an object b together with arrows g : b→ ai (i ∈ I) such
that fi,j ◦ gi = gj for all arrows fi,j : ai → aj of D, and such that if
b′ ∈ ObjC and g′i : b

′ → ai are such that fi,j ◦ g′i = g′j for all fi,j : ai → aj ,
then there is a unique h : b′ → b such that gi ◦ h = g′i for all i ∈ I.
• Dually, a cocone for D is a b ∈ ObjC and gi : ai → b that commute with

the fi,js, and such that for all b′ ∈ ObjC and g′i : ai → b commuting with
the fi,js, there is a unique h : b→ b′.

The existence of cones or cocones even for finite diagrams is an important
property for a category to have. Arguing as in Proposition 22.11 a cone and
a cocone for a diagram are unique up to isomorphism, and the isomorphism
is unique.
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22.B.1. Products and coproducts. Consider the diagram given by objects
{ai | i ∈ I} and no arrows between them—in other words, the indexing
directed graph has no edges. A cone for {ai | i ∈ I} is called a product
of the ais, pj :

∏
i∈I ai → aj , while a cocone for this diagram is called a

coproduct of the ais, ij : aj →
∐

i∈I ai. In case the diagram is just a two
element set {a, b} the product and coproduct are denoted by a× b and a+ b.
A category admits (finite) products just in case every (finite) family of objects
has a product.

Examples 22.15. (a) In the category Sets a product is the usual cartesian
product "i∈IAi with pj(f) = f(j), and the coproduct is the disjoint
union

⊎
i∈I Ai with ij(x) = (j, x). In the category of topological spaces

where arrows are continuous functions, the product is given by the
set-theoretic cartesian product endowed with the product topology, and
the coproduct is the disjoint union with the topology defined as follow:s
X ⊆

⋃
i∈I{i} ×Ai is open if and only if {a ∈ Ai | (i, a) ∈ X} is open in

Ai, for all i ∈ I.
(b) If ⟨P,≤⟩ is an ordered set and X ⊆ P , then

∏
X = infX and

∐
X =

supX. Therefore not every category has product or coproducts, not
even finite ones.

(c) In the category of groups
∏

i∈I Gi is the set "i∈IGi with the operation
of pointwise multiplication, while

∐
i∈I Gi is⊕

i∈I
Gi = {f ∈ "i∈IGi | {i ∈ I | f(i) ̸= ei} is finite}

where ei is the identity of Gi. (It is easy to check that the resulting
structures are groups.) Note that in the finite case, the product and
coproduct of groups coincide, that is G × H is the product and the
coproduct of G and H.

22.C. Limits. A directed system in C is a covariant functor from an
upward directed order set ⟨I,≤⟩ (considered as a category) to C. In other
words it consists of objects ai and arrows πi,j : ai → aj for i ≤ j such
that πi,i = 1ai and πi,h = πj,h ◦ πi,j for i ≤ j ≤ h, and it is denoted by
⟨ai, πi,j | i ≤ j ∈ I⟩. A limit for a directed system is an object a∞
together with arrows πi,∞ : ai → a∞ such that πj,∞ ◦ πi,j = πi,∞ with the
property that for all b ∈ Obj and all arrows ρi : ai → b that commute with
the πs, that is ρj ◦ πi,j = ρi for i ≤ j, there is a unique σ : a∞ → b such that
σ◦πi,∞ = ρi for all i ∈ I. By universality the direct limit ⟨ai, πi,j | i ≤ j ∈ I⟩
is unique up to isomorphism and it is denoted by lim−→⟨ai, πi,j | i ≤ j ∈ I⟩ or
lim−→ ai. A category C has direct limits if every directed system has a limit.

Theorem 22.16. The category of sets has direct limits, that is if ⟨Ai, πi,j |
i ≤ j ∈ I⟩ is a directed system of sets and functions then lim−→Ai exists.
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Figure 23. Direct and inverse limits

If moreover the πi,js are injective, so are the πi,∞, and for any set B and
injective maps ρi : Ai → B, the unique map σ : lim−→Ai → B is injective as
well.

Proof. Let ⟨I,≤⟩ be upward directed and fix sets Ai and functions πi,j : Ai →
Aj for i ≤ j ∈ I. Let A∞ =

⋃
i∈I{i} × Ai/∼ where ∼ is the equivalence

relation defined by

(i, a) ∼ (j, b) ⇔ ∃k ∈ I (i ≤ k ∧ j ≤ k ∧ πi,k(a) = πj,k(b)).

(Transitivity follows from upward directedness.) Let πi,∞(a) = [(i, a)]∼. If
i ≤ j and a ∈ Ai then (i, a) ∼ (j, πi,j(a)) and hence πi,∞ = πj,∞ ◦πi,j . Given
a set B and functions ρi : Ai → B such that ρi = ρj ◦ πi,j for i ≤ j, we must
show that there is a unique σ : A∞ → B satisfying ρi = σ ◦ πi,∞ for all i ∈ I.
Let σ : A∞ → B be defined by σ([(i, a)]∼) = ρi(a). It is easy to check that
the definition of σ does not depend on the representative, and that it is the
unique function that works.

Suppose now the πi,js are injective. If πi,∞(a) = πi,∞(b) then (i, a) ∼
(i, b), that is ∃j ≥ i (πi.j(a) = πi,j(b)). By case assuoption a = b, so πi,∞
is injective. Finally, suppose that the ρi : Ai → B are injective towards
proving that σ : A∞ → B is injective as well. If σ([(i, a)]∼) = σ([(j, b)]∼)
then ρi(a) = ρj(b) so ρk(πi,k(a)) = ρk(πj,k(b)) for any k ≥ i, j, and hence
πi,k(a) = πj,k(b) so that (i, a) ∼ (j, b), that is [(i, a)]∼ = [(j, b)]∼. □

Fix a directed system ⟨Ai, πi,j | i ≤ j ∈ I⟩ a directed system of sets and
functions. Suppose that Ri is an n-ary relation on Ai and that πi,j : ⟨Ai, Ri⟩ →
⟨Aj , Rj⟩ is a morphism, that is

⟨a1, . . . , an⟩ ∈ Ri ⇒ ⟨πi,j(a1), . . . , πi,j(an)⟩ ∈ Rj .
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Let R∞ be the n-ary relation on A∞ defined by

⟨[(i1, a1)]∼, . . . , [(in, an)]∼⟩ ∈ R∞ ⇔
∃k ≥ i1, . . . , in (⟨πi1,k(a1), . . . , πin,k(an)⟩ ∈ Rk) .

We leave it to the reader to check that the definition of R∞ does not depend
on the representatives, that

πi,∞ : ⟨Ai, Ri⟩ →⟨A∞, R∞⟩ a 7→ [(i, a)]∼

is a morphism, and that for any set B with n-ary relation S, and morphisms
ρi : ⟨Ai, Ri⟩ → ⟨B,S⟩ that commute with the πi,js, there is a unique morphism
σ : ⟨A∞, R∞⟩ → ⟨B,S⟩.

Suppose now that fi is a binary operation on Ai, and that πi,j : ⟨Ai, fi⟩ →
⟨Aj , fj⟩ is a morphism. Let

f∞ : A∞ ×A∞ → A∞

([(i, a)]∼, [(j, b)]∼) 7→ [(k, fk(πi,k(a), πj,k(b)))]∼ for some/any k ≥ i, j.

We leave it to the reader to check that f∞ is a well-defined operation, that
πi,∞ : ⟨Ai, fi⟩ → ⟨A∞, f∞⟩ is a morphism, and that for any set B with a
binary operation g, and morphisms ρi : ⟨Ai, fi⟩ → ⟨B, g⟩ that commute with
the πi,js, there is a unique morphism σ : ⟨A∞, f∞⟩ → ⟨B, g⟩.

Theorem 22.17. The category of L-structures has direct limits.

The notion of inverse system and inverse limit are obtained by
“dualizing” the definitions of direct system and limit. An inverse system for
C is a controvariant functor from an upper directed order, or equivalently it
is a functor I → C with ⟨I,≤⟩ a lower directed order: in other words, we are
given objects ai and commuting arrows πi,j : ai → aj for i ≤ j. An inverse
limit of ⟨ai, πi,j | i ≤ j ∈ I⟩ is an object a∞ together with a system of arrows
π∞,i : a∞ → ai that commute with the πi,j , that is

π∞,j = πi,j ◦ π∞,i (i ≤ j)

and such that for every object b and arrows ρi : b→ ai that commute with
the πi,js, there is a unique arrow σ : b→ a∞ such that

The inverse limit of ⟨ai, πi,j | i ≤ j ∈ I⟩ is obtained by dualizing the
direct limit construction: instead of taking a quotient of a coproduct, we take
a subset of a product

lim←−
i

ai = {f ∈ "i∈Iai | ∀i, j ∈ I (i ≤ j ⇒ πi,j(f(i)) = f(j))} ,

πj,∞ : lim←−
i

Mi →Mj , f 7→ f(j).
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22.D. The Cantor-Lawvere Theorem*. The kind of categories used
in this book are quite close to set theory, in the sense that the arrows are
functions satisfying some properties. For these categories it is possible to
generalize Cantor’s Theorem 13.22.

Theorem 22.18 (Lawvere). Let C be a concrete category, let a, b be objects
and suppose F : a→ hom(a, b) is a surjection such that

a→ b x 7→ F (x)(x)

is an arrow of C. Then b has the fixed point property, that is for each arrow
f : b→ b there is x ∈ b such that f(x) = x.

Proof. Let f : b→ b be an arrow and let g : a→ b

(22.2) g(x) = f(F (x)(x)).

By assumption of F , the arrow g is a morphism of C and there is an x̄ ∈ a
such that F (x̄) = g. Let ȳ = g(x̄) ∈ b. Then

f(ȳ) = f(g(x̄))

= f
(
F (x̄)(x̄)

)
(since g = F (x̄))

= g(x̄) (by (22.2))
= ȳ

that is: ȳ is the fixed point of the morphism g. □

As corollary we obtain a new proof of Cantor’s Theorem 13.22.

Corollary 22.19. If X and Y are sets and Y has at least two elements, then
there is no surjection X ↠ Y X .

Here is an interesting application to topology.

Corollary 22.20. Suppose that X and Y are topological spaces and let
f : Y → Y be a function without fixed points. Then there is no continuous
surjection

F : X ↠ C(X,Y )
def
= {f : X → Y | f is continuous}

such that the map X → Y , x 7→ F (x)(x), is continuous.
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Exercises

Exercise 22.21. (i) Show in the category of sets, the arrows mono, epi
and iso are the injective, surjective, and bijective functions, respectively.

(ii) Show that in the category of topological spaces, mono arrows are injective
functions; in the category of T2 topological spaces, a continuous function
f : X → Y is epi if and only if ran(f) is dense in Y .

(iii) Consider the monoid ⟨N,+, 0⟩ as a category. Show that all arrows are
mono and epi, but only 0 is iso.

Exercise 22.22. Show that the product of two objects (if it exists) is unique
up to isomorphism.

Exercise 22.23. Consider an ordered set ⟨P,≤⟩ as a category: the objects
are the elements of P and add an arrow p → q if and only if p ≤ q. Show
that this category has products if and only if ⟨P,≤⟩ is lower semi-lattice and
p ✕ q = inf{p, q}.

Exercise 22.24. Show that the category of topological spaces Top has direct
and inverse limits.

Exercise 22.25. Show that an iso arrow is mono and epi and that if f : a→ b
is iso, then so is f−1 : b→ a.

Exercise 22.26. Verify that the categories of sets, of groups, and of topo-
logical spaces admit products.

Notes and remarks

Category theory was invented in 1942 by Samuel Eilenberg (1913–1998) and Saunders Mac Lane
(1909–2005) while working in algebraic topology. Our exposition is very short—the interested
reader is referred to [ML98] and [Gol84].



Chapter VI

Elementary mathematics
from an advanced
perspective

In this Chapter we embark on a thorough study of several important objects
in mathematics. Some of these notions were introduced in Chapters I–??,
and the infusion of set-theoretic techniques from Chapter V will allow us to
obtain new insight on these matters.

23. Finite sequences

Recall that <ωX the set of all finite sequences of elements of X with the
concatenation operation is the free monoid on X. We say that u, v ∈ <ωX
are compatible u ⊆ v ∨ v ⊆ u. Then

u⌢v and u′⌢v′ compatible ⇒ u and u′ compatible(23.1a)

u⌢v and u⌢v′ compatible ⇒ v and v′ compatible.(23.1b)

23.A. Expressions. Given a set of symbols and a function assigning an
arity to each symbol, we can form the set of all expressions. More formally:

Definition 23.1. The set Expr = Expr(S, a) of all expressions on ⟨S, a⟩,
where a : S → ω and S ̸= ∅, is the smallest W ⊆ <ωS containing

(23.2) {⟨s⟩ | s ∈ S ∧ a(s) = 0}

and closed under the operation

s ∈ S ∧ w1, . . . , wm ∈W ∧ a(s) = m ⇒ ⟨s⟩⌢w1
⌢ . . .⌢wm ∈W.

457
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Definition 23.1 can cause a small, yet annoying, notational problem.
Suppose that ∗, s, t ∈ S with a(s) = a(t) = 0 and a(∗) = 2, and suppose that
s = ⟨x⟩ and t = ⟨y⟩. Then s ∗ t is the string ⟨∗, ⟨x⟩ , ⟨y⟩⟩, even if it would be
more natural to write it as ⟨∗, x, y⟩. For this reason we stipulate the following

Convention 23.2. If a : S → ω and every s ∈ S with a(s) = 0 is a
sequence of length 1, then in the definition of Expr(S, a) we replace (23.2)
with {s | s ∈ S ∧ a(s) = 0}.

In other words: if X = {x | ∃s ∈ S (a(s) = 0 ∧ s = ⟨x⟩)}, then letting

S = (S \ {s ∈ S | a(s) = 0}) ∪X

and letting a : S → ω be defined as a(x) = a(⟨x⟩) if x ∈ X and a(s) = a(s)
for all other s ∈ S, then Expr(S, a) computed according to our convention is
exactly Expr(S, a) according to Definition 23.1.

The proof of the following result is left to the reader.

Lemma 23.3. Let ⟨S, a⟩ be as above. Then

(a) Expr(S, a) =
⋃

S′∈[S]<ω Expr(S′, a ↾ S′).

(b) Expr(S, a) =
⋃

n Exprn(S, a) where Expr0(S, a) = {⟨s⟩ | s ∈ S ∧ a(s) = 0}
and

Exprn+1(S, a) = Exprn(S, a) ∪

{⟨s⟩⌢w1
⌢ · · ·⌢wm | s ∈ S ∧ a(s) = m∧}w1, . . . , wm ∈ Exprn(S, a).

Definition 23.4. The height of w ∈ Expr(S, a) is the least n such that
w ∈ Exprn(S, a). The height function is ht: Expr(S, a)→ ω.

Example 23.5. Given an inductive system (A,F, X) (Section 7.A.1) set
S = F ⊎X and a : S → ω where

a(s) =

{
0 if s ∈ X,

ar(s) if s ∈ F.

With the notation of Lemma 23.3 and the Convention stipulated on page 458,
then Expr0 = {s | s ∈ X ∪ C} where C = {s ∈ F | a(s) = 0} and for all
w ∈ Exprn+1 there exist unique f ∈ F and w1, . . . , wm ∈ Exprn such that
w = ⟨f⟩⌢w1

⌢ . . .⌢wm. By unique readability for expressions, it is possible
to define a map

Φ: Expr→ X

Φ ↾ Expr0 = id ↾ Expr0 and Φ(⟨f⟩⌢w1
⌢ . . .⌢wm) = f(Φ(w1), . . . ,Φ(wm)).

Let Xn = Φ[Exprn]. It is easy to check that (Xn)n∈ω is the canonical sequence
associated to the inductive system (A,F, X). Thus the closure of (A,F, X) is
the surjective image of a set of expressions. Conversely, any Expr(S, a) can
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be seen as the closure under the inductive system (A,F, S) where A = S<ω,
F = {fs | s ∈ S} and

fs : X
a(s) → S,

〈
w1, . . . , wa(s)

〉
7→ ⟨s⟩⌢w1

⌢ . . .⌢wa(s).

Lemma 23.6. If u1⌢ . . .⌢un and v1
⌢ . . .⌢vn are compatible, where u1, . . . , un,

v1, . . . , vn ∈ Expr(S, a), then ui = vi per 1 ≤ i ≤ n.

Proof. By induction on N = lh(u1
⌢ . . .⌢un). Let s ∈ S be the first element

of u1 so that u1 = ⟨s⟩⌢w1
⌢ . . .⌢wk, where k = a(s) and w1, . . . , wk ∈

Expr(S, a). Then s is the first element of the string v1
⌢ . . .⌢vn hence v1 =

⟨s⟩⌢z1⌢ . . .⌢zk, where z1, . . . , zk ∈ Expr(S, a). By (23.1a) u1 and v1 are
compatible, and so are w1

⌢ . . .⌢wk and z1
⌢ . . .⌢zk. As lh(w1

⌢ . . .⌢wk) <
lh(u1) ≤ N , by inductive assumption wi = zi for 1 ≤ i ≤ k, and therefore

u1 = ⟨s⟩⌢w1
⌢ . . .⌢wk = ⟨s⟩⌢z1⌢ . . .⌢zk = v1.

From our assumption and (23.1b) it follows that u2
⌢ . . .⌢un and v2

⌢ . . .⌢vn
are compatible, so by inductive assumption ui = vi for 2 ≤ i ≤ n. □

Applying Lemma 23.6 with n = 1 we get:

Corollary 23.7. ∀w, v ∈ Expr(S, a) (w ⊆ v ⇒ w = v).

These results guarantee that the expressions on a set S can be read in
a unique way: given u ∈ Expr(S, a) let s = u(0) and n = a(s): if lh(u) = 1
then n = 0 and if lh(u) > 1 there are unique u1, . . . , un ∈ Expr(S, a) such
that u = ⟨s⟩⌢u1⌢ . . .⌢un.

23.B. Occurrences. Recall that for v, w ∈ S<ω we say that v occurs in w
if there are u0, u1 ∈ S<ω such that w = u0

⌢v⌢u1. We say that s ∈ S occurs
in w ∈ S<ω if ⟨s⟩ occurs in w, that is s ∈ ran(w).

Definition 23.8. If v, w ∈ Expr(S, a) and v ⊑ w we say that v is a sub-
expression of w. By Corollary 23.7 if w = u0

⌢v⌢u1 and u0 = ∅ then u1 = ∅.
If v ⊑ w and v ̸= w then v is a proper sub-expression of w, in symbols v < w.
An occurrence of s ∈ S in w ∈ Expr(S, a) is an n ∈ dom(w) such that
w(n) = s. If s = w(0) we say that s occurs in first position of w.

Lemma 23.9. If s ∈ S occurs in w ∈ Expr(S, a), then every occurrence of s
in w is an occurrence in first position of some sub-expression v of w,

w(n) = s ⇒ ∃v ∈ Expr(S, a)∃u0, u1 ∈ S<ω
(
w = u0

⌢v⌢u1 ∧ lh(u0) = n
)
.

Proof. By induction on lh(w). Let n be the occurrence of s in w. If n = 0,
the result is proved, hence we may assume that n > 0. Then lh(w) > 1
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and thus w = ⟨s′⟩⌢w1
⌢ . . .⌢wm for some s′ ∈ S with a(s′) = m > 0 and

w1, . . . , wm ∈ Expr. Then the occurrence of s is inside some wi, so

1 + lh(w1) + · · ·+ lh(wi−1) ≤ n < 1 + lh(w1) + · · ·+ lh(wi).

By inductive assumption, the occurrence of s is in the first position of some
sub-expression v of wi and since v ⊑ w the result follows. □

The definition of occurrence can be suitably generalized.

Definition 23.10. If v, w ∈ S<ω, an occurrence of v in w is an interval of
natural numbers

{k, k + 1, . . . , k + n− 1} ⊆ lh(w)

where n = lh(v) and such that ∀i < n (w(k + i) = v(i)). If w = u⌢w′⌢z
we say that the occurrence {k, k + 1, . . . , k + n− 1} is contained in w′ if
lh(u) ≤ k and k + n− 1 < lh(u) + lh(w′).

For example the occurrences of v = ⟨s, s⟩ in w = ⟨s, s, s⟩ are {0, 1} and
{1, 2}, showing that occurrences need not be disjoint intervals. The result
guarantees that this problem disappear for expressions.

Theorem 23.11. Suppose that v < w where v, w ∈ Expr(S, a).

(a) If w = ⟨s⟩⌢w1
⌢ . . .⌢wn, where w1, . . . , wn ∈ Expr(S, a), then v ⊑ wi

for some 1 ≤ i ≤ n.
(b) The occurrences of v in w are pairwise disjoint. Therefore there exist

unique u0, . . . , uk ∈ S<ω such that

w = u0
⌢v⌢u1

⌢ . . .⌢v⌢uk and ∀i ≤ k (v ̸⊑ ui) .

Proof. (a) Fix u0, u1 such that w = u0
⌢v⌢u1. By Corollary 23.7 u0 ≠ ∅.

Thus the occurrence v(0) is inside some wi hence by Lemma 23.9 is in the
first position of some sub-expression ṽ ⊑ wi. As v and ṽ are compatible, by
Corollary 23.7 v = ṽ.

(b) By induction on lh(w). Let I, J be two occurrences of v in w. By
part (a) there are 1 ≤ i, j ≤ n such that the occurrence I is in wi and the
occurrence J is in wj : if i ̸= j then I and J are disjoint, if i = j we apply
the inductive hypothesis. □

We now introduce an auxiliary notion: if w = ⟨s⟩⌢v1⌢ . . .⌢vm and v = vj
for some 1 ≤ j ≤ m, write v ≺ w. Clearly if v ≺ w then v < w, but not
conversely. The next result shows that < is the transitive closure (see page 43)
of ≺.

Proposition 23.12. For each v, w ∈ Expr

v < w ⇔ ∃k > 0 ∃z0, . . . , zk ∈ Expr (v = z0 ≺ z1 ≺ · · · ≺ zk = w) .
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Proof. As < extends ≺, it is enough to show the ⇒ direction. We show by
induction on n that if w ∈ Exprn

∀v ∈ Expr
(
v < w ⇒ ∃k > 0 ∃z0, . . . , zk ∈ Expr

(
v = z0 ≺ · · · ≺ zk = w

))
.

When n = 0 there is nothing to prove, so we may assume that the result
holds for some n and that w ∈ Exprn+1 and v < w. Then

w = ⟨s⟩⌢w1
⌢ . . .⌢wm = u0

⌢v⌢u1.

If u0 = ∅ then v ⊆ w hence by Corollary 23.7 v = w, against our assumption.
Therefore the first occurrence v(0) in v is not the s at the first position
of w and by Lemma 23.9 it is the first occurrence of an expression ṽ with
ṽ ⊑ wi, for some 1 ≤ i ≤ m. But then v and ṽ are compatible, and again by
Corollary 23.7 they coincide, and hence v ⊑ wi. If v = wi the result follows
at once, so we may assume that v < wi. By inductive hypothesis there are
z0, . . . , zk such that v = z0 ≺ · · · ≺ zk = wi and since wi ≺ w, the result is
proved. □

23.C. Substitution. Suppose ⟨S, a⟩ are as above. If s1, . . . , sn ∈ S are
distinct and w ∈ S<ω, then

w = u0
⌢ ⟨si1⟩⌢u1⌢ ⟨si2⟩⌢u2⌢ . . .⌢ ⟨sim⟩⌢um

where {i1, . . . , im} ⊆ {1, . . . , n}, u0, . . . , um ∈ S<ω and sij does not occur
in uk. Let w, v1, . . . , vn ∈ Expr(S, a) with v1, . . . , vn distinct and such that
vi ̸⊑ vj for 1 ≤ i, j ≤ n and i ̸= j. Then there exist (and are unique by
Theorem 23.11) u0, . . . , um ∈ S<ω such that

w = u0
⌢vi1

⌢u1
⌢vi2

⌢u2
⌢ . . .⌢vim

⌢um

with {i1, . . . , im} ⊆ {1, . . . , n} and vi ̸⊑ uj for all 1 ≤ i ≤ n and j ≤ m. If
z1, . . . , zn are expressions (not necessarily distinct), then the expression
obtained by substituting v1, . . . , vn in w with z1, . . . , zn is

w[z1/v1, . . . , zn/vn] = u0
⌢zi1

⌢u1
⌢zi2

⌢u2
⌢ . . .⌢zim

⌢um.

In particular, w[z1/v1, . . . , zn/vn] = w[zj1/vj1 , . . . , zjk/vjk ] where {j1, . . . , jk}
is the set of all indices 1 ≤ j ≤ n such that vj ⊑ w.

Note that the substitutions must be performed simultaneously for all
expressions v1, . . . , vn—in general w[z1/v1, z2/v2] ̸= (w[z1/v1])[z2/v2].

23.D. Trees.

Definition 23.13. A tree is an ordered set ⟨T,�⟩, whose elements are called
nodes, such that pred(x, T ;�) = {y ∈ T | y � x} is well-ordered, for each
x ∈ T . Equivalently: � is well-founded on T and pred(x) is linearly ordered,
for every node x. A node is terminal if it has no immediate successors; it
is splitting if it has more than one immediate successors. If every node
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has a finite number of immediate successors, we will say that T is finitely
branching. A branch is a maximal chain of T . The height htT : T → Ord
is the rank function for ⟨T,�⟩, that is htT (x) = ot(pred(x)). The ordinal
ht(T )

def
= ran(htT ) is called height of T . The α-th level of T is

Levα(T ) = {x ∈ T | htT (x) = α} .
A node of Lev0(T ) is a root of T .

The next result is known as König’s Lemma.

Lemma 23.14. Let ⟨T,�⟩ be a finitely branching tree with finitely many
roots. Suppose there is an order ≤ on T which is total on every Levn(T ), for
n ∈ ω. Then T is infinite if and only if T has an infinite chain.

Proof. It is enough to show that if T is infinite, then it contains an infinite
chain. For t ∈ T the set T[t]

def
= {u ∈ T | t� u} is a tree with the induced

ordering. By recursion on n construct tn ∈ Levn(T ) so that

(A) tn � tn+1 and
(B) T[tn] is infinite.

Since T =
⋃{

T[t] | t ∈ Lev0(T )
}

is infinite and Lev0(T ), the set of all
roots of T , is finite, there is a t0 ∈ Lev0(T ) such that T[t0] is infinite. Suppose
we have constructed ti for i ≤ n and that (A) and (B) are fulfilled: since T[tn] =
{tn} ∪

⋃
s∈Sn

T[s], where Sn = {s ∈ T | s is an immediate successor of tn},
and since Sn is finite by assumption, then by (B) there is tn+1 ∈ Sn such
that T[tn+1] is infinite. Therefore (A) and (B) are witnessed by tn+1.

The choice of the tns does not require AC. In fact Lev0(T ) and the Sns
are finite hence well-ordered by <, therefore we can choose tn as the <-least
node satisfying the requirements. □

Corollary 23.15. Assume T is a well-orderable finitely branching tree of
height ω, with finitely many roots. Then T has an infinite chain.

23.D.1. Descriptive trees.

Definition 23.16. A descriptive tree on a set X ̸= ∅ is a T ⊆ X<ω such
that ∀t ∈ T ∀n ∈ ω (t ↾ n ∈ T ). A branch of T is a function b : ω → X such
that ∀n ∈ ω (b ↾ n ∈ T ).

A descriptive tree T ordered by inclusion is tree in the sense of Defini-
tion 23.13, with ⟨⟩ the unique root of T . Theorem 18.31 shows that X<ω is
well-orderable when X so is. Therefore Corollary 23.15 for descriptive trees
is:

Corollary 23.17. If T is a finitely branching descriptive tree on a well-
orderable set X, then T is infinite if and only if T has a branch.
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Suppose T ̸= ∅ is a descriptive tree on some set X ̸= ∅ without terminal
nodes, that is to say: for every t ∈ T ⊆ X<ω there is u ∈ T such that
t ⊂ u. Thus starting with the empty sequence one can construct a branch
step-by-step, but this procedure requires the axiom of dependent choices.

Theorem 23.18. Let X be a non-empty set. Then DC(X<ω) implies that
“every descriptive tree on X without terminal nodes has a branch” which
in turn implies DC(X). Therefore DC is equivalent to the fact that every
descriptive tree without terminal nodes has a branch.

Proof. Assume DC(X<ω) and suppose T is a descriptive tree on X without
terminal nodes. Let R be the relation on T defined by

u R t ⇔ s ⊆ t ∧ lh(s) + 1 = lh(t).

As T ⊆ X<ω we can apply DC(X<ω) and obtain f : ω → T such that
f(0) = ⟨⟩ and f(n) R f(n+ 1) for all n. Thus

⋃
n∈ω f(n) is a branch of T .

Assume that every descriptive tree on X without terminal nodes has a
branch, and let R ⊆ X × X be such that ∀x ∈ X ∃y ∈ X (x R y). Fix an
element x0 ∈ X and let T be the descriptive tree of attempts to build a
sequence ⟨xn | n ∈ ω⟩ such that xn R xn+1, that is

T = {u ∈ X<ω | u(0) = x0 ∧ ∀i+ 1 < lhu (u(i) R u(i+ 1))}.

Clearly T is a descriptive tree on X, and it has no terminal nodes by our
assumption on R. Any branch of T witnesses DC(X) for R and x0. □

23.D.2. Labelled trees. A descriptive tree T on some ordinal γ is gapless if

∀α, β ∈ γ ∀s ∈ <ωγ (α < β ∧ s⌢⟨β⟩ ∈ T ⇒ s⌢⟨α⟩ ∈ T ).

Every finite tree with one root is isomorphic to a unique gapless tree on
some n ∈ ω (Exercise 23.21)—for example the tree of Figure 2 on page 24 is
isomorphic to the tree on 3 = {0, 1, 2} of Figure 24. A labelled tree on a
set S ̸= ∅ is a tree finite gapless T on ω, together with a function L : T → S,
the labelling of T . A labelled tree on ⟨S, a⟩ where a : S → ω is a labelled
tree on S such that for all t ∈ T

a(L(t)) = |{s | s is an immediate successor of t}| .

For example the tree of Figure 3 on page 28 can be seen as a labelled tree by
taking a tree on 3 described above, labelled as follows: L(⟨⟩) = h, L(⟨0⟩) = f ,
L(⟨1⟩) = g, L(⟨2⟩) = f , etc. Thus labelled trees can be used to capture the
notion of syntactic tree seen in Section 3. The set of all labelled trees on
⟨S, a⟩ is LTr(S, a).
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⟨201⟩

⟨2010⟩⟨2011⟩⟨2012⟩

⟨202⟩

Figure 24. A gapless tree on the ordinal 3

Exercises

Exercise 23.19. Suppose w ∈ Expr(S, a). Show that

(i) w[z1/v1, . . . , zn/vn] ∈ Expr(S, a) if z1, . . . , zn, v1, . . . , vn ∈ Expr(S, a)
and the v1, . . . , vn are distinct;

(ii) ht(w) = max{ht(z) | z < w}+ 1.

Exercise 23.20. Given a : S → ω let â : S<ω → Z be defined by â(∅) = 0 and
â(⟨s0, . . . , sn⟩) =

∑
i≤n (a(si)− 1). Show that ∀u ∈ S<ω [u ∈ Expr(S, a) ⇔

â(u) = −1 ∧ ∀v ⊂ u (â(v) ≥ 0)].

Exercise 23.21. Show that every finite tree with a single root is isomorphic
to a gapless tree on some n ∈ ω.

Exercise 23.22. Show that

(i) LTr(S, a) =
⋃

n LTrn(S, a) where LTr0(S, a) = {⟨s⟩ | s ∈ S ∧ a(s) = 0}
and

LTrn+1(S, a) = LTrn(S, a) ∪
{⟨s, t1, . . . , tm⟩ | s ∈ S ∧ a(s) = m ∧ t1, . . . , tm ∈ LTrn(S, a)};

(ii) there is a height-preserving bijection Expr(S, a) → LTr(S, a), where
ht: LTr(S, a)→ ω is defined by ht(t) = min{n ∈ ω | t ∈ LTrn}.

Exercise 23.23. Show that:

(i) There is a universal f ∈ ω2 that is ∀s ∈ <ω2 ∃u ∈ <ω2
(
u⌢s ⊆ f

)
.
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(ii) If f ∈ ω2 is universal, then every finite sequence occurs infinitely often,
that is ∀n ∈ ω ∀s ∈ <ω2 ∃u ∈ <ω2

(
lhu ≥ n ∧ u⌢s ⊆ f

)
.

(iii) If f ∈ ω2 is universal, then ⟨Z, E⟩ is a random graph, where n E
m ⇔ f(|n−m|) = 1;

(iv) Aut(Rω) has elements of order 2 and elements of infinite order.

Exercise 23.24. Show that

(i) if ⟨T,�⟩ is a tree, then ht(T ) = min {α | Levα(T ) = ∅},
(ii) every branch b of a tree ⟨T,�⟩ is well-ordered by � and ot(b) coincides

with its height ht(b). The ordinal ot(b) is the length of the branch.

Exercise 23.25. Show that a tree T on some ordinal α is gapless if and only
if for every t ∈ T the set

{
ν ∈ α | t⌢ ⟨ν⟩ ∈ T

}
is an ordinal.

Exercise 23.26. The Four Colors Theorem asserts that every finite planar
graph is 4-colourable (see Section 10). Use König’s Lemma to generalize this
to countable graphs.

24. Computable functions

24.A. Relativization.

Definition 24.1. Let f : Nn → N be arbitrary with n ≥ 1. The set of all
operations computable-in-f is the smallest set C(f) of operations on N
containing f , +, ·, χ≤, and closed under composition and minimization.

By Exercise 24.35 the function f in Definition 24.1 can be taken to be
unary. The set C(f) consists of all functions which can be computed using f
as an oracle. Note that C ⊆ C(f), and equality holds if and only if f ∈ C.

Definition 24.2. Given two operations f and g on N, we say that f is
computable from g, in symbols f ≤T g, if C(f) ⊆ C(g).

The relation f ≤T g is often read “f is Turing reducible to g”. The
naming is in honor of Alan Turing, one of the founders of computability
theory, and the attribute reducible suggests that the problem of computing f
is reduced to the (possibly much harder) problem of computing g. If A ⊆ Nn

and B ⊆ Nm we say that A is computable from f if χA : Nn → {0, 1} is
in C(f), and A is computable from B if A is computable from χB, in
symbols A ≤T B. By Exercise 24.35 the notion of Turing reduciblity on
operations agrees with the one on sets, and ≤T can be seen as a pre-order
either on the set of all operations on N, or else on P(N). In either case the
induced equivalence relation, called Turing equivalence, is denoted by =T.

The notions and the results of Section 8 can be extended to this context.
A set A ⊆ Nk is semi-computable-in-f if either A = ∅ or else A =
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{⟨h1(i), . . . , hk(i)⟩ | i ∈ N} for some h1, . . . , hk ∈ C(f); equivalently if it
is the projection of a computable-in-f subset of Nk+1. Every computable-
in-f set is semi-computable-in-f , but not conversely; if A and N \ A are
semi-computable-in-f , they are computable-in-f .

24.B. Computability in Vω. The main result (Theorem 24.17) of this
section is a characterization of computability in terms of definability over
the structure ⟨Vω,∈⟩. By Exercise 8.58, every n ∈ N \ {0} can be written in
a unique way as n = 2e0 + · · · + 2ek(n) with distinct eis, and the predicate
E ⊆ N× N,

(24.1) E(e, n)⇔ n > 0 ∧ ∃i ≤ k(n) (e = ei)

is elementary computable. By Exercise 19.44

a : Vω → ω,

a(∅) = 0 and a({x0, . . . , xk}) =
∑

i<k 2
a(xi) is a bijection. Observe that if

E(e, n) then e < n and if x ∈ y then a(x) < a(y).
An n-ary predicate of Vω, where n ≥ 1, is a subset of nVω; as nVω ⊆ Vω

it is simply a subset of Vω whose elements are functions with domain n. As
usual, a unary predicate is identified with a subset of Vω. Recall from the
notion of ∆0 and Σ1 formula (Definitions 19.17 and 19.18).

Definition 24.3. An n-ary predicate A of Vω is Γ-definable, where Γ is
∆0, Σ1 or Π1, if

A = {⟨a1, . . . , an⟩ ∈ Vω | Vω ⊨ φ[a1, . . . , an]}
with φ(x1, . . . , xn) a Γ-formula. If A is both Σ1-definable and Π1-definable
then we say it is ∆1-definable.

A function f : A → Vω with A an n-ary predicate of Vω is Γ-definable
(with Γ one of ∆0, Σ1, Π1, ∆1) if the n+ 1-ary predicate {⟨a1, . . . , an, b⟩ |
f(a1, . . . , an) = b} is Γ-definable.

Lemma 24.4. If φ(x1, . . . , xn, y1, y2) is ∆0 then

{⟨a1, . . . , an⟩ ∈ Vω | Vω ⊨ ∃y1, y2φ[a1, . . . , an]}
is Σ1-definable.

Proof. As Vω is closed under unions and pairing,

Vω ⊨ ∃y1, y2φ[a1, . . . , an] ⇔ Vω ⊨ ∃u∃y1, y2 ∈ uφ[a1, . . . , an]

and ∃y1, y2 ∈ uφ is ∆0. □

Corollary 24.5. The collection of all Σ1-definable predicates is closed under
intersections, unions, and projections, i.e. if A ⊆ Vω is a Σ1-definable (n+1)-
ary predicate, then {⟨a1, . . . , an⟩ ∈ Vω | ∃a0 ∈ Vω ⟨a0, a1, . . . , an⟩ ∈ A} is Σ1-
definable.
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Proof. By the prenex normal form algorithm (Section 3.C.4) the con-
junction/disjunction of two Σ1-formulæ ∃y1φ1 and ∃y2φ2 is of the form
∃y1, y2 (φ1 ⊙ φ2) where ⊙ is either ∧ or ∨, so the result follows from the
Lemma 24.4. □

Proposition 24.6. (a) For each a ∈ Vω there is a ∆0-formula δa(x) that
defines a in Vω.

(b) Let Γ be either Σ1 or Π1. If A ⊆ Vω is Γ-definable with parameters,
then it is Γ-definable without parameters.

Proof. (a) Set

δ∅(x) : ∀y ∈ x (y ̸≖ y)

δa(x) :
(
∃y1 ∈ x . . .∃yn ∈ x

∧
1≤i≤n

δbi(yi)
)
∧ ∀y ∈ x

∨
1≤i≤n

δbi(y),

if a = {b1, . . . , bn} ≠ ∅.

(b) Suppose A is defined using the Γ-formula φ(x, y1, . . . , yn) together
with parameters p1, . . . , pn ∈ Vω. Then{

∃y1, . . . , yn[
∧

1≤i≤n δpi(yi) ∧φ(x, y⃗)] if Γ is Σ1,

∀y1, . . . , yn[
∧

1≤i≤n δpi(yi)⇒ φ(x, y⃗)] if Γ is Π1,

is a Γ-formula that defines A in Vω. □

Therefore the notions of definability in Vω with or without parameters
(Section 4.H) agree.

Lemma 24.7. If φ(x, y, z1, . . . , zn) is a Σ1 formula then there is a Σ1 formula
ψ(x, z1, . . . , zn) such that

⟨Vω,∈⟩ ⊨ ∀x, z1, . . . , zn(∀y ∈ xφ⇔ ψ).

Proof. Without loss of generality we may assume that φ is ∃wφ̄ with
φ̄ a ∆0 formula, and let ψ be ∃u∀y ∈ x ∃w ∈ u φ̄. We must check that
∀y ∈ x ∃w φ̄⇔ ∃u∀y ∈ x ∃w ∈ u φ̄ is true in Vω. Fix x, z1, . . . , zn ∈ Vω and
assume that ⟨Vω,∈⟩ ⊨ ∀y ∈ x ∃w φ̄. As Vω is well-ordered via the bijection
a, for each y ∈ x pick the least w such that φ̄ holds, and let u be the set
of all these ws. Then u ⊆ Vω, and since x is finite, then so is u, and hence
u ∈ Vω. Therefore ⟨Vω,∈⟩ ⊨ ∃u ∀y ∈ x ∃w ∈ u φ̄ as required. The reverse
implication ∃u∀y ∈ x ∃w ∈ u φ̄⇒ ∀y ∈ x ∃w φ̄ is trivial. □

Proposition 24.8. Suppose f, g ⊆ Vω are Σ1-definable functions.

(a) dom f and ran f are Σ1-definable.
(b) g ◦ f is Σ1-definable.
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(c) If dom f is ∆1-definable, then f is ∆1-definable; if moreover ran g ⊆
dom f then g ◦ f is ∆1-definable.

Proof. Suppose φ(x, y) and φ′(y, z) are Σ1-formulæ with exactly two free
variables defining f and g, respectively.

(a) dom f is defined by ∃yφ(x, y), while ran f is defined by ∃xφ(x, y).

(b) g ◦ f defined by the formula χ(x, z) given by ∃y(φ(x, y) ∧φ′(y, z)).

(c) Suppose ψ(x) is a Π1-formula defining dom f , and let γ(x, z) be the
formula ¬ψ(x) ∨ ∃y (φ(x, y) ∧ y ̸≖ z). Then γ(x, z) is a Σ1-formula defining
2Vω \ f , so f is ∆1-definable.

By part (b) g ◦ f is Σ1-definable, and if ran f ⊆ dom g then dom(g ◦ f) =
dom(f) is ∆1-definable, and so is g ◦ f . □

Corollary 24.9. If f : A→ Vω is ∆1-definable, with A an n-ary predicate,
and the functions gi :

kVω → Vω for 1 ≤ i ≤ n are Σ1-definable, then their
composition A→ Vω, ⟨a1, . . . , ak⟩ 7→ f(g1(⃗a), . . . , gn(⃗a)) is ∆1-definable.

Lemma 24.10. If A is ∆1-definable n-ary predicate and f1, . . . , fn :
kVω →

Vω are ∆1-definable, then B = {⟨b1, . . . , bk⟩ ∈ Vω | ⟨f1(⃗b), . . . , fn(⃗b)⟩ ∈ A}
is ∆1-definable.

Proof. Note that

⟨b1, . . . , bk⟩ ∈ B

⇔ ∃a1, . . . , an[f1(⃗b) = a1 ∧ · · · ∧ fn(⃗b) = an ∧ ⟨a1, . . . , an⟩ ∈ A]

⇔ ∀a1, . . . , an[f1(⃗b) = a1 ∧ · · · ∧ fn(⃗b) = an ⇒ ⟨a1, . . . , an⟩ ∈ A]. □

For φ(x1, . . . , xn) a formula of L∈, set

Dφ(x1,...,xn) = {⟨k1, . . . , kn⟩ ∈ Nn | Vω ⊨ φ[a(k1), . . . , a(kn)]}.

Proposition 24.11. (a) Every f ∈ C is ∆1-definable in Vω.
(b) If A ⊆ Nn is semi-computable then it is Σ1-definable; if it is computable

then it is ∆1-definable.

Proof. (a) We must show that C ⊆ F, where F is the collection of all
f : Nk → N that are ∆1-definable in Vω. Since F is closed under composition
and Ink ,+, ·,χ≤ belong to it, it is enough to show that F is closed under
minimization. Suppose g : Nk+1 → N is in F and that for all a⃗ ∈ Nk

there is b ∈ N such that g(⃗a, b) = 0; we must show that f : Nk → N,
a⃗ 7→ µb (g(⃗a, b) = 0), is in F. Choose formulæ φi(x⃗, y, z) (i = 0, 1) that
define f , with φ0 in Σ1 and φ1 in Π1. Assigning 0 to the variable z, the
formula

χi(x⃗, y, z) : φi ∧ ∀y′ ∈ y ¬φ1−iLy′/yM



24. Computable functions 469

defines f in Vω, so it is enough to show that χ0 is Σ1 and χ1 is Π1. By
Lemma 24.7 ∀y′ ∈ y ¬φ1Ly′/yM is Σ1, so χ0 is the conjunction of two Σ1

formulæ, and hence Σ1. The formula ∀y′ ∈ y ¬φ0Ly′/yM is Π1, so χ1 is Π1.

(b) For notational simplicity set n = 1. If A = ∅ then it is defined by
the ∆0-formula x ̸≖ x, so we may assume that A = ran f with f : N → N
computable. If φ(x, y) is a Σ1-formula defining f , then ∃xφ defines A. □

Lemma 24.12. If φ(x1, . . . , xn) is ∆0 then Dφ(x1,...,xn) is computable; in
fact it is in E.

Proof. By Exercise 19.44 the set E = Dx∈y in (??) is elementary, and so is
Dx≖y. If Dφ(y,x1,...,xn) is elementary, then

D∃y∈x1 φ =
{
⟨k1, . . . , kn⟩ ∈ Nn | ∃m < k1 [⟨m, k1⟩ ∈ E

∧ ⟨m, k1, . . . , kn⟩ ∈ Dφ(y,x1,...,xn)]
}

is elementary. Since elementary predicates are closed under Boolean combi-
nations, the result follows. □

Theorem 24.13. If φ(x1, . . . , xn) is Σ1, then Dφ(x1,...,xn) is semi-computable.

Proof. Let Γ be the set of all φ(x1, . . . , xn) such that Dφ(x1,...,xn) is semi-
computable. By Lemma 24.12 and the fact that every computable set is
semi-computable, every ∆0-formula is in Γ. The set Γ is closed under
conjunctions and disjunctions since the collection of all semi-computable sets
is closed under intersections and unions. Moreover if ψ(y, x1, . . . , xn) is in Γ,
then ∃yψ(y, x1, . . . , xn) is in Γ since

D∃yψ(y,x1,...,xn) = {⟨m1, . . . ,mn⟩ ∈ Nn | ∃k
(
⟨k,m1, . . . ,mn⟩ ∈ Dψ(y,x1,...,xn)

)
}

and the projection of a semi-computable set is semi-computable (Theorem ??).
Therefore every Σ1-formula is in Γ. □

Corollary 24.14. Let A be an n-ary predicate of Vω and let

B = {⟨k1, . . . , kn⟩ | ⟨a(k1), . . . , a(kn)⟩ ∈ A}.

If A is Σ1-definable then B is semi-computable; if A is ∆1-definable then B
is computable.

Theorem 24.15. The function a : ω → Vω is ∆1-definable.

Proof. As ω = dom a is ∆1-definable in Vω, by Proposition 24.8(c) it is
enough to check Σ1-definability of a in Vω. We have that a(n) = x if and
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only if

∃s ∈ Vω

[
s is a function with n+ 1 ⊆ dom(s) such that

s(0) = ∅, s(n) = x and ∀i ≤ n (∀y ∈ s(i) ∃j ∈ i (E(i, j) = 1

∧ s(j) = y) ∧ ∀j ∈ i (E(i, j) = 1⇒ s(j) ∈ s(i)))
]

where E is the function of (24.1). As E is computable, there are ∆0-formulæ
φ(t, x, y, z) and φ′(t, x, y, z) such that ∃tφ and ∀tφ′ define E in Vω, so the
following Σ1-formula defines ‘a(n) = x’ in Vω:

∃s, t1, t2,m
[
Fn(s) ∧ Ord(m) ∧m = S(n) ∧m ⊆ dom s

∧ (∅, ∅) ∈ s ∧ (n, x) ∈ s ∧ ∀i ∈ m
(
∀y ∈ s(i) ∃j ∈ i (φ(t1, i, j, 1)

∧ (j, y) ∈ s) ∧ ∀j ∈ i (φ′(t2, i, j, 1)⇒ s(j) ∈ s(i))
)]
. □

Proposition 24.16. (a) Let A ⊆ Nn: if A is Σ1-definable, then A is semi-
computable, if it is ∆1-definable, then A is computable.

(b) If f : Nn → N is ∆1-definable, then f ∈ C.

Proof. (a) Suppose A ⊆ Nn is Σ1-definable. By Theorem 24.13 Ã =

{s ∈ Ñn | ⟨a(s0), . . . , a(sn−1)⟩ ∈ A} is a semi-computable subset of Nn, and
therefore A = {s ∈ Nn | ⟨j(s0), . . . , j(sn−1)⟩ ∈ Ã} is a semi-computable sub-
set of Nn (Exercise ??). The case when A is ∆1-definable follows now from
Theorem ??.

(b) Suppose f : Nn → N is ∆1-definable. By part (a) f is a computable
subset of Nn+1, thus f ∈ C by Lemma 8.26. □

If A ⊆ Vω is infinite, then let eA : ω → a−1[A] be the enumerating
function. Let f : Ak → A be an n-ary operation on A. The copy of f on N
via a is the operation g : Nk → N defined by

g(n1, . . . , nk) = (a ◦ eA)−1
(
f
(
a ◦ eA(n1), . . . , a ◦ eA(nk)

))
.

Similarly, the copy of f : A → B on N via a is (a ◦ eB)−1 ◦ f ◦ a ◦ eA. The
next theorem summarizes the results proved so far.

Theorem 24.17. (a) Let f : Nk → N and let A ⊆ Nk. Then f ∈ C iff f is
∆1-definable; A is semi-computable if and only if A is Σ1-definable, and
therefore A is recursive if and only if A is ∆1-definable.

(b) Suppose A,B ⊆ Vω are infinite. If f : A→ B is ∆1-definable, then its
copy on N via a is in C; if the operation f : Ak → A is ∆1-definable,
then its copy on N via a is in C.

In view of all this, we say that any set or function contained in Vω is
computable if it is ∆1-definable.
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Proposition 24.18. Let E : ω → ω be the iterated exponential defined by
E(0) = 0 and E(n+ 1) = 2E(n). Then

∀n ∈ ω (a(E(n+ 1)− 1) = {a(i) | i < E(n)} = Vn) .

Proof. The result is immediate when n = 0. Assume the result holds for
some n towards proving it for n+ 1. If x ⊆ Vn then x = {a(j) | j ∈ J} for
some J ⊆ E(n), and hence a−1(x) =

∑
j∈J 2

j ≤
∑

j<E(n) 2
j = 2E(n) − 1 =

E(n + 1) − 1. Therefore Vn+1 ⊆ {a(j) | j < E(n+ 1)}, and the inclusion
can be replaced by equality, as |Vn+1| = E(n+ 1). For the other equality
note that

a−1(Vn+1) =
∑

x∈Vn+1

2a
−1(x) =

∑
j<E(n+1)

2j = 2E(n+1) − 1. □

Corollary 24.19. The maps n 7→ Vn, x 7→ P(x), and (x, y) 7→ xy are
∆1-definable in Vω.

Proof. The function n 7→ E(n)− 1 is computable, and hence ∆1-definable.
Therefore n 7→ Vn is composition of ∆1-definable functions.

Note that y = P(x) just in case ∀z ∈ y (z ⊆ x) ∧ ∃nφ(n,Vn, y) where
φ(n, z, y) is Ord(n) ∧ ∀w ∈ z (w ⊆ x⇒ w ∈ y). Similarly xy = z if and only
if ∃n

[
x, y ∈ Vn ∧ ∀f ∈ z (f : x→ y) ∧ ∀f ∈ Vn+3 (f : x→ y ⇒ f ∈ z)

]
. □

Remark 24.20. We can define the notion of being ∆1-definable in the
structure ⟨Vω,∈, X⟩, where X ⊆ Vω. It turns out that g ∈ C(f) if and only
if g is ∆1-definable in ⟨Vω,∈, X⟩ where X is (the graph of) f .

24.C. Computable operations on strings*. Using the techniques devel-
oped in Section 24.B, it is easy to show that many constructions in finite
combinatorics are indeed computable.

Proposition 24.21. (a) If X ⊆ Vω is ∆1-definable, then so is <ωX.
(b) The binary operation on <ωVω, (u, v) 7→ u⌢v, is ∆1-definable.
(c) If X ⊆ Vω is ∆1-definable, then the ordering ⊑ on <ωX is ∆1-definable.
(d) Suppose Z ⊆ Vω is ∆1-definable, and let f : Z → Vω and F : ω ×

Z × Vω → Vω be Σ1-definable. Then G : ω × Z → Vω, defined by
G(0, z) = f(z) and G(n+ 1, z) = F (n, z,G(n, z)) is ∆1-definable.

(e) The concatenating function

Cnc: <ω(<ωVω)→ <ωVω, Cnc(⟨u0, . . . , un−1⟩) = u0
⌢ · · ·⌢un−1,

is ∆1-definable.
(f) If S ∈ Vω and a : S → ω, then Expr(S, a) is ∆1-definable. In fact the

result holds uniformly: {⟨S, a, w⟩ | w ∈ Expr(S, a)} is ∆1-definable.
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Proof. (a) u ∈ <ωX ⇔ Fn(u) ∧ dom(u) ∈ ω ∧ ∀i ∈ dom(u) (u(i) ∈ X).

(b) u⌢v = w iff

u, v, w ∈ <ωVω ∧ dom(w) = dom(u) + dom(v)

∧ ∀i ∈ dom(w) [(i ∈ dom(u)⇒ u(i) = w(i))

∧ (i /∈ dom(u)⇒ ∃j ∈ i (i = dom(u) + j ∧ v(j) = w(i)))].

Since <ωVω is ∆1-definable by part (a), then the operation of concatenation
is ∆1-definable.

(c) u ⊑ v if and only if ∃n ∈ dom(v)
[
(v ↾ n)⌢u ⊆ v

]
.

(d) G(n, z) = x iff

∃p
[
Fn(p) ∧ dom(p) ⊆ ω × Z ∧ ((n, z), x) ∈ p ∧

∀(k, z) ∈ dom(p)∀k′ ∈ k ((k′, z) ∈ dom(p)) ∧
∀(m, z) ∈ dom(p)

(
(m = 0⇒ p(m, z) = f(z))

∧ ∀k ∈ m (m = S(k)⇒ p(m, z) = F (k, z, p(k, z)))
)]
.

Thus G is Σ1-definable, and since domG = ω × Z is ∆1-definable, then G is
∆1-definable.

(e) Note that <ω(<ωVω) is ∆1-definable by part (a). Let

C ′ : ω × <ω(<ωVω)→ <ωVω

be defined by C ′(n, u) = u0
⌢ · · ·⌢un−1 if n ≤ lhu, and ∅ otherwise. Then

Cnc(u) = C ′(domu, u), so it is enough to show that C ′ is ∆1-definable. But
C ′ is defined inductively by C ′(0, u) = ∅ and C ′(n+ 1, u) = F (n, u, C ′(n, u)),
where F : ω × <ωVω ×Vω → <ωVω

F (n, u, y) =

{
y⌢u(n) if y ∈ <ωVω ∧ u ∈ <ω(<ωVω) ∧ n ∈ domu,

∅ otherwise,

is ∆1-definable, so we are done by part (d).

(f) By Lemma 23.3 Expr(S, a) =
⋃

n∈ω Exprn(S, a), and since S and a
are finite, then so are the Exprn(S, a). Moreover strings in Exprn+1(S, a) \
Exprn(S, a) are strictly longer than those in Exprn(S, a), so that

w ∈ Expr(S, a)⇔ w ∈ Exprdomw(S, a).

Therefore it is enough to show that ES,a : ω → Vω, n 7→ Exprn(S, a) is
∆1-definable.

Let S′ = {s ∈ S | a(s) = 0} and S′′ = S \ S′. Then ES,a(0) = {⟨s⟩ |
s ∈ S′} and ES,a(n + 1) = FS,a(ES,a(n)), where F = FS,a : Vω → Vω is
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defined by

v ∈ F (y)⇔ v ∈ <ωVω ∧
[
v ∈ y ∨ ∃u ∈ <ωy ∃s ∈ S′′ (v(0) = s

∧ domu = S(a(s))) ∧ v = ⟨s⟩⌢Cnc(u)
]
.

Since FS,a is ∆1-definable, then so is ES,a by part (d).
The same proof shows that the result holds uniformly. □

Theorem 24.22. Suppose S ⊆ Vω and a : S → ω are ∆1-definable. Then

(a) Expr(S, a) is ∆1-definable,
(b) the function Subs: <ωExpr(S, a)→ Expr(S, a) defined by

Subs(u) =


w[z1/v1, . . . , zn/vn] if u = ⟨w, v1, . . . , vn, z1, . . . , zn⟩

and v1, . . . , vn are distinct,

∅ otherwise,

is ∆1-definable.

Proof. (a) By Lemma 23.3(a)

w ∈ Expr(S, a)⇔ ran(w) ⊆ S ∧ w ∈ Expr(ran(w), a ↾ ran(w))

and since w ∈ Expr(ran(w), a ↾ ran(w)) is ∆-definable by Proposition 24.21(f)
the result is proved.

(b) The set U of all u ∈ (Expr(S, a))<ω such that

∃n < dom(u) [dom(u) = 2n+ 1 ∧ ∀i, j < n (i < j ⇒ u(i+ 1) ̸= u(j + 1))]

is ∆1-definable, and it is the set where the definition of Subst is non-trivial.
Thus if u ∈ U then Subst(u) = v if and only if there is t = ⟨t0, . . . , t2n⟩ such
that u(0) = w = t0

⌢t1
⌢ . . .⌢t2n−1

⌢t2n and t1 = z1, t3 = z2, . . . , t2n−1 = zn,
and v = t0

⌢v1
⌢t2

⌢ . . .⌢t2n−2
⌢vn

⌢t2n. Therefore Subst(u) = v iff[
u /∈ U ∧ v = ∅

]
∨
[
u ∈ U ∧ ∃n ∃t, t′ ∈ (S<ω)<ω

(
dom t = dom t′ =

= domu = 2n+ 1 ∧ u(0) = Cnc(t) ∧ v = Cnc(t′) ∧
∀i ∈ n (t(2i+ 1) = u(i+ 1) ∧ t′(2i+ 1) = u(n+ i+ 1)) ∧

∀i ∈ n+ 1 (t(2i) = t′(2i)) ∧ ∀i ∈ n ∀j ∈ n+ 1 (u(i+ 1) ̸⊑ t(2j))
)]
. □

24.D. Computable functions and representability. Next we show that
every computable function is representable in Peano arithmetic, a fact that
was already mentioned at the very end of Section 12.D. In fact, computable
functions are representable in systems much weaker than PA.
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Definition 24.23. Let L be a language extending LD of Section 11.A, so
that numerals (Definition 11.5) are available. An L-theory T

• represents the function F : D → N with D ⊆ Nk by φ(x1, . . . , xk, y)
if for all ⟨a1, . . . , ak⟩ ∈ domF

T ⊢ ∀y
(
φLa1/x1, . . . ak/xkM ⇔ y ≖ F (a1, . . . , ak)

)
.

• represents the predicate A ⊆ Nk by φ(x1, . . . , xk) if the following two
conditions hold:

– if ⟨a1, . . . , ak⟩ ∈ A, then T ⊢ φLa1/x1, . . . , ak/xkM
– if ⟨a1, . . . , ak⟩ /∈ A, then T ⊢ ¬φLa1/x1, . . . , ak/xkM.

Suppose T proves ∀x
(
S(x) ̸≖ 0

)
(that is PA1), ∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y))

(that is PA2) and that T proves

(24.2) ∀x
(
(x ≖ 0 ∨ x ≖ 1 ∨ · · · ∨ x ≖ n) ⇔ φ≤(x, n)

)
for every n ∈ N. Then T is order adequate via some φ≤(x, y) if this
formula represents {(n,m) | n ≤ m} in T .

If T is order adequate, and if there is no danger of confusion, we write1

x ≤ y for φ≤(x, y), and x < y for x ≤ y∧x ̸≖ y. As ∀x
(
x ≖ 0 ⇔ x ≤ 0

)
, that

is the formula (24.2) when n = 0, is provable from T , then T ⊢ ¬∃x(x < 0).

Remarks 24.24. (a) The notion of representability requires to verify case-
by-case that certain facts about natural numbers are logical consequences
of T . If φ(x1, . . . , xk, y) represents a k-ary function F , then it defines a
k + 1-ary predicate FM in any M ⊨ T . If N ⊆M then FM ∩ (Nk × N)
is the graph of F , but it is not required that FM be the graph of a
function on the whole M .

(b) If L has a symbol + for a binary operation, and if T represents addition
via x+ y ≖ z, then for all n,m ∈ N

T ⊢ n+m ≖ n+m and T ⊢ m+ n ≖ m+ n,

and since n+m is the same as m+ n, it follows that n+m ≖ m+ n is
provable from T . This is much weaker than requiring that commutativity
be provable in T , that is T ⊢ ∀x, y(x+ y ≖ y + x).

If T is order adequate, we do not require that T proves that ≤ is an
order—see Exercise 24.39.

(c) If A,B ⊆ Nk are represented in T by formulæ φ(x⃗) and ψ(x⃗), then
Nk \ A, A ∩ B, A ∪ B are represented in T by ¬φ(x⃗), φ(x⃗) ∧ ψ(x⃗),
and φ(x⃗) ∨ ψ(x⃗). Thus the collection of all subsets of Nk that are
representable in T is a Boolean algebra.

1Clearly this encompasses the case when ≤ is a binary relation symbol of L.
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(d) The projection functions Ink are representable by xk ≖ y ∧
∧

i<n xi ≖ xi
in any theory in a language extending LD.

Lemma 24.25. Let T be a theory such that T ⊢ 1 ̸≖ 0. A predicate A ⊆ Nk

is representable in T if and only if its characteristic function χA : Nk → {0, 1}
is representable in T .

Proof. If φ(x⃗) represents A, then

ψ(x⃗, y) :
(
φ(x⃗) ∧ y ≖ 1

)
∨
(
¬φ(x⃗) ∧ y ≖ 0

)
represents χA. In fact for all a1, . . . , ak ∈ N

⟨a1, . . . , ak⟩ ∈ A ⇒ T ⊢ φLa1/x1, . . . , ak/xkM
⇒ T ⊢ ψLa1/x1, . . . , ak/xk, 1/yM
⇒ T ⊢ ∀y(ψLa1/x1, . . . , ak/xkM⇔ y ≖ 1)

and

⟨a1, . . . , ak⟩ /∈ A ⇒ T ⊢ ¬φLa1/x1, . . . , ak/xkM
⇒ T ⊢ ψLa1/x1, . . . , ak/xk, 0/yM
⇒ T ⊢ ∀y(ψLa1/x1, . . . , ak/xkM⇔ y ≖ 0)

so that T ⊢ ∀y(ψLa1/x1, . . . , ak/xkM⇔ y ≖ χA(a1, . . . , ak)).
Conversely, if ψ(x⃗, y) represents χA, then φ(x⃗) defined as ψL1/yM repre-

sents A:

⟨a1, . . . , ak⟩ ∈ A ⇒ χA(a1, . . . , ak) = 1

⇒ T ⊢ ∀y
(
ψLa1/x1, . . . , ak/xkM⇔ y ≖ 1

)
⇒ T ⊢

(
ψLa1/x1, . . . , ak/xkM⇔ y ≖ 1

)
L1/yM

⇒ T ⊢ φLa1/x1, . . . , ak/xkM

and

⟨a1, . . . , ak⟩ /∈ A ⇒ χA(a1, . . . , ak) = 0

⇒ T ⊢ ∀y
(
ψLa1/x1, . . . , ak/xkM⇔ y ≖ 0

)
⇒ T ⊢

(
ψLa1/x1, . . . , ak/xkM⇔ y ≖ 0

)
L1/yM

⇒ T ⊢ ¬φLa1/x1, . . . , ak/xkM

where for the last implication we have used that T ⊢ 1 ̸≖ 0. □

Lemma 24.26. Suppose that the language of T has the symbols 0 and S. If
PA1 and PA2 are provable from T then {(n,m) | n = m} is representable in
T via x1 ≖ x2.
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Proof. One implication is immediate: if n = m then the two terms n and
m coincide, so T ⊢ n ≖ m. Suppose now n ̸= m towards proving that
T ⊢ n ̸≖ m. For definiteness assume n < m so that there is k such that
n + k + 1 = m. If, towards a contradiction, T ⊢ n ≖ m, then applying
n-times our assumption we have that T ⊢ 0 ≖ k + 1 and since k + 1 is S(k),
a contradiction follows from PA1. □

As any model of M of PA1 and PA2 contains a copy on N, namely
{nM | n ∈ N}, we can assume that N is a subset of any such M .

Lemma 24.27. Suppose that L, the language of T , has the symbols 0, S,+.

(a) If PAi is provable from T for 1 ≤ i ≤ 4, then addition is representable
in T .

(b) If moreover L has · and PAi is provable from T for 1 ≤ i ≤ 6, then
multiplication is representable in T .

Proof. (a) One shows by induction on m that T ⊢ n+m ≖ n+m, for all
n ∈ N.

(b) Using part (a) one shows by induction on m that T ⊢ n ·m ≖ nm,
for all n ∈ N. □

Lemma 24.28. If T is order adequate, x is the unique free variable of φ,
and T ⊢

∧
k≤nφLk/xM then T ⊢ ∀x(x ≤ n⇒ φ(x)).

Proof. Fix an x. If x ≤ n then x ≖ 0 ∨ · · · ∨ x ≖ n by order adequacy, and
since φL0/xM ∧ · · · ∧φLn/xM we have that φ(x). As x is arbitrary the result
follows. □

Theorem 24.29. If T is order adequate and T ⊢ PAi for i ≤ 6, then every
f ∈ C is representable in T .

Proof. Let us prove that the set of all partial functions that are representable
in T is closed under composition.

Suppose f is k-ary and g0, . . . , gk−1 are n-ary, and that they are rep-
resented in T by φ(y0, . . . , yk−1, z) and ψi(x0, . . . , xn−1, yi) for i < k. Let
h(x⃗) = f(g0(x⃗), . . . , gk−1(x⃗)). Then h is represented by φ̃(x0, . . . , xn−1, z)

∃y0, . . . , yk−1

(∧
i<k

ψi(x0, . . . , xn−1, yi) ∧ φ(y0, . . . , yk−1, z)
)
.

To see this suppose a⃗ = ⟨a0, . . . , an−1⟩ ∈ domh and let us check that

(24.3) T ⊢ ∀z
(
φ̃La0/x0, . . . , an−1/xn−1, zM⇔ z ≖ h(a0, . . . , an−1)

)
.
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For each i < k, a⃗ ∈ dom gi and ⟨g0(⃗a), . . . , gk−1(⃗a)⟩ ∈ dom f , so by assump-
tion T proves

∀yi (ψiLa0/x0, . . . , an−1/xn−1, yiM⇔ yi ≖ gi(⃗a)) for all i < k,(24.4)

∀z (φLg0(⃗a)/y0, . . . , gn−1(⃗a)/yk−1, zM⇔ z ≖ f(g0(⃗a), . . . , gk−1(⃗a)))(24.5)

If z is f(g0(⃗a), . . . , gk−1(⃗a)) = h(a0, . . . , an−1), then (24.5) yields that

φLg0(⃗a)/y0, . . . , gn−1(⃗a)/yk−1, zM,

and letting yi be gi(⃗a) we have by (24.4) that ψiLa0/x0, . . . , an−1/xn−1, yiM
for all i < k, and hence φ̃La0/x0, . . . , an−1/xn−1, zM.

Conversely, suppose φ̃La0/x0, . . . , an−1/xn−1, zM. Then there are y0,
. . . , yk−1 such that ψiLa0/x0, . . . , an−1/xn−1, yiM and φ(y0, . . . , yk−1, z) hold.
By (24.4) yi is gi(⃗a) and by (24.5) z is h(a0, . . . , an−1).

Therefore (24.3) is proved, and hence the collection of representable
functions is closed under composition.

The projections are representable, the operations + and · are repre-
sentable by Lemma 24.27. By order adequacy, the ordering is represented by
∃z (z + x ≖ y), so χ≤ is representable by Lemma 24.25.

Therefore it is enough to show that the collection of functions that are
representable in T is closed under minimization.

Suppose g : Nn+1 → N is represented by ψ(x1, . . . , xn, y, z). We must
show that the n-ary function f (⃗a) = µy [g(⃗a, y) = 0] is representable. We
claim that f is represented by φ(x1, . . . , xn, y)

ψL0/zM ∧ ∀w < y ∃z (z ̸≖ 0 ∧ψLw/yM)
where ψL0/zM is ψ(x1, . . . , xn, y, 0), that is the formula ψ in which z is
replaced by 0 and ψLw/yM is ψ(x1, . . . , xn, w, z), that is the formula ψ in
which y is replaced by w. To prove this, given ⟨a1, . . . , an⟩ ∈ dom f we must
show that

(24.6) T ⊢ ∀y
(
φLa1/x1, . . . , an/xnM⇔ y ≖ f(a1, . . . , an)

)
.

Suppose f (⃗a) = b so that g(⃗a, b) = 0 and g(⃗a, k) is defined, and it is different
from 0, for every k < b. As ψ represents g

T ⊢
∧
k<b

∃z (z ̸≖ 0∧ψLa1/x1, . . . , an/xn, k/yM)∧ψLa1/x1, . . . , an/xn, b/y, 0/zM

and by order adequacy T ⊢ ∀z(z < b ⇔ z ≖ 0 ∨ · · · ∨ z ≖ b− 1), so
T ⊢ ∀w < b∃zψLa1/x1, . . . , an/xn, w/yM and hence

T ⊢ ∀y
(
ψLa1/x1, . . . , an/xn, 0/zM ∧

∀w < y ∃z (z ̸≖ 0 ∧ψLa1/x1, . . . , an/xn, w/yM) ⇔ y ≖ b
)
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which is the same as (24.6). Therefore f is representable, and this concludes
the proof of the theorem. □

By Lemma 24.25 if T is order adequate, then every computable predicate
is representable in T .

Definition 24.30. The theory Q is formulated in the language containing
symbols +, ·, S, 0 and has the following axioms:

(Q1) ∀x(S(x) ̸≖ 0),
(Q2) ∀x, y (x ̸≖ y ⇒ S(x) ̸≖ S(y)),
(Q3) ∀x(x+ 0 ≖ x),
(Q4) ∀x, y(x+ S(y) ≖ S(x+ y))

(Q5) ∀x(x · 0 ≖ 0),

(Q6) ∀x, y(x · S(y) ≖ (x · y) + x),

(Q7) ∀x
(
x ̸≖ 0⇒ ∃y(x ≖ S(y))

)
.

The axiom Qn is PAn for 1 ≤ n ≤ 6, and by Lemma 12.13 Q7 follows
from PA−, and therefore every theorem of Q is provable in PA−. Thus a
model of PA is a model of Q; in particular a non-standard model of Q (i.e. a
model not isomorphic to ω) can be of the form N⊎Z×Q where Q is a dense
linear order without endpoints, but there are other non-standard models
of Q (Exercise 24.39). Note that Q1 implies that 1 ̸≖ 0, so Q satisfies the
hypothesis of Lemma 24.25.

Define

(24.7) x ≤ y ⇔ ∃z(z + x ≖ y).

For all natural numbers n ≤ m if and only if ∃k ∈ N(k + n = m), so by
Lemma 24.27 {(n,m) ∈ N× N | n ≤ m} is represented in Q by the formula
x1 ≤ x2.

Theorem 24.31. The theory Q is order adequate, and hence every computable
function is representable in it.

Proof. It is enough to show that Q ⊢ ∀x(x ≤ n̄⇔ x ≖ 0 ∨ · · · ∨ x ≖ n) for
every n ∈ N. If x is m for some m ≤ k, then x ≤ n, so it is enough to prove by
induction on n that Q ⊢ ∀x(x ≤ n̄⇒ x ≖ 0∨· · ·∨x ≖ n). If n = 0 then x ≤ 0̄
implies that x ≖ 0, so we are done. Assuming the result for some n, we prove
it for n+ 1. Suppose x ≤ n+ 1, that is ∃z(z + x ≖ S(n)). If x ≖ 0 we are
done, otherwise by Q7 x ≖ S(y) for some y, so ∃z(S(z+y) ≖ z+S(y) ≖ S(n)).
By Q2 ∃z(z + y ≖ n), i.e. y ≤ n, and hence y ≖ 0 ∨ · · · ∨ y ≖ n. Therefore
x ≖ 1 ∨ · · · ∨ y ≖ n+ 1. □

There is another version of Robinson’s arithmetic used in the literature.

Definition 24.32. The LPA-theory Q̄ has the same axioms as Q except that
the last axiom Q7 is replaced by the following two axioms:
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(Q̄7) ∀x¬
(
x < 0

)
,

(Q̄8) ∀x, y(x < S(y)⇔ (x < y ∨ x ≖ y)).

For uniformity of notation, when dealing with Q̄ we write Q̄1, . . . , Q̄6 rather
than Q1, . . . ,Q6 or PA1, . . . ,PA6.

As Q̄ is PA minus induction, every theorem of Q̄ is a theorem of PA. Just
like for Q, every computable function is representable in Q̄ (Exercise 24.41).
The advantage of Q over Q̄ is that its language does not contain the symbol
for the order relation; conversely, there are models of Q̄ that are not models
of Q.

Theorem 24.31 has useful consequences for PA.
24.D.1. Formalization in PA. Many mathematical statements can be shown
to be formalizable in the language of PA. One such example is Ramsey’s
Theorem 10.8. Another, even more striking example is given by the Riemann
Hypothesis, the statement that the non-trivial zeroes of the ζ function lie
on the line ℜ(s) = 1

2 . (The function ζ(s) =
∑∞

n=1 n
−s is defined on the half-

plane ℜ(s) > 1, and then extended to a meromorphic function on C.) This is
one of the most important conjecture in mathematics, and it is equivalent to
the following statement:

∀k ∃x ∀y > x
[
|
∑y

n=1 µ(n)| < y
1
2
+2−k

]
where µ is the Möbius function (Example 2.6), which can be easily formalized
in LPA.
24.D.2. Primitive recursive and elementary arithmetic.
24.D.3. Long induction.

24.E. Representability in set theory. Since computable functions are ∆1-
definable in Vω, it is natural to seek for an analogue of Robinson’s arithmetic
in set theory.

Definition 24.33. Elementary set theory (EST) has the following four
axioms:

• the axiom of extensionality: ∀x, y (∀z (z ∈ x⇔ z ∈ y)⇒ x = y),
• existence of the empty set: ∃x∀y(y /∈ x),
• existence of singletons: ∀x∃y∀z(z ∈ y ⇔ z = x),
• existence of unions: ∀x, y∃z∀w(w ∈ z ⇔ w ∈ x ∨ w ∈ y).

By extensionality, one can write ∃! in place of the existential quantifiers
in the axioms of EST. In particular, if M = ⟨M,E⟩ is an arbitrary model of
EST then

• ∅M is the unique a ∈M such that (b, a) /∈ E, for all b ∈M ;
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• for a ∈ M , then {a}M is the unique b ∈ M such that (a, b) ∈ E and
(a′, b) /∈ E for all a′ ̸= a,
• if a, b ∈ M then a ∪M b is the unique c ∈ M such that ∀x ∈M ((x, c) ∈
E ⇔ (x, a) ∈ E ∨ (x, b) ∈ E).

Define π : Vω →M as follows: π(∅) = ∅M, π({a}) = {π(a)}M, and for n ≥ 1

π({a1, . . . , an, an+1}) = π({a1, . . . , an}) ∪M {π(an+1)}M .

Therefore π : ⟨Vω,∈⟩ → ⟨M,E⟩ is an embedding and

∀a ∈ Vω∀m ∈M(m E π(a)⇒ ∃b ∈ a(π(b) = m)).

An n-ary predicate A ⊆ Vω is representable in EST if there isφ(x1, . . . , xn)
such that for every a1, . . . , an ∈ Vω

⟨a1, . . . , an⟩ ∈ A⇒ EST ⊢ ∀x1, . . . , xn[
∧

1≤i≤n

δai(xi)⇒ φ(x⃗)]

⟨a1, . . . , an⟩ /∈ A⇒ EST ⊢ ∀x1, . . . , xn[
∧

1≤i≤n

δai(xi)⇒ ¬φ(x⃗)]

Note that in the formulæ above we could have asked the EST proves that
∃x1, . . . , xn[

∧
1≤i≤n δai(xi) ∧ . . .].

Theorem 24.34. If A ⊆ Vω is an n-ary predicate, then

(a) if A is Σ1-definable via φ(x⃗), then

⟨a1, . . . , an⟩ ∈ A⇒ EST ⊢ ∀x1, . . . , xn[
∧

1≤i≤n

δai(xi)⇒ φ(x⃗)]

(b) if A is ∆1-definable, then it is representable in EST.

Exercises

Exercise 24.35. Show that

(i) if f : Nn → N and n ≥ 1, then C(f) = C(f ◦ Jn) where Jn : N→ Nn is a
recursive bijection;

(ii) if f : Nn → N and A = Gr(f) ⊆ Nn+1, then C(f) = C(χA).

Exercise 24.36. Show that the formulæ in Table 3 are indeed ∆0.

Exercise 24.37. Let S ⊆ Vω and a : S → ω. Show that:

(i) if S is computable, then so is the set <ωS and the operation (s, t) 7→ s⌢t;
(ii) if a is also computable, then so are Expr(S, a) and ht: Expr(S, a)→ ω;
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(iii) if v1, . . . , vn, z1, . . . , zn ∈ Expr(S, a) and v1, . . . , vn are distinct, then the
operation on Expr(S, a), w 7→ w[z1/v1, . . . , zn/vn], is computable.

Exercise 24.38. Show that the following are provable in Q, with ≤ as
in (24.7).

(1) ∀x(0 ≤ x);
(2) ∀x(x ≤ n⇒ x ≤ n+ 1);
(3) ∀x(n ≤ x⇒ n ≖ x ∨ n+ 1 ≤ x);
(4) ∀x (x ≤ n ∨ n ≤ x).

Exercise 24.39. Show that the following are models of Q.

(1) The set M1 = ω ⊎ {a0, a1} with a0 ̸= a1, where S,+, ·, 0 have the usual
meaning on ω, and
• S(ai) = ai for i = 0, 1,
• ai + n = ai for all n ∈ ω, and x+ ai = a1−i for all x ∈M1,
• x · 0 = 0 and x · (n + 1) = (x · n) + x for any x ∈ M1 and n ∈ ω;
n · ai = ai for all n ∈ ω; and ai · aj = a1−i.

(2) The set M2 = κ ∩ Card with ω < κ ∈ Card and +, ·, 0 have the usual
meaning as in cardinal arithmetic, and S(x) = 1∔ x for all x ∈M2.

(3) The set M3 of all polynomials of Z[X] with non-negative leading coeffi-
cient, with 0 the zero polynomial, the usual addition and multiplication,
and S(p) = p+ 1.

Conclude that none of the following is provable in Q, with ≤ defined as
in (24.7):

• ∀x(0 + x ≖ x);
• ∀x(S(x) ̸≖ x);
• ∀x, y, z((x+ y)+ z ≖ x+(y+ z));
• ∀x, y(x+ y ≖ y + x);
• ∀x(0 · x = 0);

• ∀x, y, z((x · y) · z ≖ x · (y · z));
• ∀x, y(x · y ≖ y · x);
• ∀x(x ≤ x);
• ∀x, y(x ≤ y ∧ y ≤ x⇒ x ≖ y);
• ∀x, y, z(x≤ y ∧ y≤ z ⇒ x≤ z).

Exercise 24.40. Let Q′ be the theory Q with Q7 replaced by

∀x, y (∃z(x+ z ≖ y)⇔ (∃z(x+ S(z) ≖ y) ∨ x ≖ y)) .

Define x < y as ∃z(x+ S(z) ≖ y). Show that Q̄7–Q̄8 follow from Q′, so any
model of Q′ can be expanded to a model of Q̄.

Exercise 24.41. Show that Q̄ is order adequate and hence every recursive
function is representable in it.

Exercise 24.42. Show that the following are models of Q̄.
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(1) Any infinite multiplicatively indecomposable ordinal, with ordinal addi-
tion and multiplication, the successor function S, and the usual order.

(2) The set 2× ω with the order (i, n) < (j,m)⇔ (i = j ∧ n < m) and the
operations S(i, n) = (i, n+ 1), (i, n) + (j,m) = (max(i, j), n+m) and
where (i, n) · (j,m) is set to be (max(i, j), nm) if (i, n), (j,m) ̸= (0, 0)
and (0, 0) otherwise.

Conclude that neither Q7 nor ∀x, y(x < y ∨ x ≖ y ∨ y < x) are provable in Q̄.

Exercise 24.43. Show that

(i) if M is a countable transitive set, closed under the operations x 7→ {x}
and (x, y) 7→ x ∪ y, then (M,E) is a countable random graph, where
x E y ⇔ (x ∈ y ∨ y ∈ x);

(ii) (N, F ) is a countable random graph, where n F m ⇔ (the n-th digit in
the binary expansion of m is 1∨ the m-th digit in the binary expansion
of n is 1).

Exercise 24.44. Show that the following functions are recursive:

(i) the function f : N→ N defined by f(0) = 0 and for n > 0, f(n) = µ(n) if
µ(n) ≥ 0, and f(n) = 2 if µ(n) = −1 and the function n 7→ |

∑n
k=1 µ(k)|,

where µ is the Möbius function (see page 11);

(ii) Ramsey’s function R : N×N→ N defined by: R(n, k) is the least m such
that for every coloring of Km with k + 1 colors has a monochromatic
complete subgraph with n vertexes.

Exercise 24.45. By Remark 19.14 Q can be taken to be a subset of Vω.
Check that ⟨Q,+, ·, <⟩ is computable by showing that the operations and
the ordering are ∆1-definable.

Exercise 24.46. Let LO be the set of all R ⊆ N × N which are reflexive,
antisymmetric, transitive and total on fld(R) = {n ∈ N | (n, n) ∈ R}, and let
WO be the set of all R ∈ LO which are well-orders on their own fields. A
recursive well-order is a recursive R ∈ WO; a recursive ordinal α is
an ordinal isomorphic to ⟨fld(R), R⟩ with R ∈ WO. The Church-Kleene
ordinal ωCK

1 is the supremum of all recursive ordinals.

(i) Show that if R ∈ WO and n̄ ∈ fld(R), then R≤n̄ = {(n,m) ∈ R |
(n, n̄) ∈ R} and R<n̄ = R≤n̄ \ {(n̄, n̄)} are recursive. Conclude that if β
is recursive and α < β then α is recursive.

(ii) Show that ωCK
1 is a countable limit ordinal bigger than ω, and it is ex-

ponentially (and hence multiplicatively and additively) indecomposable.
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Notes and remarks

The theories Q and Q̄ were introduced by R. Robinson in the early 50s and presented in detail in
the book [Tar68]. Unfortunately there seems to be no general consensus on how these and related
theories should be named, and all of them are denoted by the letters Q̄ or Q. So the reader should
be warned that what we call Q some authors call Q̄, and conversely.

25. Boolean algebras

Recall that a lattice is an ordered set L such that x ⋎ y and x ⋏ y exist
for all x, y ∈ L; if

b
X and

c
X exist for all X ⊆ L we will speak of a

complete lattice. A Boolean algebra is a complemented distributive lattice; it
is complete if it is complete as a lattice. A Boolean algebra B is a commutative
ring, thus it makes sense to speak of ideals. An ideal is a non-empty set
I ⊆ B which is an initial segment with respect to ≤ and closed under ⋎;
we say that I is proper if I ̸= B. The dual of an ideal is a filter, that is a
non-empty set F ⊆ B which is a final segment with respect to ≤ and closed
under ⋏.

25.A. Ideals and filters.

Definition 25.1. An ideal in a lattice L is an initial segment ∅ ≠ I ⊆ L
closed under ⋎. When I ̸= L we say that I is proper. For all a ∈ L the set
↓a = {x ∈ L | x ≤ a} is the principal ideal generated by a. A prime ideal
is a proper ideal I such that

∀x, y (x⋏ y ∈ I ⇒ x ∈ I ∨ y ∈ I).

A maximal ideal is a proper ideal that is not contained in any other proper
ideal.

The concept dual to ‘ideal’ is that of ‘filter’: a filter in a lattice L is a
final segment ∅ ≠ F ⊆ L closed under ⋏. The notions of proper, principal,
prime, maximal filter are defined by duality: a filter F in a lattice L is proper
if F ̸= L, principal if F = ↑a for some a ∈ L, prime if a ⋎ b ∈ F implies
that a ∈ F or b ∈ F , maximal if it is proper, and not contained in any other
proper filter. If L has minimum 0, then a filter F ⊆ L is proper if and only
if 0 /∈ F ; dually if L has maximum 1, then an ideal I ⊆ L proper if and only
if 1 /∈ I.

Theorem 25.2. Let L be a well-orderable lattice. If L has minimum, then
every proper filter can be extended to a maximal filter. Dually, if L has
maximum, then every proper ideal can be extended to a maximal ideal.
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Proof. Suppose F is a proper filter of a well-orderable lattice L with minimum
0. Enumerate L \ F as {xα | α < κ} and construct ⟨Fα | α ≤ κ⟩ by setting
F0 = F , Fλ =

⋃
α<λ Fα when λ is limit, and

Fα+1 =

{
↑{xα ⋏ y | y ∈ Fα} if this is a proper filter,

Fα otherwise.

Note that the Fαs are filters and that α < β ⇒ Fα ⊆ Fβ . Moreover the Fαs
are proper filters. In fact if α ≤ κ were the least ordinal such that Fα = L,
then α would be limit, hence 0 ∈ Fβ for some β < α, and thus Fβ = L,
against the minimality of α. The proof will be done if we show that Fκ is
maximal. If, towards a contradiction, G ⊃ Fκ were a proper filter, choose
xα ∈ G \ Fκ: but then xα ∈ Fα+1 ⊆ Fκ, a contradiction. □

Corollary 25.3. If B is a well-orderable Boolean algebra, then every proper
filter can be extended to an ultrafilter and every proper ideal can be extended
to a prime ideal.

A filter-base in a bounded lattice L is an X ⊆ L closed under ⋏ and
such that 0 /∈ X; a filter-subbase is an X ⊆ L such that X⋏ is a filter-base.2

If X is a filter-base, then ↑X is a proper filter, and it is called the filter
generated by X. A lattice L is κ-complete if

b
X and

c
X exist, for all

X ⊆ L of size < κ. Thus a lattice is complete if and only if it is κ-complete
for any cardinal κ. A κ-complete ideal I of a κ-complete lattice L is an
ideal such that

b
X ∈ I for all X ⊆ I of size ≤ κ. The dual of a κ-complete

ideal is a κ-complete filter. Finally an ω1-complete lattice/ideal/filter is said
to be σ-complete.

Remark 25.4. The equivalence between the notions prime ideal and max-
imal ideal (and dually: prime filter and ultrafilter) for Boolean algebras
(Proposition 7.41(b)), cannot be generalized to the case of lattices. In a
distributive lattice, every maximal ideal is prime, but the converse might fail,
and in a modular lattice a maximal ideal might not be prime (Exercise 25.11).

Theorem 25.5 (Ulam). Assume AC, and let κ = λ+, with λ an infinite
cardinal, and let S be a set of cardinality κ. Suppose I ⊆P(S) is a κ-complete
proper ideal such that X ∈ I for all X ⊆ S of size < κ—equivalently: {x} ∈ I

for all x ∈ S. Then there are κ pairwise disjoint sets not in I.

Proof. Without loss of generality, we may assume that S = κ. For each
α ∈ κ pick fα : α→ λ injective, and for ν ∈ λ let3

Aν
α = {β ∈ κ | fβ(α) = ν}.

2The set X⋏ was defined in Section 7.K on page 184.
3The family ⟨Aν

α | ν ∈ λ ∧ α ∈ κ⟩ is called a Ulam matrix.
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For fixed ν ∈ λ, if α, β are distinct, then Aν
α ∩Aν

β = ∅ as the functions fγ are
injective. For fixed α ∈ κ, by hypothesis α∔1 ∈ I so

⋃
ν∈λA

ν
α = κ\(α∔1) /∈ I.

Therefore by κ-additivity there is a function f : κ→ λ such that A
f(α)
α /∈ I.

Let ν ∈ λ be such that I = {α ∈ κ | f(α) = ν} has size κ. Then {Aν
α | α ∈ I}

is the required family. □

25.B. Stone duality. The Boolean prime ideal principle BPI of Defini-
tion 14.6 can be parametrized:

(BPI(B)) Any proper ideal of B is contained in a prime ideal.

Equivalently, BPI(B) says that every proper filter of B is contained in an
ultrafilter. Thus BPI is BPI(B) for all Boolean algebras B.

Remarks 25.6. (a) The axiom of choice implies BPI, but the converse
implication does not hold; moreover BPI is independent from ACω

and DC, meaning that it does not imply ACω, nor it is implied by
DC—see [Her06]. The principle BPI has important consequences in
mathematics—see Section 28.C.

(b) The first part of Corollary 25.3 can be stated as: if B is well-orderable
then BPI(B).

In Section 14.C the Boolean prime ideal principle was used to prove
Stone’s representation Theorem 14.19: if B is a Boolean algebra and BPI(B)
is assumed, then St(B), the set of all ultrafilters of B, is non-empty and

U : B →P(St(B)), U(b) = {D ∈ St(B) | b ∈ D},

is an injective homomorphism. The Stone space of B is St(B) with the
topology generated by the sets U(b).

Theorem 25.7. Assume BPI(B). The space St(B) is compact, Hausdorff,
zero dimensional, and B is isomorphic to CLOP (St(B)).

First we need a preliminary result.

Lemma 25.8. If B is an algebra of sets, and it is a basis for a compact space
X, then B = CLOP(X).

Proof. Since B is closed under complements, then each set in B is clopen, so
B ⊆ CLOP(X). Conversely, if C ∈ CLOP(X), then C is compact, so any
cover C =

⋃
i∈I Ui with Ui ∈ B admits a finite subcover C = Ui1 ∪ · · · ∪ Uin .

As B is closed under finite unions, C ∈ B. □

Proof of Theorem 25.7. Since U(b∗) = St(B) \ U(b), then

(25.1) {U(b) | b ∈ B} is a base of clopen sets.
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If U,D ∈ St(B) are distinct, let b ∈ U \D: then b∗ ∈ D \ U and U(b) and
U(b∗) are disjoint open neighborhoods of U and D. This proves that St(B) is
zero-dimensional and T2.

For compactness it is enough to show that any open cover of the form
{U(bi) | i ∈ I} admits a finite subcover. Towards a contradiction, suppose
that St(B) ̸=

⋃
i∈J U(bi) for any finite J ⊆ I, so that

U
(c

i∈J b
∗
i

)
=
⋂

i∈J U(b
∗
i ) = St(B) \

⋃
i∈J U(bi) ̸= ∅ = U(0B).

Since U is an injective homomorphism, this implies that
c

i∈J b
∗
i ≠ 0B for all

finite J ⊆ I. The set {b∗i | i ∈ I} generates a proper filter that by BPI(B)
can be extended to an ultrafilter U. By case assumption U ∈ U(bi0) for some
i0 ∈ I, and b∗i0 ∈ U by construction: a contradiction.

Finally, B ∼= CLOP (St(B)) follows from (25.1), Lemma 25.8 and Theo-
rem 14.18. □

Theorem 25.9. Let X be compact, Hausdorff, zero-dimensional, and assume
BPI(CLOP(X)). Then X is homeomorphic to St(CLOP(X)).

Proof. Let U ∈ St(CLOP(X)). Then U is a collection of non-empty clopen
subsets of X, and by definition of filter, C1∩· · ·∩Cn ̸= ∅ for all C1, . . . , Cn ∈ U.
By compactness of X, the set K =

⋂
U is non-empty. If x, y ∈ K were

distinct, pick D ∈ CLOP(X) such that x ∈ D and y /∈ D. Any finite
subset of F = {C ∩D | C ∈ U} has non-empty intersection, as x belongs to
such intersection, hence ↑F is a proper filter. As F ⊆ U then ↑F ⊆ U so
K =

⋂
U ⊆

⋂
F ⊆ D and therefore y ∈ D: a contradiction. Therefore

⋂
U

is a singleton, for all U ∈ St(CLOP(X)). Let

h : St(CLOP(X))→ X, h(U) = the unique element of
⋂

U.

Claim 25.9.1. ∀U ∈ St(CLOP(X))∀C ∈ CLOP(X) [h(U) ∈ C ⇔ C ∈ U].

Proof. If h(U) ∈ C and C /∈ U then X \ C ∈ U so h(U) ∈ X \ C, a
contradiction. Conversely, if C ∈ U then h(U) ∈ C by construction. □

Claim 25.9.2. h is injective.

Proof. Suppose U,U′ ∈ St(CLOP(X)) are distinct. Then there is C ∈
CLOP(X) such that C ∈ U and C /∈ U′, hence h(U) ∈ C and h(U′) /∈ C by
Claim 25.9.1. □

Claim 25.9.3. h is surjective.

Proof. Fix x ∈ X. Let F = {C ∈ CLOP(X) | x ∈ C} and let U be an
ultrafilter extending F. As X is T2 and zero-dimensional, for all x ∈ X we
have that {x} =

⋂
F ⊇

⋂
U, so h(U) = x. □
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For C ∈ CLOP(X) and using Claim 25.9.1,

h−1(C) = {U | h(U) ∈ C} = {U ∈ St(CLOP(X)) | C ∈ U} = U(C).

Thus the preimage of a clopen subset of X is clopen in St(CLOP(X)), hence
h is a continuous bijection. Since we are dealing with compact spaces, this
shows that h is a homeomorphism. □

In view of this, the study of Boolean algebras is equivalent to the study
of zero dimensional compact Hausdorff spaces, so results in one area can
be recast in the other area: for example, a Boolean algebra is countable
and atomless if and only if its Stone space is second countable and perfect
(Exercise 25.24). Theorem 13.38 shows that any two countable atomless
Boolean algebras are isomorphic, hence two compact, second countable, zero
dimensional, perfect Hausdorff spaces are homeomorphic. In particular

Theorem 25.10 (BPI+ ACω). The Cantor space is, up to homeomorphism,
the unique compact, separable, zero dimensional Hausdorff space without
isolated points.

Proof. We need to show that in the statement of the theorem, “separable”
can be replaced by “second countable”. By ACω a second countable topological
space is separable. For the other direction, note that a Hausdorff, compact,
separable space is metrizable, and any separable metric space is second
countable. □

25.C. Filters on a set. A filter (ideal) is κ-complete if it is closed under
intersections (unions) of size < κ; thus every filter (ideal) is ω-complete.
When κ = ω1 it is customary to speak of countably complete filters and
ideals; in the latter case one speak of σ-ideals. For example Club(κ) is a
κ-complete filter, while the collection of null sets, and the collection of meager
sets are σ-ideals.

Exercises

Exercise 25.11. Show that:

(i) in a distributive lattice, a maximal ideal is prime;
(ii) the lattice M3 of Figure 7 on page 78 has three maximal ideals, none of

which is prime;
(iii) in the lattice O of open subsets of R, the family Fr = {U ∈ O | r ∈ U}

is a prime, non-maximal, filter, for every r ∈ R .
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(iv) Give an example of a lattice L with minimum, without maximum, and
with no maximal ideals, so that L∆ is a lattice with maximum, without
minimum, and with no maximal filters.

(v) If L is a lattice, then I(L) = {I ⊆ L | I is an ideal of L} ordered under
inclusion is a lattice.

(vi) If ∅ ̸= I is a family of ideals of a lattice L, then
⋂
I is an ideal of L.

Similarly for F a non-empty family of filters on L.

Exercise 25.12. A finitely additive measure on a Boolean algebra B
with values in {0, 1} is a function µ : B → {0, 1} such that µ(0B) = 0
and µ(a ⋎ b) = µ(a) + µ(b) if a ⋏ b = 0B. If B is ω1-complete and if the
additivity assumption is strengthened to: µ(

b
n∈ω an) =

∑∞
n=0 µ(an) when

an ⋏ am = 0B and distinct n,m, we say that µ is a σ-additive measure.
Show that :

(i) If I is a maximal ideal of B, then µI : B → {0, 1}

µI(a) =

{
0 if a ∈ I,

1 otherwise,

is a measure on B. Conversely, every measure on B is of the form µI

for some maximal ideal I.
(ii) If B and I are ω1-complete, then µI is a σ-additive measure.

Exercise 25.13. Show that if λ ≤ κ are infinite cardinals, then {X ⊆ κ |
|X| < λ ∨ |κ \X| < λ} is a cof(κ)-complete subalgebra of P(κ), and that
[κ]<λ is a cof(κ)-complete ideal.

Exercise 25.14. Let B be a Boolean algebra and let b ∈ B \ {0} be an
element below which there are no atoms.

(i) Assume DC(B) and construct a function ⟨bs | s ∈ <ω2⟩ such that b∅ = b,
0 < bs⌢⟨i⟩ < bs and bs⌢⟨0⟩ ⋏ bs⌢⟨1⟩ = 0 for all s ∈ <ω2.

(ii) Assume DC(B) and show that ω2 ≾ {F | F is a filter of B and b ∈ F}.
(iii) Conclude that if B is countable and atomless, then St(B) ≍ R.

Exercise 25.15. Assume AC. Let U be a non-principal ultrafilter on ω
and let An be a finite non-empty sets. Show that ω2 ≾

∏
U An if one of the

following conditions hold:

(i) 2n ≤ |An| for all n.
(ii) n ≤ |An| for all n.
(iii) There is I = {in | n ∈ ω} ∈ U such that n ≤ |Ain |.

[Hint: start with (i) and then escalate it to (ii) and (iii).]
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Exercise 25.16. Let C (X, 2) be the set of all continuous maps from X to 2,
where 2 is given the discrete topology. Show that:

(i) If X is discrete and finite, then X →P(C (X, 2)), x 7→ {f | f(x) = 1}
is continuous and closed,4 where P(C (X, 2)) is identified with C (X,2)2.

(ii) If Y 2 is compact, for any set Y , then the product of finite, discrete
spaces is compact.

Exercise 25.17. Show that the following are equivalent:

(i) Stone’s representation Theorem 14.18.
(ii) Every Boolean algebra has a prime ideal.
(iii) BPI.
(iv) BPI(P(X)) for all non-empty set X. In other words: every proper filter

on X can be extended to an ultrafilter.
(v) Tychonoff’s theorem of Hausdorff’s spaces.
(vi) I2 is compact, for all I.

Exercise 25.18. Let Boole be the category of Boolean algebras and ZdCmp
be the category of zero-dimensional compact Hausdorff spaces. Assume BPI
and show that St: Boole→ ZdCmp,

f : B → C ; fSt : St(C)→ St(B)

fSt(U) = f−1[U ], and CLOP : ZdCmp→ Boole,

f : X → Y ; fCLOP : CLOP(Y )→ CLOP(X)

fCLOP(C) = f−1[C], are controvariant functors, and they are inverse of each
other.

Exercise 25.19. Let ⟨P,≤⟩ be a non-empty pre-order.

(i) Show that ∼ is indeed an equivalence relation, that ≲ is an ordering,
that ⟨P/∼,≲⟩ is separative, and that the map

⟨P,≤,⊥⟩ → ⟨P/∼,≲,⊥∗⟩ , p 7→ [p]

is a morphism of structures, where ⊥∗ is the incompatibility relation for
≲.

(ii) A node below p is a q ≤ p which is comparable with every element
below p, that is

∀r ≤ p (q ≤ r ∨ r ≤ q) .

Show that if q is a node below p then q ∼ p. Conclude that if either
every element in P is comparable, or else if P has a minimum, then the
separable quotient has just one element.

4A function between topological spaces is closed if it maps closed sets to closed sets.
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Exercise 25.20. Show that if D is a dense subset of a complete Boolean
algebra B, then

∀X ⊆ B ∃Y ⊆ D [
j

Y =
j

X].

Exercise 25.21. Let j : P → Q be a map between orders, and assume that
j is a dense embedding, or else that P and Q are Boolean algebras, and
that j is an embedding of Boolean algebras. Show that j is an embedding of
structures ⟨P,≤P ,⊥P ⟩ → ⟨Q,≤Q,⊥Q⟩.
Exercise 25.22. Suppose L is a complete separative lattice. Show that

(i) L is complemented,
(ii) L is a complete Boolean algebra.

Exercise 25.23. Let P be an ordered set. Show that:

(i) if P is separative, then also DM(P ) is separative, hence DM(P ) ∼=
RO(P );

(ii) if P is a dense linear order, then DM(P ) ∼= D(P ).

Exercise 25.24. Let B be a Boolean algebra. Show that:

(i) B is complete if and only if St(B) is extremely disconnected, i.e. the
closure of any open set is clopen;

(ii) D ∈ St(B) is principal if and only if it is an isolated point, so that B is
atomless if and only if St(B) is perfect;

(iii) B is countable if and only if St(B) is second countable.

Exercise 25.25. Show that:

(i) If A is a countable Boolean algebra and B is an atomless Boolean algebra,
then every partial isomorphism p : A′ → B′ extends to a monomorphism
f : A→ B.

(ii) Every countable atomless Boolean algebra B is ultrahomogeneous
that is any partial isomorphism p : B′ → B′′ with B′, B′′ ⊆ B extends
to an automorphism f : B → B.

Exercise 25.26. Show that there is a Gδ set X ⊆ R which is comeager and
of Lebesgue measure zero.

Exercise 25.27. Suppose B be a Boolean algebra, a ∈ B+ and that an =
inf An, with An ⊆ B. Show that:

(i) {D ∈ St(B) | An ⊈ D ∨ an ∈ D} is open and dense in St(B).
(ii) There is D ∈ St(B) such that a ∈ D and An ⊆ D ⇒ an ∈ D for all

n ∈ ω.
(iii) There is a homomorphism h : B → 2 such that h(a) = 1 and h(an) =

inf h“An.
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Notes and remarks

Theorem 14.18 was proved in 1936 by Stone. The Boolean completion construction was defined by
MacNeille in 1937. Exercise 25.27 is due to Tarski.

26. Topology, category, and measure

26.A. Completion of metric spaces. A map j : ⟨X1, d1⟩ → ⟨X2, d2⟩
between metric spaces is an isometric embedding if d1(a, b) = d2(j(a), j(b))
for all a, b ∈ X1. An isometric embedding is always injective; when it is also
surjective, then it is called an isometry or an isomorphism of metric
spaces. A completion of a metric space ⟨X, d⟩ is a complete metric space
⟨X̂, d̂⟩ together with an isometric embedding j : X → X̂ such that ran j dense
in X̂. One way to construct such completion is to take X̂ to be the quotient

{s ∈ ωX | s is a Cauchy sequence in ⟨X, d⟩}/∼

where s ∼ t ⇔ ∀ε > 0 ∃N ∀n,m > N d(s(n), t(m)) < ε. Then

d̂([s], [t]) = limn→∞ d(s(n), t(n))

is a metric on X̂, the map j : X → X̂ sending a point x ∈ X to the constant
sequence ⟨x, x, x, . . .⟩, is an isometric embedding, and ran j is dense in ⟨X̂, d̂⟩.
If j1 : ⟨X, d⟩ → ⟨X̂1, d̂1⟩ and j2 : ⟨X, d⟩ → ⟨X̂2, d̂2⟩ are completions, then
define f : X̂1 → X̂2 as follows: given x̂ ∈ X̂1 pick a sequence s : ω → X
such that j1(s(n)) → x̂, so that n 7→ j1(s(n)) is a Cauchy sequence in X̂1,
and hence s is a Cauchy sequence in X, so that n 7→ j2(s(n)) is a Cauchy
sequence in X̂2, and therefore it converges to a point f(x̂) ∈ X̂2. Thus
f : ⟨X̂1, d̂1⟩ → ⟨X̂2, d̂2⟩ is an isometry. Therefore we have shown

Theorem 26.1. Assume ACω. The completion of a metric space exists and
it is unique up to isomorphism.

We will always identify the metric space X with its isomorphic copy
j[X] ⊆ X̂. Note that if ⟨X, d⟩ contains a dense subset D of size κ, then D is
also dense in X̂; in particular, the completion of a separable metric space is
separable. The metric space R can be obtained as the completion of Q with
the Euclidean distance d(r, s) = |r − s|.

Definition 26.2. A Polish space is a separable topological space which is
completely metrizable, i.e. the topology is induced by some complete metric.

Examples of Polish spaces are Rn, separable Banach spaces, countable
sets with the discrete topology; an open interval is also Polish, since it is
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homeomorphic to R. If X is Polish then Y ⊆ X is Polish if and only if Y is
Gδ in X, that is Y =

⋂
n Un with Un open in X [Kec95, Theorem 3.11].

Proposition 26.3 (ACω). Suppose Xi (i ∈ ω) are topological spaces.

(a) If the Xis are separable, then so is
∏

i∈ω Xi.
(b) If the Xis are completely metrizable, then so is

∏
i∈ω Xi.

(c) If the Xis are Polish, then so is
∏

i∈ω Xi.

Proof. (a) To avoid trivialities, suppose Xi ̸= ∅ for all i ∈ ω, and choose
Di = {di,n | n ∈ ω} dense in Xi. Let S be the set of all functions s such that
dom s ⊆ ω is finite and s(i) ∈ Di for all i ∈ dom s. Then S is countable, and
so is

D = {f ∈ "n∈ωXn | ∃s ∈ S (s ⊂ f ∧ ∀i ∈ ω \ dom s (f(i) = di,0))}.

Given a non-empty basic open set V =
∏

m∈M Um where M ∈ [ω]<ω and
Um is open in Xm, pick s ∈ S with dom s = M , so that any f ∈ "n∈ωXn

extending s belongs to V ∩D. This proves that D is dense in
∏

i∈ω Xi.

(b) Let di be a complete distance on Xi. Replacing di with di
1+di

if needed,
we may assume that di ≤ 1 for all i ∈ ω. We claim that the metric on∏

i∈ω Xi

d(f, g) =

∞∑
i=0

di(f(i), g(i))

2i

is compatible with the product topology, and it is complete.finish!

(c) follows from (a) and (b). □

Any discrete space X is completely metrizable via the distance d(x, y) = 1
if and only if x ̸= y, and d(x, x) = 0. Therefore any set of the form ωX
can be seen as a complete metric space; if moreover X is countable, then
ωX is separable, and hence Polish. In particular the Cantor space ω2
and the Baire space ωω are Polish. Recall from Section 13.F that the
lexicographic order ≤lex on ω2 is a total order, and ω2 with the order topology
is homeomorphic to Cantor’s ternary set E1/3 ⊆ [0; 1] defined in (13.10) on
page 323. By Exercise 26.20 the order topology on ω2 is the same as the
product topology, so the Cantor space can be identified with E1/3. On the
other hand the order topology is not the same as the product topology on ωω.
The Baire space is homeomorphic to R \D where D is countable and dense
in R; in particular it is homeomorphic to the irrationals (Exercise 26.21).

The body of a descriptive tree T on X (Definition 23.16) is the set of all
infinite branches of T

[T ] = {f ∈ ωX | ∀n ∈ ω (f ↾ n ∈ T )}
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with the topology induced by the basic open sets

Ns([T ]) = Ns = {f ∈ [T ] | s ⊂ f}, (s ∈ T ).

So an open set of [T ] is of the form
⋃

s∈ANs for some A ⊆ T . In particular,
if T = <ωX, then [T ] = ωX and its topology is the product topology when
X is given the discrete topology.

Corollary 26.4. If T is a descriptive tree on some countable set X, then
[T ] is Polish.

The closed subsets of [T ] can be identified with pruned subtrees of T .

Proposition 26.5. Suppose T is a descriptive tree on X ̸= ∅.

(a) If S ⊆ T is a descriptive tree on X then [S] is a closed subset of [T ].
(b) Every non-empty closed subset of [T ] of the form [S] for some pruned

descriptive tree S ⊆ T .

Proof. (a) If f ∈ [T ] \ [S] then f ↾ n /∈ S for some n ∈ ω, and therefore
Nf↾n is an open neighborhood of f disjoint from [S].

(b) Let C ⊆ [T ] be closed. The set S = {s ∈ T | Ns ∩ C ̸= ∅} is a pruned
descriptive tree on X, and C ⊆ [S] by construction. Suppose f ∈ [S] and
pick fn ∈Nf↾n ∩ C which is possible since f ↾ n ∈ S for all n. Then fn → f
and therefore f ∈ C by closure. Therefore [S] ⊆ C. □

26.B. Cantor schemes. The construction of Cantor’s set E1/3 in Sec-
tion 13.F.1 can be generalized. A Cantor scheme in a complete metric
space ⟨X, d⟩ is a function ⟨(xs, rs) | s ∈ <ω2⟩ with the following properties:
for every s ∈ <ω2

• xs ∈ X and rs ∈ R+,
• ClB(xs⌢⟨i⟩; rs⌢⟨i⟩) ⊆ B(xs; rs), for all i ∈ 2,
• B(xs⌢⟨0⟩; rs⌢⟨0⟩) ∩ B(xs⌢⟨1⟩; rs⌢⟨1⟩) = ∅,

and such that limn→∞ rz↾n = 0 for all z ∈ ω2. It is immediate to check that

(26.1) s ⊂ t⇒ B(xs; rs) ⊃ B(xt; rt).

Suppose instead that s, t ∈ <ω2 are incomparable, that is s ⊈ t and s ⊉ t.
Let n̄ be such that s ↾ n̄ = t ↾ n̄, but s(n̄) ̸= t(n̄). Then B(xs↾n̄+1; rs↾n̄+1) ∩
B(xt↾n̄+1; rt↾n̄+1) = ∅ hence B(xs; rs) ∩ B(xt; rt) = ∅ by (26.1).

We can thus construct a continuous function f : ω2 → X, {f(z)} =⋂
nB(xz↾n; rz↾n).

Theorem 26.6. Let ⟨X, d⟩ be a separable metric space, non-empty and
without isolated points. Then there is a continuous injective function f : ω2 ↣
X. In particular: X contains a homeomorphic copy of Cantor’s set.
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Proof. Let E = {en | n ∈ ω} be dense in X. Inductively construct real
numbers rs and points xs ∈ X (s ∈ <ω2), such that

(i) 0 < rs ≤ 2− lh(s),
(ii) Cl(B(xs⌢⟨i⟩; rs⌢⟨i⟩)) ⊆ B(xs, rs), for i = 0, 1,

(iii) Cl
(
B(xs⌢⟨0⟩; rs⌢⟨0⟩)

)
∩ Cl

(
B(xs⌢⟨1⟩; rs⌢⟨1⟩)

)
= ∅.

Set x∅ ∈ X and r∅ = 1. Given xs and rs it is easy to check that E ∩B(xs, rs)
is infinite, hence it is possible to choose two distinct points xs⌢⟨0⟩ and xs⌢⟨1⟩ in
this set. (For example, take ek and eh, where k and h are the first two indexes
i such that ei ∈ E ∩ B(xs, rs).) Choose sufficiently small rs⌢⟨i⟩ (i = 0, 1) so
that (i)–(iii) hold.

For every y ∈ ω2 consider the sequence ⟨xy↾n | n⟩. As B(xy↾n, ry↾n) ⊇
B(xy↾n+1, ry↾n+1) by (ii),

(26.2) ∀k ≥ n (xy↾k ∈ B(xy↾n, ry↾n)) .

Therefore ⟨xy↾n | n⟩ is a Cauchy sequence, and let f(y) = limn xy↾n. By (26.2)
f(y) ∈ Cl

(
B(xy↾n, ry↾n)

)
for every n and hence

f(y) ∈
⋂

nCl
(
B(xy↾n, ry↾n)

)
=
⋂

nB(xy↾n, ry↾n),

where the second equality follows from (ii). If y, z ∈ ω2 are distinct, let n
be such that y ↾ n = z ↾ n and y(n) ̸= z(n). Then f(y) ∈ Cl

(
B(xy↾n, ry↾n)

)
and f(z) ∈ Cl

(
B(xz↾n, rz↾n)

)
, hence f(y) ̸= f(z) by (iii). In other words, the

function f : ω2 → X is injective. We are left to show that it is continuous.
Given y ∈ ω2 and n, it is enough to find k such that if z ↾ k = y ↾ k, then
d(xz↾k, xy↾k) < 2−n. It is easy to check that k = n works. □

26.C. The property of Baire. Recall from Section 7.A in Chapter ?? the
downward topology on a preordered set ⟨P,≤⟩. Thus D ⊆ P is dense
(with respect to the downward topology) if and only if ∀p ∈ P∃q ∈ D (q ≤ p).

Theorem 26.7. Let ⟨P,≤⟩ be a preordered set, and assume DC(ω × P ). Let
Dn ⊆ P (n ∈ ω) be dense sets in the downward topology. Then for every
p̄ ∈ P there is a sequence p̄ ≥ p0 ≥ p1 ≥ . . . of elements of P such that
∀n ∈ ω (pn ∈ Dn).

Proof. Fix p̄ ∈ P and consider the relation R on X =
⋃

n∈ω{n} ×Dn,

(n, q) R (m, r) ⇔ m = n+ 1 ∧ q ≥ r.

By density there is p0 ∈ D0 such that p̄ ≥ p0, so by DC(X) (which follows
from DC(ω×P ) as ω×P ↠ X) a sequence (0, p0) R (1, p1) R (2, p2) R . . . is
obtained, hence the sequence p̄ ≥ p0 ≥ p1 ≥ . . . is the object we were looking
for. □
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The next result, known as the Baire Category Theorem, states that
in many topological spaces the countable intersection of open dense sets is
non-empty. Recall that a topological space X is locally compact if it is T2

and every point has a neighborhood with compact closure. it follows that for
all x ∈ U there is V ⊆ U compact neighborhood of x.

Theorem 26.8. Assume DC. Let X ̸= ∅ be a locally compact space, or a
complete metric space. If the Uns are open and dense then

⋂
n∈ω Un is dense.

Proof. Let U ̸= ∅ be open.
Suppose first that X is a complete metric space. Let

P = {p ⊆ X | p is an open ball}
with p ≤ q ⇔ p ⊆ q, and let Dn = {p | diam(p) ≤ 2−n ∧ Cl(p) ⊆ Un}. By
Exercise 26.18 Dn is dense in P with respect to the downward topology.
Let p̄ ∈ P be such that p̄ ⊆ U . Construct a sequence ⟨pn | n ∈ ω⟩ as in
Theorem 26.7. Let xn ∈ X be the center of pn. By construction, xi, xj ∈ pN
hence d(xi, xj) < 2−N , for all i, j ≥ N hence ⟨xn | n ∈ ω⟩ is a Cauchy
sequence with respect to the complete metric d, and let x̄ ∈ X be its limit.
For each n ∈ ω, d(x̄, xn) ≤ 2−n hence x̄ ∈ Cl(pn) ⊆ Un. In other words:
x̄ ∈

⋂
n Un. Since x̄ ∈ p0 ⊆ U , we have proved that

⋂
n∈ω Un ∩ U ̸= ∅, as

required.
Suppose now that X is locally compact: the preorder is

P = {p ⊆ X | p ̸= ∅ is an open set with compact closure}
with the ordering p ≤ q ⇔ Cl(p) = Cl(q) and let Dn = {p ∈ P | p ⊆ Un}.
Let p̄ ∈ P be such that p̄ ⊆ U . Fix (pn)n as in Theorem 26.7, and note that
{Cl(pn) | n ∈ ω} is a decreasing family of non-empty compact sets, hence by
the finite intersection property

⋂
nCl(pn) contains an element x̄. Therefore

x̄ ∈
⋂

n Un and since x̄ ∈ p0 ⊆ p̄ ⊆ U the result is proved. □

Remarks 26.9. (a) If X is separable complete metric, or second countable
locally compact, then the order P can be taken to be countable, hence
DC can be avoided. (In the case of metric spaces, take the open balls
with centers in the countable dense sets and rational radius; in the case
of locally compact spaces take the basic open sets with compact closure.)
In particular, Theorem 26.8 for Rn or for a separable Banach space is
provable without choice.

(b) Theorem 26.8 for arbitrary complete metric implies DC. expand
(c) If X satisfies the hypotheses of Theorem 26.8 and has no isolated points,

then X \ {x} is an open dense subset of X, hence X is not countable.

A subset M of a topological space X is meager or of first category if
there are closed sets Cn with empty interior such that M ⊆

⋃
nCn. Thus the
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Baire category theorem says that in a locally compact space, or in a complete
metric space, no non-empty open set is meager.

The Baire category theorem is often used to prove existence results: in
order to prove the existence of some x ∈ X satisfying property P (assuming
X is a complete metric space or a locally compact space) it is enough to show
that {x ∈ X | P (x)} is non-meager, hence non-empty. (In many cases one
shows that this set is comeager, and hence non-meager.) For example the set

D = {C ([0; 1]) | ∃x ∈ [0; 1] f is differentiable in x}

is meager, hence C ([0; 1]) \D is comeager [Fol99, pag.??]. In particular, the
generic continuous function on [0; 1] is not differentiable at any point.

26.D. Measure.
26.D.1. Basic notions. A measure space is a triple ⟨X, S, µ⟩ such that S

is a σ-algebra on X and µ : S → [0;+∞] is a measure that is a function
such that µ(∅) = 0 and µ

(⋃
nAn

)
=
∑∞

n=0 µ(An), if the An ∈ S are pairwise
disjoint—this last property is called σ-additivity.5 The sets in S are said to
be S-measurable and Null(X, S, µ) = {A ∈ S | µ(A) = 0} is the family of
null sets. A measure space is

• complete if A ∈ Null(µ) and B ⊆ A implies that B ∈ S and hence
µ(B) = 0;
• singular if there are x ∈ X such that {x} ∈ S and µ({x}) > 0;
• atomless if there are no atoms, that is sets A ∈ S \Null(µ) such that
∀B ∈P(A) ∩ S (µ(B) = µ(A) ∨ µ(B) = 0);
• non-zero if Null(µ) ̸= S;
• finite if µ(X) < +∞, σ-finite if there are Xn ∈ S such that X =

⋃
nXn

and µ(Xn) < +∞, and probability if µ(X) = 1.

Remark 26.10. The definition of measure space is redundant, as everything
can be retrieved from the measure: S = dom(µ) and X =

⋃
S. For this

reason it is customary ascribe the above attributes (complete, singular, . . . )
to the measure µ rather than to the measure space. On the other hand one
often does not distinguish µ from its restriction to a sub-σ-algebra, so this
redundancy comes handy.

The property of being atomless is a strengthening of being non-singular.
It implies that inside any set of positive finite measure there are sets of any
prescribed smaller measure (Exercise 26.31). Thus the range of an atomless
measure is an initial segment of [0 : +∞].

5It is understood that if one or more summands is infinite, then so is the sum of the series.
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Given a measure space ⟨X, S, µ⟩ the family

N = {N ⊆ X | ∃A ∈ Null(µ) (N ⊆ A)}

is a σ-ideal of P(X), and by Exercise ?? S̄ = {A△N | A ∈ S ∧ N ∈ N}
is the smallest σ-algebra containing S ∪ N. The function µ̄ : S̄ → [0;+∞],
µ̄(A△N) = µ(A) is well-defined, and it is a complete measure extending µ,
and such that Null(µ̄) = N. The measure space

〈
X, S̄, µ̄

〉
is the completion

of ⟨X, S, µ⟩—clearly a complete measure coincides with its completion.
If X is a topological space, then µ : Bor(X)→ [0; +∞] is called a Borel

measure. If X is metrizable then any finite Borel measure µ satisfies

µ(A) = sup{µ(F ) | F ⊆ A is closed}
= inf{µ(U) | U ⊇ A is open}.

Moreover if X is Polish, then µ(A) = sup{µ(K) | K ⊆ A is compact}—
see [Kec95, Theorems 17.1 and 17.11].

If ⟨G,+⟩ is an abelian group, then ⟨G, S, µ⟩ is translation invariant
if µ(A) = µ(g + A) for all g ∈ G and A ∈ S, where it is required that
A ∈ S⇒ g +A = {g + a | a ∈ A} ∈ S. If G is locally compact, then there is
a non-zero, σ-finite, translation invariant Borel measure on G called a Haar
measure, and if µ1 and µ2 are two such measures, there is r > 0 such that
µ1(A) = r ·µ2(A) for all Borel A. If G is compact then the Haar measure µ is
finite, and for any r > 0 there is a unique Haar measure such that µ(G) = r.
In view of this if G is a compact group it is customary to assume that the
Haar measure is a probability one.
26.D.2. Outer measures. An outer measure on X is a function F : P(X)→
[0; +∞] such that F (∅) = 0, A ⊆ B ⇒ F (A) ≤ F (B), and it is σ-subadditive,
namely: F (

⋃
n∈ω Xn) ≤

∑∞
n=0 F (Xn), for all choices of Xn ⊆ X. Despite its

name, an outer measure need not be a measure, but it induces one. If F is
an outer measure on X, then

S = {A ⊆ X | ∀B ⊆ X (F (B ∩A) + F (B \A) ≤ F (B))}

is a σ-algebra, µ = F ↾ S is a measure, and ⟨X, S, µ⟩ is a complete measure
space [Fre04a, Carathéodory’s Theorem 113C].

Proposition 26.11. Let B ⊆P(X) be a family covering X, and let ν : B→
[0; +∞) be monotone. Then ACω(B) implies that F : P(X)→ [0; +∞]

F (A) = inf{
∑∞

n=0 ν(Bn) | Bn ∈ B ∧ A ⊆
⋃

n∈ω Bn}

is an outer measure.

Proof. Monotonicity is clear. Towards showing σ-subadditivity, we fix an
ε > 0 and prove that F (

⋃
nXn) ≤

∑∞
n=0 F (Xn) + ε. For every n, using
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ACω(B) choose Bi
n ∈ B such that

(26.3) Xn ⊆
⋃

i∈ω Bi
n and

∑∞
i=0 ν(B

i
n) < F (Xn) + ε/2n+1.

Once the Bi
n are chosen, the result follows by noting that

⋃
n∈ω Xn ⊆⋃

n∈ω
⋃

i∈ω Bi
n and∑∞

n=0

∑∞
i=0 ν(B

i
n) ≤

∑∞
n=0(F (Xn) + ε/2n+1) =

∑∞
n=0 F (Xn) + ε. □

26.D.3. The Lebesgue measure on the reals. Let B = {[a; b) | a < b} ⊆P(R)
be the family of all half-open intervals, and let ν([a; b)) = b − a. Observe
that B ≍ R, so ACω(R) implies that

F (A) = inf{
∑∞

n=0(bn − an) | A ⊆
⋃

n<ω[an; bn)},

is an outer measure. The measure induced by F is the Lebesgue measure
on R and it is denoted with λ, the σ-algebra from Carathéodory’s theorem
is the collection of the Lebesgue measurable sets and it is denoted with
Meas(R, λ) or simply Meas(λ). The Lebesgue measure λ is complete,
non-singular, atomless, σ-finite, and translation invariant, that is it is the
completion of a Haar measure for ⟨R,+⟩.

Remark 26.12. The appeal to ACω(R) cannot be avoided, since the existence
of any non-singular measure on R (or on ω2, or ωω) implies that R is not
countable union of countable sets, a fact that cannot be proved without
choice.

The construction of the Lebesgue measure can be repeated for Rn, using
the sets

[a; b)
def
= {c ∈ Rn | ai ≤ ci < bi}

in place of the intervals [a; b), where we have followed the convention that the
n-tuple (x1, . . . , xn) ∈ Rn is denoted by x. Similarly, the volume

∏n
i=1(bi−ai)

is used in place of the length (b−a). The corresponding measure and σ-algebra
are denoted with λn and Meas(Rn, λn) or Meas(λn).

If I is an (open, closed, semi-open) interval with endpoints a < b, then
λ(I) = b − a. Recall that the Cantor set E1/3 (see page 323) is obtained
by removing a countable family of open sets from the interval [0; 1]. The
measure of its complement in [0; 1] is

∑∞
n=1

1
3n = 1 and hence λ(E1/3) = 0.

Therefore E1/3 is an example of a closed, uncountable set without interior
and of measure 0.
26.D.4. The measure on the Cantor and Baire spaces. Let T be a pruned
descriptive tree on ω, and let m : T → [0; 1] be a function such that m(⟨⟩) = 1
and for all t ∈ T

m(t) =
∑

t⌢⟨n⟩∈T

m(t⌢⟨n⟩).
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Then F : P([T ])→ [0; 1], F (A) = inf{
∑

t∈Am(t) | A ⊆ T ∧ A ⊆
⋃

t∈ANt}
is an outer-measure, yielding a probability measure such that µ(Nt) = m(t)
for all t ∈ T .

Suppose T = <ω2 so that [T ] = ω2 is the Cantor space, and let m be
such that m(s⌢⟨i⟩) = m(s)/2 for all s ∈ <ω2 and i ∈ 2. The resulting
measure µC is called the Cantor measure or coin-tossing measure and
µC(Ns) = 2− lh s.

Suppose T = <ωω so that [T ] = ωω is the Baire space, and let m be such
that m(s⌢⟨i⟩) = m(s)/2i+1 for all s ∈ <ω2 and i ∈ ω. The resulting measure
µB is called the Baire measure.

µC is called the Cantor measure or Lebesgue measure on Cantor’s
set. Calling µC the Lebesgue measure may seem a bit peculiar, since ω2 expand
is usually identified with E1/3 and µC(

ω2) = 1, while λ(E1/3) = 0. On the
other hand ω2 can be identified with (i.e. is homeomorphic to) a subset of
[0; 2] of λ-measure equal to 1 (Exercise 26.27). Subsets of R homeomorphic
to ω2 are obtained by generalizing in several directions the construction of
E1/3. For example we can replace the interval [0; 1] with an arbitrary closed
interval J and choose a coefficient rn ∈ (0; 1) to be used at stage n of the
construction, that is we define

(26.4) Cantor(J ; (rm)m) =
⋂
n

Cantor(n)(J ; (rm)m)

where Cantor(0)(J ; (rm)m) = J , Cantor(n)(J ; (rm)m) is union of 2n closed
pairwise disjoint intervals and Cantor(n+1)(J ; (rm)m) is obtained by replacing
each interval I of Cantor(n)(J ; (rm)m) with I(0;rn) and I(1;rn), defined in (13.9).
The sets Cantor(J ; (rm)m) are called generalized Cantor sets. When the
sequence (rn)n is constantly equal to r we will write Cantor(J, r). Thus
E

(n)
1/3 = Cantor(n)([0; 1], 1/3) and

E1/3 = Cantor([0; 1], 1/3).

26.D.5. Extensions of the Lebesgue measure. By Vitali’s construction there
aren’t any non-zero, non-singular, translation invariant measures on P(R) or,
equivalently, on P([0; 1]). The requirements that the measure be non-zero
and non-singular are put forth to avoid trivialities, so the culprit must be
translation invariance.

Question 26.13 (Banach). Is there a non-zero, non-singular measure µ
with domain P([0; 1])? Is it possible to have such µ extending the Lebesgue
measure?

More generally one could ask whether there is a non-singular probability
measure on some set X, that is a measure with domain P(X). A measure
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on a set is κ-additive if the union of < κ null sets null—thus ω1-additivity
is just σ-additivity. Observe that if µ is κ-additive, γ < κ, and the sets
{Aα | α < γ} are pairwise disjoint, then

µ(
⋃

α<γ Aα) =
∑

α<γ µ(Aα) = sup{
∑

α∈F µ(Aα) | F ∈ [γ]<ω}

as by Exercise 26.30 all but countably many Aαs are null.

Theorem 26.14. Assume AC and suppose ⟨X, S, µ⟩ is a non-zero, finite,
atomless measure space. Then µ is not (2ℵ0)+-complete, and if S = P(X)
then there is a probability measure ν : P(ω2)→ [0; 1] extending µC.

Proof. Using Exercise 26.31 we can construct Xs ∈ S, for s ∈ <ω2. Set
X⟨⟩ = X and given Xs pick disjoint Xs⌢⟨0⟩, Xs⌢⟨1⟩ of measure µ(Xs)/2 such
that Xs = Xs⌢⟨0⟩ ∪Xs⌢⟨1⟩. For all f ∈ ω2 the set Xf =

⋂
n∈ω Xf↾n ∈ S is

null, and since X =
⋃

f∈ω2Xf is non-null, this means that Null(µ) is not
closed under unions of size 2ℵ0 .

Suppose now S = P(X). Replacing µ with µ/µ(X) if needed, we may
assume that µ is a probability measure. For A ⊆ ω2 set ν(A) = µ(

⋃
f∈AXf ).

As ν(Ns) = µ(Xs) = µC(Ns) for all s ∈ <ω2, the measure ν extends µC. □

The proof above can be modified with ω2 replaced by [0; 1]. Therefore the
answer to Banach’s question 26.13 is positive if we assume the existence of a
non-zero, atomless measure on some P(X). As the nature of X is irrelevant,
we may replace it with its cardinality κ, which must be uncountable by
σ-additivity.

Lemma 26.15. Suppose κ is the least cardinal for which there is a non-
singular, probability measure µ with domain P(κ). Then µ is κ-additive.

Proof. Towards a contradiction there is λ < κ and there are null sets Aα ⊆ κ
for α < λ, such that µ(

⋃
α<λAα) > 0. Then

ν : P(λ)→ [0; 1], ν(X) =
µ(
⋃

α∈X Aα)

µ(
⋃

α<λAα)

is a non-singular probability measure, against the minimality of κ. □

Definition 26.16. A cardinal κ > ω is real-valued measurable if there is
a κ-additive, non-singular, probability measure with domain P(κ).

Theorem 26.17. A real-valued measurable cardinal κ is regular, and if AC
is assumed, then κ is limit, and therefore weakly inaccessible.

Proof. Let µ : P(κ) → [0; 1] be a κ-additive, non-singular, probability
measure.
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Suppose κ is singular, i.e. κ = supi∈γ αi, with γ < κ and αi < κ. By
κ-additivity µ(α) = µ(

⋃
β∈α {β}) = 0 for all α < κ, and hence µ(X) = 0 for

any bounded X ⊆ κ. Therefore

µ(κ) = µ(
⋃
i∈γ

(αi \
⋃
j<i

αj)) =
∑
i∈γ

µ(αi \
⋃
j<i

αj) = 0

a contradiction. Thus κ is a regular cardinal.
If κ = λ+ then by Ulam’s Theorem 25.5 there are pairwise disjoint,

non-null Aα ⊆ κ for α < κ, against Exercise 26.30. Therefore κ is a limit
cardinal. □

The import of Theorems 26.14 and 26.17 is that any real valued measurable
cardinal with an atomless measure is ≤ 2ℵ0 , so that if the answer to Banach’s
Question 26.13 is affirmative, then the continuum must be very large. In
Section 40 we will look at real valued measurable cardinals having a measure
with atoms.

Exercises

Exercise 26.18. Let X be a topological space, and let P be the collection
of all non-empty open subsets, ordered by p ≤ q ⇔ p ⊆ q. Show that

(i) if D ⊆ P is dense with respect to the downward topology of P then⋃
p∈D p is open and dense in X;

(ii) if X is metric, then {p ∈ P | diam(p) ≤ 2−n} is dense in P .

Exercise 26.19. Let P = {p ⊆ ω × ω | p is a finite function} ordered by
p ≤ q ⇔ p ⊇ q. Show that the sets An = {p | n ∈ dom(p)} and Bn = {p |
n ∈ ran(p)} are dense in P .

Exercise 26.20. Show that

(i) ⟨ω2, <lex⟩ is homeomorphic to Cantor’s space;
(ii) ⟨ωω,<lex⟩ is isomorphic (and hence homeomorphic) to ⟨[0; 1), <⟩. In

particular ⟨ωω,<lex⟩ is not homeomorphic to the Baire space.

Exercise 26.21. Show that ωω is homeomorphic to R \ D where D is
countable and dense in R.

Exercise 26.22. Fix an ordinal 1 < ξ < ω1 and let < be the lexicographic
ordering on <ωξ, that is

s < t ⇔ ∃u ∈ <ωξ (u ̸= ∅ ∧ s⌢u = t) ∨

∃u, v, w ∈ <ωξ ∃α, β ∈ ξ (s = u⌢ ⟨α⟩⌢v ∧ t = u⌢ ⟨β⟩⌢w ∧ α < β).
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Let I = <ωξ \
{
s⌢ ⟨0⟩ | s ∈ <ωξ

}
be the set of all sequences not ending with

0. For s ∈ <ωξ set s̄ to be the unique element of I such that s = s̄⌢0(n) for
some n < ω, where 0(n) is as in (3.8)..

(i) Show that if s = s̄⌢0(n) and t = t̄⌢0(m) then

s < t ⇔ s̄ < t̄ ∨ (s̄ = t̄ ∧ n < m).

(ii) Show that ⟨I,<⟩ is isomorphic to Q ∩ [0; 1).
(iii) Conclude that ⟨<ωξ,<⟩ is isomorphic to (Q∩ [0; 1))×ω with the product

ordering.
(iv) Explicitly describe an isomorphism between ⟨<ω2, <⟩ and ⟨<ω3, <⟩.

Exercise 26.23. Prove the following extension of Theorem 26.6: Let C
be a closed set in a separable complete metric space, and let P ∪ S be its
decomposition into a perfect set P and a sparse set S (Theorem 13.47). Then
either P = ∅ or else there is a continuous and injective map ω2 ↣ P .

Conclude that a Polish space is either countable, or else it is in bijection
with R.

Exercise 26.24. Show that Ψ: ω2 → [0; 1], x 7→
∑∞

n=0
x(n)
2n+1 is surjective,

monotone i.e. x ≤lex y ⇒ Ψ(x) ≤ Ψ(y), and such that whenever x <lex y and
Ψ(x) = Ψ(y), then x = s⌢⟨0⟩⌢1(ω) and y = s⌢⟨1⟩⌢0(ω). Conclude that Ψ is
continuous.

Exercise 26.25. Show that there exist continuous surjective maps [0; 1] ↠
[0; 1]n (n ∈ N) and [0; 1] ↠ [0; 1]N. (When n = 2 the function is called Peano
curve.)

Exercise 26.26. Show that if the function X → RN, x 7→ ⟨d(x, qn) | n ∈ N⟩
defined in Section 13.G.3 is a homeomorphism from X onto its image, and
that if d is a complete metric on X, then the image is a closed set in RN.
Conclude that, up to homeomorphism, all separable complete metric spaces
are the closed subsets of RN.

Exercise 26.27. Show that:

(i) For each a < b and every sequence of reals r⃗ = ⟨rn | n ∈ ω⟩ in (0; 1),
the sets ω2 and Cantor([a; b], r⃗) are homeomorphic, that is to say, all
generalized Cantor sets (see (26.4)) are homeomorphic.

(ii) λ (Cantor([a; b], r)) = 0,
(iii) For each 0 ≤ s < b− a there is a sequence r⃗ such that

λ (Cantor([a; b], r⃗)) = 0.

Exercise 26.28. A Fréchet space is a vector space over R together with
complete metric d such that addition F × F → F and scalar multiplication
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R × F → F are continuous. In particular every Banach space is a Fréchet
space (but not conversely). Let F be an infinite dimensional Fréchet space.
Show that every finite dimensional subspace is closed with empty interior.
Conclude that the dimension of F is larger than ℵ0.

Exercise 26.29. Show that is ⟨X, S, µ⟩ is a measure space, then

(a) µ is additive, that is if A,B ∈ S are disjoint, then µ(A∪B) = µ(A)+µ(B),
and hence it is monotone, A ⊆ B ⇒ µ(A) ≤ µ(B).

(b) µ(
⋃

nAn) = supn µ(An).
(c) µ(

⋂
nAn) = infn µ(An), if µ(

⋂
k≤nAn) < +∞, for some k.

Exercise 26.30. Show that if µ : S→ [0; 1] is a measure and {Aα | α < κ} ⊆
S are pairwise disjoint, then {α < κ | µ(Aα) ̸= 0} is countable.

Exercise 26.31. Suppose µ : S → [0;+∞] is atomless and A ∈ S with
µ(A) > 0. Show that:

(i) For all ε > 0 there is B ⊆ A, B ∈ S such that 0 < µ(B) ≤ ε.
(ii) Assuming AC, for each 0 < r < µ(A) there is B ⊆ A, B ∈ S such that

µ(B) = r.
[Hint: Apply Zorn’s Lemma to the family of all B⃗ ∈ γS for some γ < ω1,
such that B0 = A and ∀α, β < γ (Bα ⊃ Bβ ∧ µ(Bα) > µ(Bβ) ≥ r).]

Notes and remarks

Exercise 26.22 is from [Boo88]. The axioms of countable choices ACω and dependent choices DC,
are used throughout of mathematics, for example in order to show that a function is continuous
(Exercise ??), or in order to construct the Lebesgue measure (see page 498), or in order to show
the Baire Category Theorem 26.8. The book [Oxt80] is an excellent introduction to measure and
category. An encyclopædic treatise of measure theory is [Fre04a, Fre03, Fre04b, Fre06, Fre08].
Moreover, several pathologies occur if these axioms are not assumed: infinite but Dedekind-finite
subsets of R, functions that are discontinuous, but sequentially continuous in a point x̄, etc. (see
Exercises ?? and 28.17). For a survey of various “disasters” that can occur if either ACω or
DC fails we refer to Herrlich’s book [Her06]. The various “disasters” in analysis (no Lebesgue
measurable sets, paradoxical decompositions of the sphere—see Section 28.B) obtained by means
of AC, the full fledged axiom of choice, cannot be obtained by DC, by celebrated results of Robert
M. Solovay from 1965 (see [Jec03, pag.??]). We refer the interested reader to the book [Sch97], a
veritable encyclopedia for the foundational aspects of mathematical analysis. For an introduction
to functional analysis, see the book by Walter Rudin [Rud91].

27. Ordinals and topology*

Recall from Section 13.I.1 the construction of X′, the derivative of a topolog-
ical space X, and of the sequence X(α). By the Axiom of Replacement there
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is a least ᾱ such that X(ᾱ) = X(ᾱ∔1), hence X(ᾱ) = X(β) for all β > ᾱ. Such
ᾱ is the Cantor-Bendixson rank of X and it is denoted by ∥X∥CB.

The height of X is

ht(X) = sup
{
o(x) | x ∈ X \X(ᾱ)

}
.

Then ht(X) = ∥X∥CB if ∥X∥CB is limit, and ht(X)∔ 1 = ∥X∥CB otherwise.

Corollary 27.1. If X is countable and compact, then ∥X∥CB is a successor
ordinal.

Proof. By the Cantor-Bendixson Theorem K can be decomposed in its
perfect part P and its sparse part S. By the observation above, P = K(ᾱ) = ∅,
where ᾱ = ∥K∥CB. If ᾱ were limit, then K(ᾱ) =

⋂
β<ᾱK

(β) would be the
empty intersection of a decreasing family of non-empty compact sets, against
the finite intersection property. □

Therefore in a countable compact metric space K the ordinal γ def
= ht(K)

is the predecessor of ∥K∥CB, so that K(γ) ̸= ∅, but K(γ∔1) = ∅. The set
K(γ) cannot be infinite, otherwise {{x} | x ∈ K(γ)} would be an open cover
without a finite subcover—its size n will be denoted by wd(K). The ordinal
ht(K) can attain arbitrarily large values, as will be seen in the next Section,
so we can characterize the first uncountable ordinal by

ω1 = sup {ht(K) | K countable compact metric} .
Theorem 27.3 below shows that ht(K) and wd(K) characterize countable
compact metric spaces up to homeomorphism.

27.A. Topology on the ordinals. By Exercise 13.74, if α < ω1, then α is
embeddable in R, that is there is a function f : α→ R that is order preserving
and such that ran(f) is closed in R. Therefore the spaces α∔1 (with α < ω1)
are examples of compact, countable spaces which are completely metrizable
spaces, that is they admit a complete metric which is compatible with the
topology. Although they are all distinct as orders, they need not be distinct as
topological spaces: if λ ≥ ω is limit, then λ∔n and λ∔m are homeomorphic
for each 0 < n,m < ω.

We now state three results that will be proved in the next Section. The
first result classifies, up to homeomorphism, all countable ordinals.

Theorem 27.2. A countable ordinal is homeomorphic to one and only one
of the ordinals of the form

n (n < ω),(27.1a)

ω.γ · n∔ ω.δ ·m (0 < δ < γ < ω1, 0 ≤ n < ω, 0 < m < ω),(27.1b)
ω.γ · n∔ 1 (0 < γ < ω1, 0 < n < ω).(27.1c)
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The second result classifies, up to homeomorphism, all compact metric
spaces.

Theorem 27.3. If K is an infinite compact metric space and ht(K) = γ
and wd(K) = n, then K is homeomorphic to ω.γ · n∔ 1. In particular, two
countable compact metric spaces K1 and K2 are homeomorphic if and only if
ht(K1) = ht(K2) and wd(K1) = wd(K2).

By Theorems 27.2 and 27.3 we obtain that the countable compact metric
spaces are, up to homeomorphism, either the natural numbers or else the
ordinals of the form ω.γ · n∔ 1, with 0 < n < ω and γ < ω1.

Corollary 27.4. A locally compact countable X is homeomorphic to a count-
able ordinal of the form

(a) ω. ht(X) · n∔ 1, for some 0 < n < ω, if X is compact,
(b) ω. ht(X) · n∔ ω.δ ·m, for some δ < ht(X), 0 < n < ω and 0 ≤ m < ω if

X is not compact.

Remark 27.5. The metrizability assumption in the statement of Theo-
rem 27.3 and Corollary 27.4 can be removed, assuming AC. In fact a countable
compact space is a first countable space [Eng89, Exercise 3.1.F(a), pag. 135]
hence countability of the space implies that it is second countable. But every
normal, second countable space is metrizable [Eng89, ??].

27.B. Characterization of countable compact spaces*. The isolating
order is a topological invariant, in the sense that if oX(x) = α and f : X → Y

is a homeomorphism, then oY (f(x)) = α, and f is a homeomorphism of X(α)

onto Y (α). If Y ⊆ X and y ∈ Y then oY (y) ≤ oX(y)—the inequality could be
strict since y could be isolated in Y and not in X, but if Y is open equality
holds. In particular, if H is a clopen of a countable compact metric space
K, then oH(x) = oK(x) for every x ∈ H. Note that if U ⊆ X is open and
contains a point of order α, then it contains points of every order β < α.
Define o(α), the order of isolation of an ordinal α, to be oα∔1(α). Since an
ordinal is an open set of a larger ordinal, o(α) = oβ(α) for all β > α. In
analogy with what was done for topological spaces (which, by statue, are sets
and not proper classes) for each X ⊆ Ord define

X′ = X \ {α ∈ X | ∃β < α ((β;α] ∩X = {α})}

and its iterations as in (??). In particular

Ord(α) = {β | o(β) ≥ α} .

Since the space Y = γ is an open set of Ord, one has that Y (α) = Y ∩Ord(α)

for all α, so in order to analyze the derived classes Y (α) it is enough to study
the classes Ord(α).
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Lemma 27.6. If α > 0, then

(27.2) Ord(α) = {ω.α · ν | 0 < ν}.

Proof. The non-isolated points of Ord are the limit ordinals that, by Ex-
ercise ??, are of the form ω · ν. Thus equation (27.2) holds for α = 1.
Similarly, if it holds for α, then the non-isolated points of Ord(α) are of the
form ω.α · ν with ν limite hence it can be written as ω · ξ. It follows that
Ord(α∔1) = {ω.α∔1 · ξ | 0 < ξ}, that is the formula (27.2) holds for α ∔ 1.
Finally suppose that α is limit and that (27.2) holds for every α∗ < α. Let
λ ∈ Ord(α) =

⋂
α∗<αOrd(α

∗): it is a limit ordinal and its Cantor normal form
(Exercise 19.38(i)) is

(27.3) λ = ω.ξ0 · n0 ∔ · · ·∔ ω.ξk · nk

where ξ0 > · · · > ξk > 0 and n0, . . . , nk > 0.
Since λ is of the form ω.α′ · ν∗, for every α∗ < α, it is easy to check (see

Exercise 27.7 below) that ξk ≥ α∗. Thus λ is of the form ω.α · ν, with ν > 0.
Conversely, if λ = ω.α · ν and α∗ < α, then λ = ω.α∗ · (ω.η · ν), where η

is such that α∗ ∔ η = α, hence λ ∈ Ord(α
∗). Being α∗ arbitrary, one has

λ ∈
⋂

α∗<αOrd(α
∗) = Ord(α). Therefore the formula (27.2) holds also for

limit α. □

Exercise 27.7. A limit ordinal λ > 0 is of the form ω.α · ν, with ν > 0 if
and only if α ≤ ξk, where ξk is the coefficient of the Cantor normal form of λ
as in (27.3).

Therefore for α ̸= 0,

o(α) = γ ⇔ α = ω.γ · (ν ∔ 1).

An ordinal is topologically incompressible if it is not homeomorphic to a
smaller ordinal.

Lemma 27.8. If ξ, n > 0 then ω.ξ · n is incompressible.

Proof. Suppose, towards a contradiction, that ω.ξ · n is homeomorphic to a
smaller ordinal λ. By Proposition ??, λ is limit and we can suppose that its
Cantor normal form can be given by (27.3). If ξ0 < ξ a contradiction follows
since {

ω.ξ0 ·m | m ∈ ω
}
⊆ ω.ξ · n

shows that there are infinitely many points in ω.ξ · n of order ξ0, while λ has
finitely many such points. Thus ξ = ξ0 and n0 < n. But ω.ξ · n and λ cannot
be homeomorphic as ω.ξ · n contains at least n0 points of order ξ, while λ
has fewer such points. □
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Exercise 27.9. Show that ω.γ0 · n0 ∔ ω.δ0 ·m0 is homeomorphic to ω.γ1 ·
n1 ∔ ω.δ1 ·m1, with γi > δi and ni,mi > 0 per i = 0, 1 if and only if γ0 = γ1,
δ0 = δ1, n0 = n1 and m0 = m1.

Therefore the ordinals of the form (27.1a) and (27.1b) are pairwise non-
homeomorphic.

By Exercise ?? the infinite incompressible ordinals are either of the form
λ or else λ∔ 1 with limit λ. Fix an ordinal of the form λ∔ 1 with λ limit
and consider its expansion in Cantor’s normal form (Exercise 19.38(i))

(27.4) λ∔ 1 = ω.ξ0 · n0 ∔ · · ·∔ ω.ξk · nk ∔ 1

with ξ0 > · · · > ξk > 0 and n0, . . . , nk > 0. Let γ0 = ω.ξ0 · n0 and γi+1 =
γi ∔ ω.ξi+1 · ni+1 so that γ0 < · · · < γk. The sets

D∗
0 = [0; γ0], D∗

1 = [γ0 ∔ 1; γ1], . . . , D∗
k = [γk−1 ∔ 1; γk]

are clopen, so they form a partition of λ∔ 1, and ot(D∗
i ) = ω.ξi · ni ∔ 1 per

i ≤ k. We need a simple result from topology.

Exercise 27.10. (i) Let X =
⋃

i<ν Di be a topological space and suppose
that {Di | i < ν} is a partition of the space in non-empty clopen sets.
Suppose moreover that αi is a successor ordinal and that fi : Di → αi is
a homeomorphism, for all i < ν. Then X is homeomorphic to

∑̇
i<ναi,

the ordinal defined on page 416.
(ii) Let X be a topological space, x̄ ∈ X an isolated point, and let X = V0 ⊃

V1 ⊃ . . . be a basis of clopen subsets of x̄. Suppose that fi and αi be as
in part (i), where Di = Vi \ Vi+1 and i < ω. Then X is homeomorphic
to (

∑̇
i<ωαi)∔ 1.

By part (i) of Exercise 27.10 applied to the space X = λ∔ 1 and to the
sets Di = D∗

k−i (per i ≤ k) one has that λ∔ 1 is homeomorphic to

(ω.ξk · nk ∔ 1)∔ (ω.ξk−1 · nk−1 ∔ 1)∔ · · ·∔ (ω.ξ0 · n0 ∔ 1)

and since ω.ξ0 is additively indecomposable (Exercise ??) and ω.ξi ·ni∔1 < ω.ξ0

for each 0 < i ≤ k, this ordinal is ω.ξ0 · n0 ∔ 1.
We have thus proved that:

(27.5) If λ∔ 1 is as in (27.4) and λ is limite,

then λ∔ 1 is homeomorphic to ω.ξ0 · n0 ∔ 1.

Arguing as in the proof of Lemma 27.8 one checks that ω.γ · n∔ 1 is homeo-
morphic to ω.δ ·m∔ 1 if and only if γ = δ and n = m, that is

(27.6) α∔ 1 ≥ ω is incompressible if and only if α∔ 1 = ω.γ · n∔ 1,
for some γ > 0 and n > 0.
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Therefore the incompressible successor ordinals are exactly those either of
the form (27.1a) or else (27.1c).

We prove now that a limit ordinal is homeomorphic to an ordinal of
the form ω.γ · n, or of the form ω.γ · n ∔ ω.δ · m. Suppose that λ is limit
as in (27.3). If k = 0 then λ = ω.ξ0 · n0, thus we can suppose that k >
0. By (27.5) α = ω.ξ0 · n0 ∔ · · · ∔ ω.ξk−1 · nk−1 ∔ 1 is homeomorphic to
α∗ = ω.ξ0 · n0 ∔ 1 and since these are clopen in the spaces α∔ ω.ξk · nk = λ
and α∗ ∔ ω.ξk · nk = ω.ξ0 · n0 ∔ ω.ξk · nk, respectively, it follows that λ is
homeomorphic to ω.ξ0 · n0 ∔ ω.ξk · nk. We have thus proved that:
(27.7)

If λ is limite as in (27.3), then

λ is homeomorphic to

{
ω.ξ0 · n0 ∔ ω.ξk · nk if k > 0,

ω.ξ0 · n0 if k = 0.

Proof of Theorem 27.2. Fix α < ω1. A finite ordinal can be only be
homeomorphic to itself, hence we can suppose that α ≥ ω. If α is limit, then
by (27.7) α is homeomorphic to a unique ordinal (Exercise 27.9) of the form
ω.γ · n or of the form ω.γ · n∔ω.δ ·m, with γ > δ. If α is successor, then it is
homeomorphic to λ∔1 with λ limit by Exercise ??, hence it is homeomorphic
to exactly one ordinal of the form ω.ξ · n∔ 1 (27.5).

Finally, by Propositions 21.22 and ?? no ordinal of the form ω.γ0 ·n0∔1 is
homeomorphic to an ordinal of the form ω.γ1 ·n1 or of the ω.γ1 ·n1∔1∔ω.δ1 ·n1

with γ1 > δ1. □

Proof of Theorem 27.3. We prove by induction on γ = ht(K) that K is
homeomorphic to ω.γ · n∔ 1, where n = wd(K).

First of all note that it is enough to prove the result when n = 1. In fact
if x1, . . . , xn are points of order γ, fix H1, . . . ,Hn clopen neighborhoods of
x1, . . . , xn. Replacing H1 with K\(H2∪· · ·∪Hn) if necessary, we may assume
that H1, . . . ,Hn form a partition of K. Since ht(Hi) = γ and wd(Hi) = 1
then Hi is homeomorphic to ω.γ ∔ 1 and since K is the sum of the spaces Hi,
by part (i) of Exercise 27.10 K is homeomorphic to (ω.γ ∔ 1) · n = ω.γ · n∔ 1.

Therefore we may assume that wd(K) = 1 and that x̄ ∈ X is the only
point such that o(x̄) = γ > 0.

If γ = δ ∔ 1 then x̄ is the only one accumulation point of {xn | n < ω},
the set of points of order δ. By Corollary 21.25, fix K = V0 ⊃ V1 ⊃ V2 ⊃ . . .
a base of clopen neighborhoods of x̄ such that xn ∈ Vn and xn+1 /∈ Vn. Then
the Di = Vi \ Vi+1 form a disjoint clopen partition of K \ {x̄} such that
ht(Di) = δ and wd(Di) = 1. It δ = 0 is immediate to check that the Di’s are
singletons and that K is homeomorphic to ω ∔ 1. Suppose that δ > 0. By
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inductive assumption there are homeomorphisms fi : Di → ω.δ ∔ 1, hence by
part (ii) of Exercise 27.10, K is homeomorphic to ω.δ∔1 ∔ 1 = ω.γ ∔ 1.

Finally suppose that γ is limit. By Corollary 21.25 fix a basis of clopen
neighborhoods X = V0 ⊃ V1 ⊃ V2 ⊃ . . . of the point x̄. Towards a contradic-
tion, if Di

def
= Vi \ Vi+1 had height γ, then it should contain a point y such

that oDi(y) = oX(y), hence by hypothesis y = x̄, contradicting the fact that
x̄ /∈ Di. By inductive assumption

(27.8) for every i < ω there is a homeomorphism fi : Di → ω.γi ·mi ∔ 1

for some γi and ni. By part (ii) of Exercise 27.10 there is a homeomorphism
f : X → α∔ 1 where

α∔ 1
def
=
(∑̇

i<ω
ω.γi ·mi ∔ 1

)
∔ 1 ≤ ω.γ ∔ 1.

Towards a contradiction, suppose that α ∔ 1 < ω.γ ∔ 1 and let δ < γ be
such that α ∔ 1 < ω.δ. Fix y ∈ X(δ); by Corollary 21.25 let D be a clopen
of X such that D ∩X(δ) = {y}. Since D is compact and contains exactly
a point of order δ but no points of higher order, that is ht(D) = δ and
wd(D) = 1, by inductive hypothesis D is homeomorphic to ω.δ ∔ 1. The set
f [X \D] is a clopen subset of α∔1 that is isomorphic as order (and therefore
homeomorphic as topological space) to an ordinal η ∔ 1 ≤ α∔ 1. By parte(i)
of Exercise 27.10 the space X is homeomorphic to η ∔ 1∔ ω.δ ∔ 1 = ω.δ ∔ 1.
In particular ω.δ ∔ 1 is homeomorphic to α∔ 1, against (27.6). □

Remark 27.11. The above proof of Theorem 27.3 uses the Axiom of Choice
when the homeomorphisms fi are chosen in (27.8). In order to see that the
appeal to AC can be avoided, one can either suitably modify the proof, or
else apply a deep result in set theory (Shoenfield’s absoluteness theorem) to
show that choice can be avoided.

Proof of Corollary 27.4. Let X be a locally compact, countable metric
space. The case when X is compact is tackled in Theorem 27.3, so we may
assume that X is not compact. Let X̂ be Alexandroff´s compactification
of X, that is the space X ∪ {∞} where ∞ /∈ X and the open sets of X̂
are those of X together with sets of the form {∞} ∪ X \ K with K ⊆ X

compact. Since X is open in X̂, the order o(x) of a point x ∈ X is the same,
computed in X or in X̂, hence ht(X) ≤ ht(X̂). In fact ht(X̂) = ht(X)∔ 1 if
and only if o(∞) = ht(X) = supx∈X o(x). The space X̂ is metric, compact
and countable, hence there is a homeomorphism from X̂ onto ω.γ · n, where
γ = ht(X̂) and n = wd(X̂). By construction ∞ is not isolated in X̂ hence
f(∞) is limit. If f(∞) = ω.γ ·n, then X is homeomorphic to ω.γ ·n. If instead
f(∞) = λ < ω.γ · n, then X is homeomorphic to (ω.γ · n∔ 1) \ {λ},which is
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partitioned in two clopen sets

D0 = (ω.γ · n∔ 1) \ (λ∔ 1) and D1 = λ.

Since ω.γ is additively indecomposable, ot(D0) = ω.γ · n ∔ 1, hence by
Exercise 27.10 X is homeomorphic to ω.γ · n ∔ 1 ∔ λ = ω.γ · n ∔ λ. If
ω.ξ0 ·n0∔ · · ·∔ω.ξk ·nk is Cantor’s normal form of λ, by (27.7) it follows that
ω.γ · n∔ ω.ξ0 · n0 ∔ · · ·∔ ω.ξk · nk is homeomorphic to ω.γ · n∔ ω.ξk · nk. □

Exercises

Exercise 27.12. Show that the ordinals of the form (27.1a), (27.1b) and (27.1c)
in the statement of Theorem (27.2) are incompressible.

Notes and remarks

Theorems 27.2, 27.3 and 27.4 characterize countable locally compact spaces by means of ordinals
and are due to ??. These characterizations are quite useful in the analysis of Banach spaces of the
form C (K) with K countable and compact [Ros03].

28. Applications of the axiom of choice*

The axiom of choice has many consequences in mathematics. Here are some
of the most important ones.

28.A. Theorems whose proof depend on the axiom of choice.

Assume AC throughout this Section

28.A.1. Algebra.

Theorem 28.1. Let V be a vector space on a field k.

(a) V is injective in the category of vector spaces k, that is every linear
map f : U → V from a linear subspace U of a vector space W can be
extended to a linear map f̄ : W → V .

(b) V is projective in the category of vector spaces on k, that is given linear
maps f : V → U and g : W → U , there is a linear map f̄ : V →W such
that f = g ◦ f̄ .

Proof.

□
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Theorem 28.2 (Neilsen-Schreier). Every subgroup of a free group is free.

Theorem 28.3. (a) Every free abelian group is projective.
(b) Every divisible abelian group is injective.

28.A.2. Lattices and Boolean algebras. By Theorem 25.2, every proper ideal
in a lattice with maximum can be extended to a maximal ideal; dually, every
proper filter in a lattice with minimum can be extended to a maximal filter.
In general lattices, maximal ideals are not necessarily prime, so we cannot
conclude that every proper ideal can be extended to a prime ideal; in fact
prime ideals need not exists (Remark 25.4 and Exercise 25.11). Since in a
distributive lattice, maximal ideals are prime, then

Proposition 28.4. In un distributive lattice with maximum, every proper
ideal can be extended to a maximal ideal. Dually, in a distributive lattice with
minimum, every proper filter can be extended to a prime filter.

The next result is known as Sikorski’s extension Theorem. Used some-
where?Theorem 28.5 (Sikorski). Every complete Boolean algebra C is injective

in the category of Boolean algebras, that is for every Boolean algebra B and
every subalgebra A of B, a morphism A→ C can be extended to a morphism
B → C.

28.A.3. Analysis. The next result is known as the generalized Ascoli-
Arzelà theorem.

Theorem 28.6. Let X be a locally compact Hausdorff space, let Y be a
metric space, and endow C (X,Y ) the set of all continuous functions from X
to Y with the compact-open topology, generated by the sets {f | f [K] ⊆ U}
with K ⊆ X compact and U ⊆ Y open. A set F ⊆ C (X,Y ) is compact if
and only if

• {f(x) | f ∈ F} is compact in Y ,
• F is a closed subset of Y X with the product topology,
• F is equicontinuous, that is

∀x ∈ X ∃ε > 0 ∃U open and x ∈ U ∀f ∈ F ∀y ∈ U [d(f(x), f(y)) < ε].

Theorem 28.6 is a generalization of the classical Ascoli-Arzelà theo-
rem:

Theorem 28.7. For F ⊆ C (R,R) the following are equivalent:

(a) each sequence (fn)n of functions in F has a subsequence (fnk
)k that is

uniformly convergent on closed intervals,
(b) the set {f(x) | f ∈ F} is bounded, for each x ∈ R, and F is equicontinu-

ous.
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28.B. Pathological sets. AC yields also some undesirable results on the
continuum.

In this Section we will assume that R is well-orderable

Clearly, any well-order on R induces a well-order on any X ≍ R.
Every Rn can be seen as a vector space on Q and since Rn ≍ R, then

Rn has a basis of size 2ℵ0 . A basis for R as a vector space over Q is called a
Hamel base. Given a Hamel basis H, it is possibile to define a discontinuous
homomorphism from ⟨R,+⟩ in itself: every function g : H → R can be
extended to a Q-linear function f : R → R, thus if g is not monotone, the
resulting morphism f is discontinuous.

The next result requires a few concepts from measure theory that will be
introduced in Section 26.D.

Theorem 28.8 (Vitali). There is a subset of R that is not Lebesgue measur-
able.

The existence of a non-Lebesgue-measurable subset of some Rk implies
the existence of non-Lebesgue-measurable subsets of Rn, for all n ≥ 1.

Remark 28.9. The existence of a discontinuous homomorphism ⟨R,+⟩ →
⟨R,+⟩ implies the existence of sets that are not Lebesgue-measurable [Her06,
Theorem 5.5, p. 119] and the existence of an automorphism of ⟨C,+, ·⟩
different from the identity and the conjugation, implies the existence of a
discontinuous homomorphism ⟨R,+⟩ → ⟨R,+⟩ (Exercise 28.13).

Two subsets X and Y of Rn are equidecomposable if there are finite
partitions X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪Yk and isometries σ1, . . . , σk
of Rn such that σi[Xi] = Yi. The next result, known as the Banach-Tarski
paradox is probably the most counter-intuitive consequence of the Axiom of
Choice.

Theorem 28.10 (Banach-Tarski). Suppose n ≥ 3. Any two bounded subsets
of Rn with non-empty interior are equidecomposable.

In particular: it is possible to cut the unit ball of the three-dimensional
space into a finite number of pieces, which can be rearranged, using rigid
motions, into two balls identical to original one. The least number of pieces
needed to duplicate a ball is 5. The pieces X1, . . . , Xk, Y1, . . . , Yk used in the
decomposition in Theorem 28.10 are highly irregular and fail to be Lebesgue
measurable, but can be taken to have some sort of tameness. For example,
R. Dougherty and M. Foreman proved that the pieces can be taken have the
property of Baire. Another startling result due to T. Wilson says that the
pieces can be taken to be sufficiently disentangled so that the metamorphosis



28. Applications of the axiom of choice* 513

of X into Y can be achieved by a continuously parametrized isometries σt
i

so that σ0
i [Xi] = Xi, σ1

i [Xi] = Yi, and σt
i [Xi] ∩ σ0

j [Xj ] = ∅ for all t ∈ (0; 1)
and all 1 ≤ i < j ≤ k. The assumption that the dimension of the space is at
least 3 is necessary, since when n ≤ 2 two measurable bounded subsets of Rn

are equidecomposable if and only if they have the same measure. Yet there
are startling results even in dimension 2, for example: a square and a disc of
the same area are equidecomposable via translations, and the pieces of the
decomposition can be taken to be Borel.

28.C. Theorems that are equivalent to some form of the Axiom of
Choice. Several of the results in mathematics turn out to be equivalent to
some form of choice. The following are equivalent to AC:

AC-1 Krull’s Lemma 14.4 for unique factorization domains [Hod79].

AC-2 Tychonoff’s theorem for T1 spaces (Exercise 28.12).

AC-3 Every proper filter in the lattice of closed subsets of a topological
space can be extended to a maximal filter. Dually: every proper
ideal in the lattice of open sets of a topological space can be extended
to a maximal ideal.

AC-4 Two infinite sets, X,Y are in bijection if and only if the free groups
F (X),F (Y ) are in bijection (Exercise 28.16).

AC-5 Every vector space has a basis [Bla84].

AC-6 Every vector space is injective.

AC-7 Every vector space is projective.

AC-8 Every free abelian is group projective [Bla79].

AC-9 Every divisible abelian group is injective [Bla79].

The following are equivalent to BPI:

BPI-1 In a commutative ring, every non-trivial ideal can be extended to a
prime ideal.

BPI-2 Tychonoff’s theorem for T2 spaces.

BPI-3 Every proper ideal in the lattice of closed subsets of a topological
space can be extended to a maximal ideal. Dually: every proper
filter in the lattice of open subsets of a topological space can be
extended to a maximal filter.

BPI-4 Two infinite sets X,Y are in bijection if and only if their free groups
F (X),F (Y ) are isomorphic.

BPI-5 Alaoglu’s Theorem [Joh84].

BPI-6 The generalized Ascoli-Arzelà Theorem 28.6.



514 VI. Elementary mathematics from an advanced perspective

BPI-7 The equivalence between the two definition of radical of an ideal of
a commutative ring (see Section 9.B.1) [Rav77].

BPI-8 Stone’s representation theorem for Boolean algebras (Exercise 25.17).

BPI-9 The compactness, completeness, and model existence theorems for
first-order languages (Exercise 34.13).

Remark 28.11. Conditions AC-3 and BPI-3 highlight a subtle difference
between the lattice of open and closed sets. By Proposition 28.4, AC-3 is
equivalent to the existence of maximal filters in complete and in bounded
distributive lattices.

BPI implies the existence and uniqueness of the algebraic closure of a
field, Theorem ??. The Hahn-Banach theorem follows from (but it is strictly
weaker than) BPI, and it is equivalent to:

If F is a proper filter in a Boolean algebra B, then there is a
finitely additive measure m : B → [0; 1] such that m(x) = 1
for all x ∈ F .

By [FW91, Paw91] the Hahn-Banach Theorem implies the Banach-Tarski
Theorem 28.10 hence the existence of non-measurable sets.

Next we turn to ACω and the stronger DC. As we observed before, these
principles are very important since they are weak enough to not generate
the pathologies of Section 28.B, yet they are powerful enough to prove many
useful results such as: the countable union of countable sets is countable, the
existence of the Lebesgue measure, the Baire category theorem, . . . .

The following are equivalent to DC:

DC-1 The Baire category theorem (Exercise 28.21).

DC-2 Every descriptive tree without terminal nodes has a branch (Theo-
rem 23.18).

DC-3 The existence of countable elementary substructures for countable
languages (Theorem 31.19 and Exercise 31.51).

The following are equivalent to ACω(R):

ACω(R)-1 The equivalence between continuity and sequential continuity su R
(Exercise 28.19);

ACω(R)-2 If X is the surjective image of R, then every second countable
topology on X is separable (Exercise 28.20);

ACω(R)-3 The classical Ascoli-Arzelà Theorem 28.7.
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Exercises

In the next exercise we will prove the following version of Tychonoff’s Theorem
implies AC:

(T)
If ⟨(Yi,Ti) | i ∈ I⟩ is a collection of T1 compact spaces, and if the set
"i∈IYi is non-empty, then the product space

∏
i∈I(Yi,Ti) is compact.

(The assumption ∅ ̸= "i∈IYi is necessary, as the statement that cartesian
product of non-empty sets is non-empty is equivalent to AC.)

Exercise 28.12. Let ⟨Xi | i ∈ I⟩ be a family of non-empty sets, let z /∈⋃
i∈I Xi, let Yi = Xi ∪ {z}, and let Ti be the collection of all cofinite subsets

of Yi together with the addition of ∅ and {z}. Show that:

(i) (Yi,Ti) is compact T1,
(ii) (T)⇒ "i∈IXi ̸= ∅.

Exercise 28.13. Show that

(i) a continuous automorphism of the complex field is either the identity or
else the conjugation z 7→ z̄;

(ii) if f : C→ C is a discontinuous automorphism of the complex field, then
ℜ ◦ f ↾ R : ⟨R,+⟩ → ⟨R,+⟩ is a discontinuous homomorphism of groups.

Exercise 28.14. Let f : R → R be a function satisfying the functional
equation f(x+ y) = f(x) + f(y), and let a = f(1). Show that

(i) f : ⟨R,+⟩ → ⟨R,+⟩ is a homomorphism and ∀q ∈ Q (f(q) = aq);
(ii) if f is continuous, then ∀x ∈ R (f(x) = ax).

Exercise 28.15. Suppose that R is well-orderable, and prove that ⟨R,+⟩ is
isomorphic to ⟨Rn,+⟩ for every n ≥ 1. In particular R and C are isomorphic
as groups.

Exercise 28.16. Show that the statement AC-4 “if X1, X2 are infinite sets,
then X1 ≍ X2 ⇔ F (X1) ≍ F (X2)” implies that every set is well-orderable
by proving the following facts.

(i) Suppose ∅ ≠ Y , Y ∩Ord = ∅, and Y ≍ ωY , and let κ = Hrtg(Y ). Then
F (Y × κ) ≍ Y × κ ≍ F (Y ∪ κ).

(ii) Suppose X is infinite and let Y = ωX. Show that AC-4 together with
(the proof of) Theorem 20.11 implies that Y is well-orderable, and so is
X.
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Exercise 28.17. Suppose that there is an infinite Dedekind-finite A ⊆ R.
(Clearly we are not allowed to assume ACω.) Show that A can be taken to
be contained in (0; 1) and such that 0 = inf A. Check that the characteristic
function χA is discontinuous in 0, but sequentially continuous in 0.

Exercise 28.18. If ∅ ̸= An ⊆ R set Bn = A0 × · · · × Bn ⊆ Rn. Show that
there is a strictly increasing sequence of natural numbers ⟨ni | i ∈ ω⟩ and
a sequence of real numbers ⟨bi | i ∈ ω⟩ such that bi ∈ Bni , then there is a
sequence of reals ⟨an | n ∈ ω⟩ such that an ∈ An, for every n. Conclude that
ACω(R) is equivalent to the (seemingly weaker) statement: If ∅ ≠ An ⊆ R,
then there is a strictly increasing sequence of natural numbers (ni)i and a
sequence of reals (bi)i such that bi ∈ Ani .

Exercise 28.19. Let ∅ ̸= An ⊆ (2−n−1; 2−n) and let f : R → R be the
characteristic function of

⋃
nAn. Show that f is discontinuous in 0 and that

if xi → 0 is such that f(xi) ̸→ 0, then there is an increasing sequence of
natural numbers (ni)i and a sequence of reals (bi)i such that bi ∈ Ani .

Conclude that the statement (14.3) “for all f : R→ R for all x ∈ R, if f
is sequentially continuous in x then f is continuous in x” implies ACω(R).

Exercise 28.20. Show that ACω(X) is equivalent to “every second countable
topology on X is separable”.

Exercise 28.21. Show that the following are equivalent:

(i) The Baire category Theorem 26.8;
(ii) The statement of Theorem 26.8 weakened to

⋂
n Un ̸= ∅;

(iii) DC.

[Hint for (ii)⇒(iii): if ∀x ∈ X ∃y ∈ X (x R y), then Un = {f | ∃m(f(n) R f(m))}
is open and dense in ωX.]

Notes and remarks

The axiom of choice has a particular position in mathematics, since it has many useful consequences,
and some other consequences that are counter-intuitive and bizarre. Since the first greatly
outnumber the second, AC is taken to be a valid principle by the majority of mathematicians.
In 1937 Gödel proved that if a contradiction is derived without the axioms of choice, then one
could obtain such a contradiction even without AC. In other words: it is not possible to refute AC
from MK or from ZF, unless these theories are inconsistent, in which case any statement would
be provable. In 1963, Cohen proved an analogous result fro the negation of AC, hence it is not
possible to prove AC from MK or ZF, unless these theories are inconsistent. For a survey of the
various “disasters” that can happen in mathematics if AC or its negation is assumed, we refer the
reader to [Her06]. The equivalence between DC and the Baire category theorem is due to C.E.
Blair—see [Her06, Theorem 4.106]. The monograph [TW16] contains a detailed and up-to-date
exposition of the Banach-Tarski paradox and its variants.
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29. Ramsey’s Theorem*

Ultrafilters on ω have important applications in many parts of mathematics,
such as general topology, functional analysis, etc. In this Section we will see
a few applications to combinatorics.

Recall a few concepts seen in Section 10. A graph ⟨V,E⟩ is a non-empty
set of vertexes V together with the set E ⊆ [V ]2 of the edges; if E = [V ]2

then the graph is complete on V . A coloring (of the edges) is a function c with
domani E: if ran(c) ⊆ k we speak of k-coloring. Equivalently, a k-coloring is
a partition of the edges in at most k parts.

If c is a k-coloring of ⟨V,E⟩, we say that H ⊆ V is monochromatic or
homogeneous for c if c ↾ E ∩ [H]2 is constant, that is

∃i ∈ k∀x, y ∈ H ({x, y} ∈ E ⇒ c({x, y}) = i) .

Equivalently, if [V ]2 = C0 ∪ · · · ∪ Ck−1, then [H]2 ⊆ Ci, for some i.

Theorem 29.1 (Ramsey´s Theorem in the infinite case). Suppose V is a
countable set and suppose

[V ]r = C0 ∪ · · · ∪ Ck−1

where k, r ∈ ω \ {0} and Ci ⊆ [V ]r, then there is an infinite H ⊆ V such that
[H]r ⊆ Ci, for some i < k.

Proof. We start with two simple observations. We may assume that the Cis
are pairwise disjoint. The second observation is that it is enough to prove the
theorem for k = 2. In fact the case k = 1 is trivial and for k > 2 proceed by
induction: suppose the result holds for k ≥ 2 and prove it for k + 1. By the
theorem in case k = 2, there is an infinite H ⊆ V such that either [H]r ⊆ C0

or else [H]r ⊆ C1 ∪ · · · ∪Ck. If the former holds, then the theorem is proved,
hence we may assume that

[H]r ⊆ (C1 ∩ [H]r) ∪ · · · ∪ (Ck ∩ [H]r) .

By inductive assumption there is an infinite H ′ ⊆ H such that [H]r ⊆ Ci for
some 1 ≤ i ≤ k, as required.

Therefore we prove the result when k = 2. The proof proceeds by
induction on r ≥ 1.

Suppose r = 1: the set [V ]1 can be identified with V so the result becomes:

If V = C0 ∪ C1, then at least one among C0 and C1 is
infinite,

and this follows at once from Proposition 13.20.
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Assume the result is true for some r and let’s prove it for r + 1. For
notational simplicity suppose that V = ω. Let

f : [ω]r+1 → 2

be the coloring associated to the partition {C0, C1}, that is to say

f(x̄) = i ⇔ x̄ ∈ Ci.

If Ci is finite, then

H = {n ∈ ω | ¬∃x̄ ∈ [ω]r (n ∈ x̄ ∧ x̄ ∈ Ci)}

is infinite and [H]r ⊆ C1−i, hence we may assume that C0 and C1 are both
infinite. We construct a set K ⊆ ω such that

(29.1) ∀x̄, ȳ ∈ [K]r+1 (x0 = y0 ∧ · · · ∧ xr−1 = yr−1 ⇒ f(x̄) = f(ȳ))

that is to say: the value of f(x̄) depends only on the first r elements of x̄.
We can thus define a function g : [K]r → 2 letting

g(x̄) = f(x̄ ∪ {n})

for some (equivalently: for all) n ∈ K with n > max(x̄). By inductive
assumption there is an infinite H ⊆ K which is homogeneous for g. Fix
x̄, ȳ ∈ [H]r+1. As K satisfies (29.1) and H ⊆ K, if x̄, ȳ ∈ [H]r+1 then

f(x̄) = g({x0, . . . , xr−1})
= g({y0, . . . , yr−1})
= f(ȳ),

that is H is the homogeneous set we are looking for. Therefore it is enough
to show the existence of a set K that satisfies (29.1).

Fix a non-principal ultrafilter U on ω. For every x̄ ∈ [ω]r let

Di(x̄) = {n ∈ ω | n > max x̄ ∧ f(x̄ ∪ {n}) = i}.

As
D0(x̄) ∪D1(x̄) = ω \ (max x̄+ 1) ∈ U

let
i(x̄) = the unique i ∈ 2 such that Di(x̄) ∈ U .

Construct by induction a sequence of natural numbers yn as follows:

• since r = {0, 1, . . . , r − 1} ∈ [ω]r, then

Y0 = Di(r)(r)

is well-defined; let
y0 = minY0.

Note that y0 > r.
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• Suppose we have defined y0, . . . , yn. The set

Xn = [r ∪ {y0, . . . , yn}]r

is finite (it has exactly ( r+n+1
r ) elements) and since U is closed under finite

intersections,
Yn+1 =

⋂
x̄∈Xn

Di(x̄)(x̄) ∈ U.

As ∅ /∈ U , then Yn+1 ̸= ∅. Let

yn+1 = minYn+1.

It is easy to check that r ≤ y0 < y1 < . . . and that Y0 ⊃ Y1 ⊃ . . .. Let

K = {yn | n ∈ ω}.

Fix x̄ ∈ [K]r and let yn = max x̄, such that x̄ ∈ Xn. If n < m, h, then
ym, yh ∈ Yn+1 ⊆ Di(x̄)(x̄) hence f(x̄ ∪ {ym}) = f(x̄ ∪ {yh}). Therefore K
satisfies (29.1). □

Corollary 29.2. If < and ≺ are two linear ordering on an infinite set X,
then there is an infinite subset H ⊆ X on which < agrees with either ≺ or
else with the inverse ordering ≻, that is to say

∀x, y ∈ H (x < y ⇔ x ≺ y) ∨ ∀x, y ∈ H (x < y ⇔ y ≺ x) .

The notation
α→ (β)nk

means that for each coloring f : [α]n → k there is H ⊆ α of order type β
that is homogeneous for f , that is f ↾ [H]n is constant. Therefore Ramsey’s
Theorem 29.1 can be stated as ω → (ω)nk . The ordinal ω cannot be replaced by
ω1 (Exercise 29.7). In fact there is a coloring f : [ω1]

2 → ω1 such that ran(f ↾
[X]2) = ω1 for all X ⊆ ω1. In other words: there is a commutative binary
operation ∗ on ω1 such that applying ∗ to the elements of any uncountable
subset yields ω1.

One can consider order-types, rather than ordinals. For example Exer-
cise 29.8 shows that Q→ (Q)1k, that is if Q is partitioned into finitely many
pieces, then at least one of these pieces contains a subset isomorphic to Q.
Conversely Q → (Q)22 fails, that is to say: there is a coloring f : [Q]2 → 2
such that f ↾ [X]2 assumes two values, for any subset X isomorphic to Q
(Exercise 29.6). On the other hand, this is the worst it can happen, since if
f : [Q]2 → k, then there is X ⊆ Q isomorphic to Q such that |f ↾ [X]2| ≤ 2,
for every k. In fact for each n ∈ ω there is a least tn ∈ ω such that
for all k-coloring f : [Q]n → k there is X ⊆ Q isomorphic to Q such that
|ran(f ↾ [X]n)| ≤ tn.
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29.A. Well-quasi-orders.

Definition 29.3. A quasi-order (P,≤) is a well-quasi-order, wqo for short,
if

• the strict part < of ≤ is well-founded on P (Definition 18.2), that is for all
non-empty X ⊆ P there is p ∈ X such that there is no q ∈ X such that
q < p,

• and every independent set is finite, that is if Y ⊆ P is such that ∀p, q ∈ Y (p ≰
q ∧ q ≰ p), then |Y | < ω.

Free subsets of (quasi-)orders are usually called antichains. A sequence
⟨pn | n ∈ ω⟩ in a quasi-order P is bad if n < m⇒ pn ≰ pm.

Proposition 29.4. Assume DC. For a quasi-order (P,≤) the following are
equivalent:

(1) (P,≤) is a wqo,

(2) (P,≤) has no bad sequences,

(3) (Down(P ),≤) is well-founded.

Proof. The equivalences (1)⇔(2) and (2)⇔(3) are obtained by taking the
contrapositives.

(1)⇔(2). If (pn)n is bad, let f : [ω]2 → 2

f({n,m}) =

{
0 if n < m and pm ≤ pn

1 otherwise.

By Ramsey’s Theorem 29.1 let {nk | k ∈ ω} be infinite and homogeneous for
f . Then (pnk

)k is either <-descending, or else {pnk
| k ∈ ω} is an infinite

antichain.
Conversely if P is not wqo then there is an descending sequence (by DC)

or there is an infinite antichain. In either case we have a bad sequence.

(2)⇔(3). By DC suppose (Dn)n is a ⊂-decreasing sequence in Down(P ),
so that we can choose pn ∈ Dn \Dn+1. If n < m and pn ≤ pm, then pn ∈ Dm

as Dm is a down-set, against the fact that pn /∈ Dk when k > n. Therefore
n < m⇒ pn ≰ pm, that is (pn)n is bad.

Vice-versa if (pn)n is bad then Dn = ↓{pk | n ≤ k} is an infinite ⊂-
descending chain. □
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Exercises

Exercise 29.5. Show that for every sequence ⟨xn | n ∈ ω⟩ of distinct elements
of an ordered set ⟨X,≤⟩ has a subsequence ⟨xnk

| k ∈ ω⟩ which is increasing
or decreasing, or such that {xnk

| k ∈ ω} is an independent set (see page 43)
of ⟨X,≤⟩.

In particular, ACω implies that every infinite ordered set contains either
an infinite chain or else an infinite independent set.

Exercise 29.6. Show that there is f : [Q]2 → 2 such that ∀X ⊆ Q (X ∼=
Q⇒ |f ↾ [X]2| = 2).

Exercise 29.7. Show that 2ℵ0 ̸→ (ω)22.

Exercise 29.8. Show that

(i) if {X1, . . . , Xn} is a partition of Q, then some Xi contains an isomorphic
copy of Q;

(ii) if {X1, . . . , Xn} is a partition of Rω, then some Xi contains an isomorphic
copy of Rω.





Chapter VII

General structures and
languages

30. Structures and languages

In this Section we develop in detail the notions of first-order language and
first-order structure that were introduced in Chapter I.

30.A. Structures. A signature is a 4-uple τ = ⟨I, J,K, ar⟩ with I, J , K
pairwise disjoint sets and ar : I ∪ J → ω \ {0}. We say that τ is relational
if J = K = ∅, functional if I = K = ∅, well-orderable if I, J , K are
well-orderable, finite if I, J , and K are finite. The cardinality of the
signature τ is

card(τ) = card(I) + card(J) + card(K) = card(I ∪ J ∪K),

that is card(τ) = |I|+ |J |+ |K| when τ is well-orderable. A τ-structure is
a 4-tuple

A = ⟨A, ⟨RA
i | i ∈ I⟩, ⟨fA

j | j ∈ J⟩, ⟨cAk | k ∈ K⟩⟩

such that A = ∥A∥ is a non-empty set called the universe of A, RA
i ⊆ Aar(i),

for all i ∈ I, fA
j : Aar(j) → A, for all j ∈ J , and cAk ∈ A, for all k ∈ K. A

τ -structure is relational/functional if so is τ . A morphism from A to B with
A,B ∈ Str(τ), is a function F : ∥A∥ → ∥B∥ such that

(A) ∀a⃗ ∈ Aar(i)
(
a⃗ ∈ RA

i ⇒ F (⃗a) ∈ RB
i

)
, for all i ∈ I,

(B) ∀a⃗ ∈ Aar(j)
(
π(fA

j (⃗a)) = fB
j (F (⃗a))

)
, for all j ∈ J ,

(C) F (cAk ) = cBk , for all k ∈ K.

If (A) is strengthened to

523
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(A′) ∀a⃗ ∈ Aar(i)
(
a⃗ ∈ RA

i ⇔ F (⃗a) ∈ RB
i

)
, for all i ∈ I,

we speak of complete or full morphism. An embedding of A into B is a
complete injective morphism from A to B; an isomorphism is a bijective
morphism whose inverse is still a morphism; equivalently: it is a complete
bijective morphism.

The collection of all τ -structures is a proper class Str(τ), and it is and
it is a category, taking the arrows to be the morphisms between structures.
Two signatures τ = ⟨I, J,K, ar⟩ and τ ′ = ⟨I ′, J ′,K ′, ar′⟩ are isomorphic if
there is a bijection φ : I ∪J ∪K → I ′∪J ′∪K ′ such that φ[I] = I ′, φ[J ] = J ′,
φ[K] = K ′ and ar′(φ(x)) = ar(x) for all x ∈ I ∪ J . Every τ -structure can
be construed as a τ ′-structure and conversely, that is φ induces a bijective
functional relation Φ: Str(τ) → Str(τ ′). With abuse of notation, we will
write τ ⊆ τ ′ to say that I ⊆ I ′, J ⊆ J ′, K ⊆ K ′ and ar = ar′ ↾ I ∪ J .

Two τ -structures are isomorphic A ∼= B if there is an isomorphism
between them; an automorphism is an isomorphism of a structure in itself
and Aut(A) is the group of all automorphisms of A; if Aut(A) = {id∥A∥}
then A is rigid. We say that A embeds into B, in symbols

A ·⊆ B.

if there is an embedding of A in B. When the embedding is not surjective
write A ·⊂ B. In case the universe of A is contained in the universe of B
and the relations, functions, constants of A agree with the restrictions of
those of B, i.e. the identity function A ↪→ B is an embedding, then A is a
substructure of B, in symbols A ⊆ B. If A ⊆ B and ∥A∥ ≠ ∥B∥ we say
that A is a proper substructure of B, in symbols A ⊂ B. The cardinality
of A

card(A)

is the cardinality of the universe A = ∥A∥. By Theorem 21.18 on page 435,
if X ⊆ ∥A∥, then

⋂
{∥B∥ | X ⊆ ∥B∥ ∧B ⊆ A} is the substructure gener-

ated by X and has cardinality ≤ max(|J |, |K|, |X|,ℵ0).
If A′ is a τ ′-structure and τ ⊆ τ ′, the reduction of A′ to τ is the

τ -structure

A′ ↾ τ = ⟨
∥∥A′∥∥ , ⟨RA′

i | i ∈ I⟩, ⟨fA′
j | j ∈ J⟩, ⟨cA′

k | k ∈ K⟩⟩.

The map Str(τ ′) → Str(τ) is a forgetful functor. Conversely, if A is a τ -
structure and A′ is a τ ′-structure whose reduction to τ is A, then we will say
that A′ is an expansion of A to τ ′. Every τ -structure admits a τ ′-expansion,
but, in general, such expansion is far from being unique. In other words, the
reduction functor Str(τ ′) ↠ Str(τ) is surjective, but not injective.
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30.A.1. Canonical expansions. Suppose A is a τ -structure with τ = ⟨I, J,K, ar⟩.
If B ⊆ ∥A∥, then the canonical expansion of A by B is the structure
⟨A, b⟩b∈B obtained by making each b ∈ B a distinguished element—formally
⟨A, b⟩b∈B = ⟨A, ⟨RA

i | i ∈ I⟩, ⟨fA
j | j ∈ J⟩, ⟨cAk | k ∈ K⟩ ∪ ⟨b | b ∈ B⟩⟩ is a

τ ′-structure where τ ′ = ⟨I, J,K ∪ {̊b | b ∈ B}, ar⟩ and {̊b | b ∈ B} is disjoint
from I ∪J ∪K. Similarly, if R is a relation and f is an operation on ∥A∥, the
canonical expansion of A by R and f is the structure ⟨A, R, f⟩ obtained
by adding the relation R and the operation f— formally it is a τ∗-structure
where τ∗ = ⟨I ∪{i′}, J ∪{j′},K, ar∗⟩ where {i′, j′} is disjoint from I ∪ J ∪K
and ar∗(i′) and ar∗(j′) are the arities of R and f .
30.A.2. Products. First of all we check that the category Str(τ) admits prod-
ucts, in fact products with an arbitrary number of factors. The construction
of product of structures is a generalization of the product of orders and
the product of groups. Let X be a non-empty set of indexes.1 The direct
product or simply product of a family of τ -structures ⟨Ax | x ∈ X⟩ is the
τ -structure A =

∏
xAx with universe "x∈X ∥Ax∥ and such that:

• if ar(i) = n, then (g1, . . . , gn) ∈ RA
i ⇔ ∀x ∈ X

(
(g1(x), . . . , gn(x)) ∈ RAx

i

)
.

• if ar(j) = n, then fA
j (g1, . . . , gn) = ⟨f

Ax
j (g1(x), . . . , gn(x)) | x ∈ X⟩,

• if k ∈ K let cAk = ⟨cAx
k | x ∈ X⟩.

For every y ∈ X the maps πy : "x∈X ∥Ax∥ → ∥Ay∥, f 7→ f(y) are
morphisms of structures, and satisfy the universality property of products. In
other words: the category Str(τ) admits products. When |X| = 2 we write
A0 ×A1 instead of

∏
x∈X Ax.

Remark 30.1. If τ does not contain constants, then we need AC to guarantee
that "x∈X ∥Ax∥ ≠ ∅, hence that a τ -structure is obtained.

Whenever F is a filter on X, an equivalence relation g ∼F h⇔ {x ∈ X |
g(x) = h(x)} ∈ F was defined on "x∈X ∥Ax∥ in Section 15.A, and we have
denoted the quotient "x∈X ∥Ax∥ /∼F with

∏
F ∥Ax∥. The reduced product

modulo F of ⟨Ax | x ∈ X⟩ is the τ -structure
∏

F Ax with universe
∏

F ∥Ax∥,
built in a similar way to what was done in Section 15.A.1 for orders and in
Section 15.A.2 for fields:

• if ar(i) = n and [g1], . . . , [gn] ∈ AF , then

([g1], . . . , [gn]) ∈ R
∏

F Ax

i ⇔ {x ∈ X | (g1(x), . . . , gn(x)) ∈ RAx
i } ∈ F

• if ar(j) = n and [g1], . . . , [gn] ∈ AF , then

f
∏

F Ax

j ([g1], . . . , [gn]) = [⟨fAx
j (g1(x), . . . , gn(x)) | x ∈ X⟩]

1The choice of the letter X for a set of indexes may seem a bit peculiar, but the other letters
commonly used for this task I, J,K are already taken.
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• c
∏

F Ax

k = [⟨cAx
k | x ∈ X⟩].

If Ax = A for all x ∈ X, we say that
∏

F Ax = AN/F is a reduced
power. If F is an ultrafilter on X we say that

∏
F Ax is an ultraproduct,

and if Ax = A for all x ∈ X, we will speak of ultrapower.
30.A.3. Direct and inverse limits. We have see the definition of increasing
union of structures in Section 4.F.To be written

later
30.B. First-order languages. The goal of this section is to give a rigorous
treatment within set theory of the notions seen in Chapter I. For each
signature τ we construct a language L and from this we construct its terms t
and its formulæ φ. (Languages, terms, and formulæ will be sets.) Formulæ
of L are the set-theoretic embodiment of the usual mathematical statements
about τ -structures hence we will need a set-theoretic counterpart of the
various logical symbols ¬, ∨, ∧, ⇒, ⇔, ∃, and ∀. In order to avoid confusion,
we will use distinguish the symbols of the object language from those of the
informal language where the results are presented.
30.B.1. Symbols. A first-order language L is comprised of

• an ω-sequence of objects which we call variables

v0,v1,v2, . . . ,vn, . . .

• two distinct objects which we call connectives: ¬¬¬ and ∨∨∨,
• an object which we call equality symbol ≖
• three disjoint families of objects {Ri | i ∈ I}, {f j | j ∈ J} , {ck | k ∈ K},

called relation symbols or predicates, function symbols or operation
symbol, and constant symbol, respectively,
• a function ar : {Ri | i ∈ I} ∪ {f j | j ∈ J} → ω \ {0}, called arity.

The nature of these objects is irrelevant—we stipulate that ¬¬¬, ∨∨∨, ≖, vn,
Ri, f j , and ck, are shorthand for (0, 0), (0, 1), (0, 2), ⟨(1, n)⟩, (2, i), (3, j),
and ⟨(4, k)⟩, respectively. (The rationale for requiring that vn and ck be
sequences of length 1 will be clear when we define the terms.)

Definition 30.2. A first-order language L is a pair (S, ar) satisfying the
following properties

• there are sets I, J and K such that

S = RelL ∪FuncL ∪ConstL ∪{¬¬¬,∨∨∨,≖} ∪Vbl

where Vbl = {vn | n ∈ ω} and RelL = {2} × I, FuncL = {3} × J and
ConstL = 1({4} ×K).
• ar : RelL ∪FuncL → ω \ {0}.
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The non-logical symbols of L are the elements of RelL ∪FuncL ∪ConstL.
Every signature τ yields a language Lτ and, conversely, every language L

yields a signature τL. Two languages are isomorphic if and only if their
signatures are isomorphic. We say that L is a sub-language of L′ or that
L′ is an extension of L if and only if τL ⊆ τL′ .

Remark 30.3. As a language is completely identified by its signature, these
two notions are often identified. Also the notion of arity is often suppressed,
when it is clear from the context — for example we write LGrps =

{
·,−1, 1

}
to denote the language of groups. This abuse of language will be perpetrated
every time the set-theoretic notation enables us to state facts about languages
in a concise form. Thus we write L ⊆ L′ to say that L′ is an extension of
L, or L ∩ L′ to denote the language whose non-logical symbols are those
occurring both in L and in L′, and so on.

A language L is well-orderable if its signature is well-orderable. The
cardinality of L is

card(L) = ℵ0 + card(τL).

A finite language is a language whose signature is finite. An L-structure is
a τL-structure and let Str(L) = Str(τL). In Chapter I and in particular in
Section 9 we have seen many examples of finite, and hence well-orderable,
languages. Instead the example of vector spaces over R described on page 242
yields a signature (and hence a language) which is uncountable, and that it is
not well-orderable, unless AC is assumed. An important example of infinite,
well-orderable language is the universal countable language L∞ that has
constant symbols cn (n ∈ ω) and ℵ0 relational symbols Rn,m and function
symbols fn,m of every arity, that is ar(Rn,m) = ar(fn,m) = m for all n ≥ 0
and m > 0. Every countable language L is (isomorphic to) a sublanguage of
L∞, hence every L-structure is the reduction of an L∞-structure.

The set of all terms of L is

TermL = Expr(Vbl∪Func∪Const, a)

where a(s) = 0, if s ∈ Vbl∪Const and a(s) = ar(s), if s ∈ Func. The
elements of Vbl∪Const are sequences of length 1, so Vbl∪Const ⊆ Term by
Convention 23.2. Thus if t1, . . . , tn ∈ Term, f ∈ Func and ar(f) = n then
⟨f⟩⌢t1⌢ . . .⌢tn ∈ Term. The height of a term t is the height ht(t) as an
expression. The letters x,y, z,w range on Vbl, while the letters t,u, s range
over Term. Corollary 23.7 guarantees that a term that is neither a variable
nor a constant must be of the form f j(t1, . . . , tm) for a unique m-tuple
t1, . . . , tm of terms.

Let AtFml∗(L) be the set of all sequences of the form

⟨Ri⟩⌢t1⌢ . . .⌢tm or ⟨≖⟩⌢t1⌢t2
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where Ri is m-ary and t1, t2, . . . , tm are terms. By Lemma 23.6 the terms
t1, t2, . . . , tm are uniquely determined. The set AtFml(L) of atomic for-
mulæ of L is the set of all sequences of length 1 of the form ⟨u⟩ with
u ∈ AtFml∗(L). An L-formula is an element of the set

Fml(L) = Expr(AtFml(L) ∪ {¬¬¬,∨∨∨} ∪Vbl, a)

where a(∨∨∨) = 2, a(¬¬¬) = a(vn) = 1 for all n ∈ ω, and a(φ) = 0 for all
φ ∈ AtFml(L). The letters φ,ψ,χ, . . . range on Fml. As formulæ are
expressions, we have a well-defined notion of height.

For ease of notation, we adopt the following conventions:

the writing. . . is shorthand for. . .
t1 ≖ t2 ⟨⟨≖⟩⌢t1⌢t2⟩
t1 ̸≖ t2 ⟨¬¬¬, ⟨≖⟩⌢t1⌢t2⟩
Ri(t1, . . . , tn) ⟨⟨Ri⟩⌢t1⌢ . . .⌢tn⟩
¬¬¬φ ⟨¬¬¬⟩⌢φ
φ∨∨∨ψ ⟨∨∨∨⟩⌢φ⌢ψ

∃∃∃vnφ ⟨vn⟩⌢φ

The connectives ∧∧∧, ⇒⇒⇒, and ⇔⇔⇔, and the quantifier ∀∀∀ are introduced via the
definitions:

the writing. . . stands for. . .
φ∧∧∧ψ ¬¬¬(¬¬¬φ∨∨∨¬¬¬ψ)
φ⇒⇒⇒ψ ¬¬¬φ∨∨∨ψ
φ⇔⇔⇔ψ ¬¬¬(¬¬¬(¬¬¬φ∨∨∨ψ)∨∨∨¬¬¬(φ∨∨∨¬¬¬ψ))
φ ·∨·∨·∨ψ ¬¬¬(¬¬¬φ∨∨∨ψ)∨∨∨¬¬¬(φ∨∨∨¬¬¬ψ)
∀∀∀xφ ¬¬¬∃∃∃x¬¬¬φ

By closing AtFml under negation and disjunction we obtain the set of
open or quantifier-free formulæ. An existential formula is of the
form ∃∃∃xφ; a universal formula is of the form ∀∀∀xφ, that is ¬¬¬∃∃∃x¬¬¬φ. A
primitive formula is either an atomic or an existential formula. Every
formula is obtained by applying ¬¬¬ and ∨∨∨ to primitive formulæ. A formula
is in prenex form if it is obtained from open formulæ by closing under
quantifications and negations.

The following notations will be used:

• Vbl(t) is the set of variables of the term t,

• ClTerm = {t ∈ Term | Vbl(t) = ∅} is the set of closed terms,

• Fv(φ) is the set of all variables that occur free in φ,

• Sent(L) = {φ | Fv(φ) = ∅} is the set of all sentences,
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• the universal and the existential closure of a formula φ (defined
in Chapter I on page 37) are the formulæ φ∀ = ∀∀∀vk1 . . .∀∀∀vknφ and
φ∃ = ∃∃∃vk1 . . .∃∃∃vknφ where {vk1 , . . . ,vkn} = Fv(φ) and k1 < · · · < kn,

• Subst(φ; t1, . . . , tn;x1, . . . ,xn) means that the terms t1, . . . , tn are substi-
tutable for the variables x1, . . . ,xn, that is to say: if we replace the free
occurrences of the xis with the ti, none of the variables occurring in a
term fall under the scope of a quantifier of φ,

• if Subst(φ; t1, . . . , tn;x1, . . . ,xn) then φLt1/x1, . . . , tn/xnM is the formula
obtained by replacing the free occurrences of x1, . . . ,xn with the terms
t1, . . . , tn,

• ∃∃∃!xφ is shorthand for ∃∃∃xφ∧∧∧∀∀∀y(φLy/xM⇒⇒⇒y ≖ x), where y is the first
variable such that Subst(φ;y;x).

Remarks 30.4. (a) In defining formulæ it is possible to start from a dif-
ferent set of symbols, for example {¬¬¬,∨∨∨,∧∧∧,⇒⇒⇒,⇔⇔⇔,∃∃∃,∀∀∀} ∪ {vn | n ∈ ω}
so that all connectives and both quantifiers could be officially used. The
advantage of our definition is that there are fewer cases to check when
arguing by induction on the height of formulæ.

(b) By replacingφ with a suitable variant we may assume that Subst(φ, t⃗, x⃗)
so that φL⃗t, x⃗M can always be defined (Section 30.C.3).

(c) The sets of terms and formulæ depend on the signature, so we should
write Termτ and Fml(τ) rather than TermL and Fml(L), but it is
common in logic to blur the distinction between signature and language.

30.C. Syntax as manipulation of finite sequences*.
30.C.1. Formulæ as expressions. According to our definition, formulæ are
expressions built from elements of AtFml using ¬¬¬,∨∨∨ and variables. A key ad-
vantage of this approach is the unique readability of formulæ (Corollary 23.7).
The set of formulæ can also be seen as a free induction system (Section 7.A.1),
namely (Fml,F,AtFml) where F is the set of all operations φ 7→ ¬¬¬φ and
(φ,ψ) 7→ φ∨∨∨ψ, so by Theorem 12.10, in order to define a function on Fml
it is enough to define it on AtFml and then describe how it behaves with
respect to the operations in F.

Since atomic formulæ are constructed from terms, relation symbols and
≖, it is natural to construe formulæ as elements of S<ω, where

(30.1) S = Vbl∪{¬¬¬,∨∨∨,≖} ∪ RelL ∪FuncL ∪ConstL .

Define

(30.2) Fml(L)→ S<ω, φ 7→ φ∗
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as follows. If φ = ⟨u⟩ ∈ AtFml then φ∗ = u; if φ is ⟨¬¬¬⟩⌢ψ, or ⟨∨∨∨⟩⌢ψ⌢χ, or
⟨vn⟩⌢ψ, then φ∗ is ⟨¬¬¬⟩⌢ψ∗, or ⟨∨∨∨⟩⌢ψ∗⌢χ∗, or ⟨vn⟩⌢ψ∗, respectively. The
function (30.2) is injective and AtFml∗ = {φ∗ | φ ∈ AtFml}.

Proposition 30.5. Let L be a first-order language, and let S be as in (30.1).

(a) Term ≾ AtFml ⊆ Fml ≾ S<ω.
(b) The following sets are in bijection:

AtFml<ω, QFFml, Fml, Sent, Fml(x), S<ω,

where QFFml is the set of all quantifier-free formulæ, and Fml(x) is
the set of all formulæ with x as the only free variable.

Thus if L is well-orderable, then |AtFml| = |QFFml| = |Fml| = |Sent| =
|Fml(x)| = |S| = card(L).

Proof. (a) The map Term → AtFml, t 7→ t ≖ t witnesses that Term ≾
AtFml, while the map of (30.2) witnesses Fml ≾ S<ω.

(b) The map S→ AtFml, s 7→ š defined by

š =



vn ≖ vn if s = vn ∈ Vbl,

R(v1, . . . ,vk) if s = R is a k-ary relation symbol,

f(v1, . . . ,vk) = v0 if s = f is a k-ary function symbol,

c ≖ c if s = c is a constant symbol,

is injective, so S<ω ≾ AtFml<ω. The map AtFml<ω → QFFml, ∅ 7→ v0 ≖ v0

and ⟨φ0, . . . ,φn⟩ 7→ φ0∧∧∧ . . .∧∧∧φn, is injective, and so are QFFml → Sent,
φ 7→ φ∀ and Sent→ Fml(x), σ 7→ σ∧∧∧x ≖ x. Therefore the result follows
from part (a) and the Cantor-Schröder-Bernstein Theorem 13.11.

If L is well-orderable then card(L) = |S| and by Theorem 18.31, |S| =
|S<ω| and |AtFml| = |AtFml<ω|. □

30.C.2. Occurrences. Recall the definition of φ∗ in (30.2). An occurrence of
x ∈ Vbl in φ ∈ Fml is an occurrence of x in φ∗ in the sense of Section 23.B,
and Occ(x;φ), the set of occurrences of x in φ, is a subset of lhφ∗. The
set

FO(x;φ) ⊆ Occ(x;φ)

of the free occurrences of x in φ is defined inductively as follow:

• if φ ∈ AtFml, then FO(x;φ) = Occ(x;φ),
• if φ = ψ∨∨∨χ, then FO(x;φ) = {1 + n | n ∈ FO(x;ψ)}∪{1 + lhψ∗ + n |
n ∈ FO(x;χ)},
• if φ = ¬¬¬ψ, then FO(x;φ) = {1 + n | n ∈ FO(x;ψ)},
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• if φ = ∃∃∃yψ and y ̸= x, then FO(x;φ) = {1 + n | n ∈ FO(x;ψ)},
• if φ = ∃∃∃xψ, then FO(x;φ) = ∅.

30.C.3. Substitution. In Section 23.C we defined the substitution operation
for expressions. Thus

t,u1, . . . ,un, s1, . . . , sn ∈ Term ∧
∧

1≤i<j≤n

si ̸= sj

⇒ t[u1/s1, . . . ,un/sn] ∈ Term .

Similarly, if φ, ψ1, . . . , ψn, χ1, . . . , χn ∈ Fml, and if χi ̸= χj for all
1 ≤ i < j ≤ n, then φ[ψ1/χ1, . . . ,ψn/χn] is the formula obtained from φ by
replacing the formulæ χ1, . . . ,χn with ψ1, . . . ,ψn.

If t1, . . . , tn ∈ Term and x1, . . . ,xn are distinct variables, then looking at
all free occurrences of the xis we write φ∗ = u1

⌢xi1
⌢u2

⌢xi2
⌢ . . .⌢xik

⌢uk+1

where {i1, . . . , ik} ⊆ {1, . . . , n}, so let φLt1/x1, . . . , tn/xnM be the unique ψ
such that ψ∗ = u1

⌢ti1
⌢u2

⌢ti2
⌢ . . .⌢tik

⌢uk+1.
30.C.4. Variants. If t ∈ Term and φ ∈ Fml let V(t) be the least k such that
every variable occurring in t has index < k and V(φ) is the least k such that
every variable occurring free in φ has index < k, that is

V(t) = max {n | vn ∈ Vbl(t)}+ 1 V(φ) = max {n | vn ∈ Fv(φ)}+ 1.

When n ≥ V(φ), the formula φ(n) is obtained by replacing the bounded
variables in φ with variables with index ≥ n:

• if φ is atomic, then φ(n) = φ,

• if φ = ¬¬¬ψ, then φ(n) = ¬¬¬ψ(n),

• if φ = ψ∨∨∨χ, then φ(n) = ψ(n)∨∨∨χ(n),

• if φ = ∃∃∃vkψ with k < n, then φ(n) = ∃∃∃viψ(n)[vi/vk] and i = V(ψ(n)).

We say that φ is a variant of ψ if φ(n) = ψ(n) for some n ≥ V(φ),V(ψ).
We are now ready to give the following:

Definition 30.6. If φ is a formula, t1, . . . , tn are terms, and x1, . . . ,xn are
distinct variables, then φLt1/x1, . . . , tn/xnM is

• φLt1/x1, . . . , tn/xnM, if t1, . . . tn are substitutable for x1, . . . ,xn in φ,

• φ(m)Lt1/x1, . . . , tn/xnM, otherwise, where m ≥ max{V(φ),V(t1), . . . ,V(tn),
V(x1), . . . ,V(xn)}.
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Exercises

Exercise 30.7. Give explicitly an inductive definition of Vbl(t).

Exercise 30.8. Verify that

(i) φ(n) ∈ Fml and Fv(φ(n)) = Fv(φ);

(ii) φ is a variant of ψ if φ(n) = ψ(n) for all n ≥ V(φ),V(ψ).

Exercise 30.9. For any τ -structure A let

FG(A) = {B | B ⊆ A and B is finitely generated}.

For B ⊆ C finitely generated substructures of A let πB,C : B ↪→ C be the inclu-
sion map. Show that ⟨FG(A),⊆⟩ is upward directed and that FG(A) with
the maps πB,C is an upward directed system of τ -structures and morphisms
and that

A ∼= lim−→⟨B | B ∈ FG(A)⟩ .

Exercise 30.10. Suppose F is a filter on a non-empty set X. Check that:

(i) if Y ∈ F and πy : Ay → By is an isomorphism for each y ∈ Y , then∏
F Ax

∼=
∏

F Bx;

(ii) if Y ∈ F and F ↾ Y is the filter induced by F on Y (Exercise 25.15), then∏
F Ax is isomorphic to the reduced product

∏
F ↾Y Ay of ⟨Ay | y ∈ Y ⟩

modulo F ↾ Y . In particular, if {x0} ∈ F for some x0 ∈ X, then∏
F Ax

∼= Ax0 .

31. Theories and models

31.A. The satisfaction relation. We now give a rigorous definition of the
notion “the formula φ is true in the structure A”.
31.A.1. Interpretation of terms in a structure. An assignment in a struc-
ture A is a function g : Vbl→ ∥A∥. Given an assignment g, for each a ∈ ∥A∥
let gx7→a be the assignment

gx7→a(vn) =

{
a if x = vn,

g(vn) otherwise.

Note that

(31.1) x ̸= y ⇒ (gx7→a)y 7→b = (gy 7→b)x7→a
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for every g : Vbl→ ∥A∥ and a, b ∈ ∥A∥. The interpretation of t in A via
g is

tA[g] =


cA if t = c ∈ Const,

g(x) if t = x ∈ Vbl,

fA(uA
1 [g], . . . ,u

A
n [g]) if t = f(u1, . . . ,un).

Lemma 31.1. If g, h : Vbl → ∥A∥ and g ↾ Vbl(t) = h ↾ Vbl(t), then
tA[g] = tA[h].

Proof. By induction on ht(t). If t ∈ Const∪Vbl, the result follows at once.
Suppose that t = f(u1, . . . ,un). Then Vbl(t) = Vbl(u1) ∪ · · · ∪Vbl(un)
hence, by inductive assumption, uA

m[g] = uA
m[h], for m = 1, . . . , n, hence

tA[g] = fA(uA
1 [g], . . . ,u

A
n [g]) = fA(uA

1 [h], . . . ,u
A
n [h]) = tA[h]. □

If t is closed, then let tA = tA[g] for some/any g. If Vbl(t) ⊆ {x1, . . . ,xn}
and a1, . . . , an are not necessarily distinct elements of ∥A∥ and g and h are
assignments in A such that g(xm) = h(xm) = am, for 1 ≤ m ≤ n, then
Lemma 31.1 yields that tA[g] = tA[h], and this element will be denoted by

tA[a1, . . . , an].

Equivalently, consider the expansion ⟨A, a1, . . . , an⟩ of A obtained by augment-
ing L with new constant symbols å1, . . . , ån to be interpreted as a1, . . . , an —
note that the åms, unlike the ams, must be distinct. The interpretation in A′

of the closed term t[̊a1/x1, . . . , ån/xn] coincides with tA[a1, . . . , an], that is

(t[̊a1/x1, . . . , ån/xn])
A′

= tA[a1, . . . , an].

Lemma 31.2. If t is a term whose variables are among x1, . . . ,xn, and if
π : A→ B is a morphism, then

∀a1, . . . , an ∈ ∥A∥
(
π
(
tA[a1, . . . , an]

)
= tB[π(a1), . . . , π(an)]

)
.

Proof. By induction on ht(t). If ht(t) = 0, then either t = xm or t = ck,
so tA [⃗a] = am and tB[π(⃗a)] = π(am) or else tA [⃗a] = cAk and tB[π(⃗a)] = cBk .
If ht(t) > 0, then t = f j(t1, . . . , tm) for some j ∈ J and t1, . . . , tm ∈ Term.
Then by definition of morphism and by inductive assumption,

π(tA [⃗a]) = π
(
fA
j

(
tA1 [⃗a], . . . , t

A
m [⃗a]

))
= fB

j

(
π
(
tA1 [⃗a]

)
, . . . , π

(
tAm [⃗a]

))
= fB

j

(
tB1
[
π(⃗a)

]
, . . . , tBm

[
π(⃗a)

])
= tB

[
π(⃗a)

]
. □

31.B. Satisfaction of a formula in a structure.
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31.B.1. The definition of the satisfaction relation. We define when a formula
φ is true in A according to an assignment g, in symbols

A ⊨g φ.

The writing above also read as: A satisfies φ with the assignment g, or
A is a model of φ for the assignment g. Whenever this does not happen,
we write A ̸⊨g φ and say that φ is false in A for the assignment g. The
definition of A ⊨g φ is by recursion on the complexity of φ:

A ⊨g t1 ≖ t2 ⇔ tA1 [g] = tA2 [g]

A ⊨g Ri(t1, . . . , tm) ⇔ ⟨tA1 [g], . . . , tAm[g]⟩ ∈ RA
i

A ⊨g ¬¬¬φ ⇔ A ̸⊨g φ

A ⊨g φ∨∨∨ψ ⇔ A ⊨g φ ∨A ⊨g ψ

A ⊨g ∃∃∃xφ ⇔ ∃a ∈ ∥A∥ (A ⊨gx7→a φ) .

Remark 31.3. From the definition it follows that either A ⊨g φ or else
A ⊨g ¬¬¬φ, for any A, g, and φ. This does not mean that we are actually able
to determine which one of the two alternatives hold.

Let us recall a few notions from Section 3. A formula φ is

• satisfiable in a structure A if A ⊨g φ for some assignment g;

• satisfiable if it is satisfiable in some structure; a formula that it is not
satisfiable is called unsatisfiable or false;

• true in a structure A if A ⊨g φ for every assignment g. In this case we
write that A ⊨ φ;

• valid or true if it is true in every structure.

Two formulæ φ,ψ are logically equivalent if φ⇔⇔⇔ψ is valid; as noted
in Remark 3.36(a) this is stronger than saying that φ∀,ψ∀ are logically
equivalent.

Lemma 31.4. If φ(x1, . . . ,xn) is an L-formula and g, h : Vbl→ ∥A∥ are
assignments such that g ↾ {x1, . . . ,xn} = h ↾ {x1, . . . ,xn},

A ⊨g φ ⇔ A ⊨h φ.

Proof. By induction on ht(φ). The case when φ is atomic follows from
Lemma 31.1. If either φ = ¬¬¬ψ or else φ = ψ∨∨∨χ, the result is trivial.
Suppose then φ is of the form ∃yψ. If A ⊨g ∃yψ, then there is a ∈ ∥A∥
such that A ⊨gy 7→a ψ. By inductive assumption A ⊨gy 7→a ψ ⇔ A ⊨hy 7→a ψ

hence A ⊨h ∃yψ. □
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For every φ(x1, . . . ,xn) and a1, . . . , an ∈ ∥A∥ (not necessarily distinct),
set

A ⊨ φ[a1, . . . , an] if and only if A ⊨g φ

for some (equivalently: for all) g such that g(xm) = am, (1 ≤ m ≤ n). If
φ has just one free variable x we write A ⊨ φ[a] for A ⊨g φ, for some
(equivalently: for every) assignment g such that g(x) = a. We write A ⊨ φ
if A ⊨g φ for all assignments. If σ is a statement, then the assignment
becomes irrelevant, i.e. A ⊨g σ for some assignment if and only if A ⊨g σ

for all assignment, so also in this case we write A ⊨ σ. Note that A ⊨ φ is
equivalent to A ⊨ φ∀.

Remark 31.5. In view of Lemma 31.4 we could have defined the satisfaction
relation using finite assignments, i.e. maps defined on finitely many variables.
More precisely we could have defined A ⊨g φ with g : Fv(φ)→ ∥A∥. This
approach is completely equivalent to the one presented here: it has indeed a
few advantages (see Section ??) but it is technically awkward.

Recall from Section 3.G that the truth set of a formula φ(x1, . . . ,xn)
in A is

TA
φ(x1,...,xn)

= {⟨a1, . . . , an⟩ ∈ An | A ⊨ φ[a1, . . . , an]}.

A set X ⊆ ∥A∥n is definable with parameters in P ⊆ ∥A∥ if there is a
formula φ(x1, . . . ,xn,y1, . . . ,yk) and there are p1, . . . , pk ∈ P such that

X = {⟨a1, . . . , an⟩ ∈ An | A ⊨ φ[a1, . . . , an, p1, . . . , pk]}

= TA
φ(x1,...,xn,y1,...,yk)

∩ ∥A∥n × {⟨p1, . . . , pk⟩} .

The integer n is the dimension of X. When P = A we say that X is definable
with parameters in A. If P = ∅ then X is definable without parameters.
The set of all definable subsets of dimension n of A with parameters P is
DefnA(P ).

If Σ ⊆ Sent(L) then A ⊨ Σ means that A ⊨ σ for all σ ∈ Σ. Let

Mod(Σ) = {A ∈ Str | A ⊨ Σ}.

The theory of a class of structures C ⊆ Str(L) is

Th(C ) = {σ ∈ Sent | ∀A ∈ C (A ⊨ σ)} .

When C = {A} and T = {σ} we write Th(A) and Mod(σ).
Let UΣ =

⋃
σ∈ΣMod(σ). As Mod(¬¬¬σ) = Str \Mod(σ) and Mod(σ) ∩

Mod(τ) = Mod(σ∧∧∧τ), then UΣ ∩U∆ =
⋃
σ∈Σ,δ∈∆Mod(σ∧∧∧δ) so that

(31.2) {UΣ | Σ ⊆ Sent} is a zero-dimensional topology on Str.
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Note that Mod(Σ) = Str \U¬Σ is a closed set, where ¬Σ = {¬¬¬σ | σ ∈ Σ},
and that this topology is not T0, since two structures A,B belong to the
same open sets if and only if Th(A) = Th(B).

The maps Σ 7→ Mod(Σ) and C 7→ Th(C ) are antitone with respect to
inclusion, and moreover Σ ⊆ Th(Mod(Σ)) and C ⊆ Mod(Th(C )). Thus
(Mod,Th) is a Galois connection between P(Sent), the set of all theories,
and the collection of all subclasses of Str, and hence

(31.3) Th(Mod(Th(C ))) = Th(C ) and Mod(Th(Mod(Σ))) = Mod(Σ).

Remark 31.6. The proofs of (31.2) and (31.3) need some attention, since the
notions of topology and of Galois connection are formulated for sets, and do
not cover the case of collections of subclasses of Str. Yet standard arguments
in topology as well as the ones in Section 7.B can be easily adapted to yield
these results. For example one can argue that for the first identity in (31.3)
as follows. From C ⊆ Mod(Th(C )) we get that Th(C ) ⊇ Th(Mod(Th(C ))).
If σ /∈ Th(Mod(Th(C ))) then there is A ∈ Mod(Th(C )) such that A ̸⊨ σ.
Since A ⊨ Th(C ) then σ /∈ Th(C ). Therefore Th(Mod(Th(C ))) = Th(C ).

If Σ,∆ ⊆ Sent(L), then ∆ is logical consequence of Σ, in symbols
Σ |=L ∆, if Mod(Σ) ⊆ Mod(∆). As usual we will write Σ |= ∆ when L is
clear. If Σ = ∅ we write |= ∆ and if Σ and/or ∆ are singletons we will drop
the braces and write e.g. Σ |= τ. If Mod(Σ) = Mod(∆) then Σ and ∆ are
logically equivalent.

A theory Σ is satisfiable if Mod(Σ) ̸= ∅. An axiom system for a theory
Σ is a set ∆ of sentences (i.e. a theory) such that Σ and ∆ are logically equiv-
alent. A theory Σ is finitely axiomatizable if it admits a finite set of axioms,
or equivalently if it is logically equivalent to a single σ ∈ Sent. Recall (Sec-
tion 4.K) that C ⊆ Str(L) is axiomatizable if C = Mod(Σ) for some theory
Σ; if Σ is finitely axiomatizable, then C is finitely axiomatizable. These
notions are also known in model theory as generalized elementary class
EC∆(L), and elementary class EC(L), respectively. When C ⊆ Str(L) ischange to basic

elementary class the class of all reductions of some (generalized) elementary class in some larger
language L′, then C is said to be a (generalized) pseudo-elementary
class PC∆(L) and PC(L), respectively. The Compactness Theorem 4.46
which was stated in Section 4.K and that will be proved in Section 31.G,
can be used to construct many examples of generalized elementary classes
that are not elementary, i.e. classes that are in EC∆(L) \ EC(L)—see Sec-
tion 4.K. The other inclusions in the Venn diagram of Figure 25 are also
proper (Exercises 31.61–31.63).

31.C. Easy facts about satisfaction.
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PC∆(L)

EC(L)EC∆(L) PC(L)

all C ⊆ Str(L)

Figure 25. Elementary and pseudo-elementary (generalized) classes

Proposition 31.7. Let φ(x1, . . . ,xn) be a formula, A a structure and let
a1, . . . , an ∈ ∥A∥.

(a) If y /∈ {x1, . . . ,xn}, then

A ⊨ ∃∃∃yφ[a1, . . . , an] ⇔ A ⊨ ∀∀∀yφ[a1, . . . , an] ⇔ A ⊨ φ[a1, . . . , an].

(b) If y = xm for some 1 ≤ m ≤ n, then

A ⊨ ∃∃∃xmφ[a1, . . . , an]

⇔ ∃a ∈ ∥A∥ (A ⊨ φ[a1, . . . , am−1, a, am+1, . . . , an]) ,

A ⊨
(
∀∀∀xmφ

)
[a1, . . . , an]

⇔ ∀a ∈ ∥A∥ (A ⊨ φ[a1, . . . , am−1, a, am+1, . . . , an]) .

Proof. (a) Suppose that A ⊨ ∃∃∃yφ[a1, . . . , an], that is to say A ⊨g ∃∃∃yφ
for some (equivalently: for every) assignment g such that g(xm) = am
(1 ≤ m ≤ n). Then A ⊨gy 7→a φ for some a ∈ ∥A∥. By assumption on y,
gy 7→a(xi) = ai hence A ⊨ φ[a1, . . . , an]. Similarly, A ⊨ φ[a1, . . . , an] implies
that A ⊨ ∃∃∃yφ[a1, . . . , an], and hence

(31.4) A ⊨ φ[a1, . . . , an] ⇔ A ⊨ ∃∃∃yφ[a1, . . . , an].

As the free variables of ¬¬¬φ are exactly those of φ, we have that

A ⊨ ∀∀∀yφ[a1, . . . , an]⇔ A ̸⊨ ∃∃∃y¬¬¬φ[a1, . . . , an]
⇔ A ̸⊨ ¬¬¬φ[a1, . . . , an]
⇔ A ⊨ φ[a1, . . . , an],

where in the second row we used the equivalence (31.4) for ¬¬¬φ.
Part (b) is left to the reader. □
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Proposition 31.8. If Subst(φ; t;x) and a = tA[g] ∈ ∥A∥ where g is an
assignment in an L-structure A, then A ⊨g φLt/xM ⇔ A ⊨gx7→a φ.

Proof. If φ is atomic, or φ is ¬¬¬ψ, or φ is ψ∨∨∨χ, the result is trivial.
Suppose that φ is ∃∃∃yψ and distinguish two cases.

Case 1: y = x. Then x does not occur free in φ, hence φLt/xM is φ and g
and gx7→a agree on the free variables of φ. It follows that

A ⊨g φLt/xM ⇔ A ⊨g φ

⇔ A ⊨gx7→a φ (by Lemma 31.4).

Case 2: y ≠ x. Then φLt/xM is ∃∃∃yψLt/xM and since y does not occur in t,
for each b ∈ A one has that

(31.5) a = tA[g] = tA[gy 7→b].

Therefore

A ⊨g φLt/xM ⇔ ∃b ∈ AA ⊨gy 7→b
ψLt/xM

⇔ ∃b ∈ AA ⊨(gy 7→b)x7→a
ψ by ind. hyp. and (31.5)

⇔ ∃b ∈ AA ⊨(gx7→a)y 7→b
ψ by (31.1)

⇔ A ⊨gx7→a ∃∃∃yψ
⇔ A ⊨gx7→a φ. □

31.D. Logical axioms.
31.D.1. Tautologies. Recall from Section 3.C.1 that a primitive formula is
either an atomic formula or an existential formula. We associate to every φ
a set P(φ) of primitive formulæ as follows:

• if φ is primitive, then P(φ) = {φ},
• if φ = ¬¬¬ψ, then P(φ) = P(ψ),
• if φ = ψ∨∨∨χ, then P(φ) = P(ψ) ∪ P(χ).

Associate to each φ ∈ Fml(L) a proposition pφ on the letters {ψ1, . . . ,ψn} =
P(φ):

pφ =


φ if φ is primitive,

¬¬¬pψ if φ = ¬¬¬ψ,

pψ∨∨∨pχ if φ = ψ∨∨∨χ.

Lemma 31.9. Let φ and P(φ) = {ψ1, . . . ,ψn}, and let pφ be as above. Let
A ∈ Str(L), let g : Vbl → ∥A∥, and let v : P(φ) → {0, 1} be the evaluation
defined by

v(ψi) = 1 ⇔ A ⊨g ψi.

Then v(pφ) = 1 ⇔ A ⊨g φ.
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Proof. If ht(pφ) = 0 then φ is primitive and the result follows at once. If
ht(pφ) > 0 then either φ = ¬¬¬ψ or else φ = ψ∨∨∨χ, that is either pφ = ¬¬¬pψ
or else pφ = pψ∨∨∨pχ and the result follows from the definition of ⊨. □

A formula φ ∈ Fml(L) is a tautology if and only if the propositional
formula pφ is a propositional tautology (Definition ??).

Corollary 31.10. If φ ∈ Fml(L) is a tautology then φ is valid.

A tautology axiom is a sentence obtained by universally quantifying a
tautology.
31.D.2. Equality axioms. A logical identity is a formula of the form

• t ≖ t,
• s ≖ t⇒⇒⇒ t ≖ s,
• s ≖ t∧∧∧ t ≖ u⇒⇒⇒ s ≖ u,
• s1 ≖ t1∧∧∧ . . .∧∧∧ sn ≖ tn⇒⇒⇒f j(s1, . . . , sn) ≖ f j(t1, . . . , tn),
• s1 ≖ t1∧∧∧ . . .∧∧∧ sn ≖ tn∧∧∧Ri(s1, . . . , sn)⇒⇒⇒Ri(t1, . . . , tn).

It is immediate to check that the logical identities are valid. An equality
axiom is a sentence obtained by universally quantifying a logical identity.
31.D.3. Axioms for quantification. An axiom for quantification is the
universal closure of a formula of the form

(A) φ⇒⇒⇒∀∀∀xφ, with x /∈ Fv(φ),
(B) φLt1/x1, . . . , tn/xnM⇒⇒⇒∃∃∃x1 . . .∃∃∃xnφ,
(C) ∀∀∀x¬¬¬φ⇒⇒⇒¬¬¬∃∃∃xφ,
(D) ∀∀∀x(φ⇒⇒⇒ψ)⇒⇒⇒(∀∀∀xφ⇒⇒⇒∀∀∀xψ).
Remarks 31.11. (a) The requirement in (A) that x /∈ Fv(φ) cannot be

dropped.
(b) The axioms of type (B) cover the case when not every xi occurs free

in φ; in particular, if φ is a sentence, then φ⇒⇒⇒∃∃∃x1 . . .∃∃∃xnφ is an
axiom.

(c) As ∀∀∀x . . . is shorthand for ¬¬¬∃∃∃x¬¬¬ . . ., the axioms of type (C) say that
¬¬¬∃∃∃x¬¬¬¬¬¬φ⇒⇒⇒¬¬¬∃∃∃xφ.

Let us check that the axioms for quantification are valid.
The validity of axioms of type (A) follows from part (a) of Proposition 31.7,

and the case of the axioms of type (B) and of type (C) is immediate. Suppose
A ⊨ ∀∀∀x(φ⇒⇒⇒ψ), but A ⊨ ∀∀∀xφ and A ̸⊨ ∀∀∀xψ. Let g : Vbl → ∥A∥ be an
assignment: then A ⊨g φ⇒⇒⇒ψ and A ⊨g φ, and hence A ⊨g ψ. As g is
arbitrary we have that A ⊨ ∀∀∀xψ: a contradiction. Therefore axioms of
type (D) are valid.
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31.E. Elementary equivalence. By Definitions 3.31 and 4.25 in Chapter I
we say that two L-structures A and B are elementarily equivalent A ≡ B

if and only if Th(A) = Th(B), and that a morphism π : A → B is an
elementary embedding if A ⊨ φ[⃗a] ⇔ B ⊨ φ[π(⃗a)], for each formula
φ(x1, . . . ,xn) and each a⃗ ∈ An. If there is an elementary embedding of A
into B we say that A elementarily embeds into B, and if A ⊆ B and the
inclusion map is an elementary embedding we say that A is an elementary
substructure of B, in symbols

A ≼· B and A ≼ B.

Let A ∈ Str(L), let LA = L ∪ {̊a | a ∈ A} be the expanded language
with a new constant symbols for each element of A, and let ⟨A, a⟩a∈A be the
canonical expansion of A to A. The elementary diagram of A is the set of
all sentences that hold in ⟨A, a⟩a∈A,

EDiag(A) = Th(⟨A, a⟩a∈A).

The diagram of A is the set of all atomic and negated-atomic formulæ that
are true in ⟨A, a⟩a∈A

Diag(A) = EDiag(A) ∩
(
AtFml(LA) ∪ {¬¬¬ψ | ψ ∈ AtFml(LA)}

)
.

By Theorems 15.7 and 15.8, if A,B are L-structures, then

• A ≼· B if and only if there is an expansion B̃ of B in the language
LA = L ∪ {̊a | a ∈ A} such that B̃ ⊨ EDiag(A);

• A ·⊆ B if and only if there is an expansion B̃ of B in the language
LA = L ∪ {̊a | a ∈ A} such that B̃ ⊨ Diag(A).

Lemma 31.12. Let T be a satisfiable L-theory, and let ∆ be a set of L-
sentences closed under disjunctions. The following are equivalent:

(1) T has a set of axioms from ∆.
(2) Suppose M,N are L-structures such that N ⊨ T and if N ⊨ σ then

M ⊨ σ, for all σ in ∆. Then M ⊨ T .

Proof. (1)⇒ (2) is obvious, so we may focus on the other direction. It is
clear that T |= Σ where Σ = {σ ∈ ∆ | T |= σ}, so it is enough to prove that
Σ |= T . So fix M a model of Σ, towards proving that M ⊨ T . Let

Σ− = {¬σ | σ ∈ ∆ and M ⊨ ¬σ}.

Claim 31.12.1. T ∪ Σ− is satisfiable.

Proof of the Claim. Suppose T ∪ Σ− is unsatisfiable. By compactness
there are ¬σ1, . . . ,¬σn ∈ Σ− such that T ∪ {¬σ1, . . . ,¬σn} is unsatisfiable.
Therefore T |= ¬(¬σ1∧· · ·∧¬σn) that is T |= σ1∨· · ·∨σn. As σ1∨· · ·∨σn ∈
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∆, then σ1 ∨ · · · ∨ σn ∈ Σ, and hence M ⊨ σ1 ∨ · · · ∨ σn. Therefore M ⊨ σi
for some 1 ≤ i ≤ n. But ¬σi ∈ Σ−, so M ⊨ ¬σi: a contradiction. □

Suppose N ⊨ T ∪Σ−. We claim that for any σ ∈ ∆, if M ⊨ σ then N ⊨ σ.
To see this suppose M ⊨ σ0 but N ⊨ ¬σ0 for some σ0 ∈ ∆: then ¬σ0 ∈ Σ−,
and hence M ⊨ ¬σ0, a contradiction. Therefore the hypotheses of (2) are
fulfilled and M ⊨ T as required. □

Theorem 31.13 (Tarski-Łos). Let T be a satisfiable L-theory. Then

(i) T can be axiomatized by ∀-sentences if and only if for all L-structures
N ⊆M , if M ⊨ T then N ⊨ T .

(ii) T can be axiomatized by ∃-sentences if and only if for all L-structures
N ⊆M , if N ⊨ T then M ⊨ T .

Proof. We prove (i) leaving (ii) to the reader. By Proposition 4.8 we only
need to prove the right-to-left direction of the equivalence. As the collection
of all ∀-sentences is closed under disjunctions (see Section 3.C.4), it is enough

□

31.F. Skolem functions. Let A be an L-structure and let � be a well-order
of A = ∥A∥. To each formula φ with free variables y,x1, . . . ,xn we associate
hφ : A

n → A, the Skolem function for ∃∃∃yφ defined by

hφ(a1, . . . , an) =

{
the �-least b such that A ⊨ φ[b, a⃗] if A ⊨ (∃∃∃yφ)[⃗a]

a∗ otherwise,

where a∗ is the �-minimum of A. Note that if y is the unique free variable
of φ, then hφ : A

0 → A is — essentially — an element of A: either a witness
of the fact that A ⊨ ∃∃∃yφ or else a∗. The set of all Skolem functions for A is
Sk(A).

Theorem 31.14. If A is well-orderable, then ClSk(A)(X) ≼ A for all X ⊆ A,
that is: the closure of X under the functions in Sk(A) is an elementary
substructure of A.

Proof. The Skolem function of the formula y ̸≖ y guarantees that a∗ ∈ C =
ClSk(A)(X), hence C ̸= ∅. By the Tarski-Vaught Theorem it is enough to
check that if A ⊨ ∃∃∃yφ[⃗c] for some c⃗ ∈ Cn, then there is b ∈ C such that
A ⊨ φ[b, c⃗]. This is immediate taking b = hφ(c⃗). □

The next result, known as the downward Löwenheim-Skolem The-
orem says that any uncountable structure in a countable language has an
elementary countable substructure.
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Theorem 31.15. Assume L and A ∈ Str(L) are well-orderable. If X ⊆ ∥A∥
with |X| ≤ κ and card(L) ≤ κ ≤ card(A), then for all there is B ≼ A such
that X ⊆ ∥B∥ and card(B) = κ.

Proof. Let Y ⊆ A = ∥A∥ be such that X ⊆ Y and |Y | = κ. As |Sk(A)| ≤
|Fml(L)| = card(L), Theorem 21.18 implies that κ ≤ |Y | ≤ |ClSk(A)(Y )| ≤ κ.
By Theorem 31.14 we may take B = ClSk(A)(Y ). □

Corollary 31.16. Assume AC. If A ∈ Str(L) is infinite and card(L) ≤ κ ≤
card(A), then there is a B ≼ A with |B| = κ.

Remark 31.17. If there is a model of ZFC, that is a set N and E ⊆ N ×N
such that ⟨N,E⟩ ⊨ ZFC, then by Corollary 31.16 there must be a countable
model ⟨M,E′⟩ of ZFC, where M ⊆ N and E′ = E ∩M ×M . Since “there is
an uncountable set” is a theorem of ZFC, it follows that there is an a ∈M
such that ⟨M,E′⟩ ⊨“a is an uncountable set”, although {b ∈M | b E′ a} is a
countable set, since M itself is countable. This counter-intuitive phenomenon
is called the Löwenheim-Skolem paradox.

Then notion of elementary substructure is tightly connected with that of
closed and unbounded sets seen in Section 21.E.

Theorem 31.18. Suppose A ∈ Str(L) whose universe is a cardinal κ, that
is ∥A∥ = κ. Letting C = {α < κ | ⟨α, . . .⟩ ≼ A},

• C is closed in κ, and
• if ω < cof(κ) and card(L) < κ, then C is also unbounded in κ.

Proof. Suppose λ < κ is limit and C ∩ λ is unbounded in λ: we must prove
that λ ∈ C. Then λ is an increasing union of elementary substructures of A
and hence ⟨λ, . . .⟩ ≼ A by Proposition 4.29. Therefore λ ∈ C as required.

Suppose now cof(κ) > ω and that card(L) < κ, and let β < κ. Applying
Corollary 21.31 when F = Sk(A) we have that

C ⊇ {α < κ | α is closed under every f ∈ F}

is closed and unbounded in κ. □

By Theorem 31.15, if L is countable and choice is assumed, then any
L-structure has a countable elementary substructure. The next result shows
that AC can be replaced by DC (see Section 20.D).

Theorem 31.19 (DC). If L is a countable language, then every L-structure
has a countable elementary substructure. In fact if A ∈ Str(L) and C ⊆ ∥A∥
is countable, then there is a countable B ≼ A with C ⊆ ∥B∥.
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Proof. By Proposition 30.5, Fml∃(L), the set of all existential formulæ of L,
is countable. Let ⟨∃∃∃xnφn | n < ω⟩ be an enumeration of Fml∃(L) such that
every formula is listed infinitely often. The plan is to build a descriptive tree
T on ∥A∥ without terminal nodes, and whose branches2 encode an elementary
substructure of A containing C. By dependent choices T has a branch, and
the result follows.

The construction of T is by induction on the length of the nodes: given
t ∈ T we must determine what are its immediate successors in T . Let
⟨cn | n ∈ ω⟩ be an enumeration (possibly with repetitions) of C, if this set is
non-empty; otherwise the cns are some fixed element a ∈ ∥A∥.

• If lh t = 2n, then t⌢⟨cn⟩ is the unique immediate successor of t.
• If lh t = 2n+ 1, then consider the formula ∃∃∃xnφn whose free variables are
vi1 , . . . ,vim with i1 < · · · < im:
– if im ≤ 2n and A ⊨ ∃∃∃xnφn[ai1 , . . . , aim ], then

∀a ∈ ∥A∥
(
t⌢⟨a⟩ ∈ T ⇔ A ⊨ φn[a, ai1 , . . . , aim ]

)
;

– otherwise the only node of length 2n+ 1 extending t is t⌢⟨c0⟩.

By construction T is has no terminal nodes, so [T ] ̸= ∅. If f ∈ [T ], then
C ⊆ ran f ⊆ ∥A∥, and in order to show that ran f is (the universe of)
an elementary substructure of A, it is enough to apply the Tarski-Vaught
criterion. Suppose that A ⊨ ∃∃∃yφ[a1, . . . , am] where a1, . . . , am ∈ ran f , and
vi1 , . . . ,vim are distinct, and {vi1 , . . . ,vim} = Fv(∃∃∃yφ). We must find
a ∈ ran f such that A ⊨ φ[a, a1, . . . , am]. Let kj ∈ ω be least such that
f(kj) = aj , for 1 ≤ j ≤ m. Let us notice that without loss of generality we
may make some further assumptions.

• The ajs are distinct. If, for example, a1 = a2, then replace φ with
ψ = φLvi2/vi1M so that A ⊨ ∃∃∃yφ[a1, a2, . . . , am] is equivalent to A ⊨
∃∃∃yψ[a2, . . . , am].
• 1 ≤ i < j ≤ m ⇒ ki < kj . To see this use φLvπ(i1)/vi1 , . . . ,vπ(im)/vimM

in place φ, for a suitable permutation π of {i1, . . . , im}.
• ij = kj for 1 ≤ j ≤ m. To see this use φLvk1/vi1 , . . . ,vkm/vimM in place

of φ.

Then there is n such that ∃∃∃yφ = ∃∃∃xnφn and im ≤ 2n. By construction
f(2n+ 2) is an element a ∈ ∥A∥ such that A ⊨ ∃∃∃xnφn[a, a1, . . . , an], which
is what we had to prove. □

31.F.1. Applications. Assume AC throughout this section.

2See Section 23.D.
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Suppose N is a transitive set and that ⟨N,∈⟩ ⊨ ZFC. For any X ⊆ N the
set Cl(X) = ClSk(N)(X) is infinite, since Cl(X) ≼ N , and has size |X|+ ℵ0.
The structure ⟨Cl(X),∈⟩ satisfies the axiom of extensionality, since ⟨N,∈⟩
does. Moreover every ∅ ̸= Y ⊆ Cl(X) has an ∈-minimal element by the
axiom of foundation. Therefore Cl(X) is isomorphic to a transitive set M
via the Mostowski collapse π : Cl(X)→M (see Section 19.C.3). The inverse
of π is an elementary embedding j : M → N . As the set X can be of any
cardinality ω ≤ λ ≤ κ, and since M and N are elementarily equivalent, it
follows that:

Proposition 31.20. If N is a transitive model of ZFC, then for any ω ≤
λ ≤ |N | there is a transitive set M of size λ such that M ≼· N .

If κ is strongly inaccessible then Vκ is an uncountable transitive model
of ZFC by Theorem 21.39, so that the hypothesis of Proposition 31.20 is not
vacuous. By Exercise 21.63 if Vκ ⊨ ZFC then κ is a strong limit cardinal,
and |Vκ| = κ. The next result shows that if Vκ ⊨ ZFC then κ need not
be inaccessible. (Recall that the theory of closed unbounded sets can be
developed for any cardinal of uncountable cofinality—Remark 21.36.)

Lemma 31.21. If cof(κ) > ω then {α < κ | Vα ≼ Vκ} is closed and un-
bounded in κ.

Proof. Let C = {α < κ | Vα ≼ Vκ}.
If λ < κ is limit and

⋃
(C ∩ λ) = λ, then Vλ =

⋃
α∈C∩λVα ≼ Vκ by

Proposition 4.29, and hence λ ∈ C. Therefore C is closed in κ.
Next we prove that C is unbounded. For any β ∈ κ we want α such

that Vβ ⊆ Vα ≼ Vκ. Let Cl(X) be the closure of X ⊆ Vκ under some
fixed set of Skolem functions for Vκ. We construct by recursion αn and
Xn by letting α0 = β, Xn = Cl(Vαn), and αn+1 = sup(Xn ∩ Ord). Since
Vαn ⊆ Xn ⊆ Vαn+1 then

⋃
nXn =

⋃
nVαn = Vα, where α = supn αn, and

since Xn ≼ Vκ, it follows that Vβ ⊆ Vα ≼ Vκ by Proposition 4.29. □

Theorem 31.22. If Vκ ⊨ ZFC and cof(κ) > ω then {α < κ | Vα ⊨ ZFC}
contains a closed and unbounded set in κ. Therefore the least λ such that
Vλ ⊨ ZFC has cofinality ω.

Proof. Let λ be of uncountable cofinality and such that Vλ ⊨ ZFC. By
Lemma 31.21 C = {α < λ | Vα ≼ Vλ} is closed and unbounded in λ, and
C ⊆ {α < λ | Vα ⊨ ZFC}. So the result applies when λ = κ is strongly
inaccessible.

If Vλ ⊨ ZFC and cof(λ) > ω then by Lemma 31.21 {α < λ | Vα ≼ Vλ}
is closed and unbounded and, in particular, non-empty. Any α belonging
to this set would witness that Vα ⊨ ZFC. Therefore the least λ such that
Vλ ⊨ ZFC has cofinality ω. □
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Theorem 31.23 (Łos). Let ⟨Ax | x ∈ X⟩ be L-structures and let U be
an ultrafilter on X. Let �x be a well-order on ∥Ax∥. For every formula
φ(x1, . . . ,xn) and every g1, . . . , gn ∈ "x∈XAx∏

U

Ax ⊨ φ[[g1], . . . , [gn]] ⇔ Xφ,g1,...,gn ∈ U,

where Xφ,g1,...,gn = {x ∈ X | Ax ⊨ φ[g1(x), . . . , gn(x)]}.

Proof. The proof is by induction on ht(φ). If φ is atomic, the result follows
from the definition of

∏
U Ax. For the other cases, suppose fo simplicity that

n = 2. If φ = ¬¬¬ψ, then∏
U

Ax ⊨ φ[[g1], [g2]]⇔
∏
U

A ̸⊨ ψ[[g1], [g2]]

⇔ Xψ,g1,g2 /∈ U

⇔ Xφ,g1,g2 ∈ U

where in the last passage we used that Xφ,g1,g2 = X \Xψ,g1,g2 .
If φ = ψ∨∨∨χ, then∏
U

Ax ⊨ φ[[g1], [g2]]⇔
(∏

U

A ⊨ ψ[[g1], [g2]]
)
∨
(∏

U

A ⊨ χ[[g1], [g2]]
)

⇔ Xψ,g1,g2 ∈ U ∨ Xχ,g1,g2 ∈ U

⇔ Xψ,g1,g2 ∪Xχ,g1,g2 ∈ U

⇔ Xψ∨∨∨ χ,g1,g2 ∈ U

where we used that Xψ∨∨∨ χ,g1,g2 = Xψ,g1,g2 ∪Xχ,g1,g2 .
Suppose now φ = ∃∃∃yψ. If

∏
U Ax ⊨ φ[[g1], [g2]] then there is h ∈

"x∈XAx such that
∏

U Ax ⊨ ψ[[h], [g1], [g2]] hence, by inductive hypothesis,
Xψ,h,ḡ ∈ U . As Xφ,g1,g2 ⊇ Xψ,h,g1,g2 , it follows that Xφ,g1,g2 ∈ U . Conversely,
suppose that Xφ,g1,g2 ∈ U . Let h ∈ "x∈XAx be the function

h(x) =

{
the �x-least a such that Ax ⊨ ψ[a, g1(x), g2(x)] if x ∈ Xφ,g1,g2 ,

a∗x otherwise,

where a∗x is the �x-least element of Ax. Then Xφ,g1,g2 is contained in Xψ,h,g1,g2
(in fact: the two sets are the same) hence Xψ,h,g1,g2 ∈ U . By inductive
assumption, this implies that

∏
U Ax ⊨ ψ[[h], [g1], [g2]] hence

∏
U Ax ⊨

φ[[g1], [g2]]. □

Corollary 31.24. Let A be a well-orderable structure, let U be an ultrafilter
on X, and let π : A →

∏
U A be the map defined by π(a) = [ca] where

ca : X → {a}. Then π is an elementary embedding. In particular A is
elementarily equivalent to any of its ultrapowers.

Corollary 31.25 (AC). A PC∆-class is closed under ultraproducts.
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The ultrapower of ⟨ω,≤⟩ by a non-principal ultrafilter on ω is a linear
order that is not well-founded (Section 15.A.1), and therefore:

Corollary 31.26. Assume there is a non-principal ultrafilter on ω (which is
a consequence of BPI). Then the class of all well-orders is not PC∆(LOrdr).

31.G. Compactness. The next result, known as the Compactness The-
orem, is one of the cornerstones of mathematical logic. It was stated
(Theorem 4.46) for countable languages in Section 4.K.

Theorem 31.27. Assume either BPI or that L is well-orderable. If Σ ⊆
Sent(L) is finitely satisfiable, that is Mod(Σ0) ̸= ∅ for every finite Σ0 ⊆ Σ,
then Σ is satisfiable.

Proof. Let X = {x ⊆ Σ | x is finite} and for all x ∈ X choose Ax ⊨ x. Let
S(x) = {y ∈ X | x ⊆ y}. As S(x1) ∩ · · · ∩ S(xn) = S(x1 ∪ · · · ∪ xn), then
{S(x) | x ∈ X} ⊆P(X) is a base for the filter F on X. Let U ⊇ F be an
ultrafilter extending F . We want to show that for each σ ∈ Σ∏

U

Ax ⊨ σ.

This follows at once from Łos’ Theorem and from {x ∈ X | Ax ⊨ σ} ⊇
S({σ}) ∈ F ⊆ U . □

Remarks 31.28. (a) By Example 7.K.2, Theorem 31.27 generalizes the
Compactness Theorem 14.20 for propositional calculus.

(b) As the closed subclasses of Str(L) with respect to the topology defined
in (31.2) are the Mod(Σ)s, it follows that Theorem 31.27 says that this
topology is compact, whence the name.

(c) The proof of Theorem 31.27 given above uses the full power of the axiom
of choice, since for each x ∈ X we must choose an Ax which must be
well-orderable, in order to apply Łos’ Theorem 31.23. But Corollary 34.5
in Section 34 shows that the compactness theorem is provable under the
stated assumptions.

Let us recall several easy consequences of the compactness theorem form
Section 4.K:

• If Σ |= τ, then there is a finite Σ0 ⊆ Σ such that Σ0 |= τ (Corollary 4.47).
• If {σn | n ∈ ω} ∪∆′ is a system of axioms for ∆, and if for every n there

is an m > n such that {σ0, . . . ,σn} ∪ ∆′ ̸|= σm, then ∆ is not finitely
axiomatizable modulo ∆′ (Theorem 4.49).
• If C ,C0,C1 ⊆ Str(L) are axiomatizable and C0 ∪C1 = C and C0 ∩C1 = ∅,

then C0,C1 are finitely axiomatizable modulo C (Theorem 4.52).
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• If C ′ ⊆ C ⊆ Str(L) are axiomatizable and C ′ is not finitely axiomatizable
modulo C , then C \ C ′ is not axiomatizable (Theorem 4.53).

The following result is known as the Upward Löwenheim-Skolem
Theorem is a generalization of Theorem 4.48.

Theorem 31.29. Assume either BPI or that L is well-orderable. Suppose
for each n > 0 there is a model of Σ ⊆ Sent(L) with at least n elements.
(In particular this holds if Σ has an infinite model.) Then Σ has models of
arbitrarily large cardinality,

∀κ∃B ∈ Mod(Σ) (card(B) ≥ κ).

Proof. Let L̃ = L∪ {dα | α < κ} be the expansion of L with new constants,
and let Σ̃ = Σ ∪ {dα ̸≖ dβ | α < β < κ} ⊆ Sent(L̃). Let ∆ ⊆ Σ̃ be a finite
subset: then there exist n ∈ ω and {αi | i < n} ⊆ κ such that

∆ ⊆ Σ ∪ {dαi ̸≖ dαj | 0 ≤ i < j < n}.

Let A ⊨ Σ be a model with at least n elements a0, . . . , an−1 and let Ã be the
expansion of A to the language L̃ defined as follows:

dÃ
α =

{
ai if α = αi

a0 otherwise.

It is immediate to check that Ã ⊨ ∆. Therefore we have shown that Σ̃ is
finitely satisfiable. By compactness there is a model B̃ ⊨ Σ̃ whose cardinality
is at least that of κ, since dÃ

α ̸= dÃ
β when 0 < α < β < κ. Then B, the

reduction of B̃ to L, is the model we were looking for. □

Corollary 31.30. Assume L and A are well-orderable. If A is infinite, then

∀κ ≥ max (card(L), card(A))∃B (A ≼· B ∧ κ = card(B)) .

Proof. By Theorem 15.7 it is enough to find a model of EDiag(A) of size κ.
The theory EDiag(A) is satisfiable and has size ≤ κ, hence by Theorem 31.29
it has a model of cardinality ≥ κ which by Theorem 31.15 has an elementary
substructure of size κ. □

Corollary 31.31. Let Σ be a finitely axiomatizable theory in a language
L such that for every n > 0 there is a model of Σ with at least n elements.
(This encompasses the case when Σ has an infinite model.) Then

∀κ ∈ Card \ ω ∃A ∈ Mod(Σ) (card(A) = κ).

Proof. Let σ be an L-sentence that axiomatizes Σ, and let L0 be the finite
language whose non-logical symbols are exactly the symbols occurring in σ.
By compactness there is an L0-structure A of size ℵ0 such that A ⊨ σ, and by
the Löwenheim-Skolem Theorems 31.15 and 31.29 we can find L0-structures
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satisfying σ of any prescribed infinite cardinality. Since every L0-structure
satisfying σ can be expanded to a L-structure that is a model Σ, the result
is proved. □

Remark 31.32. The use of compactness in the proof of Corollary 31.31 in
order to get the countable A seems to require AC, but Exercise 34.14(ii) in
Section 34 shows that such A can be obtained irrespective of choice.

Corollary 31.33. Assume either BPI or that L is well-orderable. Let Σ be a
set of statements whose models are of finite size. Then the models of Σ have
uniformly bounded size, that is

∃n ∈ ω ∀A ∈ Mod(Σ) (card(A) ≤ n) .

Theorem 31.34. Assume BPI and suppose C is PC∆(L). Then A ∈ Str(L)
is embeddable in some structure in C if and only if every finitely generated
substructure of A is embeddable in some structure in C .

Proof. By replacing L with some larger L′, we may assume that C =
Mod(T ). If A ·⊆ B ∈ C , then every substructure of A embeds into B.
Conversely, suppose every finitely generated substructure of A embeds into
some structure of C . It is enough to show that Σ = Diag(A)∪T is satisfiable,
which follows at once from compactness and the assumption. □

Corollary 31.35 (BPI). Every field can be embedded into an algebraically
closed field.

Proof. □

31.G.1. Categoricity. A theory is

• categorical if it has a unique (up to isomorphism) model;
• κ-categorical if it has a unique (up to isomorphism) model of size κ,

where κ is an infinite cardinal;
• totally categorical if it has a unique (up to isomorphism) model of size
κ, for any infinite cardinal κ.

By the upward Löwenheim-Skolem Theorem, if T is categorical, then its
unique model is finite.

A deep theorem of Morley says that if a theory in a countable language
is κ-categorical for some κ > ω, then it is κ-categorical for all uncountable
cardinals κ. Thus a complete first-order theory in a countable language can
be totally categorical, never categorical, ω-categorical but not uncountably
categorical, or uncountably categorical but not ω-categorical. Here are some
examples.
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• The empty theory in the empty language is κ-categorical for every κ, since
a model is just a non-empty set and two sets are isomorphic just in case
they are in bijection.

• The theory of groups (even abelian ones) is never categorical, since
⊕

α<κ Z
and

⊕
α<κ Z/2Z have size κ but are not isomorphic.

• By Theorem 13.32 the theory of dense linear orders without endpoints is
ω-categorical, but it is not 2ℵ0-categorical (see Section 13.E.4). Therefore
the theory of dense linear orders without endpoints is not uncountably
categorical.

• The theory ACFp of algebraically closed fields of characteristic p, where p is
either prime or else p = 0, is uncountably categorical, but not ω-categorical.

Let us first argue that it is uncountably categorical. Let F ⊨ ACFp,
let F′ be its prime subfield, and let X ⊆ F be a transcendence base of
F over F′. Note that F′ is Z/pZ, if p is prime, or Q if p = 0; thus F′ is
countable. The transcendence base of X exists by Zorn’s Lemma and has
the cardinality of F, if F is uncountable. If X and Y are two transcendence
base for the fields F and G of equal characteristic, and if π : X → Y is a
bijection, then π extends to an isomorphism π : F→ G. Therefore, if F, G
are uncountable algebraically closed fields of the same characteristic, then
their transcendence bases have the same cardinality and hence they are
isomorphic. We have thus proved that ACFp is κ-categorical, if κ > ω. To
see that ACFp is not ω-categorical, consider two algebraically closed fields
with different finite transcendence degree.

The next result generalizes Theorem 4.37 that was stated without proof
in Chapter I.

Theorem 31.36. Assume AC. If Σ is a κ-categorical theory with only infinite
models and card(L) ≤ κ, then Σ is complete.

Proof. Suppose σ ∈ Sent(L) witnesses that Σ is not complete, and let A

and B be models of Σ satisfying σ and ¬¬¬σ, respectively. By assumption A

and B are infinite, and by the upward Löwenheim-Skolem Theorem 31.29 we
may assume that card(A), card(B) ≥ κ. By AC A and B are well-orderable,
so we may assume that card(A) = card(B) = κ by the downward Löwenheim-
Skolem Theorem 31.15. By κ-categoricity A ∼= B, against the assumption
that A ⊨ σ and B ⊨ ¬¬¬σ. □
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Exercises

Exercise 31.37. Show that if t is a closed term of the language of A, and
A′ is an expansion of A, and A ⊆ B, then tA = tA

′
= tB.

Exercise 31.38. Let L′ ⊆ L and φ ∈ Fml(L′). Show that A ⊨g φ ⇔ (A ↾
L′) ⊨g φ for all A ∈ Str(L) and all g : Vbl→ ∥A∥.

Exercise 31.39. Show that:

(i) A ⊨g φ∧∧∧ψ ⇔ (A ⊨g φ ∧A ⊨g ψ);
(ii) A ⊨g ∀∀∀xφ ⇔ ∀a ∈ ∥A∥ (A ⊨gx 7→a φ);
(iii) A ⊨g ¬¬¬¬¬¬φ ⇔ A ⊨g φ;
(iv) A ⊨g φ∨∨∨ψ ⇔ A ⊨g ¬¬¬ (¬¬¬φ∧∧∧¬¬¬ψ);
(v) A ⊨g φ⇒⇒⇒ψ ⇔ (A ⊨g φ ⇒ A ⊨g ψ);
(vi) A ⊨g (φ⇔⇔⇔ψ) ⇔ (A ⊨g φ ⇔ A ⊨g ψ).

Exercise 31.40. Generalize Proposition 31.7 to the case of formulæ with
blocks of quantifiers of the same kind (for example ∃∃∃y1∃∃∃y2 . . .∃∃∃ymφ, or
∀∀∀y1∀∀∀y2 . . .∀∀∀ymφ).

Exercise 31.41. Suppose that s, t are substitutable in φ for x. Show that
s ≖ t⇒⇒⇒

(
φLs/xM⇔⇔⇔φLt/xM

)
is valid.

Exercise 31.42. Show that the formulæ below are valid:

(i) ∃∃∃x (φ∨∨∨ψ)⇔⇔⇔ (∃∃∃xφ∨∨∨∃∃∃xψ).
(ii) ∀∀∀x (φ∧∧∧ψ)⇔⇔⇔ (∀∀∀xφ∧∧∧∀∀∀xψ).
(iii) ∃∃∃x (φ∧∧∧ψ)⇒⇒⇒ (∃∃∃xφ∧∧∧∃∃∃xψ).
(iv) (∀∀∀xφ∨∨∨∀∀∀xψ)⇒⇒⇒∀∀∀x (φ∨∨∨ψ).
(v) ∀∀∀x (φ⇒⇒⇒ψ)⇒⇒⇒ (φ⇒⇒⇒∀∀∀xψ), if x does not occur free in φ.

Exercise 31.43. Show that the following formulæ are not valid:

(i) (∃∃∃xφ∧∧∧∃∃∃xψ)⇒⇒⇒∃∃∃x (φ∧∧∧ψ).
(ii) ∀∀∀x (φ∨∨∨ψ)⇒⇒⇒ (∀∀∀xφ∨∨∨∀∀∀xψ).
(iii) ∀∀∀x (φ⇒⇒⇒ψ)⇒⇒⇒ (φ⇒⇒⇒∀∀∀xψ), if x occurs free in φ.

Exercise 31.44. Show that

(i) φ is valid if and only if φ∀ is valid;
(ii) φ is satisfiable if and only if φ∃ is satisfiable.

Exercise 31.45. If L′ ⊆ L and Σ,∆ ⊆ Sent(L′), then Σ |=L ∆ ⇔ Σ |=L′ ∆.
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Exercise 31.46. Let π : A→ B be a morphism. Show that:

(i) If π is an isomorphism then it is an elementary embedding.
(ii) If π is elementary then it is injective.
(iii) If A ⊨ φ[⃗a] ⇒ B ⊨ φ[π(⃗a)] for all formulæ φ and all a⃗, then π is

elementary.

Exercise 31.47. Let A,B ∈ Str(L).

(i) Show that the following are equivalent:
• A ·⊆ B,
• there is an expansion B̃ of B in the language L ∪ {̊a | a ∈ ∥A∥} such

that B̃ ⊨ Diag(A).
(ii) Show that the following are equivalent:
• A ≼ B,
• Ã ⊆ B̃ and Ã ≡ B̃, where Ã, B̃ are the expansions of A, B to ∥A∥.

Exercise 31.48. (i) If X ∈ DefnA({q1, . . . , qm}∪P ′) and {q1} , . . . , {qm} ∈
Def1A(P ) then X ∈ DefnA(P ∪ P ′).

(ii) Suppose R ∈ DefmA (P ) and X ∈ Defn⟨A,R⟩(Q), where ⟨A, R⟩ is the
expansion of A obtained by adding the relation R. Then X ∈ DefnA(P ∪
Q).

Exercise 31.49. Complete the proof of Proposition 4.29.

Exercise 31.50. Let L = {U} be the language with a 1-ary relational symbol.
The L-structures ⟨A,B⟩ are non-empty sets with a specified subset.

(i) How many L-structures of cardinality n are there, up to isomorphism?
How many of size κ ≥ ω?

(ii) Find a set of sentences Σ such that ⟨A,B⟩ ⊨ Σ if and only if A, B, A\B
are infinite.

Exercise 31.51. Let L be a countable language, and assume the following
weakening of the downward Löwenheim-Skolem Theorem 31.15: Every L-
structure has a countable elementary substructure. Show that:

(i) If L is the empty language, then there are no Dedekind-finite, infinite
sets (see page 353).

(ii) If L has infinitely many unary predicates, then ACω holds.
(iii) If L has a binary predicate symbol, then DC holds.

Exercise 31.52 (AC). Show that
∏

U R where U is a non-principal ultrafilter
on ω, is a non-Archimedean field which is elementarily equivalent to R.

Exercise 31.53 (BPI). Let G be a group with elements with arbitrarily
large finite torsion, e.g. the group of roots of unity {z ∈ C | ∃n ∈ Z (zn = 1)}.
Show that there is a group H a torsion-free element and such that G ≼· H.
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Exercise 31.54 (AC). Let k be a finite field. Show that:

(i) the theory of k-vector spaces is κ-categorical for all κ ≥ ω, but it is not
complete;

(ii) the theory of infinite dimensional k-vector spaces (see Exercise 9.33) is
κ-categorical for all κ ≥ ω and complete.

Exercise 31.55 (AC). Show that the following theories are ω-categorical,
but not κ-categorical for uncountable κs:

(i) The theory of the random graph.
(ii) The theory of atomless boolean algebras.

Exercise 31.56 (AC). Show that the theories of:

(i) of vector spaces over a countable infinite field k, (Section 9.B.3),
(ii) of divisible torsion-free abelian groups,
(iii) Σ(N,S), Σ(N,<) from Section 11.A,
(iv) of torsion-free divisible abelian groups,
(v) of Z-groups (see page 240),

are κ-categorical for κ > ω, but are not ω-categorical.

Exercise 31.57. Let L be the language for orders extended with a constant
symbol r̊ for each r ∈ R. Let T be the L-theory with axioms for dense linear
orders without endpoints and

• 0̊ ≖ 1̊⇒⇒⇒ r̊ ≖ 0̊ for each r ∈ R,
• 0̊ ̸≖ 1̊⇒⇒⇒ r̊ < s̊ for each r < s with r, s ∈ R.

Show that T is ω-categorical, but not complete.

Exercise 31.58 (AC). Given a first-order language L, show that:

(i) if Ci (i ∈ I) is axiomatizable, then
⋂

i∈I Ci is axiomatizable;
(ii) if C0 is axiomatizable and C1 is finitely axiomatizable, then C0 ∪ C1 is

axiomatizable;
(iii) if C0 = Mod(T0) and C1 = Mod(T1) where Ti is a countable set of

L-sentences,3 then C0 ∪ C1 is axiomatizable;
(iv) if the classes C ′ and Ci (i ∈ I) are axiomatizable and such that i < j ⇒

C ′ ⊇ Ci ⊃ Cj where (I,<) is totally ordered and without maximum,
then

⋂
i∈I Ci is not finitely axiomatizable modulo C ′;

(v) if the classes Ci (i ∈ I) are finitely axiomatizable modulo C ′ and are
such thati < j ⇒ Ci ⊂ Cj ⊆ C ′ where (I,<) is totally ordered and

3This is the case if L has countably many non-logical symbols—see Section 30.B.
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without maximum, then
⋃

i∈I Ci is not axiomatizable. Use this to give
a different proof of Theorem 4.48.

Exercise 31.59 (AC). Suppose C ⊆ Str(L) is EC and that C has structures
of arbitrarily large finite cardinality. Show that C ′ = {M ∈ C | card(M) < ω}
is not PC∆ and that C \ C ′ is PC and EC∆, but not EC.

Exercise 31.60. Let L be the language with a unary predicate symbol.
Show that:

(i) the class of all L-structures ⟨M,P ⟩ such that P and M \ P are both
infinite is EC∆ and not EC, and that the theory axiomatizing this class
is ω-categorical, but not κ-categorical, for κ > ω;

(ii) the class of all L-structures ⟨M,P ⟩ such that P ≍ M \ P is PC, but
not EC∆.

Exercise 31.61 (AC). Show that the following classes of L-structures are
PC(L) and EC∆(L) but not EC(L):

(i) the class of acyclic graphs, L = LGrph;
(ii) the class of all bipartite graphs, L = LGrph;
(iii) the class of all torsion-free abelian groups, L = LGrps.

Exercise 31.62 (AC). Show that the following classes of L-structures are
PC(L) but not EC∆(L):

(i) the class of homogeneous dense linear orders without endpoints, L =
LOrdr;

(ii) the class of ill-founded linear orders, L = LOrdr.

Exercise 31.63 (AC). Let C be PC. Show that {A ∈ C | A is uncountable}
is PC∆ but not PC.

Exercise 31.64. (i) An unfriendly coloring of a graph (V,E) is a map
c : V → 2 such that |{w ∈ V | w E v ∧ c(w) = c(v)}| ≤ |{w ∈ V |
w E v ∧ c(w) ̸= c(v)}|. Show that the class of graphs that admit an
unfriendly coloring is PC(LGrph).

(ii) Every finite graph admits an unfriendly coloring [AMP90]. Use the
Compactness Theorem to extend this result to locally finite graphs.

Exercise 31.65. Let L be a language with a binary relation symbol R
and let σ be the sentence ∀∀∀x∃∃∃y(x R y). Assume BPI together with the
negation of AC. By Exercise ???? fix a non-empty set A together with
R ⊆ A × A such that A = ⟨A,R⟩ satisfies σ, yet there is no f : A → A
such that ∀x ∈ A (x R f(x)), that is S(f) ̸= A for any f ∈ AA where
S(f) = {a ∈ A | a R f(a)}. Show that:
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(i) the family
{
S(f) | f ∈ AA

}
generates a proper ideal J on A,

(ii) the ultrapower
∏

U A does not satisfy σ, where U is any ultrafilter
extending J̌ .

Conclude that BPI together with Corollary 31.24 restricted to the language
L and to the ∀∃-statement σ imply AC.

Exercise 31.66. Show that AC is equivalent to each of the following state-
ments, which are variants of the downward and upward Löwenheim-Skolem
theorems.

(i) If A ∈ Str(L) is infinite, then for every infinite B ≾ ∥A∥ there is
B ∈ Str(L) such that ∥B∥ = B and B ≡ A.

(ii) Same as (i), but with L finite.
(iii) If A ∈ Str(L) has size ℵ0 and L is finite, then for every infinite set B

there is a B ∈ Str(L) such that ∥B∥ = B and B ≡ A.
(iv) Every A ∈ Str(L) such that card(L) ≤ card(A) has an elementary

substructure B such that card(B) ≤ card(L).

[Hint: using a binary function symbol to formalize ‘there is a pairing
function’ and apply Theorem 20.11 and Corollary 18.35.]

Exercise 31.67. Show that the Compactness Theorem 31.27 implies BPI.

Notes and remarks

Most of the applications of Łos’ Theorem 31.23 use the axiom of choice, but the statement of
the theorem, even extended to non-necessarily well-orderable structures, does not imply AC. In
fact the existence of non-principal ultrafilters is unprovable in MK or in ZF [Bla77], hence if
every ultrafilter is principal, then

∏
U Ax

∼= Ax0 where {x0} is the generator of U , hence Łos’
Theorem holds for trivial reasons. On the other hand, Exercise 31.65 (from [Bel09]) shows that
Łos’ Theorem and BPI imply AC.

32. Application of compactness

Throughout this section, assume always BPI, unless otherwise stated.

32.A. Undefinability results.

Proposition 32.1. Let G be a group with elements of arbitrarily large torsion,
that is ∀n ∃g ∈ G (n ≤ o(g) <∞). Then there is a group H with an element
of infinite torsion and such that G ≼· H.

Proof. Let Σ = EDiag(G) ∪ {cn ̸= 1 | n ≥ 1}, where c is a new symbol of
constant. Every finite subset of Σ is satisfied by an expansion of G and hence
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Σ is finitely satisfiable. Therefore a model of Σ is a group H with an element
of infinite order and such that G ≼· H. □

Proposition 32.2. Suppose G = ⟨V,E⟩ is a connected graph such that
∀k ∈ ω ∃v, w ∈ V (k ≤ d(v, w) <∞). Then there is a disconnected graph H
such that G ≼· H.

Proof. The theory EDiag(G) ∪ {d(c,d) > n | n ∈ ω}, where c,d are two
new symbols for constants, is finitely satisfiable—for any n we can always
find two vertices in G whose distance is greater than n. Therefore any model
of Σ is a graph H with two vertices in distinct connected components, and
such that G ≼· H. □

32.B. Non-standard models of arithmetic.
Part of this has been moved to section 8, so I need to revise this!

Recall from Section 12.D that the language LPA of Peano arithmetic (PA)
has S, 0,+, ·, < as non-logical symbols. If M = ⟨M ;SM ,+M , ·M , <M , 0M ⟩ is
a model of PA then the map F : N→M defined recursively by F (0) = 0M
and F (S(n)) = SM (F (n)) is an embedding and the standard part of M

ranF = NM = {SM (n) | n ∈ ω}

is an initial segment of ⟨M,<⟩. If NM = M then F is an isomorphism,
and M is said to be standard; otherwise it is said to be a non-standard
model of PA. A model of PA is a model of Presburger arithmetic, so by
the remarks after Proposition 11.23 the order structure of a non-standard
model of PA is N ⊎Q× Z with Q a dense linear order without endpoints. If
M is non-standard then NM has no least upper bound by Lemma 12.13, so
⟨M,<M ⟩ is not a well-order.

By the upward Löwenheim-Skolem Theorem 31.29 there are uncount-
able (necessarily non-standard) models of PA. Another way to obtain an
uncountable non-standard model of PA is to take

∏
U ⟨N, S, 0,+, ·, <⟩ with U

a non-principal ultrafilter on ω. If M is an inductive structure, that is if it
satisfies the second-order induction principle Ind2 on page 289 of Section 12.A,
then M is standard by Theorem 12.2, so Ind2 is not equivalent to a first-order
formula.

Theorem 32.3. Every satisfiable theory T in a language L ⊇ LPA such that
T |= PA has a non-standard model. Moreover, this model can be taken to be
countable, if L is countable.

Proof. Extend L to L′ = L ∪ {c} by adding a new constant symbol and
let Σ = T ∪ {S(n)(0) < c | n ∈ ω}. If Σ0 ⊆ Σ is finite, then Σ0 ⊆ T ∪{
S(n)(0) < c | n < k

}
for some k ∈ ω. If N is a model of T then let N′ be its
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expansion to L′ where we assign to c the value
(
S(k)(0)

)N. Then N′ ⊨ Σ0 and
since Σ0 is arbitrary, it follows that Σ is finitely satisfiable. By compactness
there is an L′-structure M′ such that M′ ⊨ Σ, hence its reduction M = M′ ↾ L
is a non-standard model of T . □

Remark 32.4. By Theorem 32.3 there are countable non-standard models
of PA, and by a result of Tennenbaum’s a countable non-standard model of
PA is not computable. Therefore there exist effectively axiomatizable theories
that have countable models, but without computable models.

32.C. The finite Ramsey Theorem. In Section 29 we proved Ramsey’s
Theorem 29.1 in the infinite case: for every infinite set A, if the elements of
[A]r are colored with k many colors, then there is an infinite H ⊆ A such
that [H]r is monochromatic. By the Compactness Theorem we can prove its
finite version.

Theorem 32.5 (Ramsey’s Theorem in the finite case). For all r, k, n > 0
there is m such that every coloring f : [m]r → k has a monochromatic subset
H ⊆ m of cardinality n.

Proof. For ease of notation assume r = 2. Fix k ≥ 2. Consider the language
L with k many 2-ary predicate symbols C0, . . . ,Ck−1 that represent the
colors. Consider the set of sentences asserting that every unordered pair is
colored with a single color and that there are infinitely many elements:

(i) ∀∀∀x∀∀∀y (Ch(x,y)⇒⇒⇒Ch(y,x)), for all h < k,

(ii) ∀∀∀x∀∀∀y
(
x ̸≖ y⇒⇒⇒

∨
h≤k Ch(x,y)

)
,

(iii) ¬¬¬∃∃∃x∃∃∃y (Ch(x,y)∧∧∧Ci(x,y)), for all h < i < k,
(iv) ε≥n, for n > 1, where ε≥n is the statement defined on page 18.

By (iv) if an L-structure A =
〈
A,CA

0 , . . . ,C
A
k−1

〉
satisfies Σ then A is

infinite, and setting C̄i = {{x, y} ∈ [A]2 | (x, y) ∈ CA
i }, the sets C̄0, . . . , C̄k−1

are pairwise disjoint and C̄0 ∪ · · · ∪ C̄k−1 = [A]2. Conversely, if A is infinite
and [A]2 is colored with k many colors, that is there are C̄0, . . . , C̄k−1 pairwise
disjoint subsets of A such that C̄0 ∪ · · · ∪ C̄k−1 = [A]2, then letting CA

i =
{(x, y) | {x, y} ∈ C̄i} one has that A ⊨ Σ. Fix a model A of Σ. By the
infinite Ramsey Theorem 29.1 there is an infinite homogeneous subset of A.
For any given n, A satisfies the statement φn saying:

(φn) There are distinct elements x0, . . . ,xn−1 such that [{x0, . . . ,xn−1}]2
is monocrhomatic of color Ch, for some h < k

in symbols

∃∃∃x0 . . .∃∃∃xn−1

[ ∧
i<j<n

xi ̸≖ xj∧∧∧
(∨
h<k

∧
i<j<n

Ch(xi,xj)
)]
.
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As A ∈ Mod(Σ) is arbitrary, this proves that Σ |= φn for every n. By
compactness, given n there is a finite Σ′ ⊂ Σ such that Σ′ |= φn. Let m be
largest such that ε≥m ∈ Σ′. A coloring of [m]2 with k colors induces a model
A′ of Σ′ of size m. As A′ ⊨ φn, there is a monochromatic H ⊂ m of size
n. □

32.D. Further applications*.
32.D.1. Proof of Proposition 11.16. Since isomorphic structures can be iden-
tified, Proposition 11.16 follows form the next result.

Proposition 32.6. Let L be a language with at least one constant symbol c, let
T be an L-theory, and let φ(y,x1, . . . ,xn) be an L-formula that is conjunction
of atomic and negated atomic formulæ. The following are equivalent:

(a) there is a quantifier-free L-formula θ(x1, . . . ,xn) with the same free
variables as ∃∃∃yφ such that

T |= ∀∀∀x⃗[∃∃∃yφ⇔⇔⇔θ]

(b) if M and N are models of T and K is an L-structures contained in
M ∩N , then

M ⊨ ∃∃∃yφ[a1, . . . , an] ⇔ N ⊨ ∃∃∃yφ[a1, . . . , an],

for all a1, . . . , an ∈ K.

Proof. The only non-trivial direction is (b)⇒(a). Suppose φ(y, x1, . . . , xn) is
as above. If T |= ∀∀∀x⃗∃∃∃yφ, then take θ(x1, . . . ,xn) to be x1 ≖ x1∧∧∧ . . .∧∧∧xn ≖
xn, if n ≥ 1, or c ≖ c otherwise. Similarly, if T |= ∀∀∀x⃗¬¬¬∃∃∃yφ, then take
θ(x1, . . . ,xn) to be x1 ̸≖ x1∧∧∧ . . .∧∧∧xn ̸≖ xn, if n ≥ 1, or c ̸≖ c otherwise.
Therefore we may assume that

finish

□

32.D.2. Lefschetz’s principle.

Theorem 32.7. For every σ ∈ Sent(LRings), the following are equivalent:

(1) ACF0 |= σ.
(2) σ holds in some algebraically closed field of characteristic 0.
(3) σ holds in every algebraically closed field of sufficiently large finite

characteristic, that is ∃n∀p > n ACFp |= σ.
(4) ∀n∃p > n∃F(F ⊨ ACFp ∧σ).

Proof. Conditions (1) and (2) are equivalent, since ACF0 is complete. If (1)
holds, then by compactness ACFp |= σ for all sufficiently large primes p, so
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(3) holds. Since (3) implies (4) trivially, it is enough to show that (4) implies
(2). Choose primes pn and fields Fn such that pn < pn+1 and Fn ⊨ ACFpn ∧σ.
Let U be an ultrafilter on ω such that {pn | n ∈ ω} ∈ U . Then F =

∏
U Fn

satisfies σ and charF = 0. □

32.D.3. Rings of algebraic integers.

Theorem 32.8. Let R be an integral domain such that any element belongs
to finitely many prime ideals, if any.4 Let σ be a statement of LCRings ∪ {̊a |
a ∈ R}. Then σ holds in every field extending R if and only if σ holds in
every fields extending R/I, for all but finitely many prime ideals I.

Proof. The theorem is trivially true if R has finitely many prime ideals, so
assume otherwise. By assumption ΣFlds ∪Diag(R) |= σ, so by compactness
there are τ1, . . . ,τn ∈ Diag(R) such that ΣFlds ∪ {τ1, . . . ,τn} |= σ. The
statements τi are either atomic formulæ, that is of the form

å ≖ b̊, å+ b̊ ≖ c̊, å · b̊ ≖ c̊

with a, b, c ∈ R, or else they are negated atomic formulæ. Note that the
formula ¬¬¬(̊a+ b̊ ≖ c̊) is logical consequence of the formulæ å+ b̊ ≖ d̊ and
¬¬¬(̊c ≖ d̊), where d = a+ b ∈ R; similarly ¬¬¬(̊a · b̊ ≖ c̊) is logical consequence of
the two formulæ å · b̊ ≖ d̊ and ¬¬¬(̊c ≖ d̊), where d = a · b ∈ R. Finally formulæ
of the form ¬¬¬(̊a ≖ b̊) with a, b ∈ R\{0R} are logical consequence of ¬¬¬(̊c ≖ 0),
with c = a − b ∈ R \ {0R}. Therefore we may assume that the statements
τ1, . . . ,τn are either positive or else of the form ¬¬¬(̊a ≖ 0) with a ∈ R \ {0R}.
Let a1, . . . , am be the non-zero elements of R such that å1, . . . , ån are the
constants occurring in the τi. By assumption, there is a finite number,
possibly zero, of prime ideals I that contain {a1, . . . , am}. Given such an
ideal, let π : R→ R/I be the canonical projection: this preserves the positive
statements, and since π(aj) ̸= 0R/I it also preserves statements of the form
¬¬¬(̊a ≖ 0). Then R/I, or better: its canonical expansion to the language
LCRings ∪ {̊a | a ∈ R}, satisfies {τ1, . . . ,τn}, whence every field extending it
satisfies σ. □

Recall that a polynomial f ∈ R[X1, . . . , Xn] is irreducible on R if it
cannot be factorized as f = g · h, with non-constant g, h ∈ R[X1, . . . , Xn].
It f is irreducible on every field extending R we say that it is absolutely
irreducible on R.

Corollary 32.9. Let R be an integral domain such that every element belongs
to finitely many prime ideals, if any, and suppose that f ∈ R[X1, . . . , Xn] is
absolutely irreducible on R. Then f is absolutely irreducible on R/I, for all
but finitely many prime ideals I.

4For example, the ring of algebraic integers of an extension of the rationals.



Exercises 559

Proof. It is enough to check that the property “f is irreducible” is formal-
izable as a statement of LCRings ∪ {̊a | a ∈ R}: for every pair (d1, d2) such
that d = d1 + d2 and 1 ≤ d1, d2, consider the statement σ(d1,d2) asserting
that f cannot be factorized in polynomials od degree d1 and d2, then take
the conjunction of these statements. □

Exercises

Exercise 32.10. Use Hall’s Theorem 14.26 to prove that the following are
consequences of BPI.

(i) Two bases of a vector space are in bijection.
(ii) Two transcendence bases of a field are in bijection.
(iii) If A is a family of non-empty finite sets such that |A1∪ · · · ∪An| ≥ n for

any choice of distinct A1, . . . , An ∈ A, then there is an injective choice
function f : A→

⋃
A.

Exercise 32.11. Show that there is A a countable family of countable sets
such that |A1 ∪ · · · ∪ An| ≥ n for distinct A1, . . . , An ∈ A, and yet there is
no injective choice function. (Contrast this with Exercise 32.10(iii).) Use
this to construct a bipartite graph ⟨A ⊎B,E⟩ such that |A| = |B| = ω and
n+ 1 ≤ |{b ∈ B | ∃i ≤ n (b E ai)}| for distinct a0, . . . , an ∈ A, and yet there
is no injective f : A→ B such that ∀a ∈ A (a E f(a)).

Exercise 32.12. Show that relation of logical consequence is a pre-order on
P(Sent(L)) whose minimal elements are unsatisfiable theories.

Exercise 32.13. Use the Compactness Theorem to show that:

(i) An abelian group is orderable (see page ??) if and only if any of its
finitely generated subgroup is orderable.

(ii) A graph is k-colorable if and only if any its finite subgraph is k-colorable.
(iii) An ordered set is the union of ≤ k chains if and only if every finite

suborder is the union of ≤ k chains, where 1 ≤ k < ω. Prove a similar
result with “independent set” instead of “chain” (see page 43 for the
definition of independent set).

Exercise 32.14. Let ⟨P,≤⟩ be an ordered set.

(i) Show that if P is the union of n chains, then every independent subset
of P has size ≤ n.

(ii) Dilworth proved the converse of (i) for finite orders: If P is finite and
every independent subset has cardinality ≤ n, then there are chains
C0, . . . , Cn−1 ⊆ P such that

⋃
i<nCi = P .
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Generalize this to arbitrary orders.

Exercise 32.15. Recall (see page 102) that a total order is homogeneous if
given two elements a, b of the order there is an automorphism mapping a to b;
it is ultrahomogeneous if any partial isomorphism between two finite subsets
of the same size can be extended to an automorphism. Use Exercise 4.90 to
show that the classes of total orders that are homogeneous and those that
are ultrahomogeneous are, respectively, PC and PC∆ but not EC∆ in the
language LOrdr.

Exercise 32.16. Suppose ⟨P,≤⟩ is an ordered set with chains of length
≥ n, for each n ∈ ω. Show that there is an ordered set ⟨P ∗,≤∗⟩ which is
ill-founded and such that ⟨P,≤⟩ ≼· ⟨P ∗,≤∗⟩ and |P | = |P ∗|. In particular,
the class of well-founded orders is not PC∆.

Exercise 32.17. Let U be an ultrafilter on a set I ̸= ∅ and let Ai ∈ Str(L),
with i ∈ I. Show that if L′ ⊆ L then(∏

U

Ai

)
↾ L′ =

∏
U

(
Ai ↾ L

′) .
Conclude that a PC∆ class is closed under ultraproducts.

Exercise 32.18. Show that every ordered field has a non-Archimedean
elementary extension.

Exercise 32.19. Prove the infinite Ramsey’s Theorem 29.1 from its finite
version (Theorem 32.5).

Exercise 32.20. Show that an abelian group is simple if it is isomorphic to
Z(p) for some prime p. Conclude that the class of simple groups is not PC∆.

Exercise 32.21. Show that the class of connected graphs is not axiomatiz-
able.

Exercise 32.22. Show that if Σ is a set of sentences in an arbitrary language
which has finite models of arbitrarily large cardinality, then it has a model
M whose universe is the surjective image of R. Therefore assuming AC (or
even just that R is well-orderable) cardM ≤ 2ℵ0 .

Give an example of a theory (in a necessarily uncountable language) with
finite models of arbitrarily large size, that has a model of cardinality of the
continuum, but has no infinite model of size strictly less than the cardinality
of R.

Exercise 32.23. Let T be a theory in the language L′ ⊇ L. Show that
M ∈ Str(L) is embeddable in a model of T if and only if every finitely
generated substructure of M is embeddable in a model of T .
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Exercise 32.24. Show that if f1, . . . , fn ∈ Q[x1, . . . , xm] the system
f1(x1, . . . , xm)

...

fn(x1, . . . , xm)

has at most k solutions in an extension of Q if and only if the system has at
most k solutions in field of characteristic p, for all but finitely many primes p.

Repeat the exercise when at most is replaced by exactly and by at least.

Exercise 32.25. (i) Show that a graph with vertices with arbitrarily high
degree is elementarily embeddable in a graph containing a degree with
infinite order.

(ii) A graph is locally finite if every vertex has finite degree. Show that
the class of locally finite graphs is not PC∆.

33. Syntax

33.A. Derivations. A logical axiom for a language L is an L-sentence
that is either a tautology axiom, or else an equality axiom (Section 31.D.2),
or else an axiom for quantification (Section 31.D.3). The set of all logical
axioms for L is LAx(L). Let us recall the Modus Ponens rule, first seen
on page 9: infer φ from ψ⇒⇒⇒φ and ψ, in symbols

(MP) ψ⇒⇒⇒φ ψ
φ

.

In what follows Σ is an L-theory, for some fixed L.

Definition 33.1. The set of all theorems of Σ is the smallest subset
Thm(Σ) of Sent(L) containing Σ ∪ LAx(L), and closed under (MP).

We write Σ ⊢L φ for φ ∈ Thm(Σ). In order to say that a sentence φ is
a theorem of Σ we need to derive φ from Σ.

Definition 33.2. A derivation from Σ is a finite sequence of L-sentences
⟨φ0, . . . ,φn⟩ such that for all i ≤ n:

(1) φi ∈ Σ ∪ LAx(L), or else

(2) there are j, k < i such that φi is obtained from φj and φk via (MP).

A sentence σ is derivable from Σ if there is a derivation ⟨φ0, . . . ,φn⟩ from
Σ such that σ = φn.
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Therefore σ is derivable from Σ if and only if σ ∈ Thm(Σ) =
⋃

n∈ω Σn

where

Σ0 = Σ ∪ LAx(L)

Σn+1 = Σn ∪ {φ | ∃ψ (ψ ∈ Σn ∧ ψ⇒⇒⇒φ ∈ Σn)}.

Note that an initial segment of a derivation from Σ is still a derivation from
Σ. When the language L is clear from the context, we just write Σ ⊢ φ; if
Σ = {ψ} or Σ = ∅, we write, respectively, ψ ⊢ φ and ⊢ φ.

Remarks 33.3. (a) If Σ ⊢L σ, and Σ ⊆ Σ′ ⊆ Sent(L′) with L′ ⊇ L, then
Σ′ ⊢L′ σ.

(b) The relation ⊢ is transitive: if Σ ⊢ σ and σ ⊢ τ, then Σ ⊢ τ.
(c) Σ ⊢ σ if and only if Σ0 ⊢ σ for some finite Σ0 ⊆ Σ.

By 31.D.3, 31.D.2 and by Corollary 31.10, every logical axiom is valid.
The following Soundness Theorem shows that derivations yield logical

consequences.

Theorem 33.4. If Σ ∪ {σ} ⊆ Sent, then Σ ⊢ σ ⇒ Σ |= σ.

Proof. Suppose A ⊨ Σ and let ⟨φ0, . . . ,φn⟩ be a derivation from Σ. It is
enough to check by induction on i ≤ n that A ⊨ φi. If φi is a logical axiom
or else φi ∈ Σ the result is immediate, hence we may assume that φi is
obtained via (MP) from φj and φk = φj⇒⇒⇒φi for j, k < i. Then A ⊨ φj

and A ⊨ φj⇒⇒⇒φi by inductive assumption, so A ⊨ φi. □

33.B. Derived inference rules. In the official definition of derivation only
the Modus Ponens rule is allowed, but several other rules, called derived rules,
can be used inside a derivation. These derived rules are just abbreviations
for longer arguments using (MP).

Tautological consequence rule. If φ is tautological consequence of ψ1,
. . . , ψn, then φ is obtained from ψ1, . . . , ψn, that is to say: if Σ ⊢ ψ1, . . . ,
Σ ⊢ ψn, then Σ ⊢ φ.

Proof. Saying that φ is tautological consequence of ψ1, . . . , ψn amounts to
saying that ψ1⇒⇒⇒(ψ2⇒⇒⇒ . . . (ψn⇒⇒⇒φ) . . . ) is a tautology, so φ follows from
repeated applications of (MP). □

As φ0∧∧∧φ1 is tautological consequence of φ0,φ1 and since φi is tauto-
logical consequence of φ0∧∧∧φ1 we obtain

Conjunction rule. Σ ⊢ φ and Σ ⊢ ψ if and only if Σ ⊢ φ∧∧∧ψ.

As ψ is tautological consequence of φ⇒⇒⇒ψ and ¬¬¬φ⇒⇒⇒ψ one has the:
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Proof-by-cases rule. If Σ ⊢ φ⇒⇒⇒ψ and Σ ⊢ ¬¬¬φ⇒⇒⇒ψ then Σ ⊢ ψ.

As φ⇒⇒⇒ψ is tautologically equivalent to ¬¬¬ψ⇒⇒⇒¬¬¬φ one has the:

Contraposition rule. Σ ⊢ φ⇒⇒⇒ψ if and only if Σ ⊢ ¬¬¬ψ⇒⇒⇒¬¬¬φ.

∀∀∀-elimination rule. If Σ ⊢ ∀∀∀x1 . . .∀∀∀xnφ and t1, . . . , tn are closed terms,
then Σ ⊢ φLt1/x1, . . . , tn/xnM.

Proof. Suppose n = 1. By the contraposition rule applied to the type (B) ax-
iom for quantification ¬¬¬φLt/xM⇒⇒⇒∃∃∃x¬¬¬φ, we have ⊢ ¬¬¬∃∃∃x¬¬¬φ⇒⇒⇒¬¬¬¬¬¬φLt/xM.
By the tautological consequence rule and by definition of ∀∀∀, we have that
⊢ ∀∀∀xφ⇒⇒⇒φLt/xM, so if Σ ⊢ ∀∀∀xφ then Σ ⊢ φLt/xM.

The case n > 1 follows by induction and by the fact that since t1, . . . , tn
are closed, then φLt1/x1, . . . , tn/xnM = (φLt1/x1, . . . , tn−1/xn−1M)Ltn/xnM.

□

Remark 33.5. By Remark 31.11(b), the ∀∀∀-elimination rule applies also
when φ is a sentence, so that Σ ⊢ ∀∀∀x1 . . .∀∀∀xnφ⇒ Σ ⊢ φ.

Since φLt1/x1, . . . , tn/xnM⇒⇒⇒∃∃∃x1 . . .∃∃∃xnφ is a type (B) axiom for quan-
tification, then by (MP) we have at once the:

∃∃∃-introduction rule. If Σ ⊢ φLt1/x1, . . . , tn/xnM then Σ ⊢ ∃∃∃x1 . . .∃∃∃xnφ.

Dummy quantifiers rule. Suppose that φ ∈ Sent. Then Σ ⊢ φ if and
only if Σ ⊢ ∀∀∀x1 . . .∀∀∀xnφ if and only if Σ ⊢ ∃∃∃x1 . . .∃∃∃xnφ.

Proof. Suppose Σ ⊢ φ: by repeated applications of (MP) to the type (A)
axioms for quantification

φ⇒⇒⇒∀∀∀xnφ, ∀∀∀xnφ⇒⇒⇒∀∀∀xn−1∀∀∀xnφ, . . . ∀∀∀x2 . . .∀∀∀xnφ⇒⇒⇒∀∀∀x1 . . .∀∀∀xnφ

one has Σ ⊢ ∀∀∀x1 . . .∀∀∀xnφ. The converse implication follows from the ∀∀∀-
elimination rule, so Σ ⊢ φ if and only if Σ ⊢ ∀∀∀x1 . . .∀∀∀xnφ.

The other equivalence is left to the reader. □

Lemma 33.6. If Σ ∪ {σ} ⊢ φ then Σ ⊢ σ⇒⇒⇒φ.

Proof. Suppose ⟨φ0, . . . ,φn⟩ is a derivation of φ from Σ ∪ {σ}. We prove
by induction on i ≤ n that Σ ⊢ σ⇒⇒⇒φi. We take cases:

• If φi ∈ Σ ∪ LAx(L), then ⟨φi⇒⇒⇒(σ⇒⇒⇒φi),φi,σ⇒⇒⇒φi⟩ is a derivation in
Σ.
• If φi = σ then σ⇒⇒⇒φi is a tautology, hence it is derivable.
• Ifφi follows by (MP) fromφm andφk, where m, k < i andφk isφm⇒⇒⇒φi,

then by inductive assumption Σ ⊢ σ⇒⇒⇒φm and Σ ⊢ σ⇒⇒⇒(φm⇒⇒⇒φi). As
σ⇒⇒⇒φi is tautological consequence of σ⇒⇒⇒(φm⇒⇒⇒φi) and of σ⇒⇒⇒φm,
then Σ ⊢ σ⇒⇒⇒φi by the rule of tautological consequence.
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Therefore Σ ⊢ σ⇒⇒⇒φi for all i ≤ n, as required. □

In mathematics, when proving ∀∀∀xφ(x) one usually argues as follows: take
a generic element c and show that φ holds for c; as c is arbitrary, one obtains
∀∀∀xφ(x). The next result justifies the correctness of this argumentation.

Theorem 33.7. Let Σ ⊆ Sent(L), let φ be an L-formula with exactly one
free variable x, and let c be a new constant symbol. Then

Σ ⊢L ∀∀∀xφ ⇔ Σ ⊢L∪{c} φLc/xM.

Proof. If Σ ⊢L ∀∀∀xφ then Σ ⊢L∪{c} ∀∀∀xφ, and hence Σ ⊢L∪{c} φLc/xM by
the ∀∀∀-elimination rule.

Conversely, suppose ⟨ψ0, . . . ,ψn⟩ witnesses that Σ ⊢L∪{c} φLc/xM. By
taking a subset of Σ if needed, we may assume that every sentence in Σ is
used in this derivation, that is Σ ⊆ {ψ0, . . . ,ψn}. Pick a variable y that
does not occur in any ψi, and let ψ′

i = ψi[y/x] be the expression obtained
from ψi by replacing x with y. Then each ψ′

i is an L∪ {c}-sentence, and let
Σ′ = {ψ′

i | ψi ∈ Σ}.

Claim 33.7.1. ⟨ψ′
0, . . . ,ψ

′
n⟩ is a derivation from Σ′ in L ∪ {c} of φLc/xM.

Proof. If ψi ∈ Σ, then ψ′
i ∈ Σ′. If ψi is either an equality axiom, or a

tautology axiom, or else an axiom for quantification then ψ′
i is an axiom of

the same kind. If ψi is obtained via (MP) from ψj and ψk = ψj⇒⇒⇒ψi with
j, k < i then by inductive assumption Σ′ ⊢L∪{c} ψ′

j and Σ′ ⊢L∪{c} ψ′
j⇒⇒⇒ψ′

i,
so Σ′ ⊢L∪{c} ψ′

i by (MP).
Finally observe that ψ′

n = ψn = φLc/xM. □

Letting φi = ψ
′
i[x/c], each φi is an L-formula, and φn = φ.

Claim 33.7.2. Σ′ ⊢L ∀∀∀xφi, for i ≤ n.

Proof. If ψ′
i ∈ Σ′, then c does not occur in it so φi = ψ′

i, and since
φi⇒⇒⇒∀∀∀xφi is a type (A) axiom for quantification, then Σ′ ⊢ ∀∀∀xφi. If ψ′

i is a
logical axiom of some kind (tautology, equality, quantification), then ∀∀∀xφi is a
logical axiom of the same kind, so Σ′ ⊢ ∀∀∀xφi. If ψ′

i follows by (MP) from ψ′
j

and ψk = ψ′
j⇒⇒⇒ψ′

i with j, k < i, then by inductive hypothesis Σ′ ⊢L ∀∀∀xφj

and Σ′ ⊢L ∀∀∀x(φj⇒⇒⇒φi), and since ∀∀∀x(φj⇒⇒⇒φi)⇒⇒⇒(∀∀∀xφj⇒⇒⇒∀∀∀xφi) is a
type (D) axiom for quantification, then Σ′ ⊢L ∀∀∀xφi by (MP). □

Finally, if ⟨τ′0, . . . ,τ′m⟩ witnesses that Σ′ ⊢L ∀∀∀xφ, then ⟨τ0, . . . ,τm⟩
witnesses that Σ ⊢L ∀∀∀xφ where τi = τ′i[x/y]. □

Corollary 33.8. If Σ∪{σ} ⊆ Sent(L) and c is a new symbol for a constant,
then Σ ⊢L∪{c} σ if and only if Σ ⊢L σ.
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Proof. If Σ ⊢L∪{c} σ then Σ ⊢L ∀∀∀xσ, so that Σ ⊢L σ by the ∀∀∀-elimination
rule and Remark 33.5.

The other implication is trivial. □

33.C. Consistency. We say that Σ ⊆ Sent(L) is inconsistent if Σ ⊢L φ
and Σ ⊢L ¬¬¬φ for some sentence φ; otherwise Σ is consistent. Equivalently,
by the conjunction rule, Σ is consistent if and only if Σ ⊢L φ∧∧∧¬¬¬φ for some
statement φ. As every sentence is tautological consequence of a propositional
contradiction, Σ is inconsistent if and only Sent = Thm(Σ).

Proposition 33.9. Let Σ ∪ {σ} ⊆ Sent(L).

(a) Σ is consistent if and only if every finite subset is so;
(b) if C ⊆ P(Sent(L)) is upward directed under ⊆ and if all Σ ∈ C are

consistent, then
⋃
C is consistent;

(c) Σ ∪ {σ} is consistent if and only if Σ ̸⊢ ¬¬¬σ.

Proof. (a) Any derivation of a contradiction from Σ uses only a finite number
of statements from Σ.

(b) If
⋃
C were inconsistent, then there would be φ1, . . . ,φn ∈

⋃
C such

that {φ1, . . . ,φn} is inconsistent. Choose Σi ∈ C such that φi ∈ Σi, and let
Σ ∈ C containing all Σis. Then Σ would be inconsistent.

(c) If Σ ⊢ ¬¬¬σ, then Σ∪{σ} ⊢ σ∧∧∧¬¬¬σ. Conversely suppose that Σ∪{σ}
is inconsistent: then Σ ∪ {σ} ⊢ σ∧∧∧¬¬¬σ. By Lemma 33.6, Σ ⊢ σ⇒⇒⇒(σ∧∧∧¬¬¬σ)
hence Σ ⊢ (σ∨∨∨¬¬¬σ)⇒⇒⇒¬¬¬σ. But σ∨∨∨¬¬¬σ is a tautology, hence by (MP)
Σ ⊢ ¬¬¬σ. □

If ∆ ⊆ Sent(L), the relation

φ ⪯∆ ψ ⇔ ∆ ∪ {φ} ⊢L ψ

is a pre-order on Sent(L) and the induced equivalence relation ∼∆ is called
equi-derivability modulo ∆, and φ ∼∆ ψ reads ‘φ and ψ are equi-
derivable modulo ∆’. Therefore ∆ is consistent if and only if the relation
∼∆ is non-trivial. If ∆ ⊆ Σ then the equivalence relation ∼∆ refines ∼Σ,
that is to say φ ∼∆ ψ ⇒ φ ∼Σ ψ. By Lemma 33.6,

σ ∼∆ τ ⇔ ∆ ⊢ (σ⇔⇔⇔τ) .

The quotient
Lnd∆(L) = Sent(L)/∼∆

with the induced order is a bounded, complemented, distributive lattice, with
the operations [σ]⋎ [τ] = [σ∨∨∨τ], [σ]⋏ [τ] = [σ∧∧∧τ], [σ]∗ = [¬¬¬σ]. If ∆ is
consistent, then 1 ̸= 0 so it is a boolean algebra, called the Lindenbaum
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algebra generated by ∆. When ∆ = ∅ we simply write Lnd(L) or Lnd, if
L is clear from the context.

An L-theory Σ is

• syntactically closed if Σ = Thm(Σ);
• semantically closed if Σ |= σ implies σ ∈ Σ;
• syntactically complete if Σ ⊢ σ⇔ Σ ̸⊢ ¬¬¬σ for every σ ∈ Sent(L);
• semantically complete if Σ |= σ⇔ Σ ̸|= ¬¬¬σ for every σ ∈ Sent(L).

By the Soundness Theorem 33.4 a semantically closed theory is syntactically
closed, and a syntactically complete theory is semantically complete. The
converse implications follow from the Completeness Theorem 34.3, so, after
this will be proved, we will simply talk of closed/complete theories. (A seman-
tically complete theory is what was called a complete theory in Definition 3.31
in Section 3.F of Chapter I.) Note that a syntactically/semantically closed
theory Σ is syntactically/semantically complete if and only σ /∈ Σ⇔ ¬¬¬σ ∈ Σ.

Proposition 33.10. Suppose Σ,∆ ⊆ Sent(L) and that Σ is consistent. Let
F = {[σ] | σ ∈ ∆} ⊆ LndΣ.

(a) Σ ∪∆ is consistent if and only if the filter generated by F is proper.

(b) Suppose ∆ ⊇ Σ is syntactically closed. Then F is a filter, and [σ] ∈ F
implies that σ ∈ ∆ for any σ ∈ Sent(L).

(c) Suppose ∆ ⊇ Σ is syntactically closed. Then ∆ is syntactically complete
if and only if F is an ultrafilter.

Proof. (a) The filter generated by F is ↑{[
∧
∆0] | ∆0 ⊆ ∆ is finite}. It is

proper if and only if there is no finite ∆0 ⊆ ∆ such that Σ∪∆0 is inconsistent
if and only if Σ ∪∆ is consistent, by Proposition 33.9.

(b) If σ1,σ2 ∈ ∆, then σ1∧∧∧σ2 ∈ ∆ by syntactic closure, so [σ1]⋏ [σ2] ∈
F . If σ ∈ ∆ and [σ] ≤ [τ], then Σ ⊢ σ⇒⇒⇒τ, so ∆ ⊢ τ by (MP), and hence
[τ] ∈ F . Therefore F is a filter.

Towards a contradiction, suppose [σ] ∈ F and σ /∈ ∆. Then there is
τ ∈ ∆ such that Σ ⊢ τ⇔⇔⇔σ, and hence ∆ ⊢ σ by (MP), so that σ ∈ ∆ by
syntactic closure: a contradiction.

(c) By part (b) we have that F is a filter.
Suppose ∆ is syntactically complete. Then ∆ is consistent, and hence F

is proper by part (a); moreover if [σ] /∈ F then σ /∈ ∆ so that ¬¬¬σ ∈ ∆ and
hence [¬¬¬σ] = [σ]∗ ∈ F . Therefore F is an ultrafilter.

Conversely suppose F is an ultrafilter. By part (b), if σ /∈ ∆ then [σ] /∈ F
, so [¬¬¬σ] ∈ F , and hence ¬¬¬σ ∈ ∆. □
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Corollary 33.11. The map Σ 7→ {[σ] | σ ∈ Σ} is a bijection between the set
of all syntactically closed and complete L-theories and St(Lnd(L)).

From the previous results we obtain at once the next result, known as
Lindenbaum’s Lemma.

Lemma 33.12. Let L be a first-order language, and assume BPI(Lnd(L)).
Every consistent set of L-sentences can be extended to a maximal consistent
set of L-sentences.

Note that if L is well-orderable, then so is Sent(L) and therefore Lnd(L)
is well-orderable, so that BPI(Lnd(L)) holds.

Exercises

Exercise 33.13. Show that:

(i) The Lindenbaum algebra LndΣ(L) is indeed a boolean algebra whenever
Σ is consistent.

(ii) If Σ ⊆ Sent(L) is consistent and maximal, then it is syntactically closed.
(iii) Σ ⊆ Sent is semantically closed if and only if Σ = Th(Mod(Σ)).

Exercise 33.14. Show that Thm(Σ) can be seen as the closure of a suitable
induction system (Sent,F,Σ) (see Section 7.A.1).

Exercise 33.15. For X a topological space, let ≈ be the equivalence relation
on X defined by x ≈ y ⇔ Cl {x} = Cl {y}.

(i) Describe the open sets of the quotient space X/≈ and show that X/≈
is T0.

(ii) Use the Completeness Theorem 34.3 to show that Str(L)/≈ is homeo-
morphic to St(Lnd(L)).

34. The completeness theorem

Proposition 34.1. If Mod(Σ) ̸= ∅ then Σ is consistent. In other words: a
satisfiable set of sentences is consistent.

Proof. Suppose that Σ ⊆ Sent is inconsistent, that is Σ ⊢ σ∧∧∧¬¬¬σ. Then
Σ |= σ∧∧∧¬¬¬σ, thus if A is a model of Σ, then A ⊨ σ∧∧∧¬¬¬σ: a contradiction.
Therefore Σ is unsatisfiable. □

The next result shows that the converse of the Soundness Theorem 33.4
and of Proposition 34.1 are equivalent.
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Proposition 34.2. Let L be a first-order language. The following are
equivalent:

(a) ∀Σ ⊆ Sent(L)
(
Σ is consistent⇒ Mod(Σ) ̸= ∅

)
;

(b) ∀Σ ∪ {τ} ⊆ Sent(L)
(
Σ |= τ⇒ Σ ⊢ τ

)
Proof. Assume (a) towards proving (b). We may assume that Σ is consistent,
otherwise the proof is trivially true. If Σ ̸⊢ τ then Σ ∪ {¬¬¬τ} is consistent by
Proposition 33.9, hence it has a model A. But then A witnesses that Σ ̸|= τ.

Assume ¬(a) towards proving ¬(b). So let Σ be consistent and unsatisfi-
able: then Σ ̸⊢ τ∧∧∧¬¬¬τ, yet Σ |= τ∧∧∧¬¬¬τ holds vacuously. □

The converse of the Soundness Theorem 33.4 is known as the Complete-
ness Theorem: it says that the logical axioms and the rule of Modus Ponens
are complete, i.e. they are powerful enough to derive all logical consequences.

Theorem 34.3. Let Σ ∪ {σ} ⊆ Sent(L). If either BPI holds, or if L is
well-orderable, then Σ |= σ ⇒ Σ ⊢ σ.

The Completeness Theorem follows from the converse of Proposition 34.1,
known as the Model Existence Theorem.

Theorem 34.4. Let Σ ⊆ Sent(L) be consistent.

(a) If BPI holds, then Mod(Σ) ̸= ∅.
(b) If L is well-orderable, then Σ has a model of size ≤ card(L).

The Model Existence Theorem yields a new, more enlightening proof of
the Compactness Theorem 31.27.

Corollary 34.5. Let Σ ⊆ Sent(L) be finitely satisfiable.

(a) If we assume BPI then Σ has a model.

(b) If L is well-orderable, then Σ has a well-orderable model of size ≤
card(L).

Proof. If Σ is finitely satisfiable, then each finite subset is consistent, hence
Σ is consistent. □

Finally, note that for a finitely axiomatizable theory, we don’t need to
appeal to choice.

Corollary 34.6. If σ ∈ Sent(L) is consistent, then there is a countable
A ∈ Str(L) satisfying σ.
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Proof. Let L0 be the sublanguage of L containing only the symbols of logicσ.
Since σ ⊢L ∃∃∃x(x ̸≖ x) if and only if σ ⊢L0 ∃∃∃x(x ̸≖ x), it follows that {σ}
is a consistent L0-theory. As L0 is well-orderable, then there is a countable
A0 ∈ Str(L0) such that A0 ⊨ σ. Any expansion of A0 to an A ∈ Str(L)
satisfies σ. □

34.A. The role of choice in the completeness theorem. In the assump-
tions of Theorems 34.3 and 34.4 there is a reference to some form of choice
principle — the language must be well-orderable or we must assume BPI. In
particular, if L is finite or countable, then Σ ⊢ σ ⇔ Σ |= σ, independently
of the axiom of choice. But when arbitrary languages are considered, the
appeal to some form of choice is inevitable, as Theorem 34.4 for arbitrary
languages is equivalent to BPI (Exercise 34.13).

Let Σ be a theory with a recursive set of axioms, in a countable language,
so that the pathologies mentioned above have no reason to exist. Thus ZF
proves that Σ ⊢ σ ⇔ Σ |= σ for any sentence σ. So in order to prove that σ
follows from Σ it is enough to show that M ⊨ σ for any M that satisfies Σ.
But suppose that in order to prove this we use AC: does this mean that a
derivation (which is a concrete, finite object) exists only if AC is assumed?
Theorem 39.21 in Chapter VIII shows that this is not the case—in other
words, if ZFC proves that Σ |= σ, then a proof of this fact can be given in
ZF alone.

Example 34.7. Let R be a commutative ring. We say that f = a0 + a1X +

· · · + anX
n ∈ R[X] is primitive if I(f) def

= ⟨a0, . . . , an⟩, the ideal generated
by the coefficients of f , is improper, that is it contains 1R. Then [AM69,
Chapter 1, Exercise 2]

(∗) ∀f, g ∈ R[X] (f · g is primitive ⇔ f and g are primitive) .

The forward implication of (∗) is immediate, while for the other direction
assume that f · g is not primitive, towards proving that either f or g are
not primitive. By Krull’s lemma (which follows from AC) let m ⊇ I(f · g)
be a maximal ideal. Then F = R/M is a field and F [X] is an integral
domain, and π denotes the canonical projection R → R/M as well as the
induced homomorphism F → F [X]. Then π(f · g) = 0F [X], so π(f) = 0F [X]

or π(g) = 0F [X], that is I(f) ⊆ m and hence f is not primitive, or I(g) ⊆ m
and hence g is not primitive.

We claim that (∗) can be proved without choice, by showing that it is
equivalent to the fact that ΣCRings, the theory of commutative rings, proves
certain first-order sentences. First observe that “a0 + a1X + · · ·+ anX

n is
primitive” amounts to say that “∃c0, . . . , cn (a0 · c0 + · · ·+ an · cn = 1)”, so (∗)
is equivalent to ΣCRings ⊢ σn,m for all n,m ≥ 1, where σn,m is the universal
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closure of

∃e0, . . . , en+m ((a0b0)e0 + (a0b1 + a1b0)e1 + · · ·+ (anbm)en+m = 1)

⇔ ∃c0, . . . , cn (
∑n

i=0 aici = 1) ∨ ∃d0, . . . , dm (
∑m

j=0 bjdj = 1).

34.B. The Model Existence Theorem. In order to prove the Model
Existence Theorem, we need some preliminary results.

Lemma 34.8. Let Σ be a consistent L-theory, let c be a new constant, and let
φ(x) be an L-formula with exactly one free variable. Then the L∪{c}-theory
Σ ∪ {∃∃∃xφ⇒⇒⇒φLc/xM} is consistent.

Proof. Towards a contradiction, suppose that Σ∪ {∃∃∃xφ⇒⇒⇒φLc/xM} ⊢L∪{c}
σ∧∧∧¬¬¬σ. By Lemma 33.6 one has that Σ ⊢L∪{c} (∃∃∃xφ⇒⇒⇒φLc/xM)⇒⇒⇒σ∧∧∧¬¬¬σ,
and by the rule of the tautological consequence Σ ⊢L∪{c} ¬¬¬(∃∃∃xφ⇒⇒⇒φLc/xM),
that is Σ ⊢L∪{c} ∃∃∃xφ and Σ ⊢L∪{c} ¬¬¬φLc/xM. By Corollary 33.8 Σ ⊢L ∃∃∃xφ
and by Theorem 33.7 Σ ⊢L ∀∀∀x¬¬¬φ. As ∀∀∀x¬¬¬φ⇒⇒⇒¬¬¬∃∃∃xφ is an type (C) axiom
for quantification, by the rule of tautological consequence Σ ⊢L ¬¬¬∃∃∃xφ, and
hence Σ is inconsistent. □

Lemma 34.9. If Σ ⊆ Sent(L) is consistent, then there is a set of new
constants C and Σ̃ ⊆ Sent(L̃) where L̃ = L ∪ C such that Σ̃ ⊃ Σ is con-
sistent and if φ(x) is an L-formula with exactly one free variable, then
Σ̃ ⊢ ∃∃∃xφ⇒⇒⇒φLc/xM for some c ∈ C.

Moreover, if L is well-orderable, then C can be taken to be of size card(L).

Proof. Let F be the set of all L-formulæ φ with only one free variable
xφ, let C = {cφ | φ ∈ F} and let Σ̃ = Σ ∪ {∃∃∃xφφ⇒⇒⇒φLcφ/xφM | φ ∈ F}.
We must check that Σ̃ is consistent: towards a contradiction, if Σ̃ were
inconsistent, then so would be Σ ∪ {∃∃∃xφφ⇒⇒⇒φLcφ/xφM | φ ∈ F0} for some
finite F0 ⊆ F . By repeated applications of Lemma 34.8 a contradiction is
obtained.

If L is well-orderable, then |F | = card(L) by Proposition 30.5, and hence
|C| = card(L). □

Definition 34.10. Σ ⊆ Sent(L) has witnesses if for every L-formula φ
with exactly one free variable x there is a closed term t such that Σ ⊢
∃∃∃xφ⇒⇒⇒φLt/xM. We say that t is the witness for the formula ∃∃∃xφ.

Thus if a theory has witnesses, then whenever it proves existential state-
ment ∃∃∃xφ, it can prove also φLt/xM for a suitable closed term t.

Remarks 34.11. (a) If Σ has witnesses, then L has constants. Thus not
every theory has witnesses.

(b) If Σ ⊆ ∆ ⊆ Sent(L) and Σ has witnesses, then also ∆ has witnesses.
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Theorem 34.12. If Σ ⊆ Sent(L) is consistent, then there are a set of new
constants C, and Σ∞ ⊆ Sent(L∞) where L∞ = L ∪ C, such that Σ∞ ⊃ Σ is
consistent and has witnesses, and every witness is a constant of C.

Moreover, if L is well-orderable, then C can be taken to be of size card(L).

Proof. We construct by induction

• languages L = L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂ . . . such that Ln+1 = Ln ∪ Cn

where Cn is a set of constants that do not belong to Ln,
• consistent sets Σn ⊆ Sent(Ln) such that

(i) Σ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σn ⊂ · · · and
(ii) for every Ln-formula φ with exactly one free variable x there is

c ∈ Cn such that Σn+1 ⊢ ∃∃∃xφ⇒⇒⇒φLc/xM.

If L0, . . . ,Ln, C0, . . . , Cn−1 and Σ0, . . . ,Σn have been constructed and satisfy
the requirement, then Lemma 34.9 guarantees the existence of Cn (hence
of Ln+1) and of Σn+1 as required. Letting C =

⋃
nCn, L∞ =

⋃
nLn and

Σ∞ =
⋃

nΣn we have that

• Σ∞ ⊆ Sent(L∞) is consistent by Proposition 33.9
• Σ∞ has witnesses: given an L∞-formula φ(x) with a single free variable,

let n be least such that φ(x) ∈ Fml(Ln). By construction there is c ∈ Cn

such that Σn+1 ⊢Ln+1 ∃∃∃xφ⇒⇒⇒φLc/xM hence Σ∞ ⊢L∞ ∃∃∃xφ⇒⇒⇒φLc/xM.

Finally note that if L is well-orderable, then |Cn| = card(L) hence
|C| = card(L). □

34.C. Proof of the Model Existence Theorem 34.4. Let Σ ⊆ Sent(L)
be consistent: by Lemma 34.9 fix a set of new constants C and extend Σ to
a coherent set Σ′ ⊆ Sent(L), where L = L ∪ C so that Σ′ has witnesses, and
the witnesses are constants of C.

Claim 34.12.1. There is Σ ⊆ Sent(L) which is consistent and maximal
among the ones containing Σ′.

Proof. We have two possibilities: either L is well-orderable, and hence so is
Lnd(L) and therefore BPI(Lnd(L)) holds, or else BPI holds. In either case
Lindenbaum’s Lemma 33.12 can be applied. □

By Exercise 33.13 Σ is syntactically closed. By Remark 34.11(b) Σ has
witnesses, so ∃∃∃xφ⇒⇒⇒φLc/xM ∈ Σ for some c ∈ C; thus if ∃∃∃xφ ∈ Σ, then
φLc/xM ∈ Σ by (MP) and closure.

We shall construct A ∈ Str(L) such that A ⊨ Σ so that the reduction
A = A ↾ L we obtain a model of Σ. Let ∼ be the equivalence relation on
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ClTerm(L) defined by

t ∼ u ⇔ (t ≖ u) ∈ Σ.

The universe of the structure A (and therefore of the structure A) is the set

A = ClTerm(L)/∼

and the interpretation of the non-logical symbols of L is defined as follows:

• If R ∈ RelL = RelL is n-ary, set

RA = {⟨[t1]∼, . . . , [tn]∼⟩ | R(t1, . . . , tn) ∈ Σ} ⊆ An.

The relation RA is well-defined: if R(t1, . . . , tn) ∈ Σ̄ and if ti ∼ ui then
t1 ≖ u1∧∧∧ . . .∧∧∧ tn ≖ un ∈ Σ and since

t1 ≖ u1∧∧∧ . . .∧∧∧ tn ≖ un∧∧∧R(t1, . . . , tn)⇒⇒⇒R(u1, . . . ,un)

is an equality axiom, we have Σ ⊢L R(u1, . . . ,un), that is R(u1, . . . ,un) ∈
Σ.

• If f ∈ FuncL = FuncL is n-ary, set

fA : An → A ⟨[t1]∼, . . . , [tn]∼⟩ 7→ [f(t1, . . . , tn)]∼.

Also in this case one checks that the definition of fA does not depend on
the representatives.

• If c ∈ ConstL ⊃ ConstL, set cA = [c]∼.

If t ∈ ClTerm, let c ∈ C be the witness to the formula ∃∃∃x(x ≖ t). As
t ≖ t⇒⇒⇒∃∃∃x(x ≖ t) is a substitution axiom, t ≖ t is an equality axiom, and
∃∃∃x(x ≖ t)⇒⇒⇒ c ≖ t ∈ Σ, it follows that c ∼ t, and therefore

A = {[c]∼ | c ∈ C} .

We must check that A ⊨ Σ. The definition of A guarantees that

σ ∈ Σ ⇔ A ⊨ σ

for all atomic sentences σ. We check by induction on ht(σ) that this equiva-
lence holds for all σ ∈ Sent(L). As Σ is maximal, then σ /∈ Σ ⇔ ¬¬¬σ ∈ Σ
and σ∨∨∨τ ∈ Σ ⇔ σ ∈ Σ ∨ τ ∈ Σ, so

• if σ = ¬¬¬τ then ¬¬¬τ ∈ Σ ⇔ τ /∈ Σ ⇔ A ̸⊨ τ ⇔ A ⊨ ¬¬¬τ;
• if σ = τ∨∨∨χ then

τ∨∨∨χ ∈ Σ ⇔
(
τ ∈ Σ

)
∨
(
χ ∈ Σ

)
⇔
(
A ⊨ τ

)
∨
(
A ⊨ χ

)
⇔ A ⊨ τ∨∨∨χ.
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• Suppose that σ = ∃∃∃xφ. As Σ has witnesses, ∃∃∃xφ⇒⇒⇒φLc/xM ∈ Σ for
some c ∈ C. Therefore

∃∃∃xφ ∈ Σ ⇒ φLc/xM ∈ Σ

⇒ A ⊨ φLc/xM (ind. hyp.)

⇒ A ⊨ φ[cA] (Proposition 31.8)

⇒ A ⊨ ∃∃∃xφ.

Conversely, suppose that A ⊨ ∃∃∃xφ hence A ⊨ φ[cA] for some c ∈ C.
It follows that A ⊨ φLc/xM by Proposition 31.8, hence φLc/xM ∈ Σ by
inductive hypothesis. The sentence φLc/xM⇒⇒⇒∃∃∃xφ is a type (B) axiom
for quantification, so it belongs to Σ, hence ∃∃∃xφ ∈ Σ as required.

Finally, if L is well-orderable, then |A| ≤ |C| = card(L). This concludes
the proof of the Model Existence Theorem.

Exercises

Exercise 34.13. Show that each of the following results, stated for arbitrary
languages, is equivalent to BPI:

• the Model Existence Theorem: if Σ is consistent, then Σ is satisfiable;
• the Completeness Theorem: if Σ |= τ then Σ ⊢ τ;
• the Compactness Theorem: if Σ is finitely satisfiable, then it is satisfiable.

Exercise 34.14. Suppose ∀n ∃A ∈ Mod(Σ) (n ≤ card(A)) with Σ ⊆ Sent(L).
(In particular, this holds if Σ has an infinite model.) Show that:

(i) if L is well-orderable, then Σ has models of every size κ ≥ card(L);
(ii) if Σ is well-orderable, then it has infinite models of every size κ ≥ |Σ|;

in particular, if |Σ| ≤ ω, then it has models of every size κ ∈ Card \ ω;
(iii) if we assume BPI then Σ has models of arbitrarily large size, that is for

every set X there is A ⊨ Σ such that X ≾ ∥A∥.

Exercise 34.15. Show that the statement “∀L ∀Σ ⊆ Sent(L) (if Σ has an
infinite model then it has models of arbitrarily large size)” implies BPI.

Exercise 34.16. Prove the following strengthening of Theorem 34.4(a):
Given a first-order language L, let S = Vbl∪RelL ∪FuncL ∪ConstL and let
C be a set of new constants such that C ≍ S<ω. Assume BPI(LndL∪C). If
Σ ⊆ Sent(L) is consistent, then it has a model whose universe is the surjective
image of C.





Chapter VIII

Metamathematics

35. Concrete, finitistic arguments vs. abstract,
non-constructive proofs

Many facts about formulæ can be stated and proved in a very weak framework,
while other results in first-order logic require the power of set-theoretic
arguments. Examples of the first kind are the results on the syntax of
the first-order language—we only need some basic manipulation of finite
sequences. Examples of results on the second kind are the notion of structure
and satisfaction, the completeness theorem, etc. The environment used to
prove results of the first kind is called metatheory, and the study of the
underpinnings of provability is called metamathematics. Objects in the
metatheory are concrete, finitistic entities, and are not (or better: we do
not construe them as) structured sets—for example the natural number n
can be thought to be n consecutive tallies II · · · I, a finite sequence of objects
a1, a2, . . . , an is just an explicit list, and we do not care how this list can be
coded in arithmetic (by means of one of the coding procedures described
in Section 11.B) or formalized in set theory (as a function with domain
{1, 2, . . . , n}). The methods and proofs in the metatheory are elementary
and eschew the abstract, infinitistic reasoning typical of modern mathematics;
the only kind of infinity allowed is that of the set of natural numbers, and
we should never consider the collection of all subsets of the integers as a
given object. When an existential sentence is proved, we are supposed to
provide an explicit witness; similarly in order to assert A∨B we must be able
to assert A or to assert B. (This should be contrasted with Examples 2.2
and 2.3 in Section 2.) A function in the metatheory is always assumed to
be computable, and it is identified with the explicit algorithm that performs

575
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the computation. For example, a function that is constantly equal to 0 or 1
depending on the truth of some hard-to-decide problem (see Remark 8.1(a))
should not be considered.

In the metatheory

a language L will always be computable,

meaning that we have an algorithm to recognize the non-logical symbols and
their arities; this guarantees that we can effectively determine whether a
given string is a formula or not, and in the affirmative case we can effectively
determine the free occurrences of a variable, and so on. Thus there is an
effective enumeration of all L-formulæ and all L-sentences. Similarly

an L-theory T will always be a computable set of L-sentences,

meaning that we have an algorithm to determine whether a sentence is in T
or not. In general, a theory T will just be a computable set of axioms, not a
closed theory, i.e. a collection of sentences containing all theorems provable
from it. If T is non-empty, then it can be effectively enumerated—if T is
finite this is trivial, while if T is infinite, then list an all L-sentences σ0,σ1, . . .,
and focus only on those n such that σn is in T. One might ask if the notion
of a T that is a semi-computable set of axioms is more general than that
of computable set of axioms—by Exercise 36.7 it is not. To summarize: an
effective theory T is just a computable set of L-sentences, and it is identified
with its effective enumeration.

So the theories of arithmetic (Q̄, Q, PA, . . . ) axiomatic set-theory (ZF,
NGB, MK, . . . ), and many theories from algebra (the theory of groups, rings,
boolean algebras, . . . ) can be formulated in the metatheory; on the other
hand the first-order theory of R-vector spaces cannot.

35.A. Syntax and semantics in the encoding theory.
35.A.1. Coding of syntax. Metamathematics—being just another piece of
mathematics—can be coded within some axiomatic system such as PA or
ZF. But it is important to be able to distinguish if a given argument takes
place in the metatheory, or within some axiomatic system such as PA or
ZF. We describe a translation procedure (the encoding) from an austere
environment (the metatheory) to a rich environment (the encoding theory,
typically arithmetic or set theory). In order to ease the distinction between
the two environments, we will adopt1 the following notational convention:

1We will stick to this notational convention, unless it becomes too heavy. Mathematicians
should never capitulate to their self-imposed notations.
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• syntactic items of the metatheory are denoted using sans-serif fonts. There-
fore x, y, . . . range over the set of variables v0, v1, . . ., while L and T range
over the set of effective languages and effective theories;
• the coded version of an object L,T, x,φ, . . . of the metatheory is denoted

by ⌜L⌝, ⌜T⌝, ⌜x⌝, ⌜φ⌝, . . .,
• boldface letters like x,φ, . . . range over the set of codes for variables,

formulæ, . . . .

Working in the metatheory one can verify in that, given L and T as above,
the sets

(35.1) FmlL, SentL, LAxL, PrfT

of formulæ, sentences, logical axioms, derivations, are effective. Similarly
the substitution operation φ, t, x ; φLt/xM, is effective. On the other hand
the set ThmT of all theorems is not (in general) effective, since in order to
affirm that σ is in this set, one needs to exhibit a derivation. As there is an
algorithm enumerating all possible derivations from T, we obtain that ThmT

is effectively enumerable. The coded versions of the objects in (35.1) are

Fml(⌜L⌝), Sent(⌜L⌝), LAx(⌜L⌝), Prf(⌜T⌝),

while φ, t,x ; φLt/xM is the coded version of the substitution operation.
These can be proved to be computable, while

Thm(⌜T⌝) = {σ ∈ Sent | ∃p ∈ Prf(⌜T⌝) (σ = p(lh(p)− 1))} ,

the set of all codes for theorems of T, is semi-computable.
Let us see how to encode an effective language L in arithmetic and in set

theory.

Example 35.1. Arithmetical coding. We start defining a number c(s) for
s a symbol (logical or otherwise) of L. For example v0, v1, v2, . . . are coded
as 0, 2, 4, . . ., and the remaining symbols are listed using the odd numbers,
starting first with the logical symbols (the connectives ¬, ∨, . . . , the equality
symbol =) and then with non-logical symbols (of which there are at most
ℵ0-many). Terms and formulæ, being finite sequences can be coded using the
Gödel β-function of Section 11.B. In particular ⌜T⌝ is a definable subset of
N so it is identified the formula φT(x) defining it.

The encoding theory can be any theory extending Q̄ or Q, which are
finitely axiomatized sub-theory of PA, since in Section 24.D we showed that
every computable set and function is representable in them. More precisely:
for all computable A ⊆ Nk there is a φ(x1, . . . , xk) such that

⟨a1, . . . , ak⟩ ∈ A ⇒ Q ⊢ φLa1/x1, . . . , ak/xkM
⟨a1, . . . , ak⟩ /∈ A ⇒ Q ⊢ ¬φLa1/x1, . . . , ak/xkM
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and for every computable f : Nk → N there is a φ(x1, . . . , xk, y) such that

Q ⊢ ∀y(φLa1/x1, . . . , ak/xkM⇔ y ≖ f(a1, . . . , ak)),

where the term a is the numeral for all a ∈ N—see Definition 11.5.

Example 35.2. Set-theoretic coding. Most of the work was implicitly done
in Section 30.B.1. The syntax of L is coded as elements of Vω: the codes
for variables are v0 = ⟨(1, 0)⟩ ,v1 = ⟨(1, 1)⟩ ,v2 = ⟨(1, 2)⟩ , . . ., the codes for
connectives are ¬¬¬ = (0, 0) and ∨∨∨ = (0, 1), the code ≖ is (0, 2), and so on.
All terms, formulæ, derivations, . . . of L can thus be seen as elements of
Vω. As in Example 35.1, the code ⌜T⌝ is a formula φT(x) in the language
of set theory defining a certain subset of Vω of all codes of sentences of T.
The encoding theory could be taken to be ZF, but it is clearly overkill, and
in Definition 24.33 we will introduce a finitely axiomatizable, very weak set
theory that plays the role of Robinson’s arithmetic.

There is a small wrinkle that needs to be ironed out. The language of
set theory has no terms other than variables, so an element a ∈ Vω must be
identified with the formula δa(x) of Proposition 24.6(a) defining a in Vω.

Moving from a basic, concrete environment (the metatheory) to an
abstract mathematical theory (the encoding theory) allows us to prove many
theorems, but takes its toll.

• If in the metatheory we state that T ⊢ σ, then in the encoding theory we can
prove that Thm⌜T⌝(⌜σ⌝). If the encoding theory proves that Thm⌜T⌝(⌜σ⌝),
then we conclude that there is a proof of σ from T, but we may not have
clues as to what this proof might be. In other words: the coding procedure
cannot be reversed. (See Example 35.6 for a case in point.)
• If σ ∈ T, then ⌜σ⌝ ∈ ⌜T⌝, so that {⌜σ⌝ | σ ∈ T} ⊆ ⌜T⌝. The reverse

inclusion sounds highly plausible, but cannot be proved since there is no
way to “invert” the coding procedure (Example 35.10.)

The situation described above is, in some ways, similar to what happens
in Analysis when Cauchy’s ε-δ-definition of continuity is introduced in order
to formalize the intuitive notion of a function that “varies with no abrupt
breaks or jumps”—on one hand it allows us to state and rigorously prove
many results previously unattainable, and on the other hand it yields new
objects that were not contemplated in the naïve conception of continuity,
such as functions that are everywhere continuous, yet nowhere differentiable.
35.A.2. Semantics within set theory. We now take a closer look at what we
did in Section 31.B.1. Working inside (some suitable sub-theory of) ZF a
formula Sat(τ,A,φ, g, i) is obtained such that

• τ is a signature, A is a τ -structure, φ ∈ Fml(Lτ ), g : Fv(φ)→ ∥A∥, and
i ∈ 2;
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• ZF ⊢ ∀A, τ,φ, g ∃!i ∈ 2 Sat(τ,A,φ, g, i)

and we set

A ⊨g φ ⇔ Sat(τ,A,φ, g, 1).

By definition, if A is a τ -structure, then A ⊨ T if and only if ∀σ ∈ T (A ⊨ σ).
This applies in particular when L = ⌜L⌝ and T = ⌜T⌝. If T is a finite list
of sentences σ1, . . . ,σn this means that A ⊨ ⌜σ1⌝∧∧∧ . . .∧∧∧⌜σn⌝. If T is an
infinite list of sentences then asserting A ⊨ ⌜T⌝ means that in set theory we
can prove in one shot that every sentence in ⌜T⌝ ⊆ Vω holds in A, so it is
stronger than saying that for every axiom σ of T there is a proof in set theory
that A ⊨ ⌜σ⌝ (Example 35.10).

Remark 35.3. A reader may question the rationale for writing A ⊨g ⌜φ⌝
and A ⊨ ⌜T⌝ rather than A ⊨g φ and A ⊨ T as we did in the earlier chapters.
The reason is that A ⊨g φ asserts that a certain relation ⊨ holds for a triple
of sets (A,φ, g), so if we are given an L-formula φ or an L-theory T in the
metatheory we must first encode them in set-theory as ⌜φ⌝ and ⌜T⌝. For
example, saying that “ZF proves that Vω is a model of the axiom of pairing”
means that ZF ⊢ Vω ⊨ ⌜∀x∀y∃z∀w(w ∈ z ⇔ w = x ∨ w = y)⌝, or better

ZF ⊢ ∃v ∃u∃t (φ(v) ∧ψ(u) ∧ χ(t) ∧ Sat(t, v, u, ∅, 1))

where φ,ψ,χ are L∈-formulæ such that

• φ(v) holds true if and only if v is Vω,

• ψ(u) holds true if and only if u ∈ Vω is the code of the L∈-formula
∀x∀y∃z∀w(w ∈ z ⇔ w = x ∨ w = y),

• χ(t) holds true if and only if t ∈ Vω is the code of the signature for set
theory.

Most of the time there is no need to be so careful about metamathematical
issues, and following standard usage we will write A ⊨g φ and A ⊨ T.

If we work in NGB or MK rather than in ZF, then the τ -structures can
be proper classes (Section 37.E). In particular one can argue in MK that
⟨V,∈⟩ ⊨ ⌜ZF⌝, where as usual V = {x | ∃y(x ∈ y)} is the class of all sets.

35.B. Theory vs. metatheory. In this chapter, we will look at three
central results, due to Gödel, in mathematical logic, each of them highlighting
different aspects of the subtle relation between theory and metatheory. The
discussion below is meant to acquaint the reader with these notions. For the
sake of definiteness we may assume that both the language of the encoding
theory is that of arithmetic, and thus we use the arithmetical encoding.
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35.B.1. The first incompleteness theorem. Suppose T is a consistent, effec-
tively axiomatized theory, and suppose it is sufficiently strong, meaning that
it can encode its own syntax. A sufficient condition is that any (elementary)
computable function is representable in T, so Robinson’s arithmetic Q̄ and
Q and elementary set theory EST would do. In particular, this applies to
PA and the usual axiomatizations of set theory, such as ZF, NGB, and MK.
Then T is incomplete, that is there are sentences σ that are independent
of T, that is neither T ⊢ σ nor T ⊢ ¬σ. Moreover T is undecidable, i.e.
there is no effective method to determine whether or not a given sentence is
a theorem of T (Definition 11.7). The next result (whose proof is modelled
after that of Theorem 8.38) shows that completeness implies decidability.

Theorem 35.4. If T is effectively axiomatized and complete, then T is
decidable.

Proof. As L, the language of T, is effective, we can fix an effective enumer-
ation n 7→ σn of SentL. Thus there is an effective enumeration of all finite
sequences of sentences. Since the set of all derivations from T is effective, i.e.
there is an algorithm to determine whether a finite sequence is a derivation
from T, this yields an effective enumeration n 7→ τn of all theorems of T. Let
us describe an algorithm to determine whether or not T ⊢ σ for any σ in
SentL. Since T is complete, either T ⊢ σ or else T ⊢ ¬σ, so it is enough to
look for the least n such that σ is τn or ¬σ is τn. □

The proof of the incompleteness theorem shows that there is an algorithm
T ; γT ∈ SentL with γT independent of T, so adding γT to T yields a theory
T′ extending T, and satisfying the hypotheses of the incompleteness theorem.
This would yield a new sentence γT′ which is independent of T′ and hence of
T, so adding finitely many (or even an infinite effective list of) sentences to T
does not avoid the incompleteness phenomenon.

The requirement that the list of the new axioms be computable is
essential—Th(N) is a complete theory extending, but it is far from being
effectively axiomatizable. In fact Th(N) lives in the realm of set theory, and
not in the metatheory.

Definition 35.5. An effectively axiomatized theory is essentially incom-
plete if it is incomplete, and every effectively axiomatized theory extending
it is incomplete.

Gödel’s first incompleteness theorem says that any sufficiently strong,
consistent, effective theory is essentially incomplete.

One might wonder: if σ is independent from PA, what can we say about
the truth of σ in the real world, i.e. in the structure ⟨N, S,+, ·, 0, <⟩? Say
that φ(x1, . . . , xk) is computable if it defines a k-ary computable predicate of
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N. The proof of Gödel’s first incompleteness theorem shows that γT is of the
form ∀xφ(x), with φ(x) computable (in fact: elementary computable). This
means that γT must be true in N: if N ⊨ ⌜¬φ⌝[n] then by Theorem 24.31
T ⊢ ¬φLn/xM, and hence T ⊢ ¬γT, against our assumption that γT is
independent of T. The sentence γT produced by Gödel’s proof is true, yet
unprovable (and irrefutable) from T, so in some sense it witnesses T’s lack
of skills in proving theorems. But the above argument does not apply to
sentences of higher logical complexity. For example is σ is of the form
∀x∃yφ(x, y), with φ(x, y) computable, then knowing that σ is independent
from Tdoes not yield any information on whether N ⊨ σ or N ⊨ ¬σ.

By Exercise 24.39, it is easy to find sentences that are independent of Q̄ or
Q, but what about PA or stronger theories? Are there natural mathematical
problems, i.e. problems that mathematicians might encounter in their daily
work, that are independent of PA? The answer is affirmative—there are
variants of the Ramsey theorem that are provable in ZF, yet are unprovable
in PA.
35.B.2. The second incompleteness theorem. Among the hypotheses in the
first incompleteness theorem is that T is consistent, in symbols ConT. When
in the metatheory we say that ¬ConT, we are asserting the existence of a
contradiction from T, that is we assert that there is a derivation from T of
some false sentence, e.g. ∃v0(v0 ̸= v0), which will be abbreviated with ⊥. On
the other hand stating in the metatheory that ConT amounts to say that
T is empirically free from contradictions, that is to say: there is no known
derivation of a contradiction from T,

ConT : ¬∃p ∈ PrfT (p(lh p− 1) = ⊥)

Moving to the encoding theory, the formal version of ConT is

Con(⌜T⌝) : ¬∃p ∈ Prf(⌜T⌝) (p(lh p− 1) = ⌜⊥⌝) .

Gödel’s second incompleteness theorem says that a consistent, effectively
axiomatized, and reasonably strong theory cannot prove its own consistency.
(Reasonably strong means that it extends PA—so the assumptions for the
second incompleteness theorem are more demanding than those for the
first incompleteness.) More precisely, if T is effectively axiomatized theory,
reasonably strong, then any derivation witnessing T ⊢ Con(⌜T⌝) can be
turned into a derivation of a contradiction in T, that is ¬ConT.

For a theory T being free of contradictions, that is ConT, is certainly an
essential, but hardly the only, requirement. Consider the case of Peano’s
arithmetic: not only the vast majority of mathematicians would concur that
it is consistent, but they would also deem that its theorems assert facts about
the natural numbers that agree with our intuition of the integers. This does
not follow from coherence, as the next example shows.
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Example 35.6. Assume that PA is consistent, that is ConPA. By Gödel’s
second incompleteness theorem PA ̸⊢ Con(⌜PA⌝), so T = PA+ ¬Con(⌜PA⌝),
the theory obtained by adding “PA is incinsistent to PA”, must be consistent.
Yet T ⊢ ¬Con(⌜T⌝), that is to say: T is a consistent theory proving its own
inconsistency! Observe that T claims that there is a proof of a contradiction,
yet this proof cannot be uncovered in the real world.

Example 35.7. Suppose T is like in Example 35.6, a consistent theory that
proves its inconsistency, that is ConT and T ⊢ ¬Con(⌜T⌝). Let M be a model
of T and let d ∈ ∥M∥ be such that

M ⊨ d codes a derivation of ⊥ from T.

Then ωM = {x ∈ ∥M∥ | M ⊨ x is a natural number} cannot be isomorphic
to N, since otherwise d would witness in the real world that T is inconsistent
against our assumption. Although people living in M think that “d encodes
a finite string of sentences”, one cannot expect to turn this into an honest
derivation of ⊥ from T, since it might happen that the length of this derivation
or the codes of these sentences be non-standard numbers. To be more specific,
consider the case when T = ZF + ¬ConZF, and let n 7→ σn be a primitive
recursive enumeration of ZF. As argued above any M = ⟨M,E⟩ model of T is
not ω-standard, that is ωM is a non-standard model of arithmetic. Without
loss of generality we may assume that ω is a proper initial segment of ωM.
Let n 7→ σn be a primitive recursive enumeration (of the axioms) of ZF, so
that it induces a bijection a : ω → ⌜ZF⌝. Let d ∈ ωM witness in M that
ZF ⊢ ⊥, and let

I = {n ∈ ωM | aM(n) occurs in the derivation coded by d}.

Then I has non-standard integers, that is to say: any d coding a proof of
ZF ⊢ ⊥ in M must use non-standard axioms of ZF (Exercise 38.13).

A reasonably strong theory T is n-consistent if ConT(n) where

T(0) = T, T(n+1) = T(n) +Con(⌜T(n)⌝).

If T is not n-consistent, then it is n-inconsistent. Thus if T is n-consistent, it
is also m-consistent, for all m < n, T is 0-consistent if and only if ConT, and
T is n+ 1-inconsistent if and only if T(n) ⊢ ¬Con(⌜T(n)⌝). In particular, the
theory of Example 35.6 is consistent, but 1-inconsistent. A theory T which is
n-consistent and n+ 1-inconsistent asserts the existence of a proof (of the
existence of contradictions in T(n)) that do not exist in the real world; in
other words, it proves existential facts about natural numbers that are false
in N. Since we believe that PA proves true facts about natural numbers, we
believe that it is n-consistent, for all ns. This belief is substantiated in ZF,
where we construct ⟨ω,S,+, ·, <, 0⟩ which is a model of every PA(n).
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Remark 35.8. The model existence theorem states a theory is consistent if
and only if it has a model,

ZF+ BPI ⊢ ∀T (Con(T ) ⇔ Mod(T ) ̸= ∅) .

When dealing with an effectively axiomatizable theory T the principle BPI
can be dropped since the language is well-orderable, so

(35.2) ZF ⊢ Con(⌜T⌝)⇔ Mod(⌜T⌝) ̸= ∅.

As MK extends ZF, then (35.2) holds with MK in place of ZF, and since
MK ⊢ ⟨V,∈⟩ ⊨ ⌜ZFC⌝, then MK ⊢ Con(⌜ZFC⌝).

Example 35.9. In Section 38.A we will prove for any finite sub-theory of
ZF, there is a proof in ZF that such sub-theory has a model, i.e. if σ1, . . . ,σn
are axioms of ZF, then ZF ⊢ ∃A(A ⊨ ⌜σ1⌝∧∧∧ . . .∧∧∧⌜σn⌝). This is weaker than
saying

(†) ZF ⊢ ∀Σ ⊆ ⌜ZF⌝ (|Σ| < ω ⇒ Mod(Σ) ̸= ∅)

since (†) would imply by compactness that ZF ⊢ Mod(⌜ZF⌝) ̸= ∅, that is ZF ⊢
⌜Con(ZF)⌝, against Gödel’s second incompleteness theorem. Therefore (†)
is false, that is to say: it is not true that ZF proves that any of its finite
sub-theories is satisfiable. In plain words: for any finite Σ ⊆ ZF there is a
proof in ZF of the satisfiability of Σ, but there is no single proof in ZF that
works for all sub-theories at once.

There is one more surprising fact that can be inferred from the above:
even if ZF proves ψ(n) for any n ∈ N, it might not be able to prove that
∀n ∈ ωψ(n). To see this work in ZF, and let ω ∋ n 7→ σn be an enumeration
of ⌜ZF⌝, and let ψ(n) be Con({σ0∧∧∧ . . .∧∧∧σn}). For every n let δn(x) be the
L∈-formula that defines the number n. Then ZF ⊢ ∀x(δn(x) ⇒ ψ(x)) for
any n, but ZF ̸⊢ ∀x ∈ ωψ(x).

Example 35.10. If n 7→ σn is an explicit enumeration of ZF, then working
in ZF let I = {n ∈ ω | ⌜

∧
i≤n σi⌝ is satisfiable}. Then I is an initial segment

of ω, and by the arguments in Example 35.9 ZF ⊢ n ∈ I for each n ∈ ω, and
yet ZF ̸⊢ I = ω. Therefore T = {⌜σn⌝ | n ∈ I} ⊆ ⌜ZF⌝, and by compactness
ZF proves that there is M ⊨ T , a statement that is weaker than saying that
there is a model of ZF, that is ∃M∀σ ∈ ⌜ZF⌝ (M ⊨ σ).

35.B.3. Undefinability of truth. Consider N = ⟨N,+, ·, S, 0, <⟩, the structure
for arithmetic. The theory PA is effective and ⌜PA⌝ ⊆ N is a computable
set, and Thm(⌜PA⌝), the set of all (codes for) theorems provable from PA is
semi-computable, and hence a Σ1 definable subset on N. Is the set

Th(N) = {σ | N ⊨ σ}
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semi-computable, i.e. definable in N via a Σ1 formula? Tarski proved that
this is not the case. In fact Th(N) is not definable in N, it is not Σn for any
n. In simple words, truth in N is not definable within N.
35.B.4. Relative consistency. If T is 1-consistent, then T and T(1) = T +
Con(⌜T⌝) are consistent, so both Con(⌜T⌝) and Con(⌜T(1)⌝) are true sen-
tences about natural numbers, yet the implication Con(⌜T⌝)⇒ Con(⌜T(1)⌝)
cannot be established in T(1), and a fortiori in T. In fact if, towards a
contradiction, T(1) ⊢ Con(⌜T⌝)⇒ Con(⌜T(1)⌝), then since T(1) ⊢ Con(⌜T⌝)
it would follow that T(1) ⊢ Con(⌜T(1)⌝) against the second incompleteness
theorem.

Definition 35.11. The theory T1 has higher consistency strength than
T0, in symbols T0 <Con T1 if T1 ⊢ Con(⌜T0⌝).

By the second incompleteness theorem, no consistent theory has higher
consistency strength than itself, and an inconsistent theory has higher consis-
tency strength than any consistent theory. In plain words, if T1 has higher
consistency strength than T0, then working with T1 is “riskier” than working
with T0. Note that:

• T(n) <Con T(m) if and only if n < m;
• PA(n) <Con ZFC for any n, since in ZFC one constructs the structure
⟨ω,S,+, ·, 0, <⟩ which models any PA(n);
• ZFC + ∀β ∃α > β (Vα ⊨ ⌜ZFC⌝) <Con ZFC + (there is an inaccessible

cardinal) by Theorems 21.39 and 31.22.

There is a very concrete, algebraic embodiment of the notion of relative
consistency. Recall that a Diophantine subset of the natural numbers is
of the form N ∩ ran(f), where f ∈ Z[x1, . . . , xn], and by the Matiyasevich-
Robinson-Davis-Putnam theorem, Diophantine subsets of the natural numbers
are exactly the semi-computable sets. In particular, for any T there is
fT ∈ Z[x1, . . . , xN ] such that T ⊢ σ if and only if there are k1, . . . , kN ∈ N such
that fT(k1, . . . , kN ) = ⌜σ⌝.2 Therefore ConT is equivalent to saying that the
equation fT(x1, . . . , xN )−⌜⊥⌝ = 0 has no solution in N, with ⊥ our standard
false sentence. The set DT = {f ∈ Z[x1, . . . , xm] | T ⊢ ∀x⃗ ∈ N f(x⃗) ̸= 0} of
all Diophantine equations that (provably in T) have no solutions can be used
to gauge the consistency strength: if T1 extends T0 then

T1 has higher consistency strength than T0 ⇒ DT1 ⊃ DT0 .

In particular, there is an algorithm assigning to any T a polynomial f(x⃗)
with coefficients in Z such that ConT if and only if f(x⃗) has no roots in N.

Definition 35.12. Given T0,T1 then

2It can be showh that the number N is independent of T.
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• T1 is consistent relative to T0 if and only if ConT0 implies ConT1 ,

• T0 and T1 are equiconsistent if and only if they are consistent relative
to each other.

In other words, T1 is consistent relative to T0 means that T1 is no
“riskier” than T0, and T0,T1 are equiconsistent if and only if they are equally
“dangerous”.

Although Definition 35.12 is worded in a positive form, it really should
be stated using the contrapositive: T1 is consistent relative to T0 if and only
if there is an algorithm transforming derivations from T1 into derivations
from T0, such that any contradiction from T1 is turned into a contradiction
from T0.

One of the central results in set theory is Gödel’s proof that ZFC +
GCH is consistent relative to ZF, so that the theories ZF and ZFC + GCH
are equiconsistent, and hence DZF = DZFC+GCH. Therefore there is an
algorithm (some sort of a doomsday machine) such that if (heaven forbid!)
a contradiction were to emerge from ZFC+ GCH, then the algorithm would
turn this into a proof of a contradiction in ZF. In other words, the theories
ZF and ZFC+ GCH share the same fate form here to eternity—either they
both survive forever without a contradiction, or they both collapse at the
same time.

Equiconsistency proofs occupy a central place in contemporary set theory.
For example ZFC + “there is an inaccessible cardinal” and ZFC + “every
projective set is Lebesgue measurable” are equiconsistent, where a subset of
the real line is projective if it can be obtained from Borel sets by means of
continuous images and complements. Thus if a mathematician is suspicious
of the existence of inaccessible cardinals, as their existence is “riskier” than
ConZFC, then (s)he should harbour a similar distrust towards the measurability
of projective sets.

35.C. Interpretability. How can we prove a relative consistency result
like ConT0 ⇒ ConT1? One way could be to find a method for transforming a
model of T0 into a model of T1, but this approach wouldn’t yield a concrete,
finitistic proof of the consistency of T1 from the consistency of T0, since the
notion of satisfaction (and hence of model) subsumes some set theory on
the background. Moreover for a reasonably strong theory, the existence of a
model for it is an assumption that transcends the theory. Interpretations are
the syntactic analogues of models: by interpreting T1 inside T0 a surrogate
model for T1 is defined within T0 so that any contradiction from T1 would
yield a contradiction from T0.
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Let T0 and T1 be effective theories in the languages L0 and L1, respectively.
An interpretation I of T1 into T0 is an effective procedure to transform
any L1-sentence σ into an L0-sentence σI so that

• (¬σ)I is ¬σI,
• (σ⊙ τ)I is σI ⊙ τI, where ⊙ is a binary connective,
• if σ is either an axiom of T1 or else a logical axiom of L1, then T0 ⊢L0 σI.

Proposition 35.13. Suppose I is an interpretation of T1 into T0, and let
Li be the language of Ti.

(a) If T1 ⊢L1 σ then T0 ⊢L0 σI.
(b) If ConT0 then ConT1.
(c) If T1 is essentially incomplete, then T0 is also essentially incomplete.

Proof. (a) It is enough to show that if ⟨φ0, . . . ,φn⟩ is a derivation in T1,
then T0 ⊢L0 φI

i for all i ≤ n. If φi is an axiom of T1 or else a logical axiom of
L1 the result follows from the definition of interpretation, so we may assume
that φi is obtained by (MP) from φj ,φk with j, k < i. Then φI

i is obtained
by (MP) from φI

j ,φ
I
k.

(b) If T1 ⊢L1 σ∧¬σ then T0 ⊢L0 σI ∧¬σI, so the result follows by taking
the contrapositive.

(c) Towards a contradiction, suppose T0 has a complete, computably
axiomatized extension T′

0. Then I is also an interpretation of T1 in T′
0.

The theory Σ =
{
σ ∈ SentL1 | T′

0 ⊢L0 σI
}

is complete, extends T1 as I is an
interpretation, and it is decidable, as so is T′

0 by Theorem 35.4. But this
contradicts the first incompleteness theorem. □

Although interpretations need to be defined only for sentences, it is often
handy to define it for all formulæ. The next result serves as a template for
constructing interpretations.

Theorem 35.14. Let Ti be an Li-theory, for i = 0, 1, and let υ(x) be an
L0-formula such that T0 ⊢ ∃xυ(x). Suppose there are L0-formulæ

• ψR(x1, . . . , xn) one for each n-ary relational symbol R of L1,
• ψf (x1, . . . , xn, y) one for each n-ary function symbol f of L1, such that
T0 ⊢ ∀x1, . . . , xn∃!yψf (x1, . . . , xn, y),
• ψc(x) one for each constant symbol c of L1, such that T0 ⊢ ∃!yψc(y).

Then there is an effective map φ; φI from the L1-formulæ to the L0-formulæ
such that φI has the same free variables as φ, and

• (¬φ)I is ¬φI,
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• (φ⊙ψ)I is φI ⊙ψI, where ⊙ is a binary connective,
• (∃xφ)I is ∃x(υ(x) ∧φI) and (∀xφ)I is ∀x(υ(x)⇒ φI),
• if σ is a logical axiom of T1, then T0 ⊢L0 σI.

Moreover, if T0 ⊢L0 σI whenever σ is an axiom of T1, then I is an interpre-
tation of T1 into T0.

Proof. For each L0-term t(x1, . . . , xn) which is not a variable letψt(x1, . . . , xn, y)
be the L1-formula defined as follows:

• if t(⃗x) is f(⃗x) with f a function symbol, then ψt(⃗x, y) is ψf(⃗x, y),
• if t(⃗x) is a constant symbol c, then ψt(⃗x, y) is ψc(y),
• if t(⃗x) is f(u1(⃗x), . . . , un(⃗x)) then ψt(⃗x, y) is

∃z1, . . . , zn(ψf(z1, . . . , zn, y) ∧ψu1 (⃗x, z1) ∧ · · · ∧ψun (⃗x, zn)).

Thus T0 ⊢L0 ∀⃗x ∃!yψt(⃗x, y).
The first goal is to define φI when φ is atomic:

if φ is. . . then φI is. . .
x = y x = y

t(⃗x) = y or y = t(⃗x) ψt(⃗x, y)
s(⃗x) = t(⃗x) ∃y (ψs(⃗x, y) ∧ψt(⃗x, y))

R(t1(⃗x), . . . , tn(⃗x)) ∃y1, . . . , yn (ψt1 (⃗x, y1) ∧ · · · ∧ψtn (⃗x, yn)
∧ψR(y1, . . . , yn))

Thus the definition of the map φ; φI extends to all formulæ.
The proof is complete once we show that if σ ∈ LAxL1 , then T0 ⊢L0 σI.

We will prove that A ⊨ ⌜σI⌝ for all A models of T0, and the appeal to the
completeness theorem. All logical axioms σ are the form ∀x1, . . . , xn θ so σI

is ∀x1, . . . , xn (υ(x1) ∧ · · · ∧ υ(xn)⇒ θI), and therefore it is enough to show
that θI is a valid L0-formula.

If σ is a tautology axiom, the result is trivial. If σ is an equality axiom,
then θ is a logical identity of L1:

(i) t = t,
(ii) t = s⇒ s = t,
(iii) t1 = s1 ∧ · · · ∧ tn = sn ⇒ f(t1, . . . , tn) = f(s1, . . . , sn),
(iv) t1 = s1 ∧ · · · ∧ tn = sn ∧ R(t1, . . . , tn)⇒ R(s1, . . . , sn),

where for the sake of brevity we have suppressed the dependence on x⃗ of the
terms in the formulæ above. The verification that if θ is as in (i)–(iv) then
θI is valid is straightforward. If σ is an axiom of quantification, then θ is of
the form
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(A) φ⇒ ∀xφ, with x not free in φ,
(B) φLt1/x1, . . . , tn/xnM⇒ ∃x1 . . . ∃xnφ,
(C) ∀x¬φ⇒ ¬∃xφ,
(D) ∀x(φ⇒ ψ)⇒ (∀xφ⇒ ∀xψ).

Let us argue that if θ is of type (A) then θI is valid: if φI ⇒ ∀x(υ(x)⇒ φI)
were not valid, there would be an L1-structure A and an assignment g such
that A ⊨g ⌜φI⌝ but A ⊨ ⌜∃x(υ(x) ∧ ¬φI)⌝, which is absurd, since x /∈ Fv(φ).
The case of the axioms of type (B)–(D) is similar. □

Example 35.15. PA is interpretable in ZF − Inf. Let υ(x) be the for-
mula x ∈ ω, that is x ∈ Ord ∧ ∀y ∈ x (y = ∅ ∨ ∃z ∈ y (S(z) = y)), and let
φS(x, y),φ+(x, y, z),φ·(x, y, z) be the formulæ defining the successor opera-
tion and addition and multiplication on ω.

Conversely, ZF−Inf is interpretable in PA by means of the map a−1 : Vω →
ω of Section 24.B. In this case υ(x) is simply x = x, and (x ∈ y)I becomes
a−1(x) E a−1(y), where E is as in (24.1).

Corollary 35.16. The theories PA and ZF− Inf are equiconsistent.

36. Undecidability

36.A. Undecidability in number theory. For T a theory in a language
with numerals, and for φ(v0) a formula let

(36.1) PT (φ) = {n ∈ N | T ⊢ φLn/v0M}.
If T is inconsistent, then PT (φ) = N for all φ, so this notion is of interest
only when T is consistent.

Proposition 36.1. If T is a consistent theory extending Q and A ⊆ N is
computable, then there is φ ∈ Fml(v0) such that A = PT (φ).

Proof. Let φ(v0) be a formula representing A in Q. If n ∈ A then Q ⊢
φLn/v0M, and hence T ⊢ φLn/v0M, so that n ∈ PT (φ). If n /∈ A, then
Q ⊢ ¬φLn/v0M, and hence T ⊢ ¬φLn/v0M, so T ̸⊢ φLn/v0M by the consistency,
and hence n /∈ PT (φ). □

The next result, Gödel’s First Incompleteness Theorem is one of
the most celebrated theorems of mathematical logic.

Theorem 36.2. Q is essentially incomplete.

Proof. Let T be a consistent theory extending Q: we will argue that T is
not decidable. Let P̄ be the set of all pairs (φ, n) such that T ⊢ φLn/v0M, so
working inside Q, the encoding theory, we define

P̄ = {(m,n) ∈ Fml×N | Sbst(m,n,v0) ∈ Thm(⌜T⌝)}.
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Then {n ∈ N | (m,n) ∈ P̄} = PT(m) for each m ∈ Fml, where PT is as
in (36.1). The set

G = {n ∈ N | (n, n) /∈ P̄} = {n ∈ N | Sbst(n, n,v0) /∈ Thm(⌜T⌝)}

is the set of all φ(v0) such that T ̸⊢ φLn/v0M with n = φ. (Keep in mind
that coded objects such as φ, v0, and n are natural numbers!) We claim
that G is not computable. Otherwise G = P⌜T⌝(k) for some k ∈ Fml, and
therefore

k ∈ G ⇔ (k, k) /∈ P̄ ⇔ k /∈ P⌜T⌝(k)

a contradiction! If T were decidable, then Thm(⌜T⌝) would be computable,
then so would be G, and hence the result is proved. □

36.B. Undecidability in set theory.

36.C. Undecidability in logic. In particular, Q is undecidable, that is
to say: {φ |

∧
1≤i≤9Qi ⊢ φ} is not computable. By Lemma 33.6 this is

the same as {φ | ⊢
∧

1≤i≤9Qi⇒ φ}, so this amounts to say that the set of
all valid formulæ of the language of Q is undecidable. This implies that if
L is any first-order language with two binary function symbols, one unary
function symbol, and one constant symbol, then {σ ∈ Sent(L) | ⊢ σ} is not
computable. The next result summarizes what is known.

Theorem 36.3. Let L be a computable first-order language and let V =
{σ ∈ Sent(L) | ⊢ σ} be the set of all valid L-sentences.

(a) If L satisfies any of the following
• it has at least one n-ary predicate symbol, with n ≥ 2;
• it has at least one n-ary function symbol, with n ≥ 2;
• it has at least two unary function symbols,

then V is not computable.
(b) If L satisfies has only unary predicate symbols, or else has just one unary

function symbol, then V is computable.

In other words, there is no method to effectively determine whether a
certain statement in the LQ is logically valid. By Corollary ?? the empty
theory in the language LQ is incomplete, but it is not essentially incomplete:
adding the axiom ∀x, y(x = y) yields a complete theory.

36.D. Unprovability of consistency. The next result is known as Gödel’s
Second Incompleteness Theorem: it says that no consistent, sufficiently
strong, effectively axiomatizable theory can prove its own consistency.

Theorem 36.4. If T is a consistent, effectively axiomatizable theory in LPA

extending PA, then T ̸⊢ Con(⌜T⌝).



590 VIII. Metamathematics

We end this section with Tarski’s result on undefinability of truth, a
result that is closely related to Gödel’s First Incompleteness Theorem 36.2.
Recall that if M = ⟨M, . . .⟩ is an L-structure, then DefkM(P ) is the collection
of all subsets of Mk definable in M with parameters in P ⊇M .

Theorem 36.5. If M is a model of PA, then

{σ ∈ Sent | M ⊨ σ} /∈ Def1M(∅),
{(φ,m) ∈ Fml(x)×M | M ⊨ φ[m]} /∈ Def2M(M).

36.E. Undecidable structures.
To be written later

Exercises

Exercise 36.6. Give an example of a theory T in an effective language such
that Thm(T ) is decidable, yet T is not computable.

Exercise 36.7. Suppose that T ⊆ Sent is effectively enumerable. Show that
it is effectively axiomatizable.

37. Metamathematics of set theory

37.A. Another look at the axioms of ZF. We recall the axioms of ZF,
and for future reference, we introduce specific acronyms for them:

Ext: ∀x, y (∀z(z ∈ x⇔ z ∈ y)⇒ x = y), the axiom of extensionality
Prn: ∀x∀y∃z (x ∈ z ∧ y ∈ z), the axiom of pairing
Unn: ∀x∃u∀y∀z (z ∈ y ∧ y ∈ x⇒ z ∈ u), the axiom of union
Pwr: ∀x∃y∀z (z ⊆ x⇒ z ∈ y), the powerset axiom
Inf: ∃x (∅ ∈ x ∧ ∀y ∈ x (S(y) ∈ x)), the axiom of infinity
Fnd: ∀x(∃y(y ∈ x) ⇒ ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))), the axiom of

foundation
Spr: the axiom-schema of separation, if y does not occur free in φ(x, z, w⃗),

then ∀z∀w⃗∃y∀x (x ∈ y ⇔ x ∈ z ∧φ(x, z, w⃗))
Rpl: the axiom-schema of replacement, if B does not occur free inφ(x, y,A, w⃗),

∀A∀w⃗ (∀x ∈ A∃!yφ⇒ ∃B∀x ∈ A∃y ∈ Bφ(x, y,A, w⃗))

The axiom of pairing Prn requires that given two sets x, y there is a third set
z to which x, y belong. This axiom can be strengthened by requiring that z
has only x and y as elements. Similarly, the axioms of union and power-set
can be stated in a slightly sharper form.
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Prn+: ∀x∀y∃z∀w (w ∈ z ⇔ w = x ∨ w = y),
Unn+: ∀x∃u∀w (w ∈ u⇔ ∃y(w ∈ y ∧ y ∈ x)),
Pwr+: ∀x∃y∀z (z ⊆ x⇔ z ∈ y).

By separation, these sharper versions follow from the regular ones.
Zermelo’s set theory Z is obtained from ZF by removing Rpl, and ZC is

Z+ AC.
37.A.1. Alternative formulations of replacement and foundation. The axiom
of collection Clct is the following schema of statements: if B does not occur
free in φ(x, y,A,w1, . . . , wn), then

∀A∀w⃗ (∀x ∈ A∃yφ(x, y,A, w⃗)⇒ ∃B∀x ∈ A∃y ∈ Bφ(x, y,Aw⃗)) .

Collection is a strengthening of replacement, since we are dealing with
relations rather than functions. On the other hand, in the presence of the
other axioms of ZF it is not a real strengthening.

Theorem 37.1. The axiom schema of collection is provable in ZF, so ZF
can be axiomatized by Z+ Clct.

Proof. Assume that ∀x ∈ A∃yφ(x, y,A, w⃗): given x ∈ A let B =
⋃

x∈A Yx,
where Yx = {y | φ(x, y,A, w⃗) ∧ rank(y) is minimal}. Then ∀x ∈ A∃y ∈
Bφ(x, y,A, w⃗). □

Although Rpl and Clct are equivalent over Z, the same need not be true
for other sub-theories of ZF. In the absence of the powerset axiom, Clct
is stronger than Rpl. For this reason when working with ZF − Pwr, the
Zermelo-Frænkel set theory minus the powerset axiom, it is customary to list
among the axioms Clct rather than Rpl.

Another axiomatization of ZF is obtained by using tight replacement
instead of the two axiom schemata of separation and replacement (Exer-
cise 37.20). The axiom schema of tight replacement tRpl says that

∀A∀w⃗(∀x ∈ A¬∃y, y′(y ̸= y′ ∧φ(x, y,A, w⃗) ∧φ(x, y′, A, w⃗))
⇒ ∃B∀y(y ∈ B ⇔ ∃x ∈ Aφ(x, y,A, w⃗)))

for every formula φ(x, y,A,w1, . . . , wn) and every variable B that does not
occur free in it.

The axiom schema of set-induction Ind∈ says that: for any φ(x, w⃗)

∀w⃗[∀x (∀y ∈ xψ(y, w⃗)⇒ ψ(x, w⃗)) ⇒ ∀xψ(x, w⃗)].

By taking the contrapositive, Ind∈ can be stated as: for any φ(x, w⃗)

∀w⃗[∃xφ(x, w⃗)⇒ ∃x (φ(x, w⃗) ∧ ∀y ∈ x¬φ(y, w⃗))].
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If A ̸= ∅ then applying Ind∈ to the formula x ∈ A yields an a ∈ A such
that a ∩ A = ∅, so set-induction implies foundation. Conversely, assuming
foundation and working in ZF, if φ(x, w⃗) holds for some x, then take such x
of least rank, and hence Ind∈ holds. Therefore we have proved:

Proposition 37.2. Ind∈ and Fnd are equivalent over ZF− Fnd.

37.B. The Levy hierarchy of formulæ. By Definition 19.17 and 19.18,
a L∈-formula is ∆0 = Σ0 = Π0 if it belongs to the smallest collection
of formulæ containing the atomic ones, and closed under connectives and
bounded quantifications; a formula is Σ1 if it is the existential quantification
of a ∆0 formula, and a formula is Π1 if it is the universal quantification of a
∆0 formula.

Definition 37.3. A L∈-formula is

• Σn+1 if it is of the form ∃xφ with φ a Πn-formula,
• Πn+1 if it is of the form ∀xφ with φ a Σn-formula.

If T is an effective L∈-theory, we say that a formula is

• ΣT
n if it is (provably in T) equivalent to a Σn-formula,

• ΠT
n if it is (provably in T) equivalent to a Πn-formula,

• ∆T
n if it is both ΣT

n and ΠT
n .

By the prenex normal form algorithm, and by adding some dummy
quantifiers if needed, every formula is logically equivalent to a Σn and to
a Πn formula. For example “r is a well-founded relation on x” is (logically
equivalent to) a Π1 formula

∀c ∈ r ∃a ∈ x ∃b ∈ x (c = (a, b))

∧ ∀y (∅ ≠ y ⊆ x⇒ ∃a ∈ y ∀b ∈ y ∀c ∈ r (c ̸= (b, a))).

Here we are using that “c = (a, b)” is ∆0—see Section 19.F.1. By replacement
it is also equivalent to the Σ1 formula

∀c ∈ r ∃a ∈ x ∃b ∈ x (c = (a, b))

∧ ∃f (Fn(f) ∧ dom f = x ∧ ∀y, z ∈ x ((y, z) ∈ r ⇒ f(y) ∈ f(z))),

where Fn(f) stands for “f is a function”. Therefore “r is a well-founded
relation on x” is ∆ZF

1 , but in the absence of replacement this might fail.
The next result is the analogue of Corollary 24.5.

Lemma 37.4. (a) If T ⊢ Ext∧Prn, and φ and ψ are ΣT
1 , then ∃xφ, φ∧ψ,

φ ∨ψ, and ∃x ∈ wφ are ΣT
1 .

(b) If T ⊢ Clct and φ is ΣT
1 then ∀y ∈ xφ is ΣT

1 .
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Proof. (a) Suppose T proves that φ and ψ are equivalent to ∃yφ′ and ∃zψ′,
with φ′ and ψ′ in ∆0. Without loss of generality we may assume that y and
z are distinct variables, and different from w. Arguing in T

• ∃xφ is equivalent to ∃u∃x ∈ u∃y ∈ uφ′;
• φ∧ψ is equivalent to ∃y∃z(φ′∧ψ′) and φ∨ψ is equivalent to ∃y∃z(φ′∨ψ′),

so we apply the previous point;
• ∃x ∈ wφ is ∃x(x ∈ w ∧ ∃yφ′), which is Σ1 by the previous points.

(b) Without loss of generality we may assume that φ is ∃z θ with θ a
∆0-formula. Then T ⊢ ∀y ∈ x ∃z θ⇔ ∃u∀y ∈ x ∃z ∈ u θ, since the forward
implication follows from collection, and the reverse implication is trivial. □

If Γ is either ΣT
n , or ΠT

n , or ∆T
n , then a Γ predicate is a class defined by

a Γ formula, and a Γ operation is a class-function defined by a Γ formula.
Arguing as in Proposition 24.8:

Lemma 37.5. Suppose T ⊢ Ext ∧ Prn.

(a) If F is a ΣT
1 operation, then its domain and its range are ΣT

1 predicates.
(b) The composition of ΣT

1 operations is a ΣT
1 operation.

(c) If F is a ΣT
1 operation whose domain is a ∆T

1 predicate, then F is a ∆T
1

operation.
(d) The composition of ∆T

1 operations is a ∆T
1 operation; the substitution of

∆T
1 operation inside a ∆T

1 predicate is a ∆T
1 predicate.

(e) Suppose Sj(x⃗) and Gj(x⃗) (j ≤ n) are ∆T
1 predicates, and that T ⊢

∀x⃗
∨

j≤n Sj(x⃗) and T ⊢ ∀x⃗¬(Si(x⃗) ∧ Sj(x⃗)) for i < j ≤ n. Then

R(x⃗) ⇔


G0(x⃗) if S0(x⃗),
...

Gn(x⃗) if Sn(x⃗),

is ∆T
1 predicate.

(f) Moreover if T ⊢ Ind∈, and T ⊢ ∀x⃗ ∃y (Ord(y) ∧G(x⃗, y)), where G(x⃗, y)
is a ∆T

1 predicate, then the operation F (x⃗) = µαG(x⃗, α) is ∆T
1 .

37.C. Relativization and inner models.

Definition 37.6. Let υ(x, z⃗) and ε(x, y, z⃗) be formulæ with x occurring free
in υ and x, y occurring free in ε, but neither of x, y occurring in φ(x1, . . . , xn).
The relativization of φ to υ, ε is the formula φ(υ,ε) defined as follows:

• if φ is x1 ≖ x2 then φ(υ,ε) is φ,
• if φ is x1 ∈ x2 then φ(υ,ε) is ε(x1, x2),
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• if φ is ¬ψ, then φ(υ,ε) is ¬ψ(υ,ε),
• if φ is ψ ∨ χ, then φ(υ,ε) is ψ(υ,ε) ∨ χ(υ,ε),
• if φ is ∃yψ, then φ(υ,ε) is ∃y(υ(y, z⃗) ∧ψ(υ,ε)).

If ε(x, y) is x ∈ y then it is customary to write φ(υ). In particular, if z is a
variable then φ(z) is φ(υ) where υ(x, z) is x ∈ z.

If υ has only x as free variable, T1 ⊢ ∃xυ(x) and T1 ⊢ σ(υ) for all σ ∈ T0,
then we have an interpretation of T0 in T1.

As (∀yφ)(ψ) is just ∀y(ψ(y, z⃗)⇒ φ(ψ)), it follows that relativizing φ to
ψ is tantamount to restricting all quantified variables of φ to range over the
class {x | ψ(x, v⃗)}.

Work in some set theory where the only acceptable objects are sets, for
example (a strengthening or weakening of) ZF. Thus a class M is of the form
M = {x | υ(x, z⃗)}, and let φ(M) be φ(υ)—if M is actually a set, then υ is
the formula x ∈M . If M is a set and a1, . . . , an ∈M , an easy induction on
the complexity of φ shows that

(37.1) φ(a1, . . . , an)
(M) ⇔ ⟨M,∈⟩ ⊨ ⌜φ⌝[a1, . . . , an].

Therefore relativization is the syntactic counterpart of the satisfaction relation.
In particular, when M is a proper class, writing φ(a1, . . . , an)(M) amounts
to say that φ(a1, . . . , an) is true in M .

A list of formulæ φ1, . . . ,φn is said to be closed under sub-formulæ if
any sub-formula of φi is a φj . Any finite list of formulæ can be expanded to
a finite list which is closed under sub-formulæ. The following is the syntactic
analogue of Theorem 4.26, the Tarski-Vaught criterion for being an elementary
substructure.

Lemma 37.7. Let M ⊆ N be classes and suppose φ1, . . . ,φn is closed under
sub-formulæ. The following are equivalent

(a) φ1, . . . ,φn are absolute between M and N ,
(b) if φi is ∃xφj(x, y1, . . . , yk), then

∀y1, . . . , yk ∈M (∃x ∈ N φ
(N)
j (x, y1, . . . , yk)⇒ ∃x ∈M φ

(N)
j (x, y1, . . . , yk)).

Proof. (a)⇒(b): Suppose y⃗ ∈ M and ∃x ∈ N φ
(N)
j (x, y⃗), that is φ(N)

i (y⃗).

By absoluteness φ(M)
i (y⃗) that is φ(M)

j (x̄, y⃗), for some x̄ ∈M . By absoluteness

φ
(N)
j (x̄, y⃗), so ∃x ∈M φ

(N)
j (x, y⃗).

(b)⇒(a): Let us prove by induction on the complexity that φi is absolute
between M and N . If φi is atomic, or elseis of the form ¬φj or φj ∨ φh,
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the result follows at once. If φi is ∃xφj then by inductive assumption φj is
absolute between M and N , so

φ
(M)
i ⇔ ∃x ∈M φ

(M)
j ⇔ ∃x ∈M φ

(N)
j ⇒ ∃x ∈ N φ

(N)
j ⇔ φ

(N)
i .

Conversely using (b):

φ
(N)
i ⇔ ∃x ∈ N φ

(N)
j ⇒ ∃x ∈M φ

(N)
j ⇔ ∃x ∈M φ

(M)
j ⇔ φ

(M)
i . □

Generalizing Definition 19.19 we have:

Definition 37.8. If M ⊆ N are classes, we say that φ(x1, . . . , xn) is

• upward absolute between M and N if ∀x⃗ ∈M
(
φ(M) ⇒ φ(N)

)
;

• downward absolute between M and N if ∀x⃗ ∈M
(
φ(N) ⇒ φ(M)

)
;

• absolute between M and N if it is both upward and downward absolute,
that is ∀x⃗ ∈M

(
φ(M) ⇔ φ(N)

)
.

Arguing as in Lemmata 19.20 and 19.21:

Lemma 37.9. If ∅ ≠ M ⊆ N are classes and φ(x⃗) is quantifier-free, then
∀x⃗ ∈M

(
φ(M) ⇔ φ(N)

)
.

Lemma 37.10. Suppose M ⊆ N are classes with M ̸= ∅ transitive, and let
φ(x⃗) be a formula.

(a) If φ(x⃗) is ∆0, then ∀x⃗ ∈M
(
φ(M) ⇔ φ(N)

)
.

(b) If φ(x⃗) is Σ1 then ∀x⃗ ∈M (φ(M)⇒φ(N)); if φ is Π1 then ∀x⃗ ∈M (φ(N)⇒
φ(M)).

Definition 37.11. Let T be an effective L∈-theory. A transitive class M is
an inner model of T if σ(M) holds for every axiom σ of T.

Examples 37.12. Let M be a transitive inner model of ZF.

(a) Ord(x) is ∆0, so Ord ∩M = {x ∈M | Ord(x)(M)}.
(b) The formula Card(x) saying that “x is a cardinal” is logically equivalent

to a Π1 formula:

Ord(x) ∧ ∀ν ∈ x¬∃f (f : ν → x is a bijection
φ(f,ν,x)

)

and φ(f, ν, x) is ∆0—see Table 3 on page 411. Therefore Card(κ) ⇒
Card(κ)(M), but the converse implication may fail.

(c) Similarly, “γ is a singular ordinal” is logically equivalent to a Σ1 formula:

Ord(γ) ∧ ∃f ∃ν ∈ γ (f : ν → γ is cofinal).

Therefore κ is regular⇒ (κ is regular)(M), but the converse implication
may fail.
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(d) If φ(α, x) is the formula asserting that x = Vα, then

∀α ∈M (Vα ∩M ∈M ∧ φ(α,Vα ∩M)(M)).

When α = 0 or α limit, this is clear. If α = S(β) then by inductive
assumption y = Vβ ∩M ∈M and φ(β, y)(M), so

x = Vα ∩M = P(Vβ) ∩M = P(y) ∩M ∈M

and hence φ(α, x)(M).

When dealing with transitive inner models, it is convenient to extend the
notation adopted for relativization to terms and classes. For example:

• P(x)(M) is the set in M that collects every subset of x belonging to M ,
and hence P(x)(M) = P(x) ∩M ;

• Card(M) = {α ∈M | Card(α)(M)} is the class of all sets that M believes
to be cardinals, and hence Card ⊆ Card(M);
• (κ+)(M) is the least element that M believes to be a cardinal bigger than
κ, and hence (κ+)(M) ≤ κ+;

and so on.

Proposition 37.13. Suppose M is an inner model of ZF, and let G(α, x, w)
be a ∆ZF

1 operation. If w ∈M then the function F : Ord ∩M → V, F (α) =
G(α, F ↾ α,w) is absolute between M and V, and ranF ⊆M .

Proof. F (α) = y if and only if

Ord(α) ∧ ∃f
[
Fn(f) ∧ Trans(dom f) ∧ α ∈ dom f ∧ f(α) = y

∧ ∀β ∈ dom f (f(β) = G(β, f ↾ β,w))
]
.

The formula above ΣZF
1 so F is a ∆ZF

1 -operation and hence absolute between
M and V. If α ∈ Ord then α ∈M and since ∃y (y = F (α)) holds in V, then
∃y ∈M (y = F (α))(M), that is F (α) ∈M . Therefore ranF ⊆M . □

A similar argument proves that

Proposition 37.14. Suppose M is an inner model of ZF and G(n, x,w)
is a ∆ZF

1 -operation. If w ∈ M then the function F : ω → V defined by
F (0) = y0 ∈M and F (n+ 1) = G(n, F (n), w) is absolute between M and V,
ranF ∈M , and

⋃
n∈ω F (n) ∈M .

Using the notation introduced at the beginning of this section, and arguing
as in Theorem 19.22:

Theorem 37.15. Suppose M ̸= ∅ is a transitive class. Then

(a) Ext(M) and Fnd(M).
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(b) (Prn+)(M) if and only if ∀a, b ∈M ({a, b} ∈M).
(c) (Unn+)(M) if and only if ∀a ∈M (

⋃
a ∈M).

(d) (Pwr+)(M) if and only if ∀a ∈M (P(a) ∩M ∈M).

(e) If ω ∈M then Inf(M).

(f) If ∀a ∈M (P(a) ⊆M) then Spr(M).

(g) If ∀a ∈M ∀f : a→M ∃b ∈M (ran f ⊆ b), then Rpl(M).

(h) AC(M) if and only if ∀A ∈M (∀A ∈ A (A ̸= ∅)⇒ ∃f ∈M (f is a choice
function for A)).

A class M is almost universal if for every set x ⊆ M there is y ∈ M
such that x ⊆ y. Note that an almost universal class must be a proper class.
If M ∩ Vα ∈ M for a proper class of αs, then M is almost universal. In
particular, Ord is almost universal.

Proposition 37.16. Suppose M is a transitive, almost universal class. If
Spr(M), then M is an inner model for ZF.

Proof. The result is a straightforward application of Theorem 37.15 and
Spr(M). The case of Ext and Fnd is immediate, and for Prn, Unn, and Pwr
argue as follows:

• if a, b ∈ M then x = {a, b} ⊆ M and ∃y ∈M (x ⊆ y), so x = {z ∈ y |
z = a ∨ z = b} ∈M by Spr(M);
• if a ∈M then x =

⋃
a ⊆M by transitivity of M , and ∃y ∈M (x ⊆ y), so

x = {z ∈ y | ∃w ∈ a (z ∈ w)} ∈M by Spr(M);
• if a ∈ M then x = P(a) ∩M ⊆ M and ∃y ∈M (x ⊆ y), so x = {z ∈ y |
z ⊆ a} ∈M by Spr(M).

In order to prove Inf(M) it is enough to show that ω ∈ M . As M is
closed under unions and the operation of taking singletons, ω ⊆M and hence
ω ⊆ y ∈ M for some y ∈ M . By Spr(M) the set z = {x ∈ y | Ord(x)} =

{x ∈ y | Ord(M)(x)} belongs to M , and ω ⊆ z. If z = ω we are done,
otherwise there is α ∈ z \ ω, and ω ≤ α ∈M , so ω ∈M in any case.

To complete the proof we verify Rpl(M). Given φ(x, y, z, w⃗) we must show
that (

∀w⃗, z (∀x ∈ z ∃!yφ⇒ ∃u∀x ∈ z ∃y ∈ uφ)
)(M)

.

Fix w⃗, z ∈ M and suppose that (∀x ∈ z ∃!yφ)(M). Then (∀x ∈ z ∃yφ)(M)

and hence by transitivity of M , ∀x ∈ z ∃y ∈M φ(M). Then u = {y ∈M |
∃x ∈ zφ(M)} ⊆ M is a set, so there is v ∈ M such that u ⊆ v, and hence
u = {y ∈ v | ∃x ∈ zφ(M)} belongs to M by Spr(M). Therefore we have shown
that (∃u∀x ∈ z ∃y ∈ uφ)(M), which is what we had to prove. □
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37.C.1. Binding quantifiers by new variables. Every formula can be trans-
formed into a ∆0-formula by adding new variables used to bind the quan-
tifiers. To be more precise, we define a transformation φ(x1, . . . , xn) ;

φb(x1, . . . , xn, y1, . . . , yk) where k is the numbers of quantifiers occurring in
φ, so that all quantifiers of φb are bounded:

• if φ is atomic, then φb is φ;
• (¬φ)b is ¬φb and (φ⊙ψ)b is φb ⊙ψb, with ⊙ a binary connective;
• (∃xφ)b is ∃x ∈ yφb and (∀xφ)b is ∀x ∈ yφb, where y is a variable

different from x and not occurring in φ.

Lemma 37.17. Suppose M is transitive and almost universal. For every
a ∈M there are y1, . . . , yk ∈M such that

∀x1, . . . , xn ∈ a (φ(M)(x1, . . . , xn)⇔ φb(x1, . . . , xn, y1, . . . , yk)).

Proof. We proceed by induction on the complexity of φ. If φ is atomic,
the result follows by Lemma 37.9 with N = V, and if φ is a negation
or a disjunction, the result follows at once from the inductive hypothe-
sis. So we may assume that φ(x1, . . . , xn) is ∃xn+1ψ(x1, . . . , xn, xn+1), and
φb(x1, . . . , xn, y1, . . . , yk, ) is ∃xn+1 ∈ yk ψb. Fix a ∈M .

Claim 37.17.1. There is yk ∈M such that

∀x1, . . . , xn ∈ a (φ(M)(x1, . . . , xn)⇔ ∃xn+1 ∈ yk ψ
(M)(x1, . . . , xn+1)).

Proof. As φ(M) is ∃xn+1 ∈M ψ(M), by collection there is a set z ⊆M such
that ∀x1, . . . , xn ∈ a∃xn+1 ∈ zψ(M). By almost universality there is yk ∈M
such that z ⊆ yk. This establishes the forward implication; the reverse
implication follows from transitivity of M . □

By almost universality there is a′ ∈ M such that a ∪ yk ⊆ a′, and by
inductive assumption there are y1, . . . , yk−1 ∈M such that

∀x1, . . . , xn+1 ∈ a′ (ψ(M)(x1, . . . , xn+1)⇔ ψb(x1, . . . , xn+1, y1, . . . , yk−1)),

therefore for all x1, . . . , xn ∈ a

φ(M)(x1, . . . , xn)⇔ ∃xn+1 ∈ yk ψb(x1, . . . , xn+1, y1, . . . , yk−1)

⇔ φb(x1, . . . , xn, y1, . . . , yk)

which is what we had to prove. □

37.D. The satisfaction relation in ZF. Recall that a signature τ is a pair
(⟨I, J,K⟩, arτ ) with I, J,K pairwise disjoint sets, and arτ : I ∪ J → ω \ {0}.
A τ -structure is a pair (A,F ) where A is a non-empty set and F is a function
with domain I ∪ J ∪K such that

• if i ∈ I then F (i) ⊆ arτ (i)A,
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• if j ∈ J then F (j) : arτ (j)A→ A,
• if k ∈ K then F (k) ∈ A.

The (proper) class of all τ -structures is Str(τ). The universe ∥A∥ of A ∈ Str(τ)
is just the first component of A = (A,F ).

Let

F = {⟨τ,A,φ, g⟩ | τ,A ∈ Str(τ),φ ∈ Fml(L), g : Fv(φ)→ ∥A∥},

where τ is a signature, and L = Lτ . For the sake of readability, let us fix
for the time being τ and A, so that the elements of F can be identified
with pairs of the form (φ, g) with g : Fv(φ) → ∥A∥. Let FAtFml be the
subclasses obtained by requiring that φ be atomic. By Section 31.A.1, if
t ∈ Term(L) is a term and g : dom g → ∥A∥ is a finite function such that
Vbl(t) ⊆ dom g ⊆ Vbl, then an element tA[g] ∈ ∥A∥ is defined by induction
on the complexity of t. The function SatAtFml : FAtFml → 2 is defined

• if φ = t ≖ s then SatAtFml(φ, g) = 1 ⇔ tA[g] = sA[g],
• if φ = R(t1, . . . , tn) then SatAtFml(φ, g) = 1 ⇔ RA(tA1 [g], . . . , t

A
n [g]).

Thus A ⊨g φ if and only if SatAtFml(φ, g) = 1, for any atomic formula φ.
Write φ′ <∗ φ to say that φ′ is a sub-formula of φ. A satisfaction

map is a class-function S whose domain is a subclass of F and taking values
in {0, 1}, such that:

(φ, g) ∈ domS ∧ g′ ∈ Fv(φ)∥A∥ ⇒ (φ, g′) ∈ domS(37.2a)

(φ, g) ∈ domS ∧ φ′ <∗ φ ∧ g′ ∈ Fv(φ′)∥A∥ ⇒ (φ′, g′) ∈ domS(37.2b)
S ↾ FAtFml = SatAtFml(37.2c)
(¬¬¬φ, g) ∈ domS ⇒ S(¬¬¬φ, g) = 1− S(φ, g)(37.2d)
(φ∨∨∨ψ, g) ∈ domS ⇒ S(φ∨∨∨ψ, g) = max(S(φ, g), S(ψ, g))(37.2e)

(∃∃∃xφ, g) ∈ domS ⇒ S(∃∃∃xφ, g) = sup{S(φ, g′) | g′ ⊇ g}.(37.2f)

The class-function Sat : F → 2 is the largest satisfaction map. It is defined
in ZF by recursion using the relation � on F

⟨φ′, g′⟩� ⟨φ, g⟩ ⇔ φ′ <∗ φ ∧ g′ ↾ Fv(φ) = g.

The relation � is well-founded because of <∗, and it is left-narrow as ∥A∥ is
a set. Let

A ⊨g φ ⇔ Sat(φ, g) = 1.

As usual, when φ is a sentence, we drop the g and write A ⊨ φ.
We cannot formalize in ZF the notion A ⊨g φ when ∥A∥ is a proper class,

unless we put some restrictions on the complexity of φ, as the next result
shows.
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Let’s introduce a bit of notation. First of all, for notational ease, we focus
on the signature for set theory, i.e. having only ∈ as non-logical symbol. Also
let’s assume that A = ⟨V,∈⟩. Let

Σn-Fml = {φ ∈ Fml | φ is Σn}
FΣn = {(φ, g) | φ ∈ Σn-Fml ∧ g : Fv(φ)→ V}

SatΣn : FΣn → 2, a satisfaction map
TruthΣn = {(φ, g) ∈ FΣn | SatΣn(φ, g) = 1}.

Similarly we define Πn-Fml, FΠn , . . . , and note that (φ, g) ∈ TruthΠn ⇔
(¬¬¬φ, g) /∈ TruthΣn .

Theorem 37.18. Work in ZF.

(a) Each FΣn ,FΠn is ∆ZF
1 -definable.

(b) SatΣ0 and TruthΣ0 are ∆ZF
1 -definable.

(c) For each n ≥ 1, TruthΣn is Σn-definable, TruthΠn is Πn-definable, and
SatΣn is defined by a disjunction of a Σn and a Πn formula.

Proof. (a)

(b)

(c) Note that (φ, g) ∈ TruthΣn+1 if and only if φ is of the form ∃∃∃xψ
with ψ ∈ Πn-Fml and if x occurs free in ψ then (ψ, g ∪ {(x, a)}) ∈ TruthΠn ,
for some a. In symbols:

(φ, g) ∈ TruthΣn+1 ⇔∃a ∃ψ ∈ Σn-Fml ∃x ∈ Vbl
[
φ = ∃∃∃x¬¬¬ψ ∧

∃g′
(
g ⊆ g′ ⊆ g ∪ {(x, a)} ∧ (ψ, g′) /∈ TruthΣn

)]
.

Therefore when n = 0 this proves that TruthΣ1 is Σ1-definable, since TruthΣ0

is Π1 by part (b), and assuming TruthΣn is Σn-definable, then TruthΠn is
Πn-definable, and hence TruthΣn+1 is Σn+1-definable.

The class-function SatΣn is defined by a disjunction of a Σn and a Πn

formula, since

SatΣn(φ, g) = i⇔
[
(φ, g) ∈ TruthΣn ∧ i = 1

]
∨
[
(φ, g) /∈ TruthΣn ∧ i = 0

]
.
□

37.E. The satisfaction relation in NGB and MK. Working in MK one
can give-up the requirement that the structures are sets.

Later
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Exercises

Exercise 37.19. Show that Ext + Pwr + Rpl ⊢ Prn. [Hint: P(P(∅)) has
exactly two elements]

Exercise 37.20. Let T be Zermelo’s set theory Z with the axiom of separation
removed, and with the addition of two axioms: ∃x∀y(y /∈ x) asserting the
existence of the empty set, and tRpl the axiom-schema of tight replacement.
Show that ZF is equivalent to T.

Exercise 37.21. Suppose Ω is either a regular cardinal, orelse Ω = Ord.
Show that Ω ia a transitive inner model of: Ext, Fnd, Prn, Unn, Pwr, Rpl,
and AC.

38. Reflection

38.A. The reflection theorem.

Definition 38.1. A hierarchy is a sequence of sets ⟨Zα | α ∈ Ord⟩ which is
monotone, that is α < β ⇒ Zα ⊆ Zβ , and continuous at limits, that is Zλ =⋃

α<λ Zα if λ is limit. If Z =
⋃

α∈Ord Zα then we say that ⟨Zα | α ∈ Ord⟩ is
a hierarchy for Z.

Clearly ⟨Vα | α ∈ Ord⟩ is a hierarchy for V.

Theorem 38.2. If ⟨Zα | α ∈ Ord⟩ is a hierarchy for Z, then for all
φ1, . . . ,φn there is a definable closed and unbounded class C such that

ZF ⊢ ∀α ∈ C (φ1, . . . ,φn are absolute between Zα and Z) .

Formally: given ζ(x, y) and φ1, . . . ,φn, if ZF ⊢ ∀α∃!yζ(α, y) so that
letting Zα be the unique y satisfying ζ(α, y), if ZF proves the defining
conditions for a hierarchy, then there is a formula χ that defines in ZF a
closed unbounded class of ordinals, and

ZF ⊢ ∀α (χ(α)⇒ φ1, . . . ,φn are absolute between Zα and Z) .

Proof. By adding sub-formulæ, if needed, we may assume that φ1, . . . ,φn

is closed under sub-formulæ.
If φi is ∃xφj(x, y1, . . . , yh) let Gi(y1, . . . , yh) be the least η such that ∃x ∈

Zηφ
(Z)
j (x, y1, . . . , yh), if ∃x ∈ Zφ

(Z)
j (x, y1, . . . , yh), and Gi(y1, . . . , yh) = 0

otherwise. Let Fi(ξ) = sup {Gi(y⃗) | y⃗ ∈ Zξ}. If φi is not existential let
Fi(ξ) = 0. Thus Fi : Ord → Ord for i = 1, . . . , n. If α is limit and closed
under the Fis, then φ1, . . . ,φn are absolute between Zα and Z by Lemma 37.7.
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On the other hand the class of limit closure points of any class-function on
the ordinals, is a closed and unbounded class. □

If φ⇔ φ(Vβ) we say that Vβ reflects φ.

Corollary 38.3. If T extends ZF and σ1, . . . ,σn are in T, then there is
a definable class C such that T ⊢“C is closed and unbounded in Ord” and
T ⊢ ∀α ∈ C

(
σ
(Vα)
1 ∧ · · · ∧ σ(Vα)

n

)
.

Lemma 38.4. The formulæ y = P(x) and y = Vα are absolute between Vλ

and V, with λ limit.

Proof. If x ∈ Vλ then x ∈ Vα for some α < λ, so P(x) ∈ Vα∔1 ⊆ Vλ.
Therefore (y = P(x))(Vλ) ⇔ y = P(x).

Note that y = Vα if and only if

Ord(α) ∧ ∃f ∃δ
[
Ord(δ) ∧ α ∈ δ ∧ Fn(f) ∧ δ = dom(f)

∧ f(∅) = ∅ ∧ f(α) = y ∧ ∀ν ∈ δ (ν limit⇒ f(ν) =
⋃

ξ<ν f(ξ))

∧ ∀ν ∈ δ (S(ν) ∈ δ ⇒ f(S(ν)) = P(f(ν)))
]
.

As ⟨Vν | ν < α∔ 1⟩ ∈ Vλ, it follows that y = Vα is absolute between Vλ and
V. □

Theorem 38.5. If T extends ZF is finitely axiomatizable, then T is inconsis-
tent.

In other words, no consistent extension of ZF is finitely axiomatizable.

Proof. Suppose T is σ1, . . . ,σn and let β be the least limit ordinal such that
Vβ reflects σ1 ∧ · · · ∧ σn, that is Vβ ⊨ ⌜T⌝ by (37.1). As T ⊢ ∃α(Vα ⊨ ⌜T⌝)
and by Lemma 38.4, there is a limit α < β such that Vα reflects the σi,
against the minimality of β. □

Theorem 38.6 (ZF). Let Z be a class, let X ⊆ Z be a set, and let φ1, . . . ,φn

be formulæ. Suppose that either

(a) |X| ≰ ω and AC holds, or else
(b) |X| ≤ ω and DC holds.

Then there is a set A such that X ⊆ A ⊆ Z, with |A| = max(|X|, ω) and
each φi is absolute between A and Z.

Proof. We may assume that φ1, . . . ,φn is closed under sub-formulæ. Let
Zα = Z ∩ Vα so that ⟨Zα | α ∈ Ord⟩ is a hierarchy. Let α be sufficiently
large so that X ⊆ Zα and let β > α be such that each φi is absolute between
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Zβ and Z. Let B = ⟨Zβ;∈, cx⟩x∈X . We will prove that there is A ≼ B such
that X ⊆ A = ∥A∥ and |A| ≤ max(|X|, ω).

If (a) holds, apply Theorem 31.15; since X is uncountable then |A| =
max(|X|, ω).

If (b) holds, apply Theorem 31.19; since we can always enlarge X so that
ω ≾ X we have that |A| = ω = max(|X|, ω).

Thus we have that each φi is absolute between A, Zβ , and Z as required.
□

Corollary 38.7 (AC). Let Z be a transitive class and let σ1, . . . ,σn be
sentences. Then for every transitive set X ⊆ Z there is a transitive set
M ⊇ X such that |M | ≤ max(ω, |X|) and σ(M)

i ⇔ σ
(Z)
i for all 1 ≤ i ≤ n.

Proof. Without loss of generality the axiom of extensionality is one of the
σi and let A be given by Theorem 38.6, so that σ(Z)

j ⇔ σ
(A)
j : Z is transitive,

so extensionality holds in Z, and hence also in A. Let π : A → M be the
Mostowski collapse. As π(x) = {π(y) | y ∈ x ∩A} and X ⊆ A is transitive,
π ↾ X is the identity, so X ⊆M . □

If Z = V and X = ω we obtain

Corollary 38.8. If T extends ZFC and σ1, . . . ,σn are in T, then

T ⊢ ∃M
(
Trans(M) ∧ |M | ≤ ω ∧ ⟨M,∈⟩ ⊨ ⌜

∧n
i=1 σi⌝

)
.

Let ⟨σn | n ∈ ω⟩ be an enumeration of the axioms of ZFC and let ZFCn be
the theory that has axioms {σi | i < n}. Every theorem of ZFC is a theorem
of ZFCn, for some n.

For any fixed n, the theory ZFC proves that there is a countable tran-
sitive M ⊨ ZFCn. If n is large enough, M ⊨ (ω1 exists). Therefore “being
uncountable” is not absolute for transitive models of any ZFCn.

38.B. The models Hκ. Recall from Section 19.A.1 that the transitive
closure of a class X is the smallest transitive class Y containing X.

Definition 38.9. For α ≥ ω, let

Hα = {x | TC(x) is well-orderable, and |TC(x)| < α}.

If α is not a cardinal, then Hα = Hα+ , so the definition above is of interest
only when α is a cardinal. On the other hand this extra generality and the
next result shows that ⟨Hα | α ∈ Ord⟩ is a hierarchy for V.

Lemma 38.10. For every infinite cardinal κ:

(a) Hκ is transitive, and κ = Hκ ∩Ord.
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(b) ∀x ∈ Hκ ∀y ⊆ x (y ∈ Hκ).
(c) Hκ ⊆ Vκ.
(d) Assuming AC, |Hκ| = 2<κ.

Proof. (a) If x ∈ y ∈ Hκ, then TC(x) ⊂ TC(y) so TC(x) is well-orderable
and |TC(x)| < κ, i.e. x ∈ Hκ. Thus Hκ ∩ Ord is an ordinal, and hence it
must be κ.

(b) If y ⊆ x ∈ Hκ, then TC(y) ⊆ TC(x) so |TC(y)| ≤ |TC(x)| < κ, and
hence y ∈ Hκ.

(c) If ξ < α = rank(x) then ξ = rank(z) for some z ∈ TC(x), so
α = {rank(z) | z ∈ TC(x)}. Thus if x ∈ Hκ then TC(x) has size < κ so
rank(x) < κ, i.e. Hκ ⊆ Vκ.

(d) P(λ) ⊆ Hκ for all λ < κ, so 2<κ ≤ |Hκ|. Given x ∈ Hκ, fix a bijection
fx : TC({x})→ λx < κ and let

Ex = {(α, β) ∈ λx × λx | f−1
x (α) ∈ f−1

x (β)}.

Then ⟨λx, Ex⟩ is extensional and well-founded, and ⟨TC({x}),∈⟩ is the unique
transitive structure isomorphic to it. As x is the unique x̄ ∈ TC({x}) such
that ∀y(x̄ /∈ y) is true in ⟨TC({x}),∈⟩, then there is a unique α ∈ fld(Ex) such
that ¬∃β(α Ex β) is true in ⟨λx, Ex⟩. Therefore TC({x}) can be recovered
from Ex alone. (This is the point for using TC({x}) rather than TC(x).)
The map Hκ →

⋃
{P(λ× λ) | λ < κ}, x 7→ Ex is injective, and therefore

|Hκ| ≤ 2<κ. □

Theorem 38.11. Let κ be an infinite cardinal.

(a) Hκ satisfies all axioms of ZF with the possible exception of Inf, Pwr, and
Rpl.

(b) If κ > ω then Hκ ⊨ ⌜Inf⌝.
(c) If we assume AC, then Hκ ⊨ ⌜AC⌝.
(d) Assume AC. If κ > ω is regular, then Hκ ⊨ ⌜Clct⌝, and therefore

Hκ ⊨ ⌜ZFC− Pwr⌝.

Proof. (a) follows from Theorem 19.22 and Lemma 38.10, while (b) is
immediate.

(c) It is enough to show that if A ∈ Hκ and

(38.1a) Hκ ⊨ A is a family of pairwise disjoint non-empty sets,

then there is b ∈ Hκ such that

(38.1b) Hκ ⊨ ∀a ∈ A (b ∩ a is a singleton).
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By transitivity of Hκ it is easy to check that any A as in (38.1a) is indeed a
family of pairwise disjoint non-empty sets, so by AC pick a b ⊆

⋃
A which

intersects every set in A in a singleton. As
⋃
A ∈ Hκ, it follows that b ∈ Hκ,

so we are only left to check (38.1b), which we leave to the reader.

(d) Let a ∈ Hκ, and let R ⊆ Hκ be a binary relation with domain a. By
choice there is f : a→ Hκ such that f ⊆ R, and let b = ran f ⊆M , so that
|b| ≤ |a| < κ. Since κ is regular, then TC(b) = b∪

⋃
{TC(y) | y ∈ b} has size

< κ, and hence b ∈ Hκ. Therefore Hκ satisfies collection. □

Theorem 38.12 (Lévy). If φ(x, z⃗) is Σ1 and κ > ω is an infinite cardinal,
then ∀z⃗ ∈ Hκ (∃xφ⇒ ∃x ∈ Hκφ).

Proof. Suppose first that φ(x, z1, . . . , zk) is Σ0. Let a1, . . . , ak ∈ Hκ and let
α be such that a1, . . . , ak ∈ Vα and

∃xφ(a1, . . . , ak)⇔ (∃xφ(a1, . . . , ak))(Vα).

Let X ≼ Vα be such that TC({a1, . . . , ak}) ⊆ X and |TC({a1, . . . , ak})| =
|X|. If M is the transitive collapse of X, then |M | < κ so M ∈ Hκ. In
particular, there is b ∈ M ⊆ Hκ such that M ⊨ φ(b, a1, . . . , ak), and by
Σ0-absoluteness φ(b, a1, . . . , ak).

Suppose now φ(x, z1, . . . , zk) is ∃yψ(y, x, z1, . . . , zk) with ψ Σ0. The
formula χ(u, z1, . . . , zk) given by ∃x ∈ u∃y ∈ uψ(y, x, z1, . . . , zk) is Σ0, and
∃xφ(x, z1, . . . , zk) ⇔ ∃uχ(u, z1, . . . , zk). So now we fall into the previous
case. □

Exercises

Exercise 38.13. Assume ConZF and suppose M = ⟨M,E⟩ is a model of
ZF+ ¬Con(⌜ZF⌝). With the notation of Example 35.7 show that

(i) I ⊈ n for any n ∈ ω

(ii) I ∩ (ωM \ ω) is non-empty and has no minimum.

39. Constructibility

39.A. Gödel’s operations. In Chapter V we defined the ordered pair, and
then we agreed to construe the n-tuple ⟨a1, . . . , an⟩ to be the function with
domain n that sending i to ai+1. But of course, one could define triples from
pairs, quadruples from triples, and so on.
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Definition 39.1. The set (a1, . . . , an) is defined as follows: (a1) = a1,
(a1, a2) = {{a1} , {a1, a2}} as in (16.4), and if n ≥ 2 (a1, . . . , an, an+1) =
((a1, . . . , an), an+1).

Similarly we set x1 × · · · × xn × xn+1 = (x1 × · · · × xn)× xn+1.

Definition 39.2. A Gödel operation is a class function obtained by
composing the functions F1, . . . ,F8 below:

F1(x, y) = {x, y} F5(x, y) =
⋃

x

F2(x, y) = x× y F6(x, y) = {(u, v) ∈ x× y | u ∈ v}
F3(x, y) = x \ y F7(x, y) = {(u, v, w) | (u,w, v) ∈ x}
F4(x, y) = domx F8(x, y) = {(u, v, w) | (v, w, u) ∈ x}.

It is convenient to write the Fis as binary operations, although F4, F5, F7,
F8 are unary operations. Let θi(x, y, z) (1 ≤ i ≤ 8) be ∆0-formulæ such that

∀x, y, z (Fi(x, y) = z ⇔ θi(x, y, z)) .

Therefore a class M is closed under the Gödel operations if and only if∧
1≤i≤8 ∀x, y ∈M ∃z ∈M θi(x, y, z), so “being closed under the Gödel opera-

tions” is a notion that makes sense in ZF, NGB, and MK. Note that if λ is
limit, then Vλ is closed under the Gödel operations.

Lemma 39.3. The following are Gödel operations:

(a) (x, y) 7→ x ∩ y

(b) x 7→ x̆ = {(u, v) | (v, u) ∈ x}

(c) (x1, . . . , xn) 7→ En
i,j

def
= {(u1, . . . , un) ∈ x1 × · · · × xn | ui ∈ uj}, where

n ≥ 2 and i ̸= j.

Proof. (a) x ∩ y = F3(F3(x, y)).

(b) x̆ = domF8(F8(F7(F8(x× x)))).

(c) We proceed by induction on n: E2
1,2 = F6(x1, x2) and E2

2,1 = Ĕ2
1,2 so

we are done by part (b).
Suppose the result holds for some n ≥ 2, towards proving it for n+ 1. If

i, j ≤ n, then En+1
i,j = En

i,j × xn+1, so we may assume that max(i, j) = n+ 1.
By part (b) we may assume that i ≤ n and j = n+ 1. Then

En+1
i,j =

{
x1 × · · · × xn−1 × F6(xn, xn+1) if i = n,

F7(E
n
i,n × xn+1) if i < n.

□

Theorem 39.4. If φ(v1, . . . , vn) is ∆0, then there is a Gödel operation F
such that for all x1, . . . , xn,

F(x1, . . . , xn) = {(u1, . . . , un) ∈ x1 × · · · × xn | φ(u1, . . . , un)}.
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Proof. Without loss of generality we may assume that

• the only logical symbols in φ are ¬, ∧, and the restricted ∃,
• the symbol = does not occur, since x = y can be rendered by ∀z ∈ x (z ∈
y) ∧ ∀z ∈ y (z ∈ x),
• x ∈ x does not occur, since it can be replaced by ∃u ∈ x (u = x).

If φ is atomic, use part (c) of Lemma 39.3. If φ is ¬ψ, and F is the Gödel
operation for ψ, then

{(u1, . . . , un) ∈ x1 × · · · × xn | φ(u1, . . . , un)} = x1×· · ·×xn\F(x1, . . . , xn).
If φ is ψ ∧ χ, apply the inductive hypothesis and part (a) of Lemma 39.3. If
φ is ∃un+1(un+1 ∈ ui ∧ ψ), then by inductive assumption there is a Gödel
operation F such that

F(x1, . . . , xn+1) =

{(u1, . . . , un+1) ∈ x1 × · · · × xn+1 | ψ(u1, . . . , un+1) ∧ un+1 ∈ ui}.
Then

domF(x1, . . . , xn,
⋃
xi) = {(u1, . . . , un) ∈ x1 × · · · × xn | φ(u1, . . . , un)}.

□

Corollary 39.5. If M is a transitive class, closed under the Gödel oper-
ations, and φ(v0, v1, . . . , vn) is ∆0, and x, p1, . . . , pn ∈ M , then {u ∈ x |
φ(u, p1, . . . , pn)} ∈M .

Proof. By Theorem 39.4 there is a Gödel operation such that

F(x, {p1}, . . . , {pn}) = {(u, p1, . . . , pn) | u ∈ x ∧φ(u, p1, . . . , pn)},
so

{u ∈ x | φ(u, p1, . . . , pn)} = dom . . . dom︸ ︷︷ ︸
n times

F(x, {p1}, . . . , {pn}). □

Theorem 39.6 (ZF). Suppose M is a transitive proper class. Then M is
almost universal and closed under the Gödel operations if and only if M is
an inner model of ZF.

Theorem 39.6 is stated informally—the actual statement would be as
follows. Suppose υ(x) is a formula such that

ZF ⊢ ∃xυ(x) ∧ ∀x, y (υ(x) ∧ y ∈ x⇒ υ(y)) ∧ ¬∃y ∀x (υ(x)⇒ x ∈ y),

i.e. ZF proves that the class M
def
= {x | υ(x)} is non-empty, transitive, and

proper: if

ZF ⊢
∧

1≤i≤8 ∀x, y, z (υ(x) ∧ υ(y) ∧ θi(x, y, z)⇒ υ(z))

∧ ∀x (∀z ∈ xυ(z)⇒ ∃y (υ(y) ∧ ∀z ∈ x (z ∈ y)))
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i.e. ZF proves that M is closed under the Gödel operations and it is almost
universal, then ZF ⊢ σ(υ) for every σ axiom of ZF, and conversely.

Proof. Suppose M is closed under the Gödel operations and it is almost uni-
versal. By Lemma 37.16 it is enough to check that Spr(M). Fix x, p1, . . . , pn ∈
M : we must show that z = {u ∈ x | φ(M)(u, p⃗)} ∈ M . As M is closed
under F0, it is closed under singletons, so {x, p1, . . . , pn} ⊆M and by almost
universality there is x, p1, . . . , pn ∈ a ∈ M . By Lemma 37.17 there are
y1, . . . , yk ∈ M such that φ(M)(u, p⃗) ⇔ φb(u, p⃗, y⃗), and since φb is ∆0, it
is absolute between V and M by Lemma 37.10. Therefore we can apply
Corollary 39.5 and argue that z = {u ∈ x | φb(u, p⃗)} is in M .

Conversely, suppose M is an inner model of ZF. As ZF ⊢ ∀x, y, z (Fi(x, y) =
z ⇔ θi(x, y, z)), then M is closed under the basic Gödel operations. If x ⊆M

is a set, then there is α such that x ⊆ Vα ∩M = V
(M)
α ∈M . □

39.B. Intermezzo: NGB is finitely axiomatizable. Recall from Sec-
tion 17.B that NGB is a theory in a two-sorted language with lower case
variables x, y, z, . . . for sets, and upper case letters X,Y, Z, . . . for classes,
with only one axiom schema, namely the axiom of comprehension restricted
to formulæ that are predicative, that is such that all quantifiers range over
sets. We now give a finite list Σ of sentences that are provable in NGB, and
then argue that the axiom schema of predicative comprehension follows from
Σ.

The first four axioms of Σ and NGB are the same:

Sets are classes: ∀x ∃X (x = X),

Classes belonging to classes are sets: ∀X ∀Y (X ∈ Y ⇒ ∃x (x = X)),

Extensionality: ∀X∀Y (∀z(z ∈ X ⇔ z ∈ Y )⇒ X = Y ),

Pairing: ∀x∀y∃z∀w (w ∈ z ⇔ w = x ∨ w = y).

The next eight axioms of Σ are provable in NGB using predicative compre-
hension:

Empty set: ∃x∀y(y /∈ x),

Membership: ∃E∀x∀y ((x, y) ∈ E ⇔ x ∈ y),

Intersection: ∀X∀Y ∃Z∀w (w ∈ Z ⇔ w ∈ X ∧ w ∈ Y ),

Complementation: ∀X∃Y ∀z(z ∈ X ⇔ z /∈ Y ),

Domain: ∀R∃X∀x (x ∈ X ⇔ ∃y((x, y) ∈ R)),
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Cartesian product:3 ∀X∃Y ∀x∀z (x ∈ X ⇔ (x, z) ∈ Y ),

Permutation: ∀X∃Y ∀u∀v∀w [(u, v, w) ∈ X ⇔ (w, u, v) ∈ Y ],

Exchange: ∀X∃Y ∀u∀v∀w [(u, v, w) ∈ X ⇔ (u,w, v) ∈ Y ].

The axiom of exchange can be generalized to: for all n ≥ 1 and every class
X we can construct the class

Y = {(v1, . . . , vn, x, vn+1) | (v1, . . . , vn, vn+1, x) ∈ X}.

Extensionality together with the axioms of intersection and of complementa-
tion guarantee that, given classes X and Y we can construct the classes

X∁ = {z | z /∈ X},
X ∩ Y = {z | z ∈ X ∧ z ∈ Y },

X ∪ Y = (X∁ ∩ Y ∁)∁ = {z | z ∈ X ∨ z ∈ Y },

while the axiom of domain guarantees the existence of the class

domX = {z | ∃w (z, w) ∈ X}.

By the axioms of extensionality and empty set there is a unique set ∅ without
elements, and let V

def
= ∅∁. Thus ∀x (x ∈ V). By the axiom of cartesian

products, for each n ≥ 1 one can prove the existence of

Vn def
= {(x1, . . . , xn) | x1, . . . , xn ∈ V}

the class of all n-tuples (x1, . . . , xn). By the axiom permutation, for every class
X there is a class Y such that for all x, y, z we have (x, y, z) ∈ X ⇔ (z, x, y) ∈
Y so Y ∩ V3 = {(z, x, y) | (x, y, z) ∈ X} exists. Similarly, the axiom of
exchange proves that the class {(x, z, y) | (x, y, z) ∈ X} exists. By repeated
applications of the axioms of permutation and exchange one can show that
{(xπ(1), xπ(2), xπ(3)) | (x1, x2, x3) ∈ X} exists, for each class X and each
permutation π of {1, 2, 3}. In particular

(39.1) {(x2, x1, x3) | (x1, x2, x3) ∈ X} exists for every class X.

Proposition 39.7. The following are provable in Σ.

(a) R̆ = {(y, x) | (x, y) ∈ R} exists for every class R.
(b) X × Y exists for all classes X,Y .
(c) For every n,m and every class Y there exists the class

{(z1, . . . , zn, y, w1, . . . , wm) | y ∈ Y ∧ z1, . . . , zn, w1, . . . , wm ∈ V} .

3The axiom of cartesian products asserts the existence of the class X × V for any class X,
although we have not yet formally defined the general cartesian product X×Y for arbitrary classes.
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(d) For every n,m, k and every class R there exists the class

{(z1, . . . , zn, x, u1, . . . , uk, y, w1, . . . , wm) | (x, y) ∈ R ∧
z1, . . . , zn, u1, . . . , uk, w1, . . . , wm ∈ V} .

Proof. (a) Let R be a class. By the axiom of cartesian products the class
Y = {(x, y, z) | (x, y) ∈ R} exists, and so does Z = {(y, x, z) | (x, y, z) ∈ Y }
by (39.1). Therefore R̆ = domZ exists.

(b) Note that X × V exists by the axiom of cartesian products, so
X × Y = (X ×V) ∩ (Y ×V)̆.

(c) By the axiom of cartesian products, the class Y ×Vn exists, and so
does {((z1, . . . , zn), y) | y ∈ Y ∧ z1, . . . , zn ∈ V} by part (a). The result now
follows by m applications of the axiom of cartesian products.

(d) By replacing R with ˘̆
R if needed, we may assume that R is a relation.

By part (c) Y0 exists, where for k ≥ 0

Yk
def
= {(z1, . . . , zn, x, u1, . . . , uk, y) | (x, y) ∈ R ∧ z1, . . . , zn, u1, . . . , uk ∈ V} .

It is enough to show that Yk exists for any k ≥ 0, and then apply m many
times the axiom of cartesian products. We proceed by induction on k: if Yk
exists for some k, then Yk ×V exists by the axiom of cartesian products, so
Yk+1 exists by the axiom of exchange. □

The next result is very similar to Theorem 39.4.

Theorem 39.8. Let φ(x0, . . . , xn−1, Y0, . . . , Ym−1) be a predicative formula.
Then the class

Aφ
def
= {(x0, . . . , xn−1) | φ(x0, . . . , xn−1, Y0, . . . , Ym−1)}

exists.

Proof. We may assume that Yk ∈ z (with k < m) is not a sub-formula of φ,
since it can be replaced by ∃y (y = Yk ∧ y ∈ z). Similarly, we may assume
that no formula of the form W ∈ Z or z ∈ z occurs in φ, since they can be
replaced by ∃w (w = W ∧w ∈ Z) and ∃w (w = z ∧w ∈ z), where w is a new
variable. We may also assume that the equality symbol does not occur in
φ, since it can be eliminated by the axiom of extensionality. We prove the
result by induction on the complexity of φ.

If φ is atomic, then our assumptions imply that φ is of the form:

(i) xi ∈ Yk with i < n and k < m, or
(ii) xi ∈ xj with i < j < n, or
(iii) xj ∈ xi with i < j < n.
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If case (i) holds, then Aφ = {(x0, . . . , xn−1) | xi ∈ Yk} which exists by
Proposition 39.7(c). If case (ii) holds, then Aφ = {(x0, . . . , xn−1) | xi ∈ xj}
is obtained by applying Proposition 39.7(d) to the class E = {(x, y) | x ∈ y}
which exists by the axiom of membership, while in case (iii) we apply the
previous argument to Ĕ which exists by Proposition 39.7(a). If φ is ¬ψ,
then Aφ = Vn \Aψ which exists by inductive assumption and the axiom of
complements. If φ is ψ ∧ χ, then Aφ = Aψ ∩ Aχ which exists by inductive
assumption and the axiom of intersection. Finally, suppose φ is ∃xnψ. Then

Aψ = {(x0, . . . , xn−1, xn) | ψ(x0, . . . , xn−1, xn, Y0, . . . , Ym−1)}

exists by inductive assumption, so Aφ = dom(Aψ) exists by inductive as-
sumption and the axiom of domains. □

Using Theorem 39.8 it is easy to construct new classes such as
⋃

X,
⋂

X,
. . . , and combining this with the axiom of domain we obtain the axiom of
predicative comprehension.

Corollary 39.9. For every predicative formula φ(x, y1, . . . , yn, Z1, . . . , Zm)
with x free in φ and Y a variable not occurring in φ, the theory Σ proves

∀y1, . . . , yn, Z1, . . . , Zm∃X∀x(x ∈ X ⇔ φ(x, y1, . . . , yn, Z1, . . . , Zm)).

We can now complete our list of axioms of Σ by adding the remaining
axioms of NGB:

Separation: ∀x∀Y ∃z∀w (w ∈ z ⇔ w ∈ x ∧ w ∈ Y ), that is: the intersection
of a class with a set is a set.

Power-set: ∀x∃y∀z (z ∈ y ⇔ z ⊆ x).

Foundation: ∀X (∃y (y ∈ X)⇒ ∃y (y ∈ X ∧ ∀z (z /∈ y ∩X))).

Union: ∀x∃y∀z (z ∈ y ⇔ ∃u (u ∈ x ∧ z ∈ u)).

Infinity: ∃x (∅ ∈ x ∧ ∀y (y ∈ x⇒ S(y) ∈ x)).

Replacement: ∀F∀a
[
∀x (x ∈ a⇒ ∃!y (x, y) ∈ F )⇒ ∃b∀y (y ∈ b⇔ ∃x (x ∈

a ∧ (x, y) ∈ F ))
]
.

39.C. The constructible closure. The main result of this section is that
for any set S there is a definable proper class L(S), called the constructible
closure of S such that:

• S ∈ L(S),
• L(S) is an inner model of ZF,
• if M is a proper class inner model of ZF such that S ∈M , then L(S) ⊆M .
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The model L(S) is first constructed under the additional assumption that
S ̸= ∅ is transitive and S ≍ S. The constructible closure of S is built by
means of a class function F : S ×Ord→ V that we define next.

Recall from Section 18.C that Ord×Ord is well-ordered by

(β, γ) <G (β′, γ′) ⇔ max(β, γ) < max(β′, γ′) ∨[
max(β, γ) = max(β′, γ′) ∧ (β, γ) <lex (β′, γ′)

]
,

and that if (β, γ) has order-type α in this order, then β, γ < α. Let

Ord→ Ord×Ord, α 7→ ((α)0, (α)1)

be the enumerating class-function. Let D : Ord→ Ord and R : Ord→ 9 be
the operations of dividing-by-9 and taking the remainder, that is

(39.2) ∀α ∈ Ord (α = 9 · D(α)∔ R(α)) .

If p : S → S × S, s 7→ (p0(s), p1(s)) is a bijection, then the class-function

F = FS,p : S ×Ord→ V

is defined as follows. Let F(s, 0) = s for all s ∈ S, and for α > 0 let
β = D(α) ≤ α and 0 ≤ i = R(α) < 9, so that α = 9 · β ∔ i, and set

F(s, α) =

{
{F(t, γ) | t ∈ S ∧ γ < β} if i = 0,

Fi(F(p0(s), (β)0),F(p1(s), (β)1)) if 1 ≤ i ≤ 8.

In other words, at stage α = 9 · β > 0 we collect the previous values, and
at all other stages we apply one of the Gödel operations. Note that when
α > 0 is divisible by 9, the value of F does not depend on s, so for the sake
of readability we write F(α) = {F(s, γ) | s ∈ S ∧ γ < β}.

If q : S → S × S is another bijection then an easy induction shows that

∀α (FS,p“9 · α = FS,q“9 · α) ,

and therefore the range of FS,p depends only on S. Let

L(S) = ranFS,p

for some/any bijection p : S → S × S.

Theorem 39.10. For S ≍ S × S transitive, the class L(S) is transitive,
almost universal, closed under the Gödel functions and such that S ∈ L(S).

Proof. First of all notice that S = {F(s, 0) | s ∈ S} ⊆ L(S), and that
S = F(9) ∈ L(S).

Next we prove that L(S) is closed under the Fis. Let x0 = F(s0, β0)
and x1 = F(s1, β1), so let s ∈ S and β ∈ Ord be such that sj = pj(s) and
βj = (β)j for j = 0, 1. Then Fi(x0, x1) = F(s, 9 · β ∔ i) ∈ L(S).
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If ∅ ̸= x ⊆ L(S) is a set, then for all y ∈ x there is αy ∈ Ord such that
y = F(s, αy) for some s ∈ S. Then x ⊆ F(s, α) ∈ L(S) where α > 0 is of the
form 9 · β, and β ≥ sup{αy ∔ 1 | y ∈ x}. Therefore L(S) is almost universal.

Finally we prove that L(S) is transitive by showing by induction on α that
∀s ∈ S (TC(F(s, α)) ⊆ L(S)). If α = 0 the result follows from the transitivity
of S and from S ⊆ L(S), so assume α > 0 and that the result holds for all
α′ < α. If α = 9 · β, then F(s, α) = {F(t, α′) | α′ < β ∧ t ∈ S} ⊆ L(S); as
TC(F(s, α′)) ⊆ L(S) by inductive assumption, the result follows. Therefore
we may assume that α = 9 · β ∔ i for some 1 ≤ i ≤ 8, and thus

F(s, α) = Fi(F(s0, β0),F(s1, β1)),

with sj = pj(s), βj = (β)j < β ≤ α, and j ≤ 1. Thus by inductive
assumption TC(F(sj , βj)) ⊆ L(S) for j ≤ 1.

• If i = 1, then F(s, α) = {F(s0, β0),F(s1, β1)} is a subset of L(S), so the
result follows.
• If i = 2, then F(s, α) = F(s0, β0) × F(s1, β1). In order to show that
TC(F(s, α)) ⊆ L(S) it is enough to show that

(u0, u1) ∈ L(S) and TC({{u0}, {u0, u1}}) ⊆ L(S)

for all uj ∈ F(sj , βj) and j = 0, 1. By inductive assumption TC(F(sj , βj)) ⊆
L(S), and since uj ∈ TC(F(sj , βj)), and TC(uj) ⊆ TC(F(sj , βj)), we have
that uj ,TC(uj) ∈ L(S), for j = 0, 1. As L(S) is closed under F1, then
(u0, u1) ∈ L(S). Moreover

TC((u0, u1)) = TC({{u0}, {u0, u1}}) = (u0, u1)∪{u0, u1}∪TC(u0)∪TC(u1)

is contained in L(S). This completes the proof.
• If i = 3, then F(s, α) = F(s0, β0) \ F(s1, β1) ⊆ F(s0, β0). Thus by inductive

assumption TC(F(s, α)) ⊆ TC(F(s0, β0)) ⊆ L(S).
• If i = 4, then F(s, α) = domF(s0, β0). If u ∈ F(s, α) then there is v

such that u ∈ {u} ∈ (u, v) ∈ F(s0, β0), so {u} ∪ TC(u) = TC({u}) ⊆
TC(F(s0, β0)) ⊆ L(S) by inductive assumption. Therefore

TC(F(s, α)) = F(s, α) ∪
⋃

u∈F(s,α)TC(u) ⊆ L(S).

• If i = 5, then F(s, α) =
⋃
F(s0, β0), and the result follows easily.

• If i = 6, then F(s, α) ⊆ F(s0, β0) × F(s1, β1), so the result holds by the
case i = 2.
• If i = 7, then F(s, α) = {(u, v, w) | (u,w, v) ∈ F(s0, β0)}. Let (u, v, w) ∈
F(s, α). Since u, v, w ∈ TC((u,w, v)) ⊆ TC(F(s0, β0)) ⊆ L(S), then
(u, v, w) ∈ L(S) by closure under F1, and using the inductive assumption
TC(u),TC(v),TC(w) ⊆ L(S). Arguing as above,

TC((u, v, w)) = (u, v, w) ∪ {(u, v), w} ∪ {u, v} ∪ TC(u) ∪ TC(v) ∪ TC(w)
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is contained in L(S). Therefore

TC(F(s, α)) = F(s, α) ∪
⋃

(u,v,w)∈F(s,α)TC((u, v, w)) ⊆ L(S).

• If i = 8, then F(s, α) = {(u, v, w) | (v, w, u) ∈ F(s0, β0)}, and the argument
is similar to the case i = 7. □

Corollary 39.11. Suppose S ≍ S × S is transitive. Then L(S) is a proper
class inner model of ZF, and ⟨F(9 · β) | β ∈ Ord⟩ is a hierarchy for it.

Proof. Apply Theorem 39.6. □

The class-function Ord→ Ord× 9, α 7→ (D(α),R(α)) is ∆ZF
1 , so

FS,p : S ×Ord→ V

is defined by a Σ1 formula, that is

FS,p(s, α) = x ⇔ ∃f φ(f, s, α, S, p, x)

where φ is ∆0. Being an operation, this implies that FS,p is ∆ZF
1 -definable,

and hence absolute for inner models of ZF. Suppose M is a proper class inner
model of ZF such that S, p ∈ M , and p : S → S × S is a bijection. Since
(p : S → S × S is a bijection)(M), then FS,p(s, α) computed in M is the same
as FS,p(s, α) computed in V, so L(S)(M) = L(S). If (S ≍ S × S)L(S), then
the following sentence holds when relativized to L(S):

∀x ∃α ∃s ∈ S ∃f φ(f, s, α, S, p, x).

The formula above is abbreviated as V = L(S), meaning that the inner model
L(S) thinks that the universe is the constructible closure of S.

Given an arbitrary set S, let S be the closure of TC({S}) ∪ ω under the
operations x 7→ {x} and (x, y) 7→ x ∪ y. Then S is transitive and S ≍ S × S,
and S ∈M ⇔ S ∈M for any inner model M (Exercise 39.30).

Definition 39.12. For S and arbitrary set, let L(S) be L(S) where S is as
above.

Theorem 39.13. (a) If M is a proper class inner model of ZF such that
S ∈M , then L(S) ⊆M .

(b) In L(S) the following are true: V = L(S), and every set is the surjective
image of S × α for some α, that is

(∀x ∃α ∃f (f : S × α ↠ x))L(S) .

Moreover, if (S is well-orderable)(L(S)), then the axiom of global choice
AGC is true in L(S), that is AGC(L(S)) holds.4

4The axiom AGC is defined on page 378.
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Proof. Without loss of generality we may assume that S ̸= ∅ is transitive,
and that p : S → S × S is a bijection. Then part (a) follows from the
absoluteness of FS,p.

Now we tackle part (b). The class function F : S × Ord → L(S) is
surjective, so for all y ∈ L(S) there is a least αy such that F(s, αy) = y for
some s ∈ S. Therefore for any x ∈ L(S) let α = sup{αy ∔ 1 | y ∈ x} so that
x ⊆ F“S × α. As F ↾ S × α is definable in L(S), and hence belongs to L(S),
the result follows.

Assume now that S is well-orderable in L(S). Then S ×Ord is also well-
orderable, and so is L(S) = ranF, and hence AGC(L(S)) holds by Theorem 18.3.

□

Part (a) of Theorem 39.13 can be stated as: L(S) is the smallest proper
class inner model M of ZF such that S ∈M . By Exercise 39.31 the assumption
S ∈M cannot be weakened to S ⊆M .

Examples 39.14. (a) If S = {0} = 1 then S and the unique bijection
S → S × S belong to any inner model of ZF. Therefore L(1) is the
smallest inner model of ZF, and it is commonly denoted as L—see
Section 39.D.

(b) If S = α ≥ ω then S ≍ S × S, and since α belongs to any proper class
inner model of ZF, then L(α) = L.

(c) If S = Vα with α ≥ ω, then S ≍ S × S by Exercise 20.25. As
Vα ∩ L(Vα) = Vα, then Vα ∈ L(Vα) and L(Vα) is an inner model of
ZF+V = L(Vα).

If α = ω then L(Vα) = L (Exercise 39.32).
If α = ω ∔ 1, then Vω∔1 ≍ R, and we cannot prove that Vω∔1 ∈ L.

It is customary to write L(R) for L(Vω∔1).
The following comes up naturally: does AC(L(R)) hold? Equivalently:

is Vω∔1 well-orderable in L(R)? The answer is: it depends. If V = L
is assumed, then L(R) = L, so Vω∔1 is well-orderable, since every set
is. On the other hand, there is no way to construct in ZF a well-order
of Vω∔1, one that would be absolute enough to trickle-down in L(R).
In fact, working in ZFC and assuming the existence of large enough
cardinals, one can prove that R is not well-orderable in L(R).

39.D. The constructible universe. The constructible closure of 1 = {∅},
is called the constructible universe and it is denoted by L, rather than
L(1). By Theorem 39.13 it is the smallest proper class inner model of ZF,
and as 1 ≍ 1 × 1 in any inner model, L is an inner model of ZFC+ V = L.
Note that all this yields an interpretation of ZFC in ZF. Summarizing:
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Theorem 39.15. The constructible universe L is a transitive proper class
such that

(a) L is an inner model of ZFC, and hence ConZF ⇒ ConZFC.
(b) If M is a proper class inner model of ZF, then L ⊆M and L is absolute

between M and V.

The class-function F can be construed as a unary operation on the ordinals:

F(α) =

{
ranF ↾ α if R(α) = 0,

FR(α)(F((D(α))0),F((D(α))1)) otherwise,

where D and R are as in (39.2).

Theorem 39.16. Assume V = L. If x ⊆ κ an infinite cardinal, then there is
an α < κ+ such that F(α) = x.

Proof. Let κ be an infinite cardinal, let x ⊆ κ, and let α be such that
F(α) = x. Fix a finite sub-theory T of ZF containing Ext and such that
the formula ψ(ν, y) asserting that F(ν) = y is ∆T

1 . Let λ > κ, α be a
limit ordinal such that the following formulæ

∧
T, ∀ν ∃y (F(ν) = y), and

∀y ∃ν (F(ν) = y) are absolute between F(λ) and L. Let M be such that
κ ∪ {x} ⊆ M ≺ F(λ), and |M | = κ. If π : M → M is the transitive
collapse, then π is an isomorphism, as M satisfies extensionality, and π ↾ κ
is the identity so that π(x) = x ∈ M . Since T, ∀ν ∃y (F(ν) = y), and
∀y ∃ν (F(ν) = y) are true in F(λ), the same can be said of M , and hence of M .
Therefore the operation F is absolute for M (as ψ is ∆T

1 ), M is closed under
F, and every y ∈M is of the form F(β) for some β ∈M . Thus x = F(γ) ∈M
for some γ ∈M . As M is transitive and |M | = κ, it follows that γ < κ+. □

Theorem 39.17. ZF ⊢ V = L⇒ GCH. Therefore ConZF ⇒ ConZFC+GCH.

Proof. By Theorem 39.16, if κ is an infinite cardinal, then P(κ) ⊆ F“κ+,
and |F“κ+| ≤ κ+ so 2κ ≤ κ+. □

Theorems 39.16 and 39.17 can be strengthened: if κ is a cardinal snd
S ⊆ κ+ then

(
∀λ ≥ κ (2λ = λ+)

)(L(S)). In particular, if S ⊆ ω1 then GCH
holds in L(S).
39.D.1. Absoluteness. In the preceding pages we have shown in ZF that L
is a proper class inner model of ZFC+ GCH. Clearly L ⊆ V, and we cannot
expect to prove in ZF that the inclusion is proper, as this proof would work
inside L as well, while we know that people in the constructible universe
believe that every set is constructible, that is V = L. Still one might ask
what is the simplest kind of set, if any, that does not belong to L.
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Using the results in the preceding pages we have that if M is a transitive
inner model of ZF, then:

• If a ⊆M is finite, then a ∈M , by closure under the Gödel functions; in
particular <ωM ⊆M .
• If a ∈M then P(a) ∩M ∈M .
• Vα ∩M ∈M for all α ∈ Ord, and Vω ∈M . In particular Z,Q ∈M and
R ∩M ∈M .

As Q ⊆ R ∩M is a dense subgroup of (R,+), if it is Gδ then R ∩M = R.
In fact if x+ (R ∩M) were a coset disjoint from R ∩M we would have two
disjoint Gδ subsets of R, against Baire’s category theorem.

Going back to the constructible universe, we have that R(L) ⊆ R. The
statement R(L) = R, that is R ⊆ L is consistent; it clearly follows from V = L,
but it also consistent with V ̸= L. On the other hand it is also consistent that
R ∩ L ̸= R, that is to say: there are real numbers that are not constructible.
For example, each of the following is consistent with ZFC:

• 2ℵ0 > ℵ1 = ℵ(L)1 = |R(L)|,

• 2ℵ0 = ℵ1 = ℵ(L)1 = |R(L)|, and R(L) ̸= R,

• 2ℵ0 ≥ ℵ1 and |ℵ(L)1 | = |R(L)| = ℵ0.

Theorem 39.18. ConT1 ⇔ ConT2 , where T1 is ZF+ “there is a weakly inac-
cessible cardinal”, and T2 is ZFC+ “there is a strongly inaccessible cardinal”.

Proof. As T2 extends T1, then ConT2 ⇒ ConT1 . To prove the reverse
implication it is enough to show that L provides an interpretation of T2

in T1. The formula φ(κ) asserting that κ is weakly inaccessible is ΠZF
1 ,

so φ(κ) ⇒ (φ(κ))(L). Since GCH holds in L, then ZF ⊢ ∀κ
(
φ(κ) ⇒

(κ is strongly inaccessible)(L)
)
. □

The next result shows that consistency-wise, large cardinals are related
to the continuum.

Theorem 39.19. ConT1 ⇒ ConT2 , where T1 is ZF+ ACω(R) + ω1 ̸≾ R, and
T2 is ZFC+ “there is a strongly inaccessible cardinal”.

Proof. Work in T1. The cardinal κ = ω1 is regular by ACω(R), and by down-
ward absoluteness (ω < κ is regular)(L). Suppose (κ is a successor cardinal)(L);
then (κ ≾ P(γ))(L) for some ω ≤ γ < κ, and since ω ≍ γ, then ω1 = κ ≾
P(ω) ≍ R, a contradiction. Therefore inside L, κ is a limit cardinal, i.e. it
is inaccessible. In other words: L is a transitive inner model of T2. □

Theorem 39.20. Suppose σ is a L∈-statement that is absolute between V
and L, that is ZF ⊢ σ⇔ (σ)(L). Then ZFC+V = L ⊢ σ if and only if ZF ⊢ σ.
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Proof. Suppose there is a proof of σ from ZFC + V = L, and work in ZF.
As L is an inner model of ZFC + V = L, then σ(L) holds. Therefore the
left-to-right implication holds; the reverse implication is trivial. □

Therefore any ∆ZF
1 statement σ proved in ZF with the aid of some

consequence of V = L, like AC of CH, follows from ZF alone. Typical
examples of such statements are the results in number theory—for example
Fermat’s Last Theorem, being a result of ZFC, it is provable in ZF alone.

We close this Section with a result substantiating the remarks of Sec-
tion 34.A. Note that every effective language L and every effective theory T
belong to L.

Theorem 39.21. Suppose that T is a theory in a language L, that σ is an
L-sentence, and that T,L ∈ L. If T |= σ follows from ZF+V = L, then it
follows from ZF alone.

Proof. The language L is well-orderable, as it belongs to L, and hence the
instance of the Completeness Theorem

T |= σ ⇔ T ⊢ σ
is provable in ZF. Working inside L we have that T |= σ and hence T ⊢ σ,
so that

ZF ⊢
(
∃s (s is a derivation in L of σ from T )

)(L)
.

As being a derivation is ∆ZF
1 , then ZF ⊢ ∃s (s is a derivation in L of σ from T )

so T |= σ is provable in ZF, as required. □

39.E. The constructible hierarchy*. Here is a sleeker approach to the
constructible universe. Arguing as in Section 37.D the class

F = {⟨M,φ, g⟩ | Trans(M) ∧φ ∧ g : Fv(φ)→M}
can be shown to be ∆ZF

1 , where Fml = Fml(L∈) is the set of all (codes
for) formulæ of the language of set theory. As Fv(φ) is a finite subset
of Vbl = {vn | n ∈ ω}, it is customary to replace the assignment g with
the n-tuple of its values. Thus if φ(x1, . . . ,xn) and g(xi) = ai we write
⟨M,∈⟩ ⊨ φ[⃗a] in place of ⟨M,∈⟩ ⊨g φ. The class

{⟨M,φ, a⃗⟩ ∈ F | ⟨M,∈⟩ ⊨ φ[⃗a]}
is also ∆ZF

1 , and therefore also the operation M 7→ Def(M) is ∆ZF
1 where

Def(M) is the set of all subsets of M that are definable in ⟨M,∈⟩ with
parameters in M ,

Def(M) =
{
X ⊆M | ∃φ(x,y1, . . . ,yn) ∈ Fml∃b1, . . . , bn ∈M

∀a ∈M
(
a ∈ X ⇔ ⟨M,∈⟩ ⊨ φ[a, b⃗]

)}
.
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As the universe of a structure must be a non-empty set, so let’s convene that
when M = ∅ then Def(M) = {∅}. Also when there is no danger of confusion
we will blur the distinction between the structure ⟨M,∈⟩ and its underlying
universe M .

Definition 39.22. Let L0 = ∅, Lα∔1 = Def(Lα), and Lλ =
⋃

α<λ Lα, for λ
limit.

Proposition 39.23. For all α ∈ Ord

(a) Lα ∈ Lα∔1,
(b) Lα is transitive,
(c) ∀β ≤ α (Lβ ⊆ Lα).

Proof. (a) Lα is definable (without parameters) in Lα via v0 ≖ v0.
(b) Suppose Lβ is transitive for all β < α. If α is limit, then the result

is immediate; if α = β ∔ 1 and y ∈ x ∈ Lα then y ∈ x ⊆ Lβ so y ∈ Lβ and
y ⊆ Lβ. But y is definable in Lβ using y as a parameter via the formula
v0 ∈ v1, that is y ∈ Def(Lβ) = Lα.

(c) By induction on α. If α is 0 or limit the result is trivial. If α = γ ∔ 1
then Lγ ∈ Lα, so Lγ ⊂ Lα; so if β ≤ α then either β = α and there is nothing
to prove, or β < α so either β = γ and the result follows, or β < γ and we
apply the induction hypothesis and conclude that Lβ ⊆ Lγ and therefore
Lβ ⊆ Lα. □

Proposition 39.24. (a) ZF ⊢ ∀α(Lα ⊆ Vα).
(b) Lα ∩Ord = α,
(c) Ln = Vn for all n ∈ ω, and hence Lω = Vω.

Proof. (a) By induction on α. If α = 0 or α is limit, then the result is trivial.
Suppose Lα ⊆ Vα: then Lα+1 = Def(Lα) ⊆P(Lα) ⊆P(Vα).

(b) By induction on α. If α = 0 or α is limit, then the result is trivial.
Suppose α = Lα ∩Ord: then α = {a ∈ Lα | Lα ⊨ ⌜Ord(x)⌝[a]} ∈ Lα∔1. Thus
{α} ⊆ Lα∔1 and since α ⊆ Lα∔1 then α∔1 ⊆ Lα∔1∩Ord. The other inclusion
follows from (a).

(c) If Ln = Vn and a ∈ Vn∔1 then a = {a1, . . . , ak} for some k ∈ ω so a =
{x ∈ Ln | L ⊨ φk[x, ai, . . . , ak]} ∈ Ln∔1, where φk is

∨
1≤i≤k v0 ≖ vi. □

As M 7→ Def(M) is ∆ZF
1 and using Proposition 37.13, the class-function

α 7→ Lα is ∆ZF
1 , so it is absolute between V and any inner model M of ZF,

and hence Lα = (Lα)
(L) for all α ∈M . In particular Lα = (Lα)

(L) for all α,
and hence ⋃

α∈Ord Lα ⊆ L.
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The next goal is to show that this inclusion is an equality, and hence obtaining
a more transparent definition of the constructible universe. In other words,
L is the analogue of V where the operation x 7→ P(x) used to construct
the hierarchy ⟨Vα | α ∈ Ord⟩ for V is replaced by the operation x 7→ Def(x)
yielding the hierarchy ⟨Lα | α ∈ Ord⟩ for L.

In order to prove that
⋃

α∈Ord Lα = L, it is enough to show (Theo-
rem 39.26) that

⋃
α∈Ord Lα is a proper class inner model of ZF and then

appeal to part (b) of Theorem 39.15. If y ∈
⋃

α∈Ord Lα then y ∈ Lβ for
some β, and let rankL(y) be the least such β. Clearly rankL(y) is always a
successor ordinal.

Lemma 39.25. The class
⋃

α∈Ord Lα is almost universal. In fact

∀x ⊆
⋃

α∈Ord Lα ∃β (x ⊆ Lβ).

Proof. By replacement, for every x ⊆
⋃

α∈Ord Lα there is β such that
∀y ∈ x (rankL(y) < β). □

Theorem 39.26 (ZF). The class
⋃

α∈Ord Lα is an inner model for ZF.

Proof. For notational ease we use the acronyms introduced in Section 37
and write L′ for

⋃
α∈Ord Lα.

The class L′ is transitive and Ord ⊆ L′ by Propositions 39.23 and 39.24,
so (Ext ∧ Fnd ∧ Inf)(L

′). For any α, Lα ∈ Lα∔1 ⊆ L′ by Propositions 39.23.
If a1, a2 ∈ L′, let α1, α2 such that ai ∈ Lαi , so {a1, a2} ⊆ Lα ∈ L′, where

α = max(α1, α2). Thus Prn(L
′).

If a ∈ L′ then a ∈ Lα for some α, and as Lα is transitive, it follows that⋃
a ⊆ Lα ∈ L′. Thus Unn(L

′).
Fix a ∈ L′. As b = P(a) ∩ L′ is a set, then b ∈ Lβ for some β, by

Proposition 39.25. Thus Pwr(L
′).

Finally we prove that tRpl(L
′), where tRpl is the axiom-schema of tight

replacement introduced on page 591, and hence the axiom-schemata of
replacement and separation hold in L′ by Exercise 37.20. Consider an instance
of tRpl:

∀w1, . . . , wn ∀z (ψ(z, w⃗)⇒ ∃uχ(z, u, w⃗))
where

ψ(z, w⃗) : ∀x ∈ z ∀y1, y2 [φ(x, y1, w⃗) ∧φ(x, y2, w⃗)⇒ y1 = y2]

χ(z, u, w⃗) : ∀y (y ∈ u⇔ ∃x ∈ zφ(x, y, w⃗))

Fix a, p1, . . . , pn ∈ L′ such that ψ(a, p⃗)(L′) towards proving χ(a, b, p⃗)(L′) for
some b ∈ L′. Let α be such that a, p⃗ ∈ Lα and ∀x ∈ a∀y ∈ L′ (φ(x, y, p⃗)L

′ ⇒
c ∈ Lα). By the reflection principle there are β and γ such that α < β < γ

and ψ and χ are absolute between Lβ,Lγ and L′. Then ψ(a, p⃗)(Lβ) and hence
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Lβ ⊨ ⌜ψ(z, w⃗)⌝[a, p⃗]. Letting φ′(z, y, w⃗) be the formula ∃x ∈ zφ(x, y, w⃗),
then

b = {c ∈ Lβ | Lα ⊨ ⌜φ′(z, y, w⃗)⌝[a, c, p⃗]} ∈ Lβ+1 ⊆ Lγ ,

that is χ(a, b, p⃗)(Lβ). This implies that χ(a, b, p⃗)(L′), which is what we had to
prove. □

Exercises

Exercise 39.27. Show that if M is closed under the Gödel operations and
(u, v) ∈M , then u, v ∈M .

Exercise 39.28. Suppose M is closed under the Gödel operations, and let
π : M →M be the transitive collapse. Show that ∀x, y ∈M (π(Fi(x, y)) =
Fi(π(x),π(y))), for all i = 1, . . . , 8.

Exercise 39.29. Let M = {x ∈ V | ρ(x) < ω}, where ρ(x) = 0 if x ∈ Ord,
and ρ(x) = sup{S(ρ(y)) | y ∈ x} otherwise. Show that:

(i) M is a transitive class, containing the ordinals, closed under the Gödel
operations, but not almost universal. In particular, M ∩ L ̸= L.

(ii) M ∩Vω∔ω is a model of Z. Conclude that Z does not prove the existence
of Vω.

Exercise 39.30. Let M be an inner model of ZF, let S be an arbitrary set,
and let S be the closure of TC({S}) ∪ ω under the operations x 7→ {x} and
(x, y) 7→ x ∪ y. Show that:

(i) S is transitive and S ⊆ S.

(ii) <ωS ⊆ S, and hence S × S ≍ S.

(iii) S ∈M ⇔ S ∈M .

Exercise 39.31. Suppose there is an x ⊆ ω such that x /∈ L, and let
S = ω ∪ {{n} | n ∈ x}. Show that:

(i) S ≍ S × S is transitive,

(ii) S ⊆ L and S /∈ L,

(iii) L ̸= L(S).

Exercise 39.32. Show that if S ∈ L, then L(S) = L.

Exercise 39.33. Assume DC(R) and show that DC(L(R)).
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40. Measurable cardinals

Throughout this section we assume AC. Recall that κ is a real-valued
measurable cardinal if there is a κ-additive, non-singular, probability
measure µ : P(κ)→ [0; 1] (Definition 26.16). Every real-valued measurable
cardinal is weakly inaccessible, and if µ is atomless κ ≤ 2ℵ0 (Theorems 26.17
and 26.14). If A ⊆ κ is an atom for µ, that is to say µ(A) > 0 and
∀B ⊆ A (µ(B) = 0 ∨ µ(B) = µ(A)), then

ν : P(A)→ {0, 1}, ν(B) = µ(B)/µ(A)

is a κ-additivity, non-singular, non-zero (equivalently: probability) measure.
A measure as above is equivalent to the existence of a κ-complete non-principal
ultrafilter U on A:

ν(B) = 1 ⇔ B ∈ U.

By κ-additivity |A| = κ, so by copying everything on κ we have a κ-complete
non-principal ultrafilter on κ.

Definition 40.1. A cardinal κ > ω is measurable if there is a κ-complete
non-principal ultrafilter on κ.

Theorem 40.2. Every measurable cardinal is inaccessible.

Proof. Let κ be measurable and let U be a κ-complete non-principal ultra-
filter on P(κ). We know that κ is regular, so it is enough to prove that
2λ < κ for λ < κ. Towards a contradiction suppose κ → λ2, ξ 7→ fξ is
injective and λ < κ. For each α < λ the sets Yα,0, Yα,1 partition λ2, where
Yα,i = {f ∈ λ2 | f(α) = i}. As {ξ < κ | fξ(α) = 0}, {ξ < κ | fξ(α) = 1}
partition κ let iα ∈ {0, 1} be such that Xα = {ξ < κ | fξ(α) = iα} ∈ U . By
κ-completeness X =

⋂
α<λXα ∈ U , but ξ ∈ X ⇒ fξ = ⟨iα | α < λ⟩, that is

X is a singleton, against the assumption that U is non-principal. □

Summarizing, if κ be a real-valued measurable cardinal and µ : P(κ)→
[0; 1] is a non-singular, non-zero measure, then

• either κ ≤ 2ℵ0 and µ is atomless,

• or else κ is measurable and µ has atoms.

40.A. Measurable cardinals and elementary embeddings. Suppose
U is a non-principal ultrafilter on some set I ≠ ∅. We have seen how to
construct the ultrapower MI/U of any L-structure M. We would like to
recast the construction when the set M is replaced by the class V and the
language L∈.
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Consider the two relations on the proper class VI

f =U g ⇔ {i ∈ I | f(i) = g(i)} ∈ U

f ∈U g ⇔ {i ∈ I | f(i) ∈ g(i)} ∈ U.

The former is an equivalence relation and its equivalence classes are proper
classes, so we resort to Scott’s trick seen in Section 20.C and set

JfKU =
{
g ∈ IV | f =U g ∧ rank(g) minimal

}
.

The ultrapower of V modulo U is
〈
VI/U, ∈̃

〉
, where

VI/U =
{
JfK | f ∈ VI

}
, and JfK ∈̃ JgK ⇔ f ∈U g.

Recall that Łos’ Theorem 31.23 for set-sized structures—the very same re-
sult holds for class-sized structures and in particular for the ultrapower
of V modulo U , but of course we must state and prove this using rela-
tivization rather than satisfaction. If φ(x1, . . . , xn) is any L∈-formula and
Jf1K, . . . , JfnK ∈ VI/U , then

φ(Jf1K, . . . , JfnK)(V
I/U) ⇔ {i ∈ I | φ(f1(i), . . . , fn(i))} ∈ U

where φ(Jf1K, . . . , JfnK)(V
I/U) is the relativization of φ to

〈
VI/U, ∈̃

〉
. Then

∀x1, . . . , xn
(
φ(x1, . . . , xn) ⇔ φ(j(x1), . . . , j(xn))

(VI/U)
)

where j(x) is JcxK and cx : I → {x}.
Informally speaking, the formula above says that the class-function j

is an elementary embedding j : ⟨V,∈⟩ →
〈
VI/U, ∈̃

〉
. But the notion of

elementarity was officially defined for the relation ⊨, and deals with all
infinitely many formulæ in one sweeping stroke. On the other hand, since
proper classes are not officially admitted and ⊨ is replaced by relativization,
we must verify that j respects each φ, so it is not a single sentence, but
rather a scheme of sentences. Despite all this the temptation of calling such
j an elementary embedding is too strong, so exerting the due care we put
forth the following definition-scheme.

Definition 40.3. Let ⟨M,E⟩ and ⟨M ′, E′⟩ be inner models of ZF. A class-
function j : M →M ′ is elementary if

∀x1, . . . , xn ∈M
(
φ(x1, . . . , xn)

(M) ⇔ φ(j(x1), . . . , j(xn))
(M ′)

)
for all φ. We say that j is non-trivial if j ≠ idM , that is j(x) ̸= x for some
x ∈M .

Definition 40.4. Let j : N →M be a non-trivial elementary embedding of
transitive inner models of ZF. The least ordinal κ such that j(κ) ̸= κ (if it
exists) is called the critical point of j, denoted by crit(j).

As j is injective, if κ = crit(j) then κ < j(κ).
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Lemma 40.5. Suppose j : N → M is an elementary embedding between
transitive inner models of ZF.

(a) For all α, β ∈ Ord ∩ N : j(α) ∈ Ord ∩M , α < β ⇒ j(α) < j(β) and
hence α ≤ j(α).

(b) If (rank(x) = α)(N) then (rank(j(x)) = j(α))(M).
(c) If M ⊆ N and j is non-trivial, then crit(j) exists, and it is min{rank(x) |

j(x) ̸= x}.

Proof. Part (a) follows from the fact that Ord(x) and x ∈ y are ∆0, while
part (b) follows from the fact that the formula φ(x, α): “rank(x) = α” is
∆ZF

1 and hence absolute for inner models of ZF.

(c) Let κ = min{rank(x) | j(x) ̸= x}. If α < κ then α = j(α); we
prove that κ ≠ j(κ) and hence κ < j(κ). Pick x such that j(x) ̸= x and
rank(x) = κ. Then y ∈ x⇒ y = j(y) ∈ j(x), so x ⊂ j(x). Let y ∈ j(x)\x. If,
towards a contradiction, j(κ) = κ, then rank(y) < κ and as y ∈M ⊆ N then
j(y) = y. Therefore y = j(y) ∈ j(x) and hence y ∈ x: a contradiction. □

Proposition 40.6. If U is ω1-complete on a set I, then ∈̃ is well-founded
and left-narrow on VI/U .

Proof. Suppose ∈̃ is ill-founded, so by DC there is an infinite descending chain
. . . ∈̃ Jf2K ∈̃ Jf1K ∈̃ Jf0K. Fix representatives in IV so that · · · ∈U f2 ∈U f1 ∈U
f0. Then An = {i ∈ I | fn+1(i) ∈ fn(i)} ∈ U and hence A =

⋂
nAn ∈ U . As

U is proper, A ̸= ∅ so if i ∈ A we have that fn+1(i) ∈ fn(i), a contradiction.
Next we prove left-narrowness. Fix f : I → V. We must show that

{JgK | JgK ∈̃ JfK} is a set. If {i ∈ I | f(i) = ∅} ∈ U then X = ∅, so we
may assume that ∀i ∈ I (f(i) ̸= ∅). Let ν = rank(f). If JgK ∈̃ JfK then
we may choose the representative so that ∀i ∈ I (g(i) ∈ f(i)). Therefore
X ⊆ {JgK | g ∈ IVν}, which is a set. □

If U is ω1-complete, the structure
〈
VI/U, ∈̃

〉
is well-founded, left-narrow

and extensional, so it is isomorphic to a unique transitive class Ult(V, U) via
a unique isomorphism π, the Mostowski collapse. Then

iU : V→ Ult(V, U), iU (x) = π(JcxK)

is an elementary embedding.

Lemma 40.7. Suppose κ is a measurable cardinal and U is a κ-complete
non-principal ultrafilter on κ.

(a) π(JfK) ∈ Ord ⇔ {ξ ∈ κ | f(ξ) ∈ Ord} ∈ U .
(b) If β ∈ iU (α) then there is f : κ→ α such that β = π(JfK).
(c) If α < κ then iU (α) = α.



40. Measurable cardinals 625

(d) crit(iU ) = κ and iU (κ) < (2κ)+.
(e) ∀α (iU (Vα) = ViU (α))

Ult(V,U), and if α < κ then iU (Vα) = Vα.
(f) κUlt(V, U) ⊆ Ult(V, U) and Vκ∔1 ⊆ Ult(V, U).
(g) U /∈ Ult(V, U) and Vκ∔2 ⊈ Ult(V, U).

Proof. (a) follows from Łos theorem applied to the formula Ord(x).

(b) If β ∈ iU (α) then β = π(JgK) with g ∈U cα, that is A = {ξ ∈ κ |
g(ξ) ∈ α} ∈ U . Then f : κ→ α

f(ξ) =

{
g(ξ) if ξ ∈ A,

0 otherwise,

is as required.

(c) If ν ∈ iU (α) then pick f : κ → α such that ν = π(JfK). The sets
Aβ = {ξ ∈ κ | f(ξ) = β} are pairwise disjoint, and

⋃
β<αAβ = κ, so by

κ-completeness there is a unique β < α such that Aβ ∈ U , and hence
π(JfK) = iU (β). Therefore iU (α) = {iU (β) | β < α} and hence iU (α) = α.

(d) Let d : κ→ κ be the identity function. For each α < κ the set {ξ ∈ κ |
α < ξ} = {ξ ∈ κ | cα(ξ) < d(ξ)} ∈ U , and since ∀ξ < κ (d(ξ) < cκ(ξ)) we
have that

α = iU (α) < π(JdK) < iU (κ).

Therefore κ ≤ π(JdK) < iU (κ).
If α < iU (κ) then there is f : κ → κ such that π(JfK) = α, and hence

|iU (κ)| ≤ 2κ.

(e) By elementarity of iU we have that φ(x, α)⇔φ(iU (x), iU (α))
(Ult(V,U))

where φ(x, α) is x = Vα. Therefore iU (Vα) = V
(Ult(V,U))
iU (α) for all α. As

κ = crit(j) then j is the identity on Vκ, so j(Vα) = Vα for all α < κ.

(f) Given xξ ∈ Ult(V, U) for ξ < κ we must find h ∈ κV such that
π(JhK) = ⟨xξ | ξ < κ⟩. Let fξ ∈ κV be such that π(JfξK) = xξ. Let d : κ→ κ
be such that π(JdK) = κ. Let h ∈ κV be such that

h(α) : d(α)→ V, h(α)(ξ) = fξ(α).

For all α < κ we have that Fn(h(α)) ∧ dom(h(α)) = d(α), so that π(JhK) is
a function with domain κ = π(JdK). Fix ξ ∈ κ. As π(JcξK) < π(JdK) = κ, the
set A = {α ∈ κ | cξ(α) < d(α)} ∈ U . Then ∀α ∈ A

(
h(α)(cξ(α)) = fξ(α)

)
,

that is π(JhK)(ξ) = π(JfξK) = xξ, as required.
By part (e) Vκ ⊆ Ult(V, U). Any non-empty x ⊆ Vκ is of the form

x = {xξ | ξ ∈ κ}, so it belongs to Ult(V, U). Therefore Vκ∔1 = Vκ∔1 ∩
Ult(V, U) ∈ Ult(V, U).
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(g) By part (f) κκ ⊆ Ult(V, U). If U ∈ Ult(V, U) then the map κκ ∋ f 7→
π(JfK) would belong to Ult(V, U), so iU (κ) ≤ (2κ)+ in Ult(V, U), against the
fact that iU (κ) is measurable (and hence inaccessible) in Ult(V, U). Therefore
U /∈ Ult(V, U), and as U ∈ Vκ∔2 this proves that Vκ∔2 ⊈ Ult(V, U). □

Lemma 40.7 shows that Ult(V, U) closely resembles V up to rank κ∔ 1,
but it is completely different from that level up.

Theorem 40.8. Suppose j : V→M is a non-trivial elementary embedding
with M a transitive class. Then crit(j) is a measurable cardinal.

Proof. By Lemma 40.5 the critical point of j exists and set κ = crit(j).
Then κ > ω since every ordinal ≤ ω is definable without parameters, so it is
not moved by j. Define U ⊆P(κ) by

X ∈ U ⇔ κ ∈ j(X).

It is immediate to check that κ ∈ U , and that if X ∈ U and X ⊆ Y ⊆ κ then
Y ∈ U .

Claim 40.8.1. The family U is closed under intersections of length < κ, so
that U is a κ-complete filter on κ.

Proof of Claim. Fix γ < κ and suppose Xα ∈ U for all α ∈ γ. We must
prove that X =

⋂
α<γ Xα ∈ U that is κ ∈ j(X). Let F : γ → P(κ) be

defined as F (α) = Xα. Then (j(F ) : j(γ)→P(j(κ)))(M), so by absoluteness
j(F ) : γ →M and

∀α < γ (j(F )(α) = j(F )(j(α)) = j(F (α)) = j(Xα) ⊆ j(κ)).

Then, since j(γ) = γ

j(X) =
⋂

α<j(γ) j(F )(α) =
⋂

α<γ j(Xα)

and hence κ ∈ j(X). □

For any X ⊆ κ, the sets X, κ\X partition κ so the sets j(X), j(κ\X) =
j(κ) \ j(X) partition j(κ). Therefore κ ∈ j(X) ⇔ κ /∈ j(κ \X). In other
words, U is an ultrafilter. Finally, if U were principal, then {α} ∈ U for some
α ∈ κ. But then κ ∈ j({α}) = {j(α)} = {α}, a contradiction. □

Remark 40.9. The statement of Theorem 40.8 presents two issues: the first
is the universal quantification over proper classes (M and j) and the second
is the elementarity of the class-function j. Here is an explanation on how
this result can be formulated in MK, NGB, and ZF. The universal quantifiers
∀M ∀j are not an issue in MK or NGB, while ZF dictates that the result must
be construed as a theorem-scheme: “Suppose φM (y, z⃗) and φj(x, y, z⃗) define
a transitive class M and a class-function j : V→M . . . ”. The elementarity
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of j is a more delicate issue. Working in MK the satisfaction relation can be
formalized also for classes, so the elementarity of j becomes

∀φ ∈ Fml∀a1, . . . , an (V ⊨ φ[a1, . . . , an] ⇒ M ⊨ φ[j(a1), . . . , j(an)]).

On the other hand this argument does not work in NGB or ZF, so the best
approximation of the formula above would be an infinite list of sentences

(σφ) ∀x1, . . . , xn (φ(x1, . . . , xn) ⇒ φ(j(x1), . . . , j(xn))
(M)),

one for each φ(x1, . . . , xn). Examining the proof of Theorem 40.8 we see that
we need to require only finitely many σφ as hypotheses of the theorem.

Theorem 40.10. If κ is measurable then {ν < κ | ν is inaccessible} has
cardinality κ.

Proof. Any subset of κ×κ belongs to Vκ+1, so any function witnessing that
ν is singular, or that ν ≾ P(λ) belongs to Vκ∔1, for all λ < ν ≤ κ. Therefore
for any ν ≤ κ

ν is inaccessible ⇔ (ν is inaccessible)(Ult(V,U))

with U a non-principal κ-complete ultrafilter on κ. In particular, κ is
inaccessible in Ult(V, U). Let f ∈ κκ be such that π(JfK) = κ. By Łos
I = {ξ < κ | f(ξ) is inaccessible} ∈ U .

Claim 40.10.1. ∀ξ ∈ I ∃ν ∈ I (ξ < ν ∧ f(ξ) < f(ν)).

Proof. Suppose otherwise, and let ξ ∈ I such that f(ν) ≤ f(ξ) < κ for
all ν ∈ I \ ξ. As I \ ξ ∈ U then κ = π(JfK) ≤ π(Jcf(ξ)K) = f(ξ) < κ, a
contradiction. □

As I ∈ U then |I| = κ, and as κ is regular, there is J ⊆ I of size κ such
that f is increasing on J . Therefore f“J ⊆ {ν < κ | ν is inaccessible} and
hence |{ν < κ | ν is inaccessible}| = κ. □

Theorem 40.11. If there is a measurable cardinal, then V ̸= L.

Proof. Suppose U is a κ-complete non-principal ultrafilter on κ, and let
iU : V→ Ult(V, U). As Ult(V, U) is a transitive, proper class inner model of
ZFC, then L ⊆ Ult(V, U) ⊂ V by Lemma 40.7, so V ̸= L. □

Theorem 40.11 can be improved to: if there is a measurable cardinal,
then RL is countable.

It can be shown that a positive answer to Banach’s Question 26.13 in
Section 26.D is equiconsistent with the existence of measurable cardinals. To
be more specific, the following theories are equiconsistent:

(1) ZFC + there is a measure µ extending the Lebesgue measure, with
domµ = P(R).
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(2) ZFC+ there is a real valued measurable cardinal.
(3) ZFC+ there is a measurable cardinal.

41. Boolean valued models

For B a complete Boolean algebra define the class

V(B) =
⋃

α∈OrdV
(B)
α

where ⟨V(B)
α | α ∈ Ord⟩ is defined by recursion by

V
(B)
0 = ∅

V
(B)
α∔1 = {˜

u | ∃d ⊆ V(B)
α (

˜
u : d→ B)}

V
(B)
λ =

⋃
α<λV

(B)
α when λ is limit.

Here, and in what follow, we agree to use letters underscored by a ∼ to
denote elements of V(B).

Next we construct two binary functions M,E : V(B) ×V(B) → B, one for
Membership, the other for Equality. The values M(

˜
u,
˜
v) and E(

˜
u,
˜
v) should

capture truth value of “
˜
u belongs to

˜
v” and “

˜
u is equal to

˜
v”, and for this

reason it is customary to write them as

J
˜
u ∈

˜
vK = M(

˜
u,
˜
v) J

˜
u ≖

˜
vK = E(

˜
u,
˜
v).

Once M and E are given, we can define Jφ(
˜
u1, . . . ,

˜
un)K for any formula

φ(x1, . . . , xn) and any choice of
˜
u1, . . . ,

˜
un ∈ V(B) by letting

J¬φ(
˜
u1, . . . ,

˜
un)K = Jφ(

˜
u1, . . . ,

˜
un)K′

Jφ(
˜
u1, . . . ,

˜
un) ∨ψ(

˜
u1, . . . ,

˜
un)K = Jφ(

˜
u1, . . . ,

˜
un)K⋎ Jψ(

˜
u1, . . . ,

˜
un)K

J∃x0φ(
˜
u1, . . . ,

˜
un)K = sup{Jφ(

˜
u0,

˜
u1, . . . ,

˜
un)K |

˜
u0 ∈ V(B)}.

For the third clause note that {Jφ(
˜
u0,

˜
u1, . . . ,

˜
un)K |

˜
u0 ∈ V(B)} is a subset

of B, so the supremum exists by completeness of the Boolean algebra. Note
that we should really write Jφ(

˜
u1, . . . ,

˜
un)KB, but we drop the subscript

To be added later
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Concepts

antinomy, see also pradox358
arity, ar, 377, 526
arrow, see also category

epi, 450
iso, 450
mono, 450

assignment, 532
automorphism, 524
axiom of choice, AC, 341
axiom of countable choices, ACω,

352
Axiom of Extensionality, 41
axioms of set theory

(strong) replacement in MK, 375
(strong)replacement in MK, 380
comprehension (schema), 370,

380
dependent choice, DC, 427
existence of sets, 371, 380

extensionality, 370, 379
foundation, 372, 380
infinity, 373, 380
pairing, 372, 380
power-set, 371, 380
replacement (schema) in ZF, 382
separation (schema) in ZF, 381
union, 373, 380

base
Hamel —, 512

Boolean algebra, 81, 172
Boolean subalgebra, 174
atom, 82
atomic —, 82, 174
atomless —, 82
interval algebra, 174
of clopen sets, 174
of regular open sets, RO(X),

182
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canonical expansion (of a
structure), 525

Cantor
-Bendixson Theorem, 331

cardinal
generalized cardinal product,

430
generalized cardinal sum, 430
regular, 432
singular, 432

cardinality, 391
of a language, 527

cardinals, 391
products of —, 393
sums of —, 393

category
composition, 446
arrow in a category, 446
morphism in a —, 446
object in a —, 446
opposite —, 450

class, 370
(generalized) pseudo-elementary,
PC and PC∆, 536

-function, see also functional
relation

elementary, EC, 536
generalized elementary, EC∆,

536
proper —, 370
subclass, 371
total —, V, 373
transitive —, 387

cofinality, 432
compactification

Alexandroff, 509
compactness

Theorem for first-order logic, 98,
546

Theorem for propositional
calculus, 349

conjecture

Bombieri-Lang, 288
Erdős-Woods, 19

connectives, 526

dependent choice, DC, 427
diagram, 365, 540

elementary, 365
domain (of a relation), dom, 374

elementary embedding, 540
elementary equivalence, 540
embedding, 524

elementary —, 84
epimorphism, 450
equipotence, 312, 376
expression, 457

height, 458

field (of a relation), fld, 374
filtro

di Fréchet, 178
first-order language, 526
formula

atomic, 528
closed, 37
dual —, 153
false in a model, 534
of a language L, 528
of set theory, 370
positive —, 73
true in a model, 534
universal/existential closure of a

—, 37, 529
function, 374

cofinal, 432
continuous (on the ordinals),

437
enumerating, 389
finitary —, 377
projection —, 200
Skolem —, 541

functor, 448
forgetful, 448
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Goodstein sequence, 417
graph

chromatic number, 257

Hartogs’ number, 392
Hausdorff’s maximality principle,

421
hyperbolic manifold, 310

ideal
σ-ideal, 487

interval, 46
isomorphism, 450, 524

kernel of a homomorphism f ,
ker(f), 176

language
extension of language, 527
sub-language, 527

lattice, 45
complemented —, 171
distributive —, 80
modular —, 80

Lemma
Lindenbaum’s —, 567

logical axiom, 561
logical consequence, 56

measure, 496
Cantor —, 499
Lebesgue —, 498
Lebesgue—on ω2, 499
outer —, 497

measure space, 496
complete —, 496
finite, 496

minimization
bounded —, 202

model, 55, 534
monomorphism, 450
morphism

epi, 450

in a category, 446
Mostowski collapse, π, 404

number
perfect —, 231

object, see also category
occurrence, 530
open

regular—set, 181
operation, see also finitary

function
order

Dedekind-complete —, 157
linear

homogeneous, 102
separable —, 322
type, 389

order type, 389
ordered pair , 372
ordering

Gödel well-ordering on
Ord×Ord, 393

ordinal, 387
additively indecomposable, 407
Cantor’s normal form, 416
exponentially indecomposable,

407
limit —, 389
multiplicatively indecomposable,

407
regular, 432
singular, 432
successor —, 389

Paradox
Banach-Tarski, 514
Banach-Tarski —, 512

paradox
Burali-Forti’s —, 358
Cantor’s —, 358

Peano curve, 502
Peirce’s arrow, ↑, 9, 66
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Pell’s equation, 2, 281
product

cartesian —, 373
generalized cartesian —, 378
of structures, 525
reduced, 525
ultraproduct, 526

range (of a relation), ran, 374
rank

of a set, 407
of a well-founded relation, ϱ,

403
recursion

primitive —, 207, 209
relation

binary —, 374
extensional, 404
functional —, 374
ill-founded —, 386
well-founded —, 386

rigid structure, 524
ring

Boolean, 176

satisfaction, 534
sentence, see also cosed formula37
sequence

finite —, 376
length of a —, lh, 377

set, 370
Cantor —, 323
cardinality of a —, 391
clopen—, 174
empty —, ∅, 371
finite, 391
generalized Cantor —, 499
inductive —, 373
infinite, 391
Lebesgue measurable —, 498
meager —, 495
measurable, 496
of first category, 495

power —, see also power-set
power, P, 371
subset, 371
transitive —, 387
well-orderable, 391

set of formulæ
finitely satisfiable, 349
satisfiable, 349

σ-ideal, 487
signature, 523
space

Banach —, 325, 495, 510
derivative of a —, 329
Fréchet —, 502
Stone —, 348, 485

string, see also sequence
structure

cardinality of a —, 524
expansion of a structure, 524
product, 525
reduction of a structure, 524
rigid, 93
substructure, 524

elementary, 540
generated, 524

ultrahomogeneous —, 490
substructure

elementary —, 84
successor

of a set, S, 373
symbol

constant, 526
equality, 526
function, 526
relation, 526

tautology, 539
term

interpretation of —, 533
terms

closed, ClTerm, 528
Theorem



Cantor-Bendixson, 331
Ascoli-Arzelà —, 511
Baire Category —, 495
Banach-Tarski, 514
Banach-Tarski —, 512
Cantor’s—on P(X), 317
Cantor’s—on dense linear

orders, 326
Cantor-Lawvere’s —, 455
Cantor-Schröder-Bernstein —,

312
Compactness — for first-order

logic, 546
Compactness—for first-order

logic, 98
Compactness—for propositional

calculus, 349
Fix point—for partial orders,

158
Gödel’s First Incompleteness —,

147
Hahn-Banach, 514
Hausdorff’s formula for

exponentials, 433
König’s —, 431
Ramsey’s —, 517
Recursion —, 401
Stone’s representation—for

Boolean algebras, 348
Tarski-Vaught criterion, 85

theorem (in first-order theory),
561

theory

categorical —, 548
complete —, 58
finitely satisfiable, 98, 546
satisfiable —, 57

topological space
perfect, 329

topology
completely regular —, 436
interval —, 320
totally disconnected —, 436

tree
labelled, 463

truth in a model, 534
truth table, 34

ultrapower, 526
ultraproduct, 526
universe of all sets, see also total

class

variable
occurrence

bound, 37
free, 37

variables, 526
of a term, 528

well-ordering
Gödel—on Ord×Ord, 393

witness, 570

zero-dimensional space, see also
ttally disconnected
topology436

Symbols

X▼, X▲, 157
CLOP(X), 174
J , 204
⊨, the satisfaction relation, 52
Seq, 206

St(B), 348
Vbl(t), 528
Z(p), x
Z[1/n], 97
·∨, 9



β, 205b
, 157c
, 157∨
1≤i≤nφi generalized disjunction,

17∧
1≤i≤nφi generalized

conjunction, 17
↑ (Peirce’s arrow), 9, 66
ε≥n, ε≤n, εn, 18
∼=, the isomorphism relation, 71
(·)i, i = 0, 1, 204
⋎, 78
|=, the relation of logical

consequence, 56, 536
TM
φ(x1,...,xn)

, the truth set of φ in
M, 59

⋏, 78
Q, 8
φ∃ the existential closure of φ, 37
φ∀ the universal closure of φ, 37
φLt1/x1, . . . , tn/xnM, 38

φ∆, 153

AC, 341
ACω, 352

A×B, 373
χ(G) chromatic number of a

graph G, 257

∅, 371
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