Elements of Mathematical Logic Section 16 of Chapter V

Lucidi preparati da Alessandro Andretta Lezioni di Raphaël Carroy

> Dipartimento di Matematica Università di Torino

Two fundamental principles.

Extensionality principle

Two sets are equal if and only if they have the same elements.

Thus a set is completely determined by its elements.

Comprehension principle

Any property P(x) defines a set, there is a set $\{x \mid P(x)\}$.

Russell's paradox Consider property P(x) given by $x \notin x$ and let $R = \{x \mid x \notin x\}$. $R \notin R \Rightarrow R \in R$ and $R \in R \Rightarrow R \notin R$

Fix a first order language \mathcal{L}_{\in} with only a binary predicate \in . The objects of our studies are called **classes**.

Definition

A class A is a **set** iff A belongs to some class. Let Set(x) be the formula asserting that x is a set: $\exists y(x \in y)$. A **proper class** is a class that is not a set.

We now define the **Morse-Kelly** MK first order theory in the language \mathcal{L}_{\in} .

Extensionality Axiom

 $\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y.$

Comprehension Axiom-scheme

If x occurs free in $\varphi(x, y_1, \dots, y_n)$ and A is a variable distinct from x, y_1, \dots, y_n , then $\exists A \forall x \ (x \in A \Leftrightarrow \exists z (x \in z) \land \varphi(x, y_1, \dots, y_n))$.

In other words: for each φ and every choice of classes y_1, \ldots, y_n , there is a class A of all elements satisfying φ . By extensionality A is unique, and it is denoted by

$$A = \{x \mid \varphi(x, y_1, \dots, y_n)\}$$

Warning:

There are infinitely many axioms, one for each φ .

Back to Russell's paradox: by comprehension $R = \{x \mid x \notin x\}$ is a class. If R were a set, then $R \in R \Leftrightarrow R \notin R$, a contradiction. Therefore R is a proper class.

Notation

• {
$$x \in A \mid \varphi(x, y_1, \dots, y_n)$$
} is the class given by the formula
 $x \in A \land \varphi(x, y_1, \dots, y_n)$.
• $A \cap B = \{x \mid x \in A \land x \in B\} = \{x \in A \mid x \in B\} = \{x \in B \mid x \in B\}$

•
$$A \cap B = \{x \mid x \in A \land x \in B\} = \{x \in A \mid x \in B\} = \{x \in B \mid x \in A\}.$$

•
$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

•
$$A \setminus B = \{x \mid x \in A \land x \notin B\} = \{x \in A \mid x \notin B\}.$$

•
$$A \bigtriangleup B = (A \setminus B) \cup (B \setminus A).$$

By the Extensionality Axiom $A \cap B = B \cap A$, $A \cup B = B \cup A$ and $A \triangle B = B \triangle A$.

Set Existence Axiom

 $\exists x \exists y \, (x \in y).$

Definition

x is a sub-class of y if and only if $\forall z (z \in x \Rightarrow z \in y)$. In symbols $x \subseteq y$.

If $y \subseteq x$ and x is a set, we want also that y be a set.

Power-set Axiom

If x is a set, then there is a set y such that $\forall z \ (z \subseteq x \Leftrightarrow z \in y)$.

The set y is unique by extensionality, and is denoted by $\mathscr{P}(x)$.

Corollary 16.2

If B is a set and $A \subseteq B$ then A is a set. Equivalently: if A is a proper class and $A \subseteq B$ then B is a proper class.

The empty class $\{x \mid x \neq x\} = \emptyset$ is included in any set, so it is a set.

Pairing Axiom $\operatorname{Set}(x) \wedge \operatorname{Set}(y) \Rightarrow \exists z \, (\operatorname{Set}(z) \wedge \forall w \, (w \in z \Leftrightarrow w = x \lor w = y)).$

The set z above is denoted by $\{x, y\}$. If x = y we write $\{x\}$. Define

 $(x,y) = \{\{x\}, \{x,y\}\}.$

Proposition 16.3

For all sets x, y, z, and w, $(x,y) = (z,w) \Leftrightarrow x = z \land y = w.$

See the textbook for the proof.

Foundation Axiom

 $x \neq \emptyset \Rightarrow \exists y (y \in x \land x \cap y = \emptyset).$

If $x \in x$, then $\{x\}$ is a set, and by the axiom of foundation there is $y \in \{x\}$ such that $y \cap \{x\} = \emptyset$: but y = x and $x \in x \cap \{x\}$, a contradiction.

Definition

$$V \stackrel{\text{\tiny def}}{=} \{x \mid x = x\}$$
 is the class of all sets.

Definition

If A is a class the union of A is $\bigcup A = \bigcup_{x \in A} x \stackrel{\text{def}}{=} \{y \mid \exists x \in A(y \in x)\}\$ and the intersection of A is $\bigcap A = \bigcap_{x \in A} x \stackrel{\text{def}}{=} \{y \mid \forall x \in A(y \in x)\}.$

By convention: if $A = \emptyset$ then $\bigcap A = \emptyset$.

Union Axiom

If A is a set, then also $\bigcup A$ is a set.

If x and y are sets, then $\{x, y\}$ and $x \cup y \stackrel{\text{def}}{=} \bigcup \{x, y\}$ are sets. $A \times B \stackrel{\text{def}}{=} \{(x, y) \mid x \in A, y \in B\} = \{c \mid \exists a \exists b (a \in A \land b \in B \land c = (a, b))\}$ is a class, and it exists by comprehension.

Proposition 16.6

If A and B are sets, then also $A \times B$ is a set.

Proof.

It is enough to find a set containing $A \times B$. If $x \in A$ and $y \in B$, then $\{x\}, \{x, y\} \subseteq A \cup B$ and therefore $(x, y) = \{\{x\}, \{x, y\}\} \subseteq \mathscr{P}(A \cup B)$. It follows that $A \times B \subseteq \mathscr{P}(\mathscr{P}(A \cup B))$.

By the pairing and union axioms we can construct infinitely many new sets: $\{\emptyset\}, \{\{\emptyset\}\}, \{\{\{\emptyset\}\}\}\}, \dots$ or $\{\emptyset\} = \mathbf{S}(\emptyset), \{\emptyset, \{\emptyset\}\} = \mathbf{S}(\{\emptyset\}), \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} = \mathbf{S}(\{\emptyset, \{\emptyset\}\}), \dots$ where $\mathbf{S}(x) \stackrel{\text{def}}{=} x \cup \{x\}$

is the **successor** x.

A class I is **inductive** if $\emptyset \in I \land \forall x (x \in I \Rightarrow \mathbf{S}(x) \in I)$.

Axiom of Infinity

There is an inductive set.

Definition

 $\mathbb{N} \stackrel{\text{def}}{=} \bigcap \mathcal{I}$ where \mathcal{I} is the class of all inductive sets. $0 = \emptyset, 1 = \mathbf{S}(0), 2 = \mathbf{S}(1) = \mathbf{S}(\mathbf{S}(0)), \dots$

Proposition 16.7

 $\mathbb{N} \in \mathcal{I}$ and $\forall n \in \mathbb{N} (n = 0 \lor \exists m \in \mathbb{N} (n = \mathbf{S}(m))).$

Proof.

 $0 \in I$ for all $I \in \mathcal{I}$, and hence $0 \in \bigcap \mathcal{I} = \mathbb{N}$. Fix $n \in \mathbb{N}$: $n \in I$ and hence $\mathbf{S}(n) \in I$ for all $I \in \mathcal{I}$. Being $I \in \mathcal{I}$ arbitrary, then $\mathbf{S}(n) \in \bigcap \mathcal{I} = \mathbb{N}$. Thus $\mathbb{N} \in \mathcal{I}$. Let $n \in \mathbb{N} \setminus \{0\}$ and towards a contradiction suppose that $n \neq \mathbf{S}(m)$ for all $m \in \mathbb{N}$. Then the set $J = \mathbb{N} \setminus \{n\}$ satisfies the formula defining \mathcal{I} and hence $J \in \mathcal{I}$. It follows that $J \supseteq \bigcap \mathcal{I} = \mathbb{N}$, but $J \subset \mathbb{N}$ by construction: a contradiction.

Proposition 16.8—Principle of Induction on \mathbb{N}

Suppose that $0 \in I \subseteq \mathbb{N}$ and $\forall n \ (n \in I \Rightarrow \mathbf{S}(n) \in I)$. Then $I = \mathbb{N}$.

Proof.

 $I \in \mathcal{I}$, and so $I \supseteq \mathbb{N}$.

A binary relation is a class of ordered pairs. A binary relation F is functional if $(x, y), (x, y') \in F \Rightarrow y = y'$. We write $x \ R \ y$ rather than $(x, y) \in R$. If R is functional, then R(x) = the unique y (if it exists) such that $(x, y) \in R$.

$$dom(R) = \{x \mid \exists y((x, y) \in R)\}$$

ran(R) = $\{y \mid \exists x((x, y) \in R)\}$
fld(R) = dom(R) \cup ran(R).

Proposition 16.9

If R is a set, then dom(R), ran(R), fld(R) are sets.

Proof.

If $x \in \text{dom}(R)$ then $x \in \{x\} \in (x, y) \in R$, for some y, and so $x \in \bigcup(\bigcup R)$, hence $\text{dom}(R) \subseteq \bigcup \bigcup R$. The case for ran(R) and fld(R) are similar.

Proposition 16.10

Let \mathcal{F} be a class of functions and suppose it is upward-directed by \subseteq . Then $\bigcup \mathcal{F}$ is a functional relation.

Proof.

 $\bigcup \mathcal{F} \text{ is a class of ordered pairs. Suppose } (x,y) \in \bigcup \mathcal{F} \text{ and } (x,z) \in \bigcup \mathcal{F} \text{ and hence } (x,y) \in f \text{ e } (x,z) \in g, \text{ for some } f,g \in \mathcal{F}. \text{ Let } h \in \mathcal{F} \text{ be such that } f,g \subseteq h: \text{ then } (x,y), (x,z) \in h \text{ and hence } y = z.$

Theorem 16.11

There is no function f such that $\mathrm{dom}(f)=\mathbb{N}$ and $f(\mathbf{S}(n))\in f(n)$ for all $n\in\mathbb{N}$

Proof.

Suppose such an f exists. As $\emptyset \neq \operatorname{ran}(f)$, by the axiom of foundation there is $y \in \operatorname{ran}(f)$ such that $y \cap \operatorname{ran}(f) = \emptyset$. Let $n \in \mathbb{N}$ be such that y = f(n). But $f(\mathbf{S}(n)) \in f(n) \cap \operatorname{ran}(f)$: a contradiction.

Definition

If F is a functional relation and A is a class, let

$$F[A] = \{F(x) \mid x \in A \cap \operatorname{dom}(F)\}$$

$$F \upharpoonright A = \{(x, y) \in F \mid x \in A\}.$$

Exercise

If F is a set, then so is F[A].

Axiom of Replacement (strong form)

If F is a functional relation and A is a set, then F[A] is a set.

$${}^{A}B = B^{A} = \{F \mid F \colon A \to B\}.$$

Proposition 16.13

If A and B are sets, then B^A is a set.

Proof.

 $B^A \subseteq \mathscr{P}(A \times B).$

From the axiom of replacement we obtain:

Proposition 16.14

If A is a proper class and $A \preceq B$, then B is a proper class.

Notation

 $\langle a_i \mid i \in I \rangle$ is the function $I \ni i \mapsto a_i$.

For example, $s = \langle a_0, a_1, \dots, a_{n-1} \rangle$ is the function with domain $n = \{0, 1, \dots, n-1\}$ assigning to every i < n the set a_i . n = dom(s) is the **length** of s, and it is denoted with $\ln(s)$. If X is a class, then $X^{\leq \mathbb{N}} = \{s \mid s \text{ is a finite string and } \operatorname{ran}(s) \subseteq X\}.$

Exercise

Show that if X is a set, then $X^{<\mathbb{N}} = \bigcup \{X^n \mid n \in \mathbb{N}\}$ is a set.

If I is a set and $\langle A_i \mid i \in I \rangle$ is a sequence of sets, let $\chi_{i \in I} A_i = \{f \mid f \text{ is a function, } \operatorname{dom}(f) = I \text{ and } \forall i \in I (f(i) \in A_i)\}.$ Thus if $A_i = A$ for each $i \in I$, then $\chi_{i \in I} A_i = A^I$. If $A_{i_0} = \emptyset$ for some $i_0 \in I$ then $\chi_{i \in I} A_i = \emptyset$. Does the vice-versa hold? We want to exchange the quantifiers, from ' $\forall i \in I \exists x (x \in A_i)$ ' to ' $\exists f \forall i \in I(f(i) \in A_i)$ '.

Axiom of Choice (AC)

If $\mathcal{A} \neq \emptyset$ is a set and $\forall A \in \mathcal{A} \ (A \neq \emptyset)$, then there is $f : \mathcal{A} \to \bigcup \mathcal{A}$ such that $\forall A \in \mathcal{A} \ (f(A) \in A)$.

The axioms of MK

Recapping: MKC = MK + AC, and the axioms of MK are:

- Extensionality: $\forall z(z \in x \Leftrightarrow z \in y) \Rightarrow x = y$
- Comprehension: $\exists A \forall x \ (x \in A \Leftrightarrow \exists z (x \in z) \land \varphi(x, y_1, \dots, y_n))$, where x is free in $\varphi(x, y_1, \dots, y_n)$ and A different from x, y_1, \dots, y_n

• Set-existence:
$$\exists x \exists y \ (x \in y)$$

- Power-set: $\operatorname{Set}(x) \Rightarrow \exists z \left(\operatorname{Set}(z) \land \forall t \left(t \in z \Leftrightarrow t \subseteq x \right) \right)$
- Pairing: $\operatorname{Set}(x) \wedge \operatorname{Set}(y) \Rightarrow \exists z \left(\operatorname{Set}(z) \land \forall w \left(w \in z \Leftrightarrow w = x \lor w = y \right) \right)$
- Foundation: $x \neq \emptyset \Rightarrow \exists y \ (y \in x \land y \cap x = \emptyset)$
- Union: $\operatorname{Set}(x) \Rightarrow \exists u \left(\operatorname{Set}(u) \land \forall z \left(z \in u \Leftrightarrow \exists y (y \in x \land z \in y) \right) \right)$
- Infinity: $\exists I (Set(I) \land \emptyset \in I \land \forall x (x \in I \Rightarrow \mathbf{S}(x) \in I))$
- Replacement: $\forall F \forall A ((\forall x \exists ! y(x, y) \in F \land Set(A)) \Rightarrow Set(F[A])).$

The axioms of ZF

The theory Zermelo-Frænkel ZF is formulated in the language with just one binary predicate \in . The objects in this theory are *sets*. The axioms of ZF are:

- Extensionality: $\forall z(z \in x \Leftrightarrow z \in y) \Rightarrow x = y$
- Separation: $\exists A \forall x \ (x \in A \Leftrightarrow x \in B \land \varphi(x, y_1, \dots, y_n, B))$, where x is free in $\varphi(x, y_1, \dots, y_n, B)$ and A differs from x, y_1, \dots, y_n, B . $A = \{x \in B \mid \varphi(x, y_1, \dots, y_n, B)\}$ is the subset of B made-up of the elements that enjoy property φ .
- Power-set: $\exists z \forall t \ (t \in z \Leftrightarrow t \subseteq x)$
- Pairing: $\exists z \forall w (w \in z \Leftrightarrow w = x \lor w = y)$
- Foundation: $x \neq \emptyset \Rightarrow \exists y \ (y \in x \land y \cap x = \emptyset)$
- Union: $\exists u \forall z \ (z \in u \Leftrightarrow \exists y (y \in x \land z \in y))$
- Infinity: $\exists I \ (\emptyset \in I \land \forall x \ (x \in I \Rightarrow \mathbf{S}(x) \in I))$
- Replacement: $\forall x \in A \exists ! y \phi \Rightarrow \exists B \forall x \in A \exists y \in B \phi$, for any formula $\phi(x, y, A, w_1, \dots, w_n)$.

Definition.

A finitary function or **operation** on X is an $f: X^n \to X$ for some $n \in \mathbb{N}$, called arity of f, $n = \operatorname{ar}(f)$.

If n = 0 then $f: \{\emptyset\} \to X$, so the 0-ary functions on X can be identified with the elements of X. $Y \subseteq X$ is closed under f if $f[Y^n] \subseteq Y$.

Exercise

Let $Y \subseteq X$ and let $\mathcal{C} = \{Z \subseteq X \mid Y \subseteq Z \land Z \text{ closed under } f\}$. Show that $\mathcal{C} \neq \emptyset$ and that $\bigcap \mathcal{C}$ is the smallest $Z \subseteq X$ containing Y and closed under f.

The set $\bigcap C$ is the **closure** of Y under f, in symbols $\operatorname{Cl}_f(Y)$. Similarly one defines $\operatorname{Cl}_{\mathcal{F}}(Y)$ when \mathcal{F} is a family of finitary functions on X.