Elements of Mathematical Logic Section 18 of Chapter V

Lucidi preparati da Alessandro Andretta Lezioni di Raphaël Carroy

> Dipartimento di Matematica Università di Torino

Definitions 18.1 and 18.2

Let X be a class and let $R \subseteq X \times X$ be a relation on X.

- R is regular or left-narrow if $\{y \in X \mid y \ R \ x\}$ is a set, for all $x \in X$.
- R is well-founded if every nonempty subclass of X contains an R-minimal element that is

$$\forall Y \subseteq X \, (Y \neq \emptyset \Rightarrow \exists y \in Y \, \forall z \in Y \, (z \neq y \Rightarrow (z, y) \notin R)).$$

Otherwise R is **ill-founded**.

• *R* is a **well-order** on *X* if it is a linear order, left-narrow, and well-founded.

The axiom of foundation implies that the membership relation $\{(x, y) \in V \mid x \in y\}$ is irreflexive and well-founded, and since $\{y \mid y \in x\} = x$ is a set for all $x \in V$, it is also regular.

Theorem 18.3

If the set X is well-orderable, then there is a choice function on X.

Proof.

If $\emptyset \neq A \subseteq X$ let f(A) be the minimum of A.

The following result is a straightforward generalization of Propositions 13.3 and 13.4 and Corollaries 13.5 and 13.6.

Theorem 18.4

Let $\langle A, \leq \rangle$ be a well-ordered class.

- If $f: A \to A$ is increasing, then $\forall a \in A \ (a \leq f(a))$; if moreover f is bijective then $f = id_A$.
- If $\langle A, \leq \rangle$ and $\langle B, \trianglelefteq \rangle$ are isomorphic well-ordered classes, then the isomorphism is unique.
- If $a\in A,$ then $\langle A,\leq\rangle$ and $\langle {\rm pred}(a,A;\leq),\leq\rangle$ are not isomorphic.

If $f: A \to A$ is increasing, then $\forall a \in A \ (a \leq f(a))$; if moreover f is bijective then $f = id_A$.

Towards a contradiction, let $\bar{a} \in A$ be least such that $f(\bar{a}) < \bar{a}$. By minimality $f(f(\bar{a})) \ge f(\bar{a})$, and $f(f(\bar{a})) < f(\bar{a})$ since f is increasing. $f(a) \ge a$ and $f^{-1}(a) \ge a$, so that f(a) = a.

If $\langle A,\leq\rangle$ and $\langle B,\trianglelefteq\rangle$ are isomorphic well-ordered classes, then the isomorphism is unique.

If $f, g: A \to B$ are isomorphisms, then $g^{-1} \circ f: A \to A$ is an isomorphism, so $g^{-1}(f(a)) = a$, that is f(a) = g(a).

If $a \in A$, then $\langle A, \leq \rangle$ and $\langle \operatorname{pred}(a, A; \leq), \leq \rangle$ are not isomorphic.

If $f: A \to \operatorname{pred}(a, A; <)$ is an isomorphism, then $f: A \to A$ is increasing, so $\forall x \in A(x \le f(x))$ and hence $a \le f(a)$, a contradiction.

Definition 18.5

A class A is **transitive** if $\bigcup A \subseteq A$, that is $x \in a \in A \Rightarrow x \in A$.

An ordinal is a transitive set, whose elements are transitive.

Proposition 18.6

- **1** If x is a transitive set, then $\bigcup x$ and $\mathbf{S}(x)$ are transitive.
- **2** If $\alpha \in \text{Ord}$ then $\alpha \subseteq \text{Ord}$ and $\mathbf{S}(\alpha) \in \text{Ord}$.
- **(a)** If x is a set of ordinals, then $\bigcup x \in \text{Ord.}$

Proposition 18.7

Ord is a proper class.

Proof.

If $\alpha \in \text{Ord}$ and $\beta \in \alpha$, then $\beta \in \text{Ord}$, so Ord is a transitive class. If Ord were a set, then it would be an ordinal, and hence $\text{Ord} \in \text{Ord}$: a contradiction.

A. Andretta & R. Carroy (Torino)

Elements of Mathematical Logic

Theorem 18.8 $\forall \alpha, \beta \in \text{Ord} \ (\alpha \in \beta \lor \alpha = \beta \lor \beta \in \alpha).$

Proof.

We must prove that

 $\begin{array}{l} A = \{ \alpha \in \operatorname{Ord} \mid \exists \beta \in \operatorname{Ord} \left(\alpha \notin \beta \land \alpha \neq \beta \land \beta \notin \alpha \right) \} \text{ is empty. If } A \neq \emptyset, \\ \text{then there would be an } \bar{\alpha} \in A \text{ such that } \bar{\alpha} \cap A = \emptyset. \\ \text{Then} \\ B = \{ \beta \in \operatorname{Ord} \mid \beta \notin \bar{\alpha} \land \beta \neq \bar{\alpha} \land \bar{\alpha} \notin \beta \} \neq \emptyset \text{ so there is } \bar{\beta} \in B \text{ such that } \bar{\beta} \cap B = \emptyset. \\ \text{If } \gamma \in \bar{\alpha} \text{ then } \gamma \notin A, \text{ so in particular} \\ \bar{\beta} \in \gamma \lor \bar{\beta} = \gamma \lor \gamma \in \bar{\beta}. \\ \text{The first two possibilities together with transitivity } \\ \text{of } \bar{\alpha} \text{ imply that } \bar{\beta} \in \bar{\alpha}, \text{ against } \bar{\beta} \in B. \\ \text{Thus } \gamma \in \bar{\beta}. \\ \text{Being } \gamma \text{ arbitrary, we } \\ \text{have that } \bar{\alpha} \subseteq \bar{\beta}. \\ \text{Similarly } \bar{\beta} \subseteq \bar{\alpha} \text{ and thus } \bar{\alpha} = \bar{\beta}: \text{ a contradiction.} \end{array}$

Ordinals

Corollary 18.9

 \in is a strict well-order on Ord, and thus on every ordinal α .

Write $\alpha < \beta$ and $\alpha \leq \beta$ for $\alpha \in \beta$ and $(\alpha \in \beta \lor \alpha = \beta)$. If $\emptyset \neq A \subseteq \text{Ord}$, the \in -minimal element of A is the minimum of A. Every α yields a well-order $\langle \alpha, \in \rangle$ and if $\beta \in \alpha$, then $\beta = \text{pred}(\beta, \alpha; \in)$, so $\langle \alpha, < \rangle \cong \langle \beta, < \rangle \Leftrightarrow \alpha = \beta$.

Proposition 18.10

1 Suppose $f: \alpha \to \beta$ is increasing. Then $\forall \gamma \in \alpha \ (\gamma \leq f(\gamma))$ and $\alpha \leq \beta$.

2 If $f: \alpha \to \beta$ is an isomorphism, then $\alpha = \beta$ and f is the identity.

(See textbook.) Similarly, if $f: \text{Ord} \to \text{Ord}$ is increasing, then $\gamma \leq f(\gamma)$, and if f is moreover surjective then it is the identity.

Theorem 18.11

Every well-ordered *set* is isomorphic to an ordinal and every well-ordered *class* is isomorphic to Ord. Moreover the ordinal and the isomorphism are unique.

Proof.

Let $\langle X, \langle \rangle$ be a well-ordered set and let $A = \{ \alpha \in \text{Ord} \mid \exists x \in X (\langle \alpha, \in \rangle \cong \langle \text{pred}(x) \rangle) \}.$ Suppose $f: \langle \alpha, \in \rangle \to \langle \operatorname{pred}(x), < \rangle$ witnesses that $\alpha \in A$. If $\beta \in \alpha$ then $f \upharpoonright \beta \colon \langle \beta, \in \rangle \to \langle \operatorname{pred}(f(\beta)), < \rangle$ is an isomorphism so $\beta \in A$. It follows that A is transitive so it is an ordinal. Let $f: A \to X$ be the map assigning to every $\alpha \in A$ the unique $x \in X$ such that $\langle \alpha, \in \rangle \cong \langle \operatorname{pred}(x), < \rangle$. Thus $\operatorname{ran}(f)$ is an initial segment of X. If $\operatorname{ran}(f) \neq X$, then $\operatorname{ran}(f) = \operatorname{pred}(\bar{x})$, for some $\bar{x} \in X$ and the isomorphism $f: \langle A, \in \rangle \to \langle \operatorname{pred}(\bar{x}), < \rangle$ witnesses that the ordinal A belongs to the set A: a contradiction. The case for proper classes is similar. Uniqueness follows from the preceding results.

A. Andretta & R. Carroy (Torino)

Theorem 18.12

If $\langle A,<\rangle$ and $\langle B,\prec\rangle$ are well-ordered classes, then $exactly\ one$ of the following holds:

$$\exists b \in B \ (\langle \operatorname{pred} b, \prec \rangle \cong \langle A, < \rangle)$$

$$(A, \prec) \cong \langle B, \prec \rangle.$$

In particular, two well-ordered proper classes are isomorphic.

Proof

Let $F = \{(a, b) \in A \times B \mid \langle \operatorname{pred} a, < \rangle \cong \langle \operatorname{pred} b, \prec \rangle \}$. Then F is a functional relation. If $a \in \operatorname{dom} F$ and a' < a, then $(a', F(a')) \in F$; similarly, if $b' \prec b \in \operatorname{ran} F$ then there is a' < a such that F(a') = b'. Therefore F is a functional relation from an initial segment of A onto an initial segment of B.

It is enough to show that dom $F \neq A$ and ran $F \neq B$ cannot both be true. Towards a contradiction, let \bar{a} be least in $A \setminus \text{dom } F$ and let \bar{b} be least in $B \setminus \text{ran } F$; then $F \colon \langle \text{pred } \bar{a}, < \rangle \to \langle \text{pred } \bar{b}, \prec \rangle$ is an isomorphism, so $(\bar{a}, \bar{b}) \in F$, a contradiction.

Proposition 18.13

If $A \neq \emptyset$ is a nonempty class of ordinals, then $\min A = \bigcap A$.

Proof.

Suppose $\emptyset \neq A \subseteq \text{Ord}$ and let $\bar{\alpha} \in A$ be such that $\bar{\alpha} \cap A = \emptyset$. Then $\forall \alpha \in A \ (\bar{\alpha} \subseteq \alpha)$, so $\bigcap A = \bar{\alpha} = \min A$.

Corollary 18.14

There is no infinite descending chain of ordinals, that is $\neg \exists f (f : \mathbb{N} \rightarrow \text{Ord} \land \forall n (f(\mathbf{S}(n)) < f(n))).$

Lemma 18.15

Every natural number is an ordinal.

2 If $n \in \mathbb{N}$ and $x \in n$ then $x \in \mathbb{N}$.

Proof.

• Towards a contradiction, suppose $X = \mathbb{N} \setminus \text{Ord}$ is nonempty and let $n \in X$ be such that $n \cap X = \emptyset$. As 0 is an ordinal, it follows that $n \neq 0$ so $n = \mathbf{S}(m)$ for some $m \in \mathbb{N}$. As $m \in \text{Ord}$ then $\mathbf{S}(m) \in \text{Ord} \cap \mathbb{N}$: a contradiction.

② Towards a contradiction, suppose $X = \{n \in \mathbb{N} \mid \exists x \in n \ (x \notin \mathbb{N})\}$ is nonempty and let $\bar{n} \in X$ be such that $\bar{n} \cap X = \emptyset$. Fix $\bar{x} \in \bar{n}$ such that $\bar{x} \in \bar{n} \setminus \mathbb{N}$. $\bar{n} = \mathbf{S}(\bar{m})$, for some $\bar{m} \in \mathbb{N}$, so either $\bar{x} \in \bar{m}$ or $\bar{x} = \bar{m}$. Both possibilities yield a contradiction.

An ordinal α is a successor if $\alpha = \mathbf{S}(\beta)$ for some β . Clearly $\alpha < \mathbf{S}(\alpha)$ and there is no β such that $\alpha < \beta < \mathbf{S}(\alpha)$. If an ordinal is neither a successor nor is 0, then it is **limit**.

Theorem 18.16 ℕ is the smallest limit ordinal.

Proof.

 \mathbb{N} is an ordinal and there are no limit ordinals less than \mathbb{N} . It is enough to check that \mathbb{N} is not a successor. If, towards a contradiction, $\mathbb{N} = \mathbf{S}(\alpha)$, then $\alpha \in \mathbb{N}$, so $\mathbf{S}(\alpha) \in \mathbb{N}$, that is $\mathbb{N} \in \mathbb{N}$: a contradiction.

Notation

 $\mathbb{N}=\omega.$

Proposition 18.18

If A is a set of ordinals, then $\bigcup A = \sup A$.

Proof.

Let A be a set of ordinals. $\bigcup A$ is the smallest set containing every $\alpha \in A$. Since $\bigcup A$ is an ordinal and since \subseteq agrees with \leq on the ordinals, it follows that $\bigcup A = \sup A$.

Proposition 18.17

- $\ \, \bullet \ \ \alpha < \beta \Leftrightarrow \alpha \subset \beta;$
- $a \leq \beta \Leftrightarrow \alpha \subseteq \beta;$
- $x \subseteq \alpha \Rightarrow (\bigcup x = \alpha \lor \bigcup x < \alpha);$
- $(\mathbf{S}(\alpha)) = \alpha;$
- $\bigcirc \ \bigcup \alpha = \alpha \Leftrightarrow (\alpha = 0 \lor \alpha \text{ limit}) \Leftrightarrow \langle \alpha, < \rangle \text{ has no maximum}.$

Proof of Proposition 18.17

If $\alpha \in \beta$ then $\alpha \subseteq \beta$ by transitivity. Foundation implies that $\alpha \neq \beta$, so $\alpha \subset \beta$. Conversely suppose $\alpha \subset \beta$: by foundation $\beta \notin \alpha$ and since $\beta \neq \alpha$ it follows that $\alpha \in \beta$.

$2 \quad \alpha \leq \beta \Leftrightarrow \alpha \subseteq \beta$ is similar to 2

Let $\alpha < \beta$. As $\beta \in \mathbf{S}(\alpha)$ is impossible, then $\beta = \mathbf{S}(\alpha)$ or $\mathbf{S}(\alpha) \in \beta$. The converse implication is immediate.

(continues)

$x \subseteq \alpha \Rightarrow (\bigcup x = \alpha \lor \bigcup x < \alpha)$

 $\bigcup x \text{ is an ordinal so it is comparable with } \alpha. \text{ But } \alpha \in \bigcup x \text{ implies that } \alpha \in \beta \in x \subseteq \alpha \text{, for some } \beta \text{: a contradiction. So } \bigcup x \leq \alpha.$

$\bigcirc \quad \bigcup(\mathbf{S}(\alpha)) = \alpha$

 $\beta \in \bigcup \mathbf{S}(\alpha)$ if and only if $\beta \in \gamma \in \alpha$ for some γ or $\beta \in \alpha$. So $\beta \in \bigcup \mathbf{S}(\alpha) \Leftrightarrow \beta \in \alpha$.

From (3) we get $\bigcup \alpha \leq \alpha$. If $\bigcup \alpha < \alpha$, then by (3) $\mathbf{S}(\bigcup \alpha) \leq \alpha$, so it is enough to show that the strict inequality does not hold. Assume $\mathbf{S}(\bigcup \alpha) \in \alpha$; as $\bigcup \alpha \in \mathbf{S}(\bigcup \alpha)$ then $\bigcup \alpha \in \bigcup \alpha$: a contradiction.

$$\ \bigcirc \ \ \bigcirc \ \ \alpha = \alpha \Leftrightarrow (\alpha = 0 \lor \alpha \text{ limit}) \Leftrightarrow \langle \alpha, < \rangle \text{ has no maximum}$$

Follows from 3 and 3.

A. Andretta & R. Carroy (Torino)

The topology on the ordinals

Any ordinal can be seen as a topological space, α is a subspace of β when $\alpha < \beta$, so we the topology on α is induced by the interval topology on $\langle \operatorname{Ord}, \leq \rangle$. The problem is that *it does not make sense* speak of a topology on a proper class!

Definition 21.21

Let $\Omega \leq \text{Ord.}$ A class $A \subseteq \Omega$ is **open** in Ω if for all $\alpha \in A$ there is an interval I such that $\alpha \in I \subseteq A$. A class $C \subseteq \Omega$ is **closed** in Ω if $\Omega \setminus C$ is open in Ω ; equivalently: $\forall \lambda (0 < \bigcup (C \cap \lambda) = \lambda \Rightarrow \lambda \in C)$.

Which conditions must $f: \Omega \to \text{Ord}$ satisfy in order to be continuous? Continuity is never a problem on successor ordinals, since they are isolated points. Suppose then $\gamma < \Omega$ is limit. If $f(\gamma)$ is a successor, then f is eventually constant below γ .

The topology on the ordinals

If $f(\gamma)$ is limit, the for every $\delta < f(\gamma)$ there is a $\beta < \gamma$ such that $[\beta; \gamma]$ is mapped by f into $[\delta; f(\gamma)]$.

Suppose $f \colon \Omega \to \operatorname{Ord}$ in monotone. Then f is continuous if and only if

$$\forall \lambda (\lambda \text{ limit} \Rightarrow f(\lambda) = \sup_{\beta < \lambda} f(\beta))$$

and if λ is limit,

$$X \subseteq \lambda \wedge \sup X = \lambda \Rightarrow f(\lambda) = \sup_{\nu \in X} f(\nu).$$

Moreover, if f is increasing, then $f(\lambda)$ is a limit ordinal.

Cardinals

x is **finite** if it is in bijection with a natural number, otherwise it is is **infinite**.

A **cardinal** is an ordinal κ which is not in bijection with any $\alpha < \kappa$. Cardinals are usually denoted with greek letters such as κ , λ , ... and Card is the class of all cardinals.

A class X is **well-orderable** if there is a well-order on X — equivalently by Theorem 18.11 if X is in bijection with some $\Omega \leq \text{Ord.}$ If X is well-orderable and Y is in bijection with (or even just: the surjective image of) X, then Y is well-orderable; conversely, if Y is well-orderable and $X \preceq Y$, then X is well-orderable.

Definition 18.20

If X is a well-orderable *set*, its **cardinality** is the smallest ordinal |X| in bijection with X.

In particular $|\alpha|$, is the smallest ordinal $\beta \asymp \alpha$ and hence $|\alpha| \le \alpha$.

Proposition 18.21

If $\kappa, \lambda \in Card$

•
$$\kappa = \lambda$$
 if and only if $\kappa \asymp \lambda$,

 $\ \, {\bf 2} \ \, \kappa \leq \lambda \ \, {\rm if \ and \ only \ if \ \, } \kappa \precsim \lambda.$

Proof.

Suppose that κ ≍ λ and that κ ≠ λ, for example κ < λ. Then λ would be in bijection with a strictly smaller ordinal: a contradiction.
Suppose f: κ → λ. If, towards a contradiction, λ < κ, then let j: λ → κ be the identity function. By the Cantor-Schröder-Bernstein Theorem κ ≍ λ so κ = λ by ①: a contradiction.

Cardinals

Proposition 18.22

• If $\alpha \geq \omega$ then $|\alpha| = |\mathbf{S}(\alpha)|$,

$$|\alpha| \le \beta \le \alpha \Rightarrow |\alpha| = |\beta|,$$

- 3 $|\alpha| = |\beta|$ if and only if $\alpha \asymp \beta$,
- $|\alpha| \leq |\beta|$ if and only if $\alpha \preceq \beta.$

Proof.

2 Let $f: \alpha \to |\alpha|$ be bijective. As $f: \alpha \to \beta$ is injective and $\beta \preceq \alpha$, then $|\alpha| = |\beta|$ by the Cantor-Schröder-Bernstein Theorem and preceding Proposition.

Ind I follow from the previous Proposition.

Given a set X consider the class $A = \{(\alpha, f) \mid \alpha \in \text{Ord} \land f : \alpha \rightarrow X\}$. To $(\alpha, f) \in A$ associate the well-order $W_{(\alpha, f)}$ on $\operatorname{ran}(f) \subseteq X$ induced by f: $x W_{(\alpha, f)} y \Leftrightarrow f^{-1}(x) < f^{-1}(y).$ Then $f: \langle \alpha, \langle \rangle \rightarrow \langle \operatorname{ran}(f), W_{(\alpha, f)} \rangle$ is an isomorphism. If $(\alpha, f), (\beta, g) \in A$ and $W_{(\alpha, f)} = W_{(\beta, g)}$ then $g^{-1} \circ f \colon \langle \alpha, \langle \rangle \to \langle \beta, \langle \rangle$ is an isomorphism, so $\alpha = \beta$ and f = g. Thus $A \to \mathscr{P}(X \times X)$, $(\alpha, f) \mapsto W_{(\alpha, f)}$ is injective, so $A \preceq \mathscr{P}(X \times X)$ and hence A a set. Also $\operatorname{Hrtg}(X) = \{ \alpha \in \operatorname{Ord} \mid \alpha \preceq X \} = \{ \alpha \in \operatorname{Ord} \mid \exists f \ (\alpha, f) \in A \}$

is a set. It is the smallest ordinal that does not inject into X. $\mathscr{P}(X \times X) \twoheadrightarrow A \twoheadrightarrow \operatorname{Hrtg}(X)$. If $|\operatorname{Hrtg}(X)| < \operatorname{Hrtg}(X)$, then $\operatorname{Hrtg}(X) \rightarrow |\operatorname{Hrtg}(X)| \in \operatorname{Hrtg}(X)$ and hence $\operatorname{Hrtg}(X) \rightarrow X$: a contradiction.

Theorem 18.23

Hrtg(X) is the smallest ordinal that does not inject into X, and it is a cardinal. Moreover $\mathscr{P}(X \times X) \twoheadrightarrow \operatorname{Hrtg}(X)$.

 $\operatorname{Hrtg}(\alpha)$ is denoted by α^+ and ω^+ is denoted by ω_1 .

Theorem 18.25

If X is a set of cardinals, then $\sup X$ is a cardinal.

Proof.

If, towards a contradiction, $\lambda = \bigcup X \notin Card$ then $|\lambda| < \lambda$ so that $|\lambda| < \kappa \le \lambda$ for some $\kappa \in X$ and therefore $|\lambda| = |\kappa|$, that is κ would not be a cardinal: a contradiction.

Corollary 18.26

Card is a proper class.

Cardinal addition and multiplication

Definition 18.27

Cardinal addition and multiplication are the binary operations ${\rm Card} \times {\rm Card} \to {\rm Card}$ defined by

$$\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}| \qquad \qquad \kappa \cdot \lambda = |\kappa \times \lambda|.$$

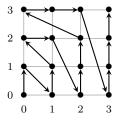
Note that $2 \leq \kappa, \lambda \Rightarrow \kappa + \lambda \leq \kappa \cdot \lambda$ and that this formula is true even when one of the two cardinals is 1 and the other is $\geq \omega$. Summarizing: if κ and λ are cardinals and if either $2 \leq \min(\kappa, \lambda)$ or else $1 = \min(\kappa, \lambda)$ and $\omega \leq \max(\kappa, \lambda)$, then

$$\max(\kappa, \lambda) \le \kappa + \lambda \le \kappa \cdot \lambda \le \max(\kappa, \lambda) \cdot \max(\kappa, \lambda).$$

The Gödel well-order on $\operatorname{Ord} \times \operatorname{Ord}$ is defined by

 $(\alpha,\beta) <_{\mathrm{G}} (\gamma,\delta) \Leftrightarrow \left[\max(\alpha,\beta) < \max(\gamma,\delta) \lor \left(\max(\alpha,\beta) = \max(\gamma,\delta) \land (\alpha,\beta) <_{\mathrm{lex}} (\gamma,\delta)\right)\right].$

The ordering $<_{\rm G}$ agrees with the ordering on ω given by the enumeration



and if $\alpha < \beta$ then $\alpha \times \alpha$ is an initial segment of $\beta \times \beta$.

Theorem 18.28

Let κ be an infinite cardinal. Then $ot(\kappa \times \kappa, <_G) = \kappa$ and $|\kappa \times \kappa| = \kappa$.

Proof.

The function $\langle \kappa, \langle \rangle \rightarrow \langle \kappa \times \kappa, \langle \rangle_G \rangle$, $\alpha \mapsto (\alpha, 0)$, is increasing so that $\kappa \leq \operatorname{ot}(\kappa \times \kappa, <_{\mathrm{G}})$. Therefore it is enough to show by induction on $\kappa \geq \omega$ that $ot(\kappa \times \kappa, <_G) \le \kappa$, so that $|\kappa \times \kappa| = \kappa$. Let $\alpha < \kappa$. If $\alpha < \omega$, then $|\alpha \times \alpha| < \omega$ by Proposition 13.20. If instead $\omega \leq \alpha$, then $\omega \leq |\alpha| < \kappa$ so by inductive assumption $|\alpha| \times |\alpha|$ is of cardinality $|\alpha|$. As $|\alpha| \times |\alpha| \simeq \alpha \times \alpha$, then $|\alpha \times \alpha| < \kappa$. Therefore we have shown that $\forall \alpha < \kappa (|\alpha \times \alpha| < \kappa)$. Fix $\alpha, \beta < \kappa$. The set $pred(\alpha, \beta)$ of $<_{G}$ -predecessors of (α, β) is included in $\nu \times \nu$, where $\nu = \max\{\alpha, \beta\} + 1$, so $|\operatorname{pred}(\alpha,\beta)| \leq |\nu \times \nu| < \kappa$. Therefore we have shown that $\forall \alpha, \beta < \kappa \text{ (ot pred}(\alpha, \beta) < \kappa \text{) and hence } \operatorname{ot}(\kappa \times \kappa, <_{\mathrm{G}}) < \kappa.$

Corollary 18.29

If κ and λ are cardinals different from 0 and at least one among κ and λ is infinite, then

$$\max(\kappa, \lambda) = \kappa + \lambda = \kappa \cdot \lambda.$$

Proposition 18.30

If $2 \leq \kappa \leq \lambda$ and λ is an infinite cardinal, then ${}^{\lambda}2 \asymp {}^{\lambda}\kappa \asymp {}^{\lambda}\lambda$.

Proof.

$${}^{\lambda}2 \subseteq {}^{\lambda}\kappa \subseteq {}^{\lambda}\lambda \subseteq \mathscr{P}(\lambda \times \lambda) \asymp \mathscr{P}(\lambda) \asymp {}^{\lambda}2.$$

Theorem 18.31

Let X be an infinite set such that $X \times X \asymp X$. Then $\forall n > 0 \ (^nX \asymp X)$. Moreover, $\omega \preceq X$ implies ${}^{<\omega}X \asymp X$. In particular, if X is well-orderable and infinite, then $|{}^{<\omega}X| = |X|$.

Proof

Let $f: X \times X \to X$ be a bijection. Define by recursion on $n \ge 1$ bijections $j_n: {}^nX \to X$ as follows. Let $j_1(\langle x \rangle) = x$ for all $x \in X$, and since the function ${}^{n+1}X \to {}^nX \times X$, $s \mapsto (s \upharpoonright n, s(n))$, is a bijection, it is possible to define j_{n+1} as

$$s\mapsto (s\restriction n, s(n))\mapsto (j_n(s\restriction n), s(n))\mapsto f(j_n(s\restriction n), s(n)).$$

Therefore ${}^nX \asymp X$ for all n > 0. Moreover given $\bar{x} \in X$ the function $j_{\omega} \colon {}^{<\omega}X \to \omega \times X$

$$j_{\omega}(s) = \begin{cases} (0,\bar{x}) & \text{if } s = \emptyset, \\ (n,j_n(s)) & \text{if } \ln(s) = n > 0, \end{cases}$$

is injective.

Definition 18.32

If $\langle X, \lhd \rangle$ is a well-ordered set and $\alpha \in \operatorname{Ord}$, let

$$[X]^{\alpha} = \{Y \subseteq X \mid \text{ot}\langle Y, \triangleleft \rangle = \alpha\}.$$

Replacing = with \leq and < in the formula above, the definition of $[X]^{\leq \alpha}$ and $[X]^{<\alpha}$ is obtained.

Every $x \in [\kappa]^n$ can be written as $x = \{\alpha_0, \ldots, \alpha_{n-1}\}$ with $\alpha_0 < \cdots < \alpha_{n-1} < \kappa$, and therefore it can be identified with the sequence $\langle \alpha_0, \ldots, \alpha_{n-1} \rangle \in {}^n \kappa$. Such identification yields an injection $[\kappa]^n \to {}^n \kappa$ that extends to $[\kappa]^{<\omega} \to {}^{<\omega} \kappa = \bigcup_n {}^n \kappa$. Therefore for n > 0

$$\kappa \leq \left| [\kappa]^n \right| \leq \left| [\kappa]^{<\omega} \right| \leq \left|^{<\omega} \kappa \right| = \kappa$$

that is $\kappa = |[\kappa]^n| = |[\kappa]^{<\omega}|.$

Corollary 18.33

If X is infinite and well-orderable, then also $[X]^n$ and $[X]^{<\omega}$ are well-orderable, and $|[X]^n| = |[X]^{<\omega}| = |X|$ if n > 0.

Proposition 18.34

$${}^{<\omega}X \asymp \omega \times {}^{<\omega}X \asymp {}^{<\omega}({}^{<\omega}X)$$
 for every set X .

Proof.

If X is empty or a singleton the result is trivial, so assume that X has at least two distinct elements x_0, x_1 . Given $s \in {}^{<\omega}X$ define $s' \in {}^{<\omega}X$ as follows: if $s = \emptyset$ set $s' = \emptyset$, and if $s \neq \emptyset$ let $s' = x_0^{(\ln s)} \langle x_1 \rangle \hat{} s$. Thus

$${}^{<\omega}({}^{<\omega}X) \to {}^{<\omega}X, \quad \langle s_0, \dots, s_n \rangle \mapsto s_0' {}^{\sim}s_1' {}^{\sim} \dots {}^{\sim}s_n'$$

is injective. Since $\omega \times {}^{<\omega}X \to {}^{<\omega}({}^{<\omega}X)$, $(n,s) \mapsto s^{(n)}$ is injective and ${}^{<\omega}X \precsim \omega \times {}^{<\omega}X$, the result follows from the Cantor-Schröder-Bernstein Theorem.

A. Andretta & R. Carroy (Torino)

Corollary 18.35

For any set X there is a set Y such that $X \preceq Y$ and such that $Y \asymp {}^{<\omega}Y$ and hence $Y \asymp Y \times Y$.

Proof.

Take $Y = {}^{<\omega}X$.

32 / 36

Applications: vector spaces

Suppose V is a non-trivial vector space on a field k. If V is well-orderable, then k is also well-orderable, and V has a **basis**. Conversely, if k is well-orderable and V has a well-orderable base, then V is well-orderable. To see this suppose $|\mathbf{k}| = \kappa$ and that $\{\mathbf{e}_{\alpha} \mid \alpha \in \lambda\}$ is a basis of V, where λ is a cardinal. If $\lambda < \omega$ then V is a finite dimensional vector space over a finite fields, so it is well-orderable and of size $\kappa^{\lambda} < \omega$. So we may assume that $\max(\kappa, \lambda) \geq \omega$. Thus for every $\mathbf{v} \in V$ there is a unique finite set $I = I(\mathbf{v}) = \{\alpha_0, \ldots, \alpha_{n-1}\} \subseteq \lambda$ and a unique sequence of non-zero scalars $s = s(\mathbf{v}) \in {}^n \mathbb{k} \setminus \{0_k\}$ such that

$$\mathbf{v} = \sum_{i < n} s(i) \mathbf{e}_{\alpha_i}.$$

When $\mathbf{v} = \mathbf{0}$ then $I(\mathbf{v}) = s(\mathbf{v}) = \emptyset$. If $\lambda < \omega$, then $V \asymp \Bbbk^{\lambda}$, hence

$$|V| = |^{\lambda} \kappa| = \begin{cases} \kappa & \text{if } \kappa \geq \omega, \\ \kappa^{\lambda} & \text{otherwise.} \end{cases}$$

If $\lambda \geq \omega$, then

$$V \to \bigcup_{n \in \omega} [\lambda]^n \times \bigcup_{n \in \omega} {}^n(\mathbb{k} \setminus \{0_{\mathbb{k}}\}), \quad \mathbf{v} \mapsto (I(\mathbf{v}), s(\mathbf{v}))$$

is injective, so $|V| = \max(\lambda, \kappa)$. Therefore

$$|V| = \begin{cases} \kappa^{\lambda} & \text{if } \kappa, \lambda < \omega, \\ \kappa & \text{if } \lambda < \omega \le \kappa, \\ \max(\kappa, \lambda) & \text{if } \omega \le \kappa, \lambda. \end{cases}$$

Suppose $\{\mathbf{e}_{\alpha} \mid \alpha \in \lambda\}$ and $\{\mathbf{e}_{\alpha}' \mid \alpha \in \lambda'\}$ are bases of V, with λ, λ' cardinals. If $\lambda < \omega$, then $\lambda = \lambda'$ by the Gramm-Shmidt algorithm; if $\omega \leq \lambda < \lambda'$, choose a finite set $I_{\alpha} \subseteq \lambda'$ for each $\alpha < \lambda$ so that \mathbf{e}_{α} is in the span of $\{\mathbf{e}_{\beta}' \mid \beta \in I_{\alpha}\}$, and hence $I = \bigcup_{\alpha < \lambda} I_{\alpha}$ is of size λ and $\{\mathbf{e}_{\alpha}' \mid \alpha \in I\}$ generates V, contradicting the assumption that $\{\mathbf{e}_{\alpha}' \mid \alpha \in \lambda'\}$ is a base. Therefore if V is well-orderable two bases have the same size, and the cardinality of any such base is called the **dimension** of V, in symbols $\dim(V)$.

A. Andretta & R. Carroy (Torino)

Corollary 18.36

If V,W are well-orderable vector spaces over a well-orderable field $\Bbbk,$ and $|V|,|W|>|\Bbbk|,$ then

 $V \cong W \Leftrightarrow \dim(V) = \dim(W) \Leftrightarrow |V| = |W|.$

Applications: free groups

F(X) is the set of all $\langle x_1^{\varepsilon_1}, \ldots, x_n^{\varepsilon_n} \rangle$ with $x_i \in X$ and $\varepsilon_i \in \{-1, 1\}$, with the proviso that if $x_i = x_{i+1}$ then $\varepsilon_i = \varepsilon_{i+1}$. Thus F(X) can be identified with a subset of $(\{1, -1\} \times X)^{<\omega}$, while X is identified with a subset of F(X) via $x \mapsto (1, x)$. If X is well-orderable, so is F(X), and if $|X| = \kappa \geq \omega$, then $|F(X)| = \kappa$. Any function $f: X \to G$ can be uniquely extended to a homomorphism $\hat{f}: \mathbf{F}(X) \to G$, and if $X \preceq Y$ then $\mathbf{F}(X)$ can be identified with a subgroup of F(Y). If X is well-orderable, then the **rank** of F(X) is the cardinality of X. If $X \asymp Y$ then $F(X) \cong F(Y)$, and the unique (up to isomorphism) free group of rank $\kappa \neq 0$ is F_{κ} . (If $X \preceq Y$ then F(X) is isomorphic to a

subgroup of F(Y), but the conversely.) Summarizing:

Proposition 18.38

Assume AC. If X, Y are infinite sets, then $|X| = |Y| \Leftrightarrow \mathbf{F}(X) \cong \mathbf{F}(Y) \Leftrightarrow |\mathbf{F}(X)| = |\mathbf{F}(Y)|.$