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Theorem 19.1

Let A be a class, let ā ∈ A and let F : ω ×A → A be a functional
relation. There is a unique G : ω → A such that{

G(0) = ā

G(S(n)) = F (n,G(n)).
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Proof

Let G = {p | ∃m ∈ ω
[
p : m → A ∧ (0 < m ⇒ p(0) = ā) ∧ ∀n (S(n) <

m ⇒ p(S(n)) = F (n, p(n)))
]
}.

Claim

If p, q ∈ G then p ∪ q is a function.

Proof.

Suppose that p, q ∈ G but p ∪ q is not a function. Then there is a least
n ∈ dom(p) ∩ dom(q) witnessing that p(n) ̸= q(n). Clearly n ̸= 0, since
p(0) = ā = q(0), so n = S(k). Then

p(n) = F (k, p(k))

= F (k, q(k)) by minimality of n,

= q(n).
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Proof

Thus G =
⋃
G ⊆ ω ×A is a functional relation, and therefore a function

by replacement.
As {(0, ā)} ∈ G, it follows that G ̸= ∅ and G(0) = ā. Moreover if
S(n) ∈ dom(G) then G(S(n)) = p(S(n)) for some p ∈ G, so
G(S(n)) = F (n, p(n)) = F (n,G(n)).

dom(G) = ω

Towards a contradiction, suppose n̄ is least such that n̄ /∈ dom(G), then
n̄ = S(m̄) for some m̄. As n̄ /∈ dom(p) for any p ∈ G, it follows that
k /∈ dom(G) for all k > n̄. It is easy to check that

p
def
= G ∪ {(n̄, F (m̄,G(m̄)))} ∈ G, thus p ⊆ G, so that n̄ ∈ dom(G): a

contradiction.
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Proof

G is unique

If G′ were another function satisfying the statement of theorem, then let n̄
be least such that G(n̄) ̸= G′(n̄). Clearly n̄ ̸= 0 so n̄ = S(m̄) for some m̄,
and hence

G(n̄) = F (m̄,G(m̄))

= F (m̄,G′(m̄)) by minimality of n̄,

= G′(n̄),

a contradiction!
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Transitive closure of a relation

The transitive closure of R ⊆ X ×X with X a class, is the relation

R̃ =
{
(x, y) ∈ X ×X | ∃n > 0 ∃f ∈ S(n)X

[
x = f(0) ∧

y = f(n) ∧ ∀i < n (f(i), f(S(i))) ∈ R
]}

In other words x R̃ y if and only there are x0, . . . , xn such that

x = x0 R x1 · · ·xn−1 R xn = y.
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Proposition 19.2

R is regular on X if and only if R̃ is regular on X.

Proof.

Since R ⊆ R̃ it is enough to check that if R is regular, then R̃ is regular.
Given a x̄ ∈ X, by induction define the sets Zn

Z0 = {y ∈ X | y R x̄}

Zn+1 = {y ∈ X | ∃z ∈ Zn (y R z)} =
⋃

z∈Zn

{y ∈ X | y R z}.

The sequence ⟨Zn | n ∈ ω⟩ is given by Theorem 19.1 when A = V, ā = Z0

and F (n, a) = F (a) = {x ∈ X | ∃y ∈ a (x R y)}. Thus G(n) = Zn. By
replacement

⋃
n∈ω Zn is a set, and it is the same as {y ∈ X | y R̃ x̄}.
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Proposition 19.3

R is well-founded on X if and only if R̃ is well-founded on X.

Proof.

Since R ⊆ R̃ the ⇐ direction is clear.
Suppose R is well-founded towards proving that so is R̃. Fix ∅ ≠ Y ⊆ X
and let us show that there is an R̃-minimal element in Y . A path from Y
into itself is a sequence ⟨z0, . . . , zn, zn+1⟩ in X of length ≥ 1 such that
z0, zn+1 ∈ Y and zi R zi+1 with i = 0, . . . , n. (Paths of length 1 can be
identified with the elements of Y .) Let
Ȳ = {x ∈ X | ∃s (s is a path from Y into itself and x ∈ ran s)}. By
construction Y ⊆ Ȳ and let ȳ be an R-minimal of Ȳ . By construction no
element of Ȳ \ Y is R-minimal, so ȳ ∈ Y . Let us check that ȳ is
R̃-minimal in Y . Towards contradiction, if x̄ R̃ ȳ for some x̄ ∈ Y different
from ȳ, then there would be a path ⟨z0, . . . , zn+1⟩ from Y into itself with
z0 = x̄ and zn+1 = ȳ, and hence zn R ȳ, against R-minimality of ȳ.
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Theorem 19.4

Let X and Z be classes, let R ⊆ X ×X be irreflexive, regular, and
well-founded, and let F : Z ×X ×V → V. Then there is a unique
G : Z ×X → V such that for every (z, x) ∈ Z ×X

G(z, x) = F (z, x,G ↾ {(z, y) | y R x}). (∗)

Proof of uniqueness

Suppose that G,G′ : Z ×X → V satisfy (∗) and that G ̸= G′. Fix z̄ ∈ Z
such that Y = {x ∈ X | G(z̄, x) ̸= G′(z̄, x)} ≠ ∅ and let x̄ ∈ Y be an
R-minimal element of Y . Then

G ↾ {(z̄, y) | y R x̄} = G′ ↾ {(z̄, y) | y R x̄}

and let p̄ be this functional relation. Regularity of R together with the
axiom of replacement, imply that p̄ is a set, and therefore
G(z̄, x̄) = F (z̄, x̄, p̄) = G′(z̄, x̄): a contradiction.
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Proof of existence

Let G be the class of all functions p such that

1 dom(p) ⊆ Z ×X,

2 ∀(z, x) ∈ dom(p)∀y ∈ X (y R x ⇒ (z, y) ∈ dom(p)),

3 ∀(z, x) ∈ dom(p) (p(z, x) = F (z, x, p ↾ {(z, y) | y R x})).

2 is equivalent to the seemingly stronger condition
∀(z, x) ∈ dom(p) ({z} × {y ∈ X | y R̃ x} ⊆ dom(p)),
where R̃ is the transitive closure of R.

If p, q ∈ G then p ∪ q is a function

If {x ∈ X | ∃z ∈ Z ((z, x) ∈ dom(p) ∩ dom(q) ∧ p(z, x) ̸= q(z, x))} ≠ ∅
by well-foundedness let x̄ be an R-minimal element of this class. Let
z̄ ∈ Z be such that (z̄, x̄) ∈ dom(p)∩ dom(q) and p(z̄, x̄) ̸= q(z̄, x̄). By 2

{(z̄, y) | y R x̄} ⊆ dom(p) ∩ dom(q) and by R-minimality of x̄

p ↾ {(z̄, y) | y R x̄} = q ↾ {(z̄, y) | y R x̄} def
= r̄ so that, by 3

p(z̄, x̄) = F (z̄, x̄, r̄) = q(z̄, x̄): a contradiction.
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by well-foundedness let x̄ be an R-minimal element of this class. Let
z̄ ∈ Z be such that (z̄, x̄) ∈ dom(p)∩ dom(q) and p(z̄, x̄) ̸= q(z̄, x̄). By 2

{(z̄, y) | y R x̄} ⊆ dom(p) ∩ dom(q) and by R-minimality of x̄

p ↾ {(z̄, y) | y R x̄} = q ↾ {(z̄, y) | y R x̄} def
= r̄ so that, by 3

p(z̄, x̄) = F (z̄, x̄, r̄) = q(z̄, x̄): a contradiction.

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024–2025 10 / 36



Proof of existence

Let G be the class of all functions p such that

1 dom(p) ⊆ Z ×X,

2 ∀(z, x) ∈ dom(p)∀y ∈ X (y R x ⇒ (z, y) ∈ dom(p)),

3 ∀(z, x) ∈ dom(p) (p(z, x) = F (z, x, p ↾ {(z, y) | y R x})).
2 is equivalent to the seemingly stronger condition
∀(z, x) ∈ dom(p) ({z} × {y ∈ X | y R̃ x} ⊆ dom(p)),
where R̃ is the transitive closure of R.

If p, q ∈ G then p ∪ q is a function

If {x ∈ X | ∃z ∈ Z ((z, x) ∈ dom(p) ∩ dom(q) ∧ p(z, x) ̸= q(z, x))} ≠ ∅
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Proof of existence

If p, q ∈ G then p∪ q ∈ G, and hence G =
⋃
G is a functional relation with

domain ⊆ Z ×X. If Z ×X \ dom(G) ̸= ∅, let x̄ be an R-minimal element
of {x ∈ X | ∃z ∈ Z (z, x) /∈ dom(G)} and let z̄ ∈ Z be such that
(z̄, x̄) /∈ dom(G). The transitive closure R̃ of R on X, is regular, so

p̄
def
= G ↾ {(z̄, y) | y R̃ x̄}

is a set by the axiom of replacement. Then p̄ ∈ G and hence
p̄ ∪ {((z̄, x̄), F (z̄, x̄, p̄))} ∈ G. Thus (z̄, x̄) ∈ dom(G), against our
assumption. It follows that G is the functional relation we are looking for.
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Rank of a well-founded relation

If R is irreflexive, regular, and well-founded on X, then ϱR,X : X → Ord
defined by ϱR,X(x) =

⋃
{S(ϱR,X(y)) | y R x} is the rank of R on X.

Proposition 19.6

ran(ϱR,X) is an initial segment of Ord and

1 x R y ⇒ ϱR,X(x) < ϱR,X(y),

2 ϱR,X(x) = inf{α | ∀y
(
y R x ⇒ ϱR,X(y) < α

)
}.

Proof.

If ϱR,X(y) ∈ Ord for any y such that y R x, then ϱR,X(x) ∈ Ord by
Proposition 18.6, so ran(ϱR,X) ⊆ Ord. Towards a contradiction, suppose
there is x̄ ∈ X and α such that α ∈ ϱR,X(x) \ ran(ϱR,X), and let x̄ be
R-minimal such. Then there is y R x̄ such that α < S(ϱR,X(y)). Since
α /∈ ranϱR,X then α < ϱR,X(y), against R-minimality of x̄. The rest of
the proof is easy.
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If R is an irreflexive, regular, well-founded relation on X, the function
πR,X : X → V given by

πR,X(x) = {πR,X(y) | y R x}

is the Mostowski collapsing function.
The class X = ran(πR,X) is the Mostowski collapse of R and X.

1 X is transitive and

2 ∀x, y ∈ X (x R y ⇒ πR,X(x) ∈ πR,X(y)).
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If R is the relation on {a, b, c, d, e, f, g} given by the directed graph

a

b c

d e

f

g

then ϱR,X(d) = ϱR,X(e) = ϱR,X(g) = 0, ϱR,X(b) = ϱR,X(f) = 1,
ϱR,X(c) = 2 and ϱR,X(a) = 3;
πR,X(d) = πR,X(e) = πR,X(g) = ∅, πR,X(b) = πR,X(f) = {∅} = 1,
πR,X(c) = {0, 1} = 2 and πR,X(a) = {1, 2}.
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Definition 19.7

R ⊆ X ×X is extensional on X if

∀x, y ∈ X (∀z ∈ X (z R x ⇔ z R y) ⇒ x = y) .

Example

1 If X is a transitive class, then ∈ ↾ X = {(y, x) ∈ X ×X | y ∈ x} is
extensional on X;

2 if R is a (strict) linear order on X, then R is extensional on X.

Proposition 19.8

Let R be an irreflexive, regular, well-founded relation on the class X.

1 If R is extensional on X, then πR,X is injective and πR,X : X → X is
an isomorphism between R on X and ∈ on X, that is πR,X is
bijective and ∀x, y ∈ X (x R y ⇔ πR,X(x) ∈ πR,X(y)).

2 If R is a strict well-order on X the functions πR,X and ϱR,X agree.
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Proposition 19.8 1

Let R be extensional, irreflexive, regular, and well-founded on the class X.
Then πR,X : X → X is bijective and
∀x, y ∈ X(x R y ⇔ πR,X(x) ∈ πR,X(y)).

Proof.

Towards a contradiction, let x̄ be R-minimal such that
πR,X(x̄) = πR,X(ȳ), for some ȳ ̸= x̄. Let z R x̄: as
πR,X(z) ∈ πR,X(x̄) = πR,X(ȳ), there is w R ȳ such that
πR,X(z) = πR,X(w). By minimality of x̄, z = w. Thus z R x̄ ⇒ z R ȳ.
Similarly, if z R ȳ then there is w R x̄ such that πR,X(z) = πR,X(w) and
hence z = w, that is z R ȳ ⇒ z R x̄. Thus, by extensionality, ȳ = x̄,
against our assumption. It follows that πR,X is a bijection between X and
X.
If πR,X(x) ∈ πR,X(y) = {πR,X(z) | z R y}, then x R y.
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Proposition 19.8 2

Let R be irreflexive, regular and well-founded on X. If R is a strict
well-order on X, then the functional relations πR,X and ϱR,X coincide.

Proof.

Assume ϱR,X(y) = πR,X(y), for all y R x. Then
πR,X(x) = {πR,X(y) | y R x} = {ϱR,X(y) | y R x} is a set of ordinals. If
πR,X(z) ∈ πR,X(y) ∈ πR,X(x), then z R y R x, so z R x, that is
πR,X(x) is transitive, and therefore it is an ordinal. By construction
πR,X(x) is the least upper bound of the ordinals
S(πR,X(y)) = S(ϱR,X(y)) with y R x, that is πR,X(x) = ϱR,X(x).
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Lemma 19.9

If f : Ord → Ord is increasing and continuous, then

∀α∃ᾱ > α (f(ᾱ) = ᾱ) .

Proof.

By recursion define ⟨αn | n ∈ ω⟩ by α0 = S(α) and αS(n) = f(αn), and
let ᾱ = supn αn. If f(α0) = α0, then ∀n (α0 = αn) and therefore ᾱ = α0.
If instead α0 < f(α0) = α1, then αn < αS(n), and hence ᾱ is limit. Then

f(ᾱ) = sup
ν<ᾱ

f(ν) = sup
n

f(αn) = sup
n

αS(n) = ᾱ.

In either case ᾱ is the least fixed point greater that α for f .
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Definition

ℵ : Ord → Card \ ω is the class-function enumerating the class of infinite
cardinals, i.e.

ℵ0 = ω

ℵS(α) = (ℵα)
+

ℵλ = sup
α<λ

ℵα.

Since ℵ : Ord → Ord is increasing and continuous, there are cardinals κ
such that κ = ℵκ, and the least such is the least upper bound of

ℵ0, ℵℵ0 , ℵℵℵ0
, ℵℵℵℵ0

, . . .
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Ordinal arithmetic

α∔ β =


α if β = 0,

S(α∔ γ) if β = S(γ),

supγ<β(α∔ γ) if β is limit,

α · β =


0 if β = 0,

(α · γ)∔ α if β = S(γ),

supγ<β α · γ if β is limit,

α.β =


1 if β = 0,

α.γ · α if β = S(γ),

supγ<β α
.γ if β is limit.
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The ordinal ϱR,X(x), when X = V and R is the membership relation, is
called the rank of x, denoted by rank(x). By Proposition 19.6

x ∈ y ⇒ rank(x) < rank(y) x ⊆ y ⇒ rank(x) ≤ rank(y)

and by induction one checks that rank(α) = α.

Proposition 19.10

1 rank(P(x)) = S(rank(x)).

2 rank(
⋃
x) = sup{rank(y) | y ∈ x}.

Proof.

1 Since x ∈ P(x) one has that S(rank(x)) ≤ rank(P(x)). Conversely,
if y ⊆ x, then S(rank(y)) ≤ S(rank(x)) and hence
rank(P(x)) = sup{S(rank(y)) | y ⊆ x} ≤ S(rank(x)).
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Proposition 19.10

1 rank(P(x)) = S(rank(x)).

2 rank(
⋃
x) = sup{rank(y) | y ∈ x}.

Proof.

2 If y ∈ x then y ⊆
⋃

x so sup{rank(y) | y ∈ x} ≤ rank(
⋃
x).

Conversely, if z ∈ y ∈ x then S(rank(z)) ≤ rank(y) so
S(rank(z)) ≤ sup{rank(y) | y ∈ x}. Being z arbitrary,
rank(

⋃
x) ≤ sup{rank(y) | y ∈ x}.

Definition 19.11

Vα = {x | rank(x) < α}.
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Theorem 19.12

Vα is a transitive set and

Vα =
⋃
β<α

P(Vβ). (*)

Proof.

If y ∈ x ∈ Vα then rank(y) < rank(x) < α so y ∈ Vα. Thus Vα is a
transitive class. By induction on α we show that Vα is a set and that (*)
holds. Suppose the results holds true for β < α: then {P(Vβ) | β < α} is
a set, so it is enough to show (*).
x ⊆ Vrank(x) and therefore rank(x) < α ⇒ x ∈

⋃
β<α P(Vβ).

Conversely, if x ∈
⋃

β<α P(Vβ), then x ⊆ Vβ, for some β < α and hence
rank(y) < β for any y ∈ x, whence rank(x) ≤ β < α.

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024–2025 23 / 36



Corollary 19.13

1 V0 = ∅.
2 If α < β then Vα ∈ Vβ and Vα ⊂ Vβ.

3 VS(α) = P(Vα).

4 Vλ =
⋃

α<λVα, if λ is limit.

5 V =
⋃

α∈OrdVα.

Vα

Ord

V
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Models of set theory

A structure for L∈ is a pair ⟨M,E⟩ where M is a nonempty set and
E ⊆ M ×M . In particular, consider the structure Vα, i.e. ⟨Vα,∈⟩, with
α > 0.

Question

Which axioms of ZF are true in Vα?

Theorem 19.15

1 All axioms of ZFC except the axiom of infinity hold in Vω.

2 All axioms of ZF except possibly for replacement hold in Vλ, if λ > ω
is limit.

3 Assuming choice, then AC holds in Vλ, if λ is limit.

In order to prove this result a stratification of formulæ is introduced.
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Definition 19.17

An L∈-formula is ∆0 if it belongs to the smallest class containing all
atomic formulæ and closed under connectives and bounded
quantifications, that is

atomic formulæ are ∆0,

if φ,ψ are ∆0 then so are ¬φ and φ⊙ψ, where ⊙ is any binary
connective,

if φ is ∆0 then so is ∀y(y ∈ x ⇒ φ) and ∃y(y ∈ x ∧φ),
and nothing else is a ∆0-formula.

The axiom of extensionality is true in every transitive set M ̸= ∅.

We write ∀y ∈ xφ and ∃y ∈ xφ instead of ∀y(y ∈ x ⇒ φ) and
∃y(y ∈ x ∧φ).
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Examples of ∆0 formulæ

Trans(x), i.e. x is transitive x = {y, z}
Ord(x), i.e. x is an ordinal x = (y, z)
Op(x), i.e x is an ordered pair f : x → y
Rel(x), i.e. x is a relation y = dom(x)
Fn(x), i.e. x is a function y = ran(x)
Seq(x), i.e. x is a finite sequence S(x) = y
x is an injective function f(x) = g(y)
x is a reflexive relation g = f ↾ x
x is a symmetric relation f(x) = y
x is a transitive relation f“x = y
x ⊆ y z = x× y
z = x ∪ y z = x \ y
z = x ∩ y
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Definition 19.18

A L∈-formula is Σ1 if it is of the form ∃xφ with φ a ∆0-formula; it is Π1

if it is of the form ∀xφ with φ a ∆0-formula.

Definition 19.19

Let M be a non-empty set. We say that φ(x1, . . . , xn) is:

upward absolute between M and V if
∀a1, . . . , an ∈ M

(
(⟨M,∈⟩ ⊨ φ[a1, . . . , an]) ⇒ φ(a1, . . . , an)

)
;

downward absolute between M and V if
∀a1, . . . , an ∈ M

(
φ(a1, . . . , an) ⇒ (⟨M,∈⟩ ⊨ φ[a1, . . . , an])

)
;

absolute between M and V if it is both upward and downward
absolute, that is
∀a1, . . . , an ∈ M

(
(⟨M,∈⟩ ⊨ φ[a1, . . . , an]) ⇔ φ(a1, . . . , an)

)
,

where φ(a1, . . . , an) stands for φLa1/x1, . . . , an/xnM.
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From the definition it follows that φ is upward absolute between M and V
if and only if ¬φ is downward absolute between M and V, and that if φ
and ψ are upward/downward absolute, then so are φ ∧ψ and φ ∨ψ.
Therefore the collection of formulæ that are absolute between M and V is
closed under all connectives.
An easy induction on the complexity of formulæ yields

Lemma 19.20

A quantifier-free formula is absolute between transitive M ̸= ∅ and V.

Lemma 19.21

Suppose M is a non-empty transitive set.

1 Every ∆0 formula is absolute between M and V.

2 Every Σ1 formula is upward absolute between M and V, and every
Π1 formula is downward absolute between M and V.
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Every ∆0 formula is absolute between M and V.

By Lemma 19.20 it is enough to consider formulæ of the form
∀y ∈ xiφ(y, x1, . . . , xn). Fix a1, . . . , an ∈ M . By the inductive
hypothesis, and since M is transitive,

⟨M,∈⟩ ⊨ ∀y ∈ xiφ[⃗a] ⇔ ∀b ∈ M (b ∈ ai ⇒ ⟨M,∈⟩ ⊨ φ[b, a⃗])
⇔ ∀b ∈ ai ⟨M,∈⟩ ⊨ φ[b, a⃗]
⇔ ∀y ∈ aiφ(⃗a).

Every Σ1 formula is upward absolute between M and V, and every Π1

formula is downward absolute between M and V.

It is enough to prove that Σ1 formulæ are upward absolute. Suppose that
φ(y1, . . . , yk, x1, . . . , xn) is ∆0, that a1, . . . , an ∈ M , and that
⟨M,∈⟩ ⊨ ∃y1, . . . , yk φ[a1, . . . , an]. Fix b1, . . . , bk ∈ M such that
⟨M,∈⟩ ⊨ φ[b1, . . . , bk, a1, . . . , an]. By the preceding point
φ(b1, . . . , bk, a1, . . . , an) holds, and hence ∃y1, . . . , yk φ(a1, . . . , an).
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Theorem 19.22

Suppose M ̸= ∅ is a transitive set. Then

1 ⟨M,∈⟩ satisfies the axioms of extensionality and foundation.

2 If {a, b} ∈ M for all a, b ∈ M , then ⟨M,∈⟩ satisfies the axiom of
pairing.

3 If
⋃

a ∈ M for all a ∈ M , then ⟨M,∈⟩ satisfies the axiom of union.

4 If ∀a ∈ M (P(a) ∩M ∈ M), then ⟨M,∈⟩ satisfies the power-set
axiom.

5 If ω ∈ M then ⟨M,∈⟩ satisfies the axiom of infinity.

6 If ∀a ∈ M ∀b ⊆ a (b ∈ M), then ⟨M,∈⟩ satisfies the axiom schema of
separation.

7 If for all a ∈ M and all f : a → M there is b ∈ M such that
ran f ⊆ b, then ⟨M,∈⟩ satisfies the axiom schema of replacement.

8 ⟨M,∈⟩ ⊨ AC if and only if ∀A ∈ M (∀A ∈ A (A ̸= ∅) ⇒ ∃f ∈ M (f
is a choice function for A)).
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⟨M,∈⟩ satisfies the axioms of extensionality and foundation.

The axioms of extensionality and foundations are the universal closure of
the ∆0-formulæ

∀z ∈ x (z ∈ y) ∧ ∀z ∈ y (z ∈ x) ⇒ x = y

∃y ∈ x (y = y) ⇒ ∃y ∈ x ∀z ∈ y (z /∈ x)

so they are downward absolute. Both axioms hold in V and therefore hold
in ⟨M,∈⟩.

If {a, b} ∈ M for all a, b ∈ M , then ⟨M,∈⟩ satisfies the axiom of pairing.

z = {x, y} is ∆0.

If
⋃

a ∈ M for all a ∈ M , then ⟨M,∈⟩ satisfies the axiom of union.

v =
⋃

u is ∆0.
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If ∀a ∈ M (P(a) ∩M ∈ M), then ⟨M,∈⟩ satisfies the power-set axiom.

Fix a ∈ M and let b
def
= P(a) ∩M . As z ⊆ x is ∆0, then ⟨M,∈⟩ satifies

∀z(z ⊆ x ⇔ z ∈ y), where x and y are given the values a and b

If ω ∈ M then ⟨M,∈⟩ satisfies the axiom of infinity.

The axiom of infinity is ∃xφ(x) where φ(x) is the ∆0-formula
∅ ∈ x ∧ ∀y ∈ x (S(y) ∈ x), so by absoluteness ⟨M,∈⟩ satisfies the axiom
of infinity if and only if ∃x ∈ M φ(x). As ω satisfies φ, if ω ∈ M then
⟨M,∈⟩ satisfies the axiom of infinity.

If ∀a ∈ M ∀b ⊆ a (b ∈ M), then ⟨M,∈⟩ satisfies the axiom schema of
separation.

We must show that given φ(x, y, w⃗), and given a, c⃗ ∈ M to be assigned to
the variables y, w⃗, the set b = {d ∈ a | ⟨M,∈⟩ ⊨ φ[d, a, c⃗]} belongs to M .
But this follows at once by the assumption and by b ⊆ a.
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If for all a ∈ M and all f : a → M there is b ∈ M such that ran f ⊆ b,
then ⟨M,∈⟩ satisfies the axiom schema of replacement.

We must show that given φ(x, y, z, w⃗) and given a, c⃗ ∈ M to be assigned
to the variables z, w⃗, if ⟨M,∈⟩ ⊨ ∀x ∈ z ∃!yφ[a, c⃗] then there is b ∈ M
such that ⟨M,∈⟩ ⊨ ∀x ∈ z ∃y ∈ vφ[a, c⃗, b], with b assigned to the variable
v. Then φ, a, c⃗ yield a function f : a → M , and by case assumption there
is b ∈ M such that ran f ⊆ b. This is the b we were looking for.

⟨M,∈⟩ ⊨ AC if and only if ∀A ∈ M (∀A ∈ A (A ̸= ∅) ⇒ ∃f ∈ M (f is a
choice function for A)).

The result follows from the straightforward verification that φ(f, x) saying
“x ̸= ∅, every element of x is non-empty, and f : x →

⋃
x is a choice

function” is ∆0.
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Proof of Theorem 19.15

All axioms of ZFC except the axiom of infinity hold in Vω.

It is enough to check that replacement and choice hold in Vω. As we shall
see (Exercise 21.52), every Vn is finite, hence every element of Vω is
finite. It follows that every x ∈ Vω is well-orderable, hence AC holds by
Theorem 18.3. Moreover, if A ∈ Vω and F : A → Vω, then F“A is finite,
F“A = {a0, . . . , an−1}. For every i < n, let mi < ω be such that
ai ∈ Vmi . Then F“A ⊆ Vm, where m = max {m0, . . . ,mn−1}, hence
F“A ∈ Vm+1.

All axioms of ZF except possibly for replacement hold in Vλ, if λ > ω is
limit.

Since ω ∈ Vλ we apply Theorem 19.22.
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Assuming choice, then AC holds in Vλ, if λ is limit.

If A ∈ Vλ is a non-empty family of non-empty sets, by AC there is a
choice function f : A →

⋃
A. If α < λ is such that A ∈ Vα∔1 then

f ∈ Vα∔3 so we are done by Theorem 19.22.
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