Elements of Mathematical Logic Section 19 of Chapter V

Lucidi preparati da Alessandro Andretta Lezioni di Raphaël Carroy

> Dipartimento di Matematica Università di Torino

Theorem 19.1

Let A be a *class*, let $\bar{a} \in A$ and let $F \colon \omega \times A \to A$ be a functional relation. There is a unique $G \colon \omega \to A$ such that

$$\begin{cases} G(0) = \bar{a} \\ G(\mathbf{S}(n)) = F(n, G(n)). \end{cases}$$

Proof

Let $\mathcal{G} = \{ p \mid \exists m \in \omega [p \colon m \to A \land (0 < m \Rightarrow p(0) = \bar{a}) \land \forall n (\mathbf{S}(n) < m \Rightarrow p(\mathbf{S}(n)) = F(n, p(n)))] \}.$

Claim

If $p, q \in \mathcal{G}$ then $p \cup q$ is a function.

Proof.

Suppose that $p, q \in \mathcal{G}$ but $p \cup q$ is not a function. Then there is a least $n \in \operatorname{dom}(p) \cap \operatorname{dom}(q)$ witnessing that $p(n) \neq q(n)$. Clearly $n \neq 0$, since $p(0) = \bar{a} = q(0)$, so $n = \mathbf{S}(k)$. Then

$$\begin{split} p(n) &= F(k, p(k)) \\ &= F(k, q(k)) \\ &= q(n). \end{split} \qquad \qquad \text{by minimality of } n, \end{split}$$

Proof

Thus $G = \bigcup \mathcal{G} \subseteq \omega \times A$ is a functional relation, and therefore a function by replacement.

As $\{(0,\bar{a})\} \in \mathcal{G}$, it follows that $G \neq \emptyset$ and $G(0) = \bar{a}$. Moreover if $\mathbf{S}(n) \in \operatorname{dom}(G)$ then $G(\mathbf{S}(n)) = p(\mathbf{S}(n))$ for some $p \in \mathcal{G}$, so $G(\mathbf{S}(n)) = F(n, p(n)) = F(n, G(n))$.

$\operatorname{dom}(G) = \omega$

Towards a contradiction, suppose \bar{n} is least such that $\bar{n} \notin \operatorname{dom}(G)$, then $\bar{n} = \mathbf{S}(\bar{m})$ for some \bar{m} . As $\bar{n} \notin \operatorname{dom}(p)$ for any $p \in \mathcal{G}$, it follows that $k \notin \operatorname{dom}(G)$ for all $k > \bar{n}$. It is easy to check that $p \stackrel{\text{def}}{=} G \cup \{(\bar{n}, F(\bar{m}, G(\bar{m})))\} \in \mathcal{G}$, thus $p \subseteq G$, so that $\bar{n} \in \operatorname{dom}(G)$: a contradiction.

G is unique

If G' were another function satisfying the statement of theorem, then let \bar{n} be least such that $G(\bar{n}) \neq G'(\bar{n})$. Clearly $\bar{n} \neq 0$ so $\bar{n} = \mathbf{S}(\bar{m})$ for some \bar{m} , and hence

$$\begin{split} G(\bar{n}) &= F(\bar{m}, G(\bar{m})) \\ &= F(\bar{m}, G'(\bar{m})) & \text{by minimality of } \bar{n}, \\ &= G'(\bar{n}), \end{split}$$

a contradiction!

The transitive closure of $R \subseteq X \times X$ with X a class, is the relation

$$\begin{split} \tilde{R} &= \Big\{ (x,y) \in X \times X \mid \exists n > 0 \, \exists f \in {}^{\mathbf{S}(n)} X \big[x = f(0) \land \\ y &= f(n) \land \forall i < n \, (f(i), f(\mathbf{S}(i))) \in R \big] \Big\} \end{split}$$

In other words $x \ \tilde{R} \ y$ if and only there are x_0, \ldots, x_n such that

$$x = x_0 R x_1 \cdots x_{n-1} R x_n = y.$$

Proposition 19.2

R is regular on X if and only if \tilde{R} is regular on X.

Proof.

Since $R \subseteq \tilde{R}$ it is enough to check that if R is regular, then \tilde{R} is regular. Given a $\bar{x} \in X$, by induction define the sets Z_n

$$Z_0 = \{ y \in X \mid y \ R \ \bar{x} \}$$
$$Z_{n+1} = \{ y \in X \mid \exists z \in Z_n \ (y \ R \ z) \} = \bigcup_{z \in Z_n} \{ y \in X \mid y \ R \ z \}.$$

The sequence $\langle Z_n \mid n \in \omega \rangle$ is given by Theorem 19.1 when A = V, $\bar{a} = Z_0$ and $F(n, a) = F(a) = \{x \in X \mid \exists y \in a (x R y)\}$. Thus $G(n) = Z_n$. By replacement $\bigcup_{n \in \omega} Z_n$ is a set, and it is the same as $\{y \in X \mid y \ \tilde{R} \ \bar{x}\}$. \Box

Proposition 19.3

R is well-founded on X if and only if \tilde{R} is well-founded on X.

Proof.

Since $R \subseteq \tilde{R}$ the \Leftarrow direction is clear.

Suppose R is well-founded towards proving that so is R. Fix $\emptyset \neq Y \subseteq X$ and let us show that there is an R-minimal element in Y. A path from Yinto itself is a sequence $\langle z_0, \ldots, z_n, z_{n+1} \rangle$ in X of length ≥ 1 such that $z_0, z_{n+1} \in Y$ and $z_i R z_{i+1}$ with $i = 0, \ldots, n$. (Paths of length 1 can be identified with the elements of Y.) Let $\overline{Y} = \{x \in X \mid \exists s \ (s \text{ is a path from } Y \text{ into itself and } x \in \operatorname{ran} s)\}.$ By construction $Y \subseteq \overline{Y}$ and let \overline{y} be an *R*-minimal of \overline{Y} . By construction no element of $Y \setminus Y$ is R-minimal, so $\bar{y} \in Y$. Let us check that \bar{y} is *R*-minimal in *Y*. Towards contradiction, if $\bar{x} R \bar{y}$ for some $\bar{x} \in Y$ different from \bar{y} , then there would be a path $\langle z_0, \ldots, z_{n+1} \rangle$ from Y into itself with $z_0 = \bar{x}$ and $z_{n+1} = \bar{y}$, and hence $z_n R \bar{y}$, against *R*-minimality of \bar{y} .

Theorem 19.4

Let X and Z be classes, let $R \subseteq X \times X$ be irreflexive, regular, and well-founded, and let $F: Z \times X \times V \to V$. Then there is a unique $G: Z \times X \to V$ such that for every $(z, x) \in Z \times X$

$$G(z, x) = F(z, x, G \upharpoonright \{(z, y) \mid y \mathrel{R} x\}). \tag{*}$$

Proof of uniqueness

Suppose that $G, G' : Z \times X \to V$ satisfy (*) and that $G \neq G'$. Fix $\overline{z} \in Z$ such that $Y = \{x \in X \mid G(\overline{z}, x) \neq G'(\overline{z}, x)\} \neq \emptyset$ and let $\overline{x} \in Y$ be an R-minimal element of Y. Then

$$G \upharpoonright \{(\bar{z}, y) \mid y \ R \ \bar{x}\} = G' \upharpoonright \{(\bar{z}, y) \mid y \ R \ \bar{x}\}$$

and let \bar{p} be this functional relation. Regularity of R together with the axiom of replacement, imply that \bar{p} is a set, and therefore $G(\bar{z}, \bar{x}) = F(\bar{z}, \bar{x}, \bar{p}) = G'(\bar{z}, \bar{x})$: a contradiction.

Let ${\mathcal G}$ be the class of all functions p such that

- $dom(p) \subseteq Z \times X,$
- $\label{eq:states} \ensuremath{\mathfrak{O}} \ensuremath{\mathfrak{O}}(z,x) \in \operatorname{dom}(p) \, (p(z,x) = F(z,x,p \upharpoonright \{(z,y) \mid y \mathrel{R} x\})).$

Let ${\mathcal G}$ be the class of all functions p such that

$$dom(p) \subseteq Z \times X,$$

$$(z,x) \in \operatorname{dom}(p) \left(p(z,x) = F(z,x,p \upharpoonright \{(z,y) \mid y \mathrel{R} x\}) \right).$$

is equivalent to the seemingly stronger condition $\forall (z, x) \in \operatorname{dom}(p) (\{z\} \times \{y \in X \mid y \ \tilde{R} \ x\} \subseteq \operatorname{dom}(p)),$ where \tilde{R} is the transitive closure of R.

Let ${\mathcal G}$ be the class of all functions p such that

$$dom(p) \subseteq Z \times X,$$

 ${\it @ } \forall (z,x) \in \operatorname{dom}(p) \, \forall y \in X \, (y \mathrel{R} x \Rightarrow (z,y) \in \operatorname{dom}(p)),$

2 is equivalent to the seemingly stronger condition $\forall (z, x) \in \operatorname{dom}(p) (\{z\} \times \{y \in X \mid y \ \tilde{R} \ x\} \subseteq \operatorname{dom}(p)),$ where \tilde{R} is the transitive closure of R.

If
$$p$$
 satisfies \bigcirc , $(z, x) \in \text{dom}(p)$ and
 $y \tilde{R} xy = w_0 R w_1 R \dots R w_n R w_{n+1} = x$, then by induction
 $(z, w_i) \in \text{dom}(p)$ for all $i \le n$.

Let ${\mathcal G}$ be the class of all functions p such that

$$dom(p) \subseteq Z \times X,$$

 $\ \ \, { \Im } \ \, \forall (z,x) \in \operatorname{dom}(p) \, \forall y \in X \, (y \; R \; x \Rightarrow (z,y) \in \operatorname{dom}(p)),$

$$(\mathbf{z}, x) \in \operatorname{dom}(p) \left(p(z, x) = F(z, x, p \upharpoonright \{(z, y) \mid y \mathrel{R} x\}) \right).$$

2 is equivalent to the seemingly stronger condition $\forall (z, x) \in \operatorname{dom}(p) (\{z\} \times \{y \in X \mid y \ \tilde{R} \ x\} \subseteq \operatorname{dom}(p)),$ where \tilde{R} is the transitive closure of R.

If $p,q\in \mathcal{G}$ then $p\cup q$ is a function

If $\{x \in X \mid \exists z \in Z \ ((z, x) \in \operatorname{dom}(p) \cap \operatorname{dom}(q) \land p(z, x) \neq q(z, x))\} \neq \emptyset$ by well-foundedness let \bar{x} be an R-minimal element of this class. Let $\bar{z} \in Z$ be such that $(\bar{z}, \bar{x}) \in \operatorname{dom}(p) \cap \operatorname{dom}(q)$ and $p(\bar{z}, \bar{x}) \neq q(\bar{z}, \bar{x})$. By $\{(\bar{z}, y) \mid y \ R \ \bar{x}\} \subseteq \operatorname{dom}(p) \cap \operatorname{dom}(q)$ and by R-minimality of \bar{x} $p \upharpoonright \{(\bar{z}, y) \mid y \ R \ \bar{x}\} = q \upharpoonright \{(\bar{z}, y) \mid y \ R \ \bar{x}\} \stackrel{\text{def}}{=} \bar{r}$ so that, by $p(\bar{z}, \bar{x}) = F(\bar{z}, \bar{x}, \bar{r}) = q(\bar{z}, \bar{x})$: a contradiction. If $p,q \in \mathcal{G}$ then $p \cup q \in \mathcal{G}$, and hence $G = \bigcup \mathcal{G}$ is a functional relation with domain $\subseteq Z \times X$. If $Z \times X \setminus \text{dom}(G) \neq \emptyset$, let \bar{x} be an R-minimal element of $\{x \in X \mid \exists z \in Z \ (z,x) \notin \text{dom}(G)\}$ and let $\bar{z} \in Z$ be such that $(\bar{z}, \bar{x}) \notin \text{dom}(G)$. The transitive closure \tilde{R} of R on X, is regular, so

$$\bar{p} \stackrel{\text{\tiny def}}{=} G \upharpoonright \{ (\bar{z}, y) \mid y \; \tilde{R} \; \bar{x} \}$$

is a set by the axiom of replacement. Then $\bar{p} \in \mathcal{G}$ and hence $\bar{p} \cup \{((\bar{z}, \bar{x}), F(\bar{z}, \bar{x}, \bar{p}))\} \in \mathcal{G}$. Thus $(\bar{z}, \bar{x}) \in \text{dom}(G)$, against our assumption. It follows that G is the functional relation we are looking for.

Rank of a well-founded relation

If R is irreflexive, regular, and well-founded on X, then $\rho_{R,X} \colon X \to \text{Ord}$ defined by $\rho_{R,X}(x) = \bigcup \{ \mathbf{S}(\rho_{R,X}(y)) \mid y \mid R \mid x \}$ is the rank of R on X.

Proposition 19.6

 $\operatorname{ran}(\boldsymbol{\varrho}_{R,X})$ is an initial segment of Ord and

$$\ \, {\bf 0} \ \, x \; R \; y \Rightarrow {\boldsymbol \varrho}_{R,X}(x) < {\boldsymbol \varrho}_{R,X}(y) ,$$

Proof.

If $\boldsymbol{\varrho}_{R,X}(y) \in \text{Ord}$ for any y such that $y \ R \ x$, then $\boldsymbol{\varrho}_{R,X}(x) \in \text{Ord}$ by Proposition 18.6, so $\operatorname{ran}(\boldsymbol{\varrho}_{R,X}) \subseteq \text{Ord}$. Towards a contradiction, suppose there is $\bar{x} \in X$ and α such that $\alpha \in \boldsymbol{\varrho}_{R,X}(x) \setminus \operatorname{ran}(\boldsymbol{\varrho}_{R,X})$, and let \bar{x} be R-minimal such. Then there is $y \ R \ \bar{x}$ such that $\alpha < \mathbf{S}(\boldsymbol{\varrho}_{R,X}(y))$. Since $\alpha \notin \operatorname{ran} \boldsymbol{\varrho}_{R,X}$ then $\alpha < \boldsymbol{\varrho}_{R,X}(y)$, against R-minimality of \bar{x} . The rest of the proof is easy.

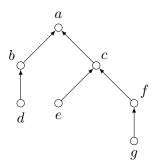
A. Andretta & R. Carroy (Torino)

If R is an irreflexive, regular, well-founded relation on X, the function $\pi_{R,X} \colon X \to V$ given by

$$\boldsymbol{\pi}_{R,X}(x) = \{ \boldsymbol{\pi}_{R,X}(y) \mid y \mathrel{R} x \}$$

is the Mostowski collapsing function. The class $\overline{X} = ran(\pi_{R,X})$ is the Mostowski collapse of R and X. \overline{X} is transitive and

If R is the relation on $\{a,b,c,d,e,f,g\}$ given by the directed graph



then
$$\boldsymbol{\varrho}_{R,X}(d) = \boldsymbol{\varrho}_{R,X}(e) = \boldsymbol{\varrho}_{R,X}(g) = 0$$
, $\boldsymbol{\varrho}_{R,X}(b) = \boldsymbol{\varrho}_{R,X}(f) = 1$,
 $\boldsymbol{\varrho}_{R,X}(c) = 2$ and $\boldsymbol{\varrho}_{R,X}(a) = 3$;
 $\boldsymbol{\pi}_{R,X}(d) = \boldsymbol{\pi}_{R,X}(e) = \boldsymbol{\pi}_{R,X}(g) = \emptyset$, $\boldsymbol{\pi}_{R,X}(b) = \boldsymbol{\pi}_{R,X}(f) = \{\emptyset\} = 1$,
 $\boldsymbol{\pi}_{R,X}(c) = \{0,1\} = 2$ and $\boldsymbol{\pi}_{R,X}(a) = \{1,2\}$.

Definition 19.7

$R \subseteq X \times X$ is extensional on X if

$$\forall x, y \in X \left(\forall z \in X \left(z \ R \ x \Leftrightarrow z \ R \ y \right) \Rightarrow x = y \right).$$

Example

- If X is a transitive class, then $\in \upharpoonright X = \{(y, x) \in X \times X \mid y \in x\}$ is extensional on X;
- **2** if R is a (strict) linear order on X, then R is extensional on X.

Proposition 19.8

Let R be an irreflexive, regular, well-founded relation on the class X.

• If R is extensional on X, then $\pi_{R,X}$ is injective and $\pi_{R,X}: X \to \overline{X}$ is an isomorphism between R on X and \in on \overline{X} , that is $\pi_{R,X}$ is bijective and $\forall x, y \in X (x R y \Leftrightarrow \pi_{R,X}(x) \in \pi_{R,X}(y))$.

3 If R is a strict well-order on X the functions $\pi_{R,X}$ and $\rho_{R,X}$ agree.

Proposition 19.8 **1**

Let R be extensional, irreflexive, regular, and well-founded on the class X. Then $\pi_{R,X} \colon X \to \overline{X}$ is bijective and $\forall x, y \in X(x \ R \ y \Leftrightarrow \pi_{R,X}(x) \in \pi_{R,X}(y)).$

Proof.

Towards a contradiction, let \bar{x} be R-minimal such that $\pi_{R,X}(\bar{x}) = \pi_{R,X}(\bar{y})$, for some $\bar{y} \neq \bar{x}$. Let $z R \bar{x}$: as $\pi_{R,X}(z) \in \pi_{R,X}(\bar{x}) = \pi_{R,X}(\bar{y})$, there is $w R \bar{y}$ such that $\pi_{R,X}(z) = \pi_{R,X}(w)$. By minimality of \bar{x} , z = w. Thus $z R \bar{x} \Rightarrow z R \bar{y}$. Similarly, if $z R \bar{y}$ then there is $w R \bar{x}$ such that $\pi_{R,X}(z) = \pi_{R,X}(w)$ and hence z = w, that is $z R \bar{y} \Rightarrow z R \bar{x}$. Thus, by extensionality, $\bar{y} = \bar{x}$, against our assumption. It follows that $\pi_{R,X}$ is a bijection between X and \overline{X} .

If
$$\pi_{R,X}(x) \in \pi_{R,X}(y) = \{\pi_{R,X}(z) \mid z \mathrel{R} y\}$$
, then $x \mathrel{R} y$.

Proposition 19.8 2

Let R be irreflexive, regular and well-founded on X. If R is a strict well-order on X, then the functional relations $\pi_{R,X}$ and $\varrho_{R,X}$ coincide.

Proof.

Assume $\boldsymbol{\varrho}_{R,X}(y) = \pi_{R,X}(y)$, for all $y \ R x$. Then $\pi_{R,X}(x) = \{\pi_{R,X}(y) \mid y \ R x\} = \{\boldsymbol{\varrho}_{R,X}(y) \mid y \ R x\}$ is a set of ordinals. If $\pi_{R,X}(z) \in \pi_{R,X}(y) \in \pi_{R,X}(x)$, then $z \ R y \ R x$, so $z \ R x$, that is $\pi_{R,X}(x)$ is transitive, and therefore it is an ordinal. By construction $\pi_{R,X}(x)$ is the least upper bound of the ordinals $\mathbf{S}(\pi_{R,X}(y)) = \mathbf{S}(\boldsymbol{\varrho}_{R,X}(y))$ with $y \ R x$, that is $\pi_{R,X}(x) = \boldsymbol{\varrho}_{R,X}(x)$.

Lemma 19.9

If $f: \operatorname{Ord} \to \operatorname{Ord}$ is increasing and continuous, then

$$\forall \alpha \exists \bar{\alpha} > \alpha \left(f(\bar{\alpha}) = \bar{\alpha} \right).$$

Proof.

By recursion define $\langle \alpha_n \mid n \in \omega \rangle$ by $\alpha_0 = \mathbf{S}(\alpha)$ and $\alpha_{\mathbf{S}(n)} = f(\alpha_n)$, and let $\bar{\alpha} = \sup_n \alpha_n$. If $f(\alpha_0) = \alpha_0$, then $\forall n (\alpha_0 = \alpha_n)$ and therefore $\bar{\alpha} = \alpha_0$. If instead $\alpha_0 < f(\alpha_0) = \alpha_1$, then $\alpha_n < \alpha_{\mathbf{S}(n)}$, and hence $\bar{\alpha}$ is limit. Then

$$f(\bar{\alpha}) = \sup_{\nu < \bar{\alpha}} f(\nu) = \sup_{n} f(\alpha_n) = \sup_{n} \alpha_{\mathbf{S}(n)} = \bar{\alpha}.$$

In either case $\bar{\alpha}$ is the least fixed point greater that α for f.

Definition

 $\aleph\colon {\rm Ord}\to {\rm Card}\setminus\omega$ is the class-function enumerating the class of infinite cardinals, i.e.

$$\begin{split} \aleph_0 &= \omega \\ \aleph_{\mathbf{S}(\alpha)} &= (\aleph_\alpha)^+ \\ \aleph_\lambda &= \sup_{\alpha < \lambda} \aleph_\alpha. \end{split}$$

Since \aleph : Ord \rightarrow Ord is increasing and continuous, there are cardinals κ such that $\kappa = \aleph_{\kappa}$, and the least such is the least upper bound of

$$\aleph_0, \ \aleph_{\aleph_0}, \ \aleph_{\aleph_{\aleph_0}}, \ \aleph_{\aleph_{\aleph_0}}, \ \aleph_{\aleph_{\aleph_0}}, \ \ldots$$

Ordinal arithmetic

$$\begin{split} \alpha \dot{+} \beta &= \begin{cases} \alpha & \text{if } \beta = 0, \\ \mathbf{S}(\alpha \dot{+} \gamma) & \text{if } \beta = \mathbf{S}(\gamma), \\ \sup_{\gamma < \beta} (\alpha \dot{+} \gamma) & \text{if } \beta \text{ is limit,} \end{cases} \\ \alpha \cdot \beta &= \begin{cases} 0 & \text{if } \beta = 0, \\ (\alpha \cdot \gamma) \dot{+} \alpha & \text{if } \beta = \mathbf{S}(\gamma), \\ \sup_{\gamma < \beta} \alpha \cdot \gamma & \text{if } \beta \text{ is limit,} \end{cases} \\ \alpha^{\cdot \beta} &= \begin{cases} 1 & \text{if } \beta = 0, \\ \alpha^{\cdot \gamma} \cdot \alpha & \text{if } \beta = \mathbf{S}(\gamma), \\ \sup_{\gamma < \beta} \alpha^{\cdot \gamma} & \text{if } \beta \text{ is limit.} \end{cases} \end{split}$$

The ordinal $\rho_{R,X}(x)$, when X = V and R is the membership relation, is called the **rank of** x, denoted by $\operatorname{rank}(x)$. By Proposition 19.6

 $x \in y \Rightarrow \operatorname{rank}(x) < \operatorname{rank}(y) \qquad x \subseteq y \Rightarrow \operatorname{rank}(x) \leq \operatorname{rank}(y)$

and by induction one checks that $rank(\alpha) = \alpha$.

Proposition 19.10

$$1 \operatorname{rank}(\mathscr{P}(x)) = \mathbf{S}(\operatorname{rank}(x)).$$

2 rank
$$(\bigcup x) = \sup\{\operatorname{rank}(y) \mid y \in x\}.$$

Proof.

• Since $x \in \mathscr{P}(x)$ one has that $\mathbf{S}(\operatorname{rank}(x)) \leq \operatorname{rank}(\mathscr{P}(x))$. Conversely, if $y \subseteq x$, then $\mathbf{S}(\operatorname{rank}(y)) \leq \mathbf{S}(\operatorname{rank}(x))$ and hence $\operatorname{rank}(\mathscr{P}(x)) = \sup{\mathbf{S}(\operatorname{rank}(y)) \mid y \subseteq x} \leq \mathbf{S}(\operatorname{rank}(x))$.

21/36

Proposition 19.10

2
$$\operatorname{rank}(\bigcup x) = \sup\{\operatorname{rank}(y) \mid y \in x\}.$$

Proof.

② If
$$y \in x$$
 then $y \subseteq \bigcup x$ so $\sup\{\operatorname{rank}(y) \mid y \in x\} \le \operatorname{rank}(\bigcup x)$.
Conversely, if $z \in y \in x$ then $\mathbf{S}(\operatorname{rank}(z)) \le \operatorname{rank}(y)$ so
 $\mathbf{S}(\operatorname{rank}(z)) \le \sup\{\operatorname{rank}(y) \mid y \in x\}$. Being z arbitrary,
 $\operatorname{rank}(\bigcup x) \le \sup\{\operatorname{rank}(y) \mid y \in x\}$.

Definition 19.11

$$V_{\alpha} = \{ x \mid \operatorname{rank}(x) < \alpha \}.$$

22 / 36

Theorem 19.12

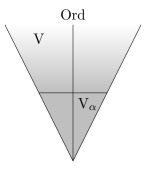
 V_{α} is a transitive set and

$$\mathbf{V}_{\alpha} = \bigcup_{\beta < \alpha} \mathscr{P}(\mathbf{V}_{\beta}). \tag{*}$$

Proof.

If $y \in x \in V_{\alpha}$ then $\operatorname{rank}(y) < \operatorname{rank}(x) < \alpha$ so $y \in V_{\alpha}$. Thus V_{α} is a transitive class. By induction on α we show that V_{α} is a set and that (*) holds. Suppose the results holds true for $\beta < \alpha$: then $\{\mathscr{P}(V_{\beta}) \mid \beta < \alpha\}$ is a set, so it is enough to show (*). $x \subseteq V_{\operatorname{rank}(x)}$ and therefore $\operatorname{rank}(x) < \alpha \Rightarrow x \in \bigcup_{\beta < \alpha} \mathscr{P}(V_{\beta})$. Conversely, if $x \in \bigcup_{\beta < \alpha} \mathscr{P}(V_{\beta})$, then $x \subseteq V_{\beta}$, for some $\beta < \alpha$ and hence $\operatorname{rank}(y) < \beta$ for any $y \in x$, whence $\operatorname{rank}(x) \leq \beta < \alpha$.

Corollary 19.13



A structure for \mathcal{L}_{\in} is a pair $\langle M, E \rangle$ where M is a nonempty set and $E \subseteq M \times M$. In particular, consider the structure V_{α} , i.e. $\langle V_{\alpha}, \in \rangle$, with $\alpha > 0$.

Question

Which axioms of ZF are true in V_{α} ?

Theorem 19.15

- $\label{eq:linearized_linearize$
- All axioms of ZF except possibly for replacement hold in $V_{\lambda},$ if $\lambda>\omega$ is limit.
- **③** Assuming choice, then AC holds in V_{λ} , if λ is limit.

In order to prove this result a stratification of formulæ is introduced.

Definition 19.17

An \mathcal{L}_{\in} -formula is Δ_0 if it belongs to the smallest class containing all atomic formulæ and closed under connectives and **bounded quantifications**, that is

- atomic formulæ are Δ_0 ,
- if ϕ, ψ are Δ_0 then so are $\neg \phi$ and $\phi \odot \psi$, where \odot is any binary connective,
- if ϕ is Δ_0 then so is $\forall y(y \in x \Rightarrow \phi)$ and $\exists y(y \in x \land \phi)$,

and nothing else is a Δ_0 -formula.

The axiom of extensionality is true in every transitive set $M \neq \emptyset$.

We write $\forall y \in x \ \varphi$ and $\exists y \in x \ \varphi$ instead of $\forall y(y \in x \Rightarrow \varphi)$ and $\exists y(y \in x \land \varphi)$.

Examples of Δ_0 formulæ

Trans(x), i.e. x is transitive Ord(x), i.e. x is an ordinal Op(x), i.e x is an ordered pair $\operatorname{Rel}(x)$, i.e. x is a relation Fn(x), i.e. x is a function Seq(x), i.e. x is a finite sequence x is an injective function x is a reflexive relation x is a symmetric relation x is a transitive relation $x \subseteq y$ $z = x \cup y$ $z = x \cap y$

$$x = \{y, z\}$$

$$x = (y, z)$$

$$f: x \to y$$

$$y = \operatorname{dom}(x)$$

$$\mathbf{S}(x) = y$$

$$f(x) = g(y)$$

$$g = f \upharpoonright x$$

$$f(x) = y$$

$$f''x = y$$

$$z = x \times y$$

$$z = x \setminus y$$

Definition 19.18

A \mathcal{L}_{\in} -formula is Σ_1 if it is of the form $\exists x \, \varphi$ with φ a Δ_0 -formula; it is Π_1 if it is of the form $\forall x \, \varphi$ with φ a Δ_0 -formula.

Definition 19.19

- Let M be a non-empty set. We say that $\varphi(x_1, \ldots, x_n)$ is:
 - upward absolute between M and V if $\forall a_1, \ldots, a_n \in M ((\langle M, \in \rangle \vDash \varphi[a_1, \ldots, a_n]) \Rightarrow \varphi(a_1, \ldots, a_n));$
 - downward absolute between M and V if $\forall a_1, \ldots, a_n \in M (\varphi(a_1, \ldots, a_n) \Rightarrow (\langle M, \in \rangle \vDash \varphi[a_1, \ldots, a_n]));$
 - absolute between M and ${\rm V}$ if it is both upward and downward absolute, that is

 $\forall a_1, \ldots, a_n \in M \left((\langle M, \in \rangle \vDash \varphi[a_1, \ldots, a_n]) \Leftrightarrow \varphi(a_1, \ldots, a_n) \right),$

where $\varphi(a_1, \ldots, a_n)$ stands for $\varphi(a_1/x_1, \ldots, a_n/x_n)$.

From the definition it follows that φ is upward absolute between M and V if and only if $\neg \varphi$ is downward absolute between M and V, and that if φ and ψ are upward/downward absolute, then so are $\varphi \land \psi$ and $\varphi \lor \psi$. Therefore the collection of formulæ that are absolute between M and V is closed under all connectives.

An easy induction on the complexity of formulæ yields

Lemma 19.20

A quantifier-free formula is absolute between transitive $M \neq \emptyset$ and V.

Lemma 19.21

Suppose M is a non-empty transitive set.

- Every Δ_0 formula is absolute between M and V.
- **2** Every Σ_1 formula is upward absolute between M and V, and every Π_1 formula is downward absolute between M and V.

Every Δ_0 formula is absolute between M and V.

By Lemma 19.20 it is enough to consider formulæ of the form $\forall y \in x_i \ \varphi(y, x_1, \dots, x_n)$. Fix $a_1, \dots, a_n \in M$. By the inductive hypothesis, and since M is transitive,

$$\begin{split} \langle M, \in \rangle \vDash \forall y \in x_i \, \varphi[\vec{a}] \Leftrightarrow \forall b \in M \, (b \in a_i \Rightarrow \langle M, \in \rangle \vDash \varphi[b, \vec{a}]) \\ \Leftrightarrow \forall b \in a_i \, \langle M, \in \rangle \vDash \varphi[b, \vec{a}] \\ \Leftrightarrow \forall y \in a_i \, \varphi(\vec{a}). \end{split}$$

Every Σ_1 formula is upward absolute between M and V, and every Π_1 formula is downward absolute between M and V.

It is enough to prove that Σ_1 formulæ are upward absolute. Suppose that $\varphi(y_1, \ldots, y_k, x_1, \ldots, x_n)$ is Δ_0 , that $a_1, \ldots, a_n \in M$, and that $\langle M, \in \rangle \vDash \exists y_1, \ldots, y_k \varphi[a_1, \ldots, a_n]$. Fix $b_1, \ldots, b_k \in M$ such that $\langle M, \in \rangle \vDash \varphi[b_1, \ldots, b_k, a_1, \ldots, a_n]$. By the preceding point $\varphi(b_1, \ldots, b_k, a_1, \ldots, a_n)$ holds, and hence $\exists y_1, \ldots, y_k \varphi(a_1, \ldots, a_n)$.

Theorem 19.22

Suppose $M \neq \emptyset$ is a transitive set. Then

- $\label{eq:main_state} \mathbf{0} \ \langle M, \in \rangle \ \text{satisfies the axioms of extensionality and foundation}.$
- ② If $\{a, b\} \in M$ for all $a, b \in M$, then $\langle M, \in \rangle$ satisfies the axiom of pairing.
- **③** If $\bigcup a \in M$ for all $a \in M$, then $\langle M, \in \rangle$ satisfies the axiom of union.
- If $\forall a \in M$ ($\mathscr{P}(a) \cap M \in M$), then $\langle M, \in \rangle$ satisfies the power-set axiom.
- **9** If $\omega \in M$ then $\langle M, \in \rangle$ satisfies the axiom of infinity.
- If ∀a ∈ M ∀b ⊆ a (b ∈ M), then ⟨M, ∈⟩ satisfies the axiom schema of separation.
- If for all *a* ∈ *M* and all *f* : *a* → *M* there is *b* ∈ *M* such that ran *f* ⊆ *b*, then $\langle M, \in \rangle$ satisfies the axiom schema of replacement.
- ◎ $\langle M, \in \rangle \models \mathsf{AC}$ if and only if $\forall \mathcal{A} \in M \ (\forall A \in \mathcal{A} \ (A \neq \emptyset) \Rightarrow \exists f \in M \ (f \text{ is a choice function for } \mathcal{A})).$

 $\langle M, \in \rangle$ satisfies the axioms of extensionality and foundation.

The axioms of extensionality and foundations are the universal closure of the $\Delta_0\mbox{-}{\rm formul} a$

$$\forall z \in x \, (z \in y) \land \forall z \in y \, (z \in x) \Rightarrow x = y \\ \exists y \in x \, (y = y) \Rightarrow \exists y \in x \, \forall z \in y \, (z \notin x)$$

so they are downward absolute. Both axioms hold in V and therefore hold in $\langle M, \in \rangle.$

If $\{a,b\} \in M$ for all $a,b \in M$, then $\langle M, \in \rangle$ satisfies the axiom of pairing. $z = \{x,y\}$ is Δ_0 .

If $\bigcup a \in M$ for all $a \in M$, then $\langle M, \in \rangle$ satisfies the axiom of union. $v = \bigcup u$ is Δ_0 . If $\forall a \in M \ (\mathscr{P}(a) \cap M \in M)$, then $\langle M, \in \rangle$ satisfies the power-set axiom. Fix $a \in M$ and let $b \stackrel{\text{def}}{=} \mathscr{P}(a) \cap M$. As $z \subseteq x$ is Δ_0 , then $\langle M, \in \rangle$ satifies $\forall z (z \subseteq x \Leftrightarrow z \in y)$, where x and y are given the values a and b

If $\omega \in M$ then $\langle M, \in \rangle$ satisfies the axiom of infinity.

The axiom of infinity is $\exists x \ \varphi(x)$ where $\varphi(x)$ is the Δ_0 -formula $\emptyset \in x \land \forall y \in x \ (\mathbf{S}(y) \in x)$, so by absoluteness $\langle M, \in \rangle$ satisfies the axiom of infinity if and only if $\exists x \in M \ \varphi(x)$. As ω satisfies φ , if $\omega \in M$ then $\langle M, \in \rangle$ satisfies the axiom of infinity.

If $\forall a \in M \ \forall b \subseteq a \ (b \in M)$, then $\langle M, \in \rangle$ satisfies the axiom schema of separation.

We must show that given $\varphi(x, y, \vec{w})$, and given $a, \vec{c} \in M$ to be assigned to the variables y, \vec{w} , the set $b = \{d \in a \mid \langle M, \in \rangle \vDash \varphi[d, a, \vec{c}]\}$ belongs to M. But this follows at once by the assumption and by $b \subseteq a$. If for all $a \in M$ and all $f : a \to M$ there is $b \in M$ such that ran $f \subseteq b$, then $\langle M, \in \rangle$ satisfies the axiom schema of replacement.

We must show that given $\varphi(x, y, z, \vec{w})$ and given $a, \vec{c} \in M$ to be assigned to the variables z, \vec{w} , if $\langle M, \in \rangle \vDash \forall x \in z \exists ! y \varphi[a, \vec{c}]$ then there is $b \in M$ such that $\langle M, \in \rangle \vDash \forall x \in z \exists y \in v \varphi[a, \vec{c}, b]$, with b assigned to the variable v. Then φ, a, \vec{c} yield a function $f : a \to M$, and by case assumption there is $b \in M$ such that ran $f \subseteq b$. This is the b we were looking for.

 $\langle M, \in \rangle \vDash \mathsf{AC}$ if and only if $\forall \mathcal{A} \in M \ (\forall A \in \mathcal{A} \ (A \neq \emptyset) \Rightarrow \exists f \in M \ (f \text{ is a choice function for } \mathcal{A})).$

The result follows from the straightforward verification that $\varphi(f, x)$ saying " $x \neq \emptyset$, every element of x is non-empty, and $f: x \to \bigcup x$ is a choice function" is Δ_0 .

All axioms of ZFC except the axiom of infinity hold in V_{ω} .

It is enough to check that replacement and choice hold in V_{ω} . As we shall see (Exercise 21.52), every V_n is finite, hence every element of V_{ω} is finite. It follows that every $x \in V_{\omega}$ is well-orderable, hence AC holds by Theorem 18.3. Moreover, if $A \in V_{\omega}$ and $F: A \to V_{\omega}$, then F^*A is finite, $F^*A = \{a_0, \ldots, a_{n-1}\}$. For every i < n, let $m_i < \omega$ be such that $a_i \in V_{m_i}$. Then $F^*A \subseteq V_m$, where $m = \max\{m_0, \ldots, m_{n-1}\}$, hence $F^*A \in V_{m+1}$.

All axioms of ZF except possibly for replacement hold in $V_\lambda,$ if $\lambda>\omega$ is limit.

```
Since \omega \in V_{\lambda} we apply Theorem 19.22.
```

Assuming choice, then AC holds in V_{λ} , if λ is limit.

If $\mathcal{A} \in V_{\lambda}$ is a non-empty family of non-empty sets, by AC there is a choice function $f: \mathcal{A} \to \bigcup \mathcal{A}$. If $\alpha < \lambda$ is such that $\mathcal{A} \in V_{\alpha \dotplus 1}$ then $f \in V_{\alpha \dotplus 3}$ so we are done by Theorem 19.22.