Elements of Mathematical Logic
Section 19 of Chapter V

Lucidi preparati da Alessandro Andretta
Lezioni di Raphaél Carroy

Dipartimento di Matematica
Universita di Torino

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024-2025 1/36



Theorem 19.1

Let A be a class, let a € A and let F': w x A — A be a functional
relation. There is a unique G: w — A such that

{ G0)=a
G( F(n,G(n)).
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N
Proof

Let G={p|3Im e wlp:m— AA(0<m=p(0)=a)AVn(S(n) <
m = p(S(n)) = F(n,p(n)))]}.

Claim
If p,q € G then p U q is a function.

Proof.

l
Suppose that p,q € G but p U g is not a function. Then there is a least
n € dom(p) N dom(q) witnessing that p(n) # g(n). Clearly n # 0, since
p(0) = a = ¢q(0), so n = S(k). Then

(k)) by minimality of n,
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N
Proof

Thus G =JG Cw x A is a functional relation, and therefore a function
by replacement.

As {(0,a)} € G, it follows that G # () and G(0) = a. Moreover if

S(n) € dom(G) then G(S(n)) = p(S(n)) for some p € G, so

G(S(n)) = F(n.p(n)) = F(n, G(n)).

dom(G) = w |

Towards a contradiction, suppose 7 is least such that 7 ¢ dom(G), then
n = S(m) for some m. As n ¢ dom(p) for any p € G, it follows that
k ¢ dom(G) for all k > n. It is easy to check that

def

p=GU{(n,F(m,G(m)))} € G, thus p C G, so that n € dom(G): a
contradiction.
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Proof

G is unique

If G’ were another function satisfying the statement of theorem, then let 7

be least such that G(n) # G'(n). Clearly 7 # 0 so i = S(m) for some m,
and hence

(m)) by minimality of 7,

a contradiction!
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Transitive closure of a relation

The transitive closure of R C X x X with X a class, is the relation

R:{(J;,y)6X><X|E|n>()§|fes(")X[a::f(0)/\

y = fn) AV < (f(0), f(SG))) € R}
In other words = R y if and only there are zq, ..., x, such that

r=xg Rz - xp_1 Rz, =1.
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Proposition 19.2
R is regular on X if and only if R is regular on X.

Proof. |

Since R C R it is enough to check that if R is regular, then R is regular.
Given a T € X, by induction define the sets 7,

Zy={ye X |y Rz}

Znpn={yeX|ReZ,(yR2)}= |J{yeX|yRz}
FASYAS

The sequence (Z,, | n € w) is given by Theorem 19.1 when A =V, a = Z
and F(n,a) = F(a) ={z € X | Jy € a(z Ry)}. Thus G(n) = Z,. By
replacement | J, . Z, is a set, and it is the same as {y € X |y Rz}. [

new
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Proposition 19.3
R is well-founded on X if and only if R is well-founded on X.

Proof. }

Since R C R the < direction is clear.

Suppose R is well-founded towards proving that so is R. Fix § £ Y C X
and let us show that there is an R-minimal element in Y. A path from YV
into itself is a sequence (zo, ..., zn, 2n+1) in X of length > 1 such that
20, 2n+1 € Y and z; R zj+1 with i = 0,...,n. (Paths of length 1 can be
identified with the elements of Y'.) Let

Y = {z € X | 3s(s is a path from Y into itself and = € rans)}. By
construction Y C Y and let 7 be an R-minimal of Y. By construction no
element of Y \ Y is R-minimal, so j € Y. Let us check that 7 is
R-minimal in Y. Towards contradiction, if Z R ¢ for some Z € Y different
from g, then there would be a path (2, ..., 2z,+1) from Y into itself with
zo = % and z,+1 = ¥, and hence 2, R g, against R-minimality of #. [
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Theorem 19.4

Let X and Z be classes, let R C X x X be irreflexive, regular, and
well-founded, and let F': Z x X x V — V. Then there is a unique
G: Z x X — V such that for every (z,2) € Z x X

G(z,7) = F(z,2,G [ {(z,9) | y Rx}). (%)

Proof of uniqueness |

Suppose that G,G’": Z x X — V satisfy (%) and that G #G'. Fix z € Z
suchthat Y = {x € X | G(z,z) # G'(Z,2)} #( and let Z € Y be an
R-minimal element of Y. Then

Gl {zy) lyRz} =G 1{(zy) |y Rz}

and let p be this functional relation. Regularity of R together with the
axiom of replacement, imply that p is a set, and therefore
G(z,z) = F(z,z,p) = G'(Z,Z): a contradiction.
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Proof of existence

Let G be the class of all functions p such that
Q dom(p) C Z x X,
Q VY(z,z) € dom(p)Vy € X (y Rz = (2,y) € dom(p)),
Q V(z,z) € dom(p) (p(z, %) = F(z,z,p [ {(z,y) | y R z})).
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N
Proof of existence

Let G be the class of all functions p such that

Q dom(p) C Z x X,

Q VY(z,z) € dom(p)Vy € X (y Rz = (2,y) € dom(p)),

@ ¥(z,) € dom(p) (p(z,2) = Flz,2,p | {(z9) | y Ra}).
@ is equivalent to the seemingly stronger condition

V(z,z) € dom(p) ({2} x {y € X | y R 2} C dom(p)),
where R is the transitive closure of R.
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Proof of existence

Let G be the class of all functions p such that
O dom(p) C Z x X,
Q V(z,z) € dom(p)Vy € X (y Rz = (z,y) € dom(p)),
Q V(z,z) € dom(p) (p(z,z) = F(z,z,p [ {(2,9) | y R x})).
@ is equivalent to the seemingly stronger condition
V() € dom(p) ({z} x {y € X | y R} C dom(p)),
where R is the transitive closure of R.
If p satisfies @ , (z,z) € dom(p) and

yRzy=wy Rw R ... Rw, Rwy,11 =z, then by induction
(z,w;) € dom(p) for all i <mn.
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N
Proof of existence

Let G be the class of all functions p such that
Q dom(p) C Z x X,

Q V(z,z) e dom(p)Vy € X (y Rx = (z,y) € dom(p)),

Q V(z,z) € dom(p) (p(z,2) = F(z,z,p [ {(2,9) | y R x})).
@ is equivalent to the seemingly stronger condition
¥(z,2) € dom(p) ({z} x {y € X | y Rz} C dom(p)),
where R is the transitive closure of R.

If p,q € G then pU q is a function

If {r € X |32 € Z((2,2) € dom(p) Ndom(q) A p(z,x) # q(z,2))} #0
by well-foundedness let Z be an R-minimal element of this class. Let
Z € Z be such that (2,Z) € dom(p) Ndom(q) and p(z,Z) # q(2,%). By @
{(’ y) | y Rz} C dom(p) Ndom(q) and by R-minimality of =

{(zy) |y Rz} =q1{(zy) |y RZ} =7 so that, by @
(Z z) = F(z,z,7) = q(z,%): a contradiction.
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Proof of existence

If p,q € G then pUq € G, and hence G = |J§ is a functional relation with
domain C Z x X. If Z x X \ dom(G) # 0, let  be an R-minimal element
of {r € X |3z€ Z (2,) ¢ dom(G)} and let zZ € Z be such that

(2,%) ¢ dom(G). The transitive closure R of R on X, is regular, so

PEGI{(zy) |y Rz}
is a set by the axiom of replacement. Then p € G and hence

pU{((z,2),F(z,%,p))} € G. Thus (z,Z) € dom(G), against our
assumption. It follows that G is the functional relation we are looking for.
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Rank of a well-founded relation

If R is irreflexive, regular, and well-founded on X, then Op x: X — Ord
defined by op x(v) = U{S(er x(¥)) | y R =} is the rank of R on X.

Proposition 19.6 }

ran(Qp y) is an initial segment of Ord and
Q@ z Ry = opx(r) <erx(y)
@ op x(z) =inf{a | Vy (y Rz = erx(y) <o)}

Proof. }

If 0r x(y) € Ord for any y such that y R z, then gy x(z) € Ord by
Proposition 18.6, so ran(gp x) € Ord. Towards a contradiction, suppose
there is 7 € X and a such that a € g x () \ ran(@g x), and let T be
R-minimal such. Then there is y R ¥ such that a < S(gg x(v)). Since

« ¢ ran g y then o < g x(y), against R-minimality of Z. The rest of
the proof is easy. O
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If R is an irreflexive, regular, well-founded relation on X, the function
TR x: X — V given by

mrx(®) ={mrx(y) |y Rz}

is the Mostowski collapsing function.
The class X = ran(wg x) is the Mostowski collapse of R and X.
@ X is transitive and

Q@ Vr,ye X(z Ry=mpx(z) € mrx(y)).
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If R is the relation on {a,b,c,d,e, f, g} given by the directed graph

5
b \Qc
/ \Q ;
d e i
g
then op x(d) = op x(e) = or x(9) =0, 0g x(b) = or x(f) =1,
or,x(c) =2 and gp x(a) = 3;

mrx(d) =7rx(e) =mrx(9) =0 mrx(b) = mwrx(f) = {0} =1,
wrx(c) ={0,1} =2 and wp x(a) = {1,2}.
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Definition 19.7
R C X x X is extensional on X if

Ve,ye X(Vze X (z Rx < zRy)=>x=y).

Example |

Q If X is a transitive class, then € [ X = {(y,z) e X x X |y € x} is
extensional on X;

@ if R is a (strict) linear order on X, then R is extensional on X.

Proposition 19.8 |
Let R be an irreflexive, regular, well-founded relation on the class X.

Q If R is extensional on X, then mg x is injective and wp x: X — X is
an isomorphism between R on X and € on X, thatis wpg x is
bijective and Vz,y € X (x Ry & g x(x) € wr x(v)).

© If Ris a strict well-order on X the functions 7p x and gp y agree.
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Proposition 19.8 @ |
Let R be extensional, irreflexive, regular, and well-founded on the class X.
Then g x: X — X is bijective and

Ve,y € X(x Ry & mrpx(z) € mrx(y)).

Proof.

Towards a contradiction, let £ be R-minimal such that

TR x(Z) = 7R x(y), for some y # z. Let 2 R Z: as

Trx(2) € mrx(Z) = wrx(y), there is w R g such that

TR x(2) = wpx(w). By minimality of Z, z =w. Thus 2z RZ = 2z R .
Similarly, if z R y then there is w R Z such that wg x(2) = wr x(w) and
hence z = w, that is 2z Ry = z R . Thus, by extensionality, §y = Z,
against our assumption. It follows that 7w x is a bijection between X and
X.

If 7rx(z) € mrx(y) = {mrx(2) | 2 Ry} thenz Ry. 0
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Proposition 19.8 @ |

Let R be irreflexive, regular and well-founded on X. If R is a strict
well-order on X, then the functional relations wr x and OR X coincide.

Proof. |
Assume o x(y) = wr x(y), for all y Rx. Then
mrx(z) ={mrx(y) |y Rz} ={erx(y) | y Rz} is a set of ordinals. If
wrx(2) € TR x(y) € Tr x(x), then z Ry R x, so z R z, that is
7R x () is transitive, and therefore it is an ordinal. By construction
7R x(x) is the least upper bound of the ordinals

x(y

S(mr

) = S(QRX( )) with y R z, that is wp x(x) = QR’X(x). D/
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Lemma 19.9
If f: Ord — Ord is increasing and continuous, then

Vada > a(f(a) =a).

Proof. |
By recursion define (a;, | n € w) by ag = S(a) and ag(,) = f(an), and

let & = sup,, an. If f(ap) = ap, then Vn (ap = ;) and therefore a = ayp.
If instead g < f(ag) = o, then o, < as(n), and hence & is limit. Then

£(8) = sup f(v) = sup f (@) = sup gy = G-

v<a

In either case @ is the least fixed point greater that « for f. O
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Definition |
N: Ord — Card \ w is the class-function enumerating the class of infinite
cardinals, i.e.

No = w
NS(a) = (Na)+
Ny = sup N,.
a<A

Since N: Ord — Ord is increasing and continuous, there are cardinals k
such that x = N, and the least such is the least upper bound of

NUa NNO? NNNO ) NNNNO )
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Ordinal arithmetic

atf=

A. Andretta & R. Carroy (Torino)

« if =0,
S(a+7) if 8=S8(y),
sup,g(a+~) if B is limit,
0 if3=0
(a-7y)+a if f=8(v),
Supy<ga -y if s limit,
1 if 8 =0,

a’l - if 5=2S(v),

LsupAK/Ba'V if 8 is limit.
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The ordinal @ x (), when X =V and R is the membership relation, is
called the rank of z, denoted by rank(z). By Proposition 19.6

x € y = rank(z) < rank(y) x C y = rank(x) < rank(y)
and by induction one checks that rank(a) = a.
Proposition 19.10
Q rank(Z(z)) = S(rank(x)).
@ rank(|Jz) = sup{rank(y) | y € z}.

Proof.
|
@ Since z € Z(x) one has that S(rank(z)) < rank(Z?(z)). Conversely,
if y C x, then S(rank(y)) < S(rank(x)) and hence
rank(Z(z)) = sup{S(rank(y)) | y C z} < S(rank(z)). O]
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Proposition 19.10
Q rank(Z(z)) = S(rank(x)).
@ rank(|Jz) = sup{rank(y) | y € x}. )

Proof.

Q If y € x then y C |z so sup{rank(y) | y € 2} < rank(|Jz).
Conversely, if z € y € x then S(rank(z)) < rank(y) so

S(rank(z)) < sup{rank(y) | y € }. Being z arbitrary,

rank(|Jz) < sup{rank(y) | y € z}. O

Definition 19.11
Vo = {z | rank(z) < a}.
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Theorem 19.12 |
V. is a transitive set and

Proof. |

If y € x € V,, then rank(y) < rank(z) < a so y € V. Thus V, is a
transitive class. By induction on o we show that V, is a set and that (*)
holds. Suppose the results holds true for 8 < a: then {Z (V) | B < a}is
a set, so it is enough to show (*).

T C Viank(z) and therefore rank(z) < a =z € Uz, Z(Vp).

Conversely, if z € Uﬂ<a P (Vg), then & C Vg, for some < a and hence
rank(y) < /8 for any y € z, whence rank(z) < f < . O
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Corollary 19.13
Q Vo=0.
@ If a < B then V, € Vgand V, C V.
Q Vs = Z(Va).
Q Vi =Uger Va, if As limit.
QO V= Uanrd Va.

Ord
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-
Models of set theory

A structure for Lc¢ is a pair (M, E) where M is a nonempty set and

E C M x M. In particular, consider the structure V, i.e. (V,,€), with
a > 0.

Question

Which axioms of ZF are true in V,?

Theorem 19.15
@ All axioms of ZFC except the axiom of infinity hold in V.
@ All axioms of ZF except possibly for replacement hold in V), if A > w
is limit.

© Assuming choice, then AC holds in Vy, if A is limit.

In order to prove this result a stratification of formulae is introduced.
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Definition 19.17

An Lc-formula is Ay if it belongs to the smallest class containing all
atomic formulae and closed under connectives and bounded
quantifications, that is

@ atomic formula are Ay,

o if @, are Ag then so are =@ and @ ® VP, where ©® is any binary
connective,

o if ¢ is Ag then sois Vy(y € x = @) and Jy(y € z A @),
and nothing else is a Ag-formula.

The axiom of extensionality is true in every transitive set M # ().

We write Yy € x @ and 3y € = @ instead of Vy(y € x = ¢) and
Jyly €z A @).
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Examples of Ay formulae

Trans(x), i.e. x is transitive x={y,z}
Ord(z), i.e. z is an ordinal x=(y,2)
Op(z), i.e x is an ordered pair frx—=y
Rel(x), i.e. z is a relation y = dom(z)
Fn(x), i.e. x is a function y = ran(zx)
Seq(x), i.e. x is a finite sequence | S(z) =y

x is an injective function f(z) =g(y)
x is a reflexive relation g=flx

x is a symmetric relation flx)=y

x is a transitive relation féx=y

T Cy z=xT XYy
z=xUy z=z\y
z=xNy
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Definition 19.18 |

A Lc-formula is 3 if it is of the form Jz @ with @ a Ag-formula; it is 11;
if it is of the form Vax @ with @ a Ag-formula.

Definition 19.19
Let M be a non-empty set. We say that @(x1,...,z,) is:

@ upward absolute between M and V if

Vai,...,an € M (((M,€) F @lai,...,as]) = ¢(a,...,an));
o downward absolute between M and V if

Yai,...,ap € M((p(al,...,an) = ((M,e)E (p[al,...,an]));
o absolute between M and V if it is both upward and downward

absolute, that is

Vai,...,an € M (((M,€) F @lai,...,a,]) & ¢(a,...,an)),

where @(ai,...,ay,) stands for @(a1/x1,...,an/xy).
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From the definition it follows that ¢ is upward absolute between M and V
if and only if =@ is downward absolute between M and V, and that if ¢
and 1 are upward/downward absolute, then so are @ A and @ V1.
Therefore the collection of formulae that are absolute between M and V is
closed under all connectives.

An easy induction on the complexity of formulae yields

Lemma 19.20

A quantifier-free formula is absolute between transitive M # () and V.

Lemma 19.21 |
Suppose M is a non-empty transitive set.
@ Every Aq formula is absolute between M and V.

@ Every >; formula is upward absolute between M and V, and every
IT; formula is downward absolute between M and V.
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Every A( formula is absolute between M and V.

By Lemma 19.20 it is enough to consider formulae of the form
Yy € x; ©(y,x1,...,%,). Fix a,...,a, € M. By the inductive
hypothesis, and since M is transitive,

(M,e)EVYy ezl ©Vbe M (bea; = (M,€) E @b, d))
& Vbea; (M, e)FE @b, a
& Vy € a; @(a).

Every 331 formula is upward absolute between M and V, and every 1I;
formula is downward absolute between M and V.

It is enough to prove that ¥; formulae are upward absolute. Suppose that
@Y1y -y Yky X1y ..., ) is Ag, that ay,...,a, € M, and that

(M, €)EJy1,...,yp@lai,...,an]. Fix bi,..., by € M such that

(M, €)E @[by,...,bg,ai1,...,a,]. By the preceding point
@(b1,...,bk,a1,...,a,) holds, and hence Jy1,...,yx ©(a,...,ay).
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Theorem 19.22
Suppose M ## () is a transitive set. Then

o
(2]

o

(M, €) satisfies the axioms of extensionality and foundation.

If {a,b} € M for all a,b € M, then (M, €) satisfies the axiom of
pairing.

If Ua € M for all a € M, then (M, €) satisfies the axiom of union.
If Va € M (Z(a) N M € M), then (M, €) satisfies the power-set

axiom.
If w e M then (M, €) satisfies the axiom of infinity.

If Ya € MVb C a(be M), then (M, €) satisfies the axiom schema of
separation.

If for all a € M and all f: a — M there is b € M such that
ran f C b, then (M, €) satisfies the axiom schema of replacement.

(M,e)EACifandonlyif VAe M (VAe A(A#0)=3f e M (f
is a choice function for A)).
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(M, €) satisfies the axioms of extensionality and foundation.

The axioms of extensionality and foundations are the universal closure of
the Ag-formulae

Vzex(z€y AVzey(z€x)=>x=y
yex(y=y)=>JyecaVzey(z¢ux)

so they are downward absolute. Both axioms hold in V and therefore hold
in (M, €).

If {a,b} € M for all a,b € M, then (M, €) satisfies the axiom of pairing.
z={xz,y}is Ay.

If Ja € M for all a € M, then (M, €) satisfies the axiom of union.
v=Uuis Ap.
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|
If Va € M (Z(a) N M € M), then (M, €) satisfies the power-set axiom. |

Fixa € M and let b= 2(a) N M. As z C x is Ag, then (M, €) satifies
Vz(z C x < z € y), where x and y are given the values a and b

If w e M then (M, €) satisfies the axiom of infinity. |

The axiom of infinity is 3x @(z) where @(x) is the Ag-formula

0 exAVyex(S(y) € x), so by absoluteness (M, €) satisfies the axiom
of infinity if and only if 3x € M @(z). As w satisfies @, if w € M then
(M, €) satisfies the axiom of infinity.

If Va € MVb C a(be M), then (M, €) satisfies the axiom schema of
separation.

We must show that given @(z,y, @), and given a,¢ € M to be assigned to
the variables y, W, the set b={d € a | (M, €) F @[d, a,c]} belongs to M.
But this follows at once by the assumption and by b C a.
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If for all a € M and all f: a — M there is b € M such that ran f C b,
then (M, €) satisfies the axiom schema of replacement.

We must show that given @(z,y, z,%) and given a,¢ € M to be assigned
to the variables z, ), if (M, €) EVa € z3ly @[a, é] then there is b € M
such that (M, €) EVz € 23y € v @la, & b], with b assigned to the variable
v. Then @, a,c yield a function f: a — M, and by case assumption there
is b € M such that ran f C b. This is the b we were looking for.

(M,e) EACifandonly if VAe M(VAe A(A#0)=3f e M(fisa
choice function for A)).

The result follows from the straightforward verification that @(f, z) saying
“x # (), every element of z is non-empty, and f: z — (Jx is a choice
function” is Ag.
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N
Proof of Theorem 19.15

All axioms of ZFC except the axiom of infinity hold in V.

It is enough to check that replacement and choice hold in V,,. As we shall
see (Exercise 21.52), every V,, is finite, hence every element of V,, is
finite. It follows that every x € V, is well-orderable, hence AC holds by
Theorem 18.3. Moreover, if A€V, and F: A — V,, then F“A is finite,

F“A={ag,...,an—1}. Forevery i <n, let m; < w be such that
a; € Vi, Then F“A C V,,, where m = max {mo, ..., m,_1}, hence
F“A e V.

All axioms of ZF except possibly for replacement hold in V, if A > w is
limit.
Since w € V) we apply Theorem 19.22.
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Assuming choice, then AC holds in V, if A is limit.

If A €V, is a non-empty family of non-empty sets, by AC there is a
choice function f: A — |JA. If & < X is such that A € V1 then
f € Vais so we are done by Theorem 19.22.
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