Elements of Mathematical Logic Section 20 of Chapter V

Lucidi preparati da Alessandro Andretta Lezioni di Raphaël Carroy

> Dipartimento di Matematica Università di Torino

Cardinal exponentiation is defined by

$$\lambda^{\kappa} = \left| {}^{\kappa}\lambda \right|.$$

This definition requires that the set ${}^{\kappa}\lambda$ be well-ordered, so cardinal exponentiation is defined assuming AC.

$$\begin{split} \kappa^{\lambda} &\leq \nu^{\mu} & \text{if } \kappa \leq \nu \text{ and } \lambda \leq \mu \\ \left(\kappa^{\lambda}\right)^{\mu} &= \kappa^{\lambda \cdot \mu} \\ \kappa^{\lambda + \mu} &= \kappa^{\lambda} \cdot \kappa^{\mu} \\ (\kappa \cdot \lambda)^{\mu} &= \kappa^{\mu} \cdot \lambda^{\mu}. \end{split}$$

A. Andretta & R. Carroy (Torino)

Definition 20.1

If X is a set and κ is a cardinal $\mathscr{P}_{\kappa}(X) = \{Y \subseteq X \mid |Y| < \kappa\}$ is the collection of all well-orderable subsets of X of size less than κ .

Note that $\mathscr{P}_{\kappa}(\lambda)=[\lambda]^{<\kappa}$ has size $\lambda^{<\kappa}\leq\lambda^{\kappa},$ where

$$\lambda^{<\kappa} \stackrel{\text{\tiny def}}{=} \sup \left\{ \lambda^{\nu} \mid \nu \in \text{Card} \land \nu < \kappa \right\}.$$

The class-function \beth : $\operatorname{Ord} \to \operatorname{Card}$ is defined by recursion by

$$\beth_0 = \omega, \qquad \beth_{\alpha \dotplus 1} = 2^{\beth_\alpha}, \qquad \beth_{\lambda} = \sup_{\alpha < \lambda} 2^{\beth_\alpha}, \text{ for } \lambda \text{ limit.}$$

The continuum hypothesis

CH is $2^{\aleph_0} = \aleph_1$, or, equivalently, $\forall X \subseteq \mathbb{R} (|X| \leq \aleph_0 \lor |X| = |\mathbb{R}|)$. The **generalized continuum hypothesis** GCH is $\forall \alpha \in \text{Ord} (2^{\aleph_\alpha} = \aleph_{\alpha+1})$, or, equivalently, $\forall X \subseteq \mathscr{P}(\aleph_\alpha) (|X| \leq \aleph_\alpha \lor |X| = |\mathscr{P}(\aleph_\alpha)|)$. In the absence of AC, the continuum hypothesis is stated as follows:

$$\forall \mathcal{A} \subseteq \mathscr{P}(\omega) \big(\mathcal{A} \precsim \omega \lor \mathcal{A} \asymp \mathscr{P}(\omega) \big).$$

The generalized continuum hypothesis becomes

$$\forall X \, \forall \mathcal{A} \subseteq \mathscr{P}(X) \left(\mathcal{A} \precsim X \lor \mathcal{A} \asymp \mathscr{P}(X) \right)$$

and stated this way, the generalized continuum hypothesis implies AC.

 $AC_I(X)$ says: If $X \neq \emptyset$ is a set, then for every $\langle A_i \mid i \in I \rangle$ such that $\forall i \in I \ (\emptyset \neq A_i \subseteq X)$, there is $\langle a_i \mid i \in I \rangle$ such that $\forall i \in I \ (a_i \in A_i)$. Let AC_I be $\forall X AC_I(X)$, let AC(X) be $\forall I AC_I(X)$. Thus

 $\mathsf{AC} \Leftrightarrow \forall I \,\forall X \, \mathsf{AC}_I(X).$

If $X \twoheadrightarrow Y$ and $J \rightarrowtail I$, then $AC_I(X) \Rightarrow AC_J(Y)$ If X is well-orderable then AC(X) (Theorem 18.3).

AC

Theorem 20.3

AC(X) implies that X is well-orderable.

Proof.

Without loss of generality $X \neq \emptyset$ and fix a choice function C for X. We will construct a bijection from some $\bar{\alpha} < \operatorname{Hrtg}(X)$ onto X. Let us give a sketch of the proof: let x_0 be an element of X, for example $x_0 = C(X)$, and suppose we have constructed $x_0, x_1, \ldots, x_{\beta}, \ldots$, distinct elements of X, with $\beta < \alpha$. If $X = \{x_{\beta} \mid \beta < \alpha\}$ then $\alpha \to X$, $\beta \mapsto x_{\beta}$ is the required bijection. Otherwise pick a new element $x_{\alpha} \in X$ different from the previous ones, for example $x_{\alpha} = C(X \setminus \{x_{\beta} \mid \beta < \alpha\})$. If the map $\alpha \mapsto x_{\alpha}$ were defined for all $\alpha < \operatorname{Hrtg}(X)$, then we would have an injective map $Hrtg(X) \rightarrow X$, a contradiction. Therefore there is $\bar{\alpha} < \operatorname{Hrtg}(X)$ such that $X = \{x_{\beta} \mid \beta < \bar{\alpha}\}.$

Zorn's lemma and its relatives

$\operatorname{ZORN}(X)$

If \leq is an ordering on X such that every chain has an upper bound, then $\exists x \in X (x \text{ is maximal}).$

Zorn's Lemma is $\forall X \operatorname{ZORN}(X)$.

If the assumption "every chain" is strengthened to "every upward directed set" a weaker statement is obtained: WZORN(X). The weak Zorn's Lemma asserts that $\forall X WZORN(X)$.

MaxHaus(X)

If \leq is an ordering on X, then $\exists C \subseteq X (C \text{ is a maximal chain})$

Hausdorff's maximality principle is $\forall X \operatorname{MaxHaus}(X)$.

Zorn's lemma and its relatives

Proposition 20.5

Let $X \neq \emptyset$ be a set: X is well-orderable \Rightarrow MAXHAUS $(X) \Rightarrow$ ZORN $(X) \Rightarrow$ WZORN(X) and WZORN $(\mathscr{P}(X \times X)) \Rightarrow X$ is well-orderable.

X is well-orderable implies MAXHAUS(X)

Assume X is is well-orderable and, towards a contradiction, let \leq be an ordering on X without maximal chains. For $C \subseteq X$ a chain, the set $K(C) = \{x \in X \setminus C \mid C \cup \{x\} \text{ is a chain}\}$ is nonempty. Fix a choice function $F \colon \mathscr{P}(X) \setminus \{\emptyset\} \to X$. Then

$$g\colon\operatorname{Hrtg}(X)\to X,\quad \alpha\mapsto F\left(K\left(\{g(\beta)\mid\beta<\alpha\}\right)\right).$$

is injective: a contradiction!

MAXHAUS(X) implies ZORN(X)

Let \leq be an ordering on X such that every chain has an upper bound. If $C \subseteq X$ is a maximal chain, then the upper bound of C belongs to C so it is a maximal element of X.

$\operatorname{ZORN}(X)$ implies $\operatorname{WZORN}(X)$

Trivial.

$WZORN(\mathscr{P}(X \times X))$ implies X is well-orderable

Let $\mathcal{P} \subseteq \mathscr{P}(X \times X)$ be the set of all well-orders R such that $\mathrm{fld}(R) \subseteq X$. If $R, S \in \mathcal{P}$ set $R \trianglelefteq S \Leftrightarrow \exists a \in \mathrm{fld}(S)[\mathrm{fld}(R) = \mathrm{pred}(a; S) \land R = S \cap \mathrm{fld}(R)^2]$. By WZORN $(\mathscr{P}(X \times X))$ there is a maximal $\bar{R} \in \mathcal{P}$. Towards a contradiction suppose $\mathrm{fld}(\bar{R}) \neq X$ and fix $a \in X \setminus \mathrm{fld}(\bar{R})$. Consider $S = R \cup \{(y, a) \mid y \in \mathrm{fld}(\bar{R})\} \cup \{(a, a)\}$. Then $S \in \mathcal{P}$ e $\bar{R} \lhd S$, against the maximality of \bar{R} . Therefore \bar{R} well-orders X.

Theorem 20.6

AC is equivalent to $\forall \alpha \in \operatorname{Ord} (\mathscr{P}(\alpha) \text{ is well-orderable}).$

Proof.

It is enough to show that each V_{α} is well-orderable. If V_{α} is well-orderable, fix a bijection $f \colon V_{\alpha} \to \gamma$, and by case assumption there is a well-order on $\mathscr{P}(\gamma)$ inducing via f a well-ordering on $V_{\alpha+1} = \mathscr{P}(V_{\alpha})$. If λ is limit and if we can pick (without AC!) a well-order \triangleleft_{α} on V_{α} , for all $\alpha < \lambda$, then for $x, y \in V_{\lambda}$

$$x \triangleleft_{\lambda} y \Leftrightarrow \exists \alpha < \lambda \left[(x \in \mathcal{V}_{\alpha} \land y \notin \mathcal{V}_{\alpha}) \lor (x, y \in \mathcal{V}_{\alpha+1} \setminus \mathcal{V}_{\alpha} \land x \triangleleft_{\alpha+1} y) \right]$$
(*)

is a well-order on V_{λ} . Let $\gamma = \sup_{\alpha < \lambda} \gamma_{\alpha}^+$ where $\gamma_{\alpha} = |V_{\alpha}|$, and let \prec be a well-order of $\mathscr{P}(\gamma)$. Set $\triangleleft_0 = \emptyset$; if \triangleleft_{α} is a well-order on V_{α} and $f_{\alpha} \colon V_{\alpha} \to \gamma^+$ is its enumerating function then define $\triangleleft_{\alpha+1}$ on $V_{\alpha+1}$ via f_{α} and \prec ; if $\nu < \lambda$ is a limit ordinal apply the construction (*) with ν instead of λ .

Theorem 20.7. The following are equivalent:

- AC.
- e Hausdorff's maximality principle.
- Zorn's Lemma.
- The weak Zorn's Lemma.
- Teichmüller-Tukey's Lemma: Let Ø ≠ F ⊆ 𝒫(X) be a family of finite character, that is
 ∀Y ⊆ X (Y ∈ F ⇔ ∀Z ⊆ Y (Z finite ⇒ Z ∈ F)). Then any Y ∈ F is contained in a maximal Z ∈ F.
- O The Axiom of Multiple Choices (AMC): For any set X ≠ Ø there is a function F: 𝒫(X) \ {Ø} → 𝒫(X) \ {Ø} such that F(A) ⊆ A is finite, for all Ø ≠ A ⊆ X.
- Severy preorder contains a maximal free subset.
- Support of the subset.
 Support of the subset.
- **9** Every linear order can be well-ordered.

A. Andretta & R. Carroy (Torino)

Elements of Mathematical Logic

Proof

Proposition 20.5 says that AC, Hausdorff, Zorn and weak-Zorn are equivalent, that is $\bigcirc \Leftrightarrow \oslash \Leftrightarrow \oslash \Leftrightarrow \oslash \otimes \odot$. Every order is a preorder so $\oslash \Rightarrow \oslash \circ$. $\boxdot \Rightarrow \oslash$ (i.e. multiple choices) is trivial. Let us prove that $\oslash \Rightarrow \oslash \Rightarrow \oslash$, that $\oslash \lor \oslash \Rightarrow \oslash$ and that $\oslash \Rightarrow \oslash \circ$.

 $\mathbf{O} \Rightarrow \mathbf{O}$ 'every linear order is well-orderable' implies AC

 $^{\alpha}2$ is linearly ordered by $<_{\rm lex}$, so $^{\alpha}2$ is well-orderable. As $^{\alpha}2 \asymp \mathscr{P}(\alpha)$ the result follows from Theorem 20.6.

④ ⇒ ⑤ wZorn implies Teichmüller-Tuckey

Let $\mathcal{F} \subseteq \mathscr{P}(X)$ be of finite character, and let $Y \in \mathcal{F}$. If $\mathcal{D} \subseteq \mathcal{F}$ is an upward directed collection of sets containing Y, then $\bigcup \mathcal{D} \in \mathcal{F}$ by the finite character of \mathcal{F} , so \mathcal{D} has an upper bound in \mathcal{F} . Therefore there is a $Z \in \mathcal{F}$ which is maximal and contains Y.

S ⇒ Teichmüller-Tuckey implies that every preorder has a maximal free subset

Let $\langle X, \leq \rangle$ be a preordered set. The family \mathcal{F} of all free subsets of X has finite character, and $\emptyset \in \mathcal{F}$, so it contains a maximal set.

● ⇒ ● 'multiple choices' implies 'every linear order is well-orderable' Let $\langle X, \leq \rangle$ be a linear order. By assumption there is $G: \mathscr{P}(X) \setminus \{\emptyset\} \to \mathscr{P}(X) \setminus \{\emptyset\}$ such that $G(A) \subseteq A$ is finite, for all $\emptyset \neq A \subseteq X$. Let g(A) be the minimum of G(A). Then g is a choice function for X.

 $\textcircled{O} \Rightarrow \textcircled{O}$ 'Kurepa's maximality principle' implies 'every linear order is well-orderable'

Let $\langle X, \leq \rangle$ be a linear order. We prove that there is a choice function for X and the result follows from Theorem 20.3.

Let \preceq be the ordering on $\mathcal{P} = \{(A, a) \mid A \subseteq X \land a \in A\}$ defined by

$$(A,a) \preceq (B,b) \Leftrightarrow A = B \land a \leq b.$$

By assumption there is a maximal free $\mathcal{A} \subseteq \mathcal{P}$. It easy to check that \mathcal{A} is a choice function for X.

Given E a non-regular equivalence relation on a proper class A, we would like a choice function $C: A \to A$ such that

 $\forall x \in \mathcal{A} \left(\boldsymbol{C}(x) \in [x]_E \right)$

and

$$\forall x, y \in \mathcal{A} \left(x \mathrel{E} y \Rightarrow \boldsymbol{C}(x) = \boldsymbol{C}(y) \right).$$

The existence of such C is equivalent to the existence of a transversal T for the relation E, that is: a class $T \subseteq A$ such that $T \cap [x]_E$ is a singleton for all $x \in A$.

Example

If \mathcal{A} is the class of all well-ordered sets and E is the isomorphism relation, then every equivalence class contains exactly one ordinal, so we may assume that $C(A, <) = \operatorname{ot}(A, <)$;

Example

If A is the class of all finitely generated abelian groups and E is the isomorphism relation, then let C(G) be the unique

$$\mathbb{Z}^n \times \mathbb{Z}/p_1 \mathbb{Z} \times \mathbb{Z}/p_2 \mathbb{Z} \times \cdots \times \mathbb{Z}/p_k \mathbb{Z}$$

isomorphic to G, where $n \ge 0$ and $p_1 \le p_2 \le \cdots \le p_k$ primes and $k \ge 0$.

Example

Assuming AC and $\mathcal{A} = V$ and E the relation \asymp , then C(A) = the unique cardinal κ in bijection with A.

A. Andretta & R. Carroy (Torino)

Elements of Mathematical Logic

For any equivalence relation E, one can define $\llbracket \cdot \rrbracket_E \colon \mathcal{A} \to V$ such that

$$\emptyset \neq [\![x]\!]_E \subseteq [x]_E \quad \text{and} \quad x \mathrel{E} y \, \Leftrightarrow [\![x]\!]_E = [\![y]\!]_E.$$

The set $[x]_E$ is the **Scott** *E*-equivalence class, defined by

$$\llbracket x \rrbracket_E = \{ y \mid y \mathrel{E} x \land \forall z \left(z \mathrel{E} x \Rightarrow \operatorname{rank}(x) \le \operatorname{rank}(z) \right) \}$$

or equivalently: $[x]_E = [x]_E \cap V_{\bar{\alpha}}$, where $\bar{\alpha} = \min \{ \alpha \mid V_{\alpha} \cap [x]_E \neq \emptyset \}$.

The **order type** of an ordered set $\langle A, \langle \rangle$ is

$$\operatorname{type}\langle A, <\rangle = \begin{cases} \operatorname{ot}\langle A, <\rangle & \text{ if } \langle A, <\rangle \text{ is a well-order,} \\ \llbracket (A, <) \rrbracket_{\cong} & \text{ otherwise,} \end{cases}$$

where \cong is the isomorphism relation. In absence of AC the **cardinality** of a set X is

$$\operatorname{card}(X) = \begin{cases} |X| & \text{if } X \text{ is well-orderable,} \\ \llbracket X \rrbracket_{\asymp} & \text{otherwise.} \end{cases}$$

Cardinalities are denoted by lower case german letters $\mathfrak{a}, \mathfrak{a}, \ldots$. The ordering on cardinalities is given by

$$\mathfrak{a} \leq \mathfrak{b} \Leftrightarrow A \precsim B$$
 for some/every $A \in \mathfrak{a}$ and $B \in \mathfrak{b}$.

Thus $\mathfrak{a} = \mathfrak{b} \Leftrightarrow A \asymp B$ and $\mathfrak{a} \leq \mathfrak{b} \Leftrightarrow A \precsim B$.

Theorem 20.10

AC is equivalent to $\forall \mathfrak{a}, \mathfrak{b} \ (\mathfrak{a} \leq \mathfrak{b} \lor \mathfrak{b} \leq \mathfrak{a})$, that is $\forall A, B \ (A \preceq B \lor B \preceq A)$.

Proof.

It is enough to show that if $A \preceq B \lor B \preceq A$ for all sets A, B, then every set is well-orderable. Let A be a set: since $\operatorname{Hrtg}(A) \not \preceq A$ by Hartog's Theorem, then $A \preceq \operatorname{Hrtg}(A) \subseteq \operatorname{Ord}$ so A is well-orderable.

Addition and product of cardinalities are defined as follows:

$$\mathfrak{a} + \mathfrak{b} = \operatorname{card}(A \uplus B), \qquad \qquad \mathfrak{a} \cdot \mathfrak{b} = \operatorname{card}(A \times B),$$

for some/any $A \in \mathfrak{a}$ and $B \in \mathfrak{b}$.

If A and B have at least two elements, $\operatorname{card}(A) + \operatorname{card}(B) \leq \operatorname{card}(A) \cdot \operatorname{card}(B)$. Assuming AC one has that if A is infinite, then $A \asymp A \times A$; thus if A and B are infinite disjoint sets then

$$A \cup B \asymp (A \cup B) \times (A \cup B) \asymp A \cup (A \times B) \cup (B \times A) \cup B,$$

and hence $A \times B \rightarrow A \cup B$, that is $\operatorname{card}(A) \cdot \operatorname{card}(B) \leq \operatorname{card}(A) + \operatorname{card}(B)$. Thus $\forall A (A \asymp A \times A)$ implies

 $\forall A, B (A, B \text{ infinite } \Rightarrow \operatorname{card}(A) + \operatorname{card}(B) = \operatorname{card}(A) \cdot \operatorname{card}(B).$

Theorem 20.11

The following are equivalent:

- AC,

Proof.

● ⇒ ● is clear, and ● ⇒ ● follows from what we proved before. We show that 3 implies that every set A is well-orderable. We may assume that A is disjoint from $B = \operatorname{Hrtg}(A)$. By assumption there is a bijection $F: A \times \operatorname{Hrtg}(A) \to A \cup \operatorname{Hrtg}(A)$. Since $\operatorname{Hrtg}(A) \precsim A$ is impossible,

$$\forall x \in A \, \exists \alpha \in \operatorname{Hrtg}(A) \, (F(x, \alpha) \notin A).$$

If $\alpha(x)$ is the least witness, then $A \to \operatorname{Hrtg}(A)$, $x \mapsto F(x, \alpha(x))$, is injective hence A is well-orderable.

A. Andretta & R. Carroy (Torino)

Recall from Section 14.E the Axiom of Countable Choices ${\rm AC}_\omega,$ that is $\forall X\,{\rm AC}_\omega(X),$ where

 $\mathsf{AC}_{\omega}(X)$

 $\forall \langle A_i \mid i \in \omega \rangle \in {}^{\omega}(\mathscr{P}(X) \setminus \{ \emptyset \}) \exists \langle a_i \mid i \in \omega \rangle \in {}^{\omega}X \, \forall i \in \omega \, \, (a_i \in A_i)$

Recall:

Theorem 14.31

 AC_{ω} implies that the countable union of countable sets is countable.

Theorem 20.12

Assume AC_{ω}(\mathbb{R}). Then ω_1 is not a countable union of countable sets. In particular: if $\alpha_n < \omega_1$ for all $n < \omega$, then $\sup_n \alpha_n < \omega_1$.

Proof.

Let $X_n \subseteq \omega_1$ be countable sets, for $n < \omega$. Without loss of generality, we may assume that each X_n is infinite, and let

 $A_n = \left\{ R \subseteq \omega \times \omega \mid R \text{ is a well-order of } \omega \text{ and } \operatorname{ot} \langle \omega, R \rangle = \operatorname{ot} \langle X_n, \leq \rangle \right\}.$

As $\mathscr{P}(\omega \times \omega) \simeq \mathbb{R}$ we may choose $R_n \in A_n$ for all $n \in \omega$, and let $f_n \colon \langle \omega, R_n \rangle \to \langle X_n, \leq \rangle$ be the unique isomorphism. Then

$$\omega \times \omega \to \bigcup_{n \in \omega} X_n, \quad (n, m) \mapsto f_n(m)$$

is surjective, thus $\bigcup_{n \in \omega} X_n$ is countable.

Corollary 20.13

 $AC_{\omega}(\mathbb{R})$ implies that \mathbb{R} is not a countable union of countable sets.

DC

For any set $X \neq \emptyset$, DC(X) is: If R is a relation on X such that $\forall x \exists y (x R y)$, then for any $x_0 \in X$ there is an $f \in {}^{\omega}X$ such that $f(0) = x_0$ and $\forall n (f(n) R f(n+1))$.

If X is well-orderable, then DC(X) is provable, and if $X \twoheadrightarrow Y$ then $DC(X) \Rightarrow DC(Y)$.

Proposition 20.14

For \boldsymbol{X} a nonempty set:

- $AC(X) \Rightarrow DC(X)$,
- $\mathsf{DC}(X \times \omega) \Rightarrow \mathsf{AC}_{\omega}(X).$

In particular: $AC \Rightarrow DC \Rightarrow AC_{\omega}$.

Proof.

Assume AC(X) towards proving DC(X). Let $X \neq \emptyset$ and let $R \subseteq X \times X$ be such that $\forall x \exists y (x R y)$. Pick $x_0 \in X$ and a choice function $C: \mathscr{P}(X) \setminus \{\emptyset\} \to X$. Define $f: \omega \to X$ by $f(0) = x_0$ and $f(n+1) = C(\{y \in X \mid f(n) R y\})$. Then f witnesses DC(X) for R, x_0 . Assume DC($X \times \omega$) towards proving AC_{ω}(X). Given $\{A_n \mid n \in \omega\} \subseteq \mathscr{P}(X) \setminus \{\emptyset\}$ let R be the relation on $X \times \omega$ defined by

$$(a,n) R (b,m) \Leftrightarrow m = n + 1 \land (a \in A_n \Rightarrow b \in A_m).$$

For every $(a, n) \in X \times \omega$ there is some $b \in X$ such that $(a, n) \ R \ (b, n+1)$: if $a \in A_n$ pick $b \in A_{n+1}$, if $a \notin A_n$ let b = a. Fix an element $a_0 \in A_0$: by $DC(X \times \omega)$ there is a function $f : \omega \to X \times \omega$ such that $f(0) = (a_0, 0)$ and $f(n) \ R \ f(n+1)$ for all n. The function $g : \omega \to X$

g(n) = the first component of the ordered pair f(n)

is the required function.

A. Andretta & R. Carroy (Torino)