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Cardinal exponentiation

Cardinal exponentiation is defined by

λκ = |κλ| .

This definition requires that the set κλ be well-ordered, so cardinal
exponentiation is defined assuming AC.

κλ ≤ νµ if κ ≤ ν and λ ≤ µ(
κλ

)µ
= κλ·µ

κλ+µ = κλ · κµ

(κ · λ)µ = κµ · λµ.
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Definition 20.1

If X is a set and κ is a cardinal Pκ(X) = {Y ⊆ X | |Y | < κ} is the
collection of all well-orderable subsets of X of size less than κ.

Note that Pκ(λ) = [λ]<κ has size λ<κ ≤ λκ, where

λ<κ def
= sup {λν | ν ∈ Card ∧ ν < κ} .

The class-function ℶ : Ord → Card is defined by recursion by

ℶ0 = ω, ℶα∔1 = 2ℶα , ℶλ = supα<λ 2
ℶα , for λ limit.
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The continuum hypothesis

CH is 2ℵ0 = ℵ1, or, equivalently, ∀X ⊆ R (|X| ≤ ℵ0 ∨ |X| = |R|).
The generalized continuum hypothesis GCH is
∀α ∈ Ord

(
2ℵα = ℵα+1

)
, or, equivalently,

∀X ⊆ P(ℵα) (|X| ≤ ℵα ∨ |X| = |P(ℵα)|).
In the absence of AC, the continuum hypothesis is stated as follows:

∀A ⊆ P(ω)
(
A ≾ ω ∨ A ≍ P(ω)

)
.

The generalized continuum hypothesis becomes

∀X ∀A ⊆ P(X)
(
A ≾ X ∨ A ≍ P(X)

)
and stated this way, the generalized continuum hypothesis implies AC.
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Which sets are well-orderable?

ACI(X) says: If X ̸= ∅ is a set, then for every ⟨Ai | i ∈ I⟩ such that
∀i ∈ I (∅ ≠ Ai ⊆ X), there is ⟨ai | i ∈ I⟩ such that ∀i ∈ I (ai ∈ Ai). Let
ACI be ∀X ACI(X), let AC(X) be ∀I ACI(X). Thus

AC ⇔ ∀I ∀X ACI(X).

If X ↠ Y and J ↣ I, then ACI(X) ⇒ ACJ(Y )
If X is well-orderable then AC(X) (Theorem 18.3).
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AC

Theorem 20.3

AC(X) implies that X is well-orderable.

Proof.

Without loss of generality X ̸= ∅ and fix a choice function C for X. We
will construct a bijection from some ᾱ < Hrtg(X) onto X.
Let us give a sketch of the proof: let x0 be an element of X, for example
x0 = C(X), and suppose we have constructed x0, x1, . . . , xβ, . . ., distinct
elements of X, with β < α. If X = {xβ | β < α} then α → X, β 7→ xβ is
the required bijection. Otherwise pick a new element xα ∈ X different
from the previous ones, for example xα = C(X \ {xβ | β < α}). If the
map α 7→ xα were defined for all α < Hrtg(X), then we would have an
injective map Hrtg(X) ↣ X, a contradiction. Therefore there is
ᾱ < Hrtg(X) such that X = {xβ | β < ᾱ}.
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Zorn’s lemma and its relatives

Zorn(X)

If ≤ is an ordering on X such that every chain has an upper bound, then
∃x ∈ X (x is maximal).

Zorn’s Lemma is ∀X Zorn(X).
If the assumption “every chain” is strengthened to “every upward directed
set” a weaker statement is obtained: wZorn(X). The weak Zorn’s
Lemma asserts that ∀XwZorn(X).

MaxHaus(X)

If ≤ is an ordering on X, then ∃C ⊆ X (C is a maximal chain)

Hausdorff’s maximality principle is ∀XMaxHaus(X).
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Zorn’s lemma and its relatives

Proposition 20.5

Let X ̸= ∅ be a set:
X is well-orderable ⇒ MaxHaus(X) ⇒ Zorn(X) ⇒ wZorn(X) and
wZorn(P(X ×X)) ⇒ X is well-orderable.

X is well-orderable implies MaxHaus(X)

Assume X is is well-orderable and, towards a contradiction, let ≤ be an
ordering on X without maximal chains. For C ⊆ X a chain, the set
K(C) = {x ∈ X \ C | C ∪ {x} is a chain} is nonempty. Fix a choice
function F : P(X) \ {∅} → X. Then

g : Hrtg(X) → X, α 7→ F (K ({g(β) | β < α})) .

is injective: a contradiction!
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MaxHaus(X) implies Zorn(X)

Let ≤ be an ordering on X such that every chain has an upper bound. If
C ⊆ X is a maximal chain, then the upper bound of C belongs to C so it
is a maximal element of X.

Zorn(X) implies wZorn(X)

Trivial.

wZorn(P(X ×X)) implies X is well-orderable

Let P ⊆ P(X ×X) be the set of all well-orders R such that fld(R) ⊆ X.
If R,S ∈ P set
R⊴ S ⇔ ∃a ∈ fld(S)[fld(R) = pred(a;S) ∧R = S ∩ fld(R)2]. By
wZorn(P(X ×X)) there is a maximal R̄ ∈ P. Towards a contradiction
suppose fld(R̄) ̸= X and fix a ∈ X \ fld(R̄). Consider
S = R ∪ {(y, a) | y ∈ fld(R̄)} ∪ {(a, a)}. Then S ∈ P e R̄◁ S, against
the maximality of R̄. Therefore R̄ well-orders X.
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Theorem 20.6

AC is equivalent to ∀α ∈ Ord (P(α) is well-orderable).

Proof.

It is enough to show that each Vα is well-orderable.
If Vα is well-orderable, fix a bijection f : Vα → γ, and by case assumption
there is a well-order on P(γ) inducing via f a well-ordering on
Vα+1 = P(Vα). If λ is limit and if we can pick (without AC!) a
well-order ◁α on Vα, for all α < λ, then for x, y ∈ Vλ

x◁λy ⇔ ∃α < λ
[
(x ∈ Vα∧y /∈ Vα)∨(x, y ∈ Vα+1\Vα∧x◁α+1y)

]
(*)

is a well-order on Vλ. Let γ = supα<λ γ
+
α where γα = |Vα|, and let ≺ be

a well-order of P(γ). Set ◁0 = ∅; if ◁α is a well-order on Vα and
fα : Vα → γ+ is its enumerating function then define ◁α+1 on Vα+1 via
fα and ≺; if ν < λ is a limit ordinal apply the construction (*) with ν
instead of λ.
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Theorem 20.7. The following are equivalent:

1 AC.
2 Hausdorff’s maximality principle.

3 Zorn’s Lemma.
4 The weak Zorn’s Lemma.
5 Teichmüller-Tukey’s Lemma: Let ∅ ≠ F ⊆ P(X) be a family of

finite character, that is
∀Y ⊆ X (Y ∈ F ⇔ ∀Z ⊆ Y (Z finite ⇒ Z ∈ F)). Then any Y ∈ F
is contained in a maximal Z ∈ F .

6 The Axiom of Multiple Choices (AMC): For any set X ̸= ∅ there is
a function F : P(X) \ {∅} → P(X) \ {∅} such that F (A) ⊆ A is
finite, for all ∅ ≠ A ⊆ X.

7 Every preorder contains a maximal free subset.

8 Kurepa’s maximality principle: Every order contains a maximal free
subset.

9 Every linear order can be well-ordered.
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Proof

Proposition 20.5 says that AC, Hausdorff, Zorn and weak-Zorn are
equivalent, that is 1 ⇔ 2 ⇔ 3 ⇔ 4 .
Every order is a preorder so 7 ⇒ 8 .
1 ⇒ 6 (i.e. multiple choices) is trivial.
Let us prove that 4 ⇒ 5 ⇒ 7 , that 6 ∨ 8 ⇒ 9 and that 9 ⇒ 1 .

9 ⇒ 1 ‘every linear order is well-orderable’ implies AC
α2 is linearly ordered by <lex, so

α2 is well-orderable. As α2 ≍ P(α) the
result follows from Theorem 20.6.

4 ⇒ 5 wZorn implies Teichmüller-Tuckey

Let F ⊆ P(X) be of finite character, and let Y ∈ F . If D ⊆ F is an
upward directed collection of sets containing Y , then

⋃
D ∈ F by the

finite character of F , so D has an upper bound in F . Therefore there is a
Z ∈ F which is maximal and contains Y .
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Proof

5 ⇒ 7 Teichmüller-Tuckey implies that every preorder has a maximal
free subset

Let ⟨X,≤⟩ be a preordered set. The family F of all free subsets of X has
finite character, and ∅ ∈ F , so it contains a maximal set.

6 ⇒ 9 ‘multiple choices’ implies ‘every linear order is well-orderable’

Let ⟨X,≤⟩ be a linear order. By assumption there is
G : P(X) \ {∅} → P(X) \ {∅} such that G(A) ⊆ A is finite, for all
∅ ≠ A ⊆ X. Let g(A) be the minimum of G(A). Then g is a choice
function for X.
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Proof

8 ⇒ 9 ‘Kurepa’s maximality principle’ implies ‘every linear order is
well-orderable’

Let ⟨X,≤⟩ be a linear order. We prove that there is a choice function for
X and the result follows from Theorem 20.3.
Let ⪯ be the ordering on P = {(A, a) | A ⊆ X ∧ a ∈ A} defined by

(A, a) ⪯ (B, b) ⇔ A = B ∧ a ≤ b.

By assumption there is a maximal free A ⊆ P. It easy to check that A is
a choice function for X.
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Cardinality without choice

Given E a non-regular equivalence relation on a proper class A, we would
like a choice function C : A → A such that

∀x ∈ A (C(x) ∈ [x]E)

and

∀x, y ∈ A (x E y ⇒ C(x) = C(y)) .

The existence of such C is equivalent to the existence of a transversal T
for the relation E, that is: a class T ⊆ A such that T ∩ [x]E is a
singleton for all x ∈ A.
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Example

If A is the class of all well-ordered sets and E is the isomorphism relation,
then every equivalence class contains exactly one ordinal, so we may
assume that C(A,<) = ot(A,<);

Example

If A is the class of all finitely generated abelian groups and E is the
isomorphism relation, then let C(G) be the unique

Zn × Z/p1Z× Z/p2Z× · · · × Z/pkZ

isomorphic to G, where n ≥ 0 and p1 ≤ p2 ≤ · · · ≤ pk primes and k ≥ 0.

Example

Assuming AC and A = V and E the relation ≍, then C(A) = the unique
cardinal κ in bijection with A.
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For any equivalence relation E, one can define J·KE : A → V such that

∅ ≠ JxKE ⊆ [x]E and x E y ⇔ JxKE = JyKE .

The set JxKE is the Scott E-equivalence class, defined by

JxKE = {y | y E x ∧ ∀z (z E x ⇒ rank(x) ≤ rank(z))}

or equivalently: JxKE = [x]E ∩Vᾱ, where ᾱ = min {α | Vα ∩ [x]E ̸= ∅}.
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The order type of an ordered set ⟨A,<⟩ is

type⟨A,<⟩ =

{
ot⟨A,<⟩ if ⟨A,<⟩ is a well-order,

J(A,<)K∼= otherwise,

where ∼= is the isomorphism relation.
In absence of AC the cardinality of a set X is

card(X) =

{
|X| if X is well-orderable,

JXK≍ otherwise.

Cardinalities are denoted by lower case german letters a, a, . . .. The
ordering on cardinalities is given by

a ≤ b ⇔ A ≾ B for some/every A ∈ a and B ∈ b.

Thus a = b ⇔ A ≍ B and a ≤ b ⇔ A ≾ B.
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Theorem 20.10

AC is equivalent to ∀a, b (a ≤ b ∨ b ≤ a), that is
∀A,B (A ≾ B ∨ B ≾ A).

Proof.

It is enough to show that if A ≾ B ∨B ≾ A for all sets A,B, then every
set is well-orderable. Let A be a set: since Hrtg(A) ̸≾ A by Hartog’s
Theorem, then A ≾ Hrtg(A) ⊆ Ord so A is well-orderable.

Addition and product of cardinalities are defined as follows:

a+ b = card(A ⊎B), a · b = card(A×B),

for some/any A ∈ a and B ∈ b.
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If A and B have at least two elements,
card(A) + card(B) ≤ card(A) · card(B).
Assuming AC one has that if A is infinite, then A ≍ A×A; thus if A and
B are infinite disjoint sets then

A ∪B ≍ (A ∪B)× (A ∪B) ≍ A ∪ (A×B) ∪ (B ×A) ∪B,

and hence A×B ↣ A ∪B, that is
card(A) · card(B) ≤ card(A) + card(B). Thus ∀A (A ≍ A×A) implies

∀A,B (A,B infinite ⇒ card(A) + card(B) = card(A) · card(B).
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Theorem 20.11

The following are equivalent:

1 AC,

2 ∀a(a ≮ ω ⇒ a · a = a),

3 ∀a∀b(a, b ≮ ω ⇒ a · b = a+ b).

Proof.

1 ⇒ 2 is clear, and 2 ⇒ 3 follows from what we proved before.
We show that 3 implies that every set A is well-orderable. We may assume
that A is disjoint from B = Hrtg(A). By assumption there is a bijection
F : A×Hrtg(A) → A ∪Hrtg(A). Since Hrtg(A) ≾ A is impossible,

∀x ∈ A∃α ∈ Hrtg(A) (F (x, α) /∈ A).

If α(x) is the least witness, then A → Hrtg(A), x 7→ F (x, α(x)), is
injective hence A is well-orderable.
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Weak forms of the axiom of choice

Recall from Section 14.E the Axiom of Countable Choices ACω, that is
∀X ACω(X), where

ACω(X)

∀⟨Ai | i ∈ ω⟩ ∈ ω(P(X) \ {∅}) ∃⟨ai | i ∈ ω⟩ ∈ ωX ∀i ∈ ω (ai ∈ Ai)

Recall:

Theorem 14.31

ACω implies that the countable union of countable sets is countable.
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Theorem 20.12

Assume ACω(R). Then ω1 is not a countable union of countable sets. In
particular: if αn < ω1 for all n < ω, then supn αn < ω1.

Proof.

Let Xn ⊆ ω1 be countable sets, for n < ω. Without loss of generality, we
may assume that each Xn is infinite, and let

An = {R ⊆ ω × ω | R is a well-order of ω and ot ⟨ω,R⟩ = ot ⟨Xn,≤⟩} .

As P(ω × ω) ≍ R we may choose Rn ∈ An for all n ∈ ω, and let
fn : ⟨ω,Rn⟩ → ⟨Xn,≤⟩ be the unique isomorphism. Then

ω × ω →
⋃

n∈ω Xn, (n,m) 7→ fn(m)

is surjective, thus
⋃

n∈ω Xn is countable.
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Corollary 20.13

ACω(R) implies that R is not a countable union of countable sets.

DC

For any set X ̸= ∅, DC(X) is: If R is a relation on X such that
∀x∃y (x R y), then for any x0 ∈ X there is an f ∈ ωX such that
f(0) = x0 and ∀n (f(n) R f(n+ 1)).

If X is well-orderable, then DC(X) is provable, and if X ↠ Y then
DC(X) ⇒ DC(Y ).

Proposition 20.14

For X a nonempty set:

AC(X) ⇒ DC(X),

DC(X × ω) ⇒ ACω(X).

In particular: AC ⇒ DC ⇒ ACω.
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Proof.

Assume AC(X) towards proving DC(X). Let X ̸= ∅ and let R ⊆ X ×X
be such that ∀x∃y (x R y). Pick x0 ∈ X and a choice function
C : P(X) \ {∅} → X. Define f : ω → X by f(0) = x0 and
f(n+ 1) = C ({y ∈ X | f(n) R y}). Then f witnesses DC(X) for R, x0.
Assume DC(X × ω) towards proving ACω(X). Given
{An | n ∈ ω} ⊆ P(X) \ {∅} let R be the relation on X × ω defined by

(a, n) R (b,m) ⇔ m = n+ 1 ∧ (a ∈ An ⇒ b ∈ Am).

For every (a, n) ∈ X × ω there is some b ∈ X such that
(a, n) R (b, n+ 1): if a ∈ An pick b ∈ An+1, if a /∈ An let b = a. Fix an
element a0 ∈ A0: by DC(X × ω) there is a function f : ω → X × ω such
that f(0) = (a0, 0) and f(n) R f(n+1) for all n. The function g : ω → X

g(n) = the first component of the ordered pair f(n)

is the required function.
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