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Definition 21.1 (AC)

Let (k; | i € I) be a sequence of cardinals.
@ The generalized sum of the ;s is >, ; ki = |U;c i} X Kil;
@ The generalized product of the r;s is [[;c; v = [Xierril.

© k=1 .1 =2 ic.hi, with k; =1,

0 2" =[Lic.. 2 = [ Licy, wi» With K; =2,

@ the operations of generalized sum and product are monotone, that is
if k; < A, then Zie] K < Zie] A
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Proposition 21.2
If I is a well-orderable set and 1 < k; for every i € I, then

Y ier i < || - supger ki,

and if max(||,sup;c; ki) > w, then equality holds.

Proof.

The inclusion J;c;{i} x x; € I X sup;c; k; proves the inequality. For
every a € sup;¢y k; pick i(a) € I such that a € ky(q): the function

sup;er ki — et} X mi, o= (i(a), ) is injective and proves that
SUp;eg ki < D ier ki- By monotonicity [I| =, ;1 <3 . ; K;. Therefore
max(|I],sup;cs ki) < D cp ki- The conclusion follows from

Corollary 18.29. O
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Theorem 21.3 (AC)
If I and {X; | i€ I} are sets, then |J;c; Xi| < || - sup;e | X

Proof.

For each i € I choose a bijection f;: X; — |X;| and for each = € (J;c; X
choose i(x) € I such that x € X;(,). The function

Uier Xi = User{i} x | X == (i(2), fiw)(z))

is injective hence || J;c; Xi| <> ;<71 Xi|. The result follows immediately

from Proposition 21.2. O

v

If I #0and k; < X >2then Y, ki < ler M
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Theorem 21.4 J. Konig
Assume AC. If k; < \; for all 7 € I, then

>ier fi < lier X

Proof.

It is enough to show that >, ;i # [[;c; A, that is no

F: U {t} x ki = Xieri can be surjective. Fix such an F: for every i € I,
the set {F(i,)(i) | « € Kk;} has cardinality < \;, so we can define a
function f € X;er\;:

f(@) = min (A \ {F (i, @) (i) | a € Ki}) .
Let us check that f ¢ ran(F'): if, towards a contradiction, f = F'(ig, ag)

for some g, ap, then f(ig) ¢ {F (i0,@)(i0) | & € ki, } by definition of f, a
contradiction. ny
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Definition 21.5 |

A function f: f — « is cofinal (in «) if ran(f) is unbounded in «, that is
Vo! < a38 < B (o < f(B)). The cofinality of an ordinal « is the least
B such that there is a cofinal f: § — «. This § is denoted by cof(«).

Example |
e id | a: a — « is cofinal, so cof (o)) < . In particular cof(0) = 0.
@ The cofinality of v+ 1 is 1, as witnessed by 0 — ~. Conversely, if X is
limit, cof(A) is limit.
@ cof(w) = w and (assuming a bit of choice) cof(w;) = wi. On the
other hand, cof(X,,) = w, since n +— R,, is cofinal.
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A cofinal map need not be monotone, but. ..

Lemma 21.7 ‘

There is a cofinal monotone function f: cof(a) — «.

Proof. |
Let g: cof(a) — « be cofinal, and to avoid trivialities we may assume
that o is limit. For § < cof(a) let f(8) = max (g(8),sup,5 f(7)). By
construction f is monotone and cofinal. If there is a least 5 < cof(«) such
that sup,.4 f(7) = «, then f:  — « would be cofinal: a contradiction.
Therefore f: cof(a) — « is as required. O

)
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Lemma 21.7
If f: B3 — aand g: v — B are cofinal and f is also monotone, then
fog:v— ais cofinal.

Proof.
If o/ < alet 8’ < B be such that f(8') > o' and let 4" < ~ be such that
9(7") = B". Then f(g(+')) = o’. O

Corollary 21.8
cof (cof (o)) = cof ().
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Definition 21.9 |

A limit ordinal A is regular if cof(A\) = A. Otherwise it is singular. If X is
an infinite cardinal, we will speak of regular or singular cardinal.

If f: |\ = X is a bijection, then f is cofinal, hence a regular ordinal is a
cardinal. Conversely, limit ordinals that are not cardinals are singular.

Theorem 21.10 (AC)

If k> w then kT is regular.

Proof. |

Towards a contradiction suppose cof (k") < k. Let f: cof(k™) — kT be
cofinal. Then &% = {J;cof(s+) f(4) hence

K < Zi<cof(n+)’f(i)‘ < COf(K‘+) : Supi<cof(n+)’f(i)‘ <K,
a contradiction. OJ
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Theorem 21.11 (AC) |

If x is a singular cardinal, then there is an increasing sequence of regular
cardinals (k; | i < cof(k)) such that

K = SUP;<cof (k) i = Zi<cof(n) g

Proof.

Let f: cof(k) — K be increasing and cofinal. The function
g(a) = min{\ € K | A is regular, A > f(a) and V3 < a (g(B8) < \)}

is defined for all o < cof (k) since the regular cardinals are unbounded
below  hence if & < cof(x) were the least ordinal such that g(@) is not
defined, then it would mean that k = supg_ g(3), thatis g: @ — &
would be cofinal, against & < cof(k). Letting x; = ¢(7), it follows that

K = SUPjccof(r) Ki < Diccof(n) i < K- cof(k) =K O
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Theorem 21.12 (AC)

kcf(F) > Kk when & is an infinite cardinal.

Proof. |
If k is regular, the statement becomes k" = 2" > k, which is true by
Cantor's Theorem. We may therefore suppose that cof(x) < k. By
Theorem 21.11 there are cardinals x; such that £ = sup;cof(x) ki and
hence by Konig's Theorem 21.4

K = Zi<c0f(l€) K < Hi<COf(H) K = K/COf(H)‘ ] "
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Corollary 21.13 (AC) {

cof(2%) > k when & is an infinite cardinal.

Proof.
If A = cof(2") < K, then 2% < (2%) = 2%} = 2% 3 contradiction. O ‘

In particular, cof(2%0) > Ry hence 2% can neither be R, X, 1, (or, more
generally, Xy with A < w; limit) nor can it be the least fixed point of the X
function.
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Hausdorff’s formula

Theorem 21.14 (AC)

R N
N7y = max (Ragr,Na”).

Proof. }

If Ny 1 < Ng then by Proposition 18.30 Ngﬂ = Nzil > Ng > R4 hence
the result is proved.

Suppose instead that Ng < N, y1. If f: g — R, 11, then by regularity of
No+1 (Theorem 21.10) there is a v < R,4; such that ran f C . Thus
NeR,y 11 = Uv<Na+1 X3~ and by Theorem 21.3

R R
Nof&-l = |U7<Na+1 N’B’Y‘ S Na-‘rl . Naﬁ.

The other inequality is immediate. my
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Theorem 21.15 (Bukovsky—Hechler)
Assume AC. If cof (2<%) > k > cof(k) then 2% = 2<F.

Proof.

Let (kq | @ < cof(x)) be increasing and supqecof(x) Ka = K- If

Va € cof (k) 3B € cof (k) (2F~ < 2%8), then cof (2<F) = cof (k) < &,
against our assumption. Therefore there is v such that 278 = 2% for all
B > 7. We may assume that x, > cof(x). Then

2% = 9Xaccot(m) Ko = [

)2/4(1 < (2/‘;7)Cof(H) — 9y — 9<K_ N

accof(k
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Operations

Recall that

@ an operation on a set X isan f: "X — X for some n < w,

o if F is a collection of operations on X and Y C X, then ClzY, the
closure of Y under F, is the smallest subset of X containing Y and
closed under each f € F.

ClrY =U, Yn where Y, 1 =Y, U{f(a) |d €Y, A feF}and
Yo=Y.

Definition 21.16 |
A generalized operation on X isa f: “X — X where o € Ord is the
arity of f, written ar f; when o > w we will speak of infinitary
operations, while ordinary operations, i.e. when o < w, are often called
finitary operations.
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If F is a collection of generalized operations on X and Y C X, then
ClrY =([{ZC X |Y CZAVfeFVae™ Mz (f(a) e 2)}

is the smallest subset of X containing Y and closed under each f € F.

Theorem 21.17 |
Let F be a family of generalized operations on a set X and let Y C X.
Suppose A is a regular cardinal such that A > ar(f) for all f € F.
©Q Then ClrY =g ) Y where Yo =Y, Y, = s, Y3 when 7 is
limit, and Y41 = YU {f(@) | f € FAd € @Yz}
@ Assume AC and suppose k > max (A, |[F|,|Y]) and
VfeF (/-i‘ar(f)| = k). Then [ClzY| < k.
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F a family of generalized operations on X, Y C X, and
A =cof A > ar(f) forall feF.

ClrY = UB<>\ Ys where Yo =Y, Y, = UB<7 Y3 when + is limit, and
Y1 =YsU{f(@) | feFnae aLl”(f)Yﬁ}.

Proof.

Y = Ua<r Yo € ClrY is clear.
For the other inclusion, if f € 7 and a = ar f, then by regularity of A
every @ € “Y belongs to some Y3, so f(@) € Yz C Y. O
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F a family of generalized operations on X, Y C X, and
A =cof A > ar(f) forall f e F.

Assume AC and suppose £ > max(A, |F|,|Y]) and Vf € F (/ﬁ‘ar(f)| = m).
Then |ClgY]| < k.

Proof.

It is enough to show that V3 < A (|Ys| < k). This is true if 5 =0 or
limit. Suppose this holds for some f3, so that |Y3| < « and [*( V5| < &
forall f € F. As {f(@) | f € F Ad € @Yz} is the surjective image of
User{f} x DY, which has size < |F| -k, then [Yzy1| < k. O
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Theorem 21.18 (AC) |
Let F is a family of generalized operations on a set X and let Y C X.
Q Ifar(f) <w forall f € F, i.e. Fis a family of finitary operations,
then |ClzY| < max(w, |[F|, |Y]).
Q If ar(f) <wj for all f € F, and |F| <|Y]|¥, then |[Cl£Y| < |Y|“.

Proof. |

@ It is enough to check that A = w and k = max(w, | F|, |Y|) satisfy the
hypotheses of Theorem 21.17, namely that k™ = x, which is immediate.

@ It is enough to observe that A = w; and k = |Y|* satisfy the
hypotheses of Theorem 21.17, namely k“ = k. [
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Example 21.19

If M = (M,...)is an L-structure, then the substructure generated by
Y C M has size < max(w, A, |Y|), where X is the cardinality of the set of
non-logical symbols of L.

Example 21.20 |

A Boolean algebra B is countably complete if it is closed under
countable joins or, equivalently, countable meets. The smallest countably
complete subalgebra of B containing Y C B has size < |Y|.

A c-algebra is an algebra of sets which is closed under countable unions
or, equivalently, countable intersections; thus a o-algebra is an example of
a countably complete Boolean algebra. If X is a topological space, the
o-algebra generated by the open sets is the family BOR(X) of Borel
subsets of X. By Section 13.G.4 when X is infinite, second countable,
and Ty, then |BOR(X)| = 2%o.
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Every ordinal is a topological space, and since « is a subspace of 8 when
a < 3, the topology on an ordinal is induced by the topology on (Ord, <).

Definition 21.21 |
Let 2 < Ord. Aclass A C Q) is open in § if for every a € A there is are

B < a < 7y such that (5;v) C A, with the proviso that if @ = 0 then we
require [0;7y) C A for some v > 0. A class C C Q is closed in Q if Q\ C
is open in €2; equivalently:

YAO<U(CNA) =A=)Xe0).

Thus 0 and all successor ordinals are isolated points of 2. The spaces
w+ 1 and w + n are homeomorphic for all 1 < n < w, while w + 1 and

w + w + 1 are not homeomorphic, since the former has one non-isolated
point, namely w, while the latter has two non-isolated points, w and w + w.
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Proposition 21.22

An ordinal is a compact space if and only if it is either zero or else a
successor ordinal.

Proof. |

We will prove by induction on « that every open covering U of a+ 1 has a
finite subcovering. If v = 0 the result follows at once, thus we may
assume that o > 0 and that § 4+ 1 be compact, for all 3 < a. Let U be an
open cover of a + 1 and let U € U be such that a € U. Choose 8 < «
such that [8 4 1,a] C U: by inductive assumption there is a finite Uy C U
covering 8+ 1 < «, hence Uy U {U} is a finite open cover of o + 1.
Conversely, suppose A is a limit ordinal: then {[0;a) | & < A} is an open
covering of A that has no finite subcovering. O
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Definition 21.23 |
A Hausdorff topological space is totally disconnected or
zero-dimensional if every point has a neighborhood base made of clopen

sets.
A topological space X is completely regular if given a closed set C' and a
point ¢ C' there is a continuous f: X — [0;1] such that f(z) =1 and

vy € C(f(y) = 0). |

By Tietze's theorem, every metric space is completely regular, and a
completely regular space is Hausdorff. An ordinal is a totally disconnected,
completely regular space.
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Proposition 21.24 |

Let X be a completely regular topological space that does not surject onto
R. Then X is totally disconnected.

Proof.

Fix x € X and V an open neighborhood, and let f be a continuous
function such that f(z) =0 and f(y) =1forally € X\ V. By
assumption there is r € (0;1) \ ran(f). Then f=1[0;7] = f~1[0;r) is a
clopen neighborhood of x contained in V. O

Corollary 21.25 |
A countable metric space is totally disconnected.
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Every countable ordinal is homeomorphic to a countable closed subset of
R, hence by Proposition 21.22 every countable successor ordinal is
homeomorphic to a countable compact subset of R.

Which conditions must f: €2 — Ord satisfy in order to be continuous?
Continuity is never a problem on the successor ordinals, as they are isolated
points. If v < Q is limit and f(+y) is a successor, then by continuity of f,
there is an interval [3;+] which is mapped by f in the singleton {f(7)}; in
other words: f is eventually constant below . If v < £ is limit and f(7)
is limit, then for every 6 < f() there is § < v such that the interval [3;~]
is mapped by f into the interval [; f(7y)]. Therefore:

Lemma 21.26 |

Suppose f:  — Ord is monotone. Then f is continuous if and only if for
every limit ordinal A < 2

fA) = SUpPg« ) f(B) and VX CA(supX = A= f(\) =sup,cx f(v)).

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024-2025 25 /45



Thus if f: Q — Ord is increasing and continuous, then f(\) is limit for all
limit ordinals .

Proposition 21.27 }

Suppose € is either a regular cardinal or Ord. If f:  — Q is increasing
and continuous then ran f is closed and unbounded in §2. Conversely, if C'
is closed and unbounded in §2, then its enumerating function

f:Q — C CQisincreasing and continuous.

Proof. }

Suppose f: Q — € is increasing and continuous. Then f(a) > «a, as f is
increasing, so ran f is unbounded in Q. Suppose A is limit and ANran f is
unbounded in A, and let v = {a < Q| f(a) < A}; then v is limit and

A = f(v) € ran f. Therefore ran f is closed in .

Conversely, suppose C' is closed and unbounded in €2. The enumerating
function f: Q — Q is increasing. If A € Q is limit, then v < sup, <y f(7)
is limit and C' = ran f is unbounded in v, so v € C' and hence

f(A) =v =sup,., f(7). Therefore f is continuous. O

y
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In what follows « is an uncountable regular cardinal. The next result
shows that

Club(k) ={X C k| 3C C X (C is closed and unbounded in x)}

is a proper filter on k. (Properness follows from the fact that () is not
unbounded, so if X € Club(k) then k\ X ¢ Club(k).)

Theorem 21.28 |
If C, D C k are closed and unbounded in x, then C' N D is closed and
unbounded in k.

Proof. |
Clearly C' N D is closed, so it is enough to show that it is unbounded in x.
Given ao < k let us find a 8 € C'N D with a < . Using that C' and D are
unbounded, let us construct inductively an increasing sequence of ordinals
a <y <d <y < <...suchthaty; € C and §; € D. Let

B = sup; v; = sup; ;. Since & is regular then 8 € k and since C' and D
are closed, f =sup;vy; € C and f =sup;d; € D, thatisge CnD. L[l

v
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The assumption that x be regular and uncountable cannot be
removed—the sets {2n | n € w} and {2n+ 1 | n € w} are closed and
unbounded in w but their intersection () is not unbounded in w.

Theorem 21.29

If v < and the (Cy | @ < ) are closed unbounded in &, then (), Ca
is closed unbounded in k.

Proof.

Clearly ﬂaq C, is a closed subset of x, so it is enough to show that it is
unbounded. We argue by induction on 7. If v =0 or v = 1 there is
nothing to prove. The case of v a successor ordinal follows from

Theorem 21.28, so we may assume that - is limit. Replacing C,, with
Np<a Cp, we may assume that o < 8 <y = Cq 2 Cp. Given a v <k,
construct an increasing sequence (&, | & < 7y) with v < & and &, € C,,.
Then § = sup,., §a € K as k is regular, and since the Cys are closed and
{&s | B > a} C C,, then £ € C,, for each a < 7. O
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a < k is closed under f: "k — k if f(B1,...,05,) € « for all
Bi,...,n € a. The set of all ordinals closed under f is C(f).

Theorem 21.30

O C(f) is closed and unbounded, for all f: "k — k.

@ If C C k is closed and unbounded, then C' O C(f) for some
fik— k.

Proof.
@ As o < k we must find ¥ > a which is closed under f. Let

Yirr = sup{f(Br, ..., Bn) | Br,- .., Bn € i}

where 79 = . By our assumption on x, we have that

’{f(/Bla o 7/871) | Bla o 7571 S 72}’ S |’Y’L|n < K, and hence
v = sup,; i < kK is the ordinal we are looking for.
Closure of C(f) in k is immediate. O
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Theorem 21.30
@ C(f) is closed and unbounded, for all f: "k — k.

@ If C C k is closed and unbounded, then C' O C(f) for some
f:rk— kK

Proof. |

@ Let C C k be a closed unbounded, let g be its enumerating function,
and let f(a) =g(a+1): as a < g(a) < f(a), if v is closed under f, then
~v is limit and C' N~y is unbounded in . Therefore C(f) C C. Ol

v

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024-2025 30/ 45



Corollary 21.31

If F is a collection of operations on a regular cardinal x and |F| < &, then
Nyer C(f), the set of all a < x which are closed under all f € F, is
closed and unbounded in k.

Therefore if A is an algebraic structure of size k a regular cardinal with
< Kk many operations and constants (e.g. a group, a ring, a lattice, ...)
and (a, | @ < k) is an enumeration of A, then the set of all v < x such
that {an | @ < v} is a substructure of A is closed and unbounded in .
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Definition 21.32
The diagonal intersection of a sequence (X, | a < k) of subsets of k is

A0¢<r§){0c = {6 <K | IB € na<6 XOC}'

If Yo =(Ng<a Xp, then (N5 Xo = Ny<p Yo so that

Ao¢<fi‘Xvoz = Ao¢<m}/oz-

B € Na<p Xa is equivalent to Vo < 3 (8 € X, ), which is equivalent to
Va<k(Bea+1Vpe X,). Therefore

Aoz</'€—Xoc = m (Xa Ua + 1)

a<k

If each X, is closed in k, then so is X, Ua + 1, and hence A, X, is
closed in k.
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Proposition 21.33

If Kk > w and C, is closed and unbounded in & for each a < k, then
Ao<xCq is closed and unbounded in k.

Proof.

We may assume that a < 3 = C, 2 Cg. Closure of C'= Ay.Cy is |
immediate so it is enough to check that C' is unbounded. Fix Sy < k. As
,<, Cv is unbounded in £ for all v < x (Theorem 21.29), one defines an
increasing sequence

Bo<P1<B2<---<B=sup,pn

such that 8,41 € mugﬁn Cy. Asn <m = B, € Cgy, the fact that Cj,, is

closed implies that 8 = sup,,~,, Bm € Cjs,, hence
B€M,Cps, =,<5Cu thatis By < B € C as required. O

y
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Definition 21.34
A C k is stationary in x if ANC # () for all closed unbounded C C .

By Theorem 21.29, a set in Club(k) is stationary, but not
conversely—Exercise 21.58.

A stationary subset of  is unbounded in « as it intersects every (a; k).
Thus regularity of £ implies that the stationary sets have size .
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Theorem 21.35 (Fodor) |

Let S C k be stationary and let F': S — k be such that
Va € S (a« #0 = F(a) < «). Then F is constant on a stationary subset
of k.

Proof. }

Towards a contradiction, suppose that F'~! {a} is non-stationary for all
o < K, that is

Ya € k3AC, C k (Ca closed and unbounded in x and C, N F~! {a} = @) .

By Proposition 21.33, A,<,C, is closed and unbounded, and since (0; k)
is also closed and unbounded, the same is true of C' = (An<xChy) \ {0} by
Theorem 21.29. Let @ € SN C: then 8= F(a) < « by definition of F,
and o € Cj by definition of diagonal intersection, hence o ¢ F~1 {3} that
is F'(a) # B: a contradiction. O
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The exponential function k +— 2"

Rule 1
K< \A= 26 <927 ‘

Rule 2
k < cof(27), and hence kT < 2%, ‘

The GCH strengthens Rule 2 by 2% = k™, and therefore cof (2%) = Kkt > &,
for all infinite cardinals x. By Godel GCH cannot be refuted from ZFC,
and by Cohen CH (and hence GCH) cannot be proved in ZFC.
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Easton showed that Rule 1 and Rule 2 are the only restrictions for x +— 2%
when « is regular.
Example
Each of the following is consistent with ZFC:
@ 28 = kT for every regular &,
@ 2% > kT and that Y\ < & (2)‘ = )\+), with & any regular cardinal.

The situation for singular cardinals is much deeper and interesting. ..
Silver proved that GCH cannot fail first at a singular cardinal of
uncountable cofinality.

Rule 3

If A is a limit ordinal of uncountable cofinality and
{a < cof(N) | 2% = R, 41} is stationary in cof(\), then 28 = Ry, ;.

In particular, GCH cannot fail first at ¥, i.e. if PALEES N1 for all
a < wi, then 281 = Ny +1-
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The assumption w < cof(A) in in Rule 3 cannot be removed since Magidor
proved that GCH can fail first at N,: it is consistent that

Vn < w (2N" = Nn+1) and 2% > N1

The value 2% cannot be arbitrarily large, as Shelah proved that:

Rule 4

If Vn (QN" < Nw), then QNW < Nmin(UJ4,(2N0)+)‘
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Definition 21.37

A cardinal & is strong limit if 2* < x for all A < k. A regular cardinal
k > w is weakly inaccessible if it is limit; it is strongly inaccessible if it
is strong limit.

If x is weakly inaccessible then k = Y, but the least fixed point of the N
function is of cofinality w and hence not regular. A strongly inaccessible
cardinal is necessarily weakly inaccessible, and GCH guarantees the
converse. In the absence of some cardinal arithmetic assumption, the two
notions can be distinct; it is possible that 280 is weakly inaccessible, while
if x is strongly inaccessible then 2% < k.
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Lemma 21.38

Assume AC and suppose & is strongly inaccessible. Then |V, | < & for all
a < k. In particular |z| < & for all x € V.

Proof.

Proceed by induction on a. If |V,| < k then |V,41| = olVal < k. as k is
strong limit. If ais limit, then [Vo| = |a] - supg.,|Vs| < & by

regularity. [
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Theorem 21.39
Assume AC. If k is strongly inaccessible, then V. E ZFC.

Proof. |

Suppose k is strongly inaccessible. In order to prove that V, F ZFC, by
Theorem 19.15 it is enough to show that V, satisfies replacement. By

part (g) of Theorem 19.22 it is enough to show that if f: a — V,, with

a € Vy, then there is b € V; such that ran f C b. Let g: a — &,

g(z) = the least a < k such that f(x) € V. By Lemma 21.38 |a| < &, so
ran g C vy for some v < k, and hence ran f C V,, € V.. O]

The converse of Theorem 21.39 fails: if  is inaccessible there are many
a < k such that Vo F ZFC (Theorem 31.22).
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Definition 21.40 |

A universe is a transitive set U closed under the operation z — Z(x),
such thatw € U, and VI € UV f: I = U (U;e; f(i) € U).

Lemma 21.42

If U is a universe then

Q2xCycelU=zel,

Q@ zr,ycU=zxUyecl,

@ if z,y € U then {z,y} € U and hence (z,y) € U,
Q ifx,yeUthenz xy e U and*y e U,

Q@ iff:I—>UandlIecUthenranf e U and feU.
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xrCyeU=zelU
x € P(y) € U sox €U by transitivity.

z,yeU=axzUyecU

2cweU,so2eU by transitivity. Then z Uy = |J;o (i) where
f:2— U is defined by f(0) =z and f(1) = y.

If z,y € U then {z,y} € U and hence (z,y) € U

If z € U then {z} € P(x) € U, so {z} € U. Thus if z,y € U then
{z},{y} € U, so {z,y} € U, and therefore (z,y) € U.

if z,y € U then x xy € U and *y € U
The result follows from z x y C 2 Z(x Uy) and *y C P (x x y).

If f: I —-Uand I €U thenran f € U and f € U

Letting g: I — U be i — {f(i)}, then ran f = (J,c; 9(i) € U. Moreover
fCIxranf €U, whence f € U.
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Theorem 21.41 (AC)

U is a universe if and only if U = V, for some strongly inaccessible
cardinal .

Proof

Suppose U is a universe and let x = U N Ord.

U is closed under the S operation, so « is limit and k ¢ U. If v < k and
f:~v — &, then supran f = J,., f(a) € U and hence f cannot be
cofinal in k. It follows that « is regular. If 2% > k for some infinite
cardinal A < k there would exist a surjection f: Z(\) - k CU. But
P(N) € U so by Lemma 21.42 k € U, a contradiction. It follows that « is
a strongly inaccessible cardinal.

Let us check that V, € U for all @ < k, so that V, C U. As U is closed
under the & operation, then & = {a < k | Vo € U} is a limit ordinal: if
R < k then using the function K — U, a — V,, we would have that

Vi = U(KT§ V. € U, so that & € g, a contradiction. Therefore V.. C U.

(continues)
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Proof (continues). |
Recall that kK = U N Ord is inaccessible, and V., C U.

We prove that U C V,,. Towards a contradiction, let x € U \ V; be of
least rank: then rank(z) > k so that the map x — &, y — rank(y), is
cofinal so that x = sup,¢, rank(y) € U, a contradiction. Therefore
V,=U.

Suppose now k is a strongly inaccessible cardinal, and let us check that V
is a universe. Suppose f: I — V,, with I € V.. Then the function I — &,
i — rank(f (7)), is bounded in k, since |I| < k, so ran f C V,, for some

a < k. Therefore | J;c; f(i) € Va, and hence | J;c; f(i) € Vag1 € V.

The other clauses in the definition of universe are immediate. )
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