Elements of Mathematical Logic Section 21 of Chapter V

Lucidi preparati da Alessandro Andretta Lezioni di Raphaël Carroy

> Dipartimento di Matematica Università di Torino

Definition 21.1 (AC)

Let $\langle \kappa_i \mid i \in I \rangle$ be a sequence of cardinals.

- The generalized sum of the κ_i s is $\sum_{i \in I} \kappa_i = |\bigcup_{i \in I} \{i\} \times \kappa_i|;$
- The generalized product of the κ_i s is $\prod_{i \in I} \kappa_i = |X_{i \in I} \kappa_i|$.

•
$$\kappa = \sum_{i \in \kappa} 1 = \sum_{i \in \kappa} \kappa_i$$
, with $\kappa_i = 1$,

•
$$2^{\kappa} = \prod_{i \in \kappa} 2 = \prod_{i \in \kappa} \kappa_i$$
, with $\kappa_i = 2$,

• the operations of generalized sum and product are monotone, that is if $\kappa_i \leq \lambda_i$, then $\sum_{i \in I} \kappa_i \leq \sum_{i \in I} \lambda_i$.

Proposition 21.2

If I is a well-orderable set and $1 \leq \kappa_i$ for every $i \in I$, then

 $\sum_{i \in I} \kappa_i \le |I| \cdot \sup_{i \in I} \kappa_i,$

and if $\max(|I|, \sup_{i \in I} \kappa_i) \ge \omega$, then equality holds.

Proof.

The inclusion $\bigcup_{i \in I} \{i\} \times \kappa_i \subseteq I \times \sup_{i \in I} \kappa_i$ proves the inequality. For every $\alpha \in \sup_{i \in I} \kappa_i$ pick $i(\alpha) \in I$ such that $\alpha \in \kappa_{i(\alpha)}$: the function $\sup_{i \in I} \kappa_i \to \bigcup_{i \in I} \{i\} \times \kappa_i, \ \alpha \mapsto (i(\alpha), \alpha)$ is injective and proves that $\sup_{i \in I} \kappa_i \leq \sum_{i \in I} \kappa_i$. By monotonicity $|I| = \sum_{i \in I} 1 \leq \sum_{i \in I} \kappa_i$. Therefore $\max(|I|, \sup_{i \in I} \kappa_i) \leq \sum_{i \in I} \kappa_i$. The conclusion follows from Corollary 18.29.

Theorem 21.3 (AC)

If I and $\{X_i \mid i \in I\}$ are sets, then $|\bigcup_{i \in I} X_i| \le |I| \cdot \sup_{i \in I} |X_i|$.

Proof.

For each $i \in I$ choose a bijection $f_i \colon X_i \to |X_i|$ and for each $x \in \bigcup_{i \in I} X_i$ choose $i(x) \in I$ such that $x \in X_{i(x)}$. The function

$$\bigcup_{i \in I} X_i \to \bigcup_{i \in I} \{i\} \times |X_i| \quad x \mapsto (i(x), f_{i(x)}(x))$$

is injective hence $|\bigcup_{i \in I} X_i| \le \sum_{i \in I} |X_i|$. The result follows immediately from Proposition 21.2.

If $I \neq \emptyset$ and $\kappa_i \leq \lambda_i \geq 2$ then $\sum_{i \in I} \kappa_i \leq \prod_{i \in I} \lambda_i$.

Theorem 21.4 J. König

Assume AC. If $\kappa_i < \lambda_i$ for all $i \in I$, then

 $\sum_{i\in I}\kappa_i < \prod_{i\in I}\lambda_i.$

Proof.

It is enough to show that $\sum_{i \in I} \kappa_i \not\geq \prod_{i \in I} \lambda_i$, that is no $F \colon \bigcup_i \{i\} \times \kappa_i \to X_{i \in I} \lambda_i$ can be surjective. Fix such an F: for every $i \in I$, the set $\{F(i, \alpha)(i) \mid \alpha \in \kappa_i\}$ has cardinality $< \lambda_i$, so we can define a function $f \in X_{i \in I} \lambda_i$:

$$f(i) = \min \left(\lambda_i \setminus \{ F(i, \alpha)(i) \mid \alpha \in \kappa_i \} \right).$$

Let us check that $f \notin \operatorname{ran}(F)$: if, towards a contradiction, $f = F(i_0, \alpha_0)$ for some i_0, α_0 , then $f(i_0) \notin \{F(i_0, \alpha)(i_0) \mid \alpha \in \kappa_{i_0}\}$ by definition of f, a contradiction.

Definition 21.5

A function $f: \beta \to \alpha$ is cofinal (in α) if ran(f) is unbounded in α , that is $\forall \alpha' < \alpha \exists \beta' < \beta \ (\alpha' \leq f(\beta'))$. The cofinality of an ordinal α is the least β such that there is a cofinal $f: \beta \to \alpha$. This β is denoted by $cof(\alpha)$.

Example

- id $\upharpoonright \alpha : \alpha \to \alpha$ is cofinal, so $cof(\alpha) \le \alpha$. In particular cof(0) = 0.
- The cofinality of $\gamma + 1$ is 1, as witnessed by $0 \mapsto \gamma$. Conversely, if λ is limit, $cof(\lambda)$ is limit.
- cof(ω) = ω and (assuming a bit of choice) cof(ω₁) = ω₁. On the other hand, cof(ℵ_ω) = ω, since n → ℵ_n is cofinal.

A cofinal map need not be monotone, but...

Lemma 21.7

There is a cofinal monotone function $f: cof(\alpha) \rightarrow \alpha$.

Proof.

Let $g: \operatorname{cof}(\alpha) \to \alpha$ be cofinal, and to avoid trivialities we may assume that α is limit. For $\beta < \operatorname{cof}(\alpha)$ let $f(\beta) = \max\left(g(\beta), \sup_{\gamma < \beta} f(\gamma)\right)$. By construction f is monotone and cofinal. If there is a least $\beta < \operatorname{cof}(\alpha)$ such that $\sup_{\gamma < \beta} f(\gamma) = \alpha$, then $f: \overline{\beta} \to \alpha$ would be cofinal: a contradiction. Therefore $f: \operatorname{cof}(\alpha) \to \alpha$ is as required.

Lemma 21.7

If $f: \beta \to \alpha$ and $g: \gamma \to \beta$ are cofinal and f is also monotone, then $f \circ g: \gamma \to \alpha$ is cofinal.

Proof.

If $\alpha' < \alpha$ let $\beta' < \beta$ be such that $f(\beta') \ge \alpha'$ and let $\gamma' < \gamma$ be such that $g(\gamma') \ge \beta'$. Then $f(g(\gamma')) \ge \alpha'$.

Corollary 21.8 $cof(cof(\alpha)) = cof(\alpha).$

Definition 21.9

A limit ordinal λ is **regular** if $cof(\lambda) = \lambda$. Otherwise it is **singular**. If λ is an infinite cardinal, we will speak of **regular** or **singular cardinal**.

If $f: |\lambda| \to \lambda$ is a bijection, then f is cofinal, hence a regular ordinal is a cardinal. Conversely, limit ordinals that are not cardinals are singular.

Theorem 21.10 (AC)

If $\kappa \geq \omega$ then κ^+ is regular.

Proof.

Towards a contradiction suppose $cof(\kappa^+) \leq \kappa$. Let $f: cof(\kappa^+) \to \kappa^+$ be cofinal. Then $\kappa^+ = \bigcup_{i < cof(\kappa^+)} f(i)$ hence

$$\kappa^+ \le \sum_{i < \operatorname{cof}(\kappa^+)} |f(i)| \le \operatorname{cof}(\kappa^+) \cdot \sup_{i < \operatorname{cof}(\kappa^+)} |f(i)| \le \kappa,$$

a contradiction.

Theorem 21.11 (AC)

If κ is a singular cardinal, then there is an increasing sequence of regular cardinals $\langle \kappa_i \mid i < \operatorname{cof}(\kappa) \rangle$ such that

$$\kappa = \sup_{i < \operatorname{cof}(\kappa)} \kappa_i = \sum_{i < \operatorname{cof}(\kappa)} \kappa_i.$$

Proof.

Let $f: \operatorname{cof}(\kappa) \to \kappa$ be increasing and cofinal. The function

 $g(\alpha) = \min\{\lambda \in \kappa \mid \lambda \text{ is regular, } \lambda \geq f(\alpha) \text{ and } \forall \beta < \alpha \left(g(\beta) < \lambda\right)\}$

is defined for all $\alpha < \operatorname{cof}(\kappa)$ since the regular cardinals are unbounded below κ hence if $\bar{\alpha} < \operatorname{cof}(\kappa)$ were the least ordinal such that $g(\bar{\alpha})$ is not defined, then it would mean that $\kappa = \sup_{\beta < \bar{\alpha}} g(\beta)$, that is $g : \bar{\alpha} \to \kappa$ would be cofinal, against $\bar{\alpha} < \operatorname{cof}(\kappa)$. Letting $\kappa_i = g(i)$, it follows that

$$\kappa = \sup_{i < \operatorname{cof}(\kappa)} \kappa_i \le \sum_{i < \operatorname{cof}(\kappa)} \kappa_i \le \kappa \cdot \operatorname{cof}(\kappa) = \kappa$$

A. Andretta & R. Carroy (Torino)

Theorem 21.12 (AC)

 $\kappa^{\operatorname{cof}(\kappa)} > \kappa$ when κ is an infinite cardinal.

Proof.

If κ is regular, the statement becomes $\kappa^{\kappa} = 2^{\kappa} > \kappa$, which is true by Cantor's Theorem. We may therefore suppose that $cof(\kappa) < \kappa$. By Theorem 21.11 there are cardinals κ_i such that $\kappa = \sup_{i < cof(\kappa)} \kappa_i$ and hence by König's Theorem 21.4

$$\kappa = \sum_{i < \operatorname{cof}(\kappa)} \kappa_i < \prod_{i < \operatorname{cof}(\kappa)} \kappa = \kappa^{\operatorname{cof}(\kappa)}.$$

Corollary 21.13 (AC)

 $cof(2^{\kappa}) > \kappa$ when κ is an infinite cardinal.

Proof.

If $\lambda = cof(2^{\kappa}) \leq \kappa$, then $2^{\kappa} < (2^{\kappa})^{\lambda} = 2^{\kappa \cdot \lambda} = 2^{\kappa}$, a contradiction.

In particular, $\operatorname{cof}(2^{\aleph_0}) > \aleph_0$ hence 2^{\aleph_0} can neither be \aleph_{ω} , $\aleph_{\omega+\omega}$ (or, more generally, \aleph_{λ} with $\lambda < \omega_1$ limit) nor can it be the least fixed point of the \aleph function.

Hausdorff's formula

Theorem 21.14 (AC)

$$\aleph_{\alpha+1}^{\aleph_{\beta}} = \max\left(\aleph_{\alpha+1},\aleph_{\alpha}^{\aleph_{\beta}}\right).$$

Proof.

If $\aleph_{\alpha+1} \leq \aleph_{\beta}$ then by Proposition 18.30 $\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha+1}^{\aleph_{\beta}} > \aleph_{\beta} \geq \aleph_{\alpha+1}$ hence the result is proved.

Suppose instead that $\aleph_{\beta} < \aleph_{\alpha+1}$. If $f : \aleph_{\beta} \to \aleph_{\alpha+1}$, then by regularity of $\aleph_{\alpha+1}$ (Theorem 21.10) there is a $\gamma < \aleph_{\alpha+1}$ such that $\operatorname{ran} f \subseteq \gamma$. Thus $\aleph_{\beta} \aleph_{\alpha+1} = \bigcup_{\gamma < \aleph_{\alpha+1}} \aleph_{\beta} \gamma$ and by Theorem 21.3

$$\aleph_{\alpha+1}^{\aleph_{\beta}} = |\bigcup_{\gamma < \aleph_{\alpha+1}} \aleph_{\beta} \gamma| \le \aleph_{\alpha+1} \cdot \aleph_{\alpha}^{\aleph_{\beta}}.$$

The other inequality is immediate.

A. Andretta & R. Carroy (Torino)

Theorem 21.15 (Bukovsky–Hechler)

Assume AC. If
$$cof(2^{<\kappa}) > \kappa > cof(\kappa)$$
 then $2^{\kappa} = 2^{<\kappa}$.

Proof.

Let $\langle \kappa_{\alpha} \mid \alpha < \operatorname{cof}(\kappa) \rangle$ be increasing and $\sup_{\alpha \in \operatorname{cof}(\kappa)} \kappa_{\alpha} = \kappa$. If $\forall \alpha \in \operatorname{cof}(\kappa) \exists \beta \in \operatorname{cof}(\kappa) (2^{\kappa_{\alpha}} < 2^{\kappa_{\beta}})$, then $\operatorname{cof}(2^{<\kappa}) = \operatorname{cof}(\kappa) < \kappa$, against our assumption. Therefore there is γ such that $2^{\kappa_{\beta}} = 2^{\kappa_{\gamma}}$ for all $\beta \geq \gamma$. We may assume that $\kappa_{\gamma} \geq \operatorname{cof}(\kappa)$. Then

$$2^{\kappa} = 2^{\sum_{\alpha \in \operatorname{cof}(\kappa)} \kappa_{\alpha}} = \prod_{\alpha \in \operatorname{cof}(\kappa)} 2^{\kappa_{\alpha}} \le (2^{\kappa_{\gamma}})^{\operatorname{cof}(\kappa)} = 2^{\kappa_{\gamma}} = 2^{<\kappa}.$$

Operations

Recall that

- an operation on a set X is an $f \colon {}^nX \to X$ for some $n < \omega$,
- if \mathcal{F} is a collection of operations on X and $Y \subseteq X$, then $\operatorname{Cl}_{\mathcal{F}} Y$, the closure of Y under \mathcal{F} , is the smallest subset of X containing Y and closed under each $f \in \mathcal{F}$.

 $\operatorname{Cl}_{\mathcal{F}} Y = \bigcup_n Y_n$, where $Y_{n+1} = Y_n \cup \{f(\vec{a}) \mid \vec{a} \in Y_n^{<\omega} \land f \in \mathcal{F}\}$ and $Y_0 = Y$.

Definition 21.16

A generalized operation on X is a $f: {}^{\alpha}X \to X$ where $\alpha \in \text{Ord}$ is the arity of f, written ar f; when $\alpha \geq \omega$ we will speak of infinitary operations, while ordinary operations, i.e. when $\alpha < \omega$, are often called finitary operations.

If \mathcal{F} is a collection of generalized operations on X and $Y \subseteq X$, then

$$\operatorname{Cl}_{\mathcal{F}} Y = \bigcap \{ Z \subseteq X \mid Y \subseteq Z \land \forall f \in \mathcal{F} \, \forall \vec{a} \in \operatorname{ar}(f) Z \, (f(\vec{a}) \in Z) \}$$

is the smallest subset of X containing Y and closed under each $f \in \mathcal{F}$.

Theorem 21.17

Let \mathcal{F} be a family of generalized operations on a set X and let $Y \subseteq X$. Suppose λ is a regular cardinal such that $\lambda > \operatorname{ar}(f)$ for all $f \in \mathcal{F}$.

- Then $\operatorname{Cl}_{\mathcal{F}} Y = \bigcup_{\beta < \lambda} Y_{\beta}$ where $Y_0 = Y$, $Y_{\gamma} = \bigcup_{\beta < \gamma} Y_{\beta}$ when γ is limit, and $Y_{\beta+1} = Y_{\beta} \cup \{f(\vec{a}) \mid f \in \mathcal{F} \land \vec{a} \in \operatorname{ar}(f)Y_{\beta}\}.$
- Second Sec

 \mathcal{F} a family of generalized operations on X, $Y \subseteq X$, and $\lambda = \operatorname{cof} \lambda > \operatorname{ar}(f)$ for all $f \in \mathcal{F}$.

 $\operatorname{Cl}_{\mathcal{F}} Y = \bigcup_{\beta < \lambda} Y_{\beta}$ where $Y_0 = Y$, $Y_{\gamma} = \bigcup_{\beta < \gamma} Y_{\beta}$ when γ is limit, and $Y_{\beta+1} = Y_{\beta} \cup \{f(\vec{a}) \mid f \in \mathcal{F} \land \vec{a} \in \operatorname{ar}(f) Y_{\beta}\}.$

Proof.

 $\overline{Y} = \bigcup_{\alpha < \lambda} Y_{\alpha} \subseteq \operatorname{Cl}_{\mathcal{F}} Y$ is clear. For the other inclusion, if $f \in \mathcal{F}$ and $\alpha = \operatorname{ar} f$, then by regularity of λ every $\vec{a} \in {}^{\alpha}\overline{Y}$ belongs to some Y_{β} , so $f(\vec{a}) \in Y_{\beta+1} \subseteq \overline{Y}$. \mathcal{F} a family of generalized operations on X, $Y \subseteq X$, and $\lambda = \operatorname{cof} \lambda > \operatorname{ar}(f)$ for all $f \in \mathcal{F}$.

Assume AC and suppose $\kappa \geq \max(\lambda, |\mathcal{F}|, |Y|)$ and $\forall f \in \mathcal{F} (\kappa^{|\operatorname{ar}(f)|} = \kappa)$. Then $|\operatorname{Cl}_{\mathcal{F}}Y| \leq \kappa$.

Proof.

It is enough to show that $\forall \beta < \lambda (|Y_{\beta}| \le \kappa)$. This is true if $\beta = 0$ or β limit. Suppose this holds for some β , so that $|Y_{\beta}| \le \kappa$ and $|^{\operatorname{ar}(f)}Y_{\beta}| \le \kappa$ for all $f \in \mathcal{F}$. As $\{f(\vec{a}) \mid f \in \mathcal{F} \land \vec{a} \in {}^{\operatorname{ar}(f)}Y_{\beta}\}$ is the surjective image of $\bigcup_{f \in \mathcal{F}} \{f\} \times {}^{\operatorname{ar}(f)}Y_{\beta}$, which has size $\le |\mathcal{F}| \cdot \kappa$, then $|Y_{\beta+1}| \le \kappa$.

Theorem 21.18 (AC)

Let \mathcal{F} is a family of generalized operations on a set X and let $Y \subseteq X$.

- If $\operatorname{ar}(f) < \omega$ for all $f \in \mathcal{F}$, i.e. \mathcal{F} is a family of finitary operations, then $|\operatorname{Cl}_{\mathcal{F}}Y| \leq \max(\omega, |\mathcal{F}|, |Y|)$.
- $lf ar(f) < \omega_1 \text{ for all } f \in \mathcal{F}, \text{ and } |\mathcal{F}| \leq |Y|^{\omega}, \text{ then } |\mathrm{Cl}_{\mathcal{F}}Y| \leq |Y|^{\omega}.$

Proof.

It is enough to check that λ = ω and κ = max(ω, |F|, |Y|) satisfy the hypotheses of Theorem 21.17, namely that κⁿ = κ, which is immediate.
It is enough to observe that λ = ω₁ and κ = |Y|^ω satisfy the hypotheses of Theorem 21.17, namely κ^ω = κ.

Example 21.19

If $\mathcal{M} = \langle M, \ldots \rangle$ is an \mathcal{L} -structure, then the substructure generated by $Y \subseteq M$ has size $\leq \max(\omega, \lambda, |Y|)$, where λ is the cardinality of the set of non-logical symbols of \mathcal{L} .

Example 21.20

A Boolean algebra B is **countably complete** if it is closed under countable joins or, equivalently, countable meets. The smallest countably complete subalgebra of B containing $Y \subseteq B$ has size $\leq |Y|^{\omega}$. A σ -algebra is an algebra of sets which is closed under countable unions or, equivalently, countable intersections; thus a σ -algebra is an example of a countably complete Boolean algebra. If X is a topological space, the σ -algebra generated by the open sets is the family BOR(X) of **Borel subsets** of X. By Section 13.G.4 when X is infinite, second countable, and T_1 , then $|BOR(X)| = 2^{\aleph_0}$. Every ordinal is a topological space, and since α is a subspace of β when $\alpha < \beta$, the topology on an ordinal is induced by the topology on $\langle \text{Ord}, \leq \rangle$.

Definition 21.21

Let $\Omega \leq \text{Ord.}$ A class $A \subseteq \Omega$ is **open** in Ω if for every $\alpha \in A$ there is are $\beta < \alpha < \gamma$ such that $(\beta; \gamma) \subseteq A$, with the proviso that if $\alpha = 0$ then we require $[0; \gamma) \subseteq A$ for some $\gamma > 0$. A class $C \subseteq \Omega$ is **closed** in Ω if $\Omega \setminus C$ is open in Ω ; equivalently:

$$\forall \lambda \big(0 < \bigcup (C \cap \lambda) = \lambda \Rightarrow \lambda \in C \big).$$

Thus 0 and all successor ordinals are isolated points of Ω . The spaces $\omega \dotplus 1$ and $\omega \dotplus n$ are homeomorphic for all $1 \le n < \omega$, while $\omega \dotplus 1$ and $\omega \dotplus \omega \dotplus 1$ are not homeomorphic, since the former has one non-isolated point, namely ω , while the latter has two non-isolated points, ω and $\omega \dotplus \omega$.

Proposition 21.22

An ordinal is a compact space if and only if it is either zero or else a successor ordinal.

Proof.

We will prove by induction on α that every open covering \mathcal{U} of $\alpha \dotplus 1$ has a finite subcovering. If $\alpha = 0$ the result follows at once, thus we may assume that $\alpha > 0$ and that $\beta \dotplus 1$ be compact, for all $\beta < \alpha$. Let \mathcal{U} be an open cover of $\alpha \dotplus 1$ and let $U \in \mathcal{U}$ be such that $\alpha \in U$. Choose $\beta < \alpha$ such that $[\beta \dotplus 1, \alpha] \subseteq U$: by inductive assumption there is a finite $\mathcal{U}_0 \subseteq \mathcal{U}$ covering $\beta \dotplus 1 \leq \alpha$, hence $\mathcal{U}_0 \cup \{U\}$ is a finite open cover of $\alpha \dotplus 1$. Conversely, suppose λ is a limit ordinal: then $\{[0; \alpha) \mid \alpha < \lambda\}$ is an open covering of λ that has no finite subcovering.

Definition 21.23

A Hausdorff topological space is **totally disconnected** or **zero-dimensional** if every point has a neighborhood base made of clopen sets.

A topological space X is **completely regular** if given a closed set C and a point $x \notin C$ there is a continuous $f: X \to [0; 1]$ such that f(x) = 1 and $\forall y \in C \ (f(y) = 0)$.

By Tietze's theorem, every metric space is completely regular, and a completely regular space is Hausdorff. An ordinal is a totally disconnected, completely regular space.

Proposition 21.24

Let X be a completely regular topological space that does not surject onto \mathbb{R} . Then X is totally disconnected.

Proof.

Fix $x \in X$ and V an open neighborhood, and let f be a continuous function such that f(x) = 0 and f(y) = 1 for all $y \in X \setminus V$. By assumption there is $r \in (0; 1) \setminus \operatorname{ran}(f)$. Then $f^{-1}[0; r] = f^{-1}[0; r)$ is a clopen neighborhood of x contained in V.

Corollary 21.25

A countable metric space is totally disconnected.

24/45

Every countable ordinal is homeomorphic to a countable closed subset of \mathbb{R} , hence by Proposition 21.22 every countable successor ordinal is homeomorphic to a countable compact subset of \mathbb{R} .

Which conditions must $f: \Omega \to \text{Ord}$ satisfy in order to be continuous? Continuity is never a problem on the successor ordinals, as they are isolated points. If $\gamma < \Omega$ is limit and $f(\gamma)$ is a successor, then by continuity of f, there is an interval $[\beta; \gamma]$ which is mapped by f in the singleton $\{f(\gamma)\}$; in other words: f is eventually constant below γ . If $\gamma < \Omega$ is limit and $f(\gamma)$ is limit, then for every $\delta < f(\gamma)$ there is $\beta < \gamma$ such that the interval $[\beta; \gamma]$ is mapped by f into the interval $[\delta; f(\gamma)]$. Therefore:

Lemma 21.26

Suppose $f: \Omega \to Ord$ is monotone. Then f is continuous if and only if for every limit ordinal $\lambda < \Omega$

$$f(\lambda) = \sup_{\beta < \lambda} f(\beta) \quad \text{and} \quad \forall X \subseteq \lambda \, (\sup X = \lambda \Rightarrow f(\lambda) = \sup_{\nu \in X} f(\nu)).$$

Thus if $f: \Omega \to \text{Ord}$ is increasing and continuous, then $f(\lambda)$ is limit for all limit ordinals λ .

Proposition 21.27

Suppose Ω is either a regular cardinal or Ord. If $f: \Omega \to \Omega$ is increasing and continuous then ran f is closed and unbounded in Ω . Conversely, if Cis closed and unbounded in Ω , then its enumerating function $f: \Omega \to C \subseteq \Omega$ is increasing and continuous.

Proof.

Suppose $f: \Omega \to \Omega$ is increasing and continuous. Then $f(\alpha) \ge \alpha$, as f is increasing, so ran f is unbounded in Ω . Suppose λ is limit and $\lambda \cap \operatorname{ran} f$ is unbounded in λ , and let $\nu = \{\alpha < \Omega \mid f(\alpha) < \lambda\}$; then ν is limit and $\lambda = f(\nu) \in \operatorname{ran} f$. Therefore ran f is closed in Ω . Conversely, suppose C is closed and unbounded in Ω . The enumerating function $f: \Omega \to \Omega$ is increasing. If $\lambda \in \Omega$ is limit, then $\nu \stackrel{\text{def}}{=} \sup_{\gamma < \lambda} f(\gamma)$ is limit and $C = \operatorname{ran} f$ is unbounded in ν , so $\nu \in C$ and hence $f(\lambda) = \nu = \sup_{\gamma < \lambda} f(\gamma)$. Therefore f is continuous. In what follows κ is an uncountable regular cardinal. The next result shows that

 $\operatorname{Club}(\kappa) = \{ X \subseteq \kappa \mid \exists C \subseteq X \, (C \text{ is closed and unbounded in } \kappa) \}$

is a proper filter on κ . (Properness follows from the fact that \emptyset is not unbounded, so if $X \in \text{Club}(\kappa)$ then $\kappa \setminus X \notin \text{Club}(\kappa)$.)

Theorem 21.28

If $C, D \subseteq \kappa$ are closed and unbounded in κ , then $C \cap D$ is closed and unbounded in κ .

Proof.

Clearly $C \cap D$ is closed, so it is enough to show that it is unbounded in κ . Given $\alpha < \kappa$ let us find a $\beta \in C \cap D$ with $\alpha < \beta$. Using that C and D are unbounded, let us construct inductively an increasing sequence of ordinals $\alpha < \gamma_0 < \delta_0 < \gamma_1 < \delta_1 < \ldots$ such that $\gamma_i \in C$ and $\delta_i \in D$. Let $\beta = \sup_i \gamma_i = \sup_i \delta_i$. Since κ is regular then $\beta \in \kappa$ and since C and D are closed, $\beta = \sup_i \gamma_i \in C$ and $\beta = \sup_i \delta_i \in D$. \Box The assumption that κ be regular and uncountable cannot be removed—the sets $\{2n \mid n \in \omega\}$ and $\{2n+1 \mid n \in \omega\}$ are closed and unbounded in ω but their intersection \emptyset is not unbounded in ω .

Theorem 21.29

If $\gamma < \kappa$ and the $\langle C_{\alpha} \mid \alpha < \gamma \rangle$ are closed unbounded in κ , then $\bigcap_{\alpha < \gamma} C_{\alpha}$ is closed unbounded in κ .

Proof.

Clearly $\bigcap_{\alpha < \gamma} C_{\alpha}$ is a closed subset of κ , so it is enough to show that it is unbounded. We argue by induction on γ . If $\gamma = 0$ or $\gamma = 1$ there is nothing to prove. The case of γ a successor ordinal follows from Theorem 21.28, so we may assume that γ is limit. Replacing C_{α} with $\bigcap_{\beta \leq \alpha} C_{\beta}$, we may assume that $\alpha < \beta < \gamma \Rightarrow C_{\alpha} \supseteq C_{\beta}$. Given a $\nu < \kappa$, construct an increasing sequence $\langle \xi_{\alpha} \mid \alpha < \gamma \rangle$ with $\nu < \xi_{0}$ and $\xi_{\alpha} \in C_{\alpha}$. Then $\xi = \sup_{\alpha < \gamma} \xi_{\alpha} \in \kappa$ as κ is regular, and since the C_{α} s are closed and $\{\xi_{\beta} \mid \beta \geq \alpha\} \subseteq C_{\alpha}$, then $\xi \in C_{\alpha}$ for each $\alpha < \gamma$.

 $\alpha < \kappa$ is closed under $f : {}^{n}\kappa \to \kappa$ if $f(\beta_1, \ldots, \beta_n) \in \alpha$ for all $\beta_1, \ldots, \beta_n \in \alpha$. The set of all ordinals closed under f is $\mathbf{C}(f)$.

Theorem 21.30

- $\textbf{0} \ \mathbf{C}(f) \text{ is closed and unbounded, for all } f \colon {}^{n}\kappa \to \kappa.$
- ② If $C \subseteq \kappa$ is closed and unbounded, then $C \supseteq \mathbf{C}(f)$ for some $f : \kappa \to \kappa$.

Proof.

① As
$$\alpha < \kappa$$
 we must find $\gamma \ge \alpha$ which is closed under f . Let

$$\gamma_{i+1} = \sup \{ f(\beta_1, \dots, \beta_n) \mid \beta_1, \dots, \beta_n \in \gamma_i \}$$

where $\gamma_0 = \alpha$. By our assumption on κ , we have that $|\{f(\beta_1, \ldots, \beta_n) \mid \beta_1, \ldots, \beta_n \in \gamma_i\}| \le |\gamma_i|^n < \kappa$, and hence $\gamma = \sup_i \gamma_i < \kappa$ is the ordinal we are looking for. Closure of $\mathbf{C}(f)$ in κ is immediate.

Theorem 21.30

- **1** $\mathbf{C}(f)$ is closed and unbounded, for all $f: {}^{n}\kappa \to \kappa$.
- ② If $C \subseteq \kappa$ is closed and unbounded, then $C \supseteq \mathbf{C}(f)$ for some $f: \kappa \to \kappa$.

Proof.

2 Let $C \subseteq \kappa$ be a closed unbounded, let g be its enumerating function, and let $f(\alpha) = g(\alpha + 1)$: as $\alpha \leq g(\alpha) < f(\alpha)$, if γ is closed under f, then γ is limit and $C \cap \gamma$ is unbounded in γ . Therefore $\mathbf{C}(f) \subseteq C$.

Corollary 21.31

If \mathcal{F} is a collection of operations on a regular cardinal κ and $|\mathcal{F}| < \kappa$, then $\bigcap_{f \in \mathcal{F}} \mathbf{C}(f)$, the set of all $\alpha < \kappa$ which are closed under all $f \in \mathcal{F}$, is closed and unbounded in κ .

Therefore if A is an algebraic structure of size κ a regular cardinal with $< \kappa$ many operations and constants (e.g. a group, a ring, a lattice, ...) and $\langle a_{\alpha} \mid \alpha < \kappa \rangle$ is an enumeration of A, then the set of all $\nu < \kappa$ such that $\{a_{\alpha} \mid \alpha < \nu\}$ is a substructure of A is closed and unbounded in κ .

Definition 21.32

The diagonal intersection of a sequence $\langle X_{\alpha} \mid \alpha < \kappa \rangle$ of subsets of κ is $\triangle_{\alpha < \kappa} X_{\alpha} = \{\beta < \kappa \mid \beta \in \bigcap_{\alpha < \beta} X_{\alpha}\}.$

If
$$Y_{\alpha} = \bigcap_{\beta \leq \alpha} X_{\beta}$$
, then $\bigcap_{\alpha < \beta} X_{\alpha} = \bigcap_{\alpha < \beta} Y_{\alpha}$ so that
 $\triangle_{\alpha < \kappa} X_{\alpha} = \triangle_{\alpha < \kappa} Y_{\alpha}$.
 $\beta \in \bigcap_{\alpha < \beta} X_{\alpha}$ is equivalent to $\forall \alpha < \beta \ (\beta \in X_{\alpha})$, which is equivalent to
 $\forall \alpha < \kappa \ (\beta \in \alpha \dotplus 1 \lor \beta \in X_{\alpha})$. Therefore

$$\triangle_{\alpha < \kappa} X_{\alpha} = \bigcap_{\alpha < \kappa} (X_{\alpha} \cup \alpha \dotplus 1).$$

If each X_{α} is closed in κ , then so is $X_{\alpha} \cup \alpha + 1$, and hence $\triangle_{\alpha < \kappa} X_{\alpha}$ is closed in κ .

32 / 45

Proposition 21.33

If $\kappa > \omega$ and C_{α} is closed and unbounded in κ for each $\alpha < \kappa$, then $\triangle_{\alpha < \kappa} C_{\alpha}$ is closed and unbounded in κ .

Proof.

We may assume that $\alpha < \beta \Rightarrow C_{\alpha} \supseteq C_{\beta}$. Closure of $C = \triangle_{\alpha < \kappa} C_{\alpha}$ is immediate so it is enough to check that C is unbounded. Fix $\beta_0 < \kappa$. As $\bigcap_{\nu \leq \gamma} C_{\nu}$ is unbounded in κ for all $\gamma < \kappa$ (Theorem 21.29), one defines an increasing sequence

$$\beta_0 < \beta_1 < \beta_2 < \dots < \beta = \sup_n \beta_n$$

such that $\beta_{n+1} \in \bigcap_{\nu \leq \beta_n} C_{\nu}$. As $n < m \Rightarrow \beta_m \in C_{\beta_n}$, the fact that C_{β_n} is closed implies that $\beta = \sup_{m > n} \beta_m \in C_{\beta_n}$, hence $\beta \in \bigcap_n C_{\beta_n} = \bigcap_{\nu < \beta} C_{\nu}$, that is $\beta_0 < \beta \in C$ as required.

Definition 21.34

 $A \subseteq \kappa$ is stationary in κ if $A \cap C \neq \emptyset$ for all closed unbounded $C \subseteq \kappa$.

By Theorem 21.29, a set in $Club(\kappa)$ is stationary, but not conversely—Exercise 21.58.

A stationary subset of κ is unbounded in κ as it intersects every $(\alpha; \kappa)$. Thus regularity of κ implies that the stationary sets have size κ .

34 / 45

Theorem 21.35 (Fodor)

Let $S \subseteq \kappa$ be stationary and let $F \colon S \to \kappa$ be such that $\forall \alpha \in S \ (\alpha \neq 0 \Rightarrow F(\alpha) < \alpha)$. Then F is constant on a stationary subset of κ .

Proof.

Towards a contradiction, suppose that $F^{-1}\left\{\alpha\right\}$ is non-stationary for all $\alpha<\kappa,$ that is

 $\forall \alpha \in \kappa \, \exists C_{\alpha} \subseteq \kappa \, \left(C_{\alpha} \text{ closed and unbounded in } \kappa \text{ and } C_{\alpha} \cap F^{-1} \left\{ \alpha \right\} = \emptyset \right).$

By Proposition 21.33, $\triangle_{\alpha < \kappa} C_{\alpha}$ is closed and unbounded, and since $(0; \kappa)$ is also closed and unbounded, the same is true of $C = (\triangle_{\alpha < \kappa} C_{\alpha}) \setminus \{0\}$ by Theorem 21.29. Let $\alpha \in S \cap C$: then $\beta \stackrel{\text{def}}{=} F(\alpha) < \alpha$ by definition of F, and $\alpha \in C_{\beta}$ by definition of diagonal intersection, hence $\alpha \notin F^{-1} \{\beta\}$ that is $F(\alpha) \neq \beta$: a contradiction.

The exponential function $\kappa \mapsto 2^{\kappa}$

Rule 1

 $\kappa < \lambda \Rightarrow 2^\kappa \leq 2^\lambda$

Rule 2

$$\kappa < \mathrm{cof}(2^\kappa),$$
 and hence $\kappa^+ \leq 2^\kappa.$

The GCH strengthens Rule 2 by $2^{\kappa} = \kappa^+$, and therefore $cof(2^{\kappa}) = \kappa^+ > \kappa$, for all infinite cardinals κ . By Gödel GCH cannot be refuted from ZFC, and by Cohen CH (and hence GCH) cannot be proved in ZFC.

Easton showed that Rule 1 and Rule 2 are the only restrictions for $\kappa \mapsto 2^{\kappa}$ when κ is regular.

Example

Each of the following is consistent with ZFC:

- $2^{\kappa} = \kappa^{++}$ for every regular κ ,
- $2^{\kappa} > \kappa^+$ and that $\forall \lambda < \kappa (2^{\lambda} = \lambda^+)$, with κ any regular cardinal.

The situation for *singular cardinals* is much deeper and interesting... Silver proved that GCH cannot fail first at a singular cardinal of *uncountable cofinality*.

Rule 3

If λ is a limit ordinal of uncountable cofinality and $\{\alpha < \operatorname{cof}(\lambda) \mid 2^{\aleph_{\alpha}} = \aleph_{\alpha+1}\}$ is stationary in $\operatorname{cof}(\lambda)$, then $2^{\aleph_{\lambda}} = \aleph_{\lambda+1}$.

In particular, GCH cannot fail first at \aleph_{ω_1} , i.e. if $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all $\alpha < \omega_1$, then $2^{\aleph_{\omega_1}} = \aleph_{\omega_1+1}$.

The assumption $\omega < \operatorname{cof}(\lambda)$ in in Rule 3 cannot be removed since Magidor proved that GCH can fail first at \aleph_{ω} : it is consistent that $\forall n < \omega \left(2^{\aleph_n} = \aleph_{n+1} \right)$ and $2^{\aleph_{\omega}} > \aleph_{\omega+1}$. The value $2^{\aleph_{\omega}}$ cannot be arbitrarily large, as Shelah proved that:

Rule 4

If
$$\forall n (2^{\aleph_n} < \aleph_{\omega})$$
, then $2^{\aleph_{\omega}} < \aleph_{\min(\omega_4, (2^{\aleph_0})^+)}$.

Definition 21.37

A cardinal κ is strong limit if $2^{\lambda} < \kappa$ for all $\lambda < \kappa$. A regular cardinal $\kappa > \omega$ is weakly inaccessible if it is limit; it is strongly inaccessible if it is strong limit.

If κ is weakly inaccessible then $\kappa = \aleph_{\kappa}$, but the least fixed point of the \aleph function is of cofinality ω and hence not regular. A strongly inaccessible cardinal is necessarily weakly inaccessible, and GCH guarantees the converse. In the absence of some cardinal arithmetic assumption, the two notions can be distinct; it is possible that 2^{\aleph_0} is weakly inaccessible, while if κ is strongly inaccessible then $2^{\aleph_0} < \kappa$.

Lemma 21.38

Assume AC and suppose κ is strongly inaccessible. Then $|V_{\alpha}| < \kappa$ for all $\alpha < \kappa$. In particular $|x| < \kappa$ for all $x \in V_{\kappa}$.

Proof.

Proceed by induction on α . If $|V_{\alpha}| < \kappa$ then $|V_{\alpha+1}| = 2^{|V_{\alpha}|} < \kappa$, as κ is strong limit. If α is limit, then $|V_{\alpha}| = |\alpha| \cdot \sup_{\beta < \alpha} |V_{\beta}| < \kappa$ by regularity.

Theorem 21.39

Assume AC. If κ is strongly inaccessible, then $V_{\kappa} \vDash \mathsf{ZFC}$.

Proof.

Suppose κ is strongly inaccessible. In order to prove that $V_{\kappa} \vDash \mathsf{ZFC}$, by Theorem 19.15 it is enough to show that V_{κ} satisfies replacement. By part (g) of Theorem 19.22 it is enough to show that if $f: a \to V_{\kappa}$ with $a \in V_{\kappa}$, then there is $b \in V_{\kappa}$ such that $\operatorname{ran} f \subseteq b$. Let $g: a \to \kappa$, g(x) = the least $\alpha < \kappa$ such that $f(x) \in V_{\alpha}$. By Lemma 21.38 $|a| < \kappa$, so $\operatorname{ran} g \subseteq \gamma$ for some $\gamma < \kappa$, and hence $\operatorname{ran} f \subseteq V_{\gamma} \in V_{\kappa}$.

The converse of Theorem 21.39 fails: if κ is inaccessible there are many $\alpha < \kappa$ such that $V_{\alpha} \models \mathsf{ZFC}$ (Theorem 31.22).

Definition 21.40

A universe is a transitive set U closed under the operation $x \mapsto \mathscr{P}(x)$, such that $\omega \in U$, and $\forall I \in U \forall f \colon I \to U \ (\bigcup_{i \in I} f(i) \in U)$.

Lemma 21.42

If U is a universe then

$$1 x \subseteq y \in U \Rightarrow x \in U,$$

$$2 \ x, y \in U \Rightarrow x \cup y \in U,$$

(a) if $x, y \in U$ then $\{x, y\} \in U$ and hence $(x, y) \in U$,

• if
$$x, y \in U$$
 then $x \times y \in U$ and $xy \in U$,

() if
$$f: I \to U$$
 and $I \in U$ then $\operatorname{ran} f \in U$ and $f \in U$.

$x \subseteq y \in U \Rightarrow x \in U$

 $x \in \mathscr{P}(y) \in U$ so $x \in U$ by transitivity.

$x, y \in U \Rightarrow x \cup y \in U$

 $2 \in \omega \in U$, so $2 \in U$ by transitivity. Then $x \cup y = \bigcup_{i \in 2} f(i)$ where $f: 2 \to U$ is defined by f(0) = x and f(1) = y.

If $x, y \in U$ then $\{x, y\} \in U$ and hence $(x, y) \in U$ If $x \in U$ then $\{x\} \in \mathscr{PP}(x) \in U$, so $\{x\} \in U$. Thus if $x, y \in U$ then $\{x\}, \{y\} \in U$, so $\{x, y\} \in U$, and therefore $(x, y) \in U$.

if $x, y \in U$ then $x \times y \in U$ and $xy \in U$

The result follows from $x \times y \subseteq \mathscr{PP}(x \cup y)$ and $^{x}y \subseteq \mathscr{P}(x \times y)$.

If $f \colon I \to U$ and $I \in U$ then $\operatorname{ran} f \in U$ and $f \in U$

Letting $g \colon I \to U$ be $i \mapsto \{f(i)\}$, then ran $f = \bigcup_{i \in I} g(i) \in U$. Moreover $f \subseteq I \times \operatorname{ran} f \in U$, whence $f \in U$.

A. Andretta & R. Carroy (Torino)

Theorem 21.41 (AC)

U is a universe if and only if $U={\rm V}_\kappa$ for some strongly inaccessible cardinal $\kappa.$

Proof

Suppose U is a universe and let $\kappa = U \cap \text{Ord.}$

U is closed under the S operation, so κ is limit and $\kappa \notin U$. If $\gamma < \kappa$ and $f: \gamma \to \kappa$, then $\sup \operatorname{ran} f = \bigcup_{\alpha < \gamma} f(\alpha) \in U$ and hence f cannot be cofinal in κ . It follows that κ is regular. If $2^{\lambda} \ge \kappa$ for some infinite cardinal $\lambda < \kappa$ there would exist a surjection $f: \mathscr{P}(\lambda) \twoheadrightarrow \kappa \subseteq U$. But $\mathscr{P}(\lambda) \in U$ so by Lemma 21.42 $\kappa \in U$, a contradiction. It follows that κ is a strongly inaccessible cardinal.

Let us check that $V_{\alpha} \in U$ for all $\alpha < \kappa$, so that $V_{\kappa} \subseteq U$. As U is closed under the \mathscr{P} operation, then $\bar{\kappa} = \{\alpha < \kappa \mid V_{\alpha} \in U\}$ is a limit ordinal: if $\bar{\kappa} < \kappa$ then using the function $\bar{\kappa} \to U$, $\alpha \mapsto V_{\alpha}$, we would have that $V_{\bar{\kappa}} = \bigcup_{\alpha < \bar{\kappa}} V_{\alpha} \in U$, so that $\bar{\kappa} \in \bar{\kappa}$, a contradiction. Therefore $V_{\kappa} \subseteq U$.

(continues)

Proof (continues).

Recall that $\kappa = U \cap \text{Ord}$ is inaccessible, and $V_{\kappa} \subseteq U$. We prove that $U \subseteq V_{\kappa}$. Towards a contradiction, let $x \in U \setminus V_{\kappa}$ be of least rank: then $\operatorname{rank}(x) \geq \kappa$ so that the map $x \to \kappa$, $y \mapsto \operatorname{rank}(y)$, is cofinal so that $\kappa = \sup_{y \in x} \operatorname{rank}(y) \in U$, a contradiction. Therefore $V_{\kappa} = U$.

Suppose now κ is a strongly inaccessible cardinal, and let us check that V_{κ} is a universe. Suppose $f \colon I \to V_{\kappa}$ with $I \in V_{\kappa}$. Then the function $I \to \kappa$, $i \mapsto \operatorname{rank}(f(i))$, is bounded in κ , since $|I| < \kappa$, so $\operatorname{ran} f \subseteq V_{\alpha}$ for some $\alpha < \kappa$. Therefore $\bigcup_{i \in I} f(i) \subseteq V_{\alpha}$, and hence $\bigcup_{i \in I} f(i) \in V_{\alpha+1} \subseteq V_{\kappa}$. The other clauses in the definition of universe are immediate.