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Generalized sums and products

Definition 21.1 (AC)

Let ⟨κi | i ∈ I⟩ be a sequence of cardinals.

The generalized sum of the κis is
∑

i∈I κi = |
⋃

i∈I{i} × κi|;
The generalized product of the κis is

∏
i∈I κi = |"i∈Iκi|.

κ =
∑

i∈κ 1 =
∑

i∈κ κi, with κi = 1,

2κ =
∏

i∈κ 2 =
∏

i∈κ κi, with κi = 2,

the operations of generalized sum and product are monotone, that is
if κi ≤ λi, then

∑
i∈I κi ≤

∑
i∈I λi.
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Generalized sums and products

Proposition 21.2

If I is a well-orderable set and 1 ≤ κi for every i ∈ I, then∑
i∈I κi ≤ |I| · supi∈I κi,

and if max(|I|, supi∈I κi) ≥ ω, then equality holds.

Proof.

The inclusion
⋃

i∈I{i} × κi ⊆ I × supi∈I κi proves the inequality. For
every α ∈ supi∈I κi pick i(α) ∈ I such that α ∈ κi(α): the function
supi∈I κi →

⋃
i∈I{i} × κi, α 7→ (i(α), α) is injective and proves that

supi∈I κi ≤
∑

i∈I κi. By monotonicity |I| =
∑

i∈I 1 ≤
∑

i∈I κi. Therefore
max(|I|, supi∈I κi) ≤

∑
i∈I κi. The conclusion follows from

Corollary 18.29.
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Generalized sums and products

Theorem 21.3 (AC)

If I and {Xi | i ∈ I} are sets, then |
⋃

i∈I Xi| ≤ |I| · supi∈I |Xi|.

Proof.

For each i ∈ I choose a bijection fi : Xi → |Xi| and for each x ∈
⋃

i∈I Xi

choose i(x) ∈ I such that x ∈ Xi(x). The function⋃
i∈I Xi →

⋃
i∈I{i} × |Xi| x 7→ (i(x), fi(x)(x))

is injective hence |
⋃

i∈I Xi| ≤
∑

i∈I |Xi|. The result follows immediately
from Proposition 21.2.

If I ̸= ∅ and κi ≤ λi ≥ 2 then
∑

i∈I κi ≤
∏

i∈I λi.
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Generalized sums and products

Theorem 21.4 J. König

Assume AC. If κi < λi for all i ∈ I, then∑
i∈I κi <

∏
i∈I λi.

Proof.

It is enough to show that
∑

i∈I κi ≱
∏

i∈I λi, that is no
F :

⋃
i{i}× κi → "i∈Iλi can be surjective. Fix such an F : for every i ∈ I,

the set {F (i, α)(i) | α ∈ κi} has cardinality < λi, so we can define a
function f ∈ "i∈Iλi:

f(i) = min (λi \ {F (i, α)(i) | α ∈ κi}) .

Let us check that f /∈ ran(F ): if, towards a contradiction, f = F (i0, α0)
for some i0, α0, then f(i0) /∈ {F (i0, α)(i0) | α ∈ κi0} by definition of f , a
contradiction.
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Regular and singular cardinals

Definition 21.5

A function f : β → α is cofinal (in α) if ran(f) is unbounded in α, that is
∀α′ < α ∃β′ < β (α′ ≤ f(β′)). The cofinality of an ordinal α is the least
β such that there is a cofinal f : β → α. This β is denoted by cof(α).

Example

id ↾ α : α → α is cofinal, so cof(α) ≤ α. In particular cof(0) = 0.

The cofinality of γ + 1 is 1, as witnessed by 0 7→ γ. Conversely, if λ is
limit, cof(λ) is limit.

cof(ω) = ω and (assuming a bit of choice) cof(ω1) = ω1. On the
other hand, cof(ℵω) = ω, since n 7→ ℵn is cofinal.
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Regular and singular cardinals

A cofinal map need not be monotone, but. . .

Lemma 21.7

There is a cofinal monotone function f : cof(α) → α.

Proof.

Let g : cof(α) → α be cofinal, and to avoid trivialities we may assume
that α is limit. For β < cof(α) let f(β) = max

(
g(β), supγ<β f(γ)

)
. By

construction f is monotone and cofinal. If there is a least β̄ < cof(α) such
that supγ<β f(γ) = α, then f : β̄ → α would be cofinal: a contradiction.
Therefore f : cof(α) → α is as required.
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Regular and singular cardinals

Lemma 21.7

If f : β → α and g : γ → β are cofinal and f is also monotone, then
f ◦ g : γ → α is cofinal.

Proof.

If α′ < α let β′ < β be such that f(β′) ≥ α′ and let γ′ < γ be such that
g(γ′) ≥ β′. Then f(g(γ′)) ≥ α′.

Corollary 21.8

cof(cof(α)) = cof(α).
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Regular and singular cardinals

Definition 21.9

A limit ordinal λ is regular if cof(λ) = λ. Otherwise it is singular. If λ is
an infinite cardinal, we will speak of regular or singular cardinal.

If f : |λ| → λ is a bijection, then f is cofinal, hence a regular ordinal is a
cardinal. Conversely, limit ordinals that are not cardinals are singular.

Theorem 21.10 (AC)

If κ ≥ ω then κ+ is regular.

Proof.

Towards a contradiction suppose cof(κ+) ≤ κ. Let f : cof(κ+) → κ+ be
cofinal. Then κ+ =

⋃
i<cof(κ+) f(i) hence

κ+ ≤
∑

i<cof(κ+)|f(i)| ≤ cof(κ+) · supi<cof(κ+)|f(i)| ≤ κ,

a contradiction.
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Regular and singular cardinals

Theorem 21.11 (AC)

If κ is a singular cardinal, then there is an increasing sequence of regular
cardinals ⟨κi | i < cof(κ)⟩ such that

κ = supi<cof(κ) κi =
∑

i<cof(κ) κi.

Proof.

Let f : cof(κ) → κ be increasing and cofinal. The function

g(α) = min{λ ∈ κ | λ is regular, λ ≥ f(α) and ∀β < α (g(β) < λ)}

is defined for all α < cof(κ) since the regular cardinals are unbounded
below κ hence if ᾱ < cof(κ) were the least ordinal such that g(ᾱ) is not
defined, then it would mean that κ = supβ<ᾱ g(β), that is g : ᾱ → κ
would be cofinal, against ᾱ < cof(κ). Letting κi = g(i), it follows that

κ = supi<cof(κ) κi ≤
∑

i<cof(κ) κi ≤ κ · cof(κ) = κ

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024–2025 10 / 45



Regular and singular cardinals

Theorem 21.12 (AC)

κcof(κ) > κ when κ is an infinite cardinal.

Proof.

If κ is regular, the statement becomes κκ = 2κ > κ, which is true by
Cantor’s Theorem. We may therefore suppose that cof(κ) < κ. By
Theorem 21.11 there are cardinals κi such that κ = supi<cof(κ) κi and
hence by König’s Theorem 21.4

κ =
∑

i<cof(κ) κi <
∏

i<cof(κ) κ = κcof(κ).
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Regular and singular cardinals

Corollary 21.13 (AC)

cof(2κ) > κ when κ is an infinite cardinal.

Proof.

If λ = cof(2κ) ≤ κ, then 2κ < (2κ)λ = 2κ·λ = 2κ, a contradiction.

In particular, cof(2ℵ0) > ℵ0 hence 2ℵ0 can neither be ℵω, ℵω+ω (or, more
generally, ℵλ with λ < ω1 limit) nor can it be the least fixed point of the ℵ
function.
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Regular and singular cardinals

Hausdorff’s formula

Theorem 21.14 (AC)

ℵℵβ

α+1 = max
(
ℵα+1,ℵ

ℵβ
α

)
.

Proof.

If ℵα+1 ≤ ℵβ then by Proposition 18.30 ℵℵβ
α = ℵℵβ

α+1 > ℵβ ≥ ℵα+1 hence
the result is proved.
Suppose instead that ℵβ < ℵα+1. If f : ℵβ → ℵα+1, then by regularity of
ℵα+1 (Theorem 21.10) there is a γ < ℵα+1 such that ran f ⊆ γ. Thus
ℵβℵα+1 =

⋃
γ<ℵα+1

ℵβγ and by Theorem 21.3

ℵℵβ

α+1 = |
⋃

γ<ℵα+1

ℵβγ| ≤ ℵα+1 · ℵ
ℵβ
α .

The other inequality is immediate.
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Regular and singular cardinals

Theorem 21.15 (Bukovsky–Hechler)

Assume AC. If cof(2<κ) > κ > cof(κ) then 2κ = 2<κ.

Proof.

Let ⟨κα | α < cof(κ)⟩ be increasing and supα∈cof(κ) κα = κ. If
∀α ∈ cof(κ)∃β ∈ cof(κ) (2κα < 2κβ ), then cof(2<κ) = cof(κ) < κ,
against our assumption. Therefore there is γ such that 2κβ = 2κγ for all
β ≥ γ. We may assume that κγ ≥ cof(κ). Then

2κ = 2
∑

α∈cof(κ) κα =
∏

α∈cof(κ) 2
κα ≤ (2κγ )cof(κ) = 2κγ = 2<κ.
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Applications

Operations

Recall that

an operation on a set X is an f : nX → X for some n < ω,

if F is a collection of operations on X and Y ⊆ X, then ClF Y , the
closure of Y under F , is the smallest subset of X containing Y and
closed under each f ∈ F .

ClF Y =
⋃

n Yn, where Yn+1 = Yn ∪ {f (⃗a) | a⃗ ∈ Y <ω
n ∧ f ∈ F} and

Y0 = Y .

Definition 21.16

A generalized operation on X is a f : αX → X where α ∈ Ord is the
arity of f , written ar f ; when α ≥ ω we will speak of infinitary
operations, while ordinary operations, i.e. when α < ω, are often called
finitary operations.
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Applications

If F is a collection of generalized operations on X and Y ⊆ X, then

ClF Y =
⋂

{Z ⊆ X | Y ⊆ Z ∧ ∀f ∈ F ∀a⃗ ∈ ar(f)Z (f (⃗a) ∈ Z)}

is the smallest subset of X containing Y and closed under each f ∈ F .

Theorem 21.17

Let F be a family of generalized operations on a set X and let Y ⊆ X.
Suppose λ is a regular cardinal such that λ > ar(f) for all f ∈ F .

1 Then ClF Y =
⋃

β<λ Yβ where Y0 = Y , Yγ =
⋃

β<γ Yβ when γ is

limit, and Yβ+1 = Yβ ∪ {f (⃗a) | f ∈ F ∧ a⃗ ∈ ar(f)Yβ}.
2 Assume AC and suppose κ ≥ max(λ, |F|, |Y |) and

∀f ∈ F
(
κ|ar(f)| = κ

)
. Then |ClFY | ≤ κ.
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Applications

F a family of generalized operations on X, Y ⊆ X, and
λ = cof λ > ar(f) for all f ∈ F .

ClF Y =
⋃

β<λ Yβ where Y0 = Y , Yγ =
⋃

β<γ Yβ when γ is limit, and

Yβ+1 = Yβ ∪ {f (⃗a) | f ∈ F ∧ a⃗ ∈ ar(f)Yβ}.

Proof.

Y =
⋃

α<λ Yα ⊆ ClF Y is clear.
For the other inclusion, if f ∈ F and α = ar f , then by regularity of λ
every a⃗ ∈ αY belongs to some Yβ, so f (⃗a) ∈ Yβ+1 ⊆ Y .
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Applications

F a family of generalized operations on X, Y ⊆ X, and
λ = cof λ > ar(f) for all f ∈ F .

Assume AC and suppose κ ≥ max(λ, |F|, |Y |) and ∀f ∈ F
(
κ|ar(f)| = κ

)
.

Then |ClFY | ≤ κ.

Proof.

It is enough to show that ∀β < λ (|Yβ| ≤ κ). This is true if β = 0 or β
limit. Suppose this holds for some β, so that |Yβ| ≤ κ and |ar(f)Yβ| ≤ κ
for all f ∈ F . As {f (⃗a) | f ∈ F ∧ a⃗ ∈ ar(f)Yβ} is the surjective image of⋃

f∈F{f} × ar(f)Yβ, which has size ≤ |F| · κ, then |Yβ+1| ≤ κ.
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Applications

Theorem 21.18 (AC)

Let F is a family of generalized operations on a set X and let Y ⊆ X.

1 If ar(f) < ω for all f ∈ F , i.e. F is a family of finitary operations,
then |ClFY | ≤ max(ω, |F|, |Y |).

2 If ar(f) < ω1 for all f ∈ F , and |F| ≤ |Y |ω, then |ClFY | ≤ |Y |ω.

Proof.

1 It is enough to check that λ = ω and κ = max(ω, |F|, |Y |) satisfy the
hypotheses of Theorem 21.17, namely that κn = κ, which is immediate.

2 It is enough to observe that λ = ω1 and κ = |Y |ω satisfy the
hypotheses of Theorem 21.17, namely κω = κ.

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024–2025 19 / 45



Applications

Example 21.19

If M = ⟨M, . . .⟩ is an L-structure, then the substructure generated by
Y ⊆ M has size ≤ max(ω, λ, |Y |), where λ is the cardinality of the set of
non-logical symbols of L.

Example 21.20

A Boolean algebra B is countably complete if it is closed under
countable joins or, equivalently, countable meets. The smallest countably
complete subalgebra of B containing Y ⊆ B has size ≤ |Y |ω.
A σ-algebra is an algebra of sets which is closed under countable unions
or, equivalently, countable intersections; thus a σ-algebra is an example of
a countably complete Boolean algebra. If X is a topological space, the
σ-algebra generated by the open sets is the family Bor(X) of Borel
subsets of X. By Section 13.G.4 when X is infinite, second countable,
and T1, then |Bor(X)| = 2ℵ0 .
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The topology on the ordinals.

Every ordinal is a topological space, and since α is a subspace of β when
α < β, the topology on an ordinal is induced by the topology on ⟨Ord,≤⟩.

Definition 21.21

Let Ω ≤ Ord. A class A ⊆ Ω is open in Ω if for every α ∈ A there is are
β < α < γ such that (β; γ) ⊆ A, with the proviso that if α = 0 then we
require [0; γ) ⊆ A for some γ > 0. A class C ⊆ Ω is closed in Ω if Ω \ C
is open in Ω; equivalently:

∀λ
(
0 <

⋃
(C ∩ λ) = λ ⇒ λ ∈ C

)
.

Thus 0 and all successor ordinals are isolated points of Ω. The spaces
ω ∔ 1 and ω ∔ n are homeomorphic for all 1 ≤ n < ω, while ω ∔ 1 and
ω ∔ ω ∔ 1 are not homeomorphic, since the former has one non-isolated
point, namely ω, while the latter has two non-isolated points, ω and ω∔ω.
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The topology on the ordinals.

Proposition 21.22

An ordinal is a compact space if and only if it is either zero or else a
successor ordinal.

Proof.

We will prove by induction on α that every open covering U of α∔ 1 has a
finite subcovering. If α = 0 the result follows at once, thus we may
assume that α > 0 and that β ∔ 1 be compact, for all β < α. Let U be an
open cover of α∔ 1 and let U ∈ U be such that α ∈ U . Choose β < α
such that [β ∔ 1, α] ⊆ U : by inductive assumption there is a finite U0 ⊆ U
covering β ∔ 1 ≤ α, hence U0 ∪ {U} is a finite open cover of α∔ 1.
Conversely, suppose λ is a limit ordinal: then {[0;α) | α < λ} is an open
covering of λ that has no finite subcovering.
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The topology on the ordinals.

Definition 21.23

A Hausdorff topological space is totally disconnected or
zero-dimensional if every point has a neighborhood base made of clopen
sets.
A topological space X is completely regular if given a closed set C and a
point x /∈ C there is a continuous f : X → [0; 1] such that f(x) = 1 and
∀y ∈ C (f(y) = 0).

By Tietze’s theorem, every metric space is completely regular, and a
completely regular space is Hausdorff. An ordinal is a totally disconnected,
completely regular space.
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The topology on the ordinals.

Proposition 21.24

Let X be a completely regular topological space that does not surject onto
R. Then X is totally disconnected.

Proof.

Fix x ∈ X and V an open neighborhood, and let f be a continuous
function such that f(x) = 0 and f(y) = 1 for all y ∈ X \ V . By
assumption there is r ∈ (0; 1) \ ran(f). Then f−1[0; r] = f−1[0; r) is a
clopen neighborhood of x contained in V .

Corollary 21.25

A countable metric space is totally disconnected.
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The topology on the ordinals.

Every countable ordinal is homeomorphic to a countable closed subset of
R, hence by Proposition 21.22 every countable successor ordinal is
homeomorphic to a countable compact subset of R.
Which conditions must f : Ω → Ord satisfy in order to be continuous?
Continuity is never a problem on the successor ordinals, as they are isolated
points. If γ < Ω is limit and f(γ) is a successor, then by continuity of f ,
there is an interval [β; γ] which is mapped by f in the singleton {f(γ)}; in
other words: f is eventually constant below γ. If γ < Ω is limit and f(γ)
is limit, then for every δ < f(γ) there is β < γ such that the interval [β; γ]
is mapped by f into the interval [δ; f(γ)]. Therefore:

Lemma 21.26

Suppose f : Ω → Ord is monotone. Then f is continuous if and only if for
every limit ordinal λ < Ω

f(λ) = supβ<λ f(β) and ∀X ⊆ λ (supX = λ ⇒ f(λ) = supν∈X f(ν)).
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The topology on the ordinals.

Thus if f : Ω → Ord is increasing and continuous, then f(λ) is limit for all
limit ordinals λ.

Proposition 21.27

Suppose Ω is either a regular cardinal or Ord. If f : Ω → Ω is increasing
and continuous then ran f is closed and unbounded in Ω. Conversely, if C
is closed and unbounded in Ω, then its enumerating function
f : Ω → C ⊆ Ω is increasing and continuous.

Proof.

Suppose f : Ω → Ω is increasing and continuous. Then f(α) ≥ α, as f is
increasing, so ran f is unbounded in Ω. Suppose λ is limit and λ∩ ran f is
unbounded in λ, and let ν = {α < Ω | f(α) < λ}; then ν is limit and
λ = f(ν) ∈ ran f . Therefore ran f is closed in Ω.
Conversely, suppose C is closed and unbounded in Ω. The enumerating
function f : Ω → Ω is increasing. If λ ∈ Ω is limit, then ν

def
= supγ<λ f(γ)

is limit and C = ran f is unbounded in ν, so ν ∈ C and hence
f(λ) = ν = supγ<λ f(γ). Therefore f is continuous.
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Stationary and club sets

In what follows κ is an uncountable regular cardinal. The next result
shows that

Club(κ) = {X ⊆ κ | ∃C ⊆ X (C is closed and unbounded in κ)}

is a proper filter on κ. (Properness follows from the fact that ∅ is not
unbounded, so if X ∈ Club(κ) then κ \X /∈ Club(κ).)

Theorem 21.28

If C,D ⊆ κ are closed and unbounded in κ, then C ∩D is closed and
unbounded in κ.

Proof.

Clearly C ∩D is closed, so it is enough to show that it is unbounded in κ.
Given α < κ let us find a β ∈ C ∩D with α < β. Using that C and D are
unbounded, let us construct inductively an increasing sequence of ordinals
α < γ0 < δ0 < γ1 < δ1 < . . . such that γi ∈ C and δi ∈ D. Let
β = supi γi = supi δi. Since κ is regular then β ∈ κ and since C and D
are closed, β = supi γi ∈ C and β = supi δi ∈ D, that is β ∈ C ∩D.
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Stationary and club sets

The assumption that κ be regular and uncountable cannot be
removed—the sets {2n | n ∈ ω} and {2n+ 1 | n ∈ ω} are closed and
unbounded in ω but their intersection ∅ is not unbounded in ω.

Theorem 21.29

If γ < κ and the ⟨Cα | α < γ⟩ are closed unbounded in κ, then
⋂

α<γ Cα

is closed unbounded in κ.

Proof.

Clearly
⋂

α<γ Cα is a closed subset of κ, so it is enough to show that it is
unbounded. We argue by induction on γ. If γ = 0 or γ = 1 there is
nothing to prove. The case of γ a successor ordinal follows from
Theorem 21.28, so we may assume that γ is limit. Replacing Cα with⋂

β≤αCβ, we may assume that α < β < γ ⇒ Cα ⊇ Cβ. Given a ν < κ,
construct an increasing sequence ⟨ξα | α < γ⟩ with ν < ξ0 and ξα ∈ Cα.
Then ξ = supα<γ ξα ∈ κ as κ is regular, and since the Cαs are closed and
{ξβ | β ≥ α} ⊆ Cα, then ξ ∈ Cα for each α < γ.
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Stationary and club sets

α < κ is closed under f : nκ → κ if f(β1, . . . , βn) ∈ α for all
β1, . . . , βn ∈ α. The set of all ordinals closed under f is C(f).

Theorem 21.30

1 C(f) is closed and unbounded, for all f : nκ → κ.

2 If C ⊆ κ is closed and unbounded, then C ⊇ C(f) for some
f : κ → κ.

Proof.

1 As α < κ we must find γ ≥ α which is closed under f . Let

γi+1 = sup {f(β1, . . . , βn) | β1, . . . , βn ∈ γi}

where γ0 = α. By our assumption on κ, we have that
|{f(β1, . . . , βn) | β1, . . . , βn ∈ γi}| ≤ |γi|n < κ, and hence
γ = supi γi < κ is the ordinal we are looking for.
Closure of C(f) in κ is immediate.
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Stationary and club sets

Theorem 21.30

1 C(f) is closed and unbounded, for all f : nκ → κ.

2 If C ⊆ κ is closed and unbounded, then C ⊇ C(f) for some
f : κ → κ.

Proof.

2 Let C ⊆ κ be a closed unbounded, let g be its enumerating function,
and let f(α) = g(α+ 1): as α ≤ g(α) < f(α), if γ is closed under f , then
γ is limit and C ∩ γ is unbounded in γ. Therefore C(f) ⊆ C.
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Stationary and club sets

Corollary 21.31

If F is a collection of operations on a regular cardinal κ and |F| < κ, then⋂
f∈F C(f), the set of all α < κ which are closed under all f ∈ F , is

closed and unbounded in κ.

Therefore if A is an algebraic structure of size κ a regular cardinal with
< κ many operations and constants (e.g. a group, a ring, a lattice, . . . )
and ⟨aα | α < κ⟩ is an enumeration of A, then the set of all ν < κ such
that {aα | α < ν} is a substructure of A is closed and unbounded in κ.
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Stationary and club sets

Definition 21.32

The diagonal intersection of a sequence ⟨Xα | α < κ⟩ of subsets of κ is
△α<κXα = {β < κ | β ∈

⋂
α<β Xα}.

If Yα =
⋂

β≤αXβ, then
⋂

α<β Xα =
⋂

α<β Yα so that
△α<κXα = △α<κYα.
β ∈

⋂
α<β Xα is equivalent to ∀α < β (β ∈ Xα), which is equivalent to

∀α < κ (β ∈ α∔ 1 ∨ β ∈ Xα). Therefore

△α<κXα =
⋂
α<κ

(Xα ∪ α∔ 1).

If each Xα is closed in κ, then so is Xα ∪ α∔ 1, and hence △α<κXα is
closed in κ.
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Stationary and club sets

Proposition 21.33

If κ > ω and Cα is closed and unbounded in κ for each α < κ, then
△α<κCα is closed and unbounded in κ.

Proof.

We may assume that α < β ⇒ Cα ⊇ Cβ. Closure of C = △α<κCα is
immediate so it is enough to check that C is unbounded. Fix β0 < κ. As⋂

ν≤γ Cν is unbounded in κ for all γ < κ (Theorem 21.29), one defines an
increasing sequence

β0 < β1 < β2 < · · · < β = supn βn

such that βn+1 ∈
⋂

ν≤βn
Cν . As n < m ⇒ βm ∈ Cβn, the fact that Cβn is

closed implies that β = supm>n βm ∈ Cβn , hence
β ∈

⋂
nCβn =

⋂
ν<β Cν , that is β0 < β ∈ C as required.
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Stationary and club sets

Definition 21.34

A ⊆ κ is stationary in κ if A ∩ C ̸= ∅ for all closed unbounded C ⊆ κ.

By Theorem 21.29, a set in Club(κ) is stationary, but not
conversely—Exercise 21.58.
A stationary subset of κ is unbounded in κ as it intersects every (α;κ).
Thus regularity of κ implies that the stationary sets have size κ.
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Stationary and club sets

Theorem 21.35 (Fodor)

Let S ⊆ κ be stationary and let F : S → κ be such that
∀α ∈ S (α ̸= 0 ⇒ F (α) < α). Then F is constant on a stationary subset
of κ.

Proof.

Towards a contradiction, suppose that F−1 {α} is non-stationary for all
α < κ, that is

∀α ∈ κ∃Cα ⊆ κ
(
Cα closed and unbounded in κ and Cα ∩ F−1 {α} = ∅

)
.

By Proposition 21.33, △α<κCα is closed and unbounded, and since (0;κ)
is also closed and unbounded, the same is true of C = (△α<κCα) \ {0} by

Theorem 21.29. Let α ∈ S ∩ C: then β
def
= F (α) < α by definition of F ,

and α ∈ Cβ by definition of diagonal intersection, hence α /∈ F−1 {β} that
is F (α) ̸= β: a contradiction.
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Stationary and club sets

The exponential function κ 7→ 2κ

Rule 1

κ < λ ⇒ 2κ ≤ 2λ

Rule 2

κ < cof(2κ), and hence κ+ ≤ 2κ.

The GCH strengthens Rule 2 by 2κ = κ+, and therefore cof(2κ) = κ+ > κ,
for all infinite cardinals κ. By Gödel GCH cannot be refuted from ZFC,
and by Cohen CH (and hence GCH) cannot be proved in ZFC.
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Stationary and club sets

Easton showed that Rule 1 and Rule 2 are the only restrictions for κ 7→ 2κ

when κ is regular.

Example

Each of the following is consistent with ZFC:

2κ = κ++ for every regular κ,

2κ > κ+ and that ∀λ < κ
(
2λ = λ+

)
, with κ any regular cardinal.

The situation for singular cardinals is much deeper and interesting. . .
Silver proved that GCH cannot fail first at a singular cardinal of
uncountable cofinality.

Rule 3

If λ is a limit ordinal of uncountable cofinality and
{α < cof(λ) | 2ℵα = ℵα+1} is stationary in cof(λ), then 2ℵλ = ℵλ+1.

In particular, GCH cannot fail first at ℵω1 , i.e. if 2
ℵα = ℵα∔1 for all

α < ω1, then 2ℵω1 = ℵω1∔1.
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Stationary and club sets

The assumption ω < cof(λ) in in Rule 3 cannot be removed since Magidor
proved that GCH can fail first at ℵω: it is consistent that
∀n < ω

(
2ℵn = ℵn+1

)
and 2ℵω > ℵω∔1.

The value 2ℵω cannot be arbitrarily large, as Shelah proved that:

Rule 4

If ∀n
(
2ℵn < ℵω

)
, then 2ℵω < ℵmin(ω4,(2ℵ0 )+).
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Universes

Definition 21.37

A cardinal κ is strong limit if 2λ < κ for all λ < κ. A regular cardinal
κ > ω is weakly inaccessible if it is limit; it is strongly inaccessible if it
is strong limit.

If κ is weakly inaccessible then κ = ℵκ, but the least fixed point of the ℵ
function is of cofinality ω and hence not regular. A strongly inaccessible
cardinal is necessarily weakly inaccessible, and GCH guarantees the
converse. In the absence of some cardinal arithmetic assumption, the two
notions can be distinct; it is possible that 2ℵ0 is weakly inaccessible, while
if κ is strongly inaccessible then 2ℵ0 < κ.
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Lemma 21.38

Assume AC and suppose κ is strongly inaccessible. Then |Vα| < κ for all
α < κ. In particular |x| < κ for all x ∈ Vκ.

Proof.

Proceed by induction on α. If |Vα| < κ then |Vα+1| = 2|Vα| < κ, as κ is
strong limit. If α is limit, then |Vα| = |α| · supβ<α|Vβ| < κ by
regularity.
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Theorem 21.39

Assume AC. If κ is strongly inaccessible, then Vκ ⊨ ZFC.

Proof.

Suppose κ is strongly inaccessible. In order to prove that Vκ ⊨ ZFC, by
Theorem 19.15 it is enough to show that Vκ satisfies replacement. By
part (g) of Theorem 19.22 it is enough to show that if f : a → Vκ with
a ∈ Vκ, then there is b ∈ Vκ such that ran f ⊆ b. Let g : a → κ,
g(x) = the least α < κ such that f(x) ∈ Vα. By Lemma 21.38 |a| < κ, so
ran g ⊆ γ for some γ < κ, and hence ran f ⊆ Vγ ∈ Vκ.

The converse of Theorem 21.39 fails: if κ is inaccessible there are many
α < κ such that Vα ⊨ ZFC (Theorem 31.22).

A. Andretta & R. Carroy (Torino) Elements of Mathematical Logic AA 2024–2025 41 / 45



Universes

Definition 21.40

A universe is a transitive set U closed under the operation x 7→ P(x),
such that ω ∈ U , and ∀I ∈ U ∀f : I → U

(⋃
i∈I f(i) ∈ U

)
.

Lemma 21.42

If U is a universe then

1 x ⊆ y ∈ U ⇒ x ∈ U ,

2 x, y ∈ U ⇒ x ∪ y ∈ U ,

3 if x, y ∈ U then {x, y} ∈ U and hence (x, y) ∈ U ,

4 if x, y ∈ U then x× y ∈ U and xy ∈ U ,

5 if f : I → U and I ∈ U then ran f ∈ U and f ∈ U .
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x ⊆ y ∈ U ⇒ x ∈ U

x ∈ P(y) ∈ U so x ∈ U by transitivity.

x, y ∈ U ⇒ x ∪ y ∈ U

2 ∈ ω ∈ U , so 2 ∈ U by transitivity. Then x ∪ y =
⋃

i∈2 f(i) where
f : 2 → U is defined by f(0) = x and f(1) = y.

If x, y ∈ U then {x, y} ∈ U and hence (x, y) ∈ U

If x ∈ U then {x} ∈ PP(x) ∈ U , so {x} ∈ U . Thus if x, y ∈ U then
{x}, {y} ∈ U , so {x, y} ∈ U , and therefore (x, y) ∈ U .

if x, y ∈ U then x× y ∈ U and xy ∈ U

The result follows from x× y ⊆ PP(x ∪ y) and xy ⊆ P(x× y).

If f : I → U and I ∈ U then ran f ∈ U and f ∈ U

Letting g : I → U be i 7→ {f(i)}, then ran f =
⋃

i∈I g(i) ∈ U . Moreover
f ⊆ I × ran f ∈ U , whence f ∈ U .
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Theorem 21.41 (AC)

U is a universe if and only if U = Vκ for some strongly inaccessible
cardinal κ.

Proof

Suppose U is a universe and let κ = U ∩Ord.
U is closed under the S operation, so κ is limit and κ /∈ U . If γ < κ and
f : γ → κ, then sup ran f =

⋃
α<γ f(α) ∈ U and hence f cannot be

cofinal in κ. It follows that κ is regular. If 2λ ≥ κ for some infinite
cardinal λ < κ there would exist a surjection f : P(λ) ↠ κ ⊆ U . But
P(λ) ∈ U so by Lemma 21.42 κ ∈ U , a contradiction. It follows that κ is
a strongly inaccessible cardinal.
Let us check that Vα ∈ U for all α < κ, so that Vκ ⊆ U . As U is closed
under the P operation, then κ̄ = {α < κ | Vα ∈ U} is a limit ordinal: if
κ̄ < κ then using the function κ̄ → U , α 7→ Vα, we would have that
Vκ̄ =

⋃
α<κ̄Vα ∈ U , so that κ̄ ∈ κ̄, a contradiction. Therefore Vκ ⊆ U .

(continues)
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Proof (continues).

Recall that κ = U ∩Ord is inaccessible, and Vκ ⊆ U .
We prove that U ⊆ Vκ. Towards a contradiction, let x ∈ U \Vκ be of
least rank: then rank(x) ≥ κ so that the map x → κ, y 7→ rank(y), is
cofinal so that κ = supy∈x rank(y) ∈ U , a contradiction. Therefore
Vκ = U .

Suppose now κ is a strongly inaccessible cardinal, and let us check that Vκ

is a universe. Suppose f : I → Vκ with I ∈ Vκ. Then the function I → κ,
i 7→ rank(f(i)), is bounded in κ, since |I| < κ, so ran f ⊆ Vα for some
α < κ. Therefore

⋃
i∈I f(i) ⊆ Vα, and hence

⋃
i∈I f(i) ∈ Vα+1 ⊆ Vκ.

The other clauses in the definition of universe are immediate.
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