1. DIFFERENTIAL FORMS 2o

DEFINITION 1.16. Suppose that 7, = f(z,2)dz A d7 is a C* 2-form in the
coordinate z, defined on an open set Vi. Also suppose that 7, = g(w,w)dw A dw
is a ¢ 2-form in the coordinate w, defined on an open set V,. Let z = T'(w)
define a holomorphic mapping from the open set Vy to V. We say that m
transforms to ny under T if g(w, w) = (T (w), T(w))||T" (w)]|?.

The above definition comes exactly from making the change of coordinates
both in the function parts and the dz and dz parts of the expression, and then
using tlmles given above for simplifying and cancelling, noting that ||77( ?L')'|'iJ =
T'( w)T"(w).

Again the same method is used to transport these ideas to a Riemann surface:

DEFINITION 1.17. Let X be a Riemann surface. A C® 2-form on X is a
collection of C°° 2-forms {n4}, one for each chart ¢ : U — V in the variable of
the target V', such that if two charts ¢, : U, — V, (for 2 = 1, 2) have overlapping
domains, then the associated C*> 2-form N¢, transforms to 7,4, under the change

of coordinate mapping T' = ¢, o ¢; .
Finally the same atlas remark holds again:

LEMMA 1.18. Let X be a Riemann surface and A a complez atlas on X.
Suppose that C* 2-forms are given for each chart of A, which transform to each
other on their common domains. Then there ezists a unique C>= 2-form on X
ertending these C*° 2-forms on each of the charts of A.

Problems IV.1
A. Let X be the Riemann Sphere C,,, with local coordinate z in one chart and

w = 1/z in the other chart. Let w be a meromorphic 1-form on X. Show
that if w = f(z)dz in the coordinate z, then f must be a rational function
of z. Show further that there are no nonzero holomorphic 1-forms on .
Where are the zeroes and poles, and the orders, of the meromorphic 1-form
defined by dz? Of the 1-form dz/z?

B. Let L be a lattice in C, and let m : C — X = C/L be the natural quotient
map. Show that the local formula dz in every chart of C/L is a well defined
holomorphic 1-form on C/L. Show that this 1-form has no zeroes. Show
that the local formula dz in every chart of C/L is a well defined C*®° 1-form
on C/L.

" Let X be a smooth affine plane curve defined by f (u,v) = 0. Show that
du and dv define holomorphic 1-forms on X, as do p(u,v)du and p(u,v)dv
for any polynomial p(u,v). Show that if r(u,v) is any rational function,
then r(u,v)du and r(u,v)dv are meromorphic 1-forms on X. Show that
(0f/0u)du = —(8f/Bv)dv as holomorphic 1-forms on X.

D. Let X be a smooth projective plane curve defined by a homogeneous poly-
nomial F(z,y,z) = 0. Let f(u,v) = F(u,v,1) define the associated smooth
affine plane curve. Show that du and dv define meromorphic 1-forms on all
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2. OPERATIONS ON DIFFERENTIAL FORMS '

The Poincaré and Dolbeault Lemmas. The Poincaré and Dolbeault Lem-
- address the question: when is a function equal to the derivative of another
function, 8t least .loca.lly ? More precisely, when is a 1-form w equal to df or 9f,

y? Clearly since ddf = 0, a necessary condition for w = df is that dw = 0;

Jocally
since Of has type (0,1), a necessary condition for w = df is that w be of type

(0,1)- P
¢ turns out that these conditions are sufficient as well. We will not use these

esults in an important way, and so will not give proofs; they can be found in
many texts.

prOPOSITION 2.7 (POINCARE'S LEMMA). Let w be a C*® 1-form on a Rie-
mann surface X. Suppose that dw = 0 identically in a neighborhood of a point
pinX. Then on some neighborhood U of p there is a C* function f defined on

U Mthw:df onU.

A proof can be found in [Munkres91]; the idea is to use path integration
(which we will discuss in the next section) and show that the function f(2) = f,: =
s well defined (using dw = 0) and satisfies df = w (by the fundamental theorem

of calculus).
Dolbeault’s Lemma is not as elementary.

PROPOSITION 2.8 (DOLBEAULT’S LEMMA). Let w be a C* (0, 1)-form on a
Riemann surface X. Then on some neighborhood U of p there is a C* function
f defined on U withw =8f on U.

In the real analytic category a proof is elementary, and goes as follows. Write

. = g(z,Z)dz. We seek a function f such that df/8z = g. If g is real analytic,
hen it can be expanded in a series and we may write g =3, . ¢i;2'7?. Then we

nay integrate term-by-term, and set f = 3=, . ¢;;22 21 /(j + 1).
See for example [Forster81] for a general proof.

Problems IV.2
Check that if w is a C*° 1-form and h is a C* function, then hw defined as
in the text is a C*° 1-form.

B. Prove Lemma 2.1. :
Prove Lemma 2.2, i.e., that the wedge product of two 1-forms is a well defined

2-form.
Prove Lemma 2.3.

E. Prove Lemma 2.4.
Prove Lemma 2.5, i.e., that the pullback of a 1-form is well defined.

Prove that the pullback of a 2-form is well defined.
Let a holomorphic map F : Co — Coo be defined by the formula w = zN for

H
some integer N > 2, where we use z as an affine coordinate in the domain
and w as an affine coordinate in the range. Compute the pullback
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