DEFINITION 1.16. Suppose that $\eta_1 = f(z, \overline{z}) dz \wedge d\overline{z}$ is a C^{∞} 2-form in the coordinate z, defined on an open set V_1 . Also suppose that $\eta_2 = g(w, \overline{w}) dw \wedge d\overline{w}$ is a C^{∞} 2-form in the coordinate w, defined on an open set V_2 . Let z = T(w) define a holomorphic mapping from the open set V_2 to V_1 . We say that η_1 transforms to η_2 under T if $g(w, \overline{w}) = f(T(w), \overline{T(w)}) ||T'(w)||^2$.

The above definition comes exactly from making the change of coordinates both in the function parts and the dz and $d\overline{z}$ parts of the expression, and then using the rules given above for simplifying and cancelling, noting that $||T'(w)||^2 = T'(w)\overline{T'(w)}$.

Again the same method is used to transport these ideas to a Riemann surface:

DEFINITION 1.17. Let X be a Riemann surface. A \mathcal{C}^{∞} 2-form on X is a collection of \mathcal{C}^{∞} 2-forms $\{\eta_{\phi}\}$, one for each chart $\phi: U \to V$ in the variable of the target V, such that if two charts $\phi_i: U_i \to V_i$ (for i=1,2) have overlapping domains, then the associated \mathcal{C}^{∞} 2-form η_{ϕ_1} transforms to η_{ϕ_2} under the change of coordinate mapping $T = \phi_1 \circ \phi_2^{-1}$.

Finally the same atlas remark holds again:

LEMMA 1.18. Let X be a Riemann surface and \mathcal{A} a complex atlas on X. Suppose that \mathcal{C}^{∞} 2-forms are given for each chart of \mathcal{A} , which transform to each other on their common domains. Then there exists a unique \mathcal{C}^{∞} 2-form on X extending these \mathcal{C}^{∞} 2-forms on each of the charts of \mathcal{A} .

Problems IV.1

- A. Let X be the Riemann Sphere \mathbb{C}_{∞} , with local coordinate z in one chart and w=1/z in the other chart. Let ω be a meromorphic 1-form on X. Show that if $\omega=f(z)\mathrm{d}z$ in the coordinate z, then f must be a rational function of z. Show further that there are no nonzero holomorphic 1-forms on \mathbb{C}_{∞} . Where are the zeroes and poles, and the orders, of the meromorphic 1-form defined by $\mathrm{d}z$? Of the 1-form $\mathrm{d}z/z$?
- B. Let L be a lattice in \mathbb{C} , and let $\pi: \mathbb{C} \to X = \mathbb{C}/L$ be the natural quotient map. Show that the local formula $\mathrm{d}z$ in every chart of \mathbb{C}/L is a well defined holomorphic 1-form on \mathbb{C}/L . Show that this 1-form has no zeroes. Show that the local formula $\mathrm{d}\overline{z}$ in every chart of \mathbb{C}/L is a well defined \mathcal{C}^{∞} 1-form on \mathbb{C}/L .
- C. Let X be a smooth affine plane curve defined by f(u,v) = 0. Show that du and dv define holomorphic 1-forms on X, as do p(u,v)du and p(u,v)dv for any polynomial p(u,v). Show that if r(u,v) is any rational function, then r(u,v)du and r(u,v)dv are meromorphic 1-forms on X. Show that $(\partial f/\partial u)du = -(\partial f/\partial v)dv$ as holomorphic 1-forms on X.
- D. Let X be a smooth projective plane curve defined by a homogeneous polynomial F(x, y, z) = 0. Let f(u, v) = F(u, v, 1) define the associated smooth affine plane curve. Show that du and dv define meromorphic 1-forms on all

10 10 Co. Or . 3.

CHAPTER IV. INTEGRATION ON RIEMANN SURFACES of X, as do r(u,v)du and r(u,v)dv for any rational function r. Show that 112

 $(\partial f/\partial u)\mathrm{d}u = -(\partial f/\partial v)\mathrm{d}v$ as meromorphic 1-forms on X. $(\partial f/\partial u)du = -(\partial f/\partial v)dv$ as increased. Suppose that F(x,y,z) has degree E. With the notation of the previous problem, suppose that F(x,y,z) has degree at most d

With the notation of the previous p $d \ge 3$. Show that if p(u, v) is any polynomial of degree at most d - 3, then

$$p(u,v)\frac{\mathrm{d}u}{\partial f/\partial v}$$

defines a holomorphic 1-form on the compact Riemann surface X.

F. Suppose that X is a projective plane curve of degree d with nodes, defined by the affine equation f(u, v) = 0. Show that if p(u, v) is any polynomial of degree at most d-3, which vanishes at the nodes of X, then

$$p(u,v)\frac{\mathrm{d}u}{\partial f/\partial v}$$

defines a holomorphic 1-form on the resolution \tilde{X} of the nodes.

- G. Let X be a compact hyperelliptic Riemann surface defined by $y^2 = h(x)$, where h has degree 2g+1 or 2g+2 (so that X has genus g). Show that dx/yis a holomorphic 1-form on X if $g \ge 1$. Show that p(x) dx/y is a holomorphic 1-form on X if p(x) is a polynomial in x of degree at most g-1.
- H. Let X be a cyclic cover of the line defined by $y^d = h(x)$. Show that r(x,y)dxdefines a meromorphic 1-form on X. Give criteria for when r(x,y)dx is a holomorphic 1-form.
- I. Let L be a lattice in \mathbb{C} , and let $\pi:\mathbb{C}\to X=\mathbb{C}/L$ be the natural quotient map. Show that $dz \wedge d\overline{z}$ is a well defined C^{∞} 2-form on \mathbb{C}/L .
- J. Prove Lemma 1.8.

2. Operations on Differential Forms

There are several operations which one can perform with forms to produce of the construction of the

Multiplication of 1-Forms by Functions. Suppose that h is a C^{∞} function on a Riemann surface X, and ω is a C^{∞} 1-form on X. We may define a C^{∞} 1form $h\omega$ locally, by writing $\omega = f dz + g d\overline{z}$ and dools in the hode.

The Poincaré and Dolbeault Lemmas. The Poincaré and Dolbeault Lemmas address the question: when is a function equal to the derivative of another function, at least locally? More precisely, when is a 1-form ω equal to df or $\overline{\partial} f$, locally? Clearly since ddf = 0, a necessary condition for $\omega = df$ is that $d\omega = 0$; since $\overline{\partial} f$ has type (0,1), a necessary condition for $\omega = \overline{\partial} f$ is that ω be of type (0,1).

It turns out that these conditions are sufficient as well. We will not use these results in an important way, and so will not give proofs; they can be found in

many texts.

Un

PROPOSITION 2.7 (POINCARÉ'S LEMMA). Let ω be a C^{∞} 1-form on a Riemann surface X. Suppose that $d\omega=0$ identically in a neighborhood of a point p in X. Then on some neighborhood U of p there is a C^{∞} function f defined on U with $\omega=df$ on U.

A proof can be found in [Munkres91]; the idea is to use path integration (which we will discuss in the next section) and show that the function $f(z) = \int_p^z \omega$ is well defined (using $d\omega = 0$) and satisfies $df = \omega$ (by the fundamental theorem of calculus).

Dolbeault's Lemma is not as elementary.

PROPOSITION 2.8 (DOLBEAULT'S LEMMA). Let ω be a C^{∞} (0,1)-form on a Riemann surface X. Then on some neighborhood U of p there is a C^{∞} function f defined on U with $\omega = \overline{\partial} f$ on U.

In the real analytic category a proof is elementary, and goes as follows. Write $\omega = g(z, \overline{z}) d\overline{z}$. We seek a function f such that $\partial f/\partial \overline{z} = g$. If g is real analytic, then it can be expanded in a series and we may write $g = \sum_{i,j} c_{ij} z^i \overline{z}^j$. Then we may integrate term-by-term, and set $f = \sum_{i,j} c_{ij} z^i \overline{z}^{j+1}/(j+1)$.

See for example [Forster81] for a general proof.

Problems IV.2

- A. Check that if ω is a C^{∞} 1-form and h is a C^{∞} function, then $h\omega$ defined as in the text is a C^{∞} 1-form.
- B. Prove Lemma 2.1.
- C. Prove Lemma 2.2, i.e., that the wedge product of two 1-forms is a well defined 2-form.
- D. Prove Lemma 2.3.
- E. Prove Lemma 2.4.
- F. Prove Lemma 2.5, i.e., that the pullback of a 1-form is well defined.
- G. Prove that the pullback of a 2-form is well defined.
- H. Let a holomorphic map $F: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be defined by the formula $w = z^N$ for some integer $N \geq 2$, where we use z as an affine coordinate in the domain and w as an affine coordinate in the range. Compute the pullback

Let E. F. be vector spaces Let S. be Introduction e l'aleral de Pernambuca, D. Mulerne CALIDIES AND BLOWING i.e. ROBERTO LINCAR TRANSPORTER Parametrizing maps of rank p orbits D. Death Haps of land imbeddine) or the con

CHAPTER IV. INTEGRATION ON RIEMANN SURFACES

 $F^*((1/w)dw)$ of the form (1/w)dw. Compute the orders of $F^*((1/w)dw)$ at 118

I. Let X be a hyperelliptic curve defined by $y^2 = h(x)$. Let $\pi: X \to \mathbb{P}^1$ be the Let A be a hyperemptic curve defined by double covering map sending (x,y) to x. Let $\omega = \pi^*(\mathrm{d}x/h(x))$. Compute the orders of ω at all of its zeroes and poles.

3. Integration on a Riemann Surface

We are now in a position to describe contour integration for a Riemann surface.

Paths. The concept of a 1-form is specifically designed to provide an integrand for a "contour integral" on a Riemann surface. The other ingredient of such an integral is the contour itself. This we now develop briefly; these ideas should be quite well known.

DEFINITION 3.1. A path on a Riemann surface X is a continuous and piecewise \mathcal{C}^{∞} function $\gamma:[a,b]\to X$ from a closed interval in \mathbb{R} to X. The points $\gamma(a)$ and $\gamma(b)$ are the endpoints of the path $(\gamma(a))$ is sometimes called the initial point). We say the path γ is closed if $\gamma(a) = \gamma(b)$.

There are several obvious remarks to make.

EXAMPLE 3.2. Let $\gamma:[a,b]\to X$ be a path on X. Suppose that $\alpha:[c,d]\to$ [a,b] is a continuous and piecewise C^{∞} function sending c to a and d to b. Then $\gamma \circ \alpha$ is a path on X. This is referred to as a reparametrization of the path γ . Any path γ may be reparametrized so that its domain is [0,1].

EXAMPLE 3.3. Let $\gamma:[a,b]\to X$ be a path on X. The reversal of γ , denoted by $-\gamma$, is the path defined by sending $t \in [a, b]$ to $\gamma(a + b - t)$. Its initial point is the endpoint of γ , and its endpoint is the initial point of γ .

EXAMPLE 3.4. If $F: X \to V$ is a C^{∞} man C^{∞}