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3. PROJECTIVE CURVES 13

G. Show that the polynomial f(z,w) = w? — h(z) is an irreducible polynomial
if and only if h(z) is a polynomial which is not a perfect square. Show that
f(z,w) is a nonsingular polynomial if and only if h(z) has distinct roots.

H. Let X be an affine plane curve of degree 2, that is, defined by a quadratic
polynomial f(z,w). (Such a curve is called an affine conic.) Suppose that
f(z,w) is singular. Show that in fact f factors as the product of two linear
polynomials, so that X is therefore the union of two intersecting lines. Give
an example of a smooth affine plane conic.

I. Give an example of a smooth irreducible affine plane curve of arbitrary de-
gree. Make sure you check the irreducibility!

J. Let ¢ be holomorphic in a neighborhood of p € C. Assume that ¢'(p) # 0.
Prove (using the Implicit Function Theorem) that there exists a neighbor-
hood U of p such that ¢|y is a chart on C.

3. Projective Curves

The Projective Line P! is the first in a series of examples which encompass the
most important and interesting compact Riemann surfaces. These are surfaces
which are embedded in projective space. We first discuss the case of projective
plane curves.

The Projective Plane P2. We will make a construction very similar to that
made for the projective line P 1.

DEFINITION 3.1. The projective plane P2 is the set of 1-dimensional subspaces
of C3.

If (z,y, z) is a nonzero vector in C?3, its span is denoted by [z : y : z] and is a
point in the projective plane; every point in the projective plane may be written
in this way. Note that

[z:y:2]=[Az: Ay : Az

for any nonzero number A; indeed, P2 can be viewed as the quotient space of
C3 — {0} by the multiplicative action of C*. In this way it inherits a Hausdorff
topology, which is the quotient topology coming from the natural map from
C? — {0} onto P2

The entries in the notation [z : y : 2] are called the homogeneous coordinates of
the corresponding point in the projective plane. The homogeneous coordinates
are not unique, as noted above; however whether they are zero or not is well
defined.

The space P2 can be covered by the three open sets

Up={lz:y:2]|z#0}Ui={z:y:2] |y# 0}V ={[z:y:2]|2#0}

Each open set U; is homeomorphic to the affine plane C 2. The homeomorphism
on Uy is given by sending [z : y : 2] € P? to (y/z,z/z) € C?2; its inverse sends
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Problems II.1

A. Check that all of the functions of Examples 1.3 through 1.11 are holomorphic
as claimed.

B. Check that all of the functions of Examples 1.16 through 1.23 are meromor-
phic as claimed.

C. Let L be a lattice in C and let X be the torus C/L. Let 7 : C — X be the

quotient map. Show that a function f on X is meromorphic if and only if

the composition fr is a meromorphic function on C.

Prove Lemma 1.26.

Prove Lemma 1.28.

Prove Lemma 1.29.

Verify all of the statements of Example 1.30.

Prove Liouville’s Theorem (that a bounded entire function on C is constant)

by showing that a bounded entire function extends to a holomorphic function

on the (compact) Riemann Sphere Ce.

Prove without invoking the Maximum Modulus Theorem that any rational

function which is holomorphic at every point of the Riemann Sphere Co is

in fact a constant.

mQmeEU

=i

2. Examples of Meromorphic Functions

Meromorphic Functions on the Riemann Sphere. We have seen in
Example 1.18 that any rational function r(z) = p(2)/q(2) is meromorphic on the
whole Riemann Sphere. In fact, the converse is true:

THEOREM 2.1. Any meromorphic function on the Riemann Sphere 15 a ratio-
nal function.

PROOF. Let f be a meromorphic function on the Riemann Sphere Ce. Since
C,, is compact, it has finitely many zeroes and poles. Let {);} be the set of zeroes
and poles of f in the finite complex plane C, and assume that ord,—»,(f) = &;.
Consider the rational function

r(z) = [[ (z - 2)"

i

which has the same zeroes and poles, to the same orders, as f does, in the finite
plane (see Example 1.30). Let g(z) = f/r(z); g is a meromorphic function on
Coo, With no zeroes or poles in the finite plane. Therefore, as a function on C,
it is everywhere holomorphic, and has a Taylor series

9(2) =3 "

n=0
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a known Riemann surface X and find a suitable map from X into projective
space.

Problems II.2

A. Consider the projective line P!. Fix a point p € P!, and a finite set S ¢ P!
with p ¢ S. Show that there exists a meromorphic function f on P! with a
simple zero at p and no zeroes or poles at any of the points of S.

B. Show that the series defining the theta-function converges absolutely and

uniformly on compact subsets of C.

. Show that 0(z + 1) = 6(z) for every z in C.

Show that 8(z + 7) = e~™[7+221¢(2) for every z in C.

. Show that 2y is a zero of 8 if and only if zy + m + n7 is a zero of @ for every
m and n in Z. Moreover the order of zero of 6 at zg is the same as the order
of zero at zg + m + nr.

F. Show that the only zeroes of 8 are at the points (1/2) + (7/2) +m + nr, for
integers m and n, and that these zeroes are simple. (Hint: integrate 6'/6
around a fundamental parallelogram.)

G. Let {p;} and {g;} be two sets of d points on a complex torus X = C/L
(repetitions are allowed). Show that there exist numbers {z;} and {y;} in
C such that 7(x;) = p; and 7(y;) = ¢; for every ¢ with Y, z; = >, y; if and
only if ). p; = >, ¢; in the quotient group law of X.

H. Consider the complex torus X = C/L. Fix a point p € X, and a finite set
S C X with p ¢ 5. Show that there exists a meromorphic function f on X
with a simple zero at p and no zeroes or poles at any of the points of S.

BUQ

3. Holomorphic Maps Between Riemann Surfaces

The Definition of a Holomorphic Map. Modern geometric philosophy
holds firmly to the notion that the first thing one does after defining the objects
of interest is to define the functions of interest. In our case the objects are
Riemann surfaces, and we have already addressed complex-valued functions on
Riemann surfaces. However “functions” are to be taken also in the sense of
mappings between the objects; once we define such mappings, we will have a
category of Riemann surfaces.

In the case of Riemann surfaces, which have local complex coordinates, the
natural property of a mapping is to be holomorphic. Let X and Y be Riemann
surfaces.

DEFINITION 3.1. A mapping F': X — Y is holomorphic at p € X if and only
if there exists charts ¢y : Uy — V3 on X with p € Uy and ¢ : Uy — Vo on Y
with F'(p) € U such that the composition ¢, o F o ¢7" is holomorphic at ¢, (p).
If F is defined on an open set W C X, then we say F' is holomorphic on W if
F' is holomorphic &t each point of W. In particular, F' is a holomorphic map if
and only if F' is holomorphic on all of X.




