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g/(f — @) is a square root of a function in L(2po).)
G. Show that given any two meromorphic functions f and g on X, there is a
divisor D such that f and g are both in L(D).
H. Suppose that X is a compact Riemann surface and D > 0 is a strictly positive
divisor on X such that dim L(D) = 1 + deg(D). Conclude that there exists
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the Riemann Sphere.
Let X be a Riemann surface, and let E be any divisor on X. Suppose that

D is a nonnegative divisor with finite support. Show that L(E) C L(E + D)
has codimension at most deg(D).
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