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We will be able to give a proof of the above statement for an arbitrary compact

Riemann surface shortly, along slightly different lines.

Problems I1.3

A.

B.
C.

Verify Example 3.4: if Y is the complex plane C, prove that a holomorphic
map F': X — Y is simply a holomorphic function on X.

Prove all the statements of Lemma 3.5.

Show that under the isomorphism between P! and the Riemann Sphere C,,
the points [z : 1] are sent to the finite points z, and the point [1 : 0] is sent
to oo.

Explicitly write down the inverse holomorphic map to the isomorphism from
P! to Cy given in the proof of Lemma 3.7. Check everything necessary.
Let m : C —» X = C/L be the natural projection map defining a complex
torus X. Let Y be a Riemann surface. Show that a map F' : X — Y is
holomorphic if and only if F'onw : C — Y is holomorphic. Deduce that the
projection map 7 is a holomorphic map.

Let f(z,w) and g(z,w) be homogeneous polynomials of the same degree
with no common factor, and not both identically zero. Show that the map
F:P! — P! defined by sending [z : w] to [f(z,w) : g(z,w)] is well defined
and holomorphic. What if f and ¢ have a common facter?

Let A= (Z Z) be an invertible 2-by-2 matrix over C. Show that the map

Fy:P! - P! sending [z : w] to [az + bw : cz + dw] is an automorphism of
P!. For which matrices A is F4 the identity? Show that Fag = Fa o F.

. Show that after identifying P! with Coo, the automorphism F'4 defined above

takes z € Cy, to (az +b)/(cz + d); hence it is a linear fractional transforma-
tion.

Let X be a compact Riemann surface and f a nonconstant meromorphic
function on X. Show that f must have a zero on X, and must have a pole
on X.

Prove that, given a meromorphic function f on a Riemann surface X, the
associated map F' : X — C, is holomorphic. Verify the 1-1 correspondence
of Proposition 3.13.

. Recall that a lattice L C C is an additive subgroup generated (over Z) by two

complex numbers w; and w, which are linearly independent over R. Thus
L = {mw; + nwy | m,n € Z}.
1. Suppose that L C L' are two lattices in C. Show that the natural map
from C/L to C/L’ is holomorphic, and is biholomorphic if and only if
L= L'
2. Let L be a lattice in C and let o be a nonzero complex number. Show
that oL is a lattice in C and that the map

¢:C/L— C/(aL)
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sending the coset z + L to (az) + (aL) is a well defined biholomorphic
map. :

3. Show that every torus C/L is isomorphic to a torus which has the
form C/(Z + Zt), where 7 is a complex number with strictly positive
imaginary part.

4. Global Properties of Holomorphic Maps

Local Normal Form and Multiplicity. It may seem strange to have the
first part of a section on global properties dealing with a completely local con-
cept. However, most global properties actually state that some function of local
invariants is constant. This is the case in our situation, and so we must introduce
the local invariant before proceeding.

A holomorphic map between two Riemann surfaces has a standard normal
form in some local coordinates: essentially, every map looks like a power map.
This we now present.

ProPOSITION 4.1 (LocAL NORMAL ForMm). Let F': X — Y be a holomor-
phic map defined at p € X, which is not constant. Then there is a unique integer
m > 1 which satisfies the following property: for every chart ¢g : Uy — Vo on'Y
centered at F(p), there exists a chart ¢1 : Uy — V1 on X centered at p such that
$2(F(97(2))) = 2™

PrOOF. Fix a chart ¢ on Y centered at F(p), and choose any chart v :
U — V on X centered at p. Then the Taylor series for the function T(w) =
¢2(F(p~1(w))) must be of the form

T(w) = Z cw*

i=m

with ¢, # 0, and m > 1 since T'(0) = 0. Thus we have T'(w) = w™S(w) where
S(w) is a holomorphic function at w = 0, and S(0) # 0. In this case there
exists a function R(w) holomorphic near 0 such that R(w)™ = S(w), so that
T(w) = (wR(w))™. Let n(w) = wR(w); since n’(0) # 0, we see that near 0
the function 7 is invertible (by the Implicit Function Theorem), and of course
holomorphic. Hence the composition ¢; = no1 is also a chart on X defined and
centered near p. If we think of 77 as defining a new coordinate z (via z = n(w)),
we see that z and w are related by z = wR(w). Thus

02(F(¢7'(2)) = $(F@ 07 (2))
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n we Therefore
2g(X) -2 = —e(X)
-nilﬁg et
> the
= —deg(F)v+ Z [mult, (F) — 1] + deg(F)e — deg(F)t
vertex p of x
. = —deg(Fe(Y)+ Y  [multy,(F)-1]
- vertex p of X
with
nula, = deg(F)(29(Y) —2) + Y _ [mult,(F) — 1],

peEX

the last equality holding because every ramification point of F' is a vertex of
stant X 0O

We may view this proof as resolving two different ways of computing preim-
ages. If we “count properly”, we take into account the ramification of the map
and all of the multiplicities. If we count “naively”, we get a computation of the

inite, Euler number. Putting these two things together gives Hurwitz’s formula.
) is a

Problems I1.4
srtex. A Verify the statement in Example 4.3 that chart maps have constant multi-
st 6 plicity one. Is the converse true? (I.e., is every holomorphic map from an
s on open set in X to an open set in C with constant multiplicity one, a chart

map?)

ingle, B. Let F' be a holomorphic map between Riemann surfaces. Prove that the set
ilarly of points p with mult,(F") > 2 forms a discrete subset of the domain by using
X is the Local Normal Form.

C.Let F: X - Y and G:Y — Z be two nonconstant holomorphic maps
between Riemann surfaces. Show that if p € X, then mult,(G o F) =
multy, (F) mult () (G). Show that if f is a meromorphic function on Y, then
ord,(f o F) = mult, (F) ord g, (f)-

D. Explicitly triangulate the sphere, the disk, and the cylinder and verify that
they have Euler numbers 2, 1, and 0 respectively.

E. Show that if f is a holomorphic function at p, and mult,(f) = 1 (considering

imber f as a holomorphic map locally to C), then f is a local coordinate function
at p.

F. Let f be a global meromorphic function on a compact Riemann surface X.
Show that f is a local coordinate at all but finitely many points of X.

G. Let f(z) = 23/(1 — 2?), considered as a meromorphic function on the Rie-
mann Sphere C,. Find all points p such that ord,(f) # 0. Consider the
associated map F': Co, — Cy. Show that F' has degree 3 as a holomorphic
map, and find all of its ramification and branch points. Verify Hurwitz’s
formula for this map F.
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H. Let f(z) = 422(z —1)*/(2z — 1)?, considered as a meromorphic function
~ on the Riemann Sphere C,. Find all points p such that ord,(f) # O.
Consider the associated map F': Co, — Cy. Show that F' has degree 4 as a
holomorphic map, and find all of its ramification and branch points. Verify
Hurwitz’s formula for this map F'.
I. Let F': X — Y be a nonconstant holomorphic map between compact Rie-
mann surfaces.
1. Show that if ¥ 2 P!, and F has degree at least two, then F' must be
ramified.
2. Show that if X and Y both have genus one, then F' is unramified.
3. Show that g(Y") < g(X) always.
4. Show that if g(Y) = g(X) > 2, then F' is an isomorphism.
J. Let X be the projective plane curve of degree d defined by the homogeneous
polynomial F(z,y,z) = ¢ + y? + 2¢. This curve is called the Fermat curve
of degree d. Let m: X — P! be given by [z : y : 2] = [z : y].
Check that the Fermat curve is smooth.
Show that 7 is a well defined holomorphic map of degree d.
Find all ramification and branch points of .
Use Hurwitz’s formula to compute the genus of the Fermat curve: you
should get

Lol = S

o) = = 00=2)

K. Let U be the affine plane curve defined by x? = 3+ 10t* 4 3t2. Let V be the
affine plane curve defined by w? = 25—1. Show that both curves are smooth.
Show that the function F : U — V defined by z = (1 + ¢2)/(1 — t?) and
w = 2tz/(1 — t2)3 is holomorphic and nowhere ramified whenever ¢ # +1.

Further Reading

The basic material on singularities of complex functions is standard fare in all
texts on complex variables; each of the texts mentioned at the end of Chapter I
have plenty on this, and also sections on harmonic functions, which are sometimes
given short shrift in a first course.

Many authors introduce meromorphic functions on a torus (also known as
elliptic functions) via the Weierstrass P-function; this is the approach taken for
example in [Ahlfors66|, [JS87], [Lang85]|, and [Lang87|. We have taken the
approach of theta-functions, to emphasize the analogy between ratios of theta-
functions (on a torus) and ratios of homogeneous polynomials (on the projective
line); this is also the approach of [Clemens80]. For (much) more depth on
theta-functions, see [R-F74], [Gunning76], and [Mumford83].

We have mentioned Shafarevich’s text [Shafarevich77] for the Nullstellen-
satz; there are many other references, many in texts in algebra, for example,
[Z-S60], [AM69], [Hungerford74|, and [Lang84]; students just starting out
may find the treatment in [Artin91] less steep. The Nullstellensatz is at the
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