GEOMETRIA 3

A.A 2015/16

PROVA SCRITTA DEL 16 SETTEMBRE 2016

[1]

- (i) Sia $\alpha(s)$ una curva differenziabile parametrizzata rispetto all'ascissa curvilinea s e supponiamo che α abbia curvatura costante k>0 e torsione nulla.
 - (a) (1 punto) Provare che

$$\gamma(s) = \alpha(s) + \frac{1}{k}\mathbf{n}(s)$$

è una curva costante, cioè $\gamma(s) = P_0$, per qualche punto fissato P_0 .

- (b) (3 punti) Usando (a), provare che la curva $\alpha(s)$ è parte di una circonferenza centrata nel punto P_0 . Qual è il raggio della circonferenza?
- (ii) (3 punti) Sia $\beta(t) = (\sin t, \cos t, t^2)$. Qual è il valore massimo della curvatura in ogni punto della curva?
- [2] (5 punti) Provare che una superficie regolare in \mathbb{R}^3 è localmente il grafico di una funzione differenziabile.
- [3] (i) (2 punti) Dare la definizione di pull-back mediante un'applicazione differenziabile $F: \mathbb{R}^n \to \mathbb{R}^m$ di una k-forma differenziale ω su \mathbb{R}^m .
- (ii) (4 punti) Data un'applicazione differenziabile $F: \mathbb{R}^n \to \mathbb{R}^m$, provare che $d(F^*\omega) = F^*(d\omega)$ per ogni k-forma differenziale ω su \mathbb{R}^m . Può il pullback di una k-forma differenziale $F^*\omega$ essere esatta, senza che ω sia esatta?
- [4] (3 punti) Sia S la superficie definita da $z=x^2+y^2$ per $z\leq 4$. Dato il campo vettoriale $\mathbf{F}(x,y,z)=(0,xz^3,0)$ e $\mathbf{G}=\mathrm{rot}(\mathbf{F})$, usare il Teorema di Stokes per calcolare $\iint_S \mathbf{G} \cdot N \, d\sigma$.

- [5] (5 punti) Definire la curvatura normale di una superficie e dimostrare la formula di Eulero.
- [6] Sia $f:I\to\mathbb{R}$ una funzione differenziabile, dove I è un intervallo aperto in \mathbb{R} . Sia $\mathbf{x}:U\to\mathbb{R}^3$ la funzione

$$\mathbf{x}(u, v) = (u, v + f(u), v - f(u))$$

definita sull'aperto $U = I \times I$ di \mathbb{R}^2 .

- (1) (2 punti) Provare che $\mathbf{x}(U)$ è una superficie regolare di \mathbb{R}^3 e calcolarne il versore normale in ogni punto (in particolare, mostrare che \mathbf{x} è iniettiva).
- (2) (2 punti) Calcolare l'espressione della prima e della seconda forma fondamentale di \mathbf{x} in ogni punto.
- $\left(3\right)$ $\left(2\right.$ punti) Calcolare la curvatura di Gauss e la curvatura media in ogni
 punto.