GEOMETRIA 3

A.A 2015/16

PROVA SCRITTA DEL 18 GENNAIO 2017

[1]

(i) (4 punti) Data la curva nello spazio

$$\gamma(t) = (3t^2, 1 + 3t, at^3), \quad t \in [-5, 5],$$

stabilire per quali valori di $a \in \mathbb{R}$ la curva è piana. Posto a = 2, calcolarne il raggio di curvatura nel punto (0, 1, 0).

(ii) (3 punti) Per una curva differenziale $\alpha(s)$ in \mathbb{R}^3 parametrizzata rispetto all'ascissa curvilinea s sappiamo che $\mathbf{t}'(0) = (2,0,2)$ e $\mathbf{t}''(0) = (9,7,1)$, calcolare k'(0), dove k(s) è la curvatura di $\alpha(s)$.

[2] (6 punti) Provare che gli integrali curvilinei di forme chiuse sono invarianti per omotopia.

[3]

- (i) (3 punti) Dare la definizione di differenziale di forme differenziali ed enunciarne le principali proprietà.
- (ii) (2 punti) Dare la definizione di simboli di Christoffel di una superficie regolare in \mathbb{R}^3 .

[4] (3 punti) Usare il Teorema di Stokes per calcolare

$$\int_{S} \operatorname{rot}(\mathbf{F}) \cdot N \, d\sigma,$$

con $\mathbf{F}(x,y,z)=(xz,yz,xy)$ ed S la parte della sfera $x^2+y^2+z^2=4$ che sta dentro il cilindro $x^2+y^2=1$ e sopra il piano xy.

- [5] (5 punti) Dare la definizione di superficie orientabile in \mathbb{R}^3 e dimostrare che la sfera è orientabile.
- [6] Sia M la superficie descritta dalla parametrizzazione locale

$$\mathbf{x}(u,v) = (u,v,uv^2), \qquad (u,v) \in \mathbb{R}^2$$

- (1) (2 punti) Provare che $\mathbf{x}(U)$ è una superficie regolare di \mathbb{R}^3 e calcolarne il versore normale in ogni punto (in particolare, mostrare che \mathbf{x} è iniettiva).
- (2) (2 punti) Calcolare l'espressione della prima e della seconda forma fondamentale di ${\bf x}$ in ogni punto.
- (3) (2 punti) Scrivere la matrice dell'operatore forma nel punto $P = \mathbf{x}(0,1)$ e calcolare le curvature principali in tale punto.